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Abstract: This study aimed to model and optimize a green sustainable extraction method of phenolic
compounds from the coffee husk. Response surface methodology (RSM) and artificial neural net-
works (ANNs) were used to model the impact of extraction variables (temperature, time, acidity, and
solid-to-liquid ratio) on the recovery of phenolic compounds. All responses were fitted to the RSM
and ANN model, which revealed high estimation capabilities. The main factors affecting phenolic
extraction were temperature, followed by solid-to-liquid ratio, and acidity. The optimal extraction
conditions were 100 ◦C, 90 min, 0% citric acid, and 0.02 g coffee husk mL−1. Under these conditions,
experimental values for total phenolic compounds, flavonoids, flavanols, proanthocyanidins, phe-
nolic acids, o-diphenols, and in vitro antioxidant capacity matched with predicted ones, therefore,
validating the model. The presence of chlorogenic, protocatechuic, caffeic, and gallic acids and
kaemferol-3-O-galactoside was confirmed by UPLC-ESI-MS/MS. The phenolic aqueous extracts from
the coffee husk could be used as sustainable food ingredients and nutraceutical products.

Keywords: coffee by-products; phenolic compounds; antioxidant capacity; response surface method-
ology; artificial neural networks

1. Introduction

The United Nations Sustainable Development Goals promote the warranting of sus-
tainable consumption and production patterns such as achieving the efficient use of natural
resources and reducing waste generation through prevention, reduction, recycling, and
reusing [1]. Likewise, the Food and Agriculture Organization (FAO) is focused on re-
designing the global food system to be more productive, environmentally sustainable,
and able to deliver healthy and nutritious foods to the population [2]. In this respect, the
reduction of the food industry wastes and by-products is a clear need. The development
of ground-breaking strategies for revalorizing food by-products via their conversion into
food-grade novel ingredients is a critical challenge in the food chain [3].

The processing of the coffee cherries into coffee beans is very complex and produces a
variety of residues. Mature fruits are collected and transformed by basically two methods:
dry or wet processing [4]. Within the dry processing, the coffee cherries are sun-dried. The
coffee husk is separated during the following de-hulling step. The coffee husk comprises
the skin, pulp, mucilage, parchment, and parts of the silverskin. In the wet processing,
conversely, water is used to separate ripened and unripped coffee cherries. After this
separation, the coffee pulp and skin are removed using a pulper. The coffee parchment
remains attached to the coffee bean [5]. Therefore, wet processing produces pulp and
parchment, whereas dry processing produces just the coffee husk, which contains both
parts (Figure 1). The disposal of coffee husk without treatment causes environmental
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problems in the producing countries, owing to the high content of caffeine and phenolic
compounds composing it [6]. The traditional use of the coffee husk is the preparation of
the “Cascara beverage”, traditionally consumed in Yemen and Ethiopia [7]. Current uses
for the coffee husk include mushroom cultivation [8], lignin extraction [9], and recovery
of biomolecules from the lignin alkali hydrolysate [10], bioethanol production [11], bio-
sorbents preparation [12], and composting [13]. Although these strategies for valorizing the
coffee husk contribute to the coffee industry’s sustainability, the production of high-value-
added food ingredients is a more desirable approach to promoting a more productive,
environmentally sustainable food system.
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properties. Coffee antioxidants are associated with preventing chronic diseases such as 
obesity, diabetes, and other cardiometabolic diseases [14]. Limited research has evaluated 
the extraction of these phytochemicals from the coffee husk [15]. Green extraction meth-
ods are needed to ensure the sustainability of the system. Even though there is research 
pointing out the use of ultrasound- and microwave-assisted extractions and pressurized 
liquid extraction [16], heat-assisted extraction (HAE) is still the most common extraction 
technique in the food industry [17]. Consequently, there is a need to model, optimize, and 
validate the green HAE of phenolic compounds from the coffee husk. 

Response surface methodology (RSM) is one of the chemometric techniques often 
employed to optimize procedures in food production and analysis [18]. The parameters 
influencing the extraction are modeled and optimized using RSM, principally to reduce 
energy and, therefore, extraction costs [19]. Machine learning algorithms may also be em-
ployed for these purposes. Artificial neural networks (ANNs) have gained interest in 
modeling and optimization processes. This methodology allows for the study of the rela-
tionships between the extraction and response variables, i.e., the extraction yield, employ-
ing fewer experimental measurements [20]. ANNs are computational models based on 
the structure and functions of the nervous system and the brain and have extraordinary 
learning and predictive abilities [21]. Hence, these mathematical and computational tools 
can be used to enhance the effectiveness of the extraction process, making it more eco-
nomically and environmentally sustainable. 

We hypothesized that the modification of extraction parameters would increase the 
recovery yield of phenolic compounds from the coffee husk, allowing the establishment 
of a green sustainable extraction method. Hence, this study aimed to model the process 
conditions to maximize the sustainable aqueous extraction of phenolic compounds from 
the coffee husk using response surface methodology and artificial neural networks, opti-

Figure 1. Coffee cherry anatomy (A) from the outside to the inside (skin, pulp, mucilage, parchment
(comprising the coffee husk), silverskin, and coffee bean) and appearance of dried coffee husk once
separated from the coffee bean (B).

The coffee husk is a source of phenolic compounds and caffeine. Chlorogenic, protocat-
echuic, and gallic acids are the main phenolic compounds comprised in it and responsible
for the coffee husk antioxidant properties [7]. Extracting these compounds could be a
strategy to valorize the coffee husk and develop food ingredients with health-promoting
properties. Coffee antioxidants are associated with preventing chronic diseases such as
obesity, diabetes, and other cardiometabolic diseases [14]. Limited research has evaluated
the extraction of these phytochemicals from the coffee husk [15]. Green extraction meth-
ods are needed to ensure the sustainability of the system. Even though there is research
pointing out the use of ultrasound- and microwave-assisted extractions and pressurized
liquid extraction [16], heat-assisted extraction (HAE) is still the most common extraction
technique in the food industry [17]. Consequently, there is a need to model, optimize, and
validate the green HAE of phenolic compounds from the coffee husk.

Response surface methodology (RSM) is one of the chemometric techniques often
employed to optimize procedures in food production and analysis [18]. The parameters
influencing the extraction are modeled and optimized using RSM, principally to reduce
energy and, therefore, extraction costs [19]. Machine learning algorithms may also be
employed for these purposes. Artificial neural networks (ANNs) have gained interest
in modeling and optimization processes. This methodology allows for the study of the
relationships between the extraction and response variables, i.e., the extraction yield,
employing fewer experimental measurements [20]. ANNs are computational models based
on the structure and functions of the nervous system and the brain and have extraordinary
learning and predictive abilities [21]. Hence, these mathematical and computational
tools can be used to enhance the effectiveness of the extraction process, making it more
economically and environmentally sustainable.

We hypothesized that the modification of extraction parameters would increase the
recovery yield of phenolic compounds from the coffee husk, allowing the establishment
of a green sustainable extraction method. Hence, this study aimed to model the process
conditions to maximize the sustainable aqueous extraction of phenolic compounds from the
coffee husk using response surface methodology and artificial neural networks, optimize
it, and comprehensively characterize the obtained extracts using UPLC-MS/MS analysis.
Multivariate statistics were used to gain insight into the effects of extraction conditions on
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the phenolic composition and its relationship with the in vitro antioxidant capacity of the
obtained aqueous phenolic extracts.

2. Materials and Methods
2.1. Material and Sample Preparation

The coffee husk, mechanically separated from the sun-dried cherries of the Arabica
species variety Caturra, was supplied by “Las Morenitas” (Nicaragua). The milling of the
coffee husk was carried out in a pilot-scale ball mill over three days, then sieved with a
pilot-scale sieve, selecting the fraction with a particle size of <250 µm. Milled coffee husk
was stored in closed and sealed plastic bags and preserved in dark and dry conditions to
avoid oxidation until further extraction and analysis.

2.2. Experimental Design
2.2.1. Response Surface Methodology (RSM)

Box–Behnken, being a spherical RSM, consists of a central point and several middle
points on the edges of a cube superimposed on the sphere, which requires fewer experi-
ments than other statistical designs. We employed a four-factor, three-level Box–Behnken
design coupled to RSM to find the optimal extraction conditions to achieve the highest
extraction of phenolic compounds from the coffee husk. The experimental conditions for
the aqueous extraction of phytochemicals from the coffee husk are presented in Table 1.
The statistical design comprised 27 experimental runs with three levels (−1, 0, 1) for each
of the variables: temperature (◦C) (X1), time (min) (X2), acidity as the percentage of citric
acid in water (%) (X3), and solid-to-liquid ratio (S/L, g mL−1) (X4). Those parameters were
selected according to previous studies found in the literature and tested on preliminary ex-
periments to guarantee they exerted an influence on the extraction of phenolic compounds
from coffee parchment [17]. The impact of extraction temperature was investigated in the
range from 30 to 100 ◦C, time from 5 to 90 min, S/L ratio, 0.02–0.05 g mL−1, and acidity,
0–2% citric acid. The variables were coded according to the following equation:

X =
xi − x0

∆x
(1)

where X is the coded value; xi, the corresponding actual value; x0, the real value at the center
of the domain; and ∆x, the increment of xi corresponding to a variation of 1 unit of x. The
response variables were fitted to the following second-order polynomial model equation,
which described the relationship between the responses and the independent variables.

Y = β0 +
k

∑
i=1

βiXi +
k

∑
i=1

βiiX2
ii +

k−1

∑
i

k

∑
j

βijXij (2)

where Y was the response variables; Xi and Xj were independent coded variables; β0 was
the constant coefficient; βi was the linear coefficient; βii was the quadratic coefficient, and
βij was the cross-product coefficients.
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Table 1. Experimental conditions (independent variables) and their corresponding responses values (phenolic compounds content) according to the Box–Behnken design. S/L ratio:
solid-to-liquid ratio; TPC: total phenolic compounds; TF: total flavonoids; TFL: total flavanols; PAC: total proanthocyanidin; TPA: total phenolic acid; TOD: total ortho-diphenols; AC:
antioxidant capacity.

Run
Independent Variables Responses

Temperature
(X1, ◦C)

Time
(X2, Min)

Acidity
(X3, %)

S/L Ratio
(X4, g mL−1)

TPC
(mg g−1)

TF
(mg g−1)

TFL
(mg g−1)

PAC
(mg g−1)

TPA
(mg g−1)

TOD
(mg g−1)

AC
(mg g−1)

1 30 (−1) 5 (−1) 1 (0) 0.035 (0) 4.19 ± 0.12 5.52 ± 0.27 0.74 ± 0.14 2.48 ± 0.25 1.28 ± 0.08 0.86 ± 0.11 11.95 ± 0.08
2 100 (1) 5 (−1) 1 (0) 0.035 (0) 5.45 ± 0.12 7.94 ± 0.25 0.84 ± 0.07 2.63 ± 0.22 2.29 ± 0.11 1.23 ± 0.06 15.61 ± 0.05
3 30 (−1) 90 (1) 1 (0) 0.035 (0) 4.41 ± 0.09 6.30 ± 0.24 0.73 ± 0.08 2.34 ± 0.09 1.69 ± 0.18 1.03 ± 0.10 11.90 ± 0.09
4 100 (1) 90 (1) 1 (0) 0.035 (0) 5.44 ± 0.10 7.34 ± 0.18 0.96 ± 0.08 2.74 ± 0.13 2.42 ± 0.06 1.28 ± 0.06 15.37 ± 0.07
5 65 (0) 47.5 (0) 0 (−1) 0.02 (1) 4.47 ± 0.13 8.60 ± 0.23 1.09 ± 0.12 2.99 ± 0.27 2.98 ± 0.16 1.56 ± 0.10 17.43 ± 0.05
6 65 (0) 47.5 (0) 2 (1) 0.02 (1) 4.56 ± 0.13 6.38 ± 0.34 0.71 ± 0.03 3.48 ± 0.11 1.55 ± 0.07 1.13 ± 0.05 10.32 ± 0.05
7 65 (0) 47.5 (0) 0 (−1) 0.05 (−1) 3.47 ± 0.15 6.99 ± 0.30 0.75 ± 0.05 2.23 ± 0.26 1.95 ± 0.07 1.10 ± 0.05 13.19 ± 0.05
8 65 (0) 47.5 (0) 2 (1) 0.05 (−1) 4.07 ± 0.10 5.97 ± 0.28 0.70 ± 0.05 2.45 ± 0.30 1.43 ± 0.06 1.00 ± 0.06 11.33 ± 0.09
9 65 (0) 47.5 (0) 1 (0) 0.035 (0) 3.70 ± 0.16 6.81 ± 0.30 0.65 ± 0.09 2.51 ± 0.18 1.77 ± 0.08 0.97 ± 0.05 12.17 ± 0.09
10 30 (−1) 47.5 (0) 1 (0) 0.02 (1) 3.94 ± 0.15 6.69 ± 0.34 0.67 ± 0.05 2.41 ± 0.15 1.37 ± 0.12 1.04 ± 0.06 11.09 ± 0.08
11 100 (1) 47.5 (0) 1 (0) 0.02 (1) 5.93 ± 0.15 10.07 ± 0.24 1.10 ± 0.10 3.04 ± 0.19 2.88 ± 0.10 1.56 ± 0.05 18.67 ± 0.08
12 30 (−1) 47.5 (0) 1 (0) 0.05 (−1) 3.64 ± 0.12 6.17 ± 0.25 0.66 ± 0.09 2.16 ± 0.09 1.69 ± 0.15 0.92 ± 0.08 11.28 ± 0.08
13 100 (1) 47.5 (0) 1 (0) 0.05 (−1) 4.07 ± 0.17 7.32 ± 0.28 0.78 ± 0.06 2.22 ± 0.27 2.19 ± 0.08 1.06 ± 0.05 13.47 ± 0.06
14 65 (0) 5 (−1) 0 (−1) 0.035(0) 4.30 ± 0.21 7.09 ± 0.34 0.76 ± 0.06 2.51 ± 0.20 2.14 ± 0.13 1.26 ± 0.04 16.20 ± 0.08
15 65 (0) 90 (1) 0 (−1) 0.035 (0) 4.27 ± 0.25 7.60 ± 0.27 0.97 ± 0.09 2.55 ± 0.13 2.74 ± 0.10 1.58 ± 0.07 17.33 ± 0.08
16 65 (0) 5 (−1) 2 (1) 0.035 (0) 4.50 ± 0.23 6.89 ± 0.35 0.63 ± 0.14 2.47 ± 0.16 1.54 ± 0.06 1.11 ± 0.06 12.52 ± 0.07
17 65 (0) 90 (1) 2 (1) 0.035 (0) 4.18 ± 0.10 5.55 ± 0.12 0.75 ± 0.09 2.67 ± 0.25 1.53 ± 0.18 1.06 ± 0.07 10.44 ± 0.06
18 65 (0) 47.5 (0) 1 (0) 0.035 (0) 3.68 ± 0.10 6.00 ± 0.21 0.69 ± 0.14 2.52 ± 0.16 1.74 ± 0.11 0.94 ± 0.06 12.04 ± 0.09
19 30 (−1) 47.5 (0) 0 (−1) 0.035 (0) 4.22 ± 0.10 7.06 ± 0.27 0.79 ± 0.10 2.49 ± 0.18 2.23 ± 0.06 1.26 ± 0.07 15.55 ± 0.04
20 100 (1) 47.5 (0) 0 (−1) 0.035 (0) 4.88 ± 0.14 10.10 ± 0.27 1.26 ± 0.09 2.89 ± 0.19 3.93 ± 0.15 1.85 ± 0.07 18.77 ± 0.09
21 30 (−1) 47.5 (0) 2 (1) 0.035 (0) 3.28 ± 0.12 6.54 ± 0.19 0.60 ± 0.06 2.22 ± 0.12 1.28 ± 0.08 0.95 ± 0.04 9.90 ± 0.06
22 100 (1) 47.5 (0) 2 (1) 0.035 (0) 5.00 ± 0.11 8.38 ± 0.21 0.85 ± 0.06 2.88 ± 0.29 2.53 ± 0.08 1.29 ± 0.07 14.12 ± 0.06
23 65 (0) 5 (−1) 1 (0) 0.02 (1) 4.40 ± 0.12 7.47 ± 0.18 0.76 ± 0.10 2.59 ± 0.22 2.09 ± 0.19 1.03 ± 0.04 13.99 ± 0.07
24 65 (0) 90 (1) 1 (0) 0.02 (1) 5.52 ± 0.08 8.15 ± 0.22 0.82 ± 0.09 2.66 ± 0.14 1.89 ± 0.05 1.18 ± 0.05 13.09 ± 0.07
25 65 (0) 5 (−1) 1 (0) 0.05 (−1) 3.89 ± 0.12 7.10 ± 0.18 0.65 ± 0.09 2.25 ± 0.13 1.58 ± 0.07 0.97 ± 0.04 12.76 ± 0.06
26 65 (0) 90 (1) 1 (0) 0.05 (−1) 3.58 ± 0.15 6.67 ± 0.20 0.51 ± 0.14 2.08 ± 0.35 1.19 ± 0.10 0.72 ± 0.04 10.00 ± 0.09
27 65 (0) 47.5 (0) 1 (0) 0.035 (0) 3.69 ± 0.07 6.79 ± 0.17 0.69 ± 0.11 2.59 ± 0.14 1.82 ± 0.07 0.94 ± 0.05 12.45 ± 0.08
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Based on the analysis of variance (ANOVA), the regression coefficients of individual
linear, interaction, and quadratic terms were determined. The numerical magnitude of
the standardized model coefficients evidenced their significance in the obtained model.
Among standardized coefficients, the larger values are more effective. Plots depicting
response surface 3D plots were constructed for all the response variables (Figure 1A).

The polynomial equation’s fitness to the responses was assessed through the coefficient
of determination (R2). The significance of all the terms within the polynomial equation
was analyzed statistically by analyzing the F-value at p < 0.05. Equations were created,
selecting the significant (p < 0.05) non-standardized coefficients (including non-significant
terms if needed to ensure that the model was hierarchical), and their statistical parameters
(F-value and R2) were determined again.

2.2.2. Artificial Neural Networks (ANNs)

A multilayer perceptron (MLP)-based feed-forward ANN was applied for modeling
the extraction of phenolic compounds from the coffee husk. MATLAB version R2020a
was used to model the data using ANNs. The experimental data was constructed using
the regression-based network approach. The Broyden–Fletcher–Goldfarb–Shanno (BFGS)
quasi-Newton back-propagation (TRAINBFG) method was selected since it is an efficient
training function because it performs non-smooth optimizations and smaller networks [22].
The gradient descent method (LEARNGDM) as the adaptive learning function was used to
minimize the mean squared error (MSE) between the network output and the actual error
rate [23]. The hyperbolic tangent sigmoid transfer function (TANSIG) and linear transfer
function (PURELIN) were used to calculate a layer’s output from its net input [24]. All
these functions were used to train the neural network and built the best ANN. Multiple
feed-forward neural networks were trained and, subsequently, tested by determining the
number of neurons in the hidden layer to select an optimized ANN topology, with the
lowest root mean square error (RMSE) and highest R2 values. However, the number of
epochs (or cycles through the whole training dataset) was restricted to a minimum to avoid
over-fitting while establishing an optimal topology. Increased epoch numbers may cause
model over-fitting issues. The network architecture (Figure 2B) consisted of an input layer
with four neurons (temperature (T), time, (t), acidity, and S/L ratio), one hidden layer with
ten neurons, and an output layer with one neuron, which represented each of the response
variables (total phenolic compounds, TPC, in Figure 2B).

2.3. Comparison of the Prediction Ability of RSM and ANN

Several statistical parameters, including the coefficient of determination (R2), the root
mean square error (RMSE), and the absolute average deviation (AAD), were calculated
for the comparison of the estimation capabilities of RSM and ANN, according to the
following equations.

R2 = 1 − ∑n
i=1
(
Ypre − Yexp

)2

∑n
i=1
(
Ym − Yexp

)2 (3)

RMSE =

√
∑n

i=1
(
Ypre − Yexp

)2

n
(4)

ADD (%) =

(
∑n

i=1
(∣∣Ypre − Yexp

∣∣/Ypre
)2

n

)
·100 (5)

where Ypre is the predicted response variable (by either RSM or ANN), Yexp is the observed
response variable, Ym is the average response variable, and n is the number of experiments.
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Figure 2. Representative 3D plots illustrating the behavior of total phenolic compounds (TPC) extraction (A). Responses
(mg g−1) are graphed against two paired variables: T (temperature in ◦C), acidity (% citric acid), t (time in min) and S/L
(solid:liquid ratio in g mL−1); the topology of the multilayer feed-forward neural network for TPC (B), and scatter plot
between the experimental and predicted yield by artificial neural networks (ANNs) for training, validation, testing, and
overall data fitting for TPC (C).

2.4. Validation of the Model

The extraction conditions were optimized for the maximum yield of phenolic com-
pounds (total phenolic compounds (TPC), total flavonoids (TF), total flavanols (TFL), total
proanthocyanidins (PAC), total phenolic acid (TPA), and total ortho-diphenols (TOD)) and
the antioxidant capacity (AC) by employing RSM. Then, the responses were determined
under the optimal and suboptimal extraction conditions. Finally, the experimental values
were compared with predicted values (from RSM and ANN) based on the coefficient of
variation, CV (%), to determine the model’s validity. The UPLC-ESI-MS/MS profiles of
phenolic compounds were also determined at the optimized conditions.

2.5. Heat-Assisted Extraction (HAE)

The HAE was carried out in closed vessels in a temperature-controlled water bath
with continuous stirring. According to the experimental design, the milled coffee husk
was extracted at various temperatures, times, acidity values, and S/L ratios as described
in Table 1. Once HAE was finished, the solubilized phytochemicals were separated by
centrifugation (4000× g, 4 ◦C, 15 min), and the supernatants were freeze-dried. The samples
were resuspended in Milli-Q water (10 mL) after neutralization and preserved at −20 ◦C
until analysis.
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2.6. Organic Solvent Extraction of Free and Bound Phenolic Compound Fractions

Free and bound phenolic fractions from the coffee husk were extracted as described
by Rebollo-Hernanz et al. [25] Phenolic compounds from the coffee husk were recovered
using a conventional organic method to compare these conditions to those of the optimized
methodology using just water as the extracting agent. Here, phenolic compounds’ total
content was calculated as the sum of the free and bound phenolic fraction.

2.6.1. Extraction of Free Phenolic Compounds

Milled coffee husk (1.0 g) was macerated for 30 min using methanol-HCl (0.1%)/H2O
(80:20, v/v) (50 mL) in an ultrasonic bath. After that, samples were maintained under
stirring for 16 h at 40 ◦C. The samples were centrifuged (4000× g, 4 ◦C, 15 min), and the
supernatants were collected. This process was repeated two times. All the methanolic
fractions were combined and evaporated under vacuum. The free phenolic compound
fractions were redissolved in methanol (10 mL) and were preserved at −20 ◦C until analysis.

2.6.2. Extraction of Bound Phenolic Compounds

The insoluble residues from the free phenolic compound extraction were hydrolyzed
using 4 mol L−1 NaOH (20 mL) under an atmosphere of N2 under continuous shaking (1 h,
25 ◦C). The hydrolysates were acidified with 8 mol L−1 HCl until reaching pH 2. Then, the
samples were centrifuged (4000× g, 4 ◦C, 15 min), and bound phenolic compounds were
extracted from the aqueous alkali phase. Liquid:liquid extraction with diethyl ether:ethyl
acetate (50:50, v/v) was repeated three times, and the three organic phases were mixed. Or-
ganic fractions were dried under vacuum, redissolved in methanol (10 mL), and preserved
at −20 ◦C until analysis.

2.7. Determination of Phenolic Compounds
2.7.1. Total Phenolic Compounds (TPC)

Total phenolic compounds were quantified using the Folin–Ciocalteu colorimetric
method, following the protocol of Singleton, Orthofer, and Lamuela-Raventós [26] adapted
to the micromethod format. Samples (10 µL) were mixed with the Folin–Ciocalteu reagent
(diluted 1:14, v/v in Milli-Q water) (150 µL). After incubating for 3 min, 20% Na2CO3
(50 µL) was added to each well, and the mixture was homogenized. Plates were incubated
for 2 h at room temperature. The absorbance was read at 750 nm using a microplate reader
incubation. Calibration curves were prepared using solutions of gallic acid, and results
were expressed as mg of gallic acid equivalents per gram (mg GAE g−1) of dry coffee husk.

2.7.2. Total Flavonoids (TF)

The content of total flavonoids was determined using the aluminum chloride method
adjusted to the micromethod format [27]. Briefly, samples and standards (100 µL) were
mixed with 5% Na2NO2 (30 µL) and incubated for 5 min at 20 ◦C. Subsequently, 10% AlCl3
(30 µL) was added. The mixture was further homogenized and incubated for 6 min. Then,
2 mol L−1 NaOH (100 µL) was added, and the solution was finally homogenized. The
absorbance was recorded at 510 nm. The content of total flavonoids was estimated with a
quercetin calibration curve, and the results were expressed as mg of quercetin equivalents
per gram (mg QE g−1) of dry coffee husk.

2.7.3. Total Flavanols (TFL)

The content of total flavanols was assessed by the vanillin method adapted [28].
Samples (10 µL) were added to each well, and 8.4 mol L−1 vanillin 1% HCl (50 µL) and 37%
HCl (250 µL) were added and let to react (15 min, 20 ◦C). The absorbance was measured at
500 nm, and the concentration of total flavanols was calculated using a standard curve of
catechin. The results were expressed as mg of catechin equivalents per gram (mg CE g−1)
of dry coffee husk.
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2.7.4. Total Proanthocyanidins (PAC)

The content of total proanthocyanidin was determined using a modification of the
Bate-Smith method [29]. Briefly, 10 µL of each extract and 1 mL of 0.54 mmol L−1 FeSO4
in butanol/HCl (50:50) were incubated at 90 ◦C for 1 h. After cooling, the absorbance
was measured at 550 nm against an unheated blank prepared in the same way than each
sample. Cyanidin chloride was used as a standard to construct the calibration curve.
Results were expressed as mg of cyanidin chloride equivalents per gram of dry coffee husk
(mg CCE g−1).

2.7.5. Total Phenolic Acids (TPA)

The content of total phenolic acids was measured following the method described by
Vukic et al. [30]. Samples or standards (10 µL) were mixed with Milli-Q water (50 µL). Then,
a Na2MoO4 solution and 0.1 mol L−1 HCl (50 µL) were combined with the diluted sample,
and then NaOH was added (100 µL, 0.1 mol L−1). The absorbance was measured at 490 nm
and the content of total phenolic acids was estimated using a calibration curve of caffeic
acid. The results were expressed as mg of caffeic acid equivalents per gram (mg CAE g−1)
of dry coffee husk.

2.7.6. Total ortho-Diphenols (TOD)

The content of ortho-diphenols was estimated according to the method described by
Granato et al. [31]. Samples (50 µL) were mixed with 0.05 g mL−1 Na2MoO4·2H2O. The
absorbance was measured at 370 nm after a 25 min incubation, and the o-diphenols content
was calculated using a calibration curve of caffeic acid. The results were expressed as mg
of caffeic acid equivalents per gram (mg CAE g−1) of dry coffee husk.

2.7.7. Assessment of In Vitro Antioxidant Capacity (AC)

The coffee husk phenolic extracts’ in vitro antioxidant capacity was assessed using
the ABTS•+ assay, as previously described [32]. ABTS•+ radical cations were generated
by mixing ABTS solution with K2S2O8 (dark and room temperature for 12–16 h, under
continuous shaking before use). The ABTS•+ assay solution was prepared by dilution in
PBS (5 mmol L−1, pH 7.4) to reach an absorbance of 0.70 ± 0.02 at 734 nm. The samples
and standards (30 µL) were mixed with the 270 µL of ABTS•+ assay solution, and the
absorbance of the samples at 734 nm was read after a 10 min incubation. Calibration curves
were prepared using standard solutions of Trolox, and the results were expressed as mg
Trolox equivalents per gram (mg TE g−1) of dry coffee husk.

2.8. UPLC-ESI-MS/MS Analysis of Phenolic Compounds

The targeted phenolic compounds were analyzed using UPLC-ESI–MS/MS accord-
ing to a method previously described [33]. Extracts were suspended in water, filtered
(0.22 µm), and the internal standard 4-hydroxybenzoic-2,3,5,6-d4 acid solution (Sigma–
Aldrich, St. Louis, MO, USA) was added to the samples in a proportion of 1:5 (v/v). Data
were collected under the multiple reaction monitoring mode for the quantification, tracking
the specific transition of parent and product ions for each compound. The electrospray ion-
ization was operated in negative mode. All phenolics were quantified using the calibration
curves of their corresponding standards. Injections were carried out in triplicate (n = 3).

2.9. Statistical Analysis

Statistical analysis of the experimental results was performed using the statistical
programs Design Expert 11, MATLAB version R2020a, and SPSS 24.0. All data are pre-
sented as the mean ± standard deviation (SD) of at least three independent experiments
(n = 3), where each experiment had a minimum of three replicates for each sample. For
comparisons among extraction conditions, data were analyzed by one-way analysis of
variance (ANOVA) and the post hoc Tukey test. Differences were considered significant
at p < 0.05. The statistical design, RSM model, and optimization were calculated with
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Design Expert. ANN models were constructed, tested, and validated using MATLAB. The
chemometric analysis was carried out to describe the phenolic extracts better. Principal
component analysis (PCA) was used to classify samples according to their phenolic com-
position. Partial least squares analysis (PLSA) was used to rank the spectrophotometric
and chromatographic parameters according to their importance (variable importance in
projection (VIP) scores) on the variability among extracts. An agglomerative hierarchi-
cal cluster analysis coupled to a heatmap was generated to depict the variability among
extracts. Principal components regression (PCR) and principal least squares regression
(PLS-R) were constructed to evaluate the influence of individual phenolic compounds on
the in vitro antioxidant capacity. Pearson’s linear correlations were calculated to assess
the association between spectrophotometric techniques and results and chromatographic
methods, using the concentration of phenolic compounds obtained.

3. Results and Discussion
3.1. Fitting of the RSM and ANN Models

The experimental results for each of the 27 conditions from the Box–Behnken design
are presented in Table 1. The RSM fitting for each response variable (TPC, TF, TFL, PAC,
TPA, TOD, and AC) was produced using second-order polynomial equations. Response
surface 3D plots were generated for each response variable. Figure 2A depicts the behavior
of TPC when modifying extraction variables as a representative response. The graphs were
generated by plotting the response (TPC) against two independent variables while keeping
the other independent variables at a fixed level (in its intermediate value).

The non-significant terms (p > 0.05) were not considered to improve the models’ fitting
and prediction. Both complete (RSM) and simplified models, including just significant
(p < 0.05) terms (RSM ST), statistical parameters measuring the predictive ability of models
are presented in Table 2. RSM models exhibited R2 values between 0.8919 and 0.9744,
demonstrating a high linear correlation between experimental and predicted values. The
RSM ST models exhibited lower R2 values (0.7101–0.9597); nonetheless, the model’s math-
ematical fitting continues to show a strong correlation between experimental–predicted
values. The lower RMSE and ADD are, the better is the fit between experimental and
predicted values. Thus, it was observed that the complete RSM models exhibited lower
RMSE and ADD than the RSM ST models for all the response variables.

The ANN was used to predict non-linear associations between the extraction parame-
ters (X1, X2, X3, and X4) and the response variables (TPC, TF, TFL, PAC, TPA, TOD, and
AC). The experimental values used to create the RSM model were also employed to build
the ANN model: 70% (19 points) for network training, 15% (4 points) for validation, and
the remaining 15% (4 points) for network testing (Figure 2C). The output responses were
calculated by passing the weighted sum of input variables to each neuron via an activation
function represented by the ANN architecture’s hidden layer. The interconnected weights
were randomly initialized and adjusted to minimize residual errors between the target and
the models’ actual outputs (Figure 2B). The optimal number of neurons in the hidden layer
was identified through a systematic trial-and-error method using the TPC input. According
to this principle, the best results were acquired with feed-forward network topologies,
with three layers: input, output, and one hidden layer, with ten neurons, trained with
the back-propagation algorithm. These architectures were then used for all the response
variables. The correlation coefficient between experimental response variables and the
ANN’s predicted values was higher than 0.9 for training, validation, testing, and overall
fitting for all variables. As an example, Figure 2C depicts the scatter plots for TPC modeling.
Table 2 shows the high R2 and low RMSE and ADD obtained from the ANN models. R2

values ranged from 0.9802–0.9950. RMSE and ADD values were lower than those of RMS
and RSM ST, between 0.02–0.24 and 0.19–2.79, respectively. Therefore, it was proved that
ANNs are a complex optimization and simulation computational method that displays
great potential due to their robust prediction and estimation abilities [34].
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Table 2. Comparison of optimization and prediction capabilities of response surface methodology
(RSM) and ANN for the extraction of total phenolic compounds (TPC), total flavonoids (TF), total
flavanols (TFL), total proanthocyanidins (PAC), total phenolic acids (TPA), total o-diphenols (TOD),
and the in vitro antioxidant capacity (AC). R2: the coefficient of determination; AAD: absolute
average deviation.

Response Modeling Method R2 RMSE AAD (%)

TPC
RSM 0.9402 0.16 3.02

RSM ST 0.9110 0.20 3.58
ANN 0.9802 0.09 1.48

TF
RSM 0.8919 0.36 4.20

RSM ST 0.7101 0.63 6.95
ANN 0.9950 0.08 0.57

TFL
RSM 0.9222 0.05 0.50

RSM ST 0.8639 0.06 0.65
ANN 0.9882 0.02 0.19

PAC
RSM 0.9413 0.06 1.97

RSM ST 0.8747 0.09 2.92
ANN 0.9879 0.03 0.78

TPA
RSM 0.9355 0.16 6.61

RSM ST 0.8901 0.20 8.40
ANN 0.9860 0.07 2.79

TOD
RSM 0.9627 0.05 3.47

RSM ST 0.9489 0.06 4.19
ANN 0.9882 0.03 1.59

AC
RSM 0.9744 0.41 2.47

RSM ST 0.9597 0.51 3.16
ANN 0.9912 0.24 1.52

RSM ST: RSM simplified models including only significant (p < 0.05) terms.

3.2. Effect of HAE Parameters on the Different Response Variables

RSM regression equations, extraction variables contributions, and statistical parame-
ters (ANOVA) are presented in Table 3. All the response variables adjusted to second-order
polynomial equations explained the variation in the different responses as a function of
the extraction parameters. The p-values were used to evaluate the significance of each
coefficient. Low p-values, below 0.05, 0.01, and 0.001, indicated that the model terms
were significant, highly significant, and remarkably significant, respectively, and p-values
greater than 0.05 indicate that the model terms were not significant [35]. Temperature (X1)
and S/L ratio (X4) significantly (p < 0.01) contributed to all response variables. Acidity
(X3) significantly (p < 0.01) influenced TF, TFL, TPA, TOD, and AC. The impact of time
(X2) was just significant for AC (p < 0.05). The quadratic influence of extraction parame-
ters was restricted to TPC (temperature and time), TF (temperature), TFL (temperature
and acidity), PAC (S/L ratio), TPA, TOD, and AC (temperature and acidity). Similarly,
the interactive effects of the variables were limited to temperature–acidity in TPC; the
temperature–S/L ratio in TPC, TFL, PAC, TPA, TOD, and AC; time–acidity in TOD and
AC; the time–S/L ratio in TPC and TOD; and acidity–S/L ratio in TFL, PAC, TOD, and AC.
The quadratic (5.1–28.6%) and interactive (6.2–17.1%) effects exhibited a low contribution
to the models. Contrariwise, the linear effect accounted for 61.3–78.6% of the contribution
on the extraction.
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Table 3. Regression coefficient (β), contribution, coefficient of determination (R2 and Adj. R2), and F-test value of the predicted second-order polynomial models for the phenolic
compounds and antioxidant capacity.

TPC TF TFL PAC TPA TOD AC

β Contrib.
(%) β Contrib.

(%) β Contrib.
(%) β Contrib.

(%) β Contrib.
(%) β Contrib.

(%) β Contrib.
(%)

Constant
(X0) 3.689 *** 6.769 *** 0.676 *** 2.541 *** 1.775 *** 0.950 *** 12.221 ***

Linear 61.3 *** 69.7 *** 65.6 *** 69.5 *** 73.1 *** 61.3 *** 78.6 ***
X1 0.592 *** 35.1 *** 1.073 *** 41.8 *** 0.133 *** 29.2 *** 0.191 *** 27.4 *** 0.558 *** 36.4 *** 0.185 *** 24.5 *** 2.028 *** 28.0 ***
X2 0.056 0.3 −0.034 0.0 0.030 1.5 0.010 0.1 0.045 0.2 0.032 0.7 −0.408 * 1.1 *
X3 −0.001 0.0 −0.645 ** 15.1 ** −0.114 *** 21.5 *** −0.042 1.3 −0.509 *** 30.4 *** −0.172 *** 21.2 *** −2.487 *** 42.1 ***
X4 −0.508 *** 25.9 *** −0.595 *** 12.9 *** −0.090 *** 13.4 *** −0.232 *** 40.7 *** −0.229 ** 6.1 ** −0.144 *** 14.9 *** −1.045 ** 7.4 ***

Quadratic 28.6 *** 8.1 * 17.3 * 5.1 11.5 ** 27.2 *** 9.6 ***
X1

2 0.559 *** 13.9 *** 0.550 * 4.9 * 0.114 ** 9.7 ** 0.025 0.2 0.320 ** 5.3 ** 0.149 *** 7.1 *** 1.255 *** 4.7 ***
X2

2 0.517 *** 11.9 *** −0.179 0.5 0.007 0.0 −0.041 0.6 −0.105 0.6 0.020 0.1 0.439 0.6
X3

2 0.153 1.0 0.263 1.1 0.100 ** 7.4 ** 0.066 1.4 0.324 ** 5.5 ** 0.251 *** 20.0 *** 1.183* ** 4.2 ***
X4

2 0.196 1.7 0.317 1.6 0.018 0.2 −0.093 * 2.9 * −0.055 0.2 0.016 0.1 −0.127 0.0

Interaction 12.5 ** 10.9 11.2 * 17.1 ** 6.2 9.2 * 10.1 **
X12 −0.060 0.1 −0.344 1.4 0.032 0.6 0.066 1.1 0.070 0.2 −0.033 0.3 −0.048 0.0
X13 0.267 * 2.4 * −0.298 1.1 −0.057 1.8 0.065 1.1 −0.113 0.5 −0.063 1.0 0.249 0.1
X14 −0.390 ** 5.1 ** −0.559 3.8 −0.079 * 3.4 * −0.145 ** 5.3 ** −0.254 * 2.5 * −0.094 * 2.1 * −1.345 *** 4.1 ***
X23 −0.072 0.2 −0.460 2.6 −0.021 0.2 0.042 0.5 −0.153 0.9 −0.089 * 1.9 * −0.799 * 1.4 *
X24 −0.357 * 4.3 * −0.280 1.0 −0.051 1.4 −0.060 0.9 −0.047 0.1 −0.099 * 2.3 * −0.465 0.5
X34 0.126 0.5 0.301 1.1 0.082* 3.7 * 0.182 ** 8.3 ** 0.228 2.0 0.082 * 1.6 * 1.312 ** 3.9 **

Model 94.0 *** 89.2 *** 92.2 *** 94.1 *** 93.6 *** 96.3 *** 97.4 ***

R2 0.9402 0.8919 0.9222 0.9413 0.9355 0.9627 0.9744
Adj. R2 0.8705 0.8296 0.8314 0.8728 0.8603 0.9192 0.9446
F value
(model) 13.48 *** 7.07 *** 10.16 *** 13.75 *** 12.43 *** 22.13 *** 32.67 ***

X1: extraction temperature (◦C), X2: extraction time (min), X3: acidity (% citric acid), X4: solid-to-liquid ratio (g mL−1), R2: Coefficient of determination. Level of significance: * p < 0.05, ** p < 0.01, *** p < 0.001.
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The TPC varied from 3.28 to 5.93 mg g−1 (Table 1). The model, explaining 94.0% of the
variation, was mainly influenced by temperature (35.1%) and the S/L ratio (25.9%) (Table 3).
Generally, a high extraction temperature is associated with an increase in the solubility of
phenolic compounds from the matrix [36]. A decrease in the S/L ratio enhances the extrac-
tion of phenolic compounds from plant matrices by reducing the saturation effects due
to the concentration of phenolic compounds [37]. The TF ranged from 5.52–10.10 mg g−1

(Table 1). Similar to TPC, temperature exhibited the highest contribution (41.8%), whereas
acidity and S/L ratio were the following variables contributing to the variability of the
model (15.1% and 12.9%, respectively), which responded to 89.2% of the total variability
(Table 3). Previous studies demonstrated a positive impact of this parameter on flavonoid
extraction [38]. The TFL oscillated from 0.51 to 1.26 mg g−1 (Table 1). The model was
mainly contributed by temperature (29.2%), acidity (21.5%), and S/L ratio (13.4%), as
observed for TF (Table 3). Recently, Silva et al. [15] observed that higher TFL content was
obtained from coffee husk using HAE at 60 ◦C than with ultrasound-assisted extraction alt
35 ◦C. Therefore, the extraction temperature showed a key role in the phenolic recovery.
The PAC fluctuated less than other responses (2.08–3.48 mg g−1) (Table 1). In contrast
to other responses, the main factor affecting PAC extraction was the S/L ratio (40.7%)
(Table 3). Temperature showed a remarkably significant (p < 0.001) effect (27.4%). Procyani-
dins extraction entails higher difficulty due to the lower polarity in aqueous solvents [39].
As observed, higher water volumes and high temperatures would be needed to recover
the maximum PAC yield. The TPA reached 1.19–3.93 mg g−1 (Table 1). This extraction
model was primarily influenced by temperature and acidity (36.4% and 30.4%, respectively)
(Table 3). Likewise, the TOD varied from 0.72 to 1.85 mg g−1 (Table 1). Contrary to the
other responses, TOD was not only highly influenced by temperature and acidity (24.5
and 21.2, respectively) linearly, but also a remarkably significant (p < 0.001) effect was
observed quadratically by acidity (20.0%) (Table 3). High acidity can degrade chlorogenic
acid. This compound is unstable under these conditions; thus, lower acidity is preferred
to extract when chlorogenic acid is present [40]. Finally, the AC of the extracts from the
coffee husk oscillated from 9.90 to 18.77 mg g−1 (Table 1). Acidity was the main extraction
variable affecting AC (42.1%), followed by temperature (28.0%) (Table 3). This model
explained 97.4% of the total viability, being the best one among the studied response
variables. As previously mentioned, the effect of acidity/low pH needs to be taken into
account in extracts with a high concentration of chlorogenic acid, such as coffee, and its
by-products [41]. In summary, the positive impact of temperature and S/L ratio was
evidenced for all the responses (TPC, TF, TFL, PAC, TPA, TOD, and AC). Temperature
increases the water diffusivity, and the lower S/L ratio favors the mass transfer. Moreover,
the negative effect of acidity was proved in most of them, attributable to the degradation
of chlorogenic acids, highly distributed in all the coffee cherry tissues. Time did not affect
the extraction significantly (p < 0.05).

All models exhibited remarkably significant fitting (p < 0.001), F-value (7.07–32.67).
R2 values exhibited a very strong correlation, being close to the unity and similar to the
Adj. R2 values. To increase the significance of the models’, the non-significant linear,
quadratic, and interactive terms were excluded from the model, and the mathematical
model was recalculated, resulting in the polynomial equations shown in Table 4. R2

values diminished since these models did not include all the variability of the extraction
parameters. Nonetheless, they were much more significant (p < 0.0001), showing F-values
from 15.77 to 44.96. Hence, the obtained models are presented as an approach for predicting
the real behavior of the extraction of phenolic compounds from the coffee husk when
modifying the studied parameters (temperature, time, acidity, and S/L ratio).
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Table 4. Non-coded equations and their statistical parameters for the extraction of total phenolic compounds (TPC), total
flavonoids (TF), total flavanols (TFL), total proanthocyanidins (PAC), total phenolic acids (TPA), total o-diphenols (TOD),
and the in vitro antioxidant capacity (AC).

Non-Coded Equation R2 F-Value p-Value

YTPC = 4.0 − 1.5 × 10−2 x1 − 1.7 × 10−3x2 − 5.0 × 10−1x3 + 4.1 × 10+1x4 + 3.8 ×
10−4x1

2 + 2.4 × 10−4x2
2 + 7.6 × 10−3x13 − 7.4 × 10−1x14 − 5.6 × 10−1x24

0.9110 19.33 <0.0001

YTF = 8.6 − 1.9 × 10−2x1 − 6.4× 10−1 x3 − 4.0× 10+1 x4 + 3.8× 10−4 x1
2 0.7414 15.77 <0.0001

YTFL = 1.1 − 2.4 × 10−3x1 − 4.9 × 10−1x3 − 1.7x4 + 8.8 × 10−5x1
2 + 9.4 × 10−2x3

2 −
1.5 × 10−1x14 + 5.4x34

0.8639 17.23 <0.0001

YPAC = 2.0 + 1.5 × 10−2x1 − 4.7 × 10−1x3 + 2.2 × 10+1x4 − 4.6 × 10+2x4
2 − 2.8 ×

10−1x14 + 1.2 × 10+1x34
0.8747 23.27 <0.0001

YTPA = 2.2 − 5.3 × 10−3x1 − 1.2x3 + 1.6 × 10+1x4 + 2.9 × 10−4x1
2 + 3.6 × 10−1x3

2 −
4.8 × 10−1x14

0.8901 26.99 <0.0001

YTOD = 1.3 − 3.3 × 10−3x1 + 8.3 × 10−3x2 − 7.5 × 10−1x3 + 4.0x4 + 1.1 × 10−4x1
2 +

2.4 × 10−1x3
2 − 1.8 × 10−1x14 − 2.1 × 10−3x23 − 1.6 × 10−1x24 + 5.4x34

0.9489 29.73 <0.0001

YAC = 1.6 × 10+1 + 2.3 × 10−2x1 + 9.2 × 10−3x2 − 6.9x3 + 9.4x4 + 9.6 × 10−4x1
2 +

1.1x3
2 − 2.6x14 − 1.9 × 10−2x23 + 8.7 × 10+1x34

0.9597 44.96 <0.0001

3.3. Evaluation and Experimental Validation of Optimal Conditions

Maximizing the desirability of all the responses (TPC, TF, TFL, PAC, TPA, TOD,
and AC) conduced to two optimal extraction conditions varying just on the extraction
time (100 ◦C, 0% acid, 0.02 g mL−1, and 90 and 5 min, respectively). These conditions
predicted the maximum yield of phenolic compounds and antioxidant capacity (among
the conditions established). Their responses were evaluated experimentally and validated.

RSM and ANN-predicted values and experimental results obtained after extraction
under optimal and suboptimal conditions are shown in Table 5. The extraction at optimal
conditions yielded an extract with a high content of phenolic compounds and antioxidant
capacity. The experimental results did not differ from the predicted values from RSM
(0.0–5.5%) and ANN (2.3–11.8%). At suboptimal conditions, the difference was slower
for the RSM model (0.0–1.6%) and the ANN model (0.2–9.8%). Therefore, both models,
showing low CV (%) values, could be validated. The optimal and suboptimal conditions
generated extract with significantly different concentrations of phenolic compounds and
antioxidant capacity. However, the reduction in time could be of interest to the industry.
A considerable time reduction (18-fold) would mean a reduction in energy consumption
(the extracting agent, here water, has to reach 100 ◦C and be maintained for 5 or 90 min).
Thus, selecting the suboptimal conditions as the most appropriate for the food industry
would result in a higher extraction method sustainability. At these optimal and subopti-
mal conditions, the need for milling the sample was assessed: extractions were carried
using non-milled or raw samples, and the same analyses were performed. No differences
(p > 0.05) were found for most of the response variables at optimal conditions. On the
contrary, all response variables from the raw coffee husk exhibited significant differences
(p < 0.05) with the milled one. Milling increased the extraction yield by 20–74%. We have
previously evidenced that milling increases the extraction of total phenolic compounds
from coffee parchment (one of the teguments composing the coffee husk) [42]. A smaller
particle size favors mass transfer from the coffee pulp to the extracting water.
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Table 5. Validation of predicted values at optimal conditions of the aqueous extraction and comparison with organic solvent extraction of the phenolic compounds from the coffee husk.

Response

Optimal Conditions Aqueous Extraction Organic Solvent Extraction

100 ◦C, 90 min, 0% acid, 0.02 g mL−1 100 ◦C, 5 min, 0% acid, 0.02 g mL−1 MeOH:H2O NaOH-AcEt Σ

Predicted (CV, %) Experimental Predicted (CV, %) Experimental Free
Phenolics

Bound
Phenolics

Total
PhenolicsRSM ANN Milled Raw RSM ANN Milled Raw

TPC (mg g−1) 6.56 (3.5) 5.83 (11.8) 6.89 ± 0.13 d 6.31 ± 0.46 d 5.70 (1.4) 4.97 (8.2) 5.59 ± 0.06 c 3.94 ± 0.13 b 15.99 ± 1.16 e 2.39 ± 0.29 a 18.38
TF (mg g−1) 11.29 (1.2) 9.82 (11.0) 11.48 ± 0.05 d 11.01 ± 0.41 d 10.56 (0.8) 9.43 (7.2) 10.44 ± 0.08 c 7.08 ± 0.05 b 26.82 ± 2.65 e 4.72 ± 0.47 a 31.55

TFL (mg g−1) 1.60 (5.5) 1.61 (5.1) 1.73 ± 0.07 d 1.67 ± 0.06 d 1.33 (1.6) 1.18 (9.8) 1.36 ± 0.04 c 0.78 ± 0.01 b 1.63 ± 0.30 d 0.20 ± 0.06 a 1.83
PAC (mg g−1) 3.42 (0.0) 3.14 (5.9) 3.42 ± 0.05 d 3.24 ± 0.09 c 3.23 (0.2) 3.06 (3.7) 3.22 ± 0.12 c 2.68 ± 0.03 b 3.91 ± 0.37 e 1.32 ± 0.08 a 5.23
TPA (mg g−1) 4.87 (0.5) 5.01 (2.5) 4.84 ± 0.48 d 4.12 ± 0.29 c 3.90 (0.8) 3.76 (3.4) 3.94 ± 0.18 c 23.64 ± 0.08 b 6.88 ± 0.23 e 0.98 ± 0.06 a 7.86
TOD (mg g−1) 2.25 (1.6) 1.97 (7.9) 2.20 ± 0.06 e 2.04 ± 0.03 d 1.87 (0.0) 1.88 (0.2) 1.87 ± 0.08 c 1.28 ± 0.06 b 5.56 ± 0.30 f 0.91 ± 0.11 a 6.47
AC (mg g−1) 23.64 (0.7) 22.69 (2.3) 23.42 ± 0.15 e 22.36 ± 0.24 d 21.12 (0.8) 19.35 (7.0) 21.36 ± 0.66 d 14.99 ± 0.18 b 22.79 ± 1.54 d e 5.31 ± 0.42 a 28.10

Results are reported as mean ± SD (n = 3). Mean values followed by different superscript letters significantly differ (among columns) when subjected to ANOVA analysis and Tukey multiple range post hoc test
(p < 0.05).
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Compared with the organic solvent extraction, HAE extraction at optimal and subop-
timal conditions yielded 40–70% of TPC, TF, and TOD but extracted 87% of PAC and 100%
of TFL and AC. Therefore, while reducing the concentration of phenolic acids, flavanols
would be exerting a higher antioxidant capacity, resulting in 100% antioxidant capacity
maintenance. The bound phenolic fraction was also studied. This fraction, bound to the
coffee husk cell walls, accounted for 11–25% of the total phenolics and antioxidant capacity.
From these results, it is evidenced that the residue resulted from the aqueous extraction
would still contain a high concentration of free and bound phenolic compounds, and
consequently, antioxidant capacity. This residue could be used as a source of antioxidant
dietary fiber, as we have recently proposed [43], but also further treated to separate the
phenolic compounds associated with dietary fiber [44,45]. The literature gathers scarce
information about the extraction of bioactive compounds from the coffee husk.

The concentration of TPC varies among the diverse extraction conditions used by
different authors. Silva et al. [15] extracted phenolic compounds with ethanol and water:
ethanol mixtures. Ruesgas-Ramon at al. [46] used deep eutectic solvents, whereas Andrade
et al. [47] employed supercritical fluids to extract phenolic compounds from the coffee
husk. The aqueous extract presented concentrations similar to those obtained with eutec-
tic solvents but much lower than those obtained with ethanol and supercritical carbon
dioxide. Torres-Valenzuela et al. [48] extracted high contents of caffeine, chlorogenic acid,
and protocatechuic acid using supramolecular solvents from the coffee pulp. In general,
the phytochemical load in the coffee husk depends on the coffee variety, coffee cherry
processing, and the plants’ stress and climatic and soil conditions [41,49].

3.4. UPLC-ESI-MS/MS Phenolic Compound Profile and Chemometric Analysis

The UPLC-ESI-MS/MS analysis of the phenolic compounds profile from the dif-
ferent coffee husk extracts (Table 6) rendered a better comprehension of the compo-
sition of the extracts and the extraction behavior. Representative chromatograms of
the optima condition HAE extract, free, and bound phenolic extracts are illustrated in
Figure 3A. The main phenolic compounds composing the aqueous extracts was chlorogenic
acid (670–906 µg g−1), followed by protocatechuic acid (55–128 µg g−1), kaempferol-3-O-
galactoside (12–32 µg g−1), and gallic acid (9–23 µg g−1). The reduction of the extraction
time (from 90 to 5 min) significantly (p < 0.05) reduced the concentration of all phenolics
compounds, but syringic, p-coumaric, and ferulic acids, which were not found or their
concentration was reduced in the optimal conditions of extraction (100 ◦C, 90 min, 0% acid,
0.02 g mL−1). Moreover, the effect of milling was also significant (p < 0.05). (+)-Catechin
and procyanidin B1 were just released from the coffee husk matrix in the milled samples.
Likewise, vanillic and 3,4-dihydroxyphenylacetic acids, (−)-epicatechin, and procyanidin
B2 were primarily present in the aqueous extract from the optimal conditions and in a
much lower concentration when reducing time or skipping the milling step. The free phe-
nolic compounds fraction (extracted with methanol) contained the highest concentration
of chlorogenic acid (1428 µg g−1), kaempferol-3-O-galactoside (40 µg g−1), (+)-catechin
(30 µg g−1), and (−)-epicatechin (25 µg g−1). On the other hand, the protocatechuic acid
concentration was lower. The high temperature used in HAE may be liberating protocate-
chuic acid from the bound phenolic fraction [50]. The bound phenolic compounds fraction
(extracted after an alkali hydrolysis) was mainly composed of caffeic and protocatechuic
acids (90 and 43 µg g−1, respectively), with caffeic acid’s concentration being 3.4-fold
higher than in the free fraction.
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Table 6. UPLC-ESI-MS/MS phenolic compounds profile of the coffee husk extracts obtained by the aqueous extraction using optimal conditions and the organic solvent extraction of the
free and bound phenolic fractions.

Compound (µg g−1) Rt
(min)

Mass Spectral Data Optimal Conditions Aqueous Extraction Organic Solvent Extraction

[M − H]−
(m/z)

MS2

(m/z)

100 ◦C, 0% acid, 0.02 g mL−1 MeOH:H2O NaOH-AcEt Σ

90 Min 5 Min Free
Phenolics

Bound
Phenolics

Total
PhenolicsMilled Raw Milled Raw

Hydroxybenzoic acids
Gallic acid 1.73 169 125 22.79 ± 1.45 d 10.94 ± 0.81 b 12.11 ± 0.89 c 8.51 ± 0.10 a 23.15 ± 0.30 d - 23.15

Protocatechuic acid 3.34 153 109 127.96 ± 6.86 f 83.53 ± 5.37 d 66.20 ± 8.73 c 55.08 ± 2.11 b 99.94 ± 1.33 e 42.82 ± 8.59 a 142.76
4-hydroxybenzoic acid 4.43 137 93 3.51 ± 0.34 c 2.47 ± 0.19 b 3.19 ± 0.36 c 1.56 ± 0.07 a 4.30 ± 0.07 d 3.75 ± 0.51 c d 8.06

Vanillic acid 5.43 167 152 6.00 ± 2.52 a - - - 9.55 ± 0.20 b - 9.55
Syringic acid 5.96 197 182 - - 0.20 ± 0.03 a - 1.66 ± 0.10 b 0.20 ± 0.01 a 1.86
Salicylic acid 8.96 137 93 0.81 ± 0.03 b 0.90 ± 0.08 b 0.22 ± 0.04 a - 1.19 ± 0.02 c 0.25 ± 0.03 a 1.43

Hydroxycinnamic acids
Chlorogenic acid 5.38 353 191 905.67 ± 18.50 e 747.17 ± 36.10 c 840.04 ± 30.79 d 669.54 ± 40.06 b 1428.40 ± 25.80 f 0.67 ± 0.08 a 1429.07

Caffeic acid 5.48 179 135 15.16 ± 0.51 b 10.51 ± 1.07 a 14.00 ± 1.50 b 9.35 ± 0.11 a 26.21 ± 0.79 c 89.93 ± 9.73 d 116.14
p-coumaric acid 6.81 163 119 2.27 ± 0.04 b 1.39 ± 0.11 a 4.22 ± 0.14 d 1.37 ± 0.06 a 2.94 ± 0.04 c 8.21 ± 1.31 e 11.15

Ferulic acid 7.81 193 134 - - 4.25 ± 0.36 b - 1.74 ± 0.08 a 5.08 ± 0.67 c 6.81
Phenylacetic acids

3,4-dihydroxyphenylacetic acid 4.18 167 123 1.46 ± 0.51 b 1.04 ± 0.04 a - - - - -
Flavan-3-ols: monomers

(+)-catechin 5.22 289 245 0.45 ± 0.05 b - 0.31 ± 0.03 a - 30.31 ± 0.28 d 0.58 ± 0.08 c 30.89
(−)-epicatechin 6.27 289 245 4.71 ± 0.51 c 1.45 ± 0.06 b - - 25.07 ± 0.23 d 0.64 ± 0.05 a 25.71

Flavan-3-ols: dimers
Procyanidin B1 4.90 577 289 5.84 ± 0.69 - - - - - -
Procyanidin B2 5.93 577 289 3.03 ± 0.46 c 0.93 ± 0.17 b 0.76 ± 0.09 a 0.77 ± 0.08 a - - -

Flavonols
Quercetin-3-O-glucoside 8.34 463 301 15.03 ± 0.96 d 8.89 ± 1.17 b 10.45 ± 0.73 c 10.39 ± 0.44 c 18.16 ± 0.42 e 0.66 ± 0.03 a 18.82

Quercetin-3-O-galactoside 8.65 463 301 14.33 ± 0.14 d 8.79 ± 0.42 b 10.20 ± 1.91 c 10.25 ± 0.26 c 18.17 ± 0.41 e 0.67 ± 0.05 a 18.84
Kaempferol-3-O-galactoside 9.46 447 284 32.12 ± 0.94 e 18.27 ± 0.83 d 11.50 ± 0.24 b 14.13 ± 1.46 c 40.32 ± 0.85 f 1.05 ± 0.11 a 41.37

Results are reported as mean ± SD (n = 3). Mean values followed by different superscript letters significantly differ (among columns) when subjected to ANOVA analysis and Tukey’s multiple range post hoc test
(p < 0.05).
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PCA (Figure 3B) revealed the intrinsic grouping among samples. PCA extracted five
factors or principal components (PCs) to explain the phytochemical variability among the
aqueous and organic extracts from the coffee husk. The two first PCs (the ones graphed)
explained 88.1% of the variability; PC1 and PC2 represented 68.7 and 19.4% of the whole
variability. The PC1 exhibited a positive influence on all the in vitro determinations (TPC,
TF, PAC, TPA, TOD, and AC) but TFL, and most compounds measured by UPLC-MS/MS,
excluding caffeic, ferulic, p-coumaric, and 3,4-dihydroxyphenylacetic acids, and the flavan-
3-ols dimes, procyanidins B1 and B2, which were correlated with PC2. The PCA’s clustering
grouped the optimum condition (Op.1 Milled) with the sample of free phenolic compounds.
In turn, the three other aqueous extraction conditions (100 ◦C, 0% acid, 0.02 g mL−1; 90 min,
using raw coffee pulp, Op.1 Raw; and 5 min using both raw (Op.2 Raw) and milled (Op.2
Milled) coffee pulp) were grouped together, between the free and bound phenolic extracts.
Total phenolics were depicted on the right edge of the graph. Therefore, the extracts were
classified from left to right according to the total phenolic content.

Figure 3C represents the VIP scores from the PLS analysis. Total phenolics measured
by UPLC (total UPLC), phenolic, and hydroxycinnamic acids were the three most variable
parameters among the samples. Chlorogenic and caffeic acids were the individual phenolic
compounds exhibiting the highest variation, and therefore, showing the most significant
impact on sample classification. As the heatmap coupled to the dendrogram of hierarchical
clustering shows (Figure 3D), the extract at optimum condition (Op.1) was depic-ted
separately, between free and total phenolic, which were considered similar, and bound
phenolics and the other three aqueous extracts (Op.1 Raw and Op.2 Milled and Raw).
The differences in the extracts’ phenolic composition and antioxidant capacity define the
extraction at optimal conditions (100 ◦C, 90 min, 0% citric acid, and 0.02 g mL−1 S/L
ratio) as the best extraction, being the most similar to the conventional extraction of free
phenolics. A comprehensive analysis was carried out to find 18 compounds, including
hydroxybenzoic, hydroxycinnamic, phenylacetic acids, monomeric and dimeric flavan-3-
ols, and flavonols. Previous studies have been focused on the main phenolic compounds
(chlorogenic, protocatechuic, gallic, and caffeic acids) and the caffeine content [15,46,47].

Phenolic compounds from the coffee husk have been demonstrated to possess antioxi-
dant potential, as revealed in a previous study [51]. Identifying the compounds responsible
for these properties arouses great interest. Extensive research has focused on the sep-
aration and purification of active biomolecules from food and natural products [52,53].
The isolation and purification of the phytochemicals extracted following the proposed
green extraction method could strengthen their biological activity to be then used as food
ingredients or nutraceutical products. The ten most significant coefficients from principal
component regression (PCR) and partial least squares regression (PLS-R) are depicted in
Figure 3E,F. From the PCR coefficients, chlorogenic and protocatechuic acids were the
main phenolic compounds responsible for the in vitro antioxidant capacity. According to
the PLS-R coefficients, gallic acid and quercetin-3-O-glucoside, and 3-O-galactoside were
also significant contributors to the antioxidant properties of the extracts from the coffee
husk. These phenolic compounds have been formerly associated with potent antioxidant
properties in vitro and in vivo [54–57].

Pearson’s correlations were studied to analyze the relationship among in vitro pa-
rameters and the phenolic compounds quantified chromatographically. The obtained
associations were illustrated in a heatmap (Figure 4).

The concentration of numerous phenolic compounds correlated with the in vitro
assays results. The concentration of chlorogenic acid in the extracts from the coffee
husk strongly correlated with the content of TPC and TPA (r = 0.8973, p < 0.01 and
r = 0.9619, p < 0.001, respectively). Protocatechuic acid also showed a strong association
with TPA (r = 0.8745, p < 0.01). Kaempferol-3-O-galactoside significantly correlated with
TPC (r = 0.9008, p < 0.001) and TF (r = 0.8864, p < 0.001). The sum of flavonoids exhibited
strong association with TF (r = 0.9584, p < 0.001). Furthermore, the sum of the concentra-
tion of all individual phenolic compounds (total UPLC) presented a significant (p < 0.01)



Foods 2021, 10, 653 19 of 23

correlation (r = 0.8333–0.9842) with all the in vitro methods. Consequently, the use of
these spectrophotometric techniques to screen the best extraction conditions could be vali-
dated, as indicated by Granato et al. [58]. In vitro methods are consistent during screening
steps, as long as more specific and comprehensive techniques are used for phytochemical
profile analysis.
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This study presents the most comprehensive analysis of phenolic compounds compos-
ing the coffee husk. Here, we present the aqueous soluble phenolic compounds extracted
with HAE and the complete phenolic profile from free and bound phenolic compounds’
fractions. The protective effects of these compounds against oxidative stress and the devel-
opment of chronic diseases have been widely reported in the literature [51,59]. Chlorogenic
acid, the major phenolic compound found in the coffee husk, displayed the highest PCR
and PLS-R coefficients, and positively correlated with the in vitro AC (r = 0.8977, p < 0.01).
This compound has been demonstrated to be an excellent radical scavenger following
different antioxidant mechanisms and activating cellular antioxidant response (Nrf2-ARE
signaling pathways) [54,60]. Additionally, chlorogenic acid presents other biological prop-
erties, including the modulations of glucose and lipid metabolism [61], promotion of
adipocyte browning [62], and prevention of inflammation [63]. These health-promoting
properties elicit the use of the coffee husk as a sustainable source of chlorogenic acid,
among other phytochemicals. Thus, using these aqueous extracts from the coffee husk as
healthy ingredients could be a great strategy in valorizing coffee by-products and produc-
ing novel sustainable products. Although the present work is limited to a variety of coffee
husk, the sustainable conditions established could be applied in the extraction of other
coffee varieties and even to the extraction of phenolic compounds from the coffee pulp (a
by-product comparable to the coffee husk but obtained through the wet processing).

4. Conclusions

A green sustainable extraction method for recovering the high-value phenolic com-
pounds from the coffee husk was modeled and validated. The modification of the extraction
variables (temperature, time, acidity, and S/L ratio) lead to an improved extraction of phe-
nolic compounds and in vitro antioxidant capacity. The use of RSM and ANN permitted
one to model and optimize the aqueous extraction of total phenolic compounds, flavonoids,
and flavanols proanthocyanidins, phenolic acids, and o-diphenols, and a high in vitro
antioxidant capacity. Thus, the optimal conditions (100 ◦C, 90 min, 0% citric acid, and
0.02 g mL-1 S/L ratio), producing phenolic-rich extracts from the coffee husk using water
as the only extracting agent were established. The presence of chlorogenic, protocatechuic,
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caffeic, and gallic acids and several flavonols, with kaemferol-3-O-galactoside being the
primary one, was confirmed by the UPLC-ESI-MS/MS results. Chemometric techniques
defined chlorogenic acid as the main antioxidant compound. Likewise, multivariate analy-
sis permitted us to validate spectrophotometric techniques for screening the best extraction
methods since they showed strong correlations with the chromatographic results. This
green extraction may revalorize the coffee husk, a by-product generated globally and
of outstanding chemical and biological interest, as a new food ingredient with potential
antioxidant and health-promoting properties.
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