
 

 
    

 

 
   
   
 

     
 
 

  
 

  

 

 
  

 

Repositorio Institucional de la Universidad Autónoma de Madrid 
https://repositorio.uam.es 

Esta es la versión de autor del artículo publicado en: 
This is an author produced version of a paper published in: 

Mathematische Nachrichten 293.6 (2020): 1074-1083 

DOI: https://doi.org/10.1002/mana.201800541 

Copyright: © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

El acceso a la versión del editor puede requerir la suscripción del recurso 
Access to the published version may require subscription 

https://repositorio.uam.es/
https://www.scopus.com/sourceid/25107
https://doi.org/10.1002/mana.201800541


	

Mathematische Nachrichten, 30 September 2019 

Lattice points in bodies of revolution II 

Fernando Chamizo�1,2 and Carlos Pastor2 

1 Department of Mathematics 
Universidad Autónoma de Madrid 
28049 Madrid, Spain 

2 Instituto de Ciencias Matemáticas 
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In [3] it was shown that when a three-dimensional smooth convex body has rotational symmetry around a 
coordinate axis one can fnd better bounds for the lattice point discrepancy than what is known for more general 
convex bodies. To accomplish this, however, it was necessary to assume a non-vanishing condition on the 
third derivative of the generatrix. In this article we drop this condition, showing that the aforementioned bound 
holds for a wider family of revolution bodies, which includes those with analytic boundary. A novelty in our 
approach is that, besides the usual analytic methods, it requires studying some Diophantine properties of the 
Taylor coeffcients of the phase on the Fourier transform side. 
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1 Introduction 

Let E ˆ Rd , d > 1, be a compact convex body with non-empty interior, and whose boundary ∂E is a smooth 
(d − 1)-submanifold with positive Gaussian curvature (for short, a smooth convex body). Denote by N (R) the 
number of points of Zd lying in E after being dilated by a factor R > 1, i.e., 

N (R) = #{~n 2 Zd : ~n/R 2 E}. 

A central question in lattice point theory consists in estimating how big the discrepancy 

E(R) = N (R) − Rd|E| 

can be for a particular choice of E, where |E| stands for the volume of E. We denote by αE the minimal exponent 
(using Landau’s notation) � 

αE = inf α : N (R) = Rd|E| + O(Rα) . 

A geometrical observation originally due to Gauss for the circle [5], shows that αE � d − 1. This elementary 
upper bound has been improved by numerous authors. The state of the art is the following: Huxley [11] has 
proved αE � 131/208 for d = 2, and Guo [7] αE � d − 2 + r(d) with r(d) = 73/158 for d = 3, and 
r(d) = (d2 + 3d+ 8)/(d3 + d2 + 5d+ 4) for d � 4. 

For some particular choices of E it is possible to do better. For example, when E is the d-dimensional unit 
ball, the problem is essentially solved for d � 4: the equality αE = d − 2 follows from classical results on 
representations of integers by quadratic forms. The best known upper bound for the three-dimensional unit ball is 
αE � 21/16 shown by Heath-Brown [8], while for the circle a recent preprint of Bourgain and Watt [2] improves 
Huxley’s result to αE � 517/824. 
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2 F. Chamizo and C. Pastor: Lattice points in bodies of revolution 

The aim of the article [3] was to show that, albeit the substantial differences in lattice point problems for 
general smooth convex bodies and balls that the previous results evidentiate, if one assumes rotational symme-
try around a coordinate axis then one can obtain intermediate results even from the simplest van der Corput’s 
estimate. We consider three-dimensional smooth convex bodies of the form � 

E = (x, y, z) 2 R3 : f2(r) � z � f1(r), 0 � r � r1 (1) p
where r = x2 + y2. 

In other words, E is the solid generated by the rotation around the z-axis of the curve of Fig. 1 

8� � < t, 0, f1(t) 0 � t � r1 
γ(t) = � �: 

2r1 − t, 0, f2(2r1 − t) r1 � t � 2r1 

z      

r 
r∞ 

  z=f2 (r)

  z=f1 (r)

Fig. 1 The generatrix. 

Theorem 1.1 of [3] reads: 

f 000Theorem Let E ˆ R3 be a body of revolution as before and suppose that the functions 1 (r) (extended by r i 

continuity to r = 0) do not vanish for 0 � r < r1, where i = 1, 2. Then the inequality αE � 11/8 holds. 

This result is not entirely satisfactory, as the extra hypothesis concerning the non-vanishing of the function 
1 f 000(r) lacks geometrical meaning. This kind of technical hypothesis, which often appear when applying van r i 

der Corput’s estimates, are usually very diffcult to deal with. The problem worsened when multiple exponent 
pairs were introduced. For instance, until the arrival of the discrete Hardy-Littlewood method [10], stating and 
checking non-vanishing conditions was a substatial task even for the circle and divisor problems (see [9] and 
[13]). The problem still persists when d > 2. In this article, however, we prove 

Theorem 1.1 Let E ˆ R3 be a body of revolution as before and suppose that the functions fi are real analytic 
for 0 � r < r1 and i = 1, 2. Then the inequality αE � 11/8 holds. 

In fact much less is needed as evident from the proof below. Theorem 1.1 holds as long as every zero of 
f 000the function f 000 is of fnite order for both i = 1, 2, i.e. (r) = 0 implies we can fnd an integer n > 3i i 

such that f (n)(r) =6 0. As remarked in the next section, the result also holds if in the defnition (1) we take p i 

r = Q(x+ α, y + β) with Q a positive defnite rational quadratic form and α, β 2 R. In other words, 
Theorem 1.1 extends to the case in which the horizontal sections are rational ellipses with a common center when 
projected onto the xy-plane. 

The idea of the proof is the following: we transform the problem via Poisson summation into estimating an 
exponential sum, as it is customary; and then slice the sum diadically in pieces corresponding to the zeros of 
f 000(r). For the pieces where van der Corput’s estimation falls short the phase is almost linear, and we are ini 

position to apply the frst derivative test (Kuzmin-Landau inequality [6]). This, by itself, is not good enough, 
as the derivative of the phase function might happen to be close to an integer way too often. Showing that this 
cannot be the case requires –in some ranges– studying certain diophantine properties of the Taylor coeffcient in 
question. This goes beyond the utterly analytic treatment in the classical (van der Corput’s) theory of exponential 
sums and vaguely resembles to the situation in [1] (the seminal paper for the discrete Hardy-Littlewood method) 
in which the arithmetic properties of the Taylor coeffcients play a fundamental role. 

It is worth mentioning that while looking for examples where the non-vanishing condition is blatantly violated, 
the authors were led to the case of revolution paraboloids (and more generally elliptic paraboloids) for which it 
turns out that one can explicitely determine αE by relating the associated exponential sum to some analytic 
functions enjoying automorphic properties [4]. In some sense a related phenomenon is happening here, as very 
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f 000close to a zero of 1 (r) the function fi(r) essentially looks like a parabola, and some of the arithmetic leaks in r i 

in the form of the aforementioned diophantine properties of the Taylor coeffcient. 
Throughout this article we use Vinogradov’s notation f ˝ g with the same meaning as Landau’s f = O(g), 

i.e., |f | � C|g| for an unspecifed constant C. We employ f ˛ g to denote g = O(f), and f � g when both of 
2πit by e(t).these conditions hold. We also abbreviate e 

2 The exponential sum 

Our starting point will be the truncated Hardy-Voronoı̈ formula given by Proposition 2.1 of [3]. We restate it here� � 
for convenience. Fix a smooth even function η 2 C1 (−1, 1) with η(0) = 1 and satisfying that the Fourier 0 

transform of η(k~xk) is positive (this latter condition can be easily fulflled by considering the convolution of a 
radial function with itself). 

Proposition 2.1 Let E ˆ R3 be a smooth convex body, η as before, and fx � > 0 and 0 < c < 1. Then for � � 
any given R > 2 there exists R0 2 R− 2, R+ 2 such that 

R0 X � �cos � 2πR0g(~n) � � � 
R2+�δE(R) = − η δk~nk p + O ,

π k~nk2 κ(~n)
~n2Z3−{0} 

where δ = R−c , g is the support function g(~n) = sup{~x·~n : ~x 2 E} and κ(~n) stands for the Gaussian curvature 
of ∂E at the point whose unit outer normal is ~n/k~nk.� � 

R11/8+�To obtain an error term of the form O we must choose c � 5/8, and the larger we pick c the longer 
the exponential sum we have to bound becomes. The natural choice is therefore c = 5/8 and δ = R−5/8 . 

All the functions of ~n involved in the expression for E(R) given by Proposition 2.1 are invariant under rotations 
on the frst two variables. Grouping the corresponding terms and applying summation by parts, 

R1+� X X � � 
E(R) ˝ sup 

+ M2 
N,M2�δ−2 N 

r2(n)e R
0h(n,m) 

1�n�N 1�|m|�M 

+ R11/8+� , (2) 

��p
where h(n,m) = g n, 0,m and r2(n) stands for the number of representations of n as sum of two squares 
(the contribution corresponding to the terms with n = 0 or m = 0 is negligible). The summation by parts step is 
justifed as long as we can guarantee Z δ−2 Z δ−1 � p � 

∂2 η δ u+ v2 
(u+ v 2) p p dudv ˝ R� , 

1 1 ∂u∂v (u+ v2) κ( u, 0, v) 

and a similar bound with v replaced with −v. This becomes evident after performing the change of variables 
u 7! u2 and changing to polar coordinates (note κ(u, 0, v) depends smoothly on the angle θ = arctan v/u).p

When r in (1) is replaced by r = Q(x+ α, y + β) with Q a positive defnite rational quadratic form, as 
mentioned in the introduction, rescaling fi we can assume that the dual form Q� (the one having the inverse 
matrix) is an integral quadratic form. By the properties of the Fourier transform, (2) still holds but replacing 
r2(n) by X1� r2 (n) = e(αx+ βy) where x, y 2 Z. 

det Q
Q�(x,y)=n 

See §6 of [3] for more details. In what follows the only fact that will be used about the arithmetic function r2 is 
�the bound r2(n) ˝ n� for any � > 0, also satisfed by r2 (n). Therefore all the forthcoming arguments may be 

readily applied in the context of rational elliptic sections. 
If instead of the convex body E we consider its specular refection over the plane z = 0, we arrive at exactly 

the same expression (2) but with the sign of m reversed (because the invariance of the Fourier transform by 
symmetries). This means that we can restrict our attention to the half of the sum consisting of those terms with 
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4 F. Chamizo and C. Pastor: Lattice points in bodies of revolution 

m > 0, and then apply the same argument to the specular refection of E to bound the other half in the same 
way. In what follows, therefore, we restrict m to be positive, and rename f1 to f to avoid the excessive use of 
subindices. 

Let 0 = r0 < r1 < · · · < rj0−1 be the zeros of f 000 in [0, r1) and fx any rj0 satisfying rj0−1 < rj0 < r1. 
Denote uj = (f 0(rj ))

2 for 0 � j � j0. We are going to split the summation domain of (2) dyadically in m as 
m ! +1, and in n/m2 as it approaches either some uj or +1 (see of Fig. 2); decomposing the sum in an at 
most a constant times log R number of pieces of the form XX � � 

S(U1, U2,M) = r2(n)e Rh(n,m) . (3) 
U1�n/m2<U2 

M�m<2M 
1�n�N 

... .... ....
0=u0 u1 uj0−1 uj0 2uj0

4uj0

u0 +u1
2

uj0−1+uj0

2

Fig. 2 The dyadic partition. 

The dependence on N has been deliberately omitted as it will not play an important role. The variable n is 
understood to be restricted to the range 1 � n � N in every further appearance. 

It is clear that after this dyadic subdivision, we can deduce Theorem 1.1 from the following theorems. The 
part 0 � n/m2 < uj0 of the double sum in (2) is covered by Theorem 2.2, except for the terms with n/m2 = uj 
that can be estimated trivially, and the part n/m2 � uj0 is covered by Theorem 2.3. 

Theorem 2.2 Given � > 0 and 0 � j < j0, for any R > 1, 2M � R5/8 and 0 < U � (uj+1 − uj )/4 we 
have 

˝ M2R3/8+�S(uj+1 − 2U, uj+1 − U,M) + S(uj + U, uj + 2U,M) . 

Theorem 2.3 Given � > 0, for any R > 1, 2M � R5/8 and uj0 � U � R5/4M−2 we have 

S(U, 2U,M) ˝ UM2R3/8+� . 

3 Weyl step 

In order to be able to estimate the sum S given by (3) using the van der Corput method we must frst get rid of 
the arithmetic function r2. We do this by performing a so-called Weyl step (cf. §8.2 of [12]). 

Proposition 3.1 Let S as before and fx � > 0. For any 1 � M � R5/8 , 0 < U1 < U2 � R5/4 and 
1 � L˝ M , satisfying U2 − U1 = U and U2L+ 1 ˝ UM , we have 

2 
S(U1, U2,M) ˝ R�(U2M6L−1 + UM3T ) 

where T = T (U1, U2,M,L) is given by 

X XX � ��1 � 
T = e R h(n,m+ `) − h(n,m) . (4)

L 
1�`�L U1�n/(m+`)2,n/m2<U2 

M�m,m+`<2M 

P r o o f. Consider ( � � 
e Rh(n,m) if U1 � n/m2 < U2 and M � m < 2M, 

ψn,m = 
0 otherwise. 

Copyright line will be provided by the publisher 
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It suffces to prove the inequality when L is an integer. We may therefore write X X X 
LS = r2(n) ψn,m+`. 

M−L�m<2M U1m2�n<U2(m+L)2 1�`�L 

The length of the frst sum is ˝ M and the length of the second one ˝ UM2 , hence squaring and applying 
Cauchy-Schwarz, X X X 

L2S2 ˝ R�UM3 ψn,m+` 1 ψn,m+` 2 . 
M−L�m<2M U1m2�n<U2(m+L)2 1�` 1,`2�L 

Separating the diagonal contribution ` 1 = ` 2 and interchanging the summation order, which can be done because 
ψn,m keeps track of the summation domain, X XX 

L2S2 ˝ R�LU2M6 + R�UM3< ψn,m+` 1 ψn,m+` 2 . 
1�` 2<`1�L n m 

To obtain the desired inequality perform the change of variables m 7! m− ` 2 and group the terms corresponding 
to each value of ` = ` 1 − ̀ 2. 

4 The function h 

In this section we prove the estimates we need about the function h. Note that the convexity of −f implies that 
−f 0 : [0, r1) ! R+ is one-to-one, and therefore its inverse function φ is well-defned. By Lemma 4.1 of [3] we 
know that 

∂ � � � p � 
h(n,m) = F n/m2 where F (u) = f φ( u) . (5)

∂m 

The estimates for h near the “bad” points uj will depend on the order of vanishing of f 000(r). By defnition, p
each uj is the preimage by the function φ( u) of a zero rj of f 000(r), except the last one which is added for 
convenience. If rj =6 0 we defne dj as the unique nonnegative integer satisfying f 000(r) � (r− rj )dj as r ! rj . 

2d0+1For r0 = 0 we defne d0 as the unique nonnegative integer satisfying f 000(r) � r as r ! 0+ . We also set 
d1 = −5/2. 

Lemma 4.1 We have F 0(u) � (1+u)−3/2 for 0 � u <1. We also have F 00(u) =6 0 for u =6 uj , 0 � j � j0, 
and 

F 00(u) � (u F 00(u) � u d1− uj )dj as u! uj and as u!1. � � 
P r o o f. Let k(r) denote the curvature of r 7! r, f(r) , which admits the explicit formula (see p. 11 of [14]) � �3/2 

f 00(r) = k(r) 1 + |f 0(r)|2 , (6) � p � 
and set c(u) = k φ( u) . Differentiating F and recalling that φ is the inverse function of −f 0 we obtain (cf. the 
proof of Lemma 4.2 of [3]) 

F 0(u) = 
1 

,
2c(u)(1 + u)3/2 � p � 

f 000 φ( u)
F 00(u) = � �3 . 

4 c(u) (1 + u)9/2u1/2 

p
Now all but the last claim of the lemma is clear as c1 < c(u) < c2 for some constants c1, c2 > 0 and φ( u)p

is a regular function for u > 0, and behaves like C u for some C 6= 0 as u ! 0+ . To establish the last claim, 
we note that by (6) and L’Hôpital’s rule, � p � 

f 00(r) −f 000(r) −f 000 φ( u)
k(r1) = lim = lim � = lim .3 �2− − u!1r!r f 0(r) r!r f 0(r) f 00(r) 3c(u)(1 + u)3/2u1 1 3 � p � 

Therefore f 000 φ( u) � u5/2 when u!1, and F 00(u) � u−5/2 . 

Copyright line will be provided by the publisher 



6 F. Chamizo and C. Pastor: Lattice points in bodies of revolution 

With Lemma 4.1 we can estimate higher derivatives of h. � �2Proposition 4.2 Let (n,m) 2 R+ with m � M . If n/m2 < uj0 let U be distance of n/m2 to the closest 
ui, say uj . If n/m2 � uj0 take U = n/m2 and j = 1.Then 

∂3h Udj 

(n,m) � . 
∂n2∂m M4 

P r o o f. By (5) the partial derivative is m−4F 00(n/m2) and the result follows from Lemma 4.1. 

Proposition 4.3 Let (n,m) 2 
� 
R+ 
�2 

with m � M and fx j with dj > 0. If U = |n/m2 − uj | is small 
enough, then 

∂3h 1 
(n,m) � . 

∂n∂m2 M3 � � −3P r o o f. The partial derivative here is −2m F 00(n/m2)n/m2 + F 0(n/m2) . By Lemma 4.1 the function 
F 0 remains positive and bounded in bounded subintervals of R+, while F 00(n/m2)n/m2 ! 0 when U ! 0. 

Proposition 4.4 Let (n,m) 2 
� 
R+ 
�2 

with m � M and fx j with dj > 0. If U = |n/m2 − uj | is small 
enough and 1 � ̀� UM , � � 

∂h ∂h ` `Udj +1 

(n,m+ `) − (n,m) = Cj + O 
∂n ∂n m(m+ `) M2 

for some constant Cj 6= 0. 

P r o o f. We express the left hand side as Z Z � �` ` ∂2h n dt 
(n,m+ t) dt = F 0 

0 ∂n∂m 0 " (m+ t)2 (m+ t)2 #Z ̀ Z n/(m+t)2 dt 
= F 0(uj) + F 00(v) dv 

0 uj 
(m+ t)2 � � 

` `Udj +1 

= F 0(uj ) + O . 
m(m+ `) M2 

To bound the error term we have applied Lemma 4.1 noting that n/(m+ t)2 −uj = O(U) for 0 � t � UM . 

5 The van der Corput estimate 

In this section we generalize the argument in [3] to prove Theorem 2.2 in some ranges and Theorem 2.3 using the 
simplest van der Corput bound for T . The frst named author wants to take the opportunity to point out that the 
case L = M was neglected there (although it does not affect the result). To simplify the proofs, we will assume 
from now on that UM � R3/8 , as otherwise the trivial estimate S ˝ R�UM3 + R�M suffces to prove the 
desired inequalities. We will also refer to the arguments of S in the statements of these theorems as U1 and U2 

for the sake of convenience. 

Proposition 5.1 Let R, M , U , U1 and U2 be as in the hypotheses of either Theorem 2.2 or 2.3, setting j = 1 
in the second case. Then X � � ̋

 R1/2`1/2U (dj +2)/2 + R−1/2`−1/2U−dj /2M2 e R(h(n,m+ `) − h(n,m)) , 
n 

where the range of the summation is U1(m+ `)2 � n < U2m
2 for m � M . 
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P r o o f. By the mean value theorem and Proposition 4.2 we have 

∂2 � � ∂3h Udj 

h(n,m+ `) − h(n,m) = ` (n, m̃) � ̀ . 
∂n2 ∂n2∂m M4 

Applying now the simplest van der Corput well-known estimate (see, for instance, Theorem 2.2 of [6]), X � � � �1/2 � �−1/2 
e R(h(n,m+ `) − h(n,m)) ˝ UM2 R`Udj M−4 + R`Udj M−4 . 

n 

This concludes the proof. 

Proposition 5.2 Theorem 2.2 holds when dj = 0, 1, or when dj � 2 and U ˛ R−5/(8dj −8). 

P r o o f. Note that since U2 ˝ 1 we are in position to apply Proposition 3.1 as long as we take L � UM . 
Using Proposition 5.1 to bound T (U1, U2,M,L) we obtain 

+ R1/2L1/2U (dj +4)/2 + R−1/2L−1/2U (2−dj )/2M2R−�M−4|S|2 ˝ L−1U2M2 . (7) 

R1/2U−djWe choose L = min{R1/2U−dj , UM}. If L = then using M � R5/8 we obtain M−4|S|2 ˝ 
R3/4+� R1/2M−1 , as desired. Hence assume L = UM and Udj +1 < . We have 

+ R1/2U (dj +5)/2M1/2 + R−1/2U (1−dj )/2M3/2R−�M−4|S|2 ˝ UM . 

Using the inequality Udj +1 < R1/2M−1 on the second summand and the hypotheses of this proposition we 
conclude again M−4|S|2 ˝ R3/4+� . 

Proof of Theorem 2.3. We proceed similarly as in the previous proof. Note that now U2 � U and we may 
take 1 � L � M in Proposition 3.1. Using Proposition 5.1 to bound T (U1, U2,M,L) we obtain exactly the 
same bound (7) with d1 = −5/2: 

R−�M−4|S|2 ˝ L−1U2M2 + R1/2L1/2U3/4 + R−1/2L−1/2U9/4M2 . 

The choice L = min{R1/2,M} also works in exactly the same way, using U � R5/4M−2 and M � R5/8 , to 
show M−4|S|2 ˝ U2R3/4+� . 

6 Diophantine approximation of the phase 

As U gets smaller than R−5/(8dj −8) the van der Corput estimate is not good enough to prove Theorem 2.2 
anymore. The reason is that the phase of the exponential sum in (4) is almost linear in n, as Proposition 4.4 
shows, and the oscillation is not captured by a second derivative test. 

Throughout this section we will assume that R, M , U , U1, U2 and j are as in the statement of Theorem 2.2, � � 
2UM � R5/8 (see comments in §5) and M � m < 2M . Let Im,` = U1(m+`)2, U2m , which we may assume 

non-empty by restricting the possible values of m, and defne the quantities � � 
∂h ∂h 

φ`(n,m) = R (n,m+ `) − (n,m) ,
∂n ∂n � � 

Φ`(m) = min dist φ`(x,m),Z . 
x2Im,` 

The function φ` is the derivative of the phase of the exponential sum in n appearing in (4). Since by Proposi-
tion 4.2 it is monotone in n, we can apply Kuzmin-Landau’s lemma (Theorem 2.1 of [6]) to obtain the bound X � � � �−1 

e R(h(n,m+ `) − h(n,m)) ˝ Φ`(m) . 
n2Im,` 

Suppose we can fnd another bound H` for the same exponential sum, this time uniform in m, to apply in those 
cases when Φ` ˇ 0. Then knowing very little about the distribution of the values Φ`(m) we can fnd a good bound 
for T . The underlying idea here is to gain from some control of the spacing. In [1] and [11] this is accomplished 
via large sieve inequalities, while we introduce the spacing through the following simple result: 
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8 F. Chamizo and C. Pastor: Lattice points in bodies of revolution 

1Lemma 6.1 Assume we have a fnite sequence of points am 2 [0, ] satisfying the following condition: 2 

#{m : am � x} � A+ Bx for every 0 � x � 1/2. 

Then for any H > 0 we have X 
min{H, a−1} � AH + B(1 + | log H|).m 

m 

Assuming, in our setting, that A`, B` and H` are functions such that `A`H` and `B` are non-decreasing in `, 
and H` is bounded above and below by powers of R, it is immediate that for any fxed � > 0, � � 

T (U1, U2,M,L) ˝ R� ALHL + BL . (8) 

Proof of Lemma 6.1. Let us say that the fnite sequence is 0 � a1 � a2 � · · · � aN � 1/2. Note that, by 
1hypothesis, m � A + Bam. Let f : [0, ] ! R be a non-increasing function and extend it to the negative real2 

numbers as the constant function f(0). Then 

X X � � Z 1/2 Z 1/2 m− A 
f(am) � f � B f(x) dx = Af(0) + B f(x) dx. 

B −A/B 0m m 

The result follows applying this inequality with f(x) = min{H,x−1}. 

The upper bound H` will be either the trivial estimate UM2, or the second term in the van der Corput estimate 
given by Proposition 5.1 (the frst one may be neglected in the range U ˝ R−5/(8dj −8), UM � R3/8). The pair 
(A`, B`) will be given by one of the following two propositions. 

Proposition 6.2 Assume Udj +1M is small enough and 1 � ̀� UM . Then � � 
R` M2 � � 

#{m : Φ`(m) � x} ˝ 1 + + M 1 + x 0 � x � 1/2 . 
M2 R` 

P r o o f. Choose for each pair (m, `) a point xm 2 Im,` (depending implicitly in `) satisfying � � 
Φ`(m) = dist φ`(xm,m),Z . 

By the mean value theorem, φ`(xm+1,m+ 1) − φ`(xm,m) equals 

∂3h ∂3h 
R` (x1, y1) + R`(xm+1 − xm) (x2, y2),

∂n∂m2 ∂n2∂m 

for some points (x1, y1), (x2, y2) lying in the rectangle 

[U1(m+ `)2, U2(m+ 1)2] × [m,m+ `+ 1]. 

The function x/y2 over this rectangle satisfes 

U1(1 − 4M−1) � x/y2 � U2(1 + 4M−1), 

and since UM � R3/8 we have |uj − xi/y2| � U for i = 1, 2. Using the estimates given by Propositions 4.2 i 

and 4.3, � � 
Udj 

φ`(xm+1,m+ 1) − φ`(xm,m) � + O R` · UM2 · � , (9)
R` R` 

M3 M4 M3 

the sign of the left hand side being always the same. 
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Since M � m < 2M , we deduce from (9) that the number of integers k satisfying |φ`(xm,m) − k| � 1/2 
for some m is at most a constant times 1+ R`M−2 . On the other hand we deduce again from (9) that for each of 
those k and any x � 0 

#{m : |φ`(xm,m) − k| � x} ˝ 1 + R−1`−1M3 x. 

Therefore, � �� � 
R` M3 

#{m : Φ`(m) � x} ˝ 1 + 1 + x 
M2 R` 

for every 0 � x � 1/2. 

Proposition 6.3 Fix � > 0. For U small enough and 1 � ̀� UM we have � � � � 
#{m : Φ`(m) � x} ˝ R� 1 + R`Udj +1 + M2 x 0 � x � 1/2 . 

P r o o f. Let Cj the constant involved in Proposition 4.4, and assume that we have � � 
dist Cj 

R` 
,Z � x for some x � 0. 

m(m+ `) 

This means that there exists an integer k = k(m, `) satisfying 

|CjR`− km(m+ `)| � m(m+ `)x˝ M2 x. 

In particular, m must divide a certain integer km(m + `) lying in the interval centered at CjR` of half-length 
a constant times M2x. Since there are at most O(1 + 4M2x) of these integers, and each has at most O(R�) 
divisors, we conclude � � � � � 

# m : dist Cj R`/(m(m+ `)),Z � x ˝ R� 1 + M2 x . � � 
Replacing x by x+ O R`Udj +1M−2 the result follows from Proposition 4.4. 

The following two propositions, together with Proposition 5.2 in §5, complete the proof of Theorem 2.2, and 
hence also the proof of Theorem 1.1. 

Proposition 6.4 If U ˝ R−5/(8dj +8) for a suffciently small constant then Theorem 2.2 holds when dj � 4, 
or when dj � 5 and U ˛ R−5/(4dj −16). 

P r o o f. We apply Proposition 3.1 to bound S with L = R−3/4U2M2 , which always lies in the interval 
[1, UM ]. Using (8) with (AL, BL) given by Proposition 6.2 (note the hypotheses imply Udj +1M is small 
enough) we obtain � � � � 

UHL RL M2 

R−�M−4|S|2 ˝ R3/4 + 1 + + U 1 + . (10)
M M2 RL 

We choose either HL = UM2 or HL = R−1/8U−(dj +2)/2M (second term in Proposition 5.1) depending on 
whether RL/M2 � 1 or not. In the frst case, the right hand side of (10) may be majored by R3/4 + U2M + 
R−1/4U−1 , and using M � R5/8 and U � R−1/4 (from UM � R3/8) we conclude M−4|S|2 ˝ R3/4+� . In 

+ R1/8U−(dj −4)/2the second case, the right hand side of (10) may be majored by R3/4 + U , which also leads 
to M−4|S|2 ˝ R3/4+� under the hypotheses of this proposition. 

Proposition 6.5 Theorem 2.2 holds when U ˝ R−5/(4dj +24). 
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P r o o f. We proceed similarly as in the proof of Proposition 6.4. We apply Proposition 3.1 to bound S with 
L = R−3/4U2M2, and use (8) with (AL, BL) given by Proposition 6.3 to obtain 

UHL � � 
R−�M−4|S|2 ˝ R3/4 + 1 + RLUdj +1 + UM. (11)

M 

We choose either HL = UM2 or HL = R−1/8U−(dj +2)/2M depending on whether RLUdj +1 � 1 or not. In 
the frst case (11) shows that M−4|S|2 ˝ R3/4+� is satisfed trivially, while in the second case the right hand 

+ R1/8U (dj +6)/2M2 ˝ R3/4+�side of (11) may be majored by R3/4 + UM , which also leads to M−4|S|2 
under the hypothesis of this proposition. 
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