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SUMMARY  

 

Selective oxidation of alcohols to valuable chemical products, such as 

carbonyl and carboxyl compounds, plays a significant role in fine organic 

synthesis and is also of great industrial importance.  

In this thesis, for the first time, a comprehensive study of gold catalysts 

supported on titania has been carried out, including the study of their structural, 

electronic, acid-base, and catalytic properties for selective oxidation of different 

types of primary alcohols, both inactivated (alkyl) and activated (containing an 

aromatic ring), represented by n‐octanol and 1‐phenylethanol, respectively. 

Catalytic investigation was done under mild conditions (T = 80 °C, 1 atm, no 

added bases), and using non-toxic oxidants (tert‐butyl hydroperoxide, TBHP or 

molecular oxygen, O2) in order to follow «green» chemistry principles.  

The combined effects of the gold content, the nature of the support modifier 

(MxOy = CeO2, Fe2O3, La2O3 or MgO), and the pretreatment atmosphere (H2 or O2) 

on the formation of the active surface of Au/(MxOy)/TiO2 catalysts and, as a 

consequence, on their catalytic behaviour for the selective oxidation of n-octanol 

and 1-phenylethanol, has been investigated. Based on this, the key parameters to 

purposely influence the activity and selectivity of gold-containing catalysts in 

the oxidation of these alcohols have been determined. 

The cationic nature of the active centers in nano gold catalysts has been 

experimentally proved, based on the direct correlation found between the 

catalytic activity in both reactions and the content of Au+ ions. The concentration, 

stability, and adsorption strength of Au+ sites are highly dependent on the nature 

of the support and the pretreatment atmosphere. The catalysts’ deactivation 

observed in both reactions in parallel to the reduction of Au+(Auδ+) states, as well 

as Density Functional Theory (DFT) simulations, confirmed the cationic nature 

of the active sites. In addition, the negative effect of Au3+ and Au0 species for 

aerobic n-octanol oxidation has also been proved by theoretical calculations.  

The effect of tuning (through modifiers) the acid-base properties of the 

support on the formation of the active surface of Au/MxOy/TiO2 catalysts has 

been shown for the first time. And, likewise, the functional groups of the support 

surface (Brønsted acid centers and Brønsted basic centers) also affect the 

direction of secondary reactions (acid and ester formation) of the oxidation of 

n-octanol. 

In conclusion, this research revealed that catalytic systems based on gold 

nanoparticles deposited on titanium oxide modified with lanthanum oxide are 

promising for the selective liquid-phase oxidation of n-octanol and 

1-phenylethanol into highly valuable chemicals, as their oxo-derivatives are 

widely used in cosmetologic, pharmaceutical, agrochemical and other industries.  
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RESUMEN  

 
La oxidación selectiva de alcoholes a productos químicos valiosos, tales 

como compuestos carbonílicos y carboxílicos, juega un papel importante en la 

síntesis orgánica fina y también reviste gran importancia industrial. 

En esta tesis, por primera vez, se ha llevado a cabo un estudio comparativo 

integral de catalizadores de oro soportados en óxido de titanio, incluyendo el 

estudio de sus propiedades estructurales, electrónicas, ácido-base y catalíticas 

para oxidación selectiva de diferentes tipos de alcoholes primarios, tanto 

inactivados (alquilico) como activados (que contienen un anillo aromático), 

representados por n-octanol y 1-feniletanol, respectivamente. La investigación 

catalítica se realizó en condiciones suaves (T = 80 °C, 1 atm, sin adición de bases), 

y usando oxidantes no-tóxicos (hidroperóxido de terc-butilo u oxígeno 

molecular, O2) para seguir los principios de la química “verde”. 

 Se ha investigado el efecto combinado del contenido de oro, la naturaleza 

del modificador de soporte (MxOy = CeO2, Fe2O3, La2O3 o MgO) y la atmósfera de 

pretratamiento (H2 u O2) sobre la formación de la superficie activa de los 

catalizadores Au/(MxOy)/TiO2 y, en consecuencia, sobre su comportamiento 

catalítico para la oxidación selectiva de n-octanol y 1-feniletanol. En base a esto 

se han determinado los parámetros clave para influir deliberadamente en la 

actividad y selectividad de los catalizadores de oro en la oxidación de estos 

alcoholes. 

Se ha demostrado experimentalmente la naturaleza catiónica de los centros 

activos de los catalizadores de nano oro sobre la base de la correlación directa 

encontrada entre la actividad catalítica en ambas reacciones y el contenido de 

iones Au+. La concentración, estabilidad y fuerza de de adsorción de los sitios 

Au+ dependen en gran medida de la naturaleza del soporte y la atmósfera de 

pretratamiento. La desactivación de los catalizadores en ambas reacciones en 

paralelo a la reducción de los estados de Au+(Auδ+), así como las simulaciones de 

la Teoría Funcional de la Densidad (DFT), confirmaron la naturaleza catiónica de 

los sitios activos. Además, mediante cálculos teóricos se ha demostrado también 

el efecto negativo de las especies Au3+ y Au0 en la oxidación aeróbica del 

n-octanol.  

Se ha demostrado por primera vez el efecto de ajustar las propiedades 

ácido-base del soporte (mediante modificadores) en la formación de la superficie 

activa de los catalizadores de Au/(MxOy)/TiO2. Asimismo, que los grupos 

funcionales de la superficie de soporte (centros ácidos Brønsted y centros básicos 

Brønsted) también afectan la dirección de las reacciones secundarias (formación 

de ácido y éster) de la oxidación del n-octanol. 

En conclusión, esta investigación ha revelado que los sistemas catalíticos 

basados en nanopartículas de oro depositadas sobre óxido de titanio modificado 
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con óxido de lantano son muy prometedores para la oxidación selectiva de 

n-octanol y 1-feniletanol en fase líquida a productos químicos de alto valor, ya 

que  sus oxo-derivados  se utilizan ampliamente en las industrias 

cosmetológica, farmacéutica, agroquímica y otras. 
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INTRODUCTION 

Global increases in energy consumption, exhaustion of easily accessible 

fossil fuels and environmental concerns show the urgent need to produce 

fuels and chemicals based on renewable raw materials. The potential of 

biomass, as a valuable source of energy, biological and chemical raw 

materials, is far from being fully utilized. This is due to the fact that the 

processes developed to date for the chemical processing of biomass are 

significantly inferior in efficiency to petrochemical processes. In this regard, 

the development of new ways and methods of processing biomass into fuel 

and chemical products is important for any sustainable energy and 

industrial development strategy. 

One typical example is the selective oxidation of alcohols, present in 

large quantities in biomass processing products, into valuable carbonyl and 

carboxylic compounds that plays an important role in fine organics 

synthesis and is of great industrial importance [1, 2]. 

Conventionally, numerous oxidizing reagents (including toxic, 

expensive, stoichiometric oxidants [3, 4]), have been employed to 

accomplish this transformation, along with the use of harmful solvents and 

harsh reaction conditions. Thus, these methods lead to environmental 

pollution and economic problems [5–8]. This generates an urgent and 

considerable need for harmless and sustainable technologies that require 

renewable feedstock, e.g., biomass, as replacement for fossil resources [9]. 

Therefore, a green process, involving the use of a heterogeneous catalyst 

(used as a recyclable solid material in biomass processing) and non-toxic 

and cheap oxidants, such as oxygen or peroxides, in mild conditions 

(atmospheric pressure, low temperature and absence of bases and radical 

initiators) would be of utmost interest [10–13]. The implementation of these 

processes will be impossible without the creation of new, highly efficient 

catalytic systems with high activity, selectivity and stability. 

In this frame, supported nanogold catalysts are characterized by high 

activity and selectivity, and more stability in liquid-phase oxidation of 

alcohols, as compared to catalysts based on Pt and Pd [14-17]. At the same 

time, the purposeful organization of the active surface of gold-containing 

catalysts implies taking into account a combination of many factors, such as 

dispersion of gold, preparation method, nature of the support and its 

interaction with gold, etc. [18-21]. The influence of these factors has been 

repeatedly discussed in the literature, but up to date there is no consensus 

on how these factors influence the formation of the active surface. The 

solution of these issues is a powerful lever on the way of increasing the 

efficiency and stability of gold-containing catalysts. In this regard, the study 

of the genesis of the active surface of gold-containing catalysts under the 
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influence of the above factors is an important and relevant topic of scientific 

research. 

Previous studies on supported gold catalysts in the liquid-phase 

oxidation of n-octanol [22, 23], have suggested that monovalent gold ions 

act as the active sites, and the modification of titanium oxide supports with 

transition metal oxides leads to stabilization of these active states of gold. 

However, the combined effect of gold load, nature of the modifying 

additive and pretreatment atmosphere on the formation of the active 

surface in such catalytic systems was not considered. Moreover, the process 

of deactivation of the catalysts was not studied and the factors that 

determine the selectivity of the process were not established. 

Notably, n-octanol belongs to the group of low fatty alcohols, whose 

physical properties impose constraints to the implementation of green 

chemistry approaches. Oxo derivatives of n-octanol (aldehydes, acids and 

esters) are widely used in pharmaceutical, cosmetology, agrochemical and 

other industries [24-28]. Due to its low reactivity, n-octanol is often used for 

comparative studies of catalytic activity in oxidation of alcohols, as a 

convenient model of primary alcohols of long chain. However, among these 

studies, very few are devoted to understanding and improving the 

efficiency of selective liquid-phase oxidation of n-octanol using supported 

gold catalysts under mild conditions [29-35].  

Indeed, gold catalysts exhibit higher catalytic activity in the oxidation of 

the more reactive, activated alcohols, such as 1‐phenylethanol [36-46]. 

However, even in the oxidation of such a reactive alcohol, the study of the 

mechanism of formation of the active surface of gold‐containing systems 

responsible for its excellent catalytic performance is still the subject of 

numerous discussions. The main oxidation product of this aromatic alcohol 

is acetophenone (methylphenylketone, C6H5COCH3). Acetophenone is used 

in perfumes, soaps and creams, as well as a flavouring substance in food, 

soft drinks and tobacco. It is also used as a solvent and has a sleeping effect, 

important in the manufacture of medicines. 

Thus, there is an urgent need to create new methods and approaches to 

the production of these substances, which would replace existing 

stoichiometric processes leading to the formation of a large amount of toxic 

waste, but, at the same time, to ensure a quantitative yield of the target 

product and a reduction of its cost. The most promising way to solve this 

problem is to develop new heterogeneous catalytic production methods. 

The most promising solution is the use of catalytic systems based on gold 

nanoparticles, since they have high activity and selectivity in the oxidation 

of alcohols under mild conditions using eco-friendly oxidizing agents. 

The overall objective of this thesis is the design and development of new 

nano gold catalysts for sustainable processes of selective oxidation of 

alcohols, both activated and non-activated. To reach this goal, a 
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comprehensive comparative study of the combined effects of gold 

concentration, support and its modifying additives, as well as redox 

pretreatments, on the formation of the active surface species of 

gold-containing catalysts for the liquid-phase oxidation of n-octanol and 

1-phenylethanol. 

 

In the frame of this purpose, the following tasks were carried out: 

1. Synthesis of catalysts based on gold supported on unmodified and 

modified titanium oxide, varying the gold content, the modifiers, and 

the atmosphere of the pretreatment (reducing or oxidizing); 

2. Study of the catalytic properties of the obtained systems in the processes 

of liquid-phase oxidation of n-octanol and 1-phenylethanol; 

3. Investigation of the structural, electronic, as well as acid-base properties 

of the obtained catalytic systems;  

4. Evaluation of the combined effect of gold content, nature of the 

modifying additive and pretreatment atmosphere on the various states 

of gold, their contribution and stabilization in the systems under study; 

5. Identification of the relationships between catalytic performance and 

structural, electronic and acid-base properties;  

6. Investigation of desorption of both alcohol substrates, as well as used 

solvents on different gold sites with Density functional theory (DFT) 

simulations to find a theoretical conclusion about the effect of gold sites 

on alcohol activation; 

7. Based on the analysis of the above results, formulation of ideas about 

the formation and genesis of the active surface species. 

 

This PhD thesis is based on the following published papers: 

 

1. Kolobova, E.; Pakrieva, E.; Pascual, L.; Cortés Corberán, V.; Bogdanchikova, 

N.; Farias, M.; Pestryakov, A. Selective oxidation of n-octanol on unmodified 

and La-modified nanogold catalysts: Effect of metal content. Catal. Today 

2019, 333C, 127–132, https://doi.org/10.1016/j.cattod.2018.04.046 

Impact factor of Catalysis Today (Elsevier, Netherlands) in 2019 was 5.825. 

Quartile 1 in Chemical Engineering Category according to Journal Citation 

Report, JCR. 

2. Pakrieva, E.; Kolobova, E.; Mamontov, G.; Bogdanchikova, N.; Farias, M.H.; 

Pascual, L.; Cortés Corberán, V.; Martinez Gonzalez, S.; Carabineiro, S.A.C.; 

Pestryakov, A. Green oxidation of n-octanol on supported nanogold 

catalysts: Formation of gold active sites under combined effect of gold 

content, additive nature and redox pretreatment. ChemCatChem 2019, 11, 

1615–1624, https://doi.org/10.1002/cctc.201801566. 

https://doi.org/10.1016/j.cattod.2018.04.046
https://doi.org/10.1002/cctc.201801566
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Impact factor of ChemCatChem (Wiley - VCH Verlag GmbH & CO. KGaA, 

Germany) in 2019 was 4.853. Quartile 1 in Chemical Engineering Category 

acoording to Journal Citation Report, JCR. 

The paper was selected for the issue Front Cover: Green Oxidation of 

n‐Octanol on Supported Nanogold Catalysts: Formation of Gold Active Sites 

under Combined Effect of Gold Content, Additive Nature and Redox 

Pretreatment (ChemCatChem 6/2019)  

 

3. Pakrieva, E.; Ribeiro, A.P.C.; Kolobova, E.; Martins, L.M.D.R.S.; Carabineiro, 

S.A.C.; German, D.; Pichugina, D.; Jiang, С.; Pombeiro, A.J.L.; 

Bogdanchikova, N.; Cortés Corberán, V.; Pestryakov, A. Supported gold 

nanoparticles as catalysts in peroxidative and aerobic oxidation of 

1-phenylethanol under mild conditions. Nanomaterials 2020, 10, 151, 

doi:10.3390/nano10010151 (Open Access) 

 

4. Pakrieva, E.; Kolobova, E.; Kotolevich, Y.; Pascual, L.; Carabineiro, S.A.C.; 

Kharlanov, A.N.; Pichugina, D.; Nikitina, N.; German, D.; Zepeda Partida, 

T.A.; Tiznado Vazquez, H.J.; Farias, M.H.; Bogdanchikova, N.; Cortés 

Corberán, V.; Pestryakov, A. Effect of gold electronic state on the catalytic 

performance of nano gold catalysts in n-octanol oxidation. Nanomaterials 

2020, 10, 880. doi:10.3390/nano10050880 (Open Access)  

Impact factor of Nanomaterials (MDPI Multidisciplinary Digital Publishing 

Institute, Switzerland) in 2020 was 4,080, Quartile 1 in Chemical Engineering 

Category according to Journal Citation Report, JCR. 

Some results of this work were presented at the following conferences:  

IV Encuentro de Jóvenes Investigadores de la SECAT, Cursos de Verano de 

la Universidad del País Vasco, Bilbao, País Vasco, 21-23 September 2020. 

Abstract “Selective oxidation of n-octanol over supported nano gold catalysts”;  

International School of Chemistry “Chemistry for everyday life”, School of 

Pharmacy and School of Science and Technology, University of Camerino, 

Camerino, Italy, 1-6 September 2020. Abstract “Green oxidation of n-octanol 

over gold supported catalysts”; 

XXVI Congresso Ibero-Americano de Catalise – CICAT 2018, Coimbra, 

Portugal, 9-14 September, 2018. Abstracts “Oxidación selectiva de alcanoles 

sobre catalizadores de oro soportados: efecto de la carga metálica y 

pretratamientos” and “Gold supported catalysts in solvent free peroxidative 

oxidation of 1-phenylethanol under mild conditions”. 

International Scientific internship: at Instituto Superior Tecnico, 

Universidade de Lisboa (Lisbon, Portugal) under supervision of Prof. Sonia 

https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.201900368
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.201900368
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.201900368
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.201900368
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.201900368
https://www.mdpi.com/2079-4991/10/1/151
https://www.scimagojr.com/journalsearch.php?q=MDPI%20Multidisciplinary%20Digital%20Publishing%20Institute&tip=pub
https://www.scimagojr.com/journalsearch.php?q=MDPI%20Multidisciplinary%20Digital%20Publishing%20Institute&tip=pub
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Carabineiro. Topic: «Studies on the oxidation of 1-phenylethanol using gold 

based catalysts» during period: 2nd November 2017 – 9th July 2018.  

The personal contribution of the author consisted in the search, analysis and 

generalization of literature data, the choice of methods and synthesis of the 

studied catalytic systems, the study of the catalytic activity of samples in 

liquid-phase oxidation of n-octanol and 1-phenylethanol, chemisorption 

measurements, participation in setting goals and objectives, interpretation 

results of physicochemical and catalytic studies, discussion of results and 

formulation of conclusions. 

The scope and outline of this thesis is as follows: 

The dissertation contains 117 pages, 20 figures and 18 tables. The work 

consists of an Introduction, three chapters of Results, Conclusions and 225 

References. 

Chapter 1 shortly reviews the effect of a number of parameters on catalytic 

properties of supported gold catalysts in oxidation reactions, then summarizes 

and discusses in detail the catalytic systems found in the literature for n-octanol 

and 1-phenylethanol oxidation, under mild conditions. Based on the literature 

review, the aim of the study is formed, namely the importance of the detailed 

study of the active surface formation of Au/MxOy/TiO2 catalysts under the 

influence of several factors (gold content, pretreatments, support modifier).  

Chapter 2 presents the experimental part of the work: modification of support 

and gold catalysts preparation, type of treatments for catalyst activation, 

catalytic experiments procedure and the physicochemical methods of studying 

the samples are described in detail. Besides that, theoretical calculations are 

described in this Chapter. 

In Chapter 3, a detailed study on catalytic properties in oxidation of n-octanol 

and 1-phenylethanol under comparable mild conditions with study of influence 

oxidant type (TBHP or O2) on activity in both reactions was carried out; 

summarizing general trends and differences in the activity of catalysts in these 

processes. Then, by using a series of physicochemical methodologies, structural, 

electronic, and acid-base properties of catalysts were studied in detail. Based on 

this comprehensive study, the active centers of both reactions were proposed, 

and the reasons for the deactivation were revealed. Finally, density functional 

theory (DFT) simulations confirmed the nature of active sites proposed based on 

experimental results, as well as the sites responsible for inhibiation of an 

oxidation process.  

Finally, the main findings of this PhD thesis, including the general 

conclusions regarding factors influencing the active surface formation in 

Au/MxOy/TiO2 catalysts, the reasons of deactivation and factors determining the 

selectivity of the process are summarized.  
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CHAPTER 1. LITERATURE REVIEW 

1.1. Supported Gold Nanoparticles for Catalysis  

Dispersed gold particles (clusters, nanoparticles, ionic associates) are 

currently the object of intensive research because of their extraordinary 

properties. It was found that dispersed gold has anti-tumor, anti-arthritic and 

antibacterial properties [47-51].  

However, the main interest in gold is due to the discovery of Haruta et al. of 

the high catalytic activity of dispersed gold deposited on oxides of various 

metals in low-temperature oxidation of CO [52-54]. Prior to this finding, gold 

was traditionally considered as catalytically inert. Therefore, it is not surprising 

that over the last twenty years gold catalysis has become a “hot topic,” as it can 

have applications in several industrially and environmentally important 

reactions, as supported gold catalysts have the ability to carry out liquid-phase 

oxidations under mild conditions [55-61].    

Usually, the formation of the active surface of the deposited metal systems 

occurs under the influence of a number of factors - the method of metal 

deposition on the support, the nature of the support, modifying additives of 

various compounds, reaction conditions, etc.  

However, at the beginning, it is worth to consider the main types of 

dispersed particles and how they differ from each other. 

During the preparation of the supported material, a part of the 

introduced metal is concentrated on the surface of the support granules with 

the formation of relatively large metal particles with a size of 1 nm or more - 

nanoparticles, or a relatively compact metal layer. The other part of the metal 

forms is dispersed as ionic and cluster states. For example, higher ions or M+ 

ions strongly bound to support and clusters of the Mnσ+ type. Moreover, ionic 

states can be both in the form of isolated cations, which are closely associated 

with the support, and in the form of oxides, hydroxides or salts. According 

to a number of electronic properties – stability of the d-orbital, manifestation 

of the effective charge of monovalent ions – gold is located between silver 

and copper. Alike silver, gold in supported catalysts has a stable oxidation 

state of +1, although the highest valence states (Au3+) in gold are more stable 

and are found in supported systems stabilized by chlorine [62]. 

Clusters differ from nanoparticles both in size (they are usually less than 

1 nm) and in physicochemical properties. Although they contain a M–M 

bond, the nature of this bond is covalent and not metallic, as in a 

nanoparticle, due to the size effect [63]. Also, clusters are much more 

reactive and can have a negative or positive charge, and be closely 

associated with the support and adsorb molecules, unlike bulk gold. Thus, 
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clusters occupy an intermediate position between the metal and individual 

atoms and ions.  

Typically, the catalytic activity of a gold catalyst increases with 

decreasing nanoparticle size. This occurs due to an increase in the free 

surface area (which increases the contact between reactant molecules and 

catalytic sites) to volume ratio: the smaller the particle, the highest this ratio. 

Nevertheless, in most reviews, it is noted that particles with size below 5 nm 

are more active and selective in the oxidation of alcohol than larger ones, 

which are almost inactive at low temperatures [64-66]. Moreover, according 

to some reports, gold clusters less than 2 nm in size are the most active [21, 

66-69]. 

In addition to the size effect, the nature of the support is also an 

important factor. The most widely used supports are divided into two 

groups: «active supports» are reducible metal oxide supports (Fe2O3, CeO2, 

TiO2, Co3O4, etc.) and «inert supports» are non-reducible oxide supports 

(MgO, Al2O3, La2O3, etc.). The active supports are transition metal oxides, 

which activate adsorbed oxygen and show strong metal-support interaction, 

while the inert ones are characterized by higher specific surface areas than those 

of active ones, thus decreasing the sintering effect [70-72].  

Although non-reducible oxide supports are much less efficient in oxygen 

activation than reducible ones, and are generally regarded as the “spectator” 

of the process, the transfer of electrons between gold and these supports is 

still very important [73]. Another important factor that can affect the 

properties of gold nanoparticles is the electronic effect. It was reported that 

CeO2 can stabilize cationic gold on the surface by attracting electrons from 

gold [74], while MoOx stabilizes nanoparticles by donating its electrons to 

gold [75]. Despite the oppositely directed electron transfer, the gold-support 

interaction increases in both cases.   

The dependence of gold dispersion on the preparation method is quite 

strong. There is a popular simple impregnation method for obtaining deposited 

disperse systems based on noble metals. In this technique, the metal salts are 

dispersed on the surface or mostly in existing pores of support (depending on 

the porosity of the support) and then dried and calcined under suitable thermal 

conditions. However, it is almost impossible to obtain highly dispersed gold due 

to its melting point (1063 °C), lower than that of Pd (1550 °C) and Pt (1769 °C). 

Moreover, nanosized gold particles have a melting point even lower than bulk 

gold [63], easily sintered into large aggregates (up to 400 nm [59]). Meanwhile, 

the chloride ions of the precursor (HAuCl4), if not completely removed, poison 

the catalyst at lower temperatures (< 600 °C). 

Thus, three extremely useful methods for depositing gold particles with a 

diameter <5 nm on oxide supports are: 

1) Co-precipitation method, widely used for gold catalysts preparation 

because of its simplicity. A precipitating reagent (Na2CO3, urea, etc.) is added to 
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an aqueous solution of HAuCl4 and metal nitrate to obtain a mixture of 

precipitates of the active component and support. Then the precursor is washed, 

dried and calcined at temperatures above 250 °C. Highly dispersed gold with 

small particle size can be obtained by this technique. However, a significant 

concentration of Na+ and Cl− ions in some cases, can act as a catalyst poison. In 

addition, impurities such as metal hydroxides or carbonates, can be 

co-precipitated with Au(OH)3, limiting the applicability of this method.   

2) Immobilization method, in which colloidal gold nanoparticles are first 

synthesized in the presence of an excess of stabilizing (capping) agents/ligands 

or surfactants and then dispersed on the support. This procedure can be used to 

prepare gold on carbon or oxide supports and it provides control of the size and 

shape of the formed nanoparticles, preventing them from agglomerating. 

However, stabilizing agents might partially block the active metal sites due to 

bonds formed between agent and support. Thus, the removal of these 

compounds, by treatment at 300 °C, as an example, is highly important. 

3) Deposition–precipitation (DP) technique is the most widely and 

successfully used method in the preparation of active gold-based catalysts with 

high dispersion of Au NPs. This method, developed by Haruta [76], consists of 

the precipitation, using sodium hydroxide (DP NaOH), of the metal salt in the 

form of hydroxide on the surface of the support by varying the pH (6-10) of the 

solution. The obtained precipitate [Au(OH)nCl4−n]− may be nucleated by the 

surface functional groups, simultaneously allowing the active phase to attach to 

the support or to be reduced afterwards. It should be mentioned that DP 

technique is not very suitable for supports with a point of zero charge (PZC) 

below 5, activated carbon [77-79] or zeolites [80], due to those high isoelectric 

point.  

In alternative to DP NaOH, Zanella and co-workers used DP with urea 

(DPU) [81]. They found that instead of gold(III) hydroxide formed in the 

solution by DP NaOH, the gold is deposited on the TiO2 surface (PZC ≈ 6) as an 

amorphous gold(III) precipitate, containing urea hydrolysis products. Thus, the 

metallic gold particles obtained after calcination exhibit a decreasing size (2–3 

nm) when the time of urea decomposition increases (until 16 h for progressive 

increase of pH), while no sodium poison was introduced. Also, urea has been 

shown to yield larger quantities of gold deposited on the surface in contrast to 

NaOH. 

It should be emphasized that, according to Haruta, the DP method allows to 

obtain hemispherical particles that strongly interact with the support by their 

flat side and are thermally more stable than spherical particles [82].  

As can be seen from the described methods, a proper thermal treatment is 

also crucial for active surface formation since, otherwise, it may lead to sintering 

of gold Au NPs. As an example, Park and Lee [83] reported that calcination at 
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300 °C results in more active Au/TiO2, Au/Fe2O3, and Au/Al2O3 catalysts for CO 

oxidation than those calcined at higher temperatures. At the same time, the type 

of thermal pretreatment also affects the formation of active centers. Thus, Lee 

and co-workers found [84] that due to a stronger interaction between the metal 

and the oxidized manganese, catalysts treated under air at 120 °C are more 

active than those dried in vacuum or hydrogen at 30 °C.  

There is no consensus on the optimal gold content in catalysts. In some 

studies, the activity of gold-based materials is proportional to the gold content 

[85, 86]; in others, on the contrary, activity decreases with increasing gold 

content. For example, Abad and co-workers [87] found that the sample with 0.44 

wt.% Au was significantly more active than the sample with 1.8 wt.% Au in spite 

of the same particle size, ≈ 4 nm. In general, it is believed that the gold content 

should vary from 0.5 to 5% to achieve good activity without the costs related to 

the catalyst synthesis [88]. 

Despite the large number of studies, the valence state (Au0, Auδ− or Auδ+) of 

the active site of Au catalysts remains a controversial issue. This can be observed 

with the example of the simplest model reaction of CO oxidation. Thus, Haruta 

[89], Campbel [90], Gates et al. [91] suggest that the active centers are small metal 

particles of gold. At the same time, Guzman and Gates [92] found an increased 

rate of СО2 formation with increasing Au+ concentration. Lee and Schwank [93], 

Hutchings et al. [94], and Pestryakov et al. [95, 96] also support the idea of 

cationic nature of gold (Au+ or Au3+). At a variance, Chen and Goodman [97] 

highlighted the important role of negatively charged gold particles. The same 

division in conclusions about electronic gold state responsible for activity is 

observed in the selective liquid-phase oxidation of alcohols, which will be 

described in detail in the following sections of the literature review (Sections 1.2 

and 1.3). Other parameters, such as an effect of support, preparation method, 

particle size, etc., will be discussed in these sections as well.  

A comprehensive knowledge of the chemical and physical properties of Au 

NPs as heterogeneous catalysts is necessary to understand the nature of active 

sites. A deeper understanding of the structure of metal particles, their size, 

shape and catalytic properties of materials can be obtained through a number of 

methodologies [98]. In general, a number of characterization methods for the 

identification and characterization of gold catalysts are: 

 Elemental composition: energy-dispersive X-ray (EDX), atomic 

absorption spectroscopy (AAS), inductively coupled plasma (ICP); 

 Morphology: microscopic technique by transmission (TEM) or scanning 

electron microscopy (STEM); 

 Structural properties: X-ray diffraction (XRD), ultraviolet-visible 

(UV-vis) and vibrational spectroscopies; 
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 Composition and surface structure: spectroscopic methods (infrared 

(IR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy) and 

temperature-programmed methods, such as temperature-programmed 

reduction (TPR) and temperature-programmed desorption (TPD). 

1.2. Catalytic Oxidation of Fatty Alcohols: n-Octanol 

Among the different alcohol reactions, their selective oxidation to valuable 

carbonylic compounds is one of the most important transformations in industrial 

organic chemistry and a challenging process in terms of green chemistry [1, 2]. 

Catalytic oxidations can be classified into two types [99]: complete (or total) 

oxidation, used for catalytic destruction of various toxic compounds, and 

selective oxidation, used for organic compounds in fine chemistry, aiming at the 

synthesis of desired chemical products.    

Traditional methods for the latter involve the use of toxic, expensive, 

stoichiometric metal oxidants and harmful organic solvents and often require 

harsh reaction conditions [3, 4]. Catalysis research is working towards 

favourable solutions to these problems through the development of effective 

heterogeneous catalysts for environment friendly applications. Therefore, 

performing of alcohol oxidation reaction on heterogeneous catalysts (used as a 

recyclable solid material in biomass processing) with clean non-toxic oxidants 

such as air, oxygen or peroxides at mild conditions (atmospheric pressure, low 

temperatures and absence of bases and radical initiators) would be a great of 

interest.  

Aliphatic primary alcohols with eight or more carbon atoms, also called 

“fatty alcohols”, are the less reactive alkanols, whose physical properties impose 

constraints to implementation of green chemistry approaches. Namely, the 

melting and boiling points, as well as the viscosity, gradually increase with the 

increase of the number of carbon atoms in the chain, and the solubility in water 

decreases exponentially [2, 100]. Thus, the physical properties of higher alcohols 

determine the need to carry out the process in the liquid phase using moderate 

temperatures (60-130 °C) and inert solvents for using oxygen or air as oxidants 

(aerobic oxidation). 

Fatty alcohols are present in forestry wastes (for example, in beech bark or 

Douglas fir), in tall oil, as by-products in the preparation of cellulose, mainly 

from coniferous trees processing [101]; they are also present in non-woody 

plants, such as flax, hemp, sisal and abaca [102]. Selective oxidation of these 

alcohols from biomass conversion products may allow them to be used as a new 

resource for the production of corresponding aldehydes, ketones, esters and 

fatty acids, which are valuable intermediates for the chemical, pharmaceutical 

[103] and agrochemical industries. For example, behenic acid (C22H44O2) is used 

in cosmetology, hair conditioners and creams because of its high wettability 
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[104] and lignoceric acid (C24H48O2) is used in pharmaceuticals [105] and as food 

additive [106].  

n-Octanol is the first representative of fatty alcohols and is a very 

convenient model for investigating the reactivity of this class of compounds and 

evaluating the properties of the catalysts for reactions dealing with them. 

One of the demanded oxidation products of n-octanol is octanal, a.k.a. 

caprylic aldehyde, which occurs naturally in citrus oils and could be used 

commercially as a component in perfumes and in flavor production for the food 

industry [24]. Compounds of octanoic acid, another n-octanol oxidation product, 

are found naturally in the milk of various mammals, and as a minor constituent 

of coconut and palm kernel oils [107]. Octanoic acid, a.k.a. caprylic acid, has 

broad applications. In addition to commercial production of ester (octyl 

octanoate) for perfumery, as flavor and fragrance agent, and in the manufacture 

of dyes, octanoic acid can be used as disinfectant [25] in commercial food 

handling and health care facilities. In addition, it is currently being investigated 

as a treatment for voice tremor [26, 27] and taken as a dietary supplement [28]. 

Since n-octanol is a convenient model of primary alcohols of long chain, it is 

often used for comparative studies of catalytic activity in oxidation of alcohols. 

The majority of the works on liquid-phase oxidation of n-octanol are devoted to 

the study of catalytic systems based on noble metals: Ru [108-110], Pt [111-113], 

Pd [114-117], Au [22, 23, 29-36, 115-117], Ag [118, 119] and also other non-noble 

metal catalysts [120-125]. However, among them, there are very few studies 

where mild conditions (atmospheric pressure, moderate temperatures and 

non-toxic oxidants) have been applied for the efficient and selective liquid phase 

oxidation of n-octanol; they are briefly summarized in Table 1.  

The combined homogeneous catalytic system N-Hydroxyphthalimide 

(NHPI) with Co(acac)3 (0.05 equiv. to NHPI) was effective for n-octanol aerobic 

oxidation to octanoic acid. It yielded 86% of acid (COL = 90%) in 5 h using this 

system (alcohol:NHPI = 10, alcohol:Co = 400) while 71% yield (COL = 75%) was 

achieved in 20 h when NHPI was used alone (alcohol:NHPI = 10) [122]. Other 

authors [123] combined NHPI with heterogeneous silica based cobalt (II) 

interphase catalyst, prepared by direct grafting mesoporous silica by a silica 

precursor–Schiff base Co(II) complex, to allow the recyclability of the 

homogeneous complex. Aerobic oxidation of n-octanol with this system yields 

87% octanal (SAL = 95.6%) and 4% octanoic acid (SAC = 4.4%) (alcohol:NHPI:Co 

catalyst in 1:0.1:0.0025 ratios, T = 60 °C); however, in a rather long reaction time, 

40 h. Recycling tests of this catalyst were conducted only for 1-phenylethanol 

oxidation under conditions comparable for n-octanol oxidation (T = 60 

°C, t = 22 h, 1:0.1:0.0025): there was not considerable loss of activity (yield of 

acetophenone, Yac = 100-88%) until 4 cycles.  

Kumar et al. [124] found that strontium added CoAl2O4 nanocatalysts with 

spinel structure catalyze the oxidation of alcohols selectively to aldehydes using 

https://en.wikipedia.org/wiki/Milk
https://en.wikipedia.org/wiki/Coconut_oil
https://en.wikipedia.org/wiki/Palm_kernel_oil
https://en.wikipedia.org/wiki/Essential_tremor
https://en.wikipedia.org/wiki/Dietary_supplement
https://ezproxy.ha.tpu.ru:2056/science/article/pii/S0926860X13005826#bib0520
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different oxidants such as H2O2, TBHP or NaOCl. Poor activity was observed on 

Co2AlO4 spinels alone. Better conversions were obtained using TBHP as oxidant 

and acetonirile as solvent. Thus, oxidation of n-octanol with TBHP over 

Co0.7Sr0.3AlO4 yielded 72% octanal (SAL = 100%, COL= 72%), but required a rather 

high catalyst loading (TBHP/alcohol = 1, Alcohol/Catalyst = 2.6 w/w, T = 80 °C, t 

= 5 h).  

Table 1. Catalytic liquid-phase oxidation of n-octanol using gold catalysts 

under mild conditions (1 atm, 60-83 °C). 

Catalyst T, °C  Oxidant Solvent 
Reaction 

time, h 
R c 

Conv., 

% 

Selectivity, % 
Ref. 

Aldehyde Acid Ester 

NHPI a 75 O2 MeCN b 20 10 d 75  95  122 

NHPI + Co(acac)3  75 O2 MeCN 5 10:400 e  90  95  122 

NHPI + Co(II)–SiO2  65    O2 MeCN 40 10:200 f 40 4 87  123 

Co0.7Sr0.3AlO4 80 TBHP MeCN 5 2.6 72 100   124 

Zr(n-PrO)4 60 TBHP Toluene 2 10 90 80 20  125 

2.3wt.% Ag/TiO2 80   O2 n-heptane 6 100 2.5 90 8 2 118 

2.3wt.% Ag/Fe2O3/TiO2 80 O2 n-heptane 6 100 7.6 100 0 0 118 

2.3wt.% Ag/MgO/TiO2 80 O2 n-heptane 6 100 9 95 3 2 118 

2.3wt.% Ag/CeO2/TiO2 80 O2 n-heptane 6 100 12.3 92 3 5 118 

1.4wt.% Ru(OH)3/Al2O3+Hq g 83 O2 TFT h 4 20 87 i 98   109 

2.1wt.%Ru–CeO2 60 O2 TFT 4 10 30  93  110 

2.1wt.%Ru–Co(OH)2–CeO2 60 O2 TFT 4 10 100 1 97  110 

2.5wt.% Au/SiO2-pH2 80 O2 n-heptane 6 100 2.5 85  15 29 

2.5wt.% Au/Fe/SiO2-i- pH2 
j 80 O2 n-heptane 6 100 4 40  60 29 

2.5wt.% Au/Ce/SiO2-i- pH2 80 O2 n-heptane 6 100 5 70  30 29 

2.5wt.% Au/La/SiO2-i- pH2 80 O2 n-heptane 6 100 3 50  50 30 

2.5wt.% Au/La/SiO2-s- pH2 80 O2 n-heptane 6 100 3 60  40 30 

2.5wt.%Au/Mg/SiO2-s- pH2 80 O2 n-heptane 6 100 3 60  40 30 

6wt.% Au/SiO2  80 O2 toluene 4 8 40 17   31 

1wt.% Au/Ga3Al3O9 80 O2 toluene 3 67 23 99   32 

0.5wt.% Au/MIL-101 k 80 O2 toluene 3 67 38 99   32 

2.5wt.% Au/γ-Ga2O3 80 O2 Mes. l 2.5 10 45 99   33 

1wt.% Au/CuaMgbAlcOx 80 O2 Mes. 3 95   34 i  98   34 

2wt.% Au-Nb2O5-D m 80 O2 n-heptane 6 100 5 58 0   42 35 

2wt.% Au-Nb2O5-H m 80 O2 n-heptane 6 100 6 45 0   55 35 

2wt.% Au-ZnO-D 80 O2 n-heptane 6 100 45 18 0   82 35 

2wt.% Au-ZnO-H 80 O2 n-heptane 6 100 38 20 0   80 35 

2wt.% Au-MgO-D 80 O2 n-heptane 6 100 65 15 10   75 35 

2wt.% Au-MgO-H 80 O2 n-heptane 6 100 27 35 15   50 35 

4wt.% Au/TiO2_pH2 80 O2 n-heptane 6 100 11 81  3   16 22 

4wt.% Au/CeO2/TiO2_pH2 80 O2 n-heptane 6 100 23 66  2 32 22 

4wt.% Au/La2O3/TiO2_pH2 80 O2 n-heptane 6 100 40 36  0 64 22 

4wt.% Au/Fe2O3/TiO2_pH2 80 O2 n-heptane 6 100 15 58  0 42 23 

4wt.% Au/MgO/TiO2_pH2 80 O2 n-heptane 6 100 20 67  2 31 23 

a NHPI: N-Hydroxyphthalimide; b MeCN: acetonitrile;  c R: Alcohol/Metal ratio (mol/mol); d 

Alcohol:NHPI = 10 (mol/mol); e Alcohol:NHPI:Сo = 10:400 (mol/mol); f Alcohol:NHPI:Сo = 

10:200 (mol/mol); g Hq: hydroquinone; h TFT: Trifluorotoluene;  i Yield of aldehyde instead of 

conversion; j direct synthesis «s» or impregnation method «i» for support modification with 

following hydrogen treatment at 300 °C of as-prepared catalyst (pH2); k MIL-10: zeolite-type 

metal-organic framework; l mes.: mesitylene and 90 °C; m D, dried, or H, after thermal 

reductive treatment; Сonv. — сonversion. 

https://en.wikipedia.org/wiki/Trifluorotoluene
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Krohn et al. describes also the application of hydroperoxides, such as TBHP 

or cumene hydroperoxide (CHP), for catalyzing of non-activated primary and 

secondary alcohols to their corresponding aldehydes and ketones [125]. Thus, 

n-octanol was almost totally converted (COL = 98%) at 60 °C to octanal/octanoic 

acid mixture in ratio 4:1, while a higher octanal formation was observed 

(aldehyde:acid = 9:1) at 20 °C (COL = 96%), but in 20 h. Such good aldehyde yields 

could be obtained not only by decreasing temperature reaction, but also by 

lowering the amount of TBHP or replacing it by CHP, and/or exchanging the 

more active catalyst Zr(O-t-Bu)4 by Zr(O-n-Pr)4 or silica gel-supported Zr(OR)x. 

Moving on to catalysts based on precious and noble metals, starting with the 

paper of Kolobova et al. [118] on the use of 2.3 wt.% Ag/MxOy/TiO2 (MxOy = 

Fe2O3, MgO, CeO2, Ti/M = 40) catalysts in n-octanol and betulin oxidation with O2 

at 1 bar, it was suggested that the active sites of modifiers for the liquid-phase 

oxidation of n-octanol are monovalent Ag+ ions. The best promotional effect was 

observed after introduction of Ce oxide onto the support (COL=12.3%, SAL= 92%, T 

= 80 °C, 1 atm, Alcohol/Ag = 100, 6 h), while redox pretreatments are detrimental 

to catalytic activity due to a decrease in the surface concentration of silver 

monovalent ions. Strong interaction was found for silver with TiO2, which gave a 

uniform distribution of silver on the support surface, but stabilizing it in the 

form of inactive surface compounds. 

Several catalysts based on ruthenium were found to be active catalysts for 

n-octanol oxidation under mild conditions; however high ruthenium amount 

was used. As an example, 1.4 wt.% Ru(OH)3/γ-Al2O3 could catalyze the 

oxidation of 2-octanol to 2-octanal in a 91% yield within 2 h (solvent TFT, A/M = 

20, T = 83 °C) [109]. Less reactive primary alcohols 1-octanol and 1-decanol were 

oxidized more slowly to their corresponding aldehydes. Increasing the reaction 

time did not improve the yield to aldehydes due to their over-oxidation to 

carboxylic acids. The addition of a small amount of hydroquinone (1 equiv. 

based on Ru) completely suppressed the over-oxidation, which allowed 

obtaining only aldehydes with good yields: 87% octanal and 71% decanal, 

respectively, in just 4 h.  

With the same solvent and reaction time (solvent TFT, t = 4 h), but at lower T 

(60 °C) and higher ruthenium loading (A/M = 10), a three component catalytic 

system, 6.4 wt.% Ru–Co(OH)2–CeO2, was highly efficient for the oxidation of 

n-octanol to octanoic acid yielding 97% acid at full conversion [110]. Authors 

noted extremely fast aerobic oxidation of octanal to the acid even at room 

temperature (YAC = 93% in 30 min) over this catalyst. Also, the order of activity in 

terms of component amount was as follows: Co(OH)2–CeO2 < Ru/CeO2 < 

Ru–Co–Al–CO3 < Ru–Co(OH)2–CeO2, evidencing that synergy of the three 

metals (Ru, Co and Ce) is needed to achieve high acid yield. 

https://ezproxy.ha.tpu.ru:2056/topics/engineering/enzymatic-activity
https://ezproxy.ha.tpu.ru:2056/topics/engineering/monovalent-ion
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In comparison with platinum group metals catalysts, supported nanogold 

catalysts are highly active even at low temperatures, and selective in obtaining 

the desired products in the aerobic oxidation of n-octanol. 

In the works Kotolevich et al. [29, 30], 1–2 nm Au NPs on nanosized silicon 

oxide were obtained. The influence of the support modifier (Fe, Ce, Mg or La) 

and the preparation method (either direct synthesis «s» or impregnation method 

«i») on the structural, electronic and catalytic properties in the liquid-phase 

oxidation of octanol was studied under mild conditions (0.1 M n-octanol in 

n-heptane, no base added; T = 80 °C, R = 100). It was found that Fe, La and Mg 

modifiers changed electronic properties of supported gold, favoring the 

formation and stabilization of Auδ+ states, which are probable gold active sites of 

selective liquid-phase oxidation of alcohols in redox catalytic processes. 

However, in spite of the low particle size, the catalysts exhibited low octanol 

oxidation activity. Maximum 5% conversion in 6 h of reaction was achieved on 

Au NPs supported on the ultra-small SiO2 modified with cerium oxide by 

impregnation method, and relative order of activity was: Au/CeSiO2-i > 

Au/FeSiO2-i ≫ Au/MgSiO2-i ≈ AuLaSiO2-i ≈ Au/LaSiO2-s > Au/SiO2 > Au/FeSiO2-s 

≫ Au/CeSiO2-s. The enchanced catalytic performance on ceria modified catalyst 

was probably due to the oxygen mobility and storage capacity of ceria, which 

allows the formation of Ce3+ sites and adsorbed oxygen species due to 

metal-support interactions.  

Li et al. [31] studied silica-supported Au–Cu and Au–Ag alloy NPs for the 

aerobic oxidation of alcohols. For comparison, they also investigated the 

corresponding monometallic catalysts in octanol oxidation. With a large load (R 

= 8) of 6 wt.% Au/SiO2 catalyst, they could achieve 40% conversion of n-octanol 

in 4 h, with 17% aldehyde selectivity. Unfortunately, no information of other 

products nor of electronic state of gold was provided.  

Su et al. [32] suggested that the high dispersion of Au NPs and the electron 

donation effects of aryl rings to the Au NPs within the large cages of the MIL-101 

support are the main reasons for the observed high activities of the Au/MIL-101 

catalyst in aerobic oxidation of alcohols, including n-octanol (СOL = 38%, SAL = 

99%) under base-free conditions (T = 80 °C, 1 atm, R = 67, 3 h). 

Liu et al. [33] showed that Au/γ-Ga2O3 was effective for oxidation of several 

alcohols. In particular, 45% octanol conversion was obtained after 2.5 h with 99% 

aldehyde selectivity, using a low alcohol/Au ratio (R = 10). Nevertheless, the 

high catalytic performance exhibited was attributed to the significantly 

enhanced dehydrogenation capability, due to a strong interaction between Au 

NPs and the γ-Ga2O3 support, which was attributed to the presence of gold 

species detected by XPS with binding energy (BE) 83.1–83.4 eV. 

Haider et al. [34] described oxidation of various types of alcohols over 1 

wt.% Au/CuaMgbAlcOx catalysts. In case of n-octanol oxidation, 34% octanal yield 

was obtained at 90 °C after 3 h (Table 1). Ex-situ XANES of the fresh and spent 
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catalysts revealed that a significant fraction of the deposited gold existed as 

charged species (Au+).  

In a recent paper [35], MgO, ZnO and Nb2O5, representative of three 

different types of oxides (basic, amphoteric and acidic, respectively), were used 

as supports for Au NPs. It was found that the catalytic activity is influenced by 

the electron mobility between the Au NPs and the support, which depends on 

the intermediate electronegativity of the support. However, besides the 

predominant (Au0)δ− species in some active dried catalysts (2 wt.% Au-MgO-D 

and 2 wt.% Au-ZnO-D), also cationic gold (Au+) was present. Selectivity in 

n-octanol oxidation, preferably towards ester formation (SES = 75%, COL = 65%) in 

the case of the most active catalyst (2 wt.% Au-MgO-D), was influenced by redox 

properties of the gold species, acid-base properties of the supports and catalyst 

pretreatment. 

Other studies on supported gold catalysts in the liquid-phase oxidation 

of n-octanol (4 wt.% Au/MxOy/TiO2 catalysts, where MxOy = Fe2O3, MgO, CeO2, 

La2O3 modifiers) [22, 23] (Table 1) suggested that the formation of the active 

surface was strictly dependent on the modifying additives (transition metal 

oxides) used for better metal-support interaction and as a tool for transforming 

and stabilizing gold active sites. However, the obtained experimental data 

turned out to be insufficient to identify the nature of the active site of these 

catalytic systems. Additionaly, the combined effect of gold loading, nature of 

the modifying additive and pretreatment atmosphere on the formation of the 

active surface in such catalytic systems was not considered. Moreover, the 

process of deactivation of the catalysts was not studied and the factors that 

determine the selectivity of the process were not established. 

1.3. Catalytic Oxidation of Aromatic Alcohols: 1-Phenylethanol 

The oxidation of aromatic alcohols is the foundation of several important 

industrial and fine-chemical processes, such as perfumery, pharmaceutical, dyes 

and agrochemicals. 1-phenylethanol oxidation is generally treated as a model 

reaction of alcohol oxidation with higher reactivity than aliphatic primary ones. 

1-Phenylethanol can be found naturally as a glycoside in tea flowers 

(Camellia sinensis) [126]. It is also reported to be present in cranberries, grapes, 

garlic, mint oil, cheeses, cognac, rum, white wine, cocoa, black tea, hazelnuts, 

cloudberries, beans, mushrooms and endives [127]. 

The main oxidation product of its oxidation is acetophenone 

(methylphenylketone, C6H5COCH3). Acetophenone is used in perfumes, soaps 

and creams, as well as a flavouring substance in food, soft drinks and tobacco. It 

is also used as a solvent and has a sleeping effect, important in the manufacture 

of medicines. Traditionally, acetophenone is obtained from benzene and acetyl 

chloride (or acetic anhydride) in the presence of iron or aluminum chlorides by 
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the Friedel – Crafts reaction (Scheme 1). The disadvantage of this method is the 

production of a large amount of acidic wastewater after completion of the 

reaction, which complicates mass production and leads to enviromental 

problems. 

  

Scheme 1. Friedel – Crafts acylation of benzene with Lewis acid catalyst 

(AlCl3). 

There are many studies reported for 1-phenylethanol oxidation, using both 

homogeneous and heterogeneous catalysis (Table 2).  

Pombeiro and co-workers [128-132] have proposed a number of effective 

homogeneous catalysts based on complexes of copper, iron, cobalt for the 

oxidation of 1-phenylethanol at atmospheric pressure in the absence of a solvent, 

using TBHP as an oxidizing agent. In most cases, the authors preferred 

microwave irradiation as a heating method, the use of which, as the researchers 

note, compared with traditional thermal heating, leads to a shorter reaction time, 

and increase in yield and selectivity. Thus, when the dimeric copper complex 

[Cu2(R)(CH3O)(NO3)]2(CH3O)2 [128] was used at 80 °C, a 54% yield of 

acetophenone was achieved within 1 h of reaction. Another copper-based 

complex under comparable conditions (temperature, using TBHP without 

solvent) with the previous work, but using traditional heating and a lower 

catalyst load, provided 12% acetophenone yield in 2 h; however, adding 2% 

K2CO3 resulted in a fivefold increase in ketone yield [129]. With an increase in 

the reaction temperature to 120 °C and the use of [Cu(κNOO'HL)Cl(CH3OH)] 

monomer with a keto ligand in the absence of promoters, the acetophenone yield 

was 82%, that increased with the introduction of the nitroxyl radical TEMPO up 

to 92% [130]. 

In subsequent work, the same group investigated composite catalysts 

containing 3d metals (Cu, Fe, Co, V) in the peroxidative oxidation of 

1-phenylethanol under microwave irradiation. The effect of adding carbon 

materials to the aforementioned composites [131] was also studied to facilitate 

the transfer of electrons during redox catalysis due to the transition metal. Thus, 

the cobalt chloride salt (alcohol/cobalt = 50) with the addition of carbon 

nanotubes (CNTs) exhibited the best catalytic properties among the studied 

catalysts; the yield of acetophenone was 82%, while without nanotubes just 28% 

per hour of reaction at 80 °C. However, when this catalytic system was reused in 

the oxidation of 1-phenylethanol, a significant loss of activity was observed 

during the first three cycles, but was more pronounced in the 4th cycle: 17, 19, 

Acetyl chloride Benzene Acetophenone By-product
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and 56% of the initial activity, respectively. The authors attributed the observed 

deactivation to the leaching of cobalt during the reaction. 

Table 2. Catalytic oxidation of 1-phenylethanol using homogeneous and 

heterogeneous catalysts. 

Catalyst Oxidant 
P, 

atm 
Solvent T, °C 

Reaction 

time, h 
R a Yac, % b Ref. 

[Cu2(R)(CH3O)(NO3)]2(CH3O)2 TBHP 1 - 80 1 e 71 54 128 

 [Cu(κONN’HL)(NO3) 

(N,N-dimethylformamide(DMF)

](NO3)∙H2 c 

TBHP 1 - 80 2 1000 12 129 

 [Cu(κONN’HL)(NO3)(DMF)] 

(NO3)∙H2+K2CO3 c 
TBHP 1 - 80 2 1000 62 129 

 [Cu(1κNOO’,2κO’,3κO”L)]n d TBHP 1 - 120 1 e 250 66 130 

 [Cu(1κNOO’,2κO’,3κO”L)]n d 

+2,2,6,6-Tetramethylpiperidin-1-

yl)oxyl(TEMPO) 

TBHP 1 - 120 1 e 250 81 130 

 [Cu(κNOO’HL)Cl(CH3OH)] d TBHP 1 - 120 1 e 250 82 130 

 [Cu(κNOO’HL)Cl(CH3OH)] d 

+TEMPO 
TBHP 1 - 120 1 e 250 92 130 

Carbon nanotubes (CNTs) TBHP 1 - 80 1 e 50 8 131 

Graphene oxide (GO) TBHP 1 - 80 1 e 50 14 131 

CoCl2 TBHP 1 - 80 1 e 50 28 131 

CoCl2–5%CNTs TBHP 1 - 80 1 e 50 85 131 

CoCl2–5% GO TBHP 1 - 80 1 e 50 72 131 

CuO TBHP 1 - 80 1 e 50 16 131 

CuO–1%CNTs TBHP 1 - 80 1 e 50 59 131 

Fe2O3 TBHP 1 - 80 1 e 50 10 131 

Fe2O3–1%CNTs TBHP 1 - 80 1 e 50 32 131 

Fe2O3–CoCl2–5%CNTs TBHP 1 - 80 1 e 50 73 131 

V2O5 TBHP 1 - 80 1 e 50 45 131 

CoCl2–V2O5–5%CNTs TBHP 1 - 80 1 e 50 54 131 

[FeCl2(L)(2,20bipy)] TBHP 1 - 150 1 e 333 99 132 

[FeCl2(L)(2,20bipy)] TBHP 1 - 150 46 333 99 132 

[Fe(bipy)3](CF3SO3)2 H2O2 1 CH3CN 100 0.5 100 62 133 

[Fe(bipy)3](CF3SO3)2)+2-pyridine

carboxylic acid 
H2O2 1 CH3CN 100 0.5 100 93 133 

VOPO4+TEMPO O2 4 H2O 80 6 20 38.5(89) f 134 

NiO/SiO2 O2 1 p-xylene 100 6 12 51 135 

MnO2 commercial TBHP 1 ACN:tol g RT 7 1 84 136 

MnO2 commercial TBHP 1 ACN:tol g 40 7 20 34 136 

MnO2 commercial H2O2 1 ACN:tol g 40 5 20 0 136 

MnO2 commercial TBHP 1 ACN:tol g 80 7 10 67 136 

MnO2 commercial 

NbP–C 

- 

H2O2 

1 

1 

ACN:tol g 

CH3CN 

80 

90 

24 

24 

1 

11 

30 

72 f 

136 

137 

CeCrO3 TBHP 1 DMSO 90 6 10 100 f 138 

15 wt.% Ag-Octahedral 

molecular sieve-2 
TBHP 1 CH3CN 75 4 625 71.5 f 139 

0.9 wt.% Pd/Aerosil380 O2 10 H2O 100 6 262 44.9 140 

0.9 wt.% Pd/Aerosil380 O2 10 H2O 100 12 262 75.1 140 

1.0 wt.% Pd/60wt.% Polyketone 

(PK)–SiO2 
O2 10 H2O 100 6 262 62.2 140 

1.0 wt.% Pd/60wt.% PK–SiO2 O2 10 H2O 100 12 262 100 140 

1.0 wt.% Pd/76wt.% PK–SiO2 O2 10 H2O 100 6 262 58.3 140 

1.0 wt.% Pd/76wt.% PK–SiO2 O2 10 H2O 100 12 262 94.8 140 

3 wt.% Pd/O-Diamonds(Dia) O2 1 o-xylene 100 4 1428 27.9 f 141 

3 wt.% Pd/CeO2/O-Dia O2 1 o-xylene 100 4 1428 72.5 f 141 
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Table 2. Cont. 

Catalyst Oxidant 
P, 

atm 
Solvent T, °C 

Reaction 

time, h 
R a Yac, % b Ref. 

1.57 wt.% Pd/CeO2 O2 1 - 120 2 649 91 f 142 

1.44 wt.% Pd/apatite O2 1 - 120 2 649 90 f 142 

10.10 wt.% Ru/Mg–LaO O2 1 toluene 80 4 10 96 143 

10.10 wt.% Ru/SiO2 O2 1 toluene 80 4 10 45 143 

10.10 wt.% Ru/Al2O3 O2 1 toluene 80 4 10 40 143 

10.10 wt.% Ru/MgO O2 1 toluene 80 4 10 36 143 

10.10 wt.% Ru/TiO2 O2 1 toluene 80 4 10 36 143 

1 wt.% gold nanoparticles (Au 

NPs)/Ionic liquid 

(IL)/N-hydroxyphthalimide 

(NHPI) 

O2 4 - 100 24 1356 60(47) f 144 

1wt.% Au NPs/IL/NHPI O2 4 - 160 24 6780 77 (58) f 144 

1wt.%Au NPs– supported ionic 

liquid-like phases 
H2O2 1 H2O 150 0.25 8 >90 144 

1.54 wt.% Au/CeO2 O2 1 - 120 2 649 95 36 

1 wt.% Au/Active carbon TBHP 1 - 150 2 e 500 55 37 

1 wt.% Au/carbon xerogel TBHP 1 - 150 2 e  500 90 37 

1 wt.% Au/Graphite TBHP 1 - 150 2 e 500 63 37 

1 wt.% Au/Microdiamonds TBHP 1 - 150 2 e  500 100 37 

1 wt.% Au/Nanodiamonds for 

liquid dispersion  
TBHP 1 - 150 2 e 500 83 37 

1 wt.% Au/Silicone carbide  TBHP 1 - 150 2 e  500 73 37 

0.89 wt.% Au/Hydrotalcite (Ht) Air 1 toluene 80 0.33 222 99 38 

0.89 wt.% Au/Ht Air 1 toluene 40 3 222 99 38 

0.89 wt.% Au/Ht Air 1 toluene 27 6 222 99 38 

0.89 wt.% Au/Al2O3 Air 1 toluene 27 3 222 71 38 

0.89 wt.% Au/MgO Air 1 toluene 27 3 222 71 38 

0.89 wt.% Au/TiO2 Air 1 toluene 27 3 222 14 38 

0.89 wt.% Au/TiO2+Na2CO3 Air 1 toluene 27 3 222 65 38 

0.89 wt.% Au/SiO2 Air 1 toluene 27 3 222 <1 38 

1.8 wt.% Au/Layered double 

hydroxide 
O2 1 toluene 80 2 200 99 39 

1.0 wt.% Au/CuaMgbAlcOx O2 1 mes. h 90 1 1181 85.1 40 

5 wt.% Au/TiO2 O2 1 - 120 6 500 99 41 

5 wt.% Au/Carbon black O2 1 - 120 4 500 65 41 

5 wt.% Au/Single wall carbon 

nanotubes 
O2 1 - 120 3 500 99 41 

5 wt.% Au/MnO2-R O2 4 - 120 8 40000 81 42 

Au–Pd(2 wt.%, 1:1)/Sodium 

titanate nanotubes 
Air 1 - 120 10 10000 84(86) f 43 

7.8 wt.% Au/TiO2 O2 10 H2O 100 8 100 100 44 

7.8 wt.% Au/TiO2+ K2CO3 O2 10 H2O 100 2 100 93 44 

10.83 wt.% Au-dendrimers/ 

Mesoporous SiO2SBA-15+ 

3 eq. K3PO4 

O2 1 
CH2Cl2/ 

H2O 
RT 24 33 99.1 45 

0.5 wt.% (Au0–Pd0)/high surface 

area-BaAl2O4 
O2 20 - 140 0.83 50000 a 97 46 

a R: Alcohol/Active metal ratio (mol/mol); b Yac: yield of acetophenone; c copper complex with 

Schiff base ligand (HL) of salicylic aldehyde and aminoethylpiperazine [129]; d tautomeric 

forms (enol and keto) of aroylhydrazone Cu(II) complexes, H2L = 

2-hydroxy(2-hydroxybenzylidene)benzohydrazide [130]; e microwave irradiation; f 

Conversion data instead of yield and acetophenone selectivity in brackets; g ACN:tol: 

CH3CN:toluene (3:1); h mes.: mesitylene. 
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Another work of the same group [132] described the synthesis of three new 

complexes of iron (III) with low solubility as heterogeneous catalysts for the 

peroxidative oxidation of 1-phenylethanol in the absence of a solvent. Moreover, 

using the [FeCl2(L)(2.20bipy)] complex, the authors achieved a quantitative yield 

of acetophenone (99%) in 1 h of reaction at 150 °C created by microwave 

irradiation; using traditional heating under the same conditions, 99% yield of 

acetophenone was reached only after 46 h. Experiments with cheaper and 

environmentally friendly hydrogen peroxide (30% aqueous solution) as an 

oxidant turned out to be ineffective, with the likely decomposition of H2O2 at 150 

°C. In addition, the catalyst proved to be suitable and for reuse since no loss of 

activity was observed up to at least three consecutive cycles. It is also worth 

noting that in all these studies, acetophenone was the only oxidation product. 

A recent study [133] reported the use of an iron (II) complex as a 

homogeneous catalyst in the oxidation of 1-phenylethanol with hydrogen 

peroxide in acetonitrile solution in a microwave reactor. The authors note a less 

positive effect when using TBHP as an oxidizing agent as compared to H2O2. A 

metal-centered mechanism was proposed for this reaction. Interestingly, the 

useful role of some heterocyclic amino acids as co-catalysts was noted, the 

presence of which in solution influenced the activity of the iron complex with 

hydrogen peroxide. For half an hour of reaction without a co-catalyst at 100 °C, 

the yield of acetophenone was 62%, while with 5 equiv. 2-pyridinecarboxylic 

acid (Hpic) the authors achieved the maximum yield in this work, that is, 93%. 

Du et al. [134] found a synergistic effect of vanadium and phosphorus in the 

presence of a nitroxyl radical (2,2,6,6-tetramethylpiperidyl-1-hydroxy) for the 

oxidation of benzyl alcohols with molecular oxygen in water. The authors 

suggest that TEMPO acts as an intermediary for the meeting of alcohol and 

vanadium. Phosphorus plays the role of an inorganic ligand, thereby influencing 

the form of vanadium. Thus, after 6 h of oxidation at 100 °C under 4 atm oxygen 

with catalytic mixture of VOPO4 + TEMPO, 1-phenylethanol was partially 

oxidized to acetophenone (38.5% yield with 89% selectivity).  

Returning to heterogeneous catalysts, Sasaki et al. [135] published the first to 

report on nickel nanoclusters deposited on silicon oxide, that exhibited activity 

(YAC = 51% after 6 h at 100 °C) in liquid-phase oxidation of 1-phenylethanol with 

molecular oxygen at atmospheric pressure and using p-xylene as a solvent. At 

the same time, the authors emphasized that the effective contribution of the 

Ni-O-Si interfacial structure is a key factor for this reaction.  

Bhaumik et al. [136] reported the selective oxidation of 1-phenylethanol to 

acetophenone (84% yield) on commercial manganese dioxide using TBHP after 7 

h at room temperature using a solvent mixture of acetonitrile and toluene. 

However, the catalyst loading was equivalent to the molar amount of the 

substrate, but the authors substantiate this optimal ratio by the low cost of the 

oxide and the absence pretreatment need. Reuse of the catalyst resulted in a 33% 

drop in activity. It was also established that MnO2 catalyzes the decomposition 
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of hydroperoxides, however, more slowly than the process of alcohol oxidation 

itself.  

Reis et al. reported [137] the catalytic behaviour of mesoporous niobium 

phosphate in the peroxidative oxidation of 1-phenylethanol using acetonitrile as 

a solvent at 90 °C, and linked the observed activity (72% conversion of alcohol 

with 100% selectivity to acetophenone in 24 h) with the low Brønsted acidity of 

the catalysts. 

Nanocrystalline CeCrO3 proved to be effective in the oxidation of many 

primary and secondary cyclic alcohols, including 1-phenylethanol, using TBHP 

as oxidant and dimethyl sulfoxide as solvent [138]. Total alcohol conversion was 

obtained at the same reaction temperature and ratio of alcohol to active metal as 

in the previous study, but 3.4 times faster. 

Yadav and Yadav [139] described the use of octahedral molecular sieves 

with incorporated silver for the oxidation of 1-phenylethanol under mild 

conditions. As in most studies on the liquid-phase oxidation of this substrate, 

TBHP and acetonitrile were found to be the most effective oxidizing agent and 

solvent. The alcohol/silver ratio was higher than 600. The synergistic effect 

among the Ag, Mn and K ions contributed to an increase in the catalyst activity. 

The detailed kinetic study carried out showed that the reaction proceeds 

according to the model of the Langmuir - Hinshelwood - Hougen - Watson type 

with weak adsorption of all reagents. It was found that the apparent activation 

energy is 12.65 kcal/mol for 1-phenylethanol. In addition, the catalyst proved to 

be more stable to deactivation, and thus recyclable: the initial conversion of 

71.5% in 4 h of reaction at 75 °C was retained up to six successive cycles. 

When studying supported palladium catalysts, most of the works were 

devoted to the oxidation of 1-phenylethanol using molecular oxygen as oxidant. 

Antonetti et al. [140] found a direct relationship between the catalytic activity 

and the affinity of the support for water in the aerobic oxidation of alcohol with 

water as a solvent. Thus, the presence of hydrophilic SiO2 in the hybrid support 

promoted the activation of the alcohol on the catalyst surface, and the catalyst 

was also active in recycling: 60% yield of acetophenone was obtained in 5 

consecutive cycles without the formation of by-products at 100 °C for 6 h. 

Yasueda et al. [141] noted an increase in the selectivity and activity in the 

oxidation of many alcohols, including 1-phenylethanol, with the use of p-xylene 

as solvent, when cerium oxide was added to a catalytic system consisting of 

supported palladium on oxidized commercial powder diamond (Pd/O-Dia). The 

improvement in catalytic performance in the presence of CeO2 was attributed to 

the suppression of side reactions by facilitating the removal of hydrogen from 

palladium. Furthermore, the addition of a small amount of CeO2 facilitated better 

dispersion of palladium on the support. The authors also noted that the 

Pd/O-Dia system was much more efficient than Pd/AC (AC: activated carbon) 

and Pd/SiO2 catalysts in the liquid-phase oxidation of alcohols. Abad et al. [36] 

reported palladium supported on cerium oxide and apatite in the solvent-free 

oxidation of 1-phenylethanol and secondary aliphatic alcohols. However, the 



 29 of 117 

 

activity and selectivity of gold supported on the mentioned supports and at a 

lower reaction temperature (120 °C) turned out to be higher than that of 

palladium catalysts. It should be noted that in these last two papers [36,141], the 

formation of a by-product, ethylbenzene, was detected when supported 

palladium catalysts were used. 

Kantam et al. [143] described an efficient method for aerobic oxidation of 

benzyl and secondary aromatic alcohols to their corresponding aldehydes or 

ketones using ruthenium supported on mixed oxides of magnesium and 

lanthanum. This catalyst was successfully reused in the oxidation of 

1-phenylethanol dissolved in toluene, while maintaining constant yield and 

selectivity up to five catalytic cycles. However, a rather high catalyst loading was 

used (alcohol/ruthenium = 10). The peculiarity of the Mg-LaO support is 

presumably related to its strong basicity, which stabilizes Ru in the form of 

ruthenates on the surface of the mixed oxide, which was difficult to achieve on 

other oxides with weak basic properties, as the authors note. 

Concerning Au catalysts, Restrepo et al. [144] described the use of thermally 

reduced Au NPs dispersed in an ionic liquid (IL) in 1-phenylethanol oxidation 

under an oxygen pressure of 4 bar. With the introduction of the radical initiator 

N-hydroxyphthalimide (NHPI) in the reaction mixture, the authors observed 

60% and 77% alcohol conversion with acetophenone selectivity of 47% and 58% 

at 100 °C and 160 °C, respectively, after 24 h of reaction. The by-products were 

di-(1-phenylethyl) ether and di-(1-phenylethyl) peroxide. The authors explain 

the low activity of the system without an initiator as follows. Under anaerobic 

conditions, the ionic liquid stabilizes the Au NPs without the need for the 

introduction of "ligand coating" to prevent further particle growth. Therefore, in 

the presence of oxygen, gold nanoparticles begin to aggregate, which leads to 

their deactivation. In addition, in the absence of a solvent, the ionic liquid can 

slow down the catalytic reaction due to the limitations of the mass transfer 

process. The researchers intend to select a support for the deposition of such 

nanoparticles in the future.  

Restrepo et al. [145] also reported for 1-phenylethanol oxidation in water on 

efficient gold nanoparticles immobilized with a polymer ionic liquid 

AuNP-SILLPs, using various oxidants and microwave irradiation as a heat 

source. They evaluated the influence of various parameters and conditions on 

both the synthesis of nanoparticles and the process. Thus, it was found that the 

use of hydrogen peroxide as an oxidizing agent, sodium tetraborate as a 

reducing agent for the formation of AuNPs, and relatively high reaction 

temperatures (> 120 °C) allow to achieve excellent results (>90% yield) in a short 

time (15 min). However, when using TBHP, more active than air and H2O2, a 

lower selectivity than in the case of H2O2 was observed. Authors found that 

smaller particles were more active with conventional heating, while larger 

particles showed better results with microwave irradiation. The effects of hot 

spots, which depend on the particle diameter, can explain this. The larger the 

size, the higher the possible temperature gradient between the particle and the 
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bulk liquid, since the transfer of heat from the nanoparticle to the environment is 

proportional to the surface area where heat transfer takes place. 

Concerning deposited gold catalysts Carabineiro et al. [37] used 1 wt.% Au 

supported on several carbon materials, namely polymer carbon xerogel, 

activated carbon, microdiamonds, nanodiamonds, graphite, and silicon carbide, 

prepared either by colloidal or by double impregnation methods. The resulting 

materials were tested in microwave oxidation of 1-phenylethanol with TBHP 

without using a solvent. The catalytic activity was influenced by several factors, 

such as the nature of the support, reaction time and temperature, amount of 

catalyst, presence of additives, etc. The highest acetophenone yield (99.9%) was 

obtained when gold was deposited on microdiamonds by the colloidal method. 

The authors attribute the increased activity of this catalyst to the presence of Au+, 

which was not found in the other samples. In comparison with other catalysts, 

Au/microdiamonds exhibited a much lower loss of activity after each cycle, 

attributed to an increase in nanoparticle growth, found by TEM for all catalysts. 

The best results in the oxidation of 1-phenylethanol were achieved on catalysts 

prepared by the colloidal method, due to the smallest gold nanoparticles with 

high dispersion on a support. The authors also associate the high oxidation rates 

under microwave irradiation not only with the thermal effect, but also with the 

possibility of absorption of electromagnetic waves during rotational transitions 

of molecules. 

Mitsudome et al. [38] reported on a gold catalyst capable of selectively and 

quantitatively oxidizing alcohols, including 1-phenylethanol under mild 

conditions (40 °C, in air, toluene solvent, R = 222) without any additives. The 

catalyst, consisting of 0.89 wt.% Au/Hydrotalcite (Ht), obtained by chemical 

reduction with KBH4, did not lose its activity (98% yield of acetophenone) in four 

successive cycles of 1-phenylethanol oxidation. The authors tested other 

supported gold catalysts under the aforementioned conditions and reported the 

following series of activity growth in terms of TOF: Au/Ht > Au/Al2O3 = Au/MgO 

> Au/TiO2 > Au/SiO2, thus stating that Au/Ht is the most efficient catalyst in 

oxidation of highly reactive 1-phenylethanol. Researchers concluded that the 

Au/HT catalyst with Au NPs with an average size of 2.7 nm and a very narrow 

size distribution was highly effective in the oxidation of wide range of alcohols, 

including the less reactive cyclohexanol. 

Liang et al. [39] also reported the successful aerobic oxidation of alcohols at 

room temperature and atmospheric pressure (solvent toluene, R = 200) using a 

catalytic system consisting of 1.8 wt.% Au deposited on Mg-Al-layered double 

hydroxide (Au/LDH) by ion exchange and subsequent reduction. Au NPs with a 

size range of 1-4 nm were homogeneously distributed on the support. In 

comparison with less active Au/TiO2 and Au/SiO2 samples, authors found a 

larger contribution of negatively charged gold particles to the Au/LDH catalyst 

due to strong interaction of nanoparticles with the support. 

Haider et al. [40] studied a catalytic system consisting of gold (1 wt.%) 

supported by various methods on mixed oxide of magnesium, aluminum and 
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copper for oxidation of 1-phenylethanol (R = 1181, T = 90 °C) with molecular 

oxygen and mesitylene as solvent. The authors also assume that in the 

Au/Cu5Mg1Al2Ox sample, metallic gold with an average particle size of around 9 

nm, obtained by the controlled deposition method, is responsible for the catalytic 

activity shown for the liquid phase oxidation of 1-phenylethanol (YAC = 85.1% in 

1 h). Particles with a smaller average size (≈ 2 nm) obtained by the colloidal 

method, were found less active in this process (YAC = 73.4% in 1 h). Thus, the 

authors suggest that, in contrast to CO oxidation where the smallest average 

particle size is responsible for activity, the larger size of gold nanoparticles is 

fundamental in the effective liquid-phase oxidation of 1-phenylethanol. 

Shanahan et al. [41] studied deposited gold (5 wt.%) obtained in-situ on 

three supports, single-wall carbon nanotubes (SWCNT), black carbon (P90) and 

titanium oxide (TiO2), to use these catalysts in green oxidation (in the absence of 

solvent and bases, oxidizing agent - molecular oxygen, T = 120 °C, R = 500) of 

cyclic alcohols: 1-phenylethanol, 2-phenylethanol and benzyl alcohol. The most 

active and selective in all studied reactions were the samples based on carbon 

nanotubes. The authors linked the activity to the shape and size of the gold 

particles and the properties of the support. Thus, the quantitative yield of 

acetophenone (> 99.9%) was obtained in 3 h on Au/SWCNT catalyst (particle size 

4-7 nm), in 8 h on Au/TiO2 (particle size 10-20 nm), and the complete conversion 

of alcohol was observed after 4 h on Au/P90 (particle size 7-9 nm); however, in 

this case formation of ethylbenzene as by-product was detected. In addition, the 

researchers draw a connection between the specific surface area of the catalyst 

and oxygen adsorption: the larger the area, the more centers for oxygen 

adsorption and the faster the reaction proceeds. Therefore, on Au/TiO2 (SBET = 23 

m2/g), the reaction proceeds more slowly than on Au/SWCNT (SBET = 265 m2/g). 

Selectivity depended on functional groups and the size distribution of Au NPs. 

In particular, the formation of a second product, ethylbenzene, up to 35% 

observed on Au/P90 was due to the surface carbon functional group (H+), acting 

as a reducing agent, consumed in the first catalytic cycle. Therefore, in the 

second cycle, the yield of acetophenone increased and the formation of 

ethylbenzene was not observed. The rest of the catalysts did not lose their 

activity during three catalytic cycles. 

Wang et al. [42] reported on cationic gold (Au+) contribution to catalytic 

activity, along with the optimal metal-support interaction, achieved at 5% gold 

content on Au/MnO2-R (reduced manganese oxide nanorods) catalysts for the 

oxidation of cyclic alcohols in the absence of solvent at 120 °C. The catalysts were 

prepared by homogeneous controlled precipitation. It should be noted that the 

loading of gold relative to the substrate was the minimal (R = ca. 40,000) among 

all the gold catalysts studied in this review; however, oxygen was supplied to 

the reaction mixture under a pressure of 4 atm. The authors also refer to the 

article on the role of monovalent gold, which was stabilized by cerium oxide 

nanoparticles, in the efficient catalytic oxidation of alcohols [145]. 



 32 of 117 

 

Nepak et al. [43] reported, for the first time, the catalytic application of 

Au-Pd nanoparticles deposited by controlled deposition on sodium titanate 

nanotubes (NaTNT) for liquid-phase aerobic oxidation of alcohols. The reaction 

was carried out at 120 °C, 1 atm and under conditions free of solvents and bases. 

The catalyst was more active and selective (COL = 84%, SAC = 86%, 10 h reaction 

time, R = 10,000) than the corresponding monometallic Au and Pd catalysts and 

Au–Pd/TiO2, in the oxidation of 1-phenylethanol. The authors believe that the 

superior activity of the Au-Pd/NaTNT catalyst is due to the higher dispersion, 

smaller gold particle size and a higher amount of electron density in gold in the 

presence of palladium, which enhances the activation of molecular oxygen. The 

formation of by-products is possibly due to the presence of palladium since, 

despite the low conversion of alcohols, high selectivity was retained on 

Au/NaTNT. 

Yang et al. [44] highlighted the promoting role of water in the aerobic 

oxidation of benzyl alcohol to benzaldehyde on Au/TiO2, prepared by 

deposition-precipitation. The authors also applied these conditions in the 

oxidation of other alcohols, in particular 1-phenylethanol, and noticed that the 

addition of a base increased the conversion, but decreased the selectivity for 

acetophenone, associated with the hydroxyl groups released during the 

hydrolysis of potassium carbonate. Thus, in 8 h of reaction at 100 °C under 10 

atm of oxygen, a 100% yield of acetophenone was obtained using 7.8 wt.% 

Au/TiO2 (R = 100) and water as a solvent. 

Li et al. [45] could oxidize 1-phenylethanol to acetophenone (YAC = 99.1%) in 

24 h (R = 33) using Au NPs (10.83 wt.%) encapsulated in dendrimer/SBA-15 

organic inorganic hybrid composite and 3 eq. K3PO4. Without the presence of 

dendrimers, gold nanoparticles supported on SBA-15 are readily leached, and 

therefore, catalyst is deactivated during recycling. However, there was no loss of 

activity, when using gold stabilizing polyamidoamine dendrimers, which also 

contribute to the production of smaller gold particles (<5 nm) responsible for 

catalytic activity, as suggested by the authors. 

Mertens et al. [46] studied 0.5% (Au0–Pd0)/HSA-BaAl2O4 bimetallic catalyst 

in the selective oxidation of 1-phenylethanol (R = 50,000, T = 140 °C) without 

adding bases and solvent, but under 20 atm oxygen. Under these conditions, a 

95% yield of acetophenone was obtained in less than 1 h, which was retained in 

the next five cycles after the catalyst was regenerated. The optimized gold: 

palladium ratio found (8:2) of in the Au0-Pd0 nanocolloidal mixture was 

proposed as responsible for the demonstrated activity, selectivity and 

stabilization with the basic support being suitable for reusing. 

Therefore, as a summary of these results, it can be concluded that the 

catalytic oxidation of this alcohol, a representative of cyclic alcohols, can be 

carried out under mild conditions, say, using green oxidizing agents, such as 

oxygen, air and peroxides, both with a solvent and in its absence, in moderate 

temperature ranges: from room temperature to 150 °C and, in most cases, at 

atmospheric pressure. Also, when using peroxides, a new trend is the reaction 
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under the influence of microwave heating, which, in comparison with the 

traditional process, allows obtaining high yields in a short time.  

Some disadvantages exist for homogeneous catalysts, namely the inability to 

reuse them, and the need for addition of bases and radicals, which researchers 

often apply to increase the yield of acetophenone. However, an exception is the 

work where catalysts based on iron complexes with low solubility were 

synthesized and efficiently reused [132]. 

When heterogeneous base metals catalysts were used, selective oxidation of 

1-phenylethanol at room temperature was possible, however, a large catalyst 

load and a long reaction time up to 24 h were required [136]. Catalysts based on 

palladium, silver and rutheniums exceeded the activity of previous catalyst 

systems, as expected, and were not deactivated during the recycling tests [139, 

140]. However, the disadvantages in the case of silver and palladium catalysts 

would include the formation of by-products [36, 139, 141], and the high ratio of 

ruthenium to alcohol needed when using ruthenium catalysts [143]. 

Gold-containing systems have been extensively investigated in this process 

[36-46, 144, 145]. The main feature of these systems is their high activity and 

selectivity; however, there is a tendency to their gradual deactivation due to an 

increase in the size of Au NPs during reaction and recycling tests. Also, in most 

cases, the authors suggest that highly dispersed gold in the metallic state is 

responsible for the excellent activity in the oxidation of 1-phenylethanol [38, 40, 

41, 43, 45]. However, there are also supporters of the cationic nature of gold 

active centres in this process [37, 42, 145] and Liang et al. [39] even considered 

negative charged gold as an active site. 

Unfortunately, there are very few works in which the mechanism of both 

aerobic and notably peroxidative oxidation of 1-phenylethanol is proposed. 

Furthermore, when using TBHP as the oxidizing agent, the role of the catalyst is 

attributed to the decomposition of this oxidant into radicals responsible for the 

direct oxidation of alcohol [146, 147].  

In general, it can be concluded that supported gold-containing systems are 

effective catalysts in the oxidation of 1-phenylethanol; however, even in the 

oxidation of such a reactive alcohol, the study of the mechanism of formation of 

the active surface of gold-containing systems responsible for excellent catalytic 

performance is still the subject of numerous discussions. 

SUMMARY 

Thus, it can be concluded that oxidation of different types of primary 

alcohols over gold supported catalysts, one inactivated (alkyl) and another 

activated (bearing an aromatic ring), represented by n-octanol and 

1-phenylethanol, respectively, can be carried out under mild conditions (at 

atmospheric pressure and moderate temperatures, with green oxidants such as 
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oxygen, air and peroxides, and in the absence of bases). The choice of catalyst is 

a key factor in determining the activity and selectivity of both reactions. 

The results obtained can be used in the processes of utilization and 

valorization (production of more valuable substances) of by-products of 

biomass conversion. Almost all oxo-derivatives of alcohols obtained in these 

processes are widely used in pharmaceutical, cosmetic, agrochemical and other 

industries. 

Moreover, it should be noted there are few studies devoted to the formation 

of the active surface responsible for the activity and selectivity of catalysts. 

Knowledge about the nature of the active site will allow the targeted synthesis 

of highly efficient catalysts with desired properties, select the optimal 

conditions for the process and thereby achieve the best results. 

Therefore, the detailed study of the active surface formation of 

Au/MxOy/TiO2 catalysts under the influence of several factors (nature of the 

oxidizing agent, modifier nature, redox pretreatments and gold content) for 

oxidation of alcohols with different reactivity is an important and relevant topic 

of scientific research. 
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CHAPTER 2. EXPERIMENTAL 

2.1. Catalyst Synthesis 

2.1.1. Support preparation 

Commercial non-porous TiO2 P25 Evonik Degussa GmbH, (Essen, Germany, 

≥99.5%) was used as the initial support. Fe(NO3)3∙9H2O or Mg(NO3)2∙6H2O,  

La(NO3)3∙6H2O or Ce(NO3)3∙6H2O (Merck, Darmstadt, Germany, ≥98%) aqueous 

solutions was used for modification of titania by impregnation method. Nominal 

molar ratio Ti/M (Ce, La, Fe, Mg) was 40. Impregnated supports were dried at 

room temperature for 48 h and at 110 °C for 4 h, followed by calcination at 550 °C 

during 4 h. According to energy dispersive spectroscopy (EDS) results, actual 

molar ratios Ti/M were close to nominal ones (37-39) for all modified supports 

and they did not change significantly after gold deposition. 

2.1.2. Gold deposition on support 

Method of deposition-precipitation with urea was used for gold deposition 

on the supports with 0.5 and 4 wt.% nominal loadings, using HAuCl4∙3H2O 

(Merck, Darmstadt, Germany, ≥99%) as precursor. The process of gold 

deposition was conducted in the absence of light, according to the previously 

reported procedure [148, 149]. Shortly, the support was added to an aqueous 

solution (distilled water) containing 4.2 × 10−3 M of the gold precursor and 0.42 M 

urea (Merck, Darmstadt, Germany, ≥99%). This mixture had initial pH of 2.4. 

After heating the solution at 80 °C for 16 h, the pH was adjusted to 7.5. The 

solution was then centrifuged at 11,000 rpm rate for 15 min and washed with 

water 4 times until complete chloride removal, which was checked by using the 

silver nitrate test. The final stage was drying of samples under vacuum 2 h at 80 

°C. Such samples before any pretreatment (H2 or O2 atmosphere) will be denoted 

herein as-prepared samples. To prevent any alteration, the samples were stored in 

a desiccator at room temperature under vacuum and away from light. 

2.1.3. Catalyst pretreatment 

Before catalytic experiments, as-prepared samples were either treated in O2 

atmosphere (denoted as n% Au/(MxOy)/TiO2_pO2) or in H2 atmosphere (denoted 

as n% Au/(MxOy)/TiO2_pH2) at 300 °C for 1 h (15% of H2 or O2 in Ar, 300 ml/min 

flow rate), where n is the gold content in wt.%, M is the metal (La, Mg, Ce or Fe) 

of the modifier oxide.  
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2.2. Catalytic Properties Study 

2.2.1. Aerobic n-octanol oxidation 

The catalytic properties were studied at 80 °C under atmospheric pressure 

and stirring (800 rpm) for 6 h in a semi-batch reactor, which is a four-necked 

round bottom flask equipped with reflux, oxygen feed, thermocouple and a 

septum cap. The appropriate amount of catalyst sample in n-octanol/Au ratio 

100 mol/mol was added to a flask with 0.1 M solution of n-octanol (Merck, 

Darmstadt, Germany, ≥99%, HPLC grade) (25 mL) in n-heptane (Supelco, 

Darmstadt, Germany, ≥99%, HPLC grade). Oxygen with 30 mL/min rate was 

bubbled through the reaction mixture. To monitor the reaction progress, small 

aliquots of the reacting mixture were collected at 0.25, 0.5, 1, 2, 4 and 6 h, with the 

help of nylon syringe filters (pore 0.45 μm), and then were analyzed in a Varian 

450 gas chromatograph (Varian Inc, Palo Alto, USA) with flame ionization 

detector (FID), using a capillary DB wax column (15 m × 0.548 mm, Varian Inc, 

Palo Alto, USA), and He as the carrier gas. The identification of compounds was 

achieved by calibration using reference commercial samples (the absolute 

calibration method). In the absence of support/catalyst, no activity was observed 

in oxidation of n‐octanol. 

n-Octanol conversion (X) and product yields (Yi) and selectivity (Si) were 

calculated in term of moles of C atoms, as follows: 

    
    

        
      

(2.1) 

 Where ni is the number of carbon atoms in compound i, and Ci is its molar 

concentration, and CROH in represents initial octanol concentration.  

Conversion (XROH) was calculated as the sum of the yields of carbon 

containing products, and product selectivity (Si) as the ratio between product 

yield and conversion: 

          (2.2) 

   
  

    
     (2.3) 

Carbon balances in all reported data were within 100 ± 3% and calculated as 

follows: 

                  
                  

                    
     

(2.4) 
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2.2.2. Peroxidative oxidation of n-octanol 

To compare the catalytic results of the peroxidative oxidation of n-octanol 

with of those of 1-phenylethanol, the conditions selected for the peroxidative 

oxidation of n-octanol were as follows: R = 5000 mol/mol, T = 80 °C, TBHP (14.6 

mmol)/alcohol (6 mmol) = 2.43, stirring 800 rpm, with no solvent or base added. 

In the absence of support/catalyst in the reaction mixture, no activity was 

observed in peroxidative oxidation of n-octanol. 

2.2.3. Peroxidative oxidation of 1-phenylethanol 

The catalytic properties for 1-phenylethanol oxidation were tested in a 

semi-batch reactor (round bottom flask), equipped with reflux and 

thermocouple, operated under atmospheric pressure and stirring (800 rpm), at 

80 °C for 6 h. The reaction mixture was as follows: 1.27 μmol of Au were 

introduced in 1-phenylethanol (6 mmol, Merck, Darmstadt, Germany, 98%) as 

the substrate (R = 5000 mol/mol), TBHP (14.6 mmol, Merck, Darmstadt, 

Germany, 70% v/v aqueous solution) as the oxidizing agent, in a base- and 

solvent-free medium.  

After the reaction test, the mixture was cooled down to room temperature. 

Typically, to conduct the product analysis, 10 μL of benzaldehyde as internal 

standard (Merck, Darmstadt, Germany, ≥99.5%, analytical standard grade) and 1 

mL of MeCN (Merck, Darmstadt, Germany, ≥99.9%, HPLC Plus grade) were 

added to 100 μL of such reaction mixture. The resulting sample was centrifuged 

for 15 min and analyzed by gas chromatography (GC) using the internal 

standard method. Blank tests indicated that only traces (4 %) of ketone were 

generated. Chromatographic analyses were undertaken using a GC 8000 series 

gas chromatograph (Fisons Instruments, Loughborough, UK) equipped with a 

BP-20 (WAX) capillary column (SGE Analytical Science Europe Ltd, Milton 

Keynes, UK) and a flame ionization detector (FID) detector (Fisons Instruments, 

Loughborough, UK).  

Molar yield (%) of acetophenone in both peroxidative and aerobic oxidation 

of 1-phenylethanol was defined based on substrate, i.e., moles of product per 100 

mol of substrate, as determined by GC. Attribution of peaks was made by 

comparison with chromatograms of genuine samples and, in some cases, by gas 

chromatography mass-spectrometry (GC–MS) analyses with He as the carrier 

gas using a Clarus 600C instrument (Perkin Elmer, Waltham, MA, USA), 

equipped with a 30 m × 0.22 mm × 25 μm BPX5 (SGE Analytical Science Europe 

Ltd, Milton Keynes, UK) capillary column. According to the GC-MS, 

acetophenone was the only product in both aerobic and peroxidative oxidation 

of 1-phenylethanol. 
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2.2.4. Aerobic oxidation of 1-phenylethanol 

To adequately compare the catalytic results of aerobic oxidation of 

1-phenylethanol with those of n-octanol, the conditions selected for the 

oxidation of 1-phenylethanol with molecular oxygen were as follows: 

alcohol/gold ratio R = 100 mol/mol, 25 mL 0.1 M solution of 1-phenylethanol in 

mesitylene (Merck, Darmstadt, Germany, 98%), O2 flow = 30 mL/min, stirring 800 

rpm.  

2.2.5. Recycling tests 

To perform the recycling experiments in peroxidative oxidation of 

1-phenylethanol, the used sample was separated from the reaction mixture by 

centrifugation (5000 rpm, 15 min) and decantation, washed 4 times with 5 mL of 

acetonitrile and dried at 50 °C to constant weight. Then it was reused for the 

oxidation test as described above. 

To study the stability of catalysts in aerobic oxidation of n-octanol (recycling 

tests), the used sample was separated from the reaction mixture by 

centrifugation (5000 rpm, 15 min) and decantation, washed 4 times with 5 mL of 

n-heptane and dried at 50 °C to constant weight. Then it was reused for the 

oxidation test as described above. 

2.3. Characterization Methods  

1) Nitrogen adsorption-desorption isotherms at -196 °C were used to study 

the textural properties of catalysts and supports. A Micromeritics TriStar 3000 

apparatus (Norcross, GA, USA) was applied at Instituto de Catálisis y 

Petroleoquímica ICP, Consejo Superior de Investigaciones Científicas, CSIC, 

(Madrid, Spain). Degassing of samples under vacuum at 300 °C for 5 h took place 

before each measurement. Normalization to standard temperature and pressure 

of adsorbed N2 volume was carried out. The BET method to the nitrogen 

adsorption data (P/P0 range 0.05–0.25) was applied for calculation of the specific 

surface area (SBET) of the samples.  

2) XRD patterns were obtained at Instituto de Catálisis y Petroleoquímica, 

CSIC (Madrid, Spain) by using a Philips XPert PR diffractometer (Amsterdam, 

Netherlands) using Ni-filtered CuKα (λ = 0.15406 nm) radiation. Step-scanning 

procedure included the following parameters (step size 0.02°; 0.5 sec). 

3) STEM-HAADF measurements were conducted at Instituto de Catálisis y 

Petroleoquímica, CSIC (Madrid, Spain) using a microscope (JEOL JEM‐2100F, 

JEOL Ltd., Tokyo, Japan) operated at 200 kV. Prior to the study, samples were 

grounded to a fine powder state and then, a drop of the suspension was 

deposited on a lacey carbon coated copper grid. For each sample, at least ten 

representative microscope images were acquired and at least 150 particles 
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counted for particle size distribution determination. Gold contents were 

measured EDS in the same microscope equipped with an Oxford INCA X-sight 

system detector. 

4) XPS was obtained with a SPECS GmbH custom made system using a 

PHOIBOS 150 WAL hemispherical analyzer and a non-monochromated X-ray 

source (Al Kα X-rays 1486.6 eV, 200 W) for the study of gold electronic states on 

the catalyst surface. The measurements were done at Instituto de Catálisis y 

Petroleoquímica, CSIC, (Madrid, Spain) and partially at Centro de Nanociencias 

y Nanotecnología, Universidad Nacional Autónoma de México (Ensenada, 

Mexico). A pass-energy of 50 eV, a stepsize of 0.1 eV per step and a 

high-intensity lens mode were selected. The diameter of the analyzed area was 3 

mm. Charging shifts were referenced against the Ti 2p3/2peak of TiO2 at 458.8 eV. 

The pressure in the analysis chamber was kept lower than 1 × 10−8 mbar. The 

accuracy of the BE values was about ±0.1 eV. Peak areas were estimated by 

calculating the integral of each peak after subtracting a Shirley type background, 

fitting the experimental peak to a combination of Lorentzian/Gaussian lines with 

a 30/70 proportion and keeping the same width on all lines. Deconvolution of 

spectra and data analysis were performed with the CASA XPS software (version 

2.3.15, CASA Software Ltd, Teignmouth, UK). 

The used catalyst samples (i.e., after the reaction test) were characterized by 

X-ray photoelectron spectroscopy at Centre of Materials (CEMUP) of the 

University of Porto, Portugal. Surface composition and the chemical state of gold 

were determined by XPS analysis, performed on an ESCALAB 200A 

spectrometer (VG Scientific, Waltham, MA, USA) using Al Kα radiation (1486.6 

eV). A pass-energy of 40 eV and a step size of 0.1 eV/step were selected. The 

charge effect was corrected using the C1s peak as a reference (binding energy of 

285 eV). The CASA XPS software (version 2.3.15, CASA Software Ltd, 

Teignmouth, UK) was used for data analysis. 

5) DRIFTS measurements were performed at Department of Chemistry of  

Lomonosov Moscow State University, (Moscow, Russia) on a Bruker EQUINOX 

55/S FTIR (Bruker Optik GmbH, Ettlingen, Germany) spectrometer with a 

resolution of 4 cm−1, equipped with a homemade chamber accessory. All DRIFTS 

CO spectra on the catalyst samples were recorded at 20 Torr pressure and in 

some cases at 5, 20 and 50 Torr, for studying of stability and strength of the 

complexes of Au+-CO ions (5% accuracy measurement), at room temperature. 

Typically, powdered sample was loaded in a quartz ampoule with a window of 

CaF2. Prior to measurements, samples were calcined at 100 °C under vacuum 

(10−4 Torr) for 1 h. Then each catalyst was studied in three states: as-prepared, 

after pretreatments either in H2 or in O2 at 300 °C for 1 h at 100 Torr, and then 

cooled down to room temperature. After that, hydrogen or oxygen was 

evacuated and CO adsorption (>99%) was carried out. The obtained DRIFTS data 

were presented in the form of Kubelka–Munk units (KMU). DRIFT CO spectra 

were obtained by subtracting the CO gas phase spectrum and the baseline was 
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corrected. Pure supports did not exhibit bands of adsorbed CO in this region of 

the spectrum under mentioned conditions.  

6) Temperature programmed reduction with hydrogen (H2-TPR) 

experiments were carried out at Laboratory of Catalytic Research, Tomsk State 

University (Tomsk, Russia) using chemisorptions analyzer ChemiSorb 2750 

(Micromeritics, US) with TCD-detector. A gas mixture of 10% H2 in Ar with flow 

rate of 20 ml/min was flown through samples (50–80 mg). The heating rate was 

10 °C/min. To prevent influence of water vapor on TCD-signal, a cold trap with a 

mixture of liquid nitrogen and isopropanol was used (T ≈ -90°C). The hydrogen 

consumption was calculated using TPR profiles for Ag2O standard 

(Micromeritics, US). 

7) Temperature programmed desorption of ammonia (NH3-TPD) and of 

CO2 (CO2-TPD) methods were applied for studying acidic and basic properties of 

the catalysts and their corresponding supports at Research School of Chemistry 

& Applied Biomedical Sciences of Tomsk Polytechnic University, (Tomsk, 

Russia) on a “Chemosorb” chemisorption analyzer (Neosib, Novosibirsk, 

Russia) equipped with a thermal conductivity detector (TCD), which was 

calibrated with NH3 or CO2 prior to analysis. Desorption starting temperature 

was 25 °C in the case of CO2, and 100 °C for TPD of ammonia. Carrier gas in 

NH3-TPD was helium; in CO2-TPD was argon. Except for the differences listed in 

these methods, the experimental procedure was the same in both cases. Prior to 

the measurements, the samples were treated at 300 °C under an inert atmosphere 

(He or Ar) for 1 h to remove the impurities adsorbed on the surface. Then, 

temperature was decreased to 100 °C or 25 °C, followed by saturation with NH3 

or CO2 for 1 h and flushing with He or Ar for 1 h to remove physisorbed 

ammonia or carbon dioxide. After that, the temperature was increased to 600 °C 

with a heating rate of 10 °C min−1 under inert atmosphere. For comparative 

analysis, NH3 and CO2 desorption profiles of catalysts are demarcated into 

temperature ranges: 100 (25)–200 °C, 200–400 °C and 400–600 °C, and are 

denoted as weak, medium and strong acid or basic sites, respectively. 

8) Temperature‐programmed oxygen desorption (O2‐TPD) was used to 

assess the nature of the interaction of oxygen with the surface of the catalyst and 

the support. All experiments were performed on a “Chemosorb” chemisorption 

analyzer (Neosib, Novosibirsk, Russia) equipped with a thermal conductivity 

detector (TCD), which was calibrated with O2 prior analysis. A sample (0.2 g) 

pretreated at 300 °C in helium flow (60 mL/min) was saturated with oxygen at 40 

°C for 1 h. Oxygen desorption was carried out in a helium stream from 40 to 650 

°C with a heating rate of 20 °C/min. 

2.4. Theoretical Calculations 

The adsorption of n-octanol or 1-phenylethanol on gold nanoparticles was 

simulated in a scalar-relativistic approach using the density functional (DFT) 
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method PBE [150]. Tetrahedral Au20 and Au20+ clusters were considered as 

models of gold nanoparticles. The Au20 cluster has been obtained experimentally 

[151] and is a popular model for studying structural effects in catalysis [152, 153]. 

Because the cluster has atoms located either at the top, on the facet and on the 

edge and with different coordination numbers, this model can be effectively 

applied to study the structural effects in the adsorption of phenylethanol. The 

cationic gold cluster was obtained by removing one electron from Au20 with 

subsequent optimization of the structure. As a first approximation, the effect of 

the support was ignored.  

To reveal the role of different gold sites in adsorption of solvent molecules, 

heptane adsorption on simple (Au0O)2−, (Au+O)−, and (Au3+O)+ models containing 

Au0, Au+, and Au3+ were also studied at atomic level using density functional 

theory calculation with PBE functional [150]. The structures of all molecules 

were fully optimized, and the total energies of the reagents and products were 

calculated considering the energy of zero vibrations. Adsorption energies were 

calculated as the difference in total energies of adsorbed complex and the 

reagents (heptane and (Au0O)2−/(Au+O)−/(Au3+O)+). 

All DFT calculations were performed in the PRIRODA program (version 17, 

Russia) [154] using the Lomonosov supercomputer [155] at Department of 

Chemistry of Lomonosov Moscow State University, (Moscow, Russia). 
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CHAPTER 3. RESULTS AND DISCUSSION 

The following results on oxidation of n-octanol with molecular oxygen have 

been published in papers [156-158], while research on peroxidative oxidation of 

n-octanol as well as oxidation of 1-phenylethanol with either O2 or TBHP have 

been presented in another publication [159].  

3.1. Catalytic Results 

3.1.1. Aerobic oxidation of n-octanol 

 

Au NPs catalysts supported on pure titania and on titania modified with 

iron, cerium, magnesium or lanthanum oxides, with different gold contents (0.5 

or 4 wt.%), and thermal pretreatment conditions (H2 or O2), were investigated in 

the oxidation of n-octanol with molecular oxygen under mild conditions, i.e., 80 

°C, atmospheric pressure and absence of base. The results (Figures 1 and 2) 

showed that the gold content, modifier nature and the pretreatment atmosphere 

significantly affect catalytic properties of gold catalysts in the liquid-phase 

oxidation of n-octanol. 

The activity of catalysts in the as-prepared state was insignificant and 

practically independent on the nature of the support and gold content. The 

reason is that gold in as-prepared samples was found on the support surface in 

the form of a trivalent gold complex with urea hydrolysis products, which is 

catalytically inactive, according to previous results [160]. It should be also noted 

that in the absence of support/catalyst in the reaction mixture, no activity was 

observed in aerobic oxidation of n-octanol. 

For most of the studied catalysts, the activity increased several times after 

either the reduction or oxidative treatment. But notably, the effect of gold 

content on activity was different depending on the pretreatment atmosphere 

(Figure 1). 

After H2 treatment, the activity increased with the increase of gold content in 

all cases, except for the lanthanum-modified samples, where the activity did not 

change with increasing gold amount (n-octanol conversion was about 40% after 

6 h for both gold concentrations). 
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Figure 1. Effect of gold loading and pretreatments on the aerobic oxidation 

of n-octanol on Au/MxOy/TiO2 (MxOy = CeO2, Fe2O3, MgO and La2O3) 

catalysts: evolution of conversion with run time. Reaction conditions: T = 80 

°C, 0.1 M n-octanol (n-heptane), O2 = 30 mL/min, R = 100, stirring.  
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Figure 2. Effect of Au loading and pretreatments on the aerobic oxidation of 

n-octanol: products selectivity evolution with conversion for 

Au/(MxOy)/TiO2 (MxOy = CeO2, Fe2O3, MgO and La2O3) catalysts with 0.5% 

Au (hollow symbols) or 4% Au (full symbols). Green lines: results after 

hydrogen pretreatment; blue lines, after oxygen pretreatment. Reaction 

conditions: T = 80 °C, 0.1 M n-octanol in n-heptane, O2 = 30 mL/min, R = 100, 

stirring. 

Analysis of the products distribution (Figure 2) for 0.5% Au/TiO2_pH2, 0.5% 

Au/Fe2O3/TiO2_pH2, 0.5% Au/CeO2/TiO2_pH2, 0.5% Au/MgO/TiO2_pH2 samples 

showed that selectivity to acid formation (39%, 30%, 53% and 53%, respectively) 

increased, while selectivity to aldehyde sharply decreased from 100% at the 

reaction start down to 50% for 0.5% Au/TiO2_pH2, 53% for 0.5% 

Au/Fe2O3/TiO2_pH2, 30% for 0.5% Au/MgO/TiO2_pH2 and 20% for 0.5% 

Au/CeO2/TiO2_pH2. Ester formation was at 12 and 17-20% levels for unmodified 

sample and samples modified with magnesium, iron and cerium oxides, 

respectively. For 0.5% Au/La2O3/TiO2_pH2 sample, octanoic acid was detected as 

well, having a tendency to decrease after 2 h (24%), with preferable ester 

formation (48%) by the end of the run time. 

The selectivity trends were totally different from their 4 wt.% Au analogues 

after hydrogen pretreatment. The main product was octanal, except for 4% 

Au/La2O3/TiO2_pH2 (62% selectivity to ester after 6 h of reaction). Octanoic acid 

formation was practically negligible; only some traces of acid were detected at 

longer run times for 4% Au/TiO2_pH2, 4% Au/CeO2/TiO2_pH2 and 4% 

Au/MgO/TiO2_pH2. It was noteworthy that selectivity towards octyl octanoate 

increased for 4% Au/Fe2O3/TiO2_pH2 and 4% Au/La2O3/TiO2_pH2 at the expense 

of octanal formation with no acid formation.  

Such changes in the reaction products distribution with the increase in Au 

content should be caused by alteration in the acid-base properties of support. 

Aldehyde formation requires only the first step of the reaction mechanism, that 

occurs on the gold active centres, while formation of octanoic acid and octyl 

octanoate requires a second mechanistic step [22, 23, 161] through intermediates 
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formed by acid-base catalyzed reactions, proceeding mainly on the support 

surface. In the scheme proposed by Ishida et al. [161], the formation of ester or 

acid can occur by two routes: hydration to a geminal diol (Scheme 2, A) that can 

be further oxidized to octanoic acid, or an acetalization to form the hemiacetal, 

that can be oxidized to octyl octanoate. The ester could be also formed by 

esterification of the acid with the alcohol (Scheme 2, B). 

 

Scheme 2. Possible reaction pathways for the oxidation of n-octanol on 

supported gold catalysts (adapted from [22, 23, 161]). 

In contrast, after pretreatment of samples in an oxygen atmosphere, the 

opposite dependence on the activity of the gold content was observed, i.e., the 

catalytic activity decreased with the increase of gold content for all supports.  

The tendency to acid formation for 0.5% Au/TiO2 and 0.5% Au/CeO2/TiO2 

(43 and 52% selectivity, respectively) was preserved even after pretreatment of 

the samples in O2. In case of modified samples with iron and magnesium oxides, 

acid formation decreased after 3 h of reaction and was 20% after 6 h for both 

catalysts. n-Octanol oxidation over La-modified sample was less selective to 

octanoic acid (11 % after 6 h) with higher formation of ester (63% after 6 h). 

Similar good results were achieved using modified samples with the lower 

Au content after oxidative pretreatment at 300 °C for 1 h, namely, 0.5% 

Au/MgO/TiO2 and 0.5% Au/Fe2O3/TiO2: the conversion of n-octanol after 6 h 

reached 43% and 41%, respectively, with increasing ester selectivity in both cases 

(Figures 1 and 2).  

For catalysts with the higher gold loading after oxygen and hydrogen 

treatment, similar trends were observed in selectivity with almost complete 

absence of acid formation (only 1 and 2% acid selectivity for 4% 

Au/Fe2O3/TiO2_pO2 and 4% Au/CeO2/TiO2_pO2, respectively). However, the 

difference is a larger selectivity to ester: from 20% on unmodified 4% 

Au/TiO2_pO2, it increased to 40, 42, 63 and 75% on modified catalysts 4% 

Au/MgO/TiO2_pO2, 4% Au/Fe2O3/TiO2_pO2, 4% Au/CeO2/TiO2_pO2 and 4% 

Au/La2O3/TiO2_pO2, respectively. Nevertheless, it is worth noting that the 

activity of catalysts with 4% Au after O2 treatment was the lowest among all 

catalysts (except for 4% Au/TiO2_pO2: 9% conversion after 6 h), and especially 
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for samples modified with iron and magnesium oxides, for which final 

conversion did not exceed 3 and 7%, respectively (Figure 1).  

A common feature of catalysts with 0.5% of Au, independently of the 

pretreatment, was the preferential formation of acid, but a larger propensity for 

ester formation was found for catalysts with oxygen pretreatment. 

It can be seen that the highest activity in aerobic oxidation of n-octanol 

under mild conditions (80 °C, 1 atm) was achieved using modified samples with 

the lower gold content after oxidizing pretreatment at 300 °C for 1 h. The order 

of activity, in this case, was as follows: Au/La2O3/TiO2 > Au/MgO/TiO2 > 

Au/Fe2O3/TiO2 > Au/CeO2/TiO2 > Au/TiO2. It should be noted that La-modified 

samples demonstrated the highest catalytic performance for each combination of 

the two preparation parameters studied (Au content and pretreatment).  

Thus, the best catalytic results were found on 0.5% Au/La2O3/TiO2 catalyst 

after oxidative pretreatment: 63% n-octanol conversion in 6 h with 63% 

selectivity to ester.  

3.1.2. Peroxidative oxidation of n-octanol 

Aiming at studying the effect of the oxidizing agent in the oxidation of 

n-octanol, the same reaction conditions as for 1-phenylethanol oxidation were 

applied, to perform a comparative analysis of both reactions. Thus, all catalytic 

experiments in peroxidative oxidation of n-octanol were carried out with 

enviromentaly friendly tert-butyl hydroperoxide (TBHP) at 80 °C with 

alcohol/Au ratio R = 5000 in a base- and solvent-free medium. It should be noted 

that, in the absence of support/catalyst in the reaction mixture, no activity was 

observed under these conditions.  

The results showed similar trends of catalytic behaviour in the aerobic 

(Figure 1) and peroxidative oxidation (Figure 3) of n-octanol in terms of activity. 

The most active catalysts were those with low Au loading, after oxidative 

pretreatment. The order of activity, in this case, was as follows: Au/La2O3/TiO2 > 

Au/MgO/TiO2 > Au/Fe2O3/TiO2 > Au/CeO2/TiO2 > Au/TiO2. Thus, the highest 

acivity, namely 60% conversion with selectivity towards acid formation (81%) in 

6 h was achieved on 0.5% Au/La2O3/TiO2_pO2. 

Regarding selectivity, it is important to note that when using molecular 

oxygen as an oxidizing agent, a different behaviour is observed in the 

distribution of oxidation products, depending on the pretreatment, the nature of 

the support and the gold content. However, when TBHP was used as oxidizing 

agent, in the absence of a solvent, the main product, in all cases, was acid with a 

small amount of ester (up to 20%). This is probably due to the peroxide used as 

oxidizing agent which decomposed producing water [146], that is needed for 

octanoic acid formation, according to Scheme 2 (route A) [22, 23, 161]. 
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Figure 3. Time evolution of catalytic peroxidative oxidation of n-octanol. 

Reaction conditions: R = 5000, TBHP: n-octanol = 2.43; T = 80 °C, stirring.  

Also, it becomes obvious that the best results in the oxidation of n-octanol 

were achieved using TBHP, since the gold loading was in 50 times less (R = 5000) 

than in our tests of n-octanol oxidation with molecular oxygen (R = 100). It 
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should be noted also that, comparing our results on n-octanol oxidation with 

other gold supported catalysts under mild conditions (Table 1), Au/(MxOy)/TiO2 

system are one of the most effective, when both TBHP and O2 were used as an 

oxidizing agents without bases or solvents.  

3.1.3. Peroxidative oxidation of 1-phenylethanol 

As in the case of n-octanol oxidation, all experiments on both peroxidative 

and aerobic oxidation of 1-phenylethanol (Scheme 3) were carried out at 80 °C 

and atmospheric pressure.  

  

Scheme 3. Oxidation of 1-phenylethanol over Au/(MxOy)/TiO2 catalysts. 

The catalytic tests with TBHP as oxidizing agent were conducted with a very 

low catalyst loading (1-phenylethanol/Au = 5000) in no-solvent conditions. The 

results are presented in Table 3. As expected, both unmodified and modified 

catalysts proved to be much more active in the oxidation of 1-phenylethanol than 

of n-octanol. Taking into account the high alcohol/gold ratio, the catalysts, even 

in the as-prepared state, reached more than 50% of acetophenone yield after 6 h 

of reaction, despite the low activity in the first hours. 

As in the oxidation of n-octanol, the sample modified with lanthanum oxide 

4% Au/La2O3/TiO2 pretreated in H2 demonstrated the best catalytic performance 

(Table 3, Entry 34): 98% yield of acetophenone was achieved already in 1 h.  

It should also be noted that the activity of the studied catalysts increased 

with increasing gold content, and the most active samples were those pretreated 

with hydrogen. Thus, the order of activity in the 4% Au catalysts with hydrogen 

treatment was as follows: Au/La2O3/TiO2 > Au/MgO/TiO2 > Au/Fe2O3/TiO2  > 

Au/CeO2/TiO2 > Au/TiO2. 

However, it should be emphasized that the supports also showed some 

activity under these conditions, as the acetophenone yield increased with time 

and depended on the support nature (Entries 2–6, Table 3). In the absence of a 

catalyst or support, the formation of a small amount of acetophenone was also 

observed (Entry 1, Table 3).  

For the oxidation of 1-phenylethanol with molecular oxygen, no activity was 

observed when using supports only or in the absence of a support/catalyst, as 

will be discussed below. This shows the very good activity of TBHP, which, 

when decomposed by heating or by reaction with a metal (see Introduction), 

OH O

TBHP or O2

80 ºC

1-phenylethanol acetophenone
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forms radicals (t-BuO∙, t-BuOO∙), responsible for the direct oxidation of alcohols 

[146]. Therefore, in the referred work, 97% acetophenone was obtained using 6 

equivalents of TBHP at 100 °C in 24 h, without addition of any catalysts or bases 

[147]. 

Table 3. Catalytic results of peroxidative oxidation of 1-phenylethanol 1. 

Entry Sample 
Yield of acetophenone (mol%) at time (h) 

0.25 0.5 1 2 3 4 6 

1 - 0 0 1 2 3 3 4 

2 TiO2 2 2 2 2 2 4 6 

3 CeO2/TiO2 3 3 3 4 6 8 14 

4 Fe2O3/TiO2 2 2 3 5 8 10 16 

5 MgO/TiO2 2 2 3 3 5 5 7 

6 La2O3/TiO2 3 3 3 6 8 10 17 

7 0.5% Au/TiO2_pH2 25 40 55 80 100 100 100 

8 0.5% Au/TiO2_pO₂ 18 30 43 69 81 98 100 

9 0.5% Au/TiO2_as 1 1 3 9 16 28 51 

10 4% Au/TiO2_pH₂ 33 46 75 100 100 100 100 

11 4% Au/TiO2_pO₂ 30 49 65 99 100 100 100 

12 4% Au/TiO2_as 1 2 6 19 28 45 82 

13 0.5% Au/CeO2/TiO2_pH₂ 27 37 60 85 100 100 100 

14 0.5% Au/CeO2/TiO2_pO₂ 28 36 72 90 100 100 100 

15 0.5% Au/CeO2/TiO2_as 2 3 3 7 14 28 61 

16 4% Au/CeO2/TiO2_pH₂ 36 49 85 100 100 100 100 

17 4% Au/CeO2/TiO2_pO₂ 22 41 75 100 100 100 100 

18 4% Au/CeO2/TiO2_as 3 4 10 25 46 67 100 

19 0.5% Au/Fe2O3/TiO2_pH₂ 19 41 69 100 100 100 100 

20 0.5% Au/Fe2O3/TiO2_pO₂ 23 30 58 87 100 100 100 

21 0.5% Au/Fe2O3/TiO2_as 2 3 5 7 14 30 63 

22 4% Au/Fe2O3/TiO2_pH₂ 21 39 87 100 100 100 100 

23 4% Au/Fe2O3/TiO2_pO₂ 24 45 65 100 100 100 100 

24 4% Au/Fe2O3/TiO2_as 1 4 6 16 30 39 65 

25 0.5% Au/MgO/TiO2_pH₂ 31 52 73 100 100 100 100 

26 0.5% Au/MgO/TiO2_pO₂ 25 29 78 100 100 100 100 

27 0.5% Au/MgO/TiO2_as 1 4 7 9 17 31 70 

28 4% Au/MgO/TiO2_pH₂ 28 43 90 100 100 100 100 

29 4% Au/MgO/TiO2_pO₂ 20 33 60 100 100 100 100 

30 4% Au/MgO/TiO2_as 1 3 8 24 49 98 100 

31 0.5% Au/La2O3/TiO2_pH₂ 31 45 55 88 100 100 100 

32 0.5% Au/La2O3/TiO2_pO₂ 38 49 61 96 100 100 100 

33 0.5% Au/La2O3/TiO2_as 1 1 2 8 18 42 84 

34 4% Au/La2O3/TiO2_pH₂ 41 55 98 100 100 100 100 

35 4% Au/La2O3/TiO2_pO₂ 22 40 67 100 100 100 100 

36 4% Au/La2O3/TiO2_as 1 2 6 29 54 100 100 

1 Reaction conditions: TBHP: 1-phenylethanol = 2.43; T = 80 °C, no solvent, stirring, R= 5000. 

In order to more clearly trace the dependence of the acetophenone yield on 

the catalyst loading, the 4% Au/La2O3/TiO2_pO2 sample, with a medium activity 

in 1-phenylethanol peroxidative oxidation among the La-modified samples, was 

selected. According to the obtained results, direct dependence of the yield of 

acetophenone on catalyst loading was observed (Table 4). Thus, 100% 

acetophenone was obtained already after 15 min of reaction when the total gold 

amount was increased from 1.27 to 10 μmol.  
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Table 4. Effect of the total gold amount on the peroxidative oxidation of 

1-phenylethanol 1 using 4% Au/La2O3/TiO2_pO2. 

Au amount (µmol) 
Yield of acetophenone (mol%) at time (min) 

5 15 30 60 120 180 

1.27 15 22 40 67 100 100 

5 33 40 50 81 100 100 

10 80 100 100 100 100 100 

20 100 100 100 100 100 100 

1 1-phenylethanol (6 mmol), TBHP (70% aqueous solution, 14.6 mmol), T = 80 °C. 

It should be noted that experiments using hydrogen peroxide (30% aqueous 

solution) as oxidant were not effective. For instance, under the same conditions 

used with TBHP (T = 80 °C, 6 mmol 1-phenylethanol, 14.6 mmol H2O2, 1.27 μmol 

of Au) only 11% acetophenone yield was achieved after 6 h of reaction using 4% 

Au/La2O3/TiO2_pH2 catalyst, compared to 98% yield of acetophenone after 1 h 

using TBHP (Entry 34, Table 3).  

3.1.4. Aerobic oxidation of 1-phenylethanol 

After replacing TBHP with molecular oxygen, keeping the same 

alcohol/gold ratio (R = 5000), no conversion was observed, even after 6 h of 

reaction (Table 5).  

Table 5. Effect of alcohol/Au ratio (R) on aerobic oxidation of 

1-phenylethanol 1 with 4% Au/La2O3/TiO2_pH2 catalyst. 

Catalyst R Run time, h Yield of acetophenone, % 

4% Au/La2O3/TiO2_pH₂ 

5000 6 0  

500 6 50 

100 0.5 98  

1 Reaction conditions: 0.1 M 1-phenylethanol in mesitylene, T = 80 °C, 30 mL/min O2.  

The next step was to investigate the effect of the alcohol/gold ratio. With a 

ten-fold increase in catalyst loading (R = 500), 50% conversion was reached after 

6 h. The complete conversion of 1-phenylethanol could be achieved only using a 

R = 100, that produced 98% acetophenone yield after just 30 min.  

Such a different behaviour in the catalytic activity probably lies in the 

different oxidative capacity of oxygen and TBHP. Therefore, the catalytic 

activity in the aerobic oxidation of 1-phenylethanol of the remaining catalysts 

was studied with R = 100. 

As it can be seen in Table 6, catalysts with the low gold content with an 

oxidative pretreatment were the most active and the order of activity was as 

follows: Au/La2O3/TiO2 > Au/MgO/TiO2 > Au/Fe2O3/TiO2 > Au/CeO2/TiO2 > 

Au/TiO2, as in the case of n-octanol (Figure 1). 
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Table 6. Catalytic results of aerobic oxidation of 1-phenylethanol 1. 

Entry Catalyst 
Yield of acetophenone (mol%) at time (h) 

0.25  0.5 1 2 3 4 6 

1 0.5% Au/TiO2_pH₂ 21 25 31 40 45 47 50 

2 0.5% Au/TiO2_pO₂ 26 32 38 44 49 52 58 

3 4% Au/TiO2_pH₂ 24 30 35 41 42 43 44 

4 4% Au/TiO2_pO₂ 19 21 25 30 35 38 40 

5 0.5% Au/CeO2/TiO2_pH₂ 45 50 60 65 68 70 72 

6 0.5% Au/CeO2/TiO2_pO₂ 70 86 96 99 100 100 100 

7 4% Au/CeO2/TiO2_pH₂ 53 59 65 69 71 73 78 

8 4% Au/CeO2/TiO2_pO₂ 40 44 50 55 59 65 70 

9 0.5% Au/Fe2O3/TiO2_pH₂ 42 57 68 74 79 82 85 

10 0.5% Au/Fe2O3/TiO2_pO₂ 67 88 97 99 100 100 100 

11 4% Au/Fe2O3/TiO2_pH₂ 52 57 68 71 75 79 84 

12 4% Au/Fe2O3/TiO2_pO₂ 40 45 54 58 64 70 75 

13 0.5% Au/MgO/TiO2_pH₂ 50 54 65 71 76 79 87 

14 0.5% Au/MgO/TiO2_pO₂ 76 90 98 99 100 100 100 

15 4% Au/MgO/TiO2_pH₂ 56 64 72 80 83 85 88 

16 4% Au/MgO/TiO2_pO₂ 47 50 54 58 64 67 75 

17 0.5% Au/La2O3/TiO2_pH₂ 90 95 97 100 100 100 100 

18 0.5% Au/La2O3/TiO2_pO₂ 95 98 100 100 100 100 100 

19 4% Au/La2O3/TiO2_pH₂ 88 96 99 100 100 100 100 

20 4% Au/La2O3/TiO2_pO₂ 79 88 93 97 98 99 100 

1 Reaction conditions: R = 100, 0.1 M 1-phenylethanol in mesitylene; T = 80 °C, 30 mL/min O2, 

stirring. 

From these results, it could be concluded that Au/(MxOy)/TiO2 systems were 

highly effective in the oxidation of 1-phenylethanol, and the catalysts modified 

with lanthana were the most active, as in the oxidation of n-octanol. 

Furthermore, comparing our results on 1-phenylethanol oxidation with other 

gold supported catalysts (Table 2), it could be concluded that the Au/(MxOy)/TiO2 

systems are one of the most effective in peroxidative selective oxidation of 

1-phenylethanol with TBHP in base- and solvent- free conditions, given the high 

alcohol/gold ratio (R = 5000), and low temperature (T = 80 °C) used.  

SUMMARY 

Therefore, according to all catalytic results, under comparable reaction 

conditions, 1-phenylethanol can be much more efficiently and selectively 

oxidized over Au/MxOy/TiO2 catalysts than n-octanol. Moreover, the best results 

in the oxidation of both alcohols were achieved using TBHP.  

In all cases, the best catalytic characteristics were shown by catalysts 

modified with lanthanum oxide, regardless of the alcohol and the type of 

oxidizing agent. Also, when a solvent was used and molecular oxygen was 

present as an oxidizing agent, the catalysts with the lowest gold content after 

oxidative pretreatment showed the highest activity in both 1-phenylethanol and 

n-octanol oxidation.  
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The only difference was that under no-solvent peroxidative conditions, the 

most active catalysts in 1-phenylethanol oxidation were those with a high gold 

content and hydrogen treatment, while under the same reaction conditions, low 

gold content and oxygen treatment were the most beneficial for n-octanol 

oxidation. The reason for this difference will be discussed in the Summary after 

Sections 3.1 and 3.2.   

3.2. Catalysts Characterization Results 

To understand the differences observed in the catalytic behaviour of the 

samples, a series of physicochemical studies were carried out. 

3.2.1. Study of structural, textural properties and morphology of catalysts 

XRD method was used to study the phase composition of the catalysts.The 

diffractograms (Figure 4) showed the almost absence of diffraction lines related 

to gold and modifiers, indicating either small sizes of Au particles and 

modifying metal oxides (lower than the XRD sensitivity threshold of 3–4 nm) 

[162] or their amorphous structures. Thus, the peaks found were mostly those 

corresponding to crystalline planes of anatase/rutile TiO2 phases in all samples 

[22, 23, 163, 164]. For Au/CeO2/TiO2 samples, CeO2 phase was present, which 

may indicate that cerium oxide was not homogeneously distributed on the 

surface of TiO2 but was rather concentrated in the form of nanoparticles [22, 165]. 
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Figure 4. XRD patterns for catalysts Au/TiO2, Au/Fe2O3/TiO2 , Au/CeO2/TiO2, 

Au/MgO/TiO2 and Au/La2O3/TiO2, treated in H2 flow (300 °C, 1 h) and their 

corresponding supports. Diffraction lines labels: “a”, TiO2 anatase; “r”, TiO2 

rutile; “Au”, metallic gold; “CeO2”, cubic CeO2.   

Table 7 summarizes the specific surface area (SBET), and gold content of the 

catalysts and their corresponding supports. Because of modification, SBET of the 

initial TiO2 support was reduced by 13% (48-49 m2/g). Further gold deposition 

did not change significantly the supports SBET, except for catalysts with 4% Au, 

where SBET had a 10% decrease. Elemental analysis showed that the actual gold 

loadings obtained were close to their nominal value. 

Table 7 also depicts the average Au particle size obtained from 

STEM-HAADF images shown in Figure 5. The distribution of gold nanoparticles 

for all the studied catalysts is in the range of 1-10 nm, except for 0.5% 

Au/TiO2_pH2, for which larger particles were observed, up to 15 nm (Figure 5 a). 

The average size of Au NPs was within the 2.4-5.2 nm interval for the studied 

materials (Table 7). 
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Table 7. Textural properties of supports and catalysts, analytical content 

and particle size of Au. 

Entry Sample 
SBET, m2/g EDS Au content, 

wt. % 

Au average  
Particle Size, 

nm Support Catalyst 

1 0.5% Au/TiO2_pH2 55  54 0.4 4.4 
2 0.5% Au/TiO2_pO2 55  54 0.4 4.2 
3 4% Au/TiO2_pH2 55  50 4.0 3.0 
4 4% Au/TiO2_pO2 55  50 4.0 3.3 

5 0.5%Au/CeO2/TiO2_pH2 48     47 0.3 3.4 
6 0.5%Au/CeO2/TiO2_pO2 48     47 0.3 3.8 
7 4%Au/CeO2/TiO2_pH2 48     46 4.1 2.8 
8 4%Au/CeO2/TiO2_pO2 48     46 4.1 2.4 

9 0.5% Au/Fe2O3/TiO2_pH2 49  49 0.5 3.4 
10 0.5% Au/Fe2O3/TiO2_pO2 49  49 0.5 3.1 
11 4% Au/Fe2O3/TiO2_pH2 49  44 3.2 5.2 
12 4% Au/Fe2O3/TiO2_pO2 49     44 3.2 3.2 

13 0.5% Au/MgO/TiO2_pH2 48  47 0.3 2.6 
14 0.5% Au/MgO/TiO2_pO2 48  47       0.3 3.2 
15 4% Au/MgO/TiO2_pH2 48  43 4.0 5.1 
16 4% Au/MgO/TiO2_pO2 48  43 4.0 2.9 

17 0.5% Au/La2O3/TiO2_pH2 48     47 0.5 2.8 

18 0.5% Au/La2O3/TiO2_pO2 48     47 0.5 2.4 

19 4% Au/La2O3/TiO2_pH2 48     43 3.3 2.6 
20 4% Au/La2O3/TiO2_pO2 48     43 3.3 2.7 

It can be seen clearly from STEM results that the most active La-modified 

samples in both reactions have the smallest average particle size range: 2.4-2.8 

nm. Also, the most active in n-octanol oxidation (with both O2 and TBHP) and 

aerobic oxidation of 1-phenylethanol, 0.5% Au/La2O3/TiO2_pO2, has the smallest 

average particle size of gold and the narrowest range of their distribution among 

the studied samples (Figure 5 r). At the same time, the least active 0.5% 

Au/TiO2_pH2 (Figure 5 a) has one of the largest average particle size and the 

widest range of their distribution. At the same time, both 4% Au/MgO/TiO2_pH2 

and 4% Au/Fe2O3/TiO2_pH2 samples, with the largest average particle size 

(5.1-5.2 nm), showed medium activity in n-octanol oxidation with O2 (15-20% 

conversion).  

Catalysts 0.5% Au/Fe2O3/TiO2_pO2 and 0.5% Au/MgO/TiO2_pO2, showing 

almost equal conversion (41 and 43%) in n-octanol oxidation with O2, had similar 

mean particle size (3.4 and 3.2 nm, respectively). However, catalysts with smaller 

particles size, like 0.5% Au/MgO/TiO2_pH2 (2.6 nm) and 4% Au/MgO/TiO2_pO2 

(2.9 nm) demonstrated low activity in aerobic n-octanol oxidation (12 and 3%, 

respectively).  

Therefore, taking into account the data from catalytic studies, no direct 

correlation between Au NPs average size and catalytic performance can be 

found. 
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Figure 5. Cont. 
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Figure 5. Cont. 
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Figure 5. Au particle size distribution and representative TEM/STEM 

HAADF micrographs of catalysts Au/TiO2 (a–d), Au/CeO2/TiO2 (e–h), 

Au/Fe2O3/TiO2 (i–l), Au/MgO/TiO2 (m–p) and Au/La2O3/TiO2 (q–t), for 

different gold amounts (0.5 or 4 wt.%) and pretreatment atmospheres (H2 or 

O2). 

Nevertheless, one should note that according to TPR, DRIFT CO studies and 

XPS presented below (Table 8, Figures 6, 7, 8 and 10), there is a fraction of gold in 

ionic state (Au+ or Au3+), which cannot be detected by TEM. The amount of these 

gold species depends on the support, pretreatment and gold content. In some 

samples, this ionic fraction of gold reaches almost half of the total Au content, 

which may be the reason for the observed discrepancy between particle size and 

catalytic activity. 

Moreover, as suggested by some authors for such types of reaction, not all 

metal particles visible on the micrographs are active participants in the catalytic 

process; only particles with size of 1 nm and less, below the threshold of the 

technique, are active [22, 23, 67-69]. 
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3.2.2. Study of the reduction of gold and supports  

Temperature-programmed reduction with hydrogen (H2-TPR) was used to 

study the reduction of supports and as-prepared Au/MxOy/TiO2 catalysts. 

(Figure 6).  

TiO2 support (Figure 6 a) is characterized by a small peak of H2 

consumption from 450 to 750 °C, attributed to an insignificant reduction of 

titania surface [166]. The peaks of H2 consumption for CeO2/TiO2 support 

correspond to reduction of ceria (Figure 6 b). The peak at 440 °C may be 

attributed to the reduction of CeO2 surface oxygen, while peaks at 590 and 750 

°C correspond to the reduction of bulk CeO2 oxygen [167-169]. 

For Fe2O3/TiO2 support (Figure 6 c), consumption at 336–457 °C is related to 

the transformation of FeOOH to Fe2O3 [170], reduction of Fe2O3 to Fe3O4, and 

those at 553 °C and 836 °C with reduction of Fe3O4 to FeO and FeO to Fe, 

respectively [171].  

The TPR profiles for MgO/TiO2 and La2O3/TiO2 supports (Figures 6 d, e) are 

characterized by a small peak of hydrogen consumption at 380-800 °C, 

attributed to the reduction of titania. The shift of this peak, in comparison with 

pure TiO2 support may indicate the increased reducibility of titania in the 

presence of modifiers, like La and Mg oxides. Also, for La2O3/TiO2 this broad 

consumption peak can probably be associated with decomposition of surface 

lanthanum hydroxocarbonates La2(OH)4(CO3) [172].  

For all catalyst samples in as-prepared state, the most intense hydrogen 

consumption is observed in the range 110–180 °C. According to a previous work 

[160], this low-temperature consumption is related to the reduction of gold 

precursor (Au3+ complex), weakly interacting with the support, that explains the 

relatively low activity of the catalysts with modified supports in as-prepared 

state, because highly charged gold ions Au3+ are catalytically inactive.  

  

Figure 6. Cont. 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0 100 200 300 400 500 600 700 800 900

H
2

co
n

su
m

p
ti

o
n

, (
a.

u
.)

Temperature,  C

4% Au/TiO₂_as 0.5% Au/TiO₂_as TiO₂

563-590

173

1
5

5 1
7

5

0.200

0.202

0.204

0.206

200 400 600 800

590

0.00

0.02

0.04

0.06

0.08

0.10

0 100 200 300 400 500 600 700 800 900

H
2

co
n

su
m

p
ti

o
n

, (
a.

u
.)

Temperature,  C
4% Au/CeO₂/TiO₂_as 0.5% Au/CeO₂/TiO₂_as

CeO₂/TiO₂

500

181

440

750

590

1
43

1
5

0

H
2п

ог
ло

щ
ен

ие
, о

тн
.е

д.
 

b) a) 



 60 of 117 

 

 

 

  

Figure 6. TPR profiles of as-prepared Au/TiO2 (a), Au/CeO2/TiO2 (b), 

Au/Fe2O3/TiO2 (c), Au/MgO/TiO2 (d) and Au/La2O3/TiO2 (e) catalysts with 

different Au loading and their corresponding supports. Some results were 

previously presented in [160]. 

In addition, for all samples without exception, high-temperature 

consumption is observed in the range of 550–590 °C. It relates to the reduction 

of strongly bound ionic gold, stabilized on the support surface by hydroxyl 

groups, through the formation of centers as M-O-Au, or reduction of the 

modifier oxide, or joint reduction of modifier and gold, in case of reducible 

CeO2 and Fe2O3.  

It is important to note the area of the consumption peak for all catalysts in 

the range 550–590 °C is significantly lower than at 110 to 180 °C, which indicates 

a limited quantity of functional groups on the support surface stabilizing gold, 

due to strong bond formation.  
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Both lanthanum-modified catalysts, 0.5% Au/La2O3/TiO2 and 

4% Au/La2O3/TiO2, have the most intense H2 consumption at 583 and 600 °C, 

respectively (Figure 6 e), among all studied samples in as-prepared state. This 

directly indicates that the gold ions being reduced are stabilized by functional 

groups of support, due to strong metal-support interaction, since La2O3 is a 

non-reducible oxide.  

In the case of Mg-modified samples (Figure 6 d), one should take into 

account that MgO can be transformed into Mg(OH)2 by reaction with water, 

during catalyst preparation [173-175]. Carabineiro et al. [175] showed that 

despite no H2 consumption was observed on TPR profiles of Au/MgO, a large 

negative peak was in sight on the TPR profile between approximately 300 and 

600 °C, which was due to the interaction of hydrogen with magnesium 

hydroxide with the formation of magnesium oxide and water. The latter was 

detected by a mass-spectroscopy detector.  

For Fe-modified catalysts (Figure 6 c), the H2 consumptions at 347, 400, 553 

and 836 °C of the support TPR profile, related to the reduction steps FeOOH→ 

Fe2O3 → Fe3O4 → FeO→ Fe, respectively, were retained in TPR catalysts’ profiles. 

The exception was the disapperance of the peak at 457 °C in both catalysts, 

indicating that the transformation of Fe2O3 to Fe3O4 took place at lower 

temperature, 400 °C. Also, a new peak of consumption at 747 °C was found for 

4% Au/Fe2O3/TiO2, which could be associated with the beginning of reduction of 

FeO to Fe, which is completely transformed at 836 °C. 

When comparing TPR profiles for ceria-modified catalysts and CeO2/TiO2 

support (Figure 6 b), the disappearance of the peak at 440 °C observed for 

CeO2/TiO2, confirms the reduction of the surface of ceria at low temperature. 

Besides, the area of the peak at 120–200 °C, attributed to reduction of the gold 

precursor, shows a hydrogen consumption higher than the stoichiometric for 

reduction of Au3+ to Au°. This indicates reduction of the ceria surface at this 

temperature range, like other catalysts based on noble metals supported on ceria 

[175, 177]. Thus, an increased reducibility is observed for the CeO2/TiO2 support, 

being attributed to reduction of CeO2. The strong interaction of gold with ceria 

provides reduction of both surface and bulk ceria at lower temperatures. This 

may provide the increased activity in oxidation reactions, due to additional 

amount of oxidative species from ceria.  

3.2.3. Study of electronic states of gold on supports 

XPS method was applied to investigate gold electronic states on the support 

surface. The binding energies of Au 4f spectra, according to XPS measurements, 

show various states of gold: Au+, Au3+ and neutral gold nanoparticles. Their 

proportion was affected by the support composition, pretreatment atmosphere 

and Au content (Figure 7 and Table 8).  
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Figure 7. Cont. 
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Figure 7. Au4f XP spectra of samples with different gold contents (0.5 or 4 

wt.%), pretreated in H2 or O2 flow, at 300 °C, for 1 h: Au/TiO2 (a–d), 

Au/CeO2/TiO2 (e–h), Au/Fe2O3/TiO2 (i–l), Au/MgO/TiO2 (m–p) and 

Au/La2O3/TiO2 (q–t). 

Table 8. Effect of gold content (0.5 or 4 wt.%) and redox treatment (H2 or O2) 

on the contribution of the different electronic states of Au, determined by 

XPS, for Au/(MxOy)/TiO2 catalysts. 

Entry Catalyst 
Au (0, 1+, 3+) relative content, % 

Au0 Au1+ Au3+ 
1 0.5% Au/TiO2_pH2 91 9 0 
2 0.5% Au/TiO2_pO2 84 16 0 
3 4% Au/TiO2_pH2 74 15 11 
4 4% Au/TiO2_pO2 89 11 0 
5 0.5% Au/CeO2/TiO2_pH2 91 9 0 
6 0.5% Au/CeO2/TiO2_pO2 85 15 0 
7 4% Au/CeO2/TiO2_pH2 68 20 12 
8 4% Au/CeO2/TiO2_pO2 83 11 6 
9 0.5% Au/Fe2O3/TiO2_pH2 28 29 43 
10 0.5% Au/Fe2O3/TiO2_pO2 26 64 10 
11 4% Au/Fe2O3/TiO2_pH2 42 37 21 
12 4% Au/Fe2O3/TiO2_pO2 100 0 0 
13 0.5% Au/MgO/TiO2_pH2 81 11 8 
14 0.5% Au/MgO/TiO2_pO2 67 25 8 
15 4% Au/MgO/TiO2_pH2 51 29 20 
16 4% Au/MgO/TiO2_pO2 100 0 0 
17 0.5% Au/La2O3/TiO2_pH2 80 20 0 
18 0.5% Au/La2O3/TiO2_pO2 65 35 0 
19 4% Au/La2O3/TiO2_pH2 81 19 0 
20 4% Au/La2O3/TiO2_pO2 83 17 0 
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All samples showed BE (Au 4f7/2) 84.2 eV (26–100% relative content), 

attributed to Au0 states [178-182], excepting for 4% Au/MgO/TiO2_pO2 and 4% 

Au/Fe2O3/TiO2_pO2, where only gold in metallic state was found. 

Apart from the peak due to the metallic gold, another (Au4f7/2) peak in the 

BE range of 85.2-85.5 eV, attributed to single charged ions (Au+) [179-182], was 

detected in the remaining catalysts, with 9-64% relative content. The highest 

amount of Au+ was found in the modified samples with 0.5% Au after oxygen 

treatment and 4% Au after hydrogen treatment (Table 8, Entries 6, 7, 10, 11, 14, 

15, 18, 19). The 0.5% Au/Fe2O3/TiO2_pO2 sample showed the maximum 

contribution of single charged ions (64%), compared with other catalysts. 

Moreover, another oxidized state of gold, three-charged gold (Au3+) with BE 

(Au4f7/2) in the range of 86.4-86.6 eV [183-185], was found with different contents 

(11-21%) for all the catalysts with 4% Au after reductive treatment (Table 8, 

Entries 3, 7, 11 and 15). The only exception were La-modified samples, where 

gold was found only in metallic and monovalent states (Table 8, Entries 17-20). 

Also, Au3+ state was observed only in magnesium and iron modified 0.5% Au 

catalysts after both treatments, the highest portion of Au3+ (43%) being found for 

0.5% Au/Fe2O3/TiO2_pH2.  

It should be noted that for both 0.5% Au/MgO/TiO2_pH2 and 0.5% 

Au/MgO/TiO2_pO2 catalysts, there was an overlapping of Au4f7/2 line with the 

Mg2s line (Figure 7 m, n), leading to difficulties in the interpretation of these 

peaks and subsequent uncertainty. However, since the Au4f7/2 line is clearly 

visible, the states were identified correctly.  

In order to obtain more information on the gold electronic states of the 

catalysts, DRIFT spectroscopy of adsorbed CO was used. As can be seen from 

Figure 8, an absorption band with the maximum in the range of 2090–2130 cm−1, 

corresponding to the surface carbonyl groups of gold atoms Au0–CO [186], was 

observed for all catalysts. The different intensities of the absorption bands, 

corresponding to Au0-CO, can be explained by carbon monoxide being very 

weakly adsorbed on metallic gold, due to some features of the σ-π bond in 

M0-CO for Au, compared to other noble metals [187]. Therefore, only the highly 

dispersed clusters or gold atoms can be sites for the adsorption of CO. 

Comparing the data on the band intensity related to Au0–CO with the STEM 

results, it can be seen that the average particle size for samples with low 

frequency absorption bands is larger than for samples with high intensity, and 

the differences in signal position are due to the adsorption of CO on metal 

clusters of different sizes. In fact, considering the DRIFT CO results for samples 

with the same support and Au content, but different pretreatment, e.g., 4% 

Au/MgO/TiO2_pO2 (Figure 8 p) and 4% Au/MgO/TiO2_pH2 (Figure 8 o), a higher 

intensity of the Au0–CO band is observed for the latter, meaning that this catalyst 

should have smaller particles than the former. This is confirmed by STEM results 

shown in Table 7: Entry 15 (4% Au/MgO/TiO2_pO2) – 5.1 nm and Entry 16 (4% 

Au/MgO/TiO2_pH2) – 2.9 nm. The same correlation between the average particle 

size and the intensity of the absorption band of metal particles was observed for 
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the rest of catalysts, with the exception of 4% Au/CeO2/TiO2_pO2 (Figure 8 h), 

and especially 4% Au/La2O3/TiO2_pO2 (Figure 8 t) catalysts. Consequently, it can 

be assumed that there are larger particles in these samples, which were not taken 

into account when analyzing TEM images because of their relatively low 

abundance.  
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Figure 8. DRIFT spectra of CO adsorbed at 20 Torr on catalysts with 

different gold contents (0.5 or 4 wt.%), pretreated at 300 °C for 1 h under a 

H2 or O2 atmosphere: Au/TiO2 (a–d), Au/CeO2/TiO2 (e–h), Au/Fe2O3/TiO2 

(i–l), Au/MgO/TiO2 (m–p) and Au/La2O3/TiO2 (q–t). 

Another absorption band with the maximum in the range 2150–2170 cm−1, 

related to the complexes of Au+–CO ions [95,188], was observed in all cases, 

except for 4% Au/Fe2O3/TiO2_pO2 and 4% Au/MgO/TiO2_pO2 (Figure 8 l, p). 

Results for 4% Au/Fe2O3/TiO2_pO2 and 4% Au/MgO/TiO2_pO2 are in a good 

agreement with XPS data, as no Au+ was detected in these catalysts (Figure 7 l, 

p). It should be noted, that this absorption band, related to the complexes of 

Au+–CO ions, is less intense than the one attributed to Au0–CO, except for 0.5% 

Au/Fe2O3/TiO2_pO2 (Figure 8 j), which is also well correlated with the 
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predominant content of Au+ (64%) found in this catalyst by XPS (Table 8, Entry 

10).  

Along with absorption bands at 2090–2130 cm–1 and 2150–2170 cm–1, 

ascribed to carbonyls of metallic and singly charged gold, respectively, a third 

band appears within 2170-2190 cm−1 interval for 4% Au/TiO2_pH2, 4% 

Au/CeO2/TiO2_pH2, 4% Au/CeO2/TiO2_pO2, 4% Au/Fe2O3/TiO2_pH2, 4% 

Au/MgO/TiO2_pH2, 0.5% Au/Fe2O3/TiO2_pH2 and 0.5% Au/Fe2O3/TiO2_pO2, 

catalysts, its interpretation being ambiguous. In most studies, this absorption 

band is assigned to the adsorption of CO on monovalent gold ions, as it is 

believed that a higher-charged gold cation (Au3+) is very unstable, or even does 

not form carbonyl species. That could be caused by the following reasons: 1) 

Au3+ ions are very easily reduced with CO [189-191]; 2) since Au3+ ions are 

strongly charged, probably, trivalent ions on a support surface are usually 

saturated by coordination, and evacuation at elevated temperatures will easily 

lead to the reduction of Au3+ [192]. 

At the same time, according to XPS (Table 8 and Figure 7), Au3+ was found 

for 4% Au/TiO2_pH2, 4% Au/CeO2/TiO2_pH2, 4% Au/Fe2O3/TiO2_pH2, and 4% 

Au/MgO/TiO2_pH2 samples, even after the reduction treatment at 300 °C. 

Moreover, Au3+ relative content in these samples is much higher than in the 

oxidized ones. Luengnaruemitchai et al. [185] observed that Au3+ remains in 

Au/Fe2O3/TiO2 catalytic systems even after calcination at 400 °C. Such trivalent 

cations could be stabilized by oxygen vacancies, formed under the action of high 

temperature reduction treatment during the preparation of the catalyst 

[193-196]. It is also worth noting that the reducibility of supports, such as titania, 

increases after the gold deposition due to metal-support interactions. A similar 

mechanism for the stabilization of gold ions was proposed elsewhere [197]. In 

addition, it was also suggested that modifying the titania surface lead to an 

increase in the number of oxygen defects, which in turn increases the number of 

stabilized gold ions. A similar trend was observed in our study. 

Mihaylov et al. [194] carried out IR CO experiments for characterization of 

supported gold catalysts in conditions comparable to our study, and they 

proved that absorption band with a maximum in the range of 2170-2190 cm−1 

corresponds to trivalent gold in non-exchange positions. Thus, one can also 

assume that the absorption band within 2176-2186 cm-1 interval belongs to the 

trivalent gold ion. Again, this is in good agreement with the XPS data.  

For 4% Au/TiO2_pO2 and 4% Au/La2O3/TiO2_pH2, the second absorption 

band is also shifted towards longer wavelengths, with maxima at 2177 and 2183 

cm-1, respectively. Despite this fact, by comparing these results with the XPS 

data, one can assume that these bands can be assigned to the adsorption of CO 

on monovalent gold ions, in this particular case.  

Because no direct correlation was found between the average particle size of 

gold and the catalytic activity of samples, and neither significant differences in 

the texture and structural properties of the studied catalysts, it can be assumed 

that these parameters are not determining for the observed catalytic behavior of 
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the studied systems. However, another parameter capable of influencing the 

catalytic behavior of gold catalysts is its electronic state. Based on the analysis 

performed on the surface of the studied catalysts by the above methods (XPS, 

DRIFT CO), three electronic states of gold were found with different relative 

concentrations and ratios.  

Table 9 shows the relative contents of the electronic states of gold found in 

the samples and n-octanol conversion reached on them after 6 h. There is no 

relationship between the conversion and the content of gold in cationic states 

(Au+ and Au3+), if each state is considered separately. However, if the combined 

concentration of Au+ and Au3+ is considered, one tendency can be seen: for 

samples with a higher concentration of Au+, but with a lower contribution of 

Au3+, the conversion of octanol is higher. For example, for 0.5% 

Au/MgO/TiO2_pH2 and 0.5% Au/MgO/TiO2_pO2 (Table 9, Entries 13 and 14 

respectively), the Au3+ content is the same (8%). However, the sample after 

oxygen pretreatment has a larger contribution of monovalent gold (25%) than 

the reduced sample (11%); similarly, the conversion for Au/MgO/TiO2_pO2 

(43%) sample is much higher than for 0.5% Au/MgO/TiO2_pH2 (12%). And for 

the same content of monovalent ions (29%), in 0.5% Au/Fe2O3/TiO2_pH2 and 4% 

Au/MgO/TiO2_pH2 catalysts (Table 9, Entries 9 and 15), octanol conversion is 

higher in the latter sample, where the content of trivalent gold is 23% lower than 

in the former. It is worth noting that for samples with a high content of metallic 

gold (Table 9, Entries 12 and 16), the conversion of n-octanol is very low, 5 and 

3%, respectively.  

Table 9. Effect of gold content (0.5 or 4 wt.%) and redox treatment (H2 or O2) 

on the proportion of different electronic states of Au calculated by XPS and 

their activity for aerobic n-octanol oxidation1 for Au/MxOy/TiO2 catalysts. 

Entry Catalyst 
Au (0, 1+, 3+) relative content, % Conversion of 

n-octanol, % Au0 Au1+ Au3+ 
1 0.5% Au/TiO2_pH2 91 9 0 3 
2 0.5% Au/TiO2_pO2 84 16 0 17 
3 4% Au/TiO2_pH2 74 15 11 11 
4 4% Au/TiO2_pO2 89 11 0 6 
5 0.5% Au/CeO2/TiO2_pH2 91 9 0 10 
6 0.5% Au/CeO2/TiO2_pO2 85 15 0 30 
7 4% Au/CeO2/TiO2_pH2 68 20 12 23 
8 4% Au/CeO2/TiO2_pO2 83 11 6 10 
9 0.5% Au/Fe2O3/TiO2_pH2 28 29 43 7 
10 0.5% Au/Fe2O3/TiO2_pO2 26 64 10 41 
11 4% Au/Fe2O3/TiO2_pH2 42 37 21 15 
12 4% Au/Fe2O3/TiO2_pO2 100 0 0 5 
13 0.5% Au/MgO/TiO2_pH2 81 11 8 12 
14 0.5% Au/MgO/TiO2_pO2 67 25 8 43 
15 4% Au/MgO/TiO2_pH2 51 29 20 20 
16 4% Au/MgO/TiO2_pO2 100 0 0 3 
17 0.5% Au/La2O3/TiO2_pH2 80 20 0 37 
18 0.5% Au/La2O3/TiO2_pO2 65 35 0 63 
19 4% Au/La2O3/TiO2_pH2 81 19 0 40 
20 4% Au/La2O3/TiO2_pO2 83 17 0 30 

1 Reaction conditions: T = 80 °C, 0.1 M n-octanol (n-heptane), O2 = 30 mL/min, R = 100, 

stirring. 
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Besides, considering only the samples with no trivalent gold, a direct 

correlation can be found between surface concentration of monovalent gold 

ions, as well as metallic gold, and catalytic activity in n-octanol oxidation 

(Figure 9). Thus, the most active catalyst (0.5% Au/La2O3/TiO2 pretreated in O2) 

has the highest surface concentration of Au+ and lowest surface concentration 

of Au0; that is, an increase in the surface concentration of monovalent gold, 

with a simultaneous decrease in the surface concentration of metallic gold, 

leads to an increase in the catalytic activity of the samples in n-octanol 

oxidation (Figure 9). Moreover, it should be noted that, for samples with close 

catalytic performance, in particular H2-pretreated 0.5% Au/La2O3/TiO2 and 

H2-pretreated 4% Au/La2O3/TiO2, the contribution of Au+ was practically the 

same. 

 

Figure 9. Aerobic oxidation of n-octanol. Influence of the content of Au0 

and Au+ species on n-octanol conversion. Samples: 1 – 0.5% Au/TiO2_pH2, 2 

– 0.5% Au/TiO2_pO2, 3 – 4% Au/TiO2_pO2, 4 – 0.5% Au/CeO2/TiO2_pH2, 5 – 

0.5% Au/CeO2/TiO2_pO2, 6 – 4% Au/Fe2O3/TiO2_pO2, 7 – 4% 

Au/MgO/TiO2_pO2, 8 – 0.5% Au/La2O3/TiO2_pH2, 9 – 0.5% 

Au/La2O3/TiO2_pO2, 10 – 4% Au/La2O3/TiO2_pH2, 11 – 4% 

Au/La2O3/TiO2_pO2). Reaction conditions: T = 80 °C, 0.1 M n-octanol 

(n-heptane), O2 = 30 mL/min, R = 100, t = 6 h, stirring. 

Therefore, by comparing the spectroscopic and catalytic results, it can be 

assumed that monovalent gold ions (Au+) are probably responsible for the 

enhanced catalytic activity, while metallic gold (Au0) and three-charged gold 

(Au3+) have a negative effect on the catalytic activity. The following DFT 

calculations of n-octanol adsorption on tetrahedral gold clusters, presented in 

Section 3.3.1., proved that monovalent gold ions play an important role in 

n-octanol oxidation. 
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The negative effect of metallic and trivalent gold on catalytic activity 

probably occurs due to the strong adsorption of the solvent (n-heptane) on both 

Au0 and Au3+ or to water generated by the dehydrogenation reaction of 

n-octanol on Au3+ (Scheme 2). The calculations of the adsorption energy in 

Section 3.3.2 confirmed this assumption. 

When comparing the XPS and the catalytic results of the catalysts in both 

peroxidative and aerobic oxidation of 1-phenylethanol after 15 min (Tables 3 

and 6), there is no apparent correlation with the electronic gold states as found 

in n-octanol aerobic oxidation, due to the much greater reactivity of 

1-phenylethanol (Table 10). However, the cationic nature of gold as the active 

site in the case of 1-phenylethanol oxidation is confirmed by the recycling 

experiments (see Table 12 below) and calculations of the phenylethanol 

adsorption energy performed in Section 3.3.3. 

Table 10. Catalytic results of the most active catalysts in the peroxidative 

oxidation of 1-phenylethanol and aerobic oxidation of n-octanol and 

contribution of gold electronic states in these catalysts, calculated by XPS. 

Entry Sample 

Yield of 

acetophenone 1 

in 0.25 h, mol %  

Converison of 

n-octanol 2 in 

0.25 h, mol % 

Relative Au 

content, % 

Au0 Au+ 

1 4% Au/La2O3/TiO2_pH₂  88 13 81 19 

2 0.5% Au/La2O3/TiO2_pO₂  95 22 65 35 

1 R = 5000, TBHP:1-phenylethanol = 2.43, T = 80 °C, stirring. 2 R = 100, 0.1 M 

1-phenylethanol in mesitylene, T = 80 °C, O2 = 30 mL/min, stirring.  

3.2.4. Study of catalyst stability 

In order to evaluate the stability of gold ionic states during redox treatments 

and reaction media, TPR measurements were carried out for the most and least 

active catalysts in terms of support, i.e., Au supported on unmodified and 

La-modified titania, respectively, with optimal gold content and treatment 

found for the studied reactions (Figure 10). Low gold loading and oxygen 

treatment (Figure 10 a) were found beneficial for both aerobic and peroxidative 

oxidation of n-octanol, as well as for the oxidation of 1-phenylethanol with O2, 

while samples with 4wt.% of Au after hydrogen treatment (Figure 10 b) were 

the most active in peroxidative oxidation of 1-phenylethanol. 

Both reductive and oxidative pre-treatments lead to disappearance of the 

peak at 155-175 °C, observed for all catalysts in as-prepared state, that indicates 

the decomposition of the gold precursor in such conditions. A new 

low-temperature peak at 77-100 °C is observed for 0.5% Au/TiO2 and 0.5% 

Au/La2O3/TiO2 catalysts (Figure 10 a). This peak may be attributed to the 

reduction of Au+ to Au0. The high temperature peak at 500-650 °C, present in the 

spectra of all catalysts after treatments, is attributed to the high stability of Auδ+ 

species strongly bonded with the support. The highest portion of such gold 

states was observed in Au/La2O3/TiO2 samples, while in the unmodified 
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samples they were present in much smaller amounts. Thus, modifying additives 

of La oxides favored formation of very stable ionic species Auδ+ (0 ˂ δ ˂ 1), 

resistant to reduction treatment up to 550-600 °C. The presence of Au+ ions in 

the catalysts was observed by XPS and DRIFT CO (Section 3.2.3, Figures 7 and 

8) for catalysts after both reductive and oxidative pretreatments. 

 

 

 

Figure 10. TPR profiles of Au/TiO2 and Au/La2O3/TiO2 catalysts with 0.5% of 

Au in as-prepared and after oxygen pretreatment (a) or with 4% of gold in 

as-prepared and after hydrogen pretreatment (b). 

Additionally, in order to prove the existence of stable gold ions directly 

responsible for the best catalytic performance, the most active sample, 0.5% 

Au/La2O3/TiO2_pO2, was analysed by XPS after aerobic oxidation of n-octanol. It 

was found that the concentration of Au+ ions decreased to 13%, compared with 

a 35% content of these gold monovalent ions before the reaction (Table 11, Entry 

2 and Figure 11 b). In parallel, the activity of this sample also decreased in the 

second octanol oxidation cycle performed. After 15 min of the second run, 
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alcohol conversion was 11% after 15 min, compared to 22% of the first run 

reaction. The final conversion in the second cycle after 6 h was 31%, while in the 

first cycle it was 63%. However, it should be emphasized that these are very 

stable ionic species, Auδ+. Their contribution was determined by H2-TPR (Figure 

10) namely, by the area of the hydrogen consumption peak at 500-650 °C, 

attributed to high stability of Auδ+ species strongly bonded to the support, 

which was only 25-35 μmol/g, corresponding to 12-15% of the total amount of 

gold (204 μmol/g). The remaining 20-23% of gold ions is unstable, being 

reduced during the reaction. These gold species can be identified on the 

low-temperature region, up to 200 °C, of the TPR profiles (Figure 10 a). 

Moreover, in order to check the stability of the mentioned gold ions and 

confirm that they are the active sites, 0.5% Au/La2O3/TiO2_pO2 sample was 

treated in a hydrogen atmosphere at higher temperature (500 °C), for reducing 

unstable gold ions. According to the XPS analysis of this sample, it was found a 

decrease of 22% in the surface concentration of Auδ+ ions (Figure 11 c and Table 

11, Entry 3). This reduced sample was tested in an octanol oxidation reaction. 

The initial and final conversion of octanol on this sample was reduced almost 

two times, as the activity of the sample after the recycling test, where it was also 

observed 13% of gold monovalent ions. Thus, this confirmed once again a direct 

correlation between surface concentration of monovalent gold ions and catalytic 

activity in n-octanol oxidation. 
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Binding energy, eV

Au+
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Figure 11. Au4f XP spectra of 0.5% Au/La2O3/TiO2_pO2 samples after 15 min 

(a) and 6 h reaction in the aerobic oxidation of n-octanol (b) and after 

pretreatment in H2 at 500 °C for 1 h (c). 
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Table 11. Catalytic performance of 0.5% Au/La2O3/TiO2 catalyst in the 

aerobic oxidation of n-octanol and contribution of various electronic states 

of gold in this catalyst, calculated by XPS.  

Entry Sample 

Conversion of 

n-octanol after 6 h,  

ca.%  

Relative Au content, % 

Au0 Au+ 

1 0.5% Au/La2O3/TiO2_pO₂ 1 63 65 35 

2 0.5% Au/La2O3/TiO2_pO₂ 2,a 31 87 13 

3 0.5% Au/La2O3/TiO2_pH₂ 1,b 34 87 13 

XPS performed for the catalyst: 1 before reaction; 2 after reaction; a used, after 6 h of 

reaction; b pretreated in H2 at 500 °C for 1 h. 

The catalyst recyclability in the peroxidative oxidation of 1-phenylethanol was 

investigated up to six consecutive cycles, as described in the Experimental part, 

for the best performing catalyst, i.e., 4% Au/La2O3/TiO2_pH2. As can be seen in 

Figure 12, there was a gradual catalyst deactivation during the recycling tests. 

Particularly, in the second cycle, the catalyst maintained 90% of activity, whereas 

in the third cycle a loss of 23% of its initial activity was observed. Consecutive 

decreasing of activity stopped at the sixth cycle where the yield of acetophenone 

kept the same level as in the fifth cycle (58–59%). Nevertheless, high selectivity to 

acetophenone was preserved in each cycle.  

 

Figure 12. Peroxidative oxidation of 1-phenylethanol catalyzed by 4% 

Au/La2O3/TiO2_pH2: Effect of the catalyst recycling on the yield of 

acetophenone (R = 5000, TBHP: 1-phenylethanol = 2.43, 2 h, T = 80 °C). 

To find out the cause of the observed catalyst deactivation, XPS analysis of 

the catalyst after the first and the last (6th) cycle was performed (Figure 13, Table 

12) and compared with the XPS results for the catalyst before reaction. Two 

electronic states of gold were found in the catalyst before reaction (Entry 1, Table 

12) and in the used catalysts: metallic Au0 (with BE (Au4f7/2) 84.2 eV) and single 

charged ions Au+ (with BE (Au4f7/2) 85.2 eV) in catalyst after first cycle and Au0 

with (BE (Au4f7/2) 84.1 eV) and Au+ (with BE (Au4f7/2) 85 eV) [177-179] in the 
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catalyst after 6 cycles. However, according to XPS measurements, the surface 

concentration of gold is different among the studied samples. It can be seen from 

Table 12 that, after first and after the sixth cycle, the catalytic activity decreased 

proportionally to the contribution of monovalent gold. That can probably be the 

reason for deactivation, as also in the case of n-octanol (Table 11 and Figure 11), 

since gold monovalent ions were the proposed active species for the reaction. 

  

Figure 13. XPS of used 4% Au/La2O3/TiO2_pH2 catalyst after the 1st (a) and 6th 

(b) cycles of 1-phenylethanol peroxidative oxidation (reaction conditions as 

in Table 3).  

Table 12. Catalytic results1 of the most active catalyst in the peroxidative 

oxidation of 1-phenylethanol and contribution of gold electronic states of in 

these catalysts, calculated by XPS. 

Entry Sample 
Yield of acetophenone 

in 2 h, mol %  

Relative Au content, % 

Au0 Au+ 

1 4% Au/La2O3/TiO2_pH₂ a 100 81 19 

2 4% Au/La2O3/TiO2_pH₂_1c b 90 83 17 

3 4% Au/La2O3/TiO2_pH₂_6c,c 59 89 11 

1 R = 5000, TBHP:1-phenylethanol, T = 80 °C, stirring. XPS performed for the catalyst: a before 

reaction; b used, after 1 cycle of reaction; c used, after 6 cycles of reaction. 

Additionally, for the most active samples in both reactions, in terms of 

support, i.e., Au supported on unmodified and La modified titania, with 

different gold contents and treatment atmospheres, DRIFT spectroscopy of 

adsorbed CO at different pressures 5, 20, and 50 Torr was applied to estimate the 

strength and the stability of the adsorption centers related to the complexes of 

ions Au+-CO (Figure 14).  
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Figure 14. DRIFT spectra of CO adsorbed at different CO pressures on 

Au/La2O3/TiO2 catalysts (a-d) and Au/TiO2 (e-h) with different gold contents 

(0.5 or 4%) and pretreated at 300 °C for 1 h under a H2 or O2 atmosphere. 

Graphs c,d,g,h reproduced from [198] with permission from the Royal 

Society of Chemistry. 
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For the most active sample, 0.5% Au/La2O3/TiO2_pO2 (Figure 14 b), the 

intensity of this absorption slightly changed with a modification in the CO 

pressure, that indicates the presence of strong and stable Au+ sites, and their 

concentration is about 1/3 of the total gold content, which correlates well with 

the XPS data (Table 7). For other samples, this absorption is less intense, with the 

exception of 4% Au/La2O3/TiO2_pH2, and strongly depends on the pressure of 

CO. The intensity increases with increasing pressure, and, accordingly, these 

sites are less strong than in 0.5% Au/La2O3/TiO2_pO2.  

It is interesting to note that for 4% Au/La2O3/TiO2_pO2 (Figure 14 d), 

reduction of Au+ sites is observed in the CO atmosphere, which indicates their 

very low stability and most probably most of them are reduced during the 

reaction. The stability of gold active sites can be clearly seen in the example of 

n-octanol peroxidative oxidation (Figure 3). Only for 0.5% Au/La2O3/TiO2_pO2 

and 4% Au/La2O3/TiO2_pH2 n-octanol conversion did not reach a plateau with 

the reaction time, in comparison with the other two catalysts. This means that 

0.5% Au/La2O3/TiO2_pO2 and 4% Au/La2O3/TiO2_pH2 catalysts are deactivated 

much slower than the others. Also, in 1-phenylethanol peroxidative oxidation 

(Table 3), the fastest acetophenone formation was observed on 0.5% 

Au/La2O3/TiO2_pO2 and 4% Au/La2O3/TiO2_pH2. 

In contrast, for unmodified catalysts (Figure 14 e-h), the clear presence of 

the band related to Au+ sites was found only in 0.5% Au/TiO2_pO2 (Figure 14 f), 

in a good agreement with XPS data, which shows that this sample has the 

largest amount of Au+ ions (16%) among all unmodified samples (Table 8). 

However, the intensity of this band strongly depends on CO pressure, which 

possibly indicates weak adsorption on these ions. In the remaining unmodified 

samples, this band could only be seen by zooming of adsorption intensity in the 

region at 2170-2185 cm-1, as well as the band related to Au3+ sites in the case of 

4% Au/TiO2_pH2 (Figure 14 g). It can be due to the presence of only weak Au+ 

sites, because even a 50 Torr CO pressure is not enough for their clear 

identification by DRIFT CO, while according to XPS (Table 8), Au+ present in 

these samples stands for 9 to 14% of the total gold amount.  

Thus, although the number of Au+ ions (determined by XPS) for some 

materials was comparable and even higher than those found for 

lanthanum-modified catalysts, strong and stable ions were only found for 

lanthanum-modified samples, according to the results of the DRIFT CO method.  

3.2.5. Study of acid-base properties of catalysts 

NH3-TPD and CO2-TPD methods were applied to the study of acid and basic 

properties of the catalysts and their corresponding supports. Three types of acid 

and basic sites with different concentration and strength (weak, medium and 

strong), depending on the temperature range where CO2 or NH3 desorption 
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occurs, reflecting their nature, were detected for studied catalysts (Tables 13 and 

14).  

According to literature [198-206], both basic and acid centers with weak (25 – 

200 or 100 – 200 °C) and medium strength (200 – 400 °C) are usually associated 

with surface hydroxyl groups, i.e., the Brønsted basic centers (BBC) and 

Brønsted acid centers (BAC). Strong acid centers (400 – 600 °C) along with 

protonated sites (hydroxyl groups) can also have aprotic nature and represent 

Lewis acid centers (LAC), which could include cations of gold, or titanium or 

modifiers in the studied Au/MxOy/TiO2 catalysts. Strong basic centers (400 – 600 

°C) are associated with low-coordinated oxygen anions or surface hydroxyl 

groups. 

Study of acid properties by TPD method of ammonia 

The TPD of NH3 was used to determine the acidity of supports and 

respective gold catalysts, namely the concentration and strength of acid sites 

(Table 13). Physical adsorption can take place in preparation of ammonia TPD, 

its desorption being, however, typical of low temperatures. Therefore, to avoid 

the contribution of physical adsorption, the analysis started at 100 °C. 

Table 13. Acidic properties of catalysts and their corresponding supports. 

Entry Sample 
Concentration of acid centers, µmol/g 

Weak Medium Strong Total amount 
1 TiO2 208 79 30 317 
2 Fe2O3/TiO2 244 244 
3 CeO2/TiO2 146 43 55 244 
4 MgO/TiO2 201 201 
5 La2O3/TiO2 145 43 4 192 
6 0.5% Au/TiO2_pH2 100 313 110 523 
7 0.5% Au/TiO2_pO2 167 250 337 754 
8 4% Au/TiO2_pH2 264 81 8 353 
9 4% Au/TiO2_pO2 260 66 9 335 
10 0.5% Au/CeO2/TiO2_pH2 149 188 299 636 
11 0.5% Au/CeO2/TiO2_pO2 108 293 269 670 
12 4% Au/CeO2/TiO2_pH2 228 164 37 429 
13 4% Au/CeO2/TiO2_pO2 194 86 32 312 
14 0.5% Au/Fe2O3/TiO2_pH2 86 114 41 241 
15 0.5% Au/Fe2O3/TiO2_pO2 189 440 234 863 
16 4% Au/Fe2O3/TiO2_pH2 298 54 352 
17 4% Au/Fe2O3/TiO2_pO2 176 398 320 894 
18 0.5% Au/MgO/TiO2_pH2 108 69 17 194 
19 0.5% Au/MgO/TiO2_pO2 203 177 36 416 
20 4% Au/MgO/TiO2_pH2 262 65 327 
21 4% Au/MgO/TiO2_pO2 369 67 436 
22 0.5% Au/La2O3/TiO2_pH2 208 50 78 336 
23 0.5% Au/La2O3/TiO2_pO2 217 81 100 398 
24 4% Au/La2O3/TiO2_pH2 63 58 103 83 307 
25 4% Au/La2O3/TiO2_pO2 119 123 73 315 

 

Three types of acid sites were detected for the supports, but their 

concentration and strength were different (Table 13). The pristine titania showed 
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the highest acidity among the used supports with the majority of acid sites being 

of weak strength, while the concentrations of the medium and strong acid sites 

were 2.6 and 6.9-fold lower than the weaks ones. Therewith, they were all 

Brønsted acid sites (acidic OH groups) [198-201]. However, it is possible that the 

strong acid sites were of aprotic nature and were Lewis acid sites (e.g., 

tetrahedral coordinated Ti4+) [198, 202]. Modification of titania with ceria and 

lanthana led to a decrease in the concentration of weak and medium acid sites. 

Alongside, the amount of strong acid sites increased for Ce-modified titania but 

decreased for La-modified titania.  

Because of the broad ammonia desorption peak found in TPD profiles of 

magnesium and iron modified supports, it became problematic to determine the 

concentration of sites of certain strengths for these materials. However, it can be 

seen that the total number of acid sites for Fe and Mg-modified supports (244 

and 201 μmol/g, respectively) decreased in comparison to pristine titania. 

Considering that these maxima are shifted to the low-temperature region, it can 

be assumed that most of acid sites belong preferentially to sites with weak and 

medium strength (maxima at 200 and 230 °C).  

Such decrease in the concentration of acid sites, after modification of titania 

with metal oxides, is most likely a consequence of surface dehydration after 

calcination at 550 °C during preparation.  

It should be noted separately that, in the case of CeO2/TiO2 and Fe2O3/TiO2, 

partly medium and strong acid sites can be associated with the desorption of 

ammonia from aprotic Lewis sites due to the presence of Ce4+/Ce3+ and Fe3+,2+/Fe2+, 

respectively, whose existence was indirectly confirmed by TPR (Figures 6 b and 

c).  

After gold deposition, in all cases, there was a redistribution of acid sites.  

For 0.5% Au/TiO2_pO2 and 0.5% Au/TiO2_pH2 catalysts, a significant 

increase in concentration of medium and strong sites was observed, while the 

number of sites with weak strength decreased in comparison to the pure titania 

support. For unmodified samples with 4% Au, an opposite behaviour in the 

distribution of acid sites was found: increasing of weak and decreasing of strong 

acid sites, however, the amount of medium sites was almost unchanged. 

For Ce-modified catalysts with 0.5% Au, regardless of the pretreatment, 

there was an increase in the concentration of medium and strong acid sites, 

while weak sites remained unchanged for 0.5% Au/CeO2/TiO2_pH2 and 

decreased for 0.5% Au/CeO2/TiO2_pO2. For samples with 4% Au, after both 

pretreatments, the amount of weak and medium sites was increased, however, 

as in the case of unmodified samples, the concentration of strong acid sites 

decreased after gold deposition on ceria support. 

For all Fe-modified catalysts, there was increased amount of weak and 

medium sites, with the exception of 0.5% Au/Fe2O3/TiO2_pH2, in comparison 
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with Fe2O3/TiO2. Meanwhile, a high amount of strong sites was found on 0.5% 

Au/Fe2O3/TiO2_pO2 and 4% Au/Fe2O3/TiO2_pO2.  

Almost the same behavior in acid sites alteration was observed after gold 

loading on MgO/TiO2: increase in the amount of weak and medium sites with 

the exception of 0.5% Au/MgO/TiO2_pO2. However, the same concentration of 

strong acid sites was found for 4% Au/MgO/TiO2_pH2 and 4% 

Au/MgO/TiO2_pO2, while for 0.5% Au/MgO/TiO2_pH2 and 0.5% 

Au/MgO/TiO2_pO2, the amount of these sites was 2 and 4-fold lower, 

respectively, then in the higher gold loading samples. 

An increase of medium and especially strong acid sites was found for 

lanthana-modified catalysts, where concentration significantly augmented 18 to 

47-fold in all samples, regardless of the gold content and pretreatment 

atmosphere. Meanwhile, the increased amount of weak acid sites was found in 

0.5% Au samples, while for 4% Au catalysts, especially 4% Au/La2O3/TiO2_pH2, 

these sites decreased in comparison to the La2O3/TiO2 support.  

In general, there was an increase in the total acidity after gold deposition 

almost for all samples, and the following order of acid properties in terms of 

support was found: Au/La2O3/TiO2 < Au/MgO/TiO2 < Au/CeO2/TiO2 < Au/TiO2 < 

Au/Fe2O3/TiO2.  

Such changes in acidity after metal deposition may originate from several 

causes. One can be associated with a change in the support properties during 

catalyst preparation resulting in the mutual influence of the support and the 

metal precursor, as previously discussed [198, 207-209]. Another possibility is 

blocking the acid sites, previously existing on the surface, by newly formed 

metal nanoparticles, as well as the formation of new sites due to metal-support 

interaction.  

It should be also noted that due to the presence of Au+/Au3+ ions, found by 

H2-TPR, XPS and DRIFT CO in the samples, some of the strong acid sites (37-639 

μmol/g) could also be associated with the desorption of ammonia from gold 

cations, which are Lewis acid sites. 

Study of basic properties by TPD method of carbon dioxide 

All types of basic sites mentioned above were present in the supports 

studied in this work (Table 14). Pristine titania exhibited an average total basicity 

among the studied supports, with the dominance of the basic sites of medium 

strength and almost absence of strong sites. A similar distribution of the basic 

sites was also observed for Ce modified titania, while the amount of these sites 

was lower. MgO/TiO2 and especially Fe2O3/TiO2 have abundance of basic sites 

with medium strength among all supports, while MgO/TiO2 has the highest 

concentration of weak sites. The amount of strong basic sites was increased 1.6 

and 2 times after modification of titania with MgO and Fe2O3, respectively. After 
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modification of titania by lanthana, there was an increase in the concentration of 

weak and especially strong basic sites (by 3.4 times), while the number of 

medium sites remained almost unchanged. 

Gold deposition on the support surface led to a redistribution of the basic 

sites similar to that of the acidic ones (Table 14). For almost all studied catalysts, 

there was an increase in the number of basic sites while, in all cases, the strong 

basic sites increased.  

For unmodified catalysts, similar redistribution of acid sites was observed 

upon Au loading for 0.5% Au/TiO2_pO2 and 4% Au/TiO2_pO2: increasing of 

weak and strong sites with decreasing of medium centers. In case of 0.5% 

Au/TiO2_pH2, the amount of sites with weak and medium strength was 

increased, while, in contrast, for 4% Au/TiO2_pH2, the concentration of these 

sites decreased.  

Increase of weak and strong sites with decrease of medium centers was 

observed for ceria-modified samples with 0.5% Au after both treatments. 

Meanwhile, weak and medium sites increased in 4% Au/CeO2/TiO2_pH2 catalyst, 

and decreased for 4% Au/CeO2/TiO2_pO2.  

Almost for all iron-modified catalysts, there was a significant increase of all 

type of sites, especially weak and medium ones (3-fold) in case of hydrogen 

treated samples. 

Table 14. Basic properties of catalysts and their corresponding supports. 

Entry Sample 
Concentration of basic centers, µmol/g 

Weak Medium Strong Total amount 
1 TiO2 29 51 5 85 
2 Fe2O3/TiO2 50 72 8 130 
3 CeO2/TiO2 27 40 3 70 
4 MgO/TiO2 115 66 10 191  
5 La2O3/TiO2 56 46 17 119 
6 0.5% Au/TiO2_pH2 40 66 15 121 
7 0.5% Au/TiO2_pO2 46 20 13 79 
8 4% Au/TiO2_pH2 15 41 17 73 
9 4% Au/TiO2_pO2 34 29 21 84 
10 0.5% Au/CeO2/TiO2_pH2 31 23 15 69 
11 0.5% Au/CeO2/TiO2_pO2 35 23 16 74 
12 4% Au/CeO2/TiO2_pH2 60 63 31 154 
13 4% Au/CeO2/TiO2_pO2 20 31 24 75 
14 0.5% Au/Fe2O3/TiO2_pH2 22 121 130 21 294 
15 0.5% Au/Fe2O3/TiO2_pO2 37 91 47 175 
16 4% Au/Fe2O3/TiO2_pH2 33 138 180 23 374 
17 4% Au/Fe2O3/TiO2_pO2 20 74 30 124 
18 0.5% Au/MgO/TiO2_pH2 23 163 126 32 344 
19 0.5% Au/MgO/TiO2_pO2 44 38 26 108 
20 4% Au/MgO/TiO2_pH2 23 78 66 69 236 
21 4% Au/MgO/TiO2_pO2 51 41 21 113 
22 0.5% Au/La2O3/TiO2_pH2 52 73 36 161 
23 0.5% Au/La2O3/TiO2_pO2 41 58 60 159 
24 4% Au/La2O3/TiO2_pH2 38 46 76 160 
25 4% Au/La2O3/TiO2_pO2 22 38 32 92 
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For 0.5% Au/MgO/TiO2_pO2, 4% Au/MgO/TiO2_pH2 and 4% 

Au/MgO/TiO2_pO2 samples, there was a decrease of weak and medium sites, 

while an increase of these sites was found for 0.5% Au/MgO/TiO2_pH2. 

Increasing of strong acid sites was observed for all Mg-modified materials, 

especially for 4% Au/MgO/TiO2_pH2. 

Almost the same trend in basic sites change was found for La-modified 

samples, as in Mg-modified materials. However, it should be mentioned that 

La-modified catalysts, especially 0.5% Au/La2O3/TiO2_pO2 and 4% 

Au/La2O3/TiO2_pH2, have the largest amount of strong basic sites among all 

materials.  

The following order of basic properties (total basicity) in terms of support is 

found: Au/TiO2 < Au/CeO2/TiO2 < Au/La2O3/TiO2 < Au/MgO/TiO2 < 

Au/Fe2O3/TiO2. Therefore, higher amounts of basic sites are found in magnesium 

and iron-modified catalysts.  

The reasons for the changes in basicity after gold deposition are apparently 

the same as for acidity, as they originate from the exposure of the support to the 

metal precursor during preparation, mutual influence of the support and the 

precursor, and basic sites blocking. Redistribution may also be due to the 

exchange of electrons between gold and the support, new metal-oxide pairs and 

low-coordination oxygen anions appear [198].  

Predominance of basic sites with weak and medium strength observed only 

for Au/MgO/TiO2 and especially for Au/Fe2O3/TiO2 catalysts is likely caused by 

formation of the hydroxides due to the interaction with water during catalyst 

preparation, providing hydroxyl groups [173-175, 210]. 

 It should be noted that one cannot say unambiguously that the newly 

formed OH groups, due to the transformation of magnesium and iron oxides to 

hydroxides, have only a basic character (OHδ−), since one can not exclude that 

some of them may have acidic character (OHδ+) as well.  

Comparison of the catalytic and acid-base properties results 

Since in case of 1-phenylethanol oxidation only one product (acetophenone) 

is formed, the acid-base properties (Table 13 and 14) can be compared with the 

catalytic results using n-octanol as an example. The oxidation of n-octanol can 

proceed along two paths (Scheme 2), resulting in two final products, namely acid 

or ester (see Section 3.3.1).  

It is known that the esterification reaction is catalyzed by H+. On the catalyst 

surface, most likely, the Brønsted acid centers act as the source of H+. At the same 

time, the formation of acid requires the presence of water, which on the catalyst 

surface, can be in the form of pairs of Brønsted basic and acid centers (BBC and 

BAC), not excluding adsorbed water, which in turn, can dissociate on the 

catalyst surface with the formation of a pair of BBC and BAC. Accordingly, both 
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acidic and basic Brønsted centers must be present on the surface of the catalyst 

for the reaction to proceed along route A, including the esterification reaction 

(Scheme 2). In turn, mainly BAC should be on the surface of the catalyst for the 

reaction to proceed along route B. 

Concerning the studied catalysts, no direct correlation was found between 

the acid-base properties, determined by the TPD methods of ammonia and CO2, 

and the selectivity for acid or ester (Table 15). This is most likely due to a 

combination of a number of factors, namely, different activity of the catalysts, as 

well as the presence of trivalent gold and metallic gold. The adsorption of the 

solvent on trivalent gold and metallic gold causes not only the deactivation of 

the catalyst, but also a change in selectivity, which leads to disconformities 

between the acid-base properties and ester and/or acid selectivity. In addition, 

some features of desorption methods for determining acid-base properties, in 

particular TPD of ammonia and CO2 can also contribute to the discrepancy. 

Firstly, one should take into account the different temperatures: in this case, 

that of tests of oxidation of n-octanol (Т = 80 °C) and the temperature range at 

which TPD study is carried out (СО2 desorption starts at 25 °C while NH3 

desorption starts at 100 °C, to exclude the contribution of ammonia’s physical 

adsorption). It should also be noted that mainly due to this reason only the 

concentrations of weak acid and basic centers are taken into account. It is also 

well known that strong BAC and BBC are active participants in the catalytic 

process only at elevated temperatures (high-temperature gas-phase reactions).  

Table 15. Acid-base properties of Au/(MxOy)/TiO2 catalysts and product 

selectivity for n-octanol aerobic oxidation on them. 

Entry Catalyst 
Concentration of 

weak centers, µmol/g BAC/BBC 
Selectivity 
after 6 h, % 

Acid Basic Ester Acid 
1 0.5% Au/TiO2_pH2 100 46 2.2 12 39 
2 0.5% Au/TiO2_pO2 167 56 3.0 20 52 
3 4% Au/TiO2_pH2 264 15 18 16 3 
4 4% Au/TiO2_pO2 260 34 7.6 42 3 
5 0.5% Au/CeO2/TiO2_pH2 86 31 2.8 20 54 
6 0.5% Au/CeO2/TiO2_pO2 108 35 3.0 30 43 
7 4% Au/CeO2/TiO2_pH2 298 60 5.0 32 2 
8 4% Au/CeO2/TiO2_pO2 194 20 9.7 63 2 
9 0.5% Au/Fe2O3/TiO2_pH2 86 143 0.6 17 29 
10 0.5% Au/Fe2O3/TiO2_pO2 189 37 5.1 43 21 
11 4% Au/Fe2O3/TiO2_pH2 298 171 1.7 42 0 
12 4% Au/Fe2O3/TiO2_pO2 176 20 8.8 51 1 
13 0.5% Au/MgO/TiO2_pH2 108 185 0.6 16 53 
14 0.5% Au/MgO/TiO2_pO2 203 44 4.6 42 20 
15 4% Au/MgO/TiO2_pH2 262 101 2.6 31 2 
16 4% Au/MgO/TiO2_pO2 369 51 7.2 42 0 
17 0.5% Au/La2O3/TiO2_pH2 208 52 4.0  48 24 
18 0.5% Au/La2O3/TiO2_pO2 217 41 5.3  63 11 
19 4% Au/La2O3/TiO2_pH2 262 38 6.9 64 0 
20 4% Au/La2O3/TiO2_pO2 119 22 5.4 75 0 
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Secondly, the probe molecules can change the chemical properties of the 

surface due to chemical transformations. Representative examples are: ammonia 

dissociation at elevated temperatures on NH2− and H+, giving false centers [211], 

in addition, as was shown by several authors [212, 213], a carbon dioxide 

molecule adsorbed on small gold nanoparticles can react with gold at room 

temperature (i.e., oxidize metallic gold: 2Au0 + CO2→ Au+–O2-–Au+ + CO), and, 

accordingly, provide new basic sites, not directly related to the catalyst. 

Thirdly, the probe molecules do not coincide in size with the reagent 

molecules and there will always remain the question of comparing the results of 

measuring acidity (basicity) and catalytic behavior. 

Lastly, the TPD methods of NH3 and CO2 give information only about the 

strength and concentration of acid and basic centers, but not about their nature 

(Brønsted acid centers, Brønsted basic centers, Lewis acid centers and Lewis 

basic centers). 

Nevertheless, for most of the studied systems, except for samples with a high 

content of Au3+ (0.5% Au/Fe2O3/TiO2_pH2, 4% Au/Fe2O3/TiO2_pH2 and 4% 

Au/MgO/TiO2_pH2) there is a general tendency in the selectivity for acid and/or 

ester, depending on the acid-base properties of the catalysts (Table 15), namely: 

For catalysts with 0.5% Au, acid and ester are observed in the reaction 

products, and the higher the ratio of BAC to BBC, the higher ester formation. For 

example, 0.5% Au/TiO2_pH2 and 0.5% Au/TiO2_pO, 0.5% Au/CeO2/TiO2_pH2 and 

0.5% Au/CeO2/TiO2_pO2, exhibited BAC/BBC ≤ 3 and their selectivity to ester did 

not exceed 30% and acid prevailed in the reaction products. Meanwhile, 0.5% 

Au/Fe2O3/TiO2_pO2 and 0.5% Au/MgO/TiO2_pO2, 0.5% Au/La2O3/TiO2_pO2 and 

0.5% Au/La2O3/TiO2_pH2, with BAC/BBC > 4.5 gave ester selectivity higher than 

40%. Also, it can be concluded that, since octanoic acid was observed in the 

products for all catalysts with low gold content, the reaction proceeds along 

route A (Scheme 2).  

There is a significant predominance of BAC compared to BBC for samples 

with 4% Au (BAC/BBC > 5.4), where the acid formation does not exceed 3%. 

Thus, one can assume that the reaction on these catalysts proceeds mainly along 

acid-free route B (Scheme 2). Therefore, using catalysts with 4% Au, an octyl 

octanoate is formed, its selectivity being higher for materials with an oxidative 

pretreatment. 

3.2.6. Study of oxygen chemisorption 

The analysis of the XPS of O 1s peak was used to investigate oxygen species 

on catalyst surface, since they can play a special role in oxidation reaction.  

The O 1s spectra (Figure 15) is asymmetrical for almost all studied catalysts, 

with a tail extending towards higher energies, that is typical of titania based 
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catalysts [211]. Exceptions were Fe-modified samples after hydrogen treatment 

(Figure 15 i and k) that have a different band shape.  

For all studied catalysts, the O 1s peak can be deconvoluted into three bands: 

first at BE 530–531 eV (denoted as OI), associated with the lattice oxygen O2−; 

second at BE 531–532 eV (denoted as OII), associated with the low coordination 

oxygen species O−, surface defects/vacancies; and third at BE 532–534 eV 

(denoted as OIII) assigned to hydroxyl groups carbonate species and/or adsorbed 

water [214-219].  
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Figure 15. O 1s XP spectra of samples with different gold contents (0.5 or 4 

wt.%), pretreated in H2 or O2 flow, at 300 °C, for 1 h: Au/TiO2 (a–d), 

Au/CeO2/TiO2 (e–h), Au/Fe2O3/TiO2 (i–l), Au/MgO/TiO2 (m–p) and 

Au/La2O3/TiO2 (q–t). 
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Surface chemisorbed oxygen O−, species of OII group, is very active in 

oxidation reactions because its mobility is higher than that of lattice oxygen (OI) 

[220], and the high activity could be correlated with the high content of 

chemisorbed oxygen on the catalyst surface. The relative contribution of each 

oxygen species and the OII/(OI + OII) ratios are presented in Table 16. According 

to these results, the OII contribution of the catalysts shows the following order: 

Au/TiO2 < Au/CeO2/TiO2 < Au/MgO/TiO2 ≤ Au/La2O3/TiO2 < Au/Fe2O3/TiO2. 

Thus, a higher amount of species related to OII is observed in La-, Mg-, and 

notably in Fe-modified catalysts, compared to unmodified and Ce-modified 

samples. Significant contribution of OII in Fe-modified catalysts may be caused 

by predominant hydroxyl groups (which presence was determined with 

CO2-TPD and NH3-TPD) from Fe(OH)2, and/or FeOOH (its transformation was 

observed in TPR profiles at 336 °C, Figure 6 c) [221]. In case of Mg-modified 

samples, part of OII can also be attributed to OH groups, due to the fact that 

magnesium oxide can be transformed into hydroxide and there is an increase in 

acidic and/or basic sites after the deposition of gold on Mg/TiO2, according to 

CO2-TPD and NH3-TPD results.  

Table 16. Contribution of oxygen species calculated by XPS for the studied 

catalysts. 

Entry Catalyst 
O 1s relative content, % 

OI  
(530 – 531) BE 

OII 

 (531 – 532) BE 
OIII  

(532 – 534) BE 
OII/OII+OI 

1 0.5% Au/TiO2_pH2 78 14 8 15 
2 0.5% Au/TiO2_pO2 85 12 3 12 
3 4% Au/TiO2_pH2 76 15 9 15 
4 4% Au/TiO2_pO2 85 11 4 12 
5 0.5% Au/CeO2/TiO2_pH2 84 13 3 13 
6 0.5% Au/CeO2/TiO2_pO2 85 13 2 13 
7 4% Au/CeO2/TiO2_pH2 79 15 6 16 
8 4% Au/CeO2/TiO2_pO2 87 10 3 10 
9 0.5% Au/Fe2O3/TiO2_pH2 61 31 8 34 
10 0.5% Au/Fe2O3/TiO2_pO2 76 15 9 16 
11 4% Au/Fe2O3/TiO2_pH2 51 38 11 43 
12 4% Au/Fe2O3/TiO2_pO2 83 15 2 15 
13 0.5% Au/MgO/TiO2_pH2 82 11 7 12 
14 0.5% Au/MgO/TiO2_pO2 79 16 5 17 
15 4% Au/MgO/TiO2_pH2 69 19 12 22 
16 4% Au/MgO/TiO2_pO2 76 16 8 17 
17 0.5% Au/La2O3/TiO2_pH2 80 14 6 15 
18 0.5% Au/La2O3/TiO2_pO2 78 17 5 18 
19 4% Au/La2O3/TiO2_pH2 71 21 8 22 
20 4% Au/La2O3/TiO2_pO2 79 15 6 16 

 

Based on the chemical nature (properties) of lanthanum oxide, one can 

assume that the OII contribution in La-modified samples can be mostly related to 

the low-coordinated oxygen (O− species), which are strong basic sites. These 

samples, notably 0.5% Au/La2O3/TiO2_pO2 and 4% Au/La2O3/TiO2_pH2, showed 

the highest concentration of O− species among all samples, as determined by 

CO2-TPD. At the same time, weak and medium Brønsted basic centers (OHδ−) in 
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La-modified samples were found by CO2-TPD in moderate amounts, in contrast 

to the larger OH amount in Mg- and Fe-modified catalysts.  

Thus, it can be concluded that the highest contribution of surface 

chemisorbed oxygen O− was found in La-modified samples, while the increased 

content of OII in Mg- and Fe-modified catalysts was predominantly associated 

with the formation of magnesium or iron hydroxides occurring during catalyst 

preparation. 

Additionally, O2-TPD was used to assess the nature of the interaction of 

oxygen with the surface of the catalyst and the support (Figure 16). Since the 

existence of hydroxides on Mg- and Fe-modified catalysts may contribute to 

oxygen on the O2-TPD profiles, thereby giving a false signal, this analysis was 

used only for unmodified, and Ce- and La-modified materials.  

  

  

 

Figure 16. O2-TPD profiles for Au catalysts supported on TiO2, CeO2/TiO2 

and La2O3/TiO2 with different pretreatments and their supports. 
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The O2-TPD profiles obtained for the catalysts and their corresponding 

supports (Figure 16) show the presence of several peaks of oxygen desorption, 

corresponding to different forms of adsorbed oxygen.  

All the catalysts showed a broad peak of oxygen desorption in the range of 

50–350 °C, which may be due to the adsorption of O2− on TiO2, according to Yu et 

al. [222]. It should be noted that pure titania showed three overlapping peaks (at 

95, 205 and 292 °C) in this temperature range. After gold deposition on TiO2, a 

slight change in the shape of these peaks was observed. After titania was 

modified with ceria and lanthana, the shape and position of the wide peak in the 

low-temperature region changed, and overlapping maxima were observed at 

100, 190 and 265 °C for CeO2/TiO2 and at 110, 230 and 310 °C for La2O3/TiO2. 

The deposition of gold on the ceria-modified support did not cause a 

significant change in the O2-TPD profiles. However, after the deposition of gold 

on the surface of La-modified titania, high-temperature peaks appeared in the 

range of 400–600 °C, and catalysts with 4% Au had a noticeably high intensity, 

with peaks at 460 and 560 °C. These desorption peaks are likely to occur at 

higher temperatures and correspond to adsorbed O− on the surface of TiO2, as 

described by different authors [222, 223]. Addition of lanthana and gold 

effectively stimulate the dissociation of O2 to O−, which has a higher activity than 

the super-oxo form O2− in the oxidation reaction [222, 224, 225].  

Thus, these results support the previously established favorable features of 

doping titania with lanthana (formation and stabilization of single charged gold 

ions through their localization on strong basic sites of La2O3/TiO2). Besides they 

revealed another promoting role of modifying lanthana additives: providing the 

most active type of oxygen for effective oxidation of alcohols. This also confirms 

the conclusions taken from XPS O 1s results for La-modified samples. 

SUMMARY 

 Based on the comparison of catalytic and characterization results, it can be 

concluded that, despite the different chemical nature of the alcohols studied, 

mono-charged gold ions seem to be the catalytically active states in the both 

studied processes, while Au0 and, especially, Au3+ had negative effects. Herein, 

the concentration, adsorption strength and stability of active sites can be 

determined by the gold content, the nature of the support and modifier, and the 

pretreatment atmosphere. 

 Regardless of the alcohol and the type of oxidizing agent, the best catalytic 

characteristics were shown by catalysts modified with lanthanum oxide, which 

possesses electron-donor properties. Notably, the most active catalysts (0.5% 

Au/La2O3/TiO2_pO2 and 4% Au/La2O3/TiO2_pH2) shared a high concentration of 

stable monovalent gold ions without the presence of Au3+, and their 

deactivation in oxidation of n-octanol and 1-phenylethanol was parallel to the 
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reduction of Au+(Auδ+) states, what confirmed the cationic nature of the active 

sites.  

The only difference was that, in the absence of solvent and using TBHP as 

an oxidizing agent, the most active catalysts are those with a high load of gold 

and with hydrogen treatment. In the case of using a solvent and oxygen as 

oxidizing agent, as in the oxidation of n‐octanol, the catalysts with the lowest 

gold content after oxidative pretreatment showed the highest activity. The 

reason for such difference is, most likely, the reduction of some part of unstable 

gold ions to the metallic state in the 0.5% Au/La2O3/TiO2_pO2 catalyst by 

electron transfer, under the influence of TBHP (even catalysts in «as prepared 

state» could provide high activity in 1‐phenylethanol oxidation with TBHP after 

6 h). Moreover, it was previously shown that 0.5% Au/La2O3/TiO2_pO2 and 4% 

Au/La2O3/TiO2_pH2 have the same contribution of stable gold ions; furthermore, 

the difference in catalytic activity of 1‐phenylethanol oxidation on these 

catalysts was not so noticeable.  

 The promoting role of lanthanum additives consists not only in the 

formation of the most stable Au+ (Auδ+) species on the surface of La‐modified 

TiO2, due to their localization at the strong basic Lewis sites, but also in the 

presence of the most active type of oxygen, so contributing to a more efficient 

oxidation of alcohols. 

 It was found that reaction product distribution, notably, the formation of 

acid and/or ester, depends on the ratio of Brønsted acid centers to Brønsted 

basic centers: with a high ratio, no acid is formed; with a low BAC/BBC ratio, 

selectivity to acid is higher than to ester; intermediate values of BAC/BBC ratio 

produce a mixture of acid and ester. It should be mentioned that such a trend in 

the dependence of the selectivity with the BAC/BBC ratio was not observed only 

for the catalysts with high content of trivalent gold (0.5% Au/Fe2O3/TiO2_pH2, 

4% Au/Fe2O3/TiO2_pH2 and 4% Au/MgO/TiO2_pH2), where mainly the 

adsorption of solvent occurs.  

3.3. Theoretical Calculations 

Quantum chemistry simulations were applied to reveal the role of different 

gold states (active sites and inhibitors) in n-octanol and 1-phenylethanol 

oxidation.  

3.3.1. Quantum chemical simulation of n-octanol adsorption on 

tetrahedral gold cluster 

The n-octanol adsorption was simulated as these reactions: 

Au20 + C7H15CH2OH  (C7H15CH2OH)Au20 (3.1) 
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Au20+ + C7H15CH2OH  (C7H15CH2OH)Au20+ (3.2) 

Different coordinations of alcohol on Au20 were considered. The structures of 

(C7H15CH2OH)Au20 were optimized, and the total energies of the reagents and 

products were calculated considering the energy of zero vibrations. The change 

in total energy and standard enthalpies of the reactions (3.1) and (3.2) at 100 °C 

were determined according to the formulas: 

E1 = E(octanol-Au20) – E(Au20) – E(octanol) (3.3) 

     E2 = E(octanol-Au20+) – E(Au20+) – E(octanol) (3.4) 

The optimized structures of octanol-Au20 complexes with alcohol 

coordination on different gold atoms are shown in Figure 17. The energy 

changes during the formation of the complexes and the corresponding standard 

enthalpies are shown in Table 17.  

 

 

(C7H15CH2OH)Au20_1 (C7H15CH2OH)Au20_2 

 

 

(C7H15CH2OH)Au20+_1 (C7H15CH2OH)Au20+_2 

Figure 17. Optimized structures of n-Octanol-Au20 and n-Octanol-Au20+ 

complexes. 
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Table 17. Calculated energy change (E, kJ/mol) and standard enthalpy 

(H, kJ/mol) in reactions (3.1) and (3.2) of n-octanol with Au20z cluster (z=0, 

+1). 

z Complex Type of 
coordination 

E1, E2 H1, H2 

0 (C7H15CH2OH)Au20_1 top -40 -36 
0 (C7H15CH2OH)Au20_2 edge -23 -20 
+1 (C7H15CH2OH)Au20+_1 top -81 -78 
+1 (C7H15CH2OH)Au20+_2 edge -55 -51 

Optimization of octanol-Au20 complex, in which alcohol is coordinated on 

the facet of the cluster, led to the (C7H15CH2OH)Au20_2 complex with edge 

coordination. The OH group is involved in the interaction of the alcohol and the 

cluster. The calculated Au-O distances are 0.243 nm and 0.338 nm in 

(C7H15CH2OH)Au20_1 and (C7H15CH2OH)Au20_2, respectively. According to the 

calculated data, the most favorable coordination of n-octanol on Au20 is at the 

cluster’s top. The binding energy of alcohol on the edge atoms is significantly 

lower. 

Optimized structures of octanol-Au20+ have features similar to those of 

neutral octanol-Au20. In contrast, the calculated energy changes in reaction 3.2 

(Table 17) are larger than in reaction 3.1. Binding energy of n-octanol with 

low-coordinated cationic gold atoms through OH group is twofold as much than 

that of low-coordinated gold atoms of neutral cluster. So, it can be concluded 

that the cationic sites play an important role in n-octanol activation on gold 

nanoparticles. 

Thus, it was shown that the low-coordinated gold atoms on the clusters top 

are the most active in the activation of n-octanol. Binding energy of n-octanol 

with low-coordinated cationic gold atoms is sufficiently higher than on the 

neutral cluster. Therefore, based on the quantum chemistry, it can be concluded 

that the cationic sites play an important role in n-octanol adsorption. 

3.3.2. Quantum chemical simulation of n-heptane adsorption on Au0, Au+ 

and Au+3 

To reveal which gold sites act as inhibitors of the catalytic reaction, a 

quantum chemical simulation of the adsorption of a solvent (heptane) on simple 

models containing Au0, Au+ and Au3+ was performed. (Au0O)2−, (Au+O)− and 

(Au3+O)+ molecules were considered as models. Optimized structures of 

C7H16-(Au0O)2−, C7H16-(Au+O)− and C7H16-(Au3+O)+ complexes and calculated 

values of adsorption energies are presented in Figure 18. 

C7H16 adsorption was simulated through reactions 3.5-3.7:  

(Au0O)2− + C7H16  (Au0O)2− (3.5) 

(Au+O)− + C7H16  C7H16-(Au+O)− (3.6) 

(Au3+O)+ + C7H16  C7H16-(Au3+O)+ (3.7) 
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C7H16-(Au0O)2− 

E = -134 

  

C7H16-(Au+O)− C7H16-(Au3+O)+ 

E = -26 E = -302 

Figure 18. Optimized structures of C7H16-(Au0O)2−, C7H16-(Au+O)− and 

C7H16-(Au+3O)+. Calculated adsorption energies are given in kJ/mol. 

Heptane can interact with (Au0O)2− with an adsorption energy of -134 kJ/mol. 

This suggests that the Au0 sites may be partially occupied by solvent molecules. 

In contrast, heptane forms the most stable complex with (AuO)+, in which gold is 

Au3+ state. The calculated adsorption energy in C7H16-(Au3+O)+ is -302 kJ/mol.  

Therefore, using small models of active sites containing Au0, Au+ and Au3+, it 

was shown that (Au3+O)+ cations can strongly bind heptane. 

3.3.3. Quantum chemical simulation of phenylethanol adsorption on a 

gold cluster 

The following issues, related to the nature of the active sites of the gold 

nanoparticles in the activation of phenylethanol at the atomic level, were 

considered in this section: 

(i)  Which coordination of phenylethanol to the gold cluster is preferred: by 

OH– or by C6H5– groups? 

(ii) How do the structural features of the catalyst surface, including 

availability of low coordinated gold atoms, affect the adsorption of the 

alcohol? 

(iii) What is the effect of gold cationic sites on alcohol activation? 

The interaction of two phenylethanols with Au20 cluster was simulated: 

Au20 + CH3–CH(OH)–Ph  (CH3–CH(OH)–Ph)Au20 (3.8) 

Au20 + OH–CH2–CH2–Ph  (HO–CH2–CH2–Ph)Au20 (3.9) 

Different coordination modes of alcohol on Au20 by the OH group or the 

phenyl fragment were considered. The structures of (HO–CH2–CH2–Ph)Au20 

isomers were optimized, and the total energies of the reagents and products 

were calculated considering the energy of zero vibrations.  
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The change in total energy and standard enthalpies of the reaction (3.8) were 

determined according to the formula: 

E = E(phenylethanol–Au20) − E(Au20) − E(phenylethanol) (3.10) 

The optimized structures of phenylethanol-Au20 complexes, in which the 

alcohol is coordinated to a gold atom by the OH group, are shown in Figure 19. 

The energy changes during the formation of the complexes and the 

corresponding standard enthalpies are collected in Table 18.  

Au20 

 

 

 

       Complex 1            Complex 2 

 

 

    Complex 3            Complex 4 

Figure 19. Optimized structures of Au20 clusters and phenylethanol-Au20 

complexes (coordination by OH group). 

According to the calculated data, the most favorable coordination during the 

interaction of phenylethanols with Au20 is carried out at the top of the cluster. 

Both 1-phenylethanol and 2-phenylethanol bind to the top gold atom with 
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similar values of adsorption energy (57–60 kJ/mol). The binding energies of 

alcohol on the edge and facet gold atoms are significantly lower (considering 

1-phenylethanol as an example). 

Table 18. The calculated values of the energy change (E, kJ/mol) and 

standard enthalpy (H, kJ/mol) in the reactions of 1-phenylethanol (3.8) or 

of 2-phenylethanol (3.9) with the Au20z cluster (z = 0, +1). 

z Complex Isomer Type of coordination E H 
0 1 2 OH– top −57 −54 
0 2 1 OH– top −60 −57 
0 3 2 OH– edge −33 −29 
0 4 2 OH– facet −30 −31 
0 5 2 C6H5– top −49 −45 
0 6 2 C6H5– edge −23 −21 
+1 1 2 OH– top −97 −92 
+1 2 1 OH– top −112 −108 
+1 3 2 OH– edge −75 −70 
+1 4 2 OH– facet −56 −54 
+1 5 2 C6H5– top −102 −100 
+1 6 2 C6H5– edge −75 −72 

When alcohol is coordinated on the cluster through a benzene fragment 

(Figure 20), the adsorption energies decrease at all sites of Au20, compared to 

OH– group coordination. Between two different ways of alcohol coordination 

(OH– or C6H5–), coordination by the OH– group is advantageous (Complex 2, 

Figure 19). In this case, low-coordinated gold atoms are the most active in the 

activation of alcohol. 

 
 

Complex 5 Complex 6 

Figure 20. Optimized structures of phenylethanol-Au20 complexes 

(coordination by C6H5 fragment). 

Then, how the gold cationic sites affect alcohol adsorption was examined. 

The interaction of 1-phenylethanol or 2-phenylethanol with an Au20+ cluster was 

simulated at different coordinations (by the OH group or the phenyl fragment): 

Au20+ + CH3–CH(OH)–Ph  (CH3–CH(OH)–Ph)Au20+ (3.11) 

Au20+ + HO–CH2–CH2–Ph  (HO–CH2–CH2–Ph)Au20+ (3.12) 



 97 of 117 

 

The optimized structures of phenylethanol-Au20+complexes have similar 

features with neutral phenylethanol-Au20. In contrast, the calculated energy 

changes in reaction 3.11 (Table 18) are larger than in reaction 3.8. The binding 

energy of phenylethanol to low-coordinated cationic gold atoms through the 

OH– group is significantly higher than on the neutral cluster. When 

1-phenylethanol is coordinated by the aromatic ring on Au20+, the adsorption 

energy increases and becomes almost the same as the coordination of alcohol 

with the OH group. Thus, it can be concluded that the cationic sites play a 

decisive role in phenylethanol adsorption. 

SUMMARY 

Therefore, based on the simulation of adsorption of n-octanol and 

1‐phenylethanol on Au clusters using DFT calculations, it can be concluded that 

low‐coordinated gold atoms are the most active in the activation of both 

alcohols. Thus, the cationic sites play an important role in alcohol oxidation, 

what confirms the suggestions on the gold cationic nature based on the 

experimental results.  

Besides that, based on the quantum chemical calculations, it was revealed 

that, in case of using heptane as solvent in aerobic oxidation of n-octanol, Au0 

had negative effect, due to a partial blocking of Au0 by the solvent. Au3+ also 

inhibited the oxidation process, due to the strong adsorption of the solvent 

and/or water formed during the reaction. 
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CONCLUSIONS 

Based on the research results presented in this Thesis, the following 

conclusions can be drawn: 

1. The efficiency of Au/(MxOy)/TiO2 catalysts (where MxOy are CeO2, Fe2O3, La2O3 

or MgO) with different gold contents (0.5 or 4 wt.%), and thermal redox 

pretreatment conditions (H2 or O2), have been investigated in the aerobic and 

peroxidative oxidation of n-octanol and 1-phenylethanol under mild conditions. 

It has been found that the catalytic behavior of gold-based systems is primarily 

determined by the electronic state of the deposited gold; namely, the ratio 

between the Au0, Au+ and Au3+ states, which, in turn, is determined by the nature 

of the support and modifier, pretreatment conditions and gold concentration. 

2. The comparative study revealed that, despite the different chemical nature of 

the studied alcohols and the oxidants used, Au+ ions play a decisive role in the 

aerobic and peroxidative oxidation of n-octanol and 1-phenylethanol, and act as 

the active sites of Au/MxOy/TiO2 catalysts. Au3+ ions play an inhibitory role in the 

oxidation of n-octanol, due to the strong adsorption of the solvent and/or the 

blocking of highly charged trivalent gold ions by water molecules produced by 

the reaction. The low catalytic activity of the samples where only metallic gold 

was detected was probably due to the partial blocking of the Au0 sites by the 

solvent that also led to inhibition of the oxidation of n-octanol, as in the case of 

Au3+.    

3. The concentration, stability, and adsorption strength of Au+ sites are highly 

dependent on the nature of the support and the pretreatment atmosphere. The 

strongest and most stable Au+(Auδ+) states are formed on the surface of 

La-modified TiO2 through their localization at strong basic Lewis centers. The 

promoting role of lanthanum additives also consists in the formation of the most 

active type of oxygen, contributing to a more efficient oxidation of alcohols.  

The effects of pretreatment atmosphere and gold concentration are mutually 

dependent: in the case of Au/La2O3/TiO2 samples, the most stable Au+ centers 

were formed after pretreatment in an H2 atmosphere when gold content was 4 

wt.%, but after pretreatment in an O2 atmosphere when gold content was 0.5 

wt.%. 

4. The deactivation of the studied catalysts in both reactions is caused by the 

reduction of a part of the Au+(Auδ+) states, which confirms the cationic nature of 

the active site. 

5. The functional groups of the support surface (Brønsted and Lewis acid and 

basic centers) not only act as a tool for the formation and stabilization of Au+ 
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centers, but also participate in the alcohol conversion process; in particular, they 

determine the products distribution and selectivity in the oxidation of n-octanol. 

6. The catalytic systems based on gold nanoparticles supported on La-modified 

TiO2 are promising catalysts for selective liquid-phase oxidation of alcohols with 

quite different reactivity. This should motivate the interest in future research of 

their use for the oxidation of more complex, polyfunctional alcohols. 

 

CONCLUSIONES  
 

A partir de los resultados de la investigación presentados en esta Tesis, se 

pueden extraer las siguientes conclusiones: 

 

1.  Se ha investigado la eficiencia de los catalizadores Au/(MxOy)/TiO2 (donde 

MxOy son CeO2, Fe2O3, La2O3 o MgO) con diferentes contenidos de oro (0,5 o 4% en 

peso) y condiciones de pretratamiento térmico (H2 u O2), en la oxidación aerobia y 

peroxidativa de n-octanol y 1-feniletanol en condiciones suaves. Se ha encontrado 

que el comportamiento catalítico de los sistemas a base de oro está determinado 

principalmente por el estado electrónico del oro depositado; a saber, la 

proporción entre los estados Au0, Au+ y Au3+, que, a su vez, está determinada por 

la naturaleza del soporte y el modificador, las condiciones de pretratamiento y la 

concentración de oro. 

2.  El estudio comparativo reveló que, a pesar de la diferente naturaleza química 

de los alcoholes estudiados y de los oxidantes empleados, los iones Au+ juegan un 

papel decisivo en la oxidación aerobia y peroxidativa del n-octanol y el 

1-feniletanol, y actúan como sitios activos de los catalizadores Au/(MxOy)/TiO2. 

Los iones Au3+ juegan un papel inhibidor en la oxidación del n-octanol, debido a 

la fuerte adsorción del solvente y/o al bloqueo de los iones de oro trivalentes 

altamente cargados por las moléculas de agua producto de la reacción. La baja 

actividad catalítica de las muestras donde solo se detectó oro metálico 

probablemente se debió al bloqueo parcial de los sitios Au0 por el solvente, que 

también condujo a la inhibición de la oxidación del n-octanol, como en el caso del 

Au3+. 

3.  La concentración, estabilidad y fuerza de adsorción de los sitios de Au+ 

dependen en gran medida de la naturaleza del soporte y la atmósfera de 

pretratamiento. Los estados Au+(Auδ+) más fuertes y más estables se forman en la 

superficie del TiO2 modificado con La a través de su localización en centros de 

Lewis básicos fuertes. El papel promotor del lantano como aditivo también 

consiste en la formación de un tipo de oxígeno más reactivo, lo que contribuye a 

una oxidación más eficiente de los alcoholes. Los efectos de la atmósfera de 

pretratamiento y la concentración de oro son mutuamente dependientes: en el 
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caso de los catalizadores Au/La2O3/TiO2, los centros de Au+ más estables se 

formaron tras el pretratamiento en atmósfera de H2 cuando el contenido de oro 

fué del 4% en peso, pero tras el pretratamiento en atmósfera de O2 cuando el 

contenido de oro fué del 0,5% en peso. 

4.  La desactivación de los sistemas estudiados en ambas reacciones es causada 

por la reducción de una parte de los estados Au+(Auδ+), lo que confirma la 

naturaleza catiónica del sitio activo; 

5.  Los grupos funcionales de la superficie de soporte (centros ácidos y básicos de 

Brønsted y Lewis) actúan no solo como una herramienta para la formación y 

estabilización de los centros Au+, sino que también participan en el proceso de la 

conversión del alcohol; en particular, determinan la distribución de productos y la 

selectividad en la oxidación de n-octanol. 

6.  Los sistemas catalíticos basados en nanopartículas de oro soportadas en TiO2 

modificado con La son catalizadores prometedores para la oxidación selectiva en 

fase líquida de alcoholes de reactividad química bastante diferente. Esto motiva el 

interés de futuras investigaciones de su uso para la oxidación selectiva de 

alcoholes polifuncionales más complejos. 
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ABBREVIATIONS 

Au/TiO2 – unmodified titania-supported gold catalyst; 

Au/MxOy/TiO2 (MxOy = CeO2, La2O3, Fe2O3 or MgO) – gold catalyst supported 

on titania modified with cerium, lanthanum, iron or magnesium oxides; 

Au NPs – gold nanoparticles; 

BAC – Brønsted acid centers; 

BBC – Brønsted basic centers; 

BE – Binding energy (eV); 

BET – Brunauer–Emmett–Teller theory; 

СО2-TPD – temperature-programmed desorption of carbon dioxide; 

COL – alcohol conversion, mol%; 

DRIFT CO – diffuse reflectance infrared Fourier transform spectroscopy of 

CO adsorption; 

DFT – density functional theory; 

DP – deposition-precipitation method; 

HRTEM – high resolution transmission electron microscopy; 

H2-TPR – temperature-programmed reduction with hydrogen; 

LAC – Lewis acid centers; 

LBC – Lewis basic centers; 

NH3-TPD – temperature-programmed desorption of ammonia; 

О2-TPD – temperature-programmed desorption of oxygen; 

R (A/M) – alcohol/active metal ratio mol/mol; 

Sx – selectivity to product x subscripts: (AC, carboxylic acid or acetophenone; 

AL, aldehyde; ES: ester), mol%; 

STEM-HAADF – scanning transmission electron microscopy-high angle 

annular dark field; 

Т – reaction temperature; 

TBHP, t-BuOOH – tert‐butyl hydroperoxide; 

XRD – X-ray diffraction; 

XPS – X-ray photoelectron spectroscopy; 

Yx – yield to product x subscripts: (AC, carboxylic acid or acetophenone; AL, 

aldehyde; ES: ester), mol%. 
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