
UNIVERSIDAD AUTÓNOMA DE MADRID

Advanced Methods for Bayesian
Optimization in Complex Scenarios

by

Eduardo C. Garrido Merchán

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the
Escuela Politécnica Superior

Computer Science Department

under the supervision of Daniel Hernández Lobato

June 2021

http://www.uam.es
http://arantxa.ii.uam.es/~egarrido/
http://www.eps.uam.es
http://www.eps.uam.es

What is the essence of life? To serve others and to do good.

Aristotle.

Abstract

Some optimization problems require the evaluation of an expensive objective function, whether
in economical, computational time or other resources. The analytical expression of the objective
function may be unknown. Without an analytical expression, gradients are not accessible and
hence are not available for optimization procedures. The evaluation of the objective can also be
corrupted by noise. In this case, for the same value of the parameters, the evaluation will return
different values. The functions that have the previous characteristics are defined as black-boxes.
An example of a black-box function is estimating the generalization error of a machine learning
algorithm in terms of its hyper-parameters. Optimizing black-boxes is a task that has recently
gained special importance in the machine learning community.

Bayesian optimization (BO) is a set of methods that has been successfully applied for the
optimization of black-boxes. BO methods are generally used when the budget of evaluations of
the objective function is limited. They deliver great results as they think carefully about which
is the best possible next evaluation of the desired objective to be optimized. In order to do
so, BO methods rely on a probabilistic model of the objective function. This model generates
a predictive distribution of the objective at each input location, that captures the uncertainty
about the potential values of the objective. This information is used by BO methods to guide
the optimization process. The key for success is that computing the predictive distribution is
very cheap compared with evaluating the objective. The probabilistic model is often a Gaussian
process (GP) since its predictive distribution can be easily computed.

This thesis proposes several methods to extend the applicability of BO to a broader scope of
scenarios. One of these settings involves the simultaneous optimization of multiple objectives
under several constraints. For example, the optimization of the generalization error of a deep
neural network and its prediction time, with respect to its hyper-parameters, under the constraint
that the associated energy consumption on a mobile device is below a specific value. The objectives
are conflicting since an accurate network will be large and hence require long prediction times.
The solution of a multi-objective problem is a set of points that show the best trade-off for all the
objectives. This set is called the Pareto set. Of course, these points must be feasible, i.e., they
must satisfy all the constraints. This thesis describes a BO method that uses information theory
to solve constrained multi-objective problems. This method, called PESMOC, has state-of-the-art
results in this task.

In some practical situations we may have the possibility of evaluating the objective of the
problem, at several points, simultaneously. For example, when a cluster of computers is available.
Most BO methods are, however, sequential. Therefore, they can may not use all the available
computational nodes during the optimization process, resulting in a waste of resources. In this
thesis we propose an extension of PESMOC that, at each iteration, suggests a batch of points to
be evaluated in parallel. Our results show that such a method, called PPESMOC, improves the
results of simple extensions to the parallel setting of PESMOC and other related methods.

One issue of GPs is that they assume real-valued input variables. However, real problems
also involve integer-valued and categorical variables. For example, the hyper-parameters of a
deep neural network may involve, besides the learning rate, the number of layers, which is an
integer-valued variable, and the activation function, which is a categorical variable. This thesis
proposes a transformation of the covariance function of a GP to deal simultaneously with integer,
categorical and real variables. Our experiments show that the use of this transformation leads to
better results in BO methods that rely on using GPs as the probabilistic model.

Finally, this thesis illustrates the use of BO methods to solve a real problem involving robust
ocean wave features prediction. With this goal, BO methods are used to tune the hyper-parameters
a hybrid Grouping Genetic Algorithm for attribute selection combined with an Extreme Learning
Machine (GGA-ELM) for prediction. The proposed BO methodology has been tested in a real
problem involving buoys data from the Western coast of the USA. The results obtained show
that BO methods outperform a uniform search strategy and the hyper-parameter configuration
specified by a human expert.

iv

Resumen

Existen problemas de optimización cuyas funciones objetivo son muy costosas de evaluar, bien
en términos del coste computacional, económico o de otro tipo. Además, la expresión anaĺıtica
de la función objetivo puede ser desconocida. Sin esta información no es posible calcular los
gradientes de la función objetivo, que no podrán ser utilizados durante el proceso de optimización.
Más aún, la evaluación de la función objetivo puede estar contaminada por ruido. En este caso,
para la misma configuración de parámetros, dos evaluaciones pueden devolver valores distintos.
Las funciones objetivo que tienen estas caracteŕısticas se denominan cajas negras. Un ejemplo
de una caja negra es la estimación del error de generalización de un algoritmo de aprendizaje
automático en términos de sus hiper-parámetros. En particular, la optimización de cajas negras
ha adquirido recientemente gran importancia en el campo del aprendizaje automático.

La optimización Bayesiana (OB) define un conjunto de métodos se pueden utilizar para
optimizar cajas negras. Estos métodos son efectivos cuando el número posible de evaluaciones de
la función objetivo es limitado. En general, proporcionan buenos resultados de optimización ya
que analizan cuidadosamente dónde llevar a cabo la siguiente evaluación de la función objetivo
a optimizar. Para ello, emplean un modelo probabiĺıstico de la función objetivo que genera
una distribución predictiva, para cada valor de la función objetivo, en cada punto del espacio.
Esta distribución captura la incertidumbre sobre los posibles valores que puede tomar la función
objetivo. La distribución predictiva se usa en la OB para guiar el proceso de optimización. La
clave del éxito radica en que calcular la distribución predictiva es muy poco costoso, comparado
con el coste de evaluar de la función objetivo. Como modelo probabiĺıstico se suele emplear un
un proceso Gaussiano (PG) debido a la sencillez de calcular la distribución predictiva.

Esta tesis extiende la OB a escenarios mas complejos que los descritos. En primer lugar se
aborda la optimización simultánea de múltiples cajas negras bajo la presencia de restricciones.
Por ejemplo, cuando se optimiza el error de generalización y la velocidad de predicción de una
red neuronal profunda, en función a sus hiper-parámetros, tales que el consumo de enerǵıa de la
red en un teléfono móvil sea inferior a un cierto valor. Estos objetivos entran en conflicto uno con
otro, ya que redes con poco error serán más grandes y requerirán mayor tiempo de predicción.
Por ello, la solución de un problema multi-objetivo es el conjunto de puntos que captura el mejor
equilibrio entre objetivos, llamado conjunto de Pareto. Cuando hay restricciones, estos puntos
deben respetar todas las restricciones. Esta tesis describe PESMOC, un método de OB basado
en la teoŕıa de la información que permite solucionar los problemas descritos. PESMOC produce
resultados que se condsideran como el estado del arte en este tipo de problemas.

En determinadas ocasiones puede existir la posiblidad de evaluar la caja negra múltiples veces
en paralelo. Por ejemplo, cuando se dispone de un cluster de ordenadores. Sin embargo, la OB
estandar es secuencial, desperdiciando recursos al considerar una única evaluación de la función
objetivo por iteración. En esta tesis se propone una generalización de PESMOC que propone, en
cada iteración, un conjunto de puntos para ser evaluados en paralelo. Este método, PPESMOC,
mejora los resultados de extensiones simples de PESMOC y de otros métodos relacionados.

Muchos problemas de optimización tienen variables de tipo entero y/o categórico. Por ejemplo,
ajustar en una red neuronal la tasa de aprendizaje, variable de valor real; el número de capas,
variable de tipo entero; y la función de activación, variable categórica. Por desgracia, los PGs
asumen variables de valores reales. Se propone una transformación de la función de covarianza de
un PG para permitir simultáneamente variables reales, de tipo entero y categóricas. Mostramos
experimentos en los que la transformación mejora los resultados de la OB basada en PGs.

Finalmente, esta tesis muestra un caso real de uso de la OB para la predicción robusta
de caracteŕısticas de olas oceánicas. En este problema, la OB se usa para optimizar los hiper-
parámetros de un algoritmo h́ıbrido genético agrupado, encargado de la selección de atributos,
usado en combinación con una máquina de aprendizaje extremo para hacer predicciones. Este
sistema se ha evaluado en datos reales de boyas de la Costa Oeste de EEUU. Los resultados
obtenidos muestran que la OB mejora a la búsqueda aleatoria y al criterio de un experto.

v

Acknowledgements

Quisiera empezar enfatizando que esta tesis no hubiera podido ser firmada por mi
sino hubiera gozado de circunstancias personales absolutamente privilegiadas que, por
desgracia, muy poca gente puede tener: nacer en el páıs y en la época en la que he nacido,
ser criado en un entorno amigable, tener mis necesidades cubiertas y recibir mucho amor.
Ninguna semilla da fruto sino es regada, independientemente de las propiedades de dicha
semilla. Este fruto es un resultado del amor de mis seres queridos y de mucha gente que,
en el pasado, se ha sacrificado por todos para construir nuestra sociedad. Gracias a cada
persona que ha dejado mas bien que mal en el mundo y que, por ello, ha posibilitado
que esta tesis ha podido salir adelante. Yo no hubiera escrito una tesis si hubiera nacido
pobre, en un entorno violento o sin amor. Esta tesis es para cada persona que alguna
vez ha querido hacer una tesis y por las circunstancias no ha podido. Toda vuestra.

Mi director de tesis ha sido Daniel Hernández Lobato. Entre sus much́ısimas virtudes
destaca su ilimitada paciencia, su cordialidad, su afán de superación, su empat́ıa, su per-
feccionismo, su humildad y su preocupación por los problemas que tienen sus estudiantes.
No tengo palabras para agradecer lo much́ısimo que me ha ayudado y ha enseñado a lo
largo de estos años. Creo estar seguro de que me va a ser imposible devolverle ni una
décima parte de todo lo que me ha dado. Aún aśı, lo intentaré.

Quiero agradecer a mis abuelos todo su amor. A mi abuelo Juan Merchán, gracias
por ser un ejemplo de fortaleza. A mi abuela Antonia Asensio, gracias por ser un ejemplo
de firmeza. A mi abuelo Antonio Garrido, gracias por la ilusión que teńıas depositada en
mi. A mi abuela Lorenza Santos, gracias por los ratos que compartiste conmigo.

Quisiera agradecer también a mis suegros por su gran preocupación con respecto al
bienestar de nuestra familia. A Jose Luis Córdoba por ser un ejemplo de solidaridad. A
Maria Sánchez por ser un ejemplo de fuerza de voluntad.

He tenido la inmensa fortuna de tener los mejores padres que podŕıa desear. Personas
a las que les definen actos, no palabras. Personas que me han enseñado que el respeto,
el amor, la libertad y el sacrificio a los demás son esenciales. Personas que no me han
enseñado con palabras, sino con actos. A mi padre Eduardo Garrido, por ser un ejemplo
de sacrificio, constancia y abnegación. A mi madre Maŕıa Merchán, por ser un ejemplo
de amor filial, ascetismo y por hacer de mi todo lo que soy yo.

Durante este doctorado he tenido la bendición de recibir a dos niños maravillosos: a
Ramón y a Juan. No tengo palabras para describir el gran amor que siento por ellos.
Gracias por vuestro cariño. Gracias por siempre tener un abrazo guardado que surge en
el instante mas impensable. Gracias por ser quienes sois, que siempre seais felices.

He conocido a muchas personas, pero a nadie como mi mujer: Irene Córdoba Sánchez.
Irene es pura luz. No lo digo porque sea mi mujer. Lo digo objetivamente. Me ha tocado
la mayor loteŕıa y a la vez la mayor responsabilidad que a nadie le ha tocado nunca. Ser
el marido de Irene. Ninguna palabra te hace justicia, pues es inefable describir lo mucho
que te agradezco todo lo que has hecho y todo lo que eres. Gracias por iluminar cada
d́ıa y cada minuto de mi vida. Los ángeles existen y dejo aqúı testimonio de ello.

Deseo concluir, como creyente, manifestando mi mas humilde agradecimiento al
Señor. Gracias por darme a conocer tu obra. Gracias por tu ejemplo de amor infinito.
Gracias por otorgarme un cuerpo con el que pueda, espero, poder ayudar a los que mas
lo necesitan. Gracias por darme amor para que lo pueda compartir. Gracias, siempre.

vi

Contents

Abstract iv

Resumen v

Acknowledgements vi

Abbreviations xi

1 Introduction 1

1.1 Introduction . 1

1.2 Bayesian Optimization: A Visual Example 3

1.3 Bayesian Optimization in Complex Scenarios 7

1.4 Publications . 11

1.5 Summary by Chapters . 12

1.6 How to Read this Thesis . 13

1.7 Definitions and Notation . 14

2 Gaussian Processes And Approximate Inference 17

2.1 Introduction . 17

2.2 Gaussian Processes . 20

2.3 Covariance Functions . 22

2.4 Hyper-Parameter Estimation . 25

2.4.1 Maximizing the Log Marginal Likelihood 26

2.4.2 Slice Sampling from the Posterior Distribution 28

2.5 Other Surrogate Models . 31

2.6 Approximate Inference . 43

2.6.1 Exponential Family . 44

2.6.2 Expectation Propagation . 46

2.6.3 Expectation Propagation in Practice 50

2.7 Conclusions . 53

3 Fundamentals Of Bayesian Optimization 55

3.1 Introduction . 55

3.2 Bayesian Optimization . 58

vii

Contents viii

3.3 Acquisition Functions . 64

3.3.1 Defining the BO Strategy: Exploration and Exploitation 64

3.3.2 Acquisition Function criteria . 68

3.3.3 Information Theory . 74

3.3.4 Information Theory Based Acquisition Functions 75

3.4 Constrained Multi-Objective Scenario . 80

3.5 Bayesian Optimization Software . 83

3.6 Conclusions . 85

4 Predictive Entropy Search For Multi-Objective Bayesian Optimization
With Constraints 87

4.1 Introduction . 87

4.2 Predictive Entropy Search for Multi-objective Optimization with Constraints 90

4.2.1 Modeling Black-box Functions Using Gaussian Processes 90

4.2.2 Specification of the Acquisition Function 91

4.2.3 EP Approximation of the Conditional Predictive Distribution . . . 93

4.2.4 The PESMOC’s Acquisition Function 95

4.2.5 Computational Cost of PESMOC’s Acquisition Function 97

4.3 Related Work . 98

4.3.1 Evolutionary Strategies and Meta-heuristics 98

4.3.2 Related Bayesian Optimization Methods 99

4.3.3 Bayesian Multi-Objective Optimization 99

4.3.4 Existing Methods for Decoupled Evaluations 101

4.4 Experiments . 103

4.4.1 Quality of the Approximation to the Acquisition Function 104

4.4.2 Synthetic Experiments . 105

4.4.3 Benchmark Experiments . 108

4.4.4 Finding an Optimal Ensemble of Decision Trees 113

4.4.5 Finding an Optimal Deep Neural Network 116

4.5 Conclusions . 120

5 Parallel Predictive Entropy Search For Multi-Objective Bayesian Op-
timization With Constraints 123

5.1 Introduction . 123

5.2 Parallel Bayesian Optimization . 124

5.3 Parallel Predictive Entropy Search for Multi-Objective Bayesian Optimiza-
tion with Constraints . 125

5.3.1 Modeling the Black-boxes Using Gaussian Processes 125

5.3.2 Specification of the Acquisition Function 125

5.3.3 Approximating the Conditional Predictive Distribution 126

5.3.4 PPESMOC’s Acquisition Function 128

5.3.5 Quality of the Approximation to the Acquisition Function 128

5.4 Related Work . 130

5.5 Experiments . 131

5.5.1 Synthetic Experiments . 131

5.5.2 Benchmark Experiments . 132

Contents ix

5.5.3 Real-world Experiments . 133

5.6 Conclusions . 136

6 Dealing With Categorical And Integer-Valued Variables In Bayesian
Optimization With Gaussian Processes 137

6.1 Introduction . 137

6.2 Background on Gaussian Processes and Bayesian Optimization 139

6.3 Dealing with Categorical and Integer-valued Variables 141

6.3.1 Naive and Basic Approaches . 142

6.3.2 Proposed Approach . 143

6.3.2.1 Visualization of the Proposed Transformation 144

6.3.3 Optimization of the Acquisition Function 145

6.4 Related Work . 147

6.5 Experiments . 150

6.5.1 Synthetic Experiments . 150

6.5.2 Hyper-parameter Tuning of Machine Learning Algorithms 152

6.6 Conclusions . 155

7 Bayesian Optimization Of A Hybrid System For Robust Ocean Wave
Features Prediction 157

7.1 Introduction . 157

7.2 Wave Features of Interest: Calculation of Hm0 and P 158

7.2.1 Problem Encoding . 159

7.2.2 Genetic Operators . 160

7.2.3 Fitness Function: the Extreme Learning Machine 160

7.3 Experiments . 162

7.4 Conclusions . 165

8 Conclusions And Future Work 167

8.1 Conclusions . 167

8.2 Future Work . 168

A Probability Distributions 171

A.1 Probability Theory . 171

A.2 Gaussian Distribution . 173

B Appendix for Chapter 4 181

B.1 The Gaussian Approximation to the Conditional Predictive Distribution . 181

B.2 Using Expectation Propagation to Approximate the Conditional Predictive
Distribution . 183

B.3 The EP Approximation to the Φ(·) and Ω(·, ·) Factors 184

B.3.1 EP Update Operations for the Φ(·) Factors 185

B.3.1.1 Computation of the Cavity Distribution 185

B.3.1.2 Computation of the Partial Derivatives of the Normaliza-
tion Constant . 186

Contents x

B.3.1.3 Computation of the First and Second Moments for the
Updates . 186

B.3.2 EP Update Operations for the Ω(·, ·) Factors 187

B.3.2.1 Computation of the Cavity Distribution 187

B.3.2.2 Computation of the Partial Derivatives of the Normaliza-
tion Constant . 188

B.3.2.3 Computation of the First and Second Moments for the
Updates . 190

B.3.3 Reconstruction of the Conditional Predictive Distribution 191

B.3.4 The Conditional Predictive Distribution at a New Point 192

B.4 Final Gaussian Approximation to the Conditional Predictive Distribution 194

B.4.1 Initialization and convergence of EP 194

B.4.2 Parallel EP Updates and Damping 194

B.5 Sensitivity Analysis of the Sampled Pareto Set Size 195

B.6 Sensitivity Analysis of the Number of Montecarlo Iterations 196

B.7 Percentage of Infeasible Solutions in Benchmark Experiments 197

C Appendix for Chapter 5 201

C.1 Optimization of the PPESMOC Acquisition Function Approximation . . . 201

C.2 Expectation Propagation Factors Computation 201

C.3 Using Expectation Propagation to Approximate the Conditional Predictive
Distribution . 203

C.4 The EP Approximation to the Φ(·) and Ω(·, ·) Factors 205

C.4.1 EP Update Operations for the Φ(·) Factors 205

C.4.1.1 Computation of the Cavity Distribution 205

C.4.1.2 Computation of the Partial Derivatives of the Normaliza-
tion Constant . 206

C.4.2 EP Update Operations for the Ω(·, ·) Factors 207

C.4.2.1 Computation of the Cavity Distribution 207

C.4.2.2 Computation of the Partial Derivatives of the Normaliza-
tion Constant . 208

C.4.2.3 Computation of the First and Second Moments for the
Updates . 210

C.4.3 Reconstruction of the Conditional Predictive Distribution 211

C.4.4 The Conditional Predictive Distribution at a New Batch 212

C.4.5 Initialization and Convergence of EP 213

C.4.6 Parallel EP Updates and Damping 213

C.5 Additional Experiments Information . 213

C.5.1 Benchmark Experiments . 213

C.5.2 Real Experiments . 214

Bibliography 217

Abbreviations

ADF Assumed Density Filtering
AF Acquisition Function
BO Bayesian Optimization
DGP Deep Gaussian Process
EI Expected Improvement
EP Expectation Propagation
GP Gaussian Process
KL Kullback Liebler
MCMC Markov Chain Monte Carlo
PPESMOC Parallel Predictive Entropy Search for Multiobjective Optimization with

Constraints
PES Predictive Entropy Search
PESMOC Predictive Entropy Search for Multiobjective Optimization with Constraints
RS Random Search
UCB Upper Confidence Bound

xi

To my family

xiii

Chapter 1
Introduction

We begin this manuscript with an introduction to Bayesian optimization (BO), a

methodology to optimize black-box functions, i.e., functions with an unknown an-

alytical expression, with noisy evaluations and expensive to evaluate. We provide

a visual example that illustrates the operations performed in BO to better under-

stand it. BO is usually applied to the optimization of a single black-box but it can be

extended to consider broader scenarios, such as the optimization of multiple black-

boxes under the presence of several constraints. We enumerate these scenarios here,

since they are going to be targeted by proposed BO methods in the following chap-

ters. We continue the exposition with a list of publications that constitute the work

related with this thesis. A summary of the chapters of the document is provided

along with a guide on how to read them depending on the interests of the reader.

Finally, we conclude the chapter with an exposition of the notation that is going to

be used in this thesis.

1.1 Introduction

Optimization is the subfield of computer science that is concerned with finding the global
extremum (maximum or minimum) of a mathematically defined function (the objective
function) in some region of interest (Törn and Žilinskas, 1989). This process is expected
to deliver a solution within the region of interest that is close to the global extremum with
little or no human supervision. Assuming minimization, this scenario can be represented
as: x? = arg minx∈X f(x), where f : Rd → R is an example of the defined function, X
is the region of interest or input space and x? is the global extremum belonging to the
input space, which is a d-dimensional real-valued space Rd. Optimization algorithms
recommend solutions y at the end of the process whose regret r = |f(x?)−y| is, desirably,
as close as zero as possible (Pardalos and Romeijn, 2013). If the algorithm achieves zero
regret, then, it has found the global extremum, which is the ideal solution.

The classical optimization framework makes assumptions about the function whose
global extremum needs to be retrieved, as, for example, that the function needs to be
mathematically defined. That is, we must have access to its analytical expression and its
gradients. However, real problems include scenarios where the analytical expression of
the function to be optimized is unknown. Hence, gradients are not accesible. For example,
consider a scenario where the taste of a low calorie cookie needs to be optimized. There
is no analytical expression for its taste. However, it is possible to perform evaluations by

1

Chapter 1. Introduction 2

letting people taste the cookie to give their opinion about it. Another example would be
to optimize the hyper-parameters of a deep neural network. There is not an analytical
expression of the prediction error on a validation set of a deep neural network.

The gradients that are computed by having access to the analytical expression of the
objective function are used by gradient-based optimization algorithms, like l-BFGS (Zhu
et al., 1997). Therefore, these algorithms cannot be applied when we do not have access to
the gradients of the functions that we want to optimize. When gradients are not available,
a set of algorithms called metaheuristics, that do not need the gradients of a function to
optimize it, can be applied (Glover and Kochenberger, 2006). Metaheuristics, as global
optimization algorithms, also attempt to find the global extremum, but without the need
of gradients. Metaheuristics are defined as iterative processes which guide a subordinate
heuristic. This heuristic intelligently balances the exploration and exploitation of the
search space. It does so by learning strategies that are used to structure information
in order to efficiently find near-optimal solutions (Osman and Laporte, 1996). Some
examples of these strategies are genetic algorithms or constraint logic programming
(Davis, 1991; Jaffar and Maher, 1994). One issue that emerges with these algorithms is
that, to deliver a solution with low regret, they need a high number of evaluations of the
objective. Therefore, these algorithms are not thought for situations where the available
budget of evaluations is low. They assume that evaluations are cheap, so determining the
location of a new evaluation must not be more expensive that evaluating the objective
function. As a consequence, these algorithms may require a high number of evaluations to
achieve a solution with low regret with respect to the optimum of the objective function.

An example of an expensive to evaluate function is the hyper-parameter tuning of a
machine learning algorithm. The hyper-parameter tuning problem consists in retrieving
the values of the hyper-parameters of machine learning algorithms that minimize the
estimation of the generalization error of these algorithms for a given dataset. In particular,
the goal is to find θ∗ ∈ Θ : θ∗ = arg minθ∈Θ f(θ,D). In the previous expression, θ∗ are the
optimum values of the hyper-parameters of a given machine learning algorithm trained on
a particular dataset, Θ is the parameter space of the machine learning algorithm and f is
the function that estimates the generalization error of the machine learning algorithm on
a given dataset D. The evaluation of f in such a setting can demand a high computational
and economical cost. In particular, for big datasets and machine learning methods that
need to fix a high amount of parameters in training time. As metaheuristics need a
high number of iterations to provide a result with low regret and the hyper-parameter
tuning problem requires a big amount of time for each evaluation, estimating the global
extremum of f with a metaheuristic is infeasible. For example, some metaheuristics, as
genetic algorithms, are based on mixing a population of individuals. The total number
of potential combinations of individuals are huge, so exploring a relevant subset of these
combinations requires a high number of iterations.

In BO scenarios it is common that the observations of f may be contaminated
by a random variable which is essentially noise (Brochu et al., 2010). More formally,
y = f(x)+ε, where y is the observed value at a given iteration of the optimization process,
f is the objective function that we do not have direct access to and ε is the random
variable that represents the noise in the problem. The noise ε is generally modelled using
a Gaussian distribution, although it is possible to model it with some other distribution.
As the objective function f is contaminated with noise ε, the result of evaluating f is
stochastic, not deterministic. This means that two evaluations of f at the same input
location x will produce different observation values y. Therefore, BO methods need to
take into account the stochastic property of the evaluation process in order to provide

Chapter 1. Introduction 3

an acceptable result. In this chapter, we introduce BO, which is a methodology that
efficiently solves the optimization of functions with the characteristics that are described
above (Shahriari et al., 2015).

We have briefly discussed the scenario where we optimized a single function, but there
are broader scenarios than the one described before, which is defined as the classical
BO scenario. For example, in broader scenarios, we can consider several functions to
be optimized simultaneuosly instead of a single one. Another example will consider
the optimization of functions of categorical, integer and real-valued variables instead of
considering only functions of real-valued variables, as in the classical BO setting. This
thesis will provide methods that enhance BO in order to address these broader scenarios.
All these settings, that will be described further in detail, are found in real situations.
Hence, the techniques that are going to be described in this manuscript are relevant and
useful for society.

This chapter gives an introduction for this thesis. We begin with an initial motivating
visual example illustrating the basic operations of BO. The enhancements of BO methods
described in this thesis apply to generalizations of the standard BO scenario, that we will
describe in Section 1.2. Concretely, we will introduce the BO of multiple objectives under
several constraints. We also consider optimizing functions that contain integer-valued
and categorical variables and parallel BO, where several candidate points are evaluated
simultaneusly. We continue with a section that enumerates the publications that the
research work described in this thesis has produced. We also describe related publications
of the methods that are going to be proposed. We continue the introduction with a
summary by chapters of this work in Section 1.5. Next, we introduce alternatives to read
this thesis that may satisfy different interests of the readers and lastly, we conclude the
chapter with a section that illustrates the definitions and notation that are going to be
used to represent mathematical objects and concepts.

1.2 Bayesian Optimization: A Visual Example

The functions described in the previous section, which are expensive to evaluate, whose
evaluations are contaminated by noise and that have no analytical expression, and hence
no gradient information available, are called black-boxes (Jones et al., 1998). Some
optimization scenarios are limited to a budget of evaluations or computational time,
making only possible to evaluate the black-box a fixed amount of times. Hence, every
single evaluation of the black-box needs to be carefully chosen to minimize the regret. In
this setting, the computational time spent by the BO methodology required to suggest a
new candidate point at which to evaluate the objective in every iteration is not critical.
The computational time is hence going to be governed by time spent in evaluating the
black-box. In other words, the complexity of the BO procedure is not critical as we
assume that the evaluation cost is going to be much bigger than the computational cost
of determining the next point to evaluate. Due to this fact, BO can make use of complex
models and procedures to determine, in an intelligent way, a new point to be evaluated.

BO algorithms are designed to optimize black-boxes. They determine the next point
to be evaluated based on the predictive distribution of the objective function given by a
surrogate model (Ross et al., 1996). The model is fitted sequentially to the observations
of the black-box (Shahriari et al., 2015). The probabilistic model generates a predictive
distribution of the potential values of the objective function in each point of the input
space. The probabilistic model makes hypotheses about the shape of the function, as
for example its smoothness. BO assumes that the objective function can be explained

Chapter 1. Introduction 4

by the probabilistic model, i.e., the assumptions of the model about the objective
function are correct. BO iteratively suggests a new point that represents the best tradeoff
between exploration and exploitation using the predictive distribution (Lizotte, 2008).
In particular, it is interesting to focus the search on unexplored areas because they
may contain the optimum of the objective function but also to exploit areas where the
prediction of the probabilistic model shows promising values. This tradeoff is computed
by a member of a set of heuristic criteria called acquisition functions (Hoffman et al.,
2011). Some acquisition functions use Information Theory to determine this tradeoff,
such as the Entropy Search acquisition function (Hennig and Schuler, 2012; Villemonteix
et al., 2009). Acquisition functions return a real positive value for every point of the input
space. This value represents the expected utility of evaluating that point in the search
for the optimum. A key fact is that acquisition functions only depend on the model,
being cheap to compute. Also, optimizing the acquisition function is much cheaper than
evaluating the objective function.

As we have previously seen, we can make assumptions about the function that we
want to optimize or have prior knoweldge about it. If we do not know anything about
the objective function, we can still assume, without loss of generality: smoothness,
stationarity or continuity. If we apply a grid search or random search, we do not exploit
these assumptions or use any available prior knowledge about the function. In this
case, we just perform pure exploration. Ideally, we want a mechanism that, given a
set of assumptions, can use them to perform an intelligent search. The probabilistic
surrogate model, for example a Gaussian process (GP), is a mechanism to encode those
assumptions about the objective function (Rasmussen, 2003). A GP is a stochastic
process where any point x ∈ Rd is assigned a random variable f(x) and where the joint
distribution of a finite number of these variables p(f(x1), ..., f(xN)) is a multivariate
Gaussian: p(f |X) = N (f |µ,K), where f = (f(x1), ..., f(xN))T, µ = (m(x1), ...,m(xN))T

and Kij = k(xi,xj). m(·) is the mean function and k(·, ·) is a positive definite covariance
function (Rasmussen, 2003). The GP will have a lower uncertainty in the neighbourhood
of an observed value, as it assumes a certain degree of smoothness. The level of smoothness,
for every dimension of the input space, can be specified by the hyper-parameters of the
GP. The uncertainty over all the space of values gets lower every new time that we fit
the GP to a new observation of the objective. Hence, the uncertainty about the objective
function decreases with every step of BO.

The GP posterior distribution, the acquisition function and the objective function
can be visualized in low dimensional problems to get an intuition of how BO works. This
visualization is useful to show how and why does BO work. The behavior of BO in a toy
scenario is visualized as follows. Let us consider the optimization of the 1-dimensional
function given by the next analytical expression:

f(x) = sin(x) + sin(
10

3
x), x ∈ [0, 4] ⊂ R1 . (1.1)

We can visualize the previous objective function in Figure 1.1. Suppose now that we do
not have access to the evaluation of f(x) directly. We do only have access to a corrupted
version of the evaluations of f that has been contaminated by i.i.d Gaussian noise with a
0.05 value of standard deviation in all its range. In particular, we would like to optimize
the following function:

g(x) = f(x) + ε, ε ∼ N (0, 0.05) , (1.2)

Chapter 1. Introduction 5

where N (0, 0.05) denotes a univariate Gaussian distribution with mean equal to 0 and

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 1.1: Toy objective function without being corrupted by noise.

variance 0.05. The ground truth f(x) is now a latent function and we can only observe
g(x). For example, we can evaluate g(x) on 5 random points sampled uniformly on
[0, 4] as Figure 1.2 shows. But given the observed data of the objective function, there
is an infinite number of possible hypotheses than could explain it. We can use a GP

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 1.2: Observations (black dots) of the toy objective function without being
corrupted by noise (red line). As it can be seen, the observations are perturbed by noise
added to the toy objective function.

to predict the potential values of the function on the input space. The functions that
explain the observed data are potential solutions of the problem. There is an infinite
amount of them. Figure 1.3 shows some of these functions. We define these functions as
fantasies. Nevertheless, we still do not know which fantasy explains better the black-box
to be optimized. Hence, we need to consider all the possible hypotheses pondered by the
probability that they explain the data. The GP posterior distribution considers precisely
all these functions, as Figure 1.4 represents. In Figure 1.4 we can see the ground truth
plotted on red and the prediction that the GP does of the ground truth. We can observe

Chapter 1. Introduction 6

that both the predictive mean and, logically, the ground truth, explain the data. The
Figure shows the predictive distribution of the objective function, characterized by an
expected value and a standard deviation of it for each point of the input space. We can
observe how the objective function lies within the plotted standard deviation intervals of
the predictive distribution of the GP in each point.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
GP sample
GP sample
GP sample
Ground truth
Observations

Figure 1.3: Hypotheses that explain the data (colored lines except red) which are
samples from a GP conditioned to the observed data. The observations are shown as
black dots and the ground truth is shown as a colored red line.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Prediction
Ground truth
Observations
Standard deviation

Figure 1.4: GP predictive distribution over the ground truth. The predictive mean is
shown as a blue line, the GP standard deviation is shown as a blue area, observations
are black dots and the ground truth is plotted as a red line. Recall that the ground
truth is covered by the GP standard deviation.

We can use the GP to build an acquisition function. In order to do so, we use the
predictive distribution to compute the acquisition function. BO uses the information
given by the GP to build, in each iteration, a criterion that represents a tradeoff between
exploration and exploitation of the global extremum (Rasmussen, 2003). These tradeoffs
are encoded in analytical expressions that are defined as acquisition functions. The

Chapter 1. Introduction 7

acquisition function is a D-dimensional function, where D is the dimension of the
input space. This acquisition function indicates, on each point, the expected utility of
performing an evaluation of the objective there. By maximizing this acquisition function,
we retrieve the point to be evaluated in the next iteration of BO. For example, a popular
acquisition function that is simple to evaluate is the GP-UCB acquisition function, given
by the following expression:

α(x) = −µ(x)− κσ(x) . (1.3)

This acquisition function, α(x), is an intuitive example of the exploitation-exploration
tradeoff. Its analytical expression combines the predictive mean of the GP, µ(x), to exploit
in areas of the input range suspicious of containing the extremum, and the uncertainty
given by the standard deviation of the GP predictive distribution, σ(x). The uncertainty
is high in unexplored areas where we have not evaluated a point, as we can see in Figure
1.4. Those areas could contain the extremum, but we do not know it. It is desirable that
BO does not skip unexplored areas that could potentially contain the extremum. So,
the acquisition function takes high values on areas with high uncertainty. This is the
exploration behavior of BO. The acquisition function also takes high values when the
mean µ(x) takes low values. This behavior of the acquisition function enforces BO to
evaluate promising solutions, which will give lower values, close to the minimum. This is
the exploitation behavior of BO. In Eq. (1.3), κ is a tunable parameter, that balances
exploration and exploitation. The acquisition function assigns a real value for each input
space point. This value represents the expected utility of evaluating the function at
each input space point in the next iteration. The point associated with the maximum of
these values will be evaluated in the next BO iteration. Chapter 3 analyzes the most
popular acquisition functions, with a special emphasis in those acquisitions that use
information theory. Figure 1.5 illustrates graphically the BO steps and shows the shape
of GP-UCB and a GP fitted to the data, the acquisition function and its maximum. We
can see that the input space point associated with the maximum value of the acquisition
function is evaluated in the next BO iteration. We can also observe that the acquisition
function has higher values in areas where the prediction of the GP model is lower and the
uncertainity is higher. The evaluation value is used to condition the GP at that point.
The acquisition will be rebuilt in the next iteration according to the new predictive
distribution. Then, the algorithm continues performing the same steps in all remaining
iterations. The process ends when the budget of evaluations is consumed. When the
iterations stop, we can recommend a solution for the optimization problem by optimizing
the mean of the GP or returning the best-observed evaluation. This is the standard
scenario where BO operates, but it can be adapted to provide a solution to more complex
scenarios. It is important to remark that the visual examples that have been shown so
far illustrate the execution of BO in a single dimension. One can think that there are
other more effective and less computational costly methods to optimize 1-dimensional
functions. Whilst this is true, BO can be applied to D-dimensional problems.

1.3 Bayesian Optimization in Complex Scenarios

This thesis proposes BO extensions to solve broader scenarios than the classical BO
setting. The described vanilla scenario consists in retrieving the global extremum of a
single function of real-valued variables. Broader scenarios arise in real problems of great
interest to the machine learning community. For example, in the hyper-parameter tuning

Chapter 1. Introduction 8

Iteration 5 Iteration 6

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5 Acquisition (arbitrary units)

0.0 0.2 0.4 0.6 0.8 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0 Acquisition (arbitrary units)

Iteration 7 Iteration 8

0.0 0.2 0.4 0.6 0.8 1.0

1

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0

1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0
2

1

0

1

2

3 Acquisition (arbitrary units)

0.0 0.2 0.4 0.6 0.8 1.0

2

1

0

1

2
Acquisition (arbitrary units)

Figure 1.5: GP-UCB acquisition function (yellow) built from a GP (blue) conditioned
on 5,6,7 and 8 points (black dots) recommended by previous iterations of BO. The next
suggestion of BO will be the point given by the maximum of GP-UCB, shown by a
vertical green line.

Chapter 1. Introduction 9

of machine learning algorithms (Snoek et al., 2012). Other examples of these scenarios
include: optimizing functions of integer or categorical-valued variables, apart from real-
valued ones; optimizing multiple objectives under the presence of several constraints; or
providing a batch of points to be evaluated at every iteration. The following paragraphs
describe the contributions of this thesis, that are focused on making BO able to address
the mentioned broader optimization scenarios:

• Constrained multi-objective Bayesian optimization: Some problems con-
cern the optimization of multiple black-boxes simultaneously. Usually, these black-
boxes are inversely correlated. Let us consider a hyper-parameter tuning problem,
where the estimation of the generalization error and the prediction time of a neural
network are minimized. Solutions that minimize the prediction time of the neural
network are not expected to deliver a low estimate of the generalization error and
vice-versa. The objectives are conflicting since an accurate network will be large
and hence require long prediction times. The solution of this problem is a set of
points that show the best trade-off for all the objectives. This set is called the
Pareto set. The values in function space associated to those points are the Pareto
frontier. This scenario is known as multi-objective BO, but there are even more
complex scenarios. In particular, it is also interesting to deal with the presence of
one or multiple black-box constraints cj(x) on the solution of the problem. In these
scenarios, we will only consider a point as valid if it satisfies all the constraints,
i.e., if cj(x) ≥ 0 ∀j < C, where C is the number of constraints. As an example
of a constraint, the previous solutions may only be valid if the associated energy
consumption on a mobile device where the neural network is implemented is below
a specific value. We illustrate this scenario in Figure 1.6, where two objective
functions and a constraint are plotted. We want to extract the Pareto set of these
objectives under valid values according to the constraint. This produces a shrinkage
of the valid input and Pareto set and its respective Pareto frontier, as we can see
in Figure 1.6. We will propose an information-theoretical acquisition function to
address these problems (Garrido-Merchán and Hernández-Lobato, 2019b). Several
synthetic, benchmark and real experiments demonstrate its usefulness.

• Integer-valued and categorical variables in Bayesian optimization: Real
problems, such as the hyper-parameter tuning of machine learning algorithms,
involve the optimization of functions of integer-valued and categorical variables.
For example, the hyper-parameters of a deep neural network may involve, besides
the learning rate, the number of layers, which is an integer-valued variable, and
the activation function, which is a categorical variable. BO typically uses a GP as
the probabilistic surrogate model to build an acquisition function at each iteration.
The majority of the kernels of GPs, and concretely those that are used for BO,
assume real-valued variables. Hence, standard GPs cannot be used for the BO
of functions that contain integer-valued or categorical variables. We include a
chapter that illustrates a transformation of the input space points that the kernel
of the GP receives to tackle this problem (Garrido-Merchán and Hernández-Lobato,
2019a). That transformation allows a valid GP kernel to deal with integer and
categorical-valued variables. With this transformation, BO obtains better results
in real problems that include integer-valued and categorical variables.

• Batch Bayesian optimization: The sequential nature of BO allows to evaluate
only a single point in every iteration. This results in a waste of resources when

Chapter 1. Introduction 10

x_1

0.0
0.2

0.4
0.6

0.8
1.0

x_2

0.0

0.2
0.4

0.6
0.8

1.0

f_1(x)

−4
−2
0

2

4

Objective 1

−4

−2

0

2

4

x_1

0.0
0.2

0.4
0.6

0.8
1.0

x_2

0.0

0.2
0.4

0.6
0.8

1.0

f_2(x)

−4
−2
0

2

4

Objective 2

−4

−2

0

2

4

x_1

0.0
0.2

0.4
0.6

0.8
1.0

x_2
0.0

0.2
0.4

0.6
0.8

1.0

c_1(x)

−4
−2
0

2

4

Constraint 1

−2

−1

0

1

2

3

xxxxxxxxx xxxx

xxxxxxxxxxxxxxxxxx

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pareto Set (Input space)

···

xxxxxxxxx xxxx

xxxxxxxxxxxxxxxxxx

··········

·················

······················

···························

·······························

····································

···

···
····

··
·········

···
···········

···
·············

··
··············

···
···············

··
···············

···
···············

··
···············

··
··············

···
··············

··
··············

··
·············

···
·············

···
·············

··
············

··
············

···
············

···
············

··
············

··
············

··
···········

··
···········

··
···········

··
···········

··
···········

··
···········

··
···········

··
···········

··
··········

···
··········

···
··········

··
·········

··
·········

···
·········

···
········

··
········

···
·······

··
·······

··
······

···
······

··
·····

··
····

···
····

··
···

···
··

··
·

···

··

···

······································

······························

····················
············· ···

−4 −2 0 2 4

−6
−4

−2
0

2
4

Pareto Frontier (value space)

xxxxxxxxx

xx
xxxxx

x

xxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

·
x

Values for Domain Points
Values for Optimal Points

Pareto
Points

Figure 1.6: Multi-objective constrained Bayesian optimization scenario illustrating
objectives, constraints, the pareto set and its frontier.

we can make use of a cluster of nodes, where we can evaluate several points
simultaneously. Due to this fact, it is desirable to design a procedure that allows
BO to provide a set of points at every iteration at which to evaluate the objective.
We define this set of points as a batch. Batch BO methods suggest a batch of points
for evaluation at every iteration. There are batch methods proposed in literature
but none of them applies to the multi-objective constrained scenario. This thesis
proposes an extension of an information-theoretical method to carry out parallel
evaluations in constrained multi-objective scenarios.

• Bayesian optimization applied to oceanic waves features prediction: A
novel application of BO to tune the hyper-parameters of a hybrid Grouping Genetic
Algorithm for attribute selection combined with an Extreme Learning Machine
(GGA-ELM) for prediction is presented. This GGA-ELM approach for prediction of
ocean wave features prediction is optimized with BO (Cornejo-Bueno et al., 2018).
The application of BO to the optimization of the parameters of the genetic algorithm
illustrates how BO can be used in real problems. The proposed BO methodology
has been tested in a real problem involving buoys data from the Western coast of
the USA. The BO-GGA-ELM approach is applied on two experiments: predicting
the significant wave height at a goal marine structure facility and the wave energy
flux at the same facility. The results obtained show that BO methods outperform

Chapter 1. Introduction 11

a uniform search strategy and the hyper-parameter configuration specified by a
human expert.

1.4 Publications

This section presents, in chronological order, the work published during the doctoral
period in which this thesis was written. We also include other research work related to
this thesis, but not directly included on it. Finally, this document includes content that
has not been published yet and is under revision.

• Cornejo-Bueno, Laura, Garrido-Merchán, Eduardo C., Hernández-Lobato, Daniel
and Salcedo-Sanz, Sancho, 2017. Bayesian optimization of a hybrid prediction
system for optimal wave energy estimation problems. In International Work-
Conference on Artificial Neural Networks, (pp. 648-660).

• Cornejo-Bueno, Laura, Garrido-Merchán, Eduardo C., Hernández-Lobato, Daniel
and Salcedo-Sanz, Sancho, 2018. Bayesian optimization of a hybrid system for
robust ocean wave features prediction. Neurocomputing, 275, pp.818-828.

• Garrido-Merchán, Eduardo C. and Hernández-Lobato, Daniel, 2019. Predictive
entropy search for multi-objective Bayesian optimization with constraints. Neuro-
computing.

• Garrido-Merchán, Eduardo C. and Hernández-Lobato, Daniel, 2019. Dealing with
categorical and integer-valued variables in Bayesian optimization with Gaussian
processes. Neurocomputing.

Related Work

• Balázs, C., van Beekveld, M., Caron, S., Dillon, B. M., Farmer, B., Fowlie, A.,
Garrido-Merchán, Eduardo C. and White, M. (2021). A comparison of optimisation
algorithms for high-dimensional particle and astrophysics applications. Journal of
High Energy Physics, 2021(5), 1-46.

• Córdoba, Irene, Garrido-Merchán, Eduardo C., Hernández-Lobato, Daniel, Bielza,
Concha and Larrañaga, Pedro, 2018, October. Bayesian optimization of the PC
algorithm for learning Gaussian Bayesian networks. In Conference of the Spanish
Association for Artificial Intelligence (pp. 44-54).

• Garrido-Merchán, Eduardo C. and Albarca-Molina, Alejandro, 2018, November.
Suggesting Cooking Recipes Through Simulation and Bayesian Optimization. In
International Conference on Intelligent Data Engineering and Automated Learning,
(pp. 277-284).

• Villacampa-Calvo, Carlos, Zaldivar, Bryan, Eduardo C. Garrido-Merchán, and
Hernández-Lobato, Daniel. Multi-class Gaussian Process Classification with Noisy
Inputs. Journal of Machine Learning Research, 22(36), 1-52.

• Garrido Merchán, Eduardo C., and Jariego Pérez, Luis. Towards Automatic
Bayesian Optimization: A first step involving acquisition functions. Accepted.
CAEPIA 2021.

• Asencio-Mart́ın, L., and Garrido-Merchán, E. C. (2021). A similarity measure of
Gaussian process predictive distributions. Accepted. CAEPIA 2021.

Chapter 1. Introduction 12

Work In Progress

• Garrido-Merchán, Eduardo C., and Hernández-Lobato, Daniel. ”Parallel Predictive
Entropy Search for Multi-objective Bayesian Optimization with Constraints.” arXiv
preprint arXiv:2004.00601 (2020).

1.5 Summary by Chapters

In this section, we provide an organization of the chapters of this thesis and a summary
of every chapter. This organization is shown below:

Chapter 2 provides an introduction to GPs and the expectation propagation algorithm.
Both are necessary concepts for the BO methods that we will describe in the
following chapters. This chapter reviews the fundamentals of GPs and why they
are so interesting for BO. More concretely, we review the most popular kernels,
the analysis of the posterior and predictive distribution and how to tune the
hyper-parameters of GPs: whether by maximizing the marginal likelihood or
by generating samples from the hyper-parameter posterior distribution. Other
alternative probabilistic surrogate models are also described briefly. Some of the
proposed approaches of this thesis are extensions of an acquisition function called
predictive entropy search, that is based on the expectation propagation approximate
inference technique. That is why we provide in this chapter an explanation of the
expectation propagation algorithm.

Chapter 3 introduces the basics of BO and information theory. BO works with prob-
abilistic models such as GPs and with acquisition functions such as predictive
entropy search, that uses information theory. Having studied GPs in Chapter 2,
BO can be now understood and it is described in detail. This chapter will also
describe the most popular acquisition functions, how information theory can be
applied in BO and why BO is useful for the hyper-parameter tuning of machine
learning algorithms.

Chapter 4 describes an information-theoretical mechanism that generalizes BO to
simultaneously optimize multiple objectives under the presence of several constraints.
This algorithm is called predictive entropy search for multi-objective BO with
constraints (PESMOC) and it is an extension of the predictive entropy search
acquisition function that is described in Chapter 3. The chapter compares the
empirical performance of PESMOC with respect to a state-of-the-art approach
to constrained multi-objective optimization based on the expected improvement
acquisition function. It is also compared with a random search through a set of
synthetic, benchmark and real experiments.

Chapter 5 addresses the problem that faces BO when not only one but multiple input
points can be evaluated in parallel that has been described in Section 1.3. This
chapter introduces an extension of PESMOC called parallel PESMOC (PPESMOC)
that adapts to the parallel scenario. PPESMOC builds an acquisition function that
assigns a value for each batch of points of the input space. The maximum of this
acquisition function corresponds to the set of points that maximizes the expected
reduction in the entropy of the Pareto set in each evaluation. Naive adaptations of
PESMOC and the method based on expected improvement for the parallel scenario
are used as a baseline to compare their performance with PPESMOC. Synthetic,

Chapter 1. Introduction 13

benchmark and real experiments show how PPESMOC obtains an advantage in
most of the considered scenarios. All the mentioned approaches are described in
detail in this chapter.

Chapter 6 addresses a transformation that enables standard GPs to deliver better
results in problems that contain integer-valued and categorical variables. We can
apply BO to problems where we need to optimize functions that contain integer-
valued and categorical variables with more guarantees of obtaining a solution
with low regret. A critical advantage of this transformation, with respect to
other approaches, is that it is compatible with any acquisition function. This
transformation makes the uncertainty given by the GPs in certain areas of the
space flat. As a consequence, the acquisition function can also be flat in these
zones. This phenomenom raises an issue with the optimization of the acquisition
function, that must consider the flatness of these areas. We use a one exchange
neighbourhood approach to optimize the resultant acquisition function. We test
our approach in synthetic and real problems, where we add empirical evidence of
the performance of our proposed transformation.

Chapter 7 shows a real problem where BO has been applied with success. In this
problem, BO has been used to obtain the optimal parameters of a hybrid Grouping
Genetic Algorithm for attribute selection. This genetic algorithm is combined
with an Extreme Learning Machine (GGA-ELM) approach for prediction of ocean
wave features. Concretely, the significant wave height and the wave energy flux
at a goal marine structure facility on the Western Coast of the USA is predicted.
This chapter illustrates the experiments where it is shown that BO improves the
performance of the GGA-ELM approach. Most importantly, it also outperforms a
random search of the hyper-parameter space and the human expert criterion.

Chapter 8 provides a summary of the work done in this thesis. We include the
conclusions retrieved by the multiple research lines covered in the chapters. We
also illustrate lines for future research.

1.6 How to Read this Thesis

This thesis is the result of several publications concerning BO algorithms applied to
broader scenarios than the standard one. The reader may be interested only in one of
those scenarios or in all of them. We suggest different itineraries to read this document
that we hope satisfy the interests of the reader.

The first two chapters cover the fundamentals of BO, GPs and some concepts related
with this thesis such as information theory of the expectation propagation algorithm. If
the reader is familiarized with these concepts, the reader can skip the first two chapters
and start reading from Chapter 4. On the other hand, if the reader is not familiarized
with GPs or BO, the reader is encouraged to study these two chapters.

Chapters 4-6 involve generalizations of standard BO. The reader may only be inter-
ested in the generalizations of predictive entropy search, in this case, the reader must read
Chapters 4 and 5. If the reader is interested in dealing with integer-valued or categorical
variables in GP-BO, the reader must skip those chapters and go to Chapter 6.

Lastly, Chapter 7 illustrates an application of BO to wave energy and it is independent
of the other chapters. We recommend the reader to read it if the reader is interested in
applications of BO.

Chapter 1. Introduction 14

1.7 Definitions and Notation

This section addresses the notation that is going to be used in the chapters of this
thesis. The thesis introduces analytical expressions that are represented by the following
notation:

• x: Scalar.

• x: Vector.

• X: Matrix.

• X : Set.

• xi: Element i of a vector x.

We sum up the main mathematical objects involved in this thesis in the following list.
There are more definitions in the algorithms of this thesis, but, as they are particular to
certain sections, are not included in this list.

• x?: Optimum of an optimization problem.

• x: Point belonging to the input space of an optimization problem.

• y: Potentially noisy observation of the objective of an optimization problem at a
particular input location.

• y: Vector of all the potentially noisy observations of objectives of an optimization
problem at a particular input location.

• n: Iteration n of an optimization problem.

• T : Total number of iterations of a BO algorithm.

• f(x): Objective function of an optimization problem.

• D = {(xi, yi)|i = 1, ..., n}: Dataset of evaluations yi of input space points xi.

• α(x): Acquisition function.

• ε: Noise that contaminates the objective function of an optimization problem,
typically assumed Gaussian.

• X : Input space of an optimization problem.

• m: Probabilistic surrogate model.

• µ(x): Mean of a probabilistic surrogate model.

• σ(x): Variance of a probabilistic surrogate model.

• N (x|µ, σ): Gaussian probability density function.

• E[·]: Expectation of a random variable.

• H(·): Entropy of a random variable.

• k(·, ·): Covariance function or kernel of a Gaussian process.

Chapter 1. Introduction 15

• GP (·, ·): Gaussian process.

• I: Identity matrix.

• Z: Normalization constant.

• U : Grid over the input space. Sample of a Sobol sequence or uniform.

Chapter 2
Gaussian Processes And Approximate
Inference

This chapter presents an overview of Gaussian processes (GPs) and the expectation

propagation (EP) algorithm. Bayesian optimization (BO) typically uses a GP as the

probabilistic surrogate model of the objective function. Hence, it is important to

understand the details of GPs before studying BO. This chapter will describe how

GPs are adequate for BO. We give the definition of a GP and include how to compute

the GP posterior and predictive distributions. One important component of GPs

is the covariance function or kernel. We include a description of the most popular

covariance functions used in GPs. Covariance functions make different hypotheses

about the objective function. They depend on a set of hyper-parameters. We cover

the estimation of hyper-parameters via maximizing the marginal likelihood and by

approximately sampling from the GP hyper-parameter posterior distribution. In

the case of non-Gaussian likelihoods, the posterior and predictive distribution of

the GP is non-Gaussian. In this case, the computation of these distributions is

intractable. Approximate inference algorithms provide a solution to this issue. A

simple approach is to approximate non-Gaussian factors by un-normalized Gaussian

factors. By approximating the likelihood by an un-normalized Gaussian distribution,

the posterior and predictive distributions can now be computed. This is precisely

the approach followed by Expectation Propagation (EP), an approximate inference

algorithm that will be described in detail in this chapter. The BO methods described

in subsequent chapters employ EP to approximate the required computations.

2.1 Introduction

This chapter introduces one of the most common probabilistic surrogate models used in
BO: a Gaussian process (GP) (Rasmussen, 2003). First, let us assume yi = f(xi) + εi,
where εi is an additive Gaussian noise εi ∼ N (0,ΣI) such that I is the identity matrix.
yi is the observed value of the objective function f(xi) evaluated at the point xi. The
objective function f(xi) is corrupted by the additive Gaussian noise εi so f(xi) is a
latent function value that we do not observe. For every point x of the input space
X belonging to the range of the objective function f(x), a GP predicts a Gaussian
distribution for the value f(x) associated to x. The potential values for f(x) are specified
by the predictive distribution of the GP, p(f(x)|D), where D = {(xi, yi)|i = 1, ..., N} is

17

Chapter 2. Gaussian Processes And Approximate Inference 18

a dataset of previous observations. As the expected value for f(x) and its uncertainty
of every input space value is critical for BO, the computation of the GP predictive
distribution will be explained in detail in this chapter. The GP predictive distribution is
determined by the GP covariance function, which will introduce the assumptions made
about the target function. Covariance functions contain hyper-parameters, that condition
the GP predictive distribution. It is hence very important to adequately estimate these
hyper-parameters to make an accurate fit of the objective function. We will explain how
to properly estimate the model hyper-parameters. An understanding of these concepts is
critical to study the proposed methods for BO introduced in this thesis, that are described
in the following chapters. GPs are not the only alternative to be used as a surrogate
model for BO. Other models can also be used as surrogates. For example, we can take
the predictive distribution given by the different trees that a random forest generates
(Breiman, 2001). Another alternative is to employ Bayesian deep neural networks, that
introduce a prior on every weight of a deep neural network (Springenberg et al., 2016).
Each of these models may have different advantages over GPs for particular scenarios.
For example, computational cost, that may be critical in some BO scenarios. Hence, a
brief description of these models is also covered by this chapter.

An advantage of using GPs for BO is that the GP predictive distribution p(f(x)|D) for
the objective function f(x) has an analytic closed-form expression that is easy to compute
(Rasmussen, 2003). Hence, it is easy to perform exact Bayesian inference. A consequence
of using GPs for BO is that we assume that that the black-box function f(x) is a sample
from a GP (Snoek et al., 2012). The GP generates a Gaussian predictive distribution
p(f(x)|D) of the objective function f(x). The predictive distribution p(f(x)|D) is used
by BO to guide the search (Frazier, 2018). BO focuses on evaluating the objective only
on regions of the input space X that are expected to deliver the most information of the
optimum x?. These regions can be identified by analyzing the mean and the standard
deviation of the predictive distribution of the GP, p(f(x)|D). GPs are also useful for BO
for other reasons. GPs are non-parametric models, which are basically models whose
number of parameters grows with data (Rasmussen, 2003). Non-parametric models do
not assume that the structure of a model is fixed, like in the case of a neural network,
parametrized by its weights. In non-parametric models, the model parameters grow in
size to accommodate the data complexity. This property makes GPs flexible. Moreover,
it is also possible to compute the marginal likelihood of the data p(D) to make Bayesian
model selection (Rasmussen, 2003). Although they have a set of hyper-parameters, it is
easy to estimate them using type-II maximum-likelihood or a sampling procedure as we
will further describe in this chapter (Snoek et al., 2012). One advantage of sampling the
hyper-parameters from their posterior distribution is that we do not incur in overfitting
with a small amount of data. By sampling the hyper-parameters from their posterior
distribution, we are considering various hypotheses about the data, pondered by the
hyper-parameter posterior distribution. Type-II maximum-likelihood only considers one
hypothesis about the data, which is a limited use of the information available. Given
that GPs contain various hyper-parameters and that multiple explanations about data
are plausible, considering various hypotheses is a more robust procedure that only just
one. This is specially relevant in the presence of a low number of data, where the
hyper-parameter posterior distribution may have several modes, that can be interpreted
as different hypotheses that explain the data (Rasmussen, 2003). As BO is specifically
designed to work in scenarios where the budget of evaluations is small, not incurring in
overfitting with a small number of observations make GPs ideal for BO.

Chapter 2. Gaussian Processes And Approximate Inference 19

Some problems require non-Gaussian likelihoods and the computation of the predictive
distribution of a GP p(f(x)|D). In this case, the GP predictive distribution is non-
Gaussian, it has no analytic closed-form solution and is infeasible to compute. In this
case, a common approach is to approximate the non-Gaussian likelihood factors of
the joint distribution of the observed and latent variables of the model by Gaussian
distributions. Non-Gaussian likelihood factors can also appear in BO. For example,
consider the problem where the only query that we can perform is whether an user has
preferred the value of a new input space point x with respect to an old one x′. Let
g(x) be the usual evaluation of the objective function, in this problem, we do not have
access to it. This problem is called preferential BO (González et al., 2017). In this
problem, we obtain a binary return y ∈ {0, 1} representing which of the two locations
x,x′ is preferred. The reward f(x,x′) = g(x′)− g(x) cannot be observed directly. These
preferences are modelled through a Bernoulli likelihood p(y = 1|[x,x′]) = πf ([x,x′]) and
p(y = 0|[x,x′]) = 1− πf ([x,x′]) where π : R× R→ [0, 1] can be the logistic function:

πf ([x,x′]) = σ(f([x,x′])) =
1

1 + e−f([x,x′])
, (2.1)

as it has the property that πf ([x,x′]) = 1− πf ([x′,x]). Another common example where
non-Gaussian factors are combined with GPs is binary Gaussian process classification
(Nickisch and Rasmussen, 2008). In this particular problem, class labels yi ∈ {−1, 1} are
assigned to each data point x. We can assume that these labels are generated through a
sign function applied to a function sampled from the GP, yi = sign(f(xi)+ei), where ei ∼
N (0, σ2). If we have a dataset D = {(xi, yi)|i = 1, ..., N} the objective would be to infer
f(x). In order to do so, each data point xi is assigned one indicator factor I(yi(fi)), giving
rise to a factorial likelihood p(y|f) =

∏N
i=1 I(yifi), where f = (f(x1), ..., f(xn))T and we

assume that there is no noise. The indicator factors I(yifi) are not Gaussian distributions.
If we incorporate these indicator factors into the likelihood, the exact posterior p(f |y)
can no longer be computed analytically. Although, the posterior distribution p(f |y) can
be approximated.

In the previous cases, we can still apply several approaches to approximate the poste-
rior distribution of the GP, which is required for making predictions. Some examples of
these approaches are the Laplace approximation (Williams and Barber, 1998), numerical
quadrature (Lubinsky and Rabinowitz, 1984), Monte Carlo methods (Hammersley, 2013)
or the expectation propagation (EP) algorithm (Minka, 2001b). EP outperforms the
Laplace approximation technique in a wide range of problems (Minka, 2001b; Nickisch
and Rasmussen, 2008). The Laplace approximation produces a Gaussian distribution
that is placed on the mode of the target distribution. This approximation underestimates
the variance of the posterior distribution. Moreover, it is not necessarily the best strategy,
as the target distribution may have most of its probability mass on a region where
its mode does not belong. Numerical quadrature is the perfect match to approximate
unidimensional posteriors. However, the problems where we are going to apply approx-
imate inference have a high number of latent variables. If there are a high number of
latent variables, numerical quadrature is costly. In particular, the computational cost of
numerical quadrature is exponential on the number of latent variables, i.e., the dimension
of the integral. In high-dimensional scenarios, numerical quadrature becomes intractable.
Monte Carlo methods are also computationally very expensive. They simulate a Markov
chain whose stationary distribution coincides with the target distribution. This is a
costly procedure. For example, Monte Carlo algorithms need to run the chain for a long
time to generate a few independent samples and require a good starting point. Finally,

Chapter 2. Gaussian Processes And Approximate Inference 20

in another possible technique that could be applied, variational Bayes (Jordan et al.,
1999), the exact posterior is lower bounded everywhere, producing approximations that
could be innacurate. Also, variational Bayes has to evaluate the expected logarithm of
the likelihood factors. If these factors are not smooth, as in the case of indicators or
step functions, computing the logarithm of the factors is problematic. EP does not need
to compute these logarithms, being more suitable to approximate factors that are not
smooth.

The techniques described in the following chapters make use of EP to compute an
approximate posterior distribution. Hence, we additionally include a section describing
EP in this chapter. We choose EP since we have strong empirical evidence of the
good performance that it delivers producing good predictive distributions and marginal
likelihood approximations in similar scenarios as the ones described in the following
chapters when compared to the other mentioned techniques (Minka, 2001b; Nickisch and
Rasmussen, 2008). In particular, EP has been applied with success in the context of
BO (Hennig and Schuler, 2012; Hernández-Lobato et al., 2014). It has also shown great
performance on approximating posterior distributions in Gaussian process classification
problems (Kuss and Rasmussen, 2005; Nickisch and Rasmussen, 2008).

2.2 Gaussian Processes

A Gaussian Process (GP) is a collection of random variables (of potentially infinite size),
any finite number of which have (consistent) joint Gaussian distributions. Equivalently,
it describes a stochastic process whose values, at any finite number of input locations,
have joint Gaussian distributions. We can also think of GPs as defining a distribution
over functions where inference takes place directly in the space of functions (Rasmussen,
2003). These processes can be used for regression or classification. In both of these
problems, we have a matrix of training data or covariates X = (x1, ...xN)T and a vector
of labels, a dependent variable or the variable to predict y = (y1, ..., yN)T . Each row of
the X matrix, xi, where i is the index of a vector in the matrix, are the characteristics
of the i-th data instance that are associated with an observed target value yi, which can
be noisy. We define as a dataset D = {(xi, yi)|i = 1, ..., N} the set of labeled instances.
In regression problems, the variable to predict is real-valued yi ∈ R and in classification
problems is categorical. In this section of the thesis we will focus on regression problems,
as they are the most common in BO.

A GP can also be defined as a distribution over functions, i.e., we can sample functions
from it. So, if we assume that the objective function is a sample of the GP, it is reasonable
to use a GP to model the black-box in BO given that it is a non-parametric flexible
model, it is easy to estimate its hyper-parameters and it is a robust model that does not
overfit with small amounts of data. We illustrate on Figure 2.1 some functions sampled
from a GP. These functions have been sampled from a GP model that has not been
conditioned on any observation, i.e., these are samples from the a priori distribution.
Hence, we can use the GP as a prior when we do not have any observations. Even in this
setting, every possible function sampled from the GP prior is a possible hypothesis of
the problem. It is easy to generate smooth functions using a GP as prior, even if there
are no observations. In this setting, the GP prior specifies a mean (often equal to zero)
and a standard deviation for the potential values of f(x). These are displayed, for a
one-dimensional objective function f(x), in Figure 2.1, alongside with some samples of
f(x).

Chapter 2. Gaussian Processes And Approximate Inference 21

Ground Truth
Mean
Std. Dev.

Figure 2.1: GP prior, defined by a flat prediction and uniform uncertainty. GPs
provide a mean and standard deviation for the ground truth function, drawn in purple.
The samples drawn from a GP model belong, with high probability, to that space. We
can see that a particular sample, drawn in blue, resembles the ground truth function.

More formally, a GP is fully characterized by a zero mean and a covariance function
or kernel k(x,x′), that is, f(x) ∼ GP(0, k(x,x′)). The covariance function of the GP
receives two points as an input, x and x′. We define the prior mean function m(x) and
the covariance function k(x,x′) that computes the covariance between f(x) and f(x′)
has to be evaluated as:

m(x) = E[f(x)] ,

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] . (2.2)

Given a set of observed data D = {(xi, yi)|i = 1, ..., N}, where yi = f(xi) + εi with εi
some additive Gaussian noise, a GP builds a predictive distribution p(f(x?)|D) for the
potential values of f(x?) at a new input point x?. This distribution is Gaussian. Namely,
p(f(x?)|D) = N (f(x?)|µ(x?), v(x?)). We can set a GP prior mean m(x) given our prior
knowledge of the problem. Typically, the GP prior mean, m(x), is set to 0. The mean
µ(x?) and variance v(x?) of the predictive distribution p(f(x?)|D) are respectively given
by:

µ(x?) = kT? (K + σ2I)−1y , (2.3)

v(x?) = k(x?,x?)− kT? (K + σ2I)−1k? , (2.4)

where y = (y1, . . . , yN)T is a vector with the observations collected so far; σ2 is the
variance of the additive Gaussian noise εi; k? = k(x∗) is a N -dimensional vector with the
prior covariances between the test point f(x?) and each of the training points f(xi); and
K is a N×N matrix with the prior covariances among each f(xi), for i = 1, . . . , N . Each
element Kij = k(xi,xj) of the matrix K is given by the covariance function between
each of the training points xi and xj where i, j = 1, ..., N and N is the total number
of training points. If the GP prior mean, m(x), is not set to 0, the predictive variance

Chapter 2. Gaussian Processes And Approximate Inference 22

remains unchanged and the mean µ(x?) is given by:

µ(x?) = m(x?) + kT? (K + σ2I)−1(y −m(X)) . (2.5)

We can see how a GP outputs a predictive distribution p(f(x)|D) of a ground true
function conditioned on previously evaluated observations in Figure 2.2. In this figure,
we observe how, by conditioning the GP to the observed data, the standard deviation
is smaller as more and more data is observed, better predicting the objective function.
At the end of the process, the GP conditioned on the observed points will have lower
uncertainty about the objective function that the unconditioned GP prior. Hence, on
average, samples drawn from the conditioned GP will be more similar to the ground
true function than samples drawn from the GP prior. This behavior of the conditioned
GP is useful for regression problems, as we can predict the objective function. The

Ground TruthNumber of observations = 1

●

Ground TruthNumber of observations = 2

●

●

Ground TruthNumber of observations = 3

●

Ground TruthNumber of observations = 4

Figure 2.2: A GP model fitting a ground truth function (purple). As observations
condition the GP model, the mean (black), or expected prediction, of the GP model
becomes more similar to the ground truth and the standard deviation, or uncertainty,
area of the GP becomes smaller (blue).

particular characteristics assumed for f(·) (e.g., level of smoothness, additive noise,
etc.) are specified by the covariance function k(x,x′) of the GP. The specification of
the covariance function implies a distribution over functions. Depending on the chosen
covariance function, the GP will be a good fit for the objective function.

2.3 Covariance Functions

Covariance functions encode our assumptions about the function that we wish to learn
(Rasmussen, 2003). They can be seen as a notion of similarity between data points

Chapter 2. Gaussian Processes And Approximate Inference 23

X = (x1, ...xN)T . The Gram matrix K whose entries are Kij = k(xi,xj) is the covariance
matrix that contains all the notions of similarity of a set of points X = (x1, ...xN)T . Not
all functions are valid covariance functions. For a covariance function to be valid, its
corresponding Gram matrix must be positive semidefinite (PSD). A symmetric matrix is
PSD if and only if all of its eigenvalues are non-negative.

Depending on the analytical expression of the covariance function, it has different
properties. A stationary covariance function is a function of x− x′. Such a function is
invariant to translations in the input space. If, also, the covariance function is a function
of |x− x′|, it is called isotropic. In isotropic covariance functions, the direction of the
deviation is of no importance, it only depends on the distance of the covariance function
arguments. Lastly, if a covariance function depends only on the product of the input space
points x · x′ it is a dot product covariance function. Dot product covariance functions
are invariant to a rotation of the coordinates about the origin, but not translations.

Common examples of covariance functions used by GPs are the squared exponential
or the Matérn function. Deciding which covariance function to use is a design choice that
can be critical for the result of the GP application. Every covariance function makes
different assumptions about the target function. Understanding the basic properties and
assumptions made by the most common GP covariance functions is, hence, important.
We provide a review of these covariance functions:

• Squared exponential covariance function: The most popular covariance func-
tion for GPs is known as the squared exponential covariance function. This function
k(·, ·) is formulated as:

k(x,x′) = σ2
f exp

(
− r2

2`2

)
+ σ2

nδpq , (2.6)

where r is the Euclidean distance between x and x′. ` is a hyper-parameter known
as length-scale, which controls the smoothness of the functions generated from
the GP. Most of the times a different length scale `j is used for each dimension
j. σ2

f is the amplitude parameter or signal variance, which controls the range of

variability of the GP samples. Finally, σ2
nδpq is the noise variance that applies when

the covariance function is computed for the same point k(x,x). This condition
is modelled by the delta function δpq. If there is noise in the covariance function,
we can eliminate it from the likelihood function. In this case, we would observe
yi(xi) = fi(xi), and the noise would be included in fi(xi) via σ2

nδpq. Note that
k(·, ·) only depends on r. This particular covariance function and others that share
this property are known as radial basis functions (RBFs). This covariance function
is infinitely differentiable, which means that the GP is very smooth, as we can see
in Figure 2.3. We can observe in Figure 2.3 different shaped functions sampled from
a GP with the squared exponential covariance function with various length-scale
values `, for a single dimension. We can see in Figure 2.3 how, by augmenting
the lengthscale `, the samples obtained from a GP with a squared exponential
covariance function are smoother. However, when the lengthscale ` is reduced,
these samples become rough. As we do not know the actual level of smoothnes of
the target function, estimating this hyper-parameter is critical for the GP model
to provide an accurate predictive distribution. We later explain, in this section,
different methods for estimating the hyper-parameters of the covariance function.

• Matérn covariance function: The squared exponential covariance function is
critized for its strong smoothness assumptions, which are unrealistic for modelling

Chapter 2. Gaussian Processes And Approximate Inference 24

−4 −2 0 2 4

−2
−1

0
1

2

x

f(x
)

Length scale = 0.1

−4 −2 0 2 4

−2
−1

0
1

2

x

f(x
)

Length scale = 1

−4 −2 0 2 4

−2
−1

0
1

2

x

f(x
)

Length scale = 5

−4 −2 0 2 4

−2
−1

0
1

2

x

f(x
)

Length scale = 30

Figure 2.3: Different functions drawn from GP priors with different value of the length
scale hyper-parameter. We can see how their shape is dependant on the value of the
length scale hyper-parameter. Higher values of the length scale hyper-parameter imply
smoother functions sampled by the GP model.

many physical processes (Stein, 2012). An alternative to the squared exponential
covariance function, which does not make such strong smoothness assumptions,
is the Matérn class of covariance functions. This covariance function is usually
employed in the context of BO. The Matérn covariance function analytical ex-
pression contains, among others, a parameter defined as ν. In contrast with the
hyperparameters of the squared exponential covariance function, like the amplitude
parameter σ2

f , this parameter is fixed and cannot be learnt from data. The Matérn
class of covariance functions is given by the following expression:

kMatern(r) =
21−ν

Γ(ν)
(

√
2νr

`
)νKν(

√
2νr

`
) , (2.7)

where Γ(·) is the Gamma function (Artin, 2015), r is the Euclidean distance between
x and x′ and Kν is a modified Bessel function (Abramowitz and Stegun, 1965).
Depending on the value of the parameter ν, the analytical expression of the Matérn
covariance function varies. The most popular values for the machine learning
community for the ν parameter are ν = 3/2 and ν = 5/2. The following expressions
correspond to the analytical expression of the Matérn covariance function with
ν = 3/2 and ν = 5/2:

kν=3/2(r) = σ2
f (1 +

√
3r

`
) exp(−

√
3r

`
) , (2.8)

kν=5/2(r) = σ2
f (1 +

√
5r

`
+

5r2

3`2
) exp(−

√
5r

`
) , (2.9)

Chapter 2. Gaussian Processes And Approximate Inference 25

where σ2
f is the signal variance parameter, also present in the squared exponential

covariance function. The ν parameter is related to the number of times that the
GP samples can be differentiated. Hence, higher values of the ν parameter make
the GP sample smoother functions. A related result is that, as ν →∞, the Mátern
covariance function converges to the squared exponential covariance function, which
is infinitely differentiable. We can observe this effect on the Matérn covariance
function for different values of its hyper-parameters in Figure 2.4. Higher values of
ν make the GP sample smoother functions and viceversa.

−4 −2 0 2 4

−2
−1

0
1

2

x

f(x
)

−4 −2 0 2 4
−2

−1
0

1
2

x

f(x
)

−4 −2 0 2 4

−2
−1

0
1

2

x

f(x
)

−4 −2 0 2 4

−2
−1

0
1

2

x

f(x
)

Figure 2.4: Different functions drawn from GP priors with different value of the
ν hyper-parameter. We can see how their shape is dependant on the value of the ν
hyper-parameter. Higher values of ν imply smoother functions sampled from the GP
model.

Covariance functions can also be combined in different ways. We can perform addition,
multiplication or exponentiation of covariance functions (Rasmussen, 2003). The only
requisite to test whether a covariance function is valid is that the covariance matrix
K must be positive semidefinite. We can even generate a covariance function from
different spaces X1 and X2 by the tensor product k(x,x′) = k1(x,x′)k2(x,x′). As we
have seen, we can sample very different shaped functions by using GPs just by varying
the hyper-parameters. Hence, it is critical to estimate accurate hyper-parameter values
to fit an unknown function with a GP.

2.4 Hyper-Parameter Estimation

A GP model has a set of hyper-parameters θ that can be adjusted to better fit the data
D = {(xi, yi)|i = 1, ..., N}. These include the variance of the additive Gaussian noise σ2

and any potential hyper-parameter of the covariance function k(·, ·). These can be, e.g.,

Chapter 2. Gaussian Processes And Approximate Inference 26

the amplitude and the length-scales. Two popular approaches to estimate the values for
these hyper-parameters w.r.t the data are: maximizing the log marginal likelihood and
approximately computing a posterior distribution for the hyper-parameters.

2.4.1 Maximizing the Log Marginal Likelihood

We can find point estimates for the hyper-parameters of the GP through optimizing
the log marginal likelihood. The marginal likelihood, or evidence, is related to the
marginalization over the latent function values f = (f1, ..., fN)T of the data points. These
latent function values vary according to the chosen values of the GP hyper-parameters.
The marginal likelihood is also called evidence as it can be seen as the probability of the
observed data given the model. Intuitively, if this quantity is bigger for one model, it
means that it explains the data better than another model. Comparing models through
this quantity is what Bayesian model comparison performs. Let D = {(xi, yi)|i = 1, ..., N}
be the observed data and M a set of models whose performance we want to compare
and m a model belonging to that set. Let θ be the set of hyper-parameters of a model
m. If we use a uniform prior over models p(m) ≈ 1, then, the model that better fits the
data according to Bayesian model selection is the one that maximizes the likelihood of
the data given that model (Murphy, 2012):

p(D|m) =

∫
p(D|θ)p(θ|m)dθ . (2.10)

Section 5.3.2 of Murphy (2012) gives details about the computation of p(D|θ) and
p(θ|m). The trick to make this computation easy is to choose a conjugate prior for
the hyper-parameters p(θ|m). A conjugate prior p(θ|m) for the likelihood function
p(D|θ) is a probability distribution that makes the posterior distribution p(θ|D) be in
the same probability distribution family after applying Bayes theorem. For example,
the exponential family is conjugate to itself. Models with a low number of parameters,
that incur in underfitting, will not explain the data well and will have a low marginal
likelihood value. As this quantity integrates out the parameters θ of the models, it
also avoids overfitting. Having a higher number of parameters does not maximize the
marginal likelihood, as bad values for these parameters penalize the evidence. This is
known as Bayesian Occam’s razor (MacKay, 1995), in an analogy to the Occam’s razor.
Occam’s razor states that given a set of models that accurately explain the data we
should pick the simplest one of them.

Now that we have explained what the evidence is, let us define how to compute the
log marginal likelihood of a GP to estimate its hyper-parameters. The log marginal
likelihood can also be seen as the integral of the likelihood, p(y|f ,X), of the observed
data y given the input data X = (x1, ...xN)T and the latent function values of a GP
f = (f1, ..., fN)T times the prior of the latent function values given the data p(f |X).
Recall that the latent function values of the GP f vary with every different value of the
hyper-parameters θ of the GP. Hence, marginalizing the latent function values of the
GP, p(y|X) =

∫
p(y|f ,X)p(f |X)df , is equivalent to marginalizing the parameters of the

GP, that is what Eq. (2.10) does. Both the likelihood p(y|f ,X) and the prior p(f |X)
are Gaussian distributions. As the product of two Gaussian distributions gives another
un-normalized Gaussian distribution, we can compute a closed-form analytical expression
for the marginal likelihood of the GP. The normalizing constant can also be computed
analytically, see Eq. (A.8) of Rasmussen (2003) for details. The integration yields the

Chapter 2. Gaussian Processes And Approximate Inference 27

following log marginal likelihood:

log p(y|θ) = −1

2
yT (K + σ2I)−1y − 1

2
log |K + σ2I| − N

2
log 2π . (2.11)

The previous analytical expression can be optimized to obtain a point estimate θ? for
the hyper-parameters θ. The three terms of the marginal likelihood can be interpreted.
The first term, that includes the observed targets y, is the data-fit. The data-fit is
bigger if the GP performs an accurate prediction of the objective function values and
viceversa. The second is the complexity penalty on the covariance function. This log
determinant term gives preference to Gaussian distributions with high variability, as
we will see through an example. The third term is a normalization constant. There is
a tradeoff between the first two terms. Consider varying the lengthscale of a squared
exponential covariance function with fixed amplitude parameter in a one dimensional
problem. Good fits produced by a small lengthscale make yT (K + σ2I)−1y small but
produce a high model complexity. Recall that small lengthscales make most points
not near to any others. This implies that the Gram matrix K will be almost diagonal.
Hence, the log determinant |K + σ2I| will be large. For long lengthscales we will have
the opposite effect, poor fits but low model complexity as all the entries of the Gram
matrix K will be almost 1, making the log determinant |K + σ2I| smaller.

If we have enough data, maximizing the log marginal likelihood with respect to the
hyper-parameters of the covariance function will be a good idea. Although, when we do
not have enough data, we may incur in overfitting if we use this approach. For example,
we may underestimate the level of noise and have length-scales with high value. As the
number of observations N increases, estimating the hyper-parameters θ of a GP through
the optimization of the log marginal likelihood becomes less prone to overfitting.

In order to optimize the log marginal likelihood expression, we can use a gradient-
based optimizer like L-BFGS (Zhu et al., 1997). The L-BFGS quasi-Newton method is
an approximation of the BFGS algorithm that uses a limited amount of memory. It uses
an estimate of the inverse Hessian matrix of the objective function to optimize. Instead
of storing the full inverse Hessian as BFGS does, L-BFGS only stores some updates
of the positions visited in the optimization process and the gradient of the objective
function in that positions. As the mentioned approximations produce a linear memory
complexity, this technique is well suited for optimization problems with many variables.
If we extract the gradient from the log marginal likelihood, L-BFGS can compute a
local optimum for the value of the hyper-parameters. The gradient ∇θ log(y|X, θ) has
an analytical closed-form expression, computed through matrix derivatives rules. Every
partial derivative ∂/∂θj log(y|X, θ) of the gradient is given by the following expression
(Rasmussen, 2003):

∂

∂θj
log(y|X, θ) =

1

2
yTK−1∂K

∂θj
K−1y − 1

2
tr(K−1∂K

∂θj
)

=
1

2
tr((ααT −K−1)

∂K

∂θj
) , (2.12)

where α = K−1y. The complexity of the previous expression is cubic in the number
of observations N as it involves the inverse of the covariance matrix K. The marginal
likelihood can suffer for multiple local optima. This does not need to be a problem, as
the different optima can be seen as different interpretations of the data.

Chapter 2. Gaussian Processes And Approximate Inference 28

2.4.2 Slice Sampling from the Posterior Distribution

As we have seen in the previous section, we can incur in over-fitting by finding a point
estimate θ? of the hyper-parameters θ through the maximization of the log marginal
likelihood. Consider the trivial example of a GP conditioned to one point (x, y). One
point is not enough to give accurate information about the shape of the objective function
f(x) and much less to discriminate which hyper-parameter values generate accurate
predictive distributions p(f(x)|θ,D) by only having that information. If we estimate
the hyper-parameters of the GP by maximizing the marginal likelihood, giving a point
estimate of the hyper-parameters θ, we will be commiting overfitting. When we do
not have much data, a more reasonable approach is to consider the hyper-parameters
posterior distribution p(θ|y) instead of using a single hyper-parameter value θ?. This
distribution is intractable because we cannot compute the normalization constant p(y)
of it. Let us explain it more in detail. If we compute the posterior distribution using
Bayes theorem p(θ|y) = p(y|θ)p(θ)/p(y), the normalization constant of this distribution,
p(y) =

∫
p(y|θ)p(θ)dθ, involves integrating the marginal likelihood of the observed data

p(y|θ) given all the values of the hyper-parameters pondered by the prior distribution
for them p(θ). This operation is intractable, as the space of hyper-parameters is high-
dimensional. Given the impossibility of fully computing the posterior distribution of the
hyper-parameters, an alternative that has shown good empirical results is to compute
an approximate posterior distribution of the hyper-parameters θ. We can perform this
computation using slice sampling (Neal, 2003) (Snoek et al., 2012). Slice sampling
performs a fully-Bayesian treatment of the hyper-parameters θ. Under slice sampling,
we generate the predictive distribution p(f(x?)|θ,D) for a new point (x?, f(x?)) by
averaging across S samples of the hyper-parameters θ:

p(f(x?)|D,θ) =
1

S

S∑
s=1

p(f(x?)|D,θs) , (2.13)

where θs is the s sample of the hyper-parameters. Having approximated this posterior
distribution p(f?|x?,D), the computation of the predictive distribution p(f(x?)|D) of an
observation y? that corresponds to a new data point x? is:

p(y?|x?,D) =

∫
p(y?|f(x?))p(f(x?)|D)df(x?) , (2.14)

where D = {(xi, yi)|i = 1, ..., N} is the dataset of observed data points and p(f(x?)|D)
is the posterior distribution of the latent function value f(x?) of the new point x? given
the observed data D. For a low number of samples, S = 10 for example, the process
of generating these samples and computing the final predictive distribution p(y?|x?,D)
takes only a few seconds at most. This time can be considered negligible compared to
the cost of evaluating the actual black-box function f(·).

As we have seen, we approximately generate the S hyper-parameter samples θs for
the predictive distribution p(f(x?)|D) using slice sampling (Neal, 2003). Slice sampling
generates the S samples by executing a Markov chain a finite number of steps whose
stationary distribution coincides with the target distribution p(f(x?)|D) (Bishop, 2006).
We define a stationary distribution as the distribution where the chain is located after a
sufficiently long number of steps, not changing any longer. A Markov chain is a stochastic
model that describes a sequence of possible events θ1, · · ·,θn in which the probability
of an event p(θt) depends only on the previous event p(θt|θt−1), where t is the index

Chapter 2. Gaussian Processes And Approximate Inference 29

of the chain. If the sampling technique makes the stationary distribution computed by
the Markov chain match the target distribution, then, we can use the samples from the
Markov chain to approximate the target distribution.

Sampling methods that use Markov chains are called Markov chain Monte Carlo
algorithms. These techniques use a proposal distribution q(θt|θt−1) to sample a new
state from a previous one combined with a criterion that states whether the new sample
θt should be rejected (Bishop, 2006). This criterion is added to the Markov chain Monte
Carlo method to guarantee that the stationary distribution of the Markov chain matches
the objective distribution. One example of a Markov chain Monte Carlo algorithm is
Metropolis Hastings. Metropolis Hastings has a step-size parameter (Chib and Greenberg,
1995), that controls the size of the proposal distribution, i.e., the average size between
samples. A small step-size makes difficult to sample from all the area of the target
distribution. It can even make the stationary distribution to match only a part of the
target distribution. This can happen if, for example, the target distribution is multi
modal and the size of the steps generate a the stationary distribution that only focuses
in one mode. This issue happens as the steps are not long enough to explore the other
mode. However, a large step-size makes the algorithm slow as it incurs in a sample high
rejection rate.

Markov chain Monte Carlo algorithms usually depend on a set of parameters. Depend-
ing on the values of that parameters, the sampling method may compute a stationary
distribution that matches the target distribution or fail to do so. Having to parametrize
the sampling algorithm is an undesirable feature. Slice sampling was proposed driven
by the motivation of having a parameter-free sampling algorithm (Neal, 2003). Slice
sampling, in contrast to other algorithms, such as Metropolis Hastings, does not have any
parameter, avoiding the issue of the Metropolis Hastings step-size parameter described
in the previous paragraph. In slice sampling, the step-size is automatically configured
according to the target distribution.

Let p(x) be an univariate distribution and p̂(x) the target un-normalized distribution.
The goal in slice sampling is to generate approximate samples from its normalized version
p(x). In order to do so, the first step of slice sampling is to choose at random an initial
point x1 such that p(x1) > 0. Let u be an additional variable. The algorithm samples u
uniformly such that 0 ≤ u ≤ p̂(x1). The trick of slice sampling lies in augmenting the
variable x with a variable u and drawing samples from the joint (x, u) space. This joint
probability distribution p̂(x, u) has uniform probability in the areas lying in the interval
0 ≥ u ≥ p̂(x), i.e., every value has probability equal to 1

Zp
, where Zp =

∫
p̂(x)dx is the

normalization constant of the un-normalized target distribution. By considering that the
marginal distribution over x satisfies p(x) =

∫
p(x, u)du, we can just sample from p(x) by

sampling from the joint distribution p(x, u) and then ignoring the u values. This process
is carried out by alternately sampling x and u. That is the reason why, in the first place,
this algorithm samples u uniformly such that 0 ≤ u ≤ p̂(xt), where xt is the sampled
point at iteration t. The value (xt, u) defines a slice to the distribution, an horizontal line
that cuts the un-normalized target distribution at location xt and height u of the joint
(x, u) space. This slice is defined in the region of the input space where p̂(x) > u. Figure
2.5 illustrates this process. We have sliced the target un-normalized distribution p̂(x)
plotted on blue with a horizontal line plotted on pink at the height given by u, which is
the slice. The size of the slice is delimited by two values: xmin and xmax, such that xt is
contained in the interval defined by these points xmin < xt < xmax. These values are used
to sample a new point x from the un-normalized distribution. The new point will hence
be contained in the region defined by: xmin ≤ x ≤ xmax. The purpose of this region is to

Chapter 2. Gaussian Processes And Approximate Inference 30

allow large moves in the x space, but without getting to far from the slice. Getting too
far of the slice would make the sample inefficient. The slice is useful as it tells us that
the area above it, p̂(x) > u, is a high probability mass area of the target un-normalized
distribution. Since we want to approximate the target distribution through samples,
we are interested in sampling with more probability the areas in the x where the slices
leave probability above. It is critical hence to accurately compute xmin and xmax since
new points are uniformly sampled from the interval that these values form. In order to
compute these values, slice sampling chooses a width w. Then, starting from xt, it adds
and substracts w, testing whether (xt − w, u) and (xt + w, u) belong to the slice, i.e.,
are locations y where u < p(y). If these positions leave probability mass above it, the
width is applied again. If not, the position is either xmin or xmax. By doing this process,
the interval [xmin, xmax] covers a high probability mass area of the un-normalized target
distribution. We represent in Figure 2.5 how a new point is sampled from a previous
one. Then, it samples xt+1 from xt − w, xt + w, checking if xt+1 belongs to the slice and
adapting if it does not.

Slice sampling can be applied to multivariate distributions by repeatedly sampling
each variable in turn. In order to retrieve an accurate representation of the target
distribution by generating samples, it is critical to perform a big number of iterations.
As we have seen by how slice sampling works, the samples are not independent, i.e., are
correlated. Hence, the effective number of generated samples is going to be lower than
the number of iterations. If the distribution is complex and multi-modal, representing
it through slice sampling will demand a big number of iterations. A summary of the
operations performed on slice sampling in shown in Algorithm 1.

Input: Number of samples S, target distribution p(·), un-normalized target
distribution p̂(·).

1: Choose at random an initial point x1 such that p(x1) > 0.
for t = 1, 2, 3, . . . , S do

2: Sample u ∈ [0, p̂(xt)].
3: Compute an slice of the distribution [(xt − w, u), (xt + w, u)] through the
width w.
4: Uniformly sample a new point xt+1 from the slice [(xt − w, u), (xt + w, u)]
computed in Step 3.

end
Result: S Samples from the distribution.

Algorithm 1: Slice sampling steps to sample from a target distribution p(·).

We visually compare the described methods of estimating the GP hyper-parameters
θ. We approximate the marginal posterior distribution over the hyper-parameters
p(f(x?)|D) = (1/S)

∑S
s=1 p(f(x?)|D,θs) by drawing S samples from the posterior dis-

tribution of the hyper-parameters p(θ|y) using slice sampling. As we can see from
p(θ|D), the probability for the values of the hyper-parameters is a function of the
observed data D. Depending on the sampled values of the hyper-parameters θ, pre-
dictions p(y?|x?,D) =

∫
p(y?|f(x?))p(f(x?)|θ)p(θ|y)df(x?)dθ change. The predictive

distribution is an average of the predictions done by GPs whose hyper-parameters θ are
drawn by slice sampling of the posterior distribution of the hyper-parameters p(θ|y). It
approximates the potentially infinite number of predictions of GPs hyper-parametrized
by all the values of the hyper-parameter space Θ. The inmediate consequence of working

Chapter 2. Gaussian Processes And Approximate Inference 31

0.0 0.2 0.4 0.6 0.8 1.0
Input space

0.000

0.002

0.004

0.006

0.008

0.010

Slice sampling over target distribution

Figure 2.5: Sampling of a new point from a previous one through a slice. Points are
represented by red dots. The un-normalized distribution is plotted in blue color. The
defined slice that we use to sample the next point is plotted in pink color.

with the posterior distribution of the hyper-parameters instead of working with a point
estimate of them is that the uncertainty given by that distribution is added to the
predictive distribution of the GP p(f(x)|D). This uncertainty makes the GP more robust,
so we expect the GP to provide better results by considering the posterior distribution
of the hyper-parameters rather than just one point estimate. We visually compare the
described methods of estimating the GP hyper-parameters θ in Figure 2.6.

2.5 Other Surrogate Models

Due to its commented properties and flexibility, GPs have been the most popular proba-
bilistic surrogate models used in BO (Frazier, 2018; Shahriari et al., 2015). Nevertheless,
GPs cannot provide accurate posterior and predictive distributions of all the objective
functions that we can face in different situations. In some cases, GPs may not be the best
option to choose. Other surrogate models may provide better predictions and uncertainty
estimates for those objective functions. In practice, GPs provide great results, but cases
where GPs have difficulties modelling objective functions have also been shown. An
example is the class of non-stationary functions (Snoek et al., 2014). If a function has
different variability across its range, we say that it is not-stationary. The concept of
stationarity comes from time series. We say that a time series is stationary if its statistical
properties do not change over time. The analogous concept in GP-BO is that the objective
function variability does not change in its range. Let us provide an example: the sine one
dimensional function is stationary but the exponential function is not. Another drawback
of GPs is its cubic complexity over the number of observations O(N3), where N is the
number of observations, that involves computing an inverse matrix. Recall from previous

Chapter 2. Gaussian Processes And Approximate Inference 32

0.0 0.2 0.4 0.6 0.8 1.0
Input space

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Im
a
g
e
 s

p
a
ce

Mean-std. dev.

GP mean

Mean+std. dev.

Ground truth

Observations

GP fitting an unknown function using Maximum Likelihood

0.0 0.2 0.4 0.6 0.8 1.0
Input space

2.0

1.5

1.0

0.5

0.0

0.5

Im
a
g

e
 s

p
a
ce

Mean-std. dev.

GP mean

Mean+std. dev.

Ground truth

Observations

GP fitting an unknown function sampling hyperparameters

Figure 2.6: GP posterior distributions optimizing the log marginal likelihood (top)
and sampling from the posterior distribution of the hyper-parameters. (down)

Chapter 2. Gaussian Processes And Approximate Inference 33

equations that we need to compute the following expression for the mean of the GP:
µ(x?) = kT? (K + σ2I)−1y. As we can observe, this expression includes the computation
of the inverse of the sum of the Gram matrix on training data plus an identity matrix
multiplied by a constant (K + σ2I)−1. This matrix also needs to be inverted for the
predictive distribution variance computation k(x,x) − kT∗ (K + σ2I)−1k∗. In practice,
inverting this matrix with more than 1000 observations is problematic. In the described
scenarios, an alternative choice to fit the data is to choose another probabilistic model.
This section exposes a list with model alternatives to GPs.

• Random forests: These models are a combination, or ensemble, of decision
trees (Breiman, 2001). A decision tree predicts the value of an instance through
a sequential decision making process corresponding to the traversal of a binary
tree. In this process, each node represents a classification of the instance to be
predicted into two categories. Depending on the category of the instance classified
by the node, the tree sends this instance to other nodes, that performs other
classifications until the instance reaches a leaf node, that represents the label, for
classification problems, or value, for regression problems, predicted for the instance.
The structure of the tree and the questions performed by the nodes can be learnt
via the CART algorithm (Breiman et al., 1984). Each tree classifier is trained on a
bootstrap sample of the data.

Random forests (RFs) are both used for classification and regression purposes. The
generalization error of a forest of tree classifiers depends on the strength of the
individual trees in the forest and the correlation between them. It depends on the
correlation between them because when considering different predictors, if they
have variability on their predictions and the errors occur in different space areas
they are cancelled because each one of them predicts a different result in each
area. This fact happens as each tree is trained on a different bootstrap sample
of the training set. The errors are cancelled as the prediction of the ensemble is
computed by an average of the predictions of the trees. Because of this variability
in the predictions, using different predictors make ensembles report better results
than decision trees. But an ensemble of trees is useless if all the classifiers produce
similar predictions, i.e., the ensemble does not have variability in its predictions
and the errors are dependent on each other. In order to introduce variability on
the predictions, randomization is introduced in the tree growing algorithm. The
randomization can be introduced using different techniques. For example, we can
randomly choose the best split among the s best of them where s is usually fixed
to be the square root of the number of attributes (Breiman, 2001). Random forests
have other hyper-parameters that condition its predictions. Some examples include
the number of trees, the number of variables to randomly choose in each split or the
maximum depth of each tree, among others. More trees and number of variables
considered in each split often lead to a better generalization error, as different
criteria is added into the prediction. Random forests usually consider the square
root of the number of attributes as the number of variables to randomly choose
in each split. That value usually work well and it is not fixed. Considering the
maximum depth of the trees, a high value can incur in overfitting if the forest does
not have variability in its predictions and a low value may produce underfitting.
Also, a high value of this hyper-parameter implies a higher computational cost in
the prediction of a new instance, as we will further explain.

Chapter 2. Gaussian Processes And Approximate Inference 34

Let us define the prediction of a tree as fi(x). The prediction of RFs is done
by the average of the outputs. RFs are computationally cheaper than GPs. The
computational cost at test time for a RF is O(TD), where T is the ensemble
size, i.e., the number of trees considered in the random forest, and D is the
maximum depth of a tree, i.e., the maximum number of splits that a tree can have
in the RF (Solé et al., 2014). One can obtain an approximate Gaussian predictive
distribution with mean given by f̂(x) = 1/T

∑T
i=1 fi(x) and variance given by

σ2 = (
∑T

i=1(fi(x
′
)− f̂)2)/(T −1). We can see a graphical representation of random

forests on Figure 2.7

Figure 2.7: Random forest graphical representation. Trees are enforced to be diverse.
Every tree outputs a different result. An approximate Gaussian predictive distribution
can be computed using the empirical mean prediction and the variance of the predictions.

An advantage of RFs with respect to GPs is that they can generate conditional
spaces, letting BO to easily optimize a hierarchical space. Conditional spaces are
the ones involving variables that only arise when other variables are given certain
values. For example, in deep neural networks, the number of neurons of layer 5 is
only taken into account if the variable number of layers has value greater or equal
to 5. Consider the joint hyper-parameter space given by two machine learning
algorithms. We know that the hyper-parameters of one algorithm do not affect the
performance of the other algorithm. If a search process considers the two spaces
jointly without incorporating this knowledge, it will have to search in a space with
as many dimensions as the sum of hyper-parameters of the two algorithms. If
instead, the search process consider to model this space as a conditional space,
it will do a hierarchical search. First, it will decide which of the two algorithms
is more suited to the problem and then it will decide which value of the hyper-
parameters of the chosen algorithm is the best. These conditional search spaces are
modelled naturally by the splits of RF trees. RFs also deal with a high number of
attributes in the instances to predict due to the high number of predictors that a RF
contains. By considering conditional search spaces and a high number of attributes,
RFs arise as a great alternative for automatic machine learning tools (Hutter
et al., 2019). Bayesian optimization is a class of methods than can be employed
for automatic machine learning (Hutter et al., 2019). An automatic machine

Chapter 2. Gaussian Processes And Approximate Inference 35

learning tool recommends a hyper-parametrized machine learning algorithm from a
conditional search space of machine learning algorithms and their hyper-parameters
to be trained for a given dataset in a budget of time. The conditional search space
is traversed through a BO process with the RF as surrogate model, as it effectively
deal with a high number of attributes and conditional regions of the search space.
Examples of automatic machine learning tools are Auto-Sklearn and Auto-Weka
(Feurer et al., 2019; Kotthoff et al., 2017). The main disadvantage of the RFs is that
they tend to underestimate the variance of the predictive distribution, as we can
see in Figure 2.8. We compare the predictive distributions of a GP with a squared
exponential covariance function and a RF with 10 estimators and a maximum
depth of 20 splits. The objective function is a one dimensional function with the
following analytical expression f(x) = exp(sin(25x) + cos(15x)). We extract 10
random samples from the objective function in the [0, 1] range and fit the GP and
RF to those data. Then we compute the predictive distribution of both models on
a grid in [0, 1]. We can see how the GP variance of the predictive distribution is
wider than the RF variance in unexplored areas. We can also see that the predictive
distribution of the RF is not smooth. This makes the RF a worst candidate for
modelling this particular smooth objective function.

0.0 0.2 0.4 0.6 0.8 1.0
Input space

6

4

2

0

2

4

6

8

10

Ou
tp

ut
 sp

ac
e

GP Regression
Ground truth
GP prediction
Observations
GP uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Input space

6

4

2

0

2

4

6

8

10

Ou
tp

ut
 sp

ac
e

RF Regression

Ground truth
RF prediction
Observations
GP uncertainty

Figure 2.8: Gaussian process (left) and random forest (right) predictive distributions
(mean: green, std dev: blue) of an objective function (red) after being trained on
observations (red dots). Random forests are not as good as GPs modelling smooth
functions.

• T-Student processes: A T-Student process is a GP with an inverse Wishart pro-
cess prior on the covariance function (Shah et al., 2014). The Wishart distribution
is a probability distribution over the set of real valued, symmetric, positive definite
matrices. T-Student processes are an alternative to GPs as non-parameteric priors
over functions. The T-Student process is a generalization of the GP that contains,
as the T-Student distribution, an additional parameter to control how heavy are
the tails of the process, the degrees of freedom ν. If ν → ∞, the multivariate
T-Student distribution converges to a multivariate Gaussian distribution. Hence,
if this parameter gets larger, the tails converge to a GP. It is consistent under
marginalization and has analytical closed-form expressions for the marginal like-
lihood, the predictive and conditional distributions. Interestingly, the predictive
mean form is the same as the one of the GP. The key difference with respect
to GPs lies in the posterior variance expression, which in the case of T-Student

Chapter 2. Gaussian Processes And Approximate Inference 36

processes explicitly depends on the observations y. Concretely, the GP has variance
v(x?) = k(x?,x?)− kT? (K + σ2I)−1k?. Therefore, the GP posterior variance does
not depend on the observations y. However, the T-Student process posterior
variance is given by the following expression:

v(x?) =
ν − 2

ν

ν + yTK−1y − 2

ν + |D| − 2
(k(x?,x?)− kT? (K + σ2I)−1k?) , (2.15)

where |D| is the number of observations that we have collected so far and we can see
its dependence with the observations y (Tracey and Wolpert, 2018). It is claimed
that the GP is an special case of T-Student process and that the T-Student process
has many, if not all of the benefits of GP (Shah et al., 2014). T-Student processes
increase flexibility at no extra cost, which suggests that T-Student processes can
replace GPs in almost any application. In practice, however, GPs are easier to
use, more interpretable and have less hyper-parameters, providing good results
for the majority of the problems. This fact may be an explanation regarding why
T-Student processes are not used as often as GPs for BO. Another argument is
that we can just see the T-Student process as a GP with a Bayesian treatment of
the scale. Although being more flexible, the scale becomes well determined very
quickly, so the advantage given by T-Student processes vanishes as observations are
fitted on the model. Regarding the use of T-Student processes in BO, it seems that
the T-Student process shows improved performance over GPs with no additional
computational costs in synthetic and benchmark functions such as Branin-Hoo or
Hartmann (Shah et al., 2014, 2013). Although, in our opinion, there is no empirical
evidence of the superiority of T-Student processes over GPs in real experiments or
in an exhaustive benchmark.

• Sparse Gaussian Processes: A sparse Gaussian process is a GP whose covariance
is parameterized by the the locations of M pseudo-input points, that are learned by
a gradient based optimization procedure (Snelson and Ghahramani, 2005; Titsias,
2009). GPs lead to a cost of O(N3) where N is the number of observations. If
we have N = 1000 observations or more, the cost of fitting a GP is prohibitive
in most settings, and can be even higher than evaluating an objective function
in BO. Sparse Gaussian processes tackle this issue with the introduction of M
pseudo-inputs or inducing points Z such that M � N . These inducing points lie
in the same space as the rest of the data X, summarizing it. The sparse Gaussian
process model reduces the training cost from O(N3) to O(M2N). Therefore, in
Sparse Gaussian processes, the training cost goes from being cubic on the number
of observations to linear on the number of observations. Associated to the inducing
points Z = (z1, ..., zM)T , we define the process values associated to the inducing
points as u = (u1, ..., uM)T , i.e., ui = f(zi). The process value at each point xi, is
fully determined by u and given by:

p(f |u) = N
(
f |KX,ZK−1

Z,Zu,KX,X −KX,ZK−1
Z,ZKZ,X̃

)
, (2.16)

where KX,Z is the matrix of covariances at between the process values at the
observed data points X and the inducing points Z. Similarly, KZ,Z is the matrix
of covariances between the process values at the inducing points Z. The prior for

Chapter 2. Gaussian Processes And Approximate Inference 37

each u is simply the GP prior. Namely,

p(u) = N (u|0,KZ,Z) . (2.17)

The inducing point locations Z and their values u are unknown in practice. In order
to compute them, we can maximize the marginal likelihood with respect to the
inducing points Z and the hyper-parameters of the GP (Snelson and Ghahramani,
2005). This method approximates p(f |u) by

∏N
i=1 p(fi|u). This approximation

makes the computational cost smaller. In particular, we obtain an approximate
prior for the GP with a covariance matrix structure such that it can be inverted
with cost O(NM2). The assumption regarding the factorization of p(f |u) that
leads to the described approximate prior considers the inducing point locations as
hyper-parameters of the GP. Hence, these locations are included in the marginal
likelihood. Maximizing such a marginal likelihood is a costly operation and can
lead to overfitting. To avoid this problem, the inducing inputs can also be treated
as variational parameters which are selected by minimizing the Kullback-Leibler
divergence between the variational distribution q(f ,u) = p(f |u)q(u) and the exact
posterior distribution over the latent function values p(f ,u|D) given the data
(Titsias, 2009). This method does not assume that p(f |u) factorizes but restricts
the shape of q(f ,u). In order to perform the minimization of the Kullback-Leibler
divergence, first, we specify the initial variational Gaussian distribution for the
inducing points: q(u) = N (u|m,S). The parameters of this Gaussian distribution
can be learnt through variational inference. Variational inference minimizes the KL
divergence between the variational distribution of the inducing points q(u) and the
true posterior of the inducing points given the data p(u|D) with an optimization
procedure. When we learn a distribution for the inducing points q(u) via variational
inference, the uncertainty about the inducing points u is introduced in Eq. (2.16)
by marginalizing them:

p(f |y) ≈
∫
p(f |u)q(u)du = N (f |µ,Σ) . (2.18)

Recall that we can perform this operation as the inducing point locations are
treated as variables q(u). We can marginalize them to obtain an averaged predictive
distribution p(f |y) with respect to the probability of the location of the inducing
points q(u). We can expect this approach to work better since it does not assume
that p(f |u) factorizes (Titsias, 2009). The parameters µ and Σ of the predictive
Gaussian distribution p(f |y), are given by:

µ = KX,ZK−1
Z,Zm ,

Σ = KX,X −KX,ZK−1
Z,Z(KZ,Z + S)K−1

Z,ZKZ,X̃ , (2.19)

where m and S are the parameters of q(u) that are computed with variational
inference. The cost of computing Eq. (2.19) is O(NM2).

• Deep Gaussian Processes: Deep GPs (DGPs) are a deep belief network based
on GP mappings (Damianou and Lawrence, 2013). A graphical representation of
this model explains the concept and intuition of a deep belief network based on GP
mappings. Figure 2.9 illustrates the structure and components of a DGPs. This
figure shows a DGP with two layers, where each of the layers contains 3 nodes
and each node is a GP. The first hidden layer of this DGP consists of 3 GPs that

Chapter 2. Gaussian Processes And Approximate Inference 38

recieve as an input the data attributes given by x1, x2, x3. The output of each of
these GPs is a predictive distribution. Each of these predictive distributions, that
are the outputs of the first layer are the inputs of the last layer of the DGP. This
operation is defined as a GP mapping. Finally, the observed variables from the
DGP are given by the output of the last layer, that also consists of 3 GP, in this
particular example. DGPs are not restricted to two layers but can contain any
positive number of layers L and nodes, or GPs, in each layer.

x1

x2

x3

Inputs

x

GP

f (1)(x)

GP

y

Figure 2.9: Graphical representation of the GP mappings of a DGP. A first layer of
GPs fit the data, the last layer of GPs fit the output of the previous GPs.

GPs are flexible priors over functions but have difficulties modelling certain types
of functions. For example, non-stationary functions. Recall that if a function has
different variability across its range, we say that it is not-stationary. Standard
covariance functions of the GP are stationary, i.e., assume that the model hyper-
parameters θ stay constant over the input space X . For example, a standard
GP with a stationary covariance function assumes that the signal amplitude or
range of variability of the function, given by the signal variance σ2

f , is constant
over the input space X . It also assumes that the smoothness of the function is
constant over the input space X , property that is modelled by the lengthscales `.
To circumvent this issue, we can employ a different probabilistic surrogate model
that accounts for that kind of complex functions. DGPs represent an alternative
that may be competitive in this case (Damianou and Lawrence, 2013). As we have
seen, deep GPs are a composition of GPs. By using a GP composition, we can
obtain functions with different variability across the input space X . That is, we can
obtain non-stationary functions. Recall that these functions are cannot be obtained
with a standard GP with a RBF covariance function. There is empirical evidence
that deep models, such as DGPs or deep neural networks, seem to have structural
advantages that can improve the learning of complicated data sets, complex and

Chapter 2. Gaussian Processes And Approximate Inference 39

non-stationary functions (Bengio, 2009). Hence, the motivation of using DGPs to
model complex and non-stationary functions seems to be justified.

DGPs are based on a hierarchy of hidden layers of latent variables where each node,
which is a GP, gives an output for each node of the layer above and gets the inputs
from the nodes of the layer below. The observed outputs, Y, are placed in the
leaves of the hierarchy. For example, let us consider a stacking of two hidden layers
of GPs. The hidden layer of GPs takes the N input space points xn and generates
a latent space given by a GP mapping of the input space znd = fd(xn) such that
fd ∼ GP(0, kd(X,X)) and a GP is placed for every dimension of the input space
d = 1, ..., D, generating a latent intermediate representation of every point zn. The
output layer gets the information generated by the hidden layer and performs a
similar mapping ynq = fq(zn), such that fq ∼ GP(0, kq(Z,Z)) and q = 1, ..., Q,
generating a Q dimensional observed output Y. The proposed architecture can be
extended vertically, deeper hierarchies, or horizontally, segmentation of each layer
into different partitions of the output space.

The obvious problem of this hierarchy is that each layer l adds a significant number
of parameters θl to the model that need to be estimated. To do so, we place a
Gaussian prior in the parent latent nodes of the hierarchy p(Z) = N (Z|0, I) and
propagate it through the hierarchy. Let Xi be the latent space of values where a
hidden layer l of the DGP maps its inputs. Let X1 be the input space. In order to
fully marginalize the latent spaces X = (X2, ...,XL)T in a hierarchy with L hidden
layers, we would have to compute the optimization of the marginal likelihood of all
the intermediate latent spaces:

log p(Y) =

∫
p(Y|XL)

L∏
l=1

p(Xl|Xl−1)p(X1|Z)p(Z)dXL, ..., dX2, dZ . (2.20)

This equation is intractable, as every layer is a generative GP mapping with
complexity O(N3) where N is the number of observations. In practice, fixing a
single GP becomes infeasible when we have more than 1000 observations, due to
the bottleneck of inverting the Gram matrix K. This issue is worse in DGPs,
where we can have several GP mappings. In order to circumvent this issue, DGPs
substituted GPs from its layers to introduce Sparse GPs (Snelson and Ghahramani,
2006; Titsias, 2009). Via variational inference, any number of GP models can be
stacked to build deep hierarchies of sparse GPs. The lower bound on the marginal
likelihood of the model is an objective measure that can be used for model selection,
i.e., to select the number of layers L and number of nodes, or GPs, per layer
(Damianou and Lawrence, 2013).

Different approaches have been proposed in the literature to perform the approxi-
mate inference of the posterior distribution of the latent variables of the DGP. We
briefly give references about them, as the particular details of the approximate
inference of the posterior distribution of the DGPs are out of the scope of this
thesis and giving an explanation about them would require a lot of space. A joint
variational distribution q can be defined in the place of the posterior of the latent
variables of the Sparse GPs of the hidden layers given the outputs to obtain a
tractable variational bound (Damianou and Lawrence, 2013). In this approach,
different approximate variational Gaussian distributions q(X) and q(Z) that are
independent between them model the inputs and outputs of each layer l. This

Chapter 2. Gaussian Processes And Approximate Inference 40

approach solves the problem but limits the application of DGPs to a range of
small to medium scale regression problems. An approximation to the expecta-
tion propagation algorithm along with an efficient extension of the probabilistic
backpropagation algorithm is proposed to enable DGPs for medium to large scale
regression problems (Bui et al., 2016). We also find in the literature a doubly
stochastic variational inference algorithm that uses samples to approximate the
predictive distribution of each layer, not being restricted to approximate them
via Gaussian distributions (Salimbeni and Deisenroth, 2017). Doubly stochastic
variational inference optimizes the lower bound of variational inference using two
sources of stochasticity, i.e., using Monte Carlo techniques to solve expectations
and through sub-sampling of the data. The authors of this approach use sparse
variational inference to simplify the correlations within layers, but maintaining the
correlations between layers. This approach enables the successfull application of
DGPs in problems of billions of points (Salimbeni and Deisenroth, 2017). Empirical
evidence shows that the posterior distribution of the latent variables of the DGP is
not necessarily unimodal, but generally multimodal (Havasi et al., 2018). Previous
approximations forced the posterior distribution of the inducing points in each
GP to be Gaussian. As this situation does not necesarilly happen in practice,
forcing this distribution for the inducing points of each GP can lead to poor results.
The stochastic gradient Hamiltonian Monte Carlo sampling algorithm does not
assume the target distribution to be Gaussian and it is suited for large amounts
of data (Chen et al., 2014). It is hence a good candidate to generate samples of
the posterior distribution of the DGPs and its application is proposed to solve the
issue of the Gaussian assumption of the posterior obtaining state-of-the-art results
in DGPs inference (Havasi et al., 2018).

If we apply DGPs as probabilistic surrogate models for BO, they need to be adapted
for scenarios where the budget of evaluations N can be very low. As we have seen,
each node of the DGP is a sparse GP. Recall that sparse GPs use a set of M inducing
points whose locations where determined by maximizing the marginal likelihood
or as a result of modelling them as latent variables and optimizing their positions
through variational inference. In scenarios where the number of observations N
is very low, as BO, the computational time spent by inverting the Gram matrix
K of a GP is not worth the cost of approximating the set of N observations by a
lower set of M inducing points. The locations of the inducing points could suffer
from overfitting and losing accuracy in order to save computational time is not
necessary for BO scenarios where the budget of evaluations is very low. Hence, if
we want to use DGP for BO, substituting the Sparse GPs with standard GPs in
each node is a task that is necessary to be done. An initial approach for adapting
DGP to BO slightly modifies BO and DGPs (Hebbal et al., 2019). It uses the
natural gradients of all the variational parameters of the DGP in training to enable
a better convergence of the ELBO and a better uncertainty quantification on the
prediction. To speed up the training of the DGP, this approach takes advantage of
the fact that BO is an iterative algorithm and uses the optimal parameters of the
model fitted in a previous iteration as the initial ones for the model of the following
iteration. The same authors have used this approach for an application concerning
aerospace system design (Hebbal et al., 2020).

• Bayesian Neural Networks: Traditional neural networks based on backpropaga-
tion are prone to overfitting, do not provide predictive distributions or uncertainties

Chapter 2. Gaussian Processes And Approximate Inference 41

over their parameters and require costly procedures to obtain optimal values of
their hyper-parameters (Goodfellow et al., 2016; Hern’andez-Lobato and Adams,
2015). A Bayesian approach to neural networks overcomes these issues and makes
them suitable as an alternative to GPs for BO (Springenberg et al., 2016). A
Bayesian neural network (BNN) is a neural network with a prior distribution on its
weights (MacKay, 1992; Neal, 2012). BNNs have been used in BO with success in
scenarios with a high number of dimensions or where the scalability and flexibility
provided by a GP is not enough to model an objective function (Springenberg
et al., 2016). BNNs combine the flexibility and scalability of deep neural networks
with well-calibrated uncertainty estimates.

Let us describe the necessary steps to perform the computation of the BNN
predictive distribution p(y?|x?,D) for the evaluation y? of a point x? given a dataset
D = {(xi, yi)|i = 1, ..., N}. First, we need to describe the different parameters of a
common deep neural network that we want to incorporate in the BNN. A neural
network can have lots of parameters that can be treated in a Bayesian framework
but, in this exposition, we are only going to cover the weights of the neural network
and, as the evaluations of the neural network are corruputed by additive noise
variables εn, the precision γ of the Gaussian distribution that accounts for this
noise εn ∼ N (0, γ−1). A deep neural network has L layers and Vl hidden units in
every layer l. Let us define as W = {Wl}Ll=1 the collection of Vlx(Vl−1 + 1) weight
matrices between the fully connected layers. Bayesian inference of the posterior
distribution of the weights given the data p(W|D) in BNNs is a required task to
obtain predictive distributions of unknown outputs. It is also useful to perform
model selection through the maximization of the marginal likelihood p(D). The
first thing to define for the computation of the posterior distribution is to choose
the likelihood distribution for the network weights W and the noise precision γ
given the data D = {(xi, yi)|i = 1, ..., N}. This likelihood is given by the following
expression:

p(y|W,X, γ) =
N∏
n=1

N (yn|f(xn;W), γ−1) , (2.21)

where f(xn;W) is the output of the deep neural network parametrized by the
weights W. Then, we need to define a prior for every weight of the network. We
will assume independence between the weights, defining a joint prior distribution
of the weights that factorizes. In this scenario, an acceptable choice for the prior
of these weights are Gaussian distributions, as they are easy to work with in a
Bayesian framework. This prior distribution for the weights can be modelled by
the following joint distribution:

p(W|λ) =
L∏
l=1

Vl∏
i=1

Vl−1+1∏
j=1

N (wij,l|0, λ−1) , (2.22)

where a weight wij,l is indexed by the entry in the i-th row and j-th column of the
weight matrix Wl of layer l and λ is a precision parameter. The hyper-priors for
the precisions λ and γ can be modelled as Gamma distributions. The posterior
distribution for the weights of the networkW , the noise precision of the evaluations
of the γ and the precision for the prior of the weights λ can be obtained through

Chapter 2. Gaussian Processes And Approximate Inference 42

Bayes rule:

p(W, γ, λ|D) =
p(y|W,X, γ)p(W|λ)p(λ)p(γ)

p(y|X)
, (2.23)

where p(y|X) is a normalization constant, and the hyper-prior for the noise precision
γ and the weight precision is Gamma: p(γ) = p(λ) = Gam(γ|αγ0 , β

γ
0). Given all the

previous expressions, we can now compute the posterior distribution p(W, γ, λ|D)
and define a predictive distribution p(y?|x?,D) to predict the value y? of a new
input vector x?. The predictive distribution for a new input vector x? is computed
by marginalizing the precision random variables γ and λ and the weights W of the
neural network. The predictive distribution is obtained by the following expression:

p(y?|x?,D) =

∫ ∫ ∫
p(y?|x?,W, γ)p(W, γ, λ|D) dγ dλ dW , (2.24)

where p(y?|x?W, γ) can be modelled as N (y?|f(x?), γ). Unfortunately, the exact
computation of the posterior distribution p(W, γ, λ|D) and, hence, the predictive
distribution p(f(x?)|x,D) is intractable as the number of weights of a common deep
neural network is very high. Hence, as in the case of DGPs, we need to perform
approximate inference methods to obtain uncertainty estimates for these weights.

We will not include the full details of the computations performed by the approxi-
mations of these uncertainty estimates as they get out of the scope of this thesis but
give references to the articles that contain the full description of these computations.
In order to get the uncertainty estimates for the weights W, various approximate
inference techniques can be used, that generally obtain a Gaussian approximation
of the weights, or any other parameter, given the data p(W|D). The first approach
to obtain these estimates was using the Laplace approximation to approximate the
posterior distribution (MacKay, 1992). The Laplace approximation produces a
Gaussian distribution that is placed on the mode of the target distribution and
produces approximations that are too local, in the sense that although they match
the mode of the exact posterior distribution, the approximation underestimates
the variance of the posterior distribution. Other approximate inference techniques
have been used to approximate the posterior distribution. Expectation propagation
has shown better empirical results than the Laplace approximation for a wide
variety of problems (Minka, 2001b; Nickisch and Rasmussen, 2008). Expectation
propagation has been successfully applied for the approximation of the posterior
distribution of the weights of a Bayesian neural network (Hern’andez-Lobato and
Adams, 2015; Jylänki et al., 2014). Variational inference has also been used to
learn a probability distribution of the weights of a neural network in the Bayes by
Backprop algorithm (Blundell et al., 2015). As in the case of DGPs, the mentioned
techniques assume that the posterior distributions of the weights is unimodal, which
is a very strong assumption that can hurt the performance of the approximate
predictive distributions of new outputs y?. In order to circumvent this issue,
Stochastic Hamiltonian Monte Carlo (HMC) methods has been successfully applied
for obtaining samples of the approximate posterior distribution of the weights
(Chen et al., 2014). Although BNNs provide high flexibility and scalability, the
computations needed to approximately obtain the uncertainty estimates of the
weights produce a higher computational cost than the one of GPs. Although, BNNs

Chapter 2. Gaussian Processes And Approximate Inference 43

are an alternative that has proved empirical success on BO (Springenberg et al.,
2016).

2.6 Approximate Inference

Let us consider the case of GPs using Gaussian likelihoods p(y|f). In this scenario,
an analytical exact solution for the GP predictive distribution can be computed given
by Eq. (2.5). The problem becomes more difficult to solve when we have GPs with
non-Gaussian likelihoods p(y|f). In this case, we do not have analytical closed-form
expressions for the GP posterior p(θ|D), predictive p(f(x)|D) or marginal distribution
p(D). Unfortunately, in this scenario, the computation of these distributions cannot be
done in closed-form and is generally intractable. A possible solution to approximate
these distributions, in the case of having non-Gaussian likelihoods, is to approximate
each non-Gaussian likelihood with a Gaussian factor. Approximate inference algorithms,
and concretely the expectation propagation algorithm that is going to be described in
this section, can perform that operation. From now on, in this section, let us denote with
θ the latent variables, or parameters, of the model we are interested in making inference
of. For example, in the particular case of GPs, latent variables f will be represented by θ.
Approximate inference algorithms approximate intractable target distributions p(θ) by
simpler distributions qφ(θ), where φ represents the set of parameters of the approximate
distribution qφ(θ) (Bishop, 2006; Blei et al., 2017; Murphy, 2012). For clarity, we will
abbreviate the representation of the approximate distribution qφ(θ) of parameters φ as
q(θ), omiting the dependence of φ.

Approximate inference techniques obtain parametric approximations q(θ) via the
optimization of a divergence D between the target distribution p(θ) and the proposed
parametric distribution q(θ). Intuitively, by carrying out this process, we are computing
the most similar distribution q(θ) of a parametric family F to the target distribution p(θ)
in terms of the divergence D. Figure 2.10 illustrates this intuition. The result obtained
by the approximate inference technique is a set of parameter values

φ? = arg min
φ∈Φ

D(qφ(θ)||p(θ)) , (2.25)

that minimize the divergence D between the proposed distribution q(θ) and the target
distribution p(θ). In other words, it finds the most similar member qφ?(θ) of a parametric
family of distributions F to the target distribution p(θ). One example of a divergence
measure D between probability distributions is the Kullback-Leibler (KL) divergence.
The KL divergence between two probability distributions with densities p(θ) and q(θ)
over continuous variables is given by the following expression:

KL(p(θ)||q(θ)) =

∫ ∞
−∞

p(θ) log

(
p(θ)

q(θ)

)
dθ . (2.26)

The KL divergence between two distributions is always greater or equal than zero, i.e.,
KL(p(θ)||q(θ)) ≥ 0. It is important to remark that the KL divergence is not symmetric,
i.e., KL(q(θ)||p(θ)) 6= KL(p(θ)||q(θ)). If two probability distributions with densities p(θ)
and q(θ) are equal, p(θ) = q(θ), then we have that KL(p(θ)||q(θ)) = 0.

Chapter 2. Gaussian Processes And Approximate Inference 44

Figure 2.10: Visualization of the behavior of an approximate inference technique. The
parametric distribution qφ(θ) approximates the target distribution p(θ) as closely as
possible. The distribution qφ(θ) belongs to the exponential family F , whose parametric
space is plotted as a pink ellipse. At the end of the process, we obtain the set of
parameter values φ? that minimizes the KL divergence of qφ(θ) with respect to p(θ).
In other words, the approximate inference technique finds the most similar exponential
family member qφ?(θ) to the target distribution p(θ) in terms of the divergence.

2.6.1 Exponential Family

The exponential family of distributions F is a parametric set of probability distributions
that, for example, includes the Gaussian, Beta or Gamma distributions (Duda et al.,
1973). The probability distributions that belong to the exponential family have properties
in common. In particular, if the distribution q(θ) belongs to the exponential family F of
probability distributions, it can be written as:

q(θ) = exp(ηTu(θ)− g(η)) , (2.27)

where T means transpose, η is a vector of natural parameters, u(θ) is a vector function
called sufficient statistics and g(η) = log

∫
exp(ηTu(θ))dθ is a log partition normalization

function (Seeger, 2005). For the particular case of the Gaussian distribution, it can be
written as:

N (θ|µ,Σ) = exp(ηTu(θ)− g(η)) , (2.28)

where

u(θ) = (θ1, . . . , θd, η = −1

2

(
−2µTΣ−1 ,

θ2
1, θ1θ2, . . . , θ1θd, Σ−1

11 ,Σ
−1
12 , . . . ,Σ

−1
1d ,

θ1θ2, θ
2
2, . . . , θ2θd, Σ−1

21 ,Σ
−1
22 , . . . ,Σ

−1
1d ,

...
...

θdθ1, θdθ2, . . . , θ
2
d

)T
, Σ−1

d1 ,Σ
−1
d2 , . . . ,Σ

−1
dd

)T
(2.29)

Chapter 2. Gaussian Processes And Approximate Inference 45

and g(η) = (1/2)µTΣ−1µ+ (d/2)log(2π) + (1/2)log(|Σ|). One property of exponential
family F members is that the family is closed under product and division. That is,
performing a product or division of members of the exponential family gives another
exponential family member that can be exactly computed through an analytical expression.
The parameters of the exponential family member change as a result of these operations
but not the vector of sufficient statistics u(θ). In the particular case of the Gaussian
distribution, we substract the values of the natural parameters of a Gaussian distribution
when we divide a Gaussian distribution by with another Gaussian distribution. Similarly,
we sum the values of the natural parameters when we multiply a Gaussian distribution
by another Gaussian distribution. More information about these operations can be seen
in Appendix A. We can compute the KL divergence between a target distribution p(θ)
and an exponential family member distribution q(θ). The KL divergence is given by:

KL(p(θ)||q(θ)) = g(η)− ηTEp(θ)[u(θ)] + C , (2.30)

where C is a constant value that is independent of the natural parameters η. Ep(θ)[u(θ)]
is the expectation of the sufficient statistics of the parametric approximate distribution
q(θ) with respect to the target distribution p(θ). If two probability distributions are
similar, then, their KL divergence is zero. Hence, if we want to make two probability
distributions more similar, we can minimize their KL divergence.

Let q(θ) be a probability distribution that belongs to the exponential family F . We
want to make it similar to the target distribution p(θ). Minimizing KL(p(θ)||q(θ)) with
respect to the parameters of q(θ) is equivalent to making the gradients of Eq. (2.30)
with respect to η equal to zero, as we show with the following expression:

KL(p(θ)||q(θ))

∂η
= 0⇐⇒ ∂g(η)

∂η
= Ep(θ)[u(θ)] . (2.31)

As a corollary, an interesting result that we obtain is that the gradient of g(η) is given
by the expectation of u(θ) under the exponential family distribution member q(θ).
The gradient of g(η) is called the expected sufficient statistics. It is easy to show that
in the case of KL(p(θ)||q(θ))/∂η = 0 we also have ∂g(η)/∂η = Eq(θ)[u(θ)], therefore
Eq(θ)[u(θ)] = Ep(θ)[u(θ)]. This is a great result, as q(θ) is a parametric distribution
with analytic closed-form expressions and a distribution from which we can sample from.
Another advantage is that now, the optimal distribution qφ?(θ) can be obtained simply
by matching the expected sufficient statistics Eq(θ)[u(θ)] and Ep(θ)[u(θ)]. This process
is called moment matching.

Let us suppose that the exponential family distribution member q(θ) is a multivariate
Gaussian distribution N (θ|µ,Σ). We want to minimize the KL divergence of q(θ) with
respect to a target distribution p(θ). To do so, as we have seen in the previous paragraph,
we just need to match the moments or expected sufficient statistics, of the distributions
p(θ) and q(θ). In this particular example, this is equal to set the mean µ of q(θ) equal
to the mean of p(θ) and to set the covariance matrix Σ of q(θ) equal to the covariances
of p(θ). Figure 2.11 illustrates this process. In this Figure, we want to approximate a
mixture of Gaussians represented by p(θ) with a simpler parametric distribution q(θ) that
belongs to the exponential family F . By matching the moments of both distributions,
we obtain the optimal distribution qφ?(θ).

Chapter 2. Gaussian Processes And Approximate Inference 46

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Moment matching of distributions

Proposal distribution

Target distribution

Exponential family optimal distribution

Figure 2.11: Moment matching of distributions. The exponential family distribution
member q(θ) matches the moments of the target mixture of Gaussians p(θ). The
resultant distribution qφ?(θ) is the most similar exponential family member with respect
to p(θ).

2.6.2 Expectation Propagation

In this subsection, the Expectation Propagation (EP) algorithm is described in detail
(Minka, 2001a). EP is an approximate inference algorithm. It minimizes the KL divergence
in an approximate way between a target distribution p(θ) and an exponential family
F probability distribution member q(θ). As we have seen in the previous subsection,
this is equivalent to matching the expected sufficient statistics under q(θ) and p(θ):
Eq(θ)[u(θ)] = Ep(θ)[u(θ)].

EP assumes that the intractable distribution p(θ) factorizes in a product of a set of
factors of the form

p(θ) =
1

Z

N∏
i=1

fi(θ) , (2.32)

where Z is the normalization constant. EP approximately minimizes the KL of the previ-
ous distribution p(θ) with a parametric proposal distribution qφ(θ), that is, KL(p(θ)||q(θ))
by exploiting the fact that the target distribution p(θ) can be written as a product of
factors fi(θ). These factors do not need to be normalized. In particular, EP can be
applied for the inference of the parameters of probabilistic machine learning models, θ.
Let the collection of points D = {(xi, yi)|i = 1, ..., N} be independent and identically
distributed (i.i.d. assumption). Therefore, the joint distribution p(y|X,θ) factorizes
into the product of likelihood factors of each data instance p(y|X,θ) =

∏N
i=1 p(yi|xi,θ).

That is, factor fi(θ), corresponding to every predictive distribution p(yi|xi,θ), will be a
function of each datum (xi, yi) that has the same shape as the others and all are mutually

Chapter 2. Gaussian Processes And Approximate Inference 47

independent. Therefore, in these models, the joint distribution of data D and parameters,
or hidden variables, θ factorizes. That is, p(D,θ) =

∏N+1
i=1 fi(θ) where N is the size of

the dataset. In this case, we have a factor for each data point fi(θ) and a factor for the
prior (Minka, 2001a,b). EP approximates each of the non-Gaussian likelihood factors,
p(D,θ) =

∏N+1
i=1 fi(θ), using approximate factors f̃i(θ) that belong to the exponential

family F . If we have a non-Gaussian prior, f0(θ), EP can also approximate it by using
an exponential family factor. Recall that the product and division are closed for the
exponential family distributions, as we have seen in previous sections. If all the factors
of the exact distribution p(θ) were members of the exponential family, we could apply
Bayes theorem to obtain a posterior distribution p(θ|D) using the product and division
analytical expressions for exponential family members (see Appendix A for more details):

p(θ|D) =

∏N
i=0 fi(θ)∫ ∏N
i=0 fi(θ)dθ

=

∏N
i=0 fi(θ)

p(D)
. (2.33)

The previous expression is, however, intractable, as it involves the computation of the
normalization constant of the posterior or marginal likelihood p(D). This is an integral
over the high dimensional space of parameters θ. To compute the posterior distribution
of the parameters given the data p(θ|D), an approximation needs to be done. This is
what EP precisely does, in an efficient way. EP approximates the target distribution p(θ)
by another distribution q(θ), also generated by a product of factors

∏N
i=0 f̃i(θ). Recall

that the target distribution p(θ) can be expressed as a product of factors, see (2.33).
EP approximates the previous distribution p(θ) with another product of approximate
factors, given by the following expression:

q(θ) =
1

Z

N+1∏
i=1

f̃i(θ) , (2.34)

where Z is a normalization constant. Each factor f̃i(θ) approximates the respective
exact factor fi(θ) of the true posterior. Approximate factors fi(θ) do not need to be
normalized. By assuming that the intractable distribution can be expressed as a product
of factors

∏
i f̃(θ), EP approximates the product of intractable exact factors

∏
i fi(θ)

with exponential family approximate factors
∏
i f̃i(θ) (where each factor f̃i(θ) is a

parametric known unormalized distribution). As the product is closed for the exponential
family and q(θ) is the product of the exponential family factors f̃i(θ), then, q(θ) is
also an exponential family member. For example, let f̃i(θ) be an univariate Gaussian
distribution N (θi|µi, σi). A Gaussian distribution is an exponential family member.
Hence, the product of Gaussian distributions

∏N
i=0N (θi|µi, σi) has an analytical-closed

form expression, and is Gaussian, as we have seen before. An additional advantage is
that q(θ) is easy to normalize, as we will later explain in this section.

If we want to make p(θ) and q(θ) similar, we need to minimize the KL divergence of
the product of the exact factors

∏
i fi(θ) and the approximate factors

∏
i f̃i(θ)

KL(p(θ)||q(θ)) = KL(
1

p(D)

∏
i

fi(θ)|| 1
Z

∏
i

f̃i(θ)) . (2.35)

Minimizing Eq. (2.35) is generally intractable, as it involves the computation of the
normalization constant p(D). In order to circumvent this issue, EP does an approximation
where it minimizes the KL divergence of each pair of correspondant factors fi(θ) and

Chapter 2. Gaussian Processes And Approximate Inference 48

f̃i(θ) at once. It is expected that this process will lead in something similar to the
global minimization of the KL divergence. To perform these minimizations, EP performs
the following computations. Each approximate factor f̃j(θ) has parameters. First, EP
uniformly initializes the parameters of the approximate factors f̃j(θ) to an initial value.
For example, let us suppose that we place an univariate Gaussian distribution N (θj |µj , σj)
for each approximate factor f̃j(θj). In practice, we can set µj = 0 and σj =∞ ∀j ∈ [0, N].
Factors do not need to be univariate, they can be multivariate. After the initialization
of each factor f̃j(θj), we initialize the posterior approximation q(θ) to be the product
of the factors

∏
j f̃j(θj). In the case of Gaussian distributions, this is simply done by

converting the parameters of every Gaussian distribution to natural parameters and then
summing their values (see Appendix A for more information). We now enter a double
loop. The outer loop iterates until every parameter of the approximate factors f̃j(θj)
have converged. The inner loop iterates over all the N + 1 approximate factors f̃j(θj).
We perform the following operations inside the described double loop. First, we select
the approximate factor f̃j(θj). EP will refine this factor f̃j(θj), and the other ones, by
the following process. To refine a factor, f̃j(θj), the first step is to remove it from the

product of approximate factors
∏N
j=0 f̃j(θj). Let the approximate distribution of all the

approximate factors except f̃j(θj) be called the cavity distribution q\j(θ), which is given
by:

q\j(θ) =
1

Z\j

∏
i 6=j

f̃i(θi) , (2.36)

where Z\j is the normalization constant Z\j =
∫ ∏

i 6=j f̃i(θi)dθ. It is important to

observe that not multiplying the approximate factor f̃j(θj) is equivalent to divide the
joint distribution q(θ) by f̃j(θj):

q\j(θ) =
Z

Z\j
q(θ)

f̃j(θj)
. (2.37)

Suppose that all the approximate factors f̃j(θj) are Gaussian distributions N (θj |µj , σj).
The next step of the algorithm is to multiply the exact factor fj(θj), corresponding to the
removed approximate factor f̃j(θj), by the cavity distribution q\j(θ) computed before.
This operation is done through the next expression:

p̂j(θ) =
1

Zj
fj(θj)q̃

\j(θ) , (2.38)

where the resultant distribution p̂j(θ) is called the tilted distribution. Zj is the normal-
ization constant, given by Zj =

∫
fj(θj)q

\j(θ)dθ. We now need to define an additional
distribution, the approximate new distribution qnew(θ). This distribution is simply
defined by the product of all the approximate factors:

qnew(θ) =
1

Z
f̃j(θj)

∏
i 6=j

f̃i(θi) , (2.39)

where Z is the normalization constant. We will use the approximate new distribution
qnew(θ) to refine the approximate factor f̃j(θj). In order to do so, we minimize the KL
divergence of the new approximate distribution qnew(θ) with the tilted distribution p̂j(θ).
This minimization modifies the parameters of the approximate factors f̃j(θj) of the new
approximate distribution qnew(θ). In other words, the result of the minimization is the

Chapter 2. Gaussian Processes And Approximate Inference 49

most similar new approximate distribution qnew(θ) to the tilted distribution p̂j(θ) in
terms of the KL divergence.

KL(p̂j(θ)||qnew(θ)) . (2.40)

After minimizing this divergence, qnew(θ) contains the information of the refined approx-
imate factor f̃j(θj). We can think that qnew(θ) as a placeholder that has shifted from an
initial position φ in the exponential family parameter space Φ to the closest position of
the space φ? to the tilted distribution p̂j(θ). We can observe a graphical representation of
this idea in Figure 2.10. The movement has been done via minimizing the KL divergence
of the new approximate distribution qnew(θ) with the tilted distribution p̂j(θ). The
intuition is that we iteratively learn about each of the exact factors fj(θj) by minimizing
the distance of the approximate factor f̃j(θj) to the exact factor fj(θj) in the context of
the cavity distribution q\j(θ). By performing this process iteratively, we do not lose the
information of any exact factor fj(θj) while retaining the most important information of
the target distribution p(θ).

The minimization of the KL divergence is carried out by moment matching of the
distributions p̂j(θ) and qnew(θ). Let us consider an example. Let qnew(θ) be a Gaussian
distribution N (θ|µ,Σ). In this case µ would be equal to the mean of the un-normalized
distribution fj(θj)q

\j(θ) and Σ to its covariance. More generally, for any member of
the exponential family, that could be normalized, we can obtain the required expected
sufficient statistics. In the Gaussian case, these are the expectations Ep(θ)[θ] and

Ep(θ)[θθ
T]−Ep(θ)[θ]Ep(θ)[θ]T . These expected sufficient statistics are used for matching

the moments, since the expected statistics u(θ) are related to the derivatives of the
normalization coefficient Zj . In the case of Gaussian distributions, let t(θ) be an arbitrary
function of θ, that can be an intractable factor of the true posterior that we are trying
to approximate, and let

Z =

∫
t(θ)N (θ|µ,Σ)dθ , p(θ) =

1

Z
t(θ)N (θ|µ,Σ) . (2.41)

p(θ) is a probability distribution, as it has been normalized by the constant Z. By
considering the expression of the natural moments shown before, EP matches the moments
of distributions by using the following expressions:

Ep(θ)[θ] = µ+ Σ
∂ log(Z)

∂µ
, (2.42)

Ep(θ)[θθ
T]− Ep(θ)[θ]Ep(θ)[θ]T = Σ−Σ

(
∂ log(Z)

∂µ

(
∂ log(Z)

∂µ

)T
− 2

∂ log(Z)

∂Σ

)
Σ .

(2.43)

In some practical situations, ∂ log(Z)/∂Σ is not robust. In that cases, we can use the
second derivative of the mean, ∂2 log(Z)/∂(µ)2, rather than ∂ log(Z)/∂Σ. By doing it
so, Eq. (2.43) is now given by the following expression:

Ep(θ)[θθ
T]− Ep(θ)[θ]Ep(θ)[θ]T = Σ

∂2 log(Z)

∂(µ)2
Σ + Σ . (2.44)

We can hence use this expression to compute Ep(θ)[θ]Ep(θ)[θ]T in Eq. (2.43), see Appendix
A for the derivation of Eq. (2.43). According to different posteriors and the used
approximate distributions, the particular expressions for Z, ∂ log(Z)/∂µ, ∂ log(Z)/∂Σ

Chapter 2. Gaussian Processes And Approximate Inference 50

and ∂2 log(Z)/∂(µ)2 vary. EP performs the described operations for all the j factors
f̃j(θj).

After computing the new approximate distribution qnew(θ), we now have to update
the approximated factor f̃j(θj). Recall that the cavity distribution q\j(θj) is the joint
distribution of the approximate factors except the approximated factor f̃j(θj). In order to
obtain the updated approximated factor f̃j(θj) we just need to divide the new approximate
distribution qnew(θ) by the cavity distribution q\j(θ):

f̃j(θj) = Zjq
new(θ)/q̃\j(θ) . (2.45)

Eq. (2.45) guarantees that the new approximate distribution qnew(θ) is proportional to
the product of the approximate updated factor f̃j(θj) and the cavity distribution q\j(θ),
that is, qnew(θ) ∝ f̃j(θj)q\j(θ). Another interesting result is that we have ensured that
both the approximate f̃j(θj) and the exact factor fj(θj) integrate the same quantity
with respect to the cavity distribution q\j(θ). These are all the steps that the inner
EP loop performs to refine the approximate factors f̃j(θj). Once these operations are
done, in the outer loop, EP repeats the steps of the inner loop to refine the parameters
of the approximate factors f̃j(θj) iteratively until convergence. It is expected that
the EP algorithm minimizes the KL divergence KL(p(θ)||q(θ)) of the target p(θ) and
proposed distribution q(θ). The normalization constant of q(θ), Zq, approximates the
normalization constant of p(θ), that can be seen as the marginal likelihood or model
evidence. We summarize the steps performed by EP in Algorithm 2.

Input: Approximate factors f̃j(θj), exact factors fj(θj).
1: Uniformly initialize the parameters of the approximate factors f̃j(θj).
2: Initialize the posterior approximation q̃(θ) ≈

∏
j f̃j(θj).

while Approximate factors f̃j(θj) have not converged do
for j = 1, 2, 3, . . . , N do

3: Compute the cavity distribution q̃\j(θ).
4: Compute the tilted distribution p̂j(θ).
5: Compute the approximate new distribution qnew(θ).
6: Minimize the KL divergence between the tilted distribution p̂j(θ) and
the approximate new distribution qnew(θ).
7: Update the approximated factor as f̃j(θj) = Zjq

new(θ)/q̃\j(θ).

end

end

8: Compute the approximate distribution q̃(θ) = (1/Z)
∏N
j=1 f̃j(θj) and the

model evidence p(D) ≈
∫
q̃(θ)dθ.

Result: Approximate distribution q̃(θ) and model evidence p(D).

Algorithm 2: Expectation propagation algorithm

2.6.3 Expectation Propagation in Practice

We now consider a particular case of EP application to clarify how EP can be used
in practice. Let us suppose that you want to approximate the following probability
distribution p(θ). This distribution can be expressed as a product of three exact factors.

Chapter 2. Gaussian Processes And Approximate Inference 51

These factors are I(θ1 > 0), I(θ2 > 0) and N (θ|µ,Σ). The distribution is hence given by:

p(θ) = I(θ1 > 0)I(θ2 > 0)N (θ|µ,Σ) , (2.46)

where I(θ1 > 0) is an indicator function that takes value 1 when the condition θ1 > 0
is true and 0 otherwise. N (θ|µ,Σ) is a bivariate Gaussian distribution. The product
of these factors generates a truncated Gaussian distribution. This truncated Gaussian
distribution is shown in Figure 2.12. In this particular example, EP will approximate
the indicator functions I(θ1 > 0) and I(θ2 > 0) with un-normalized univariate Gaussian
distributions Ñ (θ1|µ1, σ1) and Ñ (θ2|µ2, σ2). Indicator functions I(θ1 > 0) and I(θ2 > 0)
do not belong to the exponential family F . Hence, we cannot analytically compute a
posterior distribution of the parameters given some collected data p(θ|D). By performing
EP, we approximate the indicator function I(θ1 > 0) and I(θ2 > 0) by univariate un-
normalized Gaussian distributions Ñ (θ1|µ1, σ1) and Ñ (θ2|µ2, σ2). Let us describe now
the steps performed EP to approximate the indicator functions I(θ1 > 0) and I(θ2 > 0) by
univariate un-normalized Gaussian distributions Ñ (θ1|µ1, σ1) and Ñ (θ2|µ2, σ2). Recall
that the steps that we are describing in this example are the same that the ones of
Algorithm 2.

Let f1(θ1) = I(θ1 > 0) and f2(θ2) = I(θ2 > 0) be the exact factors that we want to
approximate. Let f̃1(θ1) = Ñ (θ1|µ1, σ1) and f̃2(θ2) = Ñ (θ2|µ2, σ2) be the approximate
factors corresponding to the exact factors f1(θ1) = I(θ1 > 0) and f2(θ2) = I(θ2 > 0).
The first step that EP does is to initialize the factors µ1, σ1, µ2 and σ2 uniformly. For
instance, we can set µ1 = 0 , σ1 =∞ , µ2 = 0 and σ2 =∞. The second step of Algorithm
2 is to compute the initial posterior approximation q(θ). The prior, in this case, is
Gaussian, p(θ) = N (θ|µ,Σ). As the Gaussian distribution belongs to the exponential
family, there is no need to approximate it. As we can observe in step 2 of Algorithm 2,
this distribution q(θ) is simply given by the product of factors q̃(θ) ≈

∏
j f̃j(θj) and the

prior p(θ), that is Gaussian. In this example, we can compute q(θ) as:

q(θ) = (1/Z)f̃1(θ1)f̃2(θ2)p(θ) , (2.47)

where Z is the normalization constant. We can use the expression for the product of
Gaussian distributions to analytically compute q(θ). See Appendix A for details. We can
alternatively convert the Gaussian parameters to natural parameters and simply sum
the parameters of the distributions f̃1(θ1) and f̃2(θ2). After performing the initial EP
steps, we now enter the double loop of the algorithm. The outer loop will continue until
the factors f̃1(θ1) and f̃2(θ2) meet a convergence criterion. In the inner loop, we iterate
over the f̃1(θ1) and f̃2(θ2) factors, refining them. In this case, we first refine f̃1(θ1) and
then f̃2(θ2). The third step of Algorithm 2 is to compute the cavity distribution of the
first factor q\1(θ). This distribution is given by:

q\1(θ) =
1

Z\1
q(θ)

f̃1(θ1)
, (2.48)

where Z\1 is the normalization constant. We can analytically compute q\1(θ) by using
the division of Gaussians analytical expression. See Appendix A for details. We can
alternatively convert the Gaussian parameters to natural parameters and just substract
the parameters of the distributions f̃1(θ1) to the ones of the distribution f̃2(θ2). Let µ\1

and Σ\1 be the Gaussian parameters of the unnormalized cavity distribution q\1(θ) and

Chapter 2. Gaussian Processes And Approximate Inference 52

µ1, σ1, µ2 and σ2 be the Gaussian parameters of f̃1(θ1) and f̃2(θ2). Then:

Σ\1 = (σ−1
1 − σ

−1
2)−1 , (2.49)

µ\1 = Σ\1(σ−1
1 µ1 − σ−1

2 µ2) . (2.50)

The normalization constant Z\1 of the cavity distribution is equal to:

Z\1 = (2π)
|Σ\1|0.5|σ2|0.5

|σ1|0.5
exp{−0.5(µ1σ

−1
1 µ1 − µ2σ

−1
2 µ2 + µ\1TΣ\1−1µ\1)} . (2.51)

The fourth step of Algorithm 2 corresponds to the computation of the tilted distribution
p̂1(θ). This distribution is given by the product of the exact factor f1(θ1), that corresponds
to the factor f̃1(θ1) that we are refining, multiplied by the cavity distribution q\1(θ).
The tilted distribution is computed as:

p̂1(θ) =
1

Z1
f1(θ1)q\1(θ) , (2.52)

where the normalization constant Z1 would be given by the following expression, where
we use Eq. (2.41), setting t(θ1) = I(θ1 > 0) and Φ(·) represents the standard Gaussian
cumulative distribution function:

Z1 =

∫
f1(θ1)q\1(θ)dθ1dθ2

=

∫
I(θ1 > 0)N (θ|µ\1,Σ\1)dθ1dθ2 = Φ

(
µ\1√
Σ\1

)
. (2.53)

We now compute the new approximate distribution qnew(θ), as the fifth step of Algorithm
2 states. Recall that as the prior is Gaussian, no extra operation involving the prior is
needed. This distribution is given by the product of the approximate factors:

qnew(θ) = (1/Z)f̃1(θ1)f̃2(θ2)p(θ) . (2.54)

qnew(θ) can be analytically computed by the product of Gaussian distributions analytical
expression. Having computed all the necessary distributions we can move forward to the
sixth step of Algorithm 2. In this particular example, this step requires us to minimize the
KL divergence between the tilted distribution p̂1(θ) and the new approximate distribution
qnew(θ). We will extract the updated parameters of the factor that we are refining, f̃1(θ1),
from the ones of the approximate distribution qnew(θ) once it minimizes the KL divergence
with respect to the tilted distribution p̂1(θ). Minimizing the KL divergence of p̂1(θ) and
qnew(θ) is equivalent to matching their moments. To match the moments between the
tilted p̂1(θ) and the new approximate distribution qnew(θ), we need the partial derivatives
of the tilted distribution normalization constant Z1 with respect to the parameters µ2

and σ2 as we can see in Eq. (A.47). As we have an analytical closed-form solution for the
normalization constant Z1, we can analytically compute the gradient of the normalization
constant Z\1 given by the partial derivatives of Z\1 with respect to the parameters µ2

and σ2:

Ep̂1 [θ1] = µ
\1
1 + σ

\1
1

∂ logZ1

∂µ
\1
1

= µ
\1
1 + σ

\1
1

N (θ1|
µ
\1
1√
σ
\1
1

)[0, 1]

Φ(θ1|
µ
\1
1√
σ
\1
1

)
, (2.55)

Chapter 2. Gaussian Processes And Approximate Inference 53

Ep̂1 [θ2
1]− Ep̂1 [θ1]2 =σ

\1
1 − σ

\1
1 [(

∂ logZ1

∂µ
\1
1

)2 − 2
∂ logZ1

∂σ
\1
1

]σ
\1
1 =

σ
\1
1 − σ

\1
1 [(

N (θ1|
µ
\1
1√
σ
\1
1

[0, 1])

Φ(x1|
µ
\1
1√
σ
\1
1

)

1√
σ
\1
1

)2 − 2

N (θ1|
µ
\1
1√
σ
\1
1

[0, 1])

Φ(θ1|
µ
\1
1√
σ
\1
1

)

−µ\11

2(σ
\1
1)

3
2

]σ
\1
1 .

(2.56)

Via Eqs. (2.55) and (2.56) we analytically compute the new parameters of the new

1.5 1.0 0.50.0
0.5 1.0 1.5 2.0 2.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5
2.0

2.5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5

1.5 1.0 0.50.0
0.5 1.0 1.5 2.0 2.5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 2.12: Truncated bivariate Gaussian distribution that is going to be approxi-
mated by a product of factors given by EP.

approximate distribution qnew(θ). We can now update the parameters of the approximate
f̃1(θ1) factor by extracting them from the new approximate distribution qnew(θ), which
is the step 7 of Algorithm 2. In order to do so, we extract it from the new approximate
distribution qnew(θ). This can easily be done by the following expression, using again
the analytical expressions of the division of Gaussian distributions.

f̃1(θ1) =
1

Z1

qnew(θ)

q\1(θ)
. (2.57)

Now that we have refined the factor f̃1(θ1), EP iterates through the other factors of
the approximate distribution q(θ) in its inner loop, repeating steps 3 to 7 of Algorithm
2. In this particular example, EP will refine f̃2(θ2) after having refined f̃1(θ1). We can
analogously use the same equations as the ones that we have presented for the refinement
of factor f̃2(θ2). EP continues refining the factors f̃1(θ1) and f̃2(θ2) of the approximate
distribution q(θ) iteratively in its outer loop until it meets a convergence criterion.

2.7 Conclusions

In this chapter, we have covered the fundamentals of GPs. We have studied the posterior
and predictive distribution of GPs, the most popular covariance functions and how to
estimate the hyper-parameters of these covariances functions. All this information is
valuable to better understand BO, which will be described in the following chapter.
We have also shown the details of other alternative probabilistic surrogate models that

Chapter 2. Gaussian Processes And Approximate Inference 54

can be used on the BO framework. Concretely, we have reviewed random forests, T-
Student processes, sparse Gaussian processes, deep Gaussian processes and Bayesian
neural networks. For each probabilistic surrogate model, we have covered its main
advantages and disadvantages with respect to the GPs. No model is the best for all the
potential problems where BO can be applied. Hence, it is important to know the basics
of them to choose the more adequate one in each situation. Finally, we have illustrated
the EP approximate inference algorithm. This algorithm can be used to approximate
non-Gaussian factors with exponential family members such as un-normalized Gaussian
distributions. By approximating non-Gaussian likelihoods by these approximate factors,
we can analytically compute approximate posterior and predictive distributions that
otherwise would be intractable to compute. EP will be used in the following chapters to
perform the mentioned approximation.

Chapter 3
Fundamentals Of Bayesian Optimization

A black-box is a function that satisfies three properties. First, its analytical ex-

pression is unknown. Hence, its gradients are not accesible. Second, it is very

expensive to evaluate. Finally, the function evaluations are potentially noisy. For

example, the estimation of the generalization error of machine learning algorithms

is considered to be a black-box function. Optimizing such a function with respect

to the hyper-parameters is a challenging problem. It requires an algorithm that is

able to optimize a black-box without using gradients, in a small number of steps,

and dealing with noise in the evaluations. This chapter introduces the fundamental

concepts of Bayesian optimization (BO). BO is a class of methods that successfully

optimize black-box functions. In order to do so, BO uses a probabilistic surrogate

model, typically a Gaussian process (GP), of the objective function. Using the GP,

we can compute a predictive distribution of the objective in regions of the space

where it has not been evaluated yet. Based on the information given by the GP pre-

dictive distribution, BO computes, at each iteration, an acquisition function. The

acquisition function estimates, for every input space point, the expected utility of

evaluating the objective there. The point whose value maximizes the acquisition

function is suggested for evaluation at each iteration. That point maximizes the

trade-off between exploration of unknown areas and exploitation of promising solu-

tions. Therefore, BO uses the acquisition function as an oracle to guide the search

for the optimum. The GP is updated with the evaluation result of the suggested

point. After conditioning the GP to the new evaluation performed at the chosen

location, the BO method repeats the described operations iteratively, until a budget

of evaluations is consumed. At the end of the process, it gives the final recommenda-

tion. This point can be the one whose evaluation has the best observed value or the

point that optimizes the GP predictive mean. This chapter describes BO in detail.

It also introduces the most popular acquisition functions, with special emphasis on

information theory acquisition functions.

3.1 Introduction

The purpose of this section is to settle the foundations of BO. As it was described in
Chapter 1, the purpose of BO is to retrieve the extremum x? of a black-box function
f(x) where x ∈ X and X is the input space where f(x) can be evaluated. Formally, we

55

Chapter 3. Fundamentals Of Bayesian Optimization 56

seek to obtain x? such that,
x? = arg min

x∈X
f(x) , (3.1)

assuming minimization. We can define a BO method by the following tuple

A = (M, α(·), p(f(x)| D)) , (3.2)

where f(x) is the black-box or objective function that we want to optimize, M is
the chosen surrogate model, α(·) is an acquisition function, p(f(x)|D) is a predictive
distribution of the evaluation of x and D = {(xi, yi)|i = 1, ..., t} is the dataset of previous
observations at iteration t. The probabilistic surrogate model is typically a GP. p(f(x)|D)
is the predictive distribution of the evaluation f(x) of a point x given that the model
M (typically a GP) has been conditioned on D. The acquisition function receives as an
input the GP predictive distribution p(f(x)|D) at a point x. Hence, we could represent
the acquisition function as α(x; p(f(x)|D)). Since this notation may be confusing, we
will abbreviate the notation of the acquisition function α(x; p(f(x)|D)) by α(x). The
acquisition function α(x) represents the expected utility of evaluating the objective at
each candidate point x ∈ X , with the goal of solving the optimization problem. M
and α(x) are used to search the extremum x? of a black-box function f(x) in X . First,
the surrogate model M encodes assumptions about the properties of the black-box
function f(x), such as smoothness or stationarity. In particular, GPs encode those
assumptions via the hyper-parameters of the covariance functions k(x,x′). Depending
on the choice of surrogate model M, we can encode a different set of assumptions about
the black-box function f(x). See section 2.3 of Chapter 2 for more details. On the other
hand, different choices for the acquistion function α(x) encode a different exploration and
exploitation trade-off. This trade-off basically consists in deciding whether to explore new
unknown areas with high uncertainty value or to exploit promising known areas with low
prediction values according to the GP predictive distribution p(f(x)|D). Both actions
are interesting and required for the search of the optimum of the objective function f(x).
We will describe this trade-off in detail in Section 3.3.1 of this chapter. In general, some
acquisition functions α(x) favour more exploration and viceversa. No single criteria is the
best for optimizing every possible objective function f(x) (Ho and Pepyne, 2002). Hence,
depending on our prior knowledge about f(x), we may choose an appropiate acquisition
function α(x) and surrogate model M. These ideas are developed in more detail in a
comprehensive introduction to BO given by the tutorial of Brochu et al. (2010).

There are several real applications where black-boxes need to be optimized. Hence,
BO has been a very active research area. The most popular application of BO in the
machine learning community is the tuning of the hyper-parameters of machine learning
algorithms (Snoek et al., 2012). BO can also be used for improved learning of the
structure of proabilistic graphical models (Córdoba et al., 2018). The potential of BO
has been shown by the enhancement of the AlphaGo system (Chen et al., 2018; Wang
et al., 2016). AlphaGo is an automatic system to play Go that has defeated the Go world
champion. AlphaGo played the Go game via a Monte Carlo tree search (Chaslot, 2010).
BO tuned the Monte Carlo tree search hyper-parameters (Chen et al., 2018). By doing
so, AlphaGo improved its win-rate from 50 % to 66.5 % in self-play games. Eventually,
the version of AlphaGo enhanced by BO was deployed in the final match against Lee
Sedol, a prestigious Go player. Not only can BO be used in complex problems such as Go,
but in subjective tasks such as elaborating better recipes for cookies (Garrido-Merchán
and Albarca-Molina, 2018; Kochanski et al., 2017). BO has also been applied on other
fields such as renewable energies, finance, real-time control systems or chemical design

Chapter 3. Fundamentals Of Bayesian Optimization 57

(Baheri et al., 2017; Cornejo-Bueno et al., 2018; Gonzalvez et al., 2019; Griffiths and
Hernández-Lobato, 2020). In particular, regarding renewable energies, BO has been
applied to optimize the hyper-parameters of a genetic algorithm that tuned a extreme
learning machine that predicts the significant wave height and the wave energy flux at a
goal marine structure facility (Cornejo-Bueno et al., 2018). In particular, this application
will be described in detail in Chapter 7. In the finance sector, BO has been applied to
the portfolio optimization problem in the context of quantitative asset management. In
particular, it has been applied to obtain the optimal hyper-parameters of a trend-following
strategy that balances risk and return of investing in a set of assets (Gonzalvez et al.,
2019). BO has also been used to the real-time altitude optimization of an Airborne Wind
Energy system in order to maximize net energy production (Baheri et al., 2017). In
particular, BO uses the GP predictive distribution of the estimation of the wind speed to
determine the best subsequent operating altitude of the Airborne Wind Energy system
in real-time. By doing so, net energy production of the Airborne Wind Energy system
is maximized. Finally, BO has been applied to automatically generate novel molecules
with optimized properties (Griffiths and Hernández-Lobato, 2020). In particular, BO
is used over the latent space of a variational autoencoder in order to search for regions
that generate novel molecules (Gómez-Bombarelli et al., 2018). However, BO tends to
search in latent space areas that lie far away from the data on which the variational
autoencoder has been trained, producing invalid molecular structures. To circumvent this
pathology, Griffiths and Hernández-Lobato (2020) reframe the problem as a constrained
BO problem, mitigating the described pathology. We describe in detail constrained and
multi-objective BO in Section 3.4 of this chapter.

The literature provides vast empirical evidence of the better performance of BO
compared with random search for the tuning of the hyper-parameters of machine learning
algorithms (Fernández-Sánchez et al., 2020; Garrido-Merchán and Hernández-Lobato,
2019b, 2020; Snoek et al., 2012). Random search is a procedure that places a uniform
distribution over all the input space X and samples randomly a point x from it iteratively.
Hence, random search makes a hypothesis about the objective function f(x). Either
all the points that belong to the input space X have the same probability of being the
optimum or the objective function f(x) is completely random and there is no pattern to
be learnt. In other words, that the image space Y that results from the evaluation of the
input space X by the objective function f(x) is not smooth, so the values that it takes
in the evaluated points are not useful to predict unknown values, or completely random,
i.e., there is nothing to learn. As there is nothing to learn, there is no need to place a
surrogate model on the objective function f(x). Notwithstanding, real applications such
as the ones cited in the previous paragraph show that we can make some assumptions
about the objective function f(x) that GPs also assume. Hence, we can learn some
features about the objective function f(x) that the GP can capture via its covariance
function and that can help us to guide the search more efficiently that just by random
search. Several reasons explain why BO outperforms random search. First, random
search does not make any assumption about the objective function f(x). It simply
explores the input space X randomly. On the other hand, the surrogate model M
encodes assumptions about the objective function f(x). For example, the objective
function f(x) being smooth. That information is used by the surrogate modelM for the
computation of the predictive distribution p(f(x)|D). Then, the acquisition function α(x)
uses the information of the predictive distribution p(f(x)|D) to suggest a new point x to
evaluate the objective function f(x). The acquisition function α(x) uses the hypotheses
made about the objective function f(x) to avoid the evaluation of unpromising areas

Chapter 3. Fundamentals Of Bayesian Optimization 58

according to those hypotheses. For example, if the function takes high values in a space
region, at various points, the minimum is unlikely to be there. Therefore, those areas
will not be evaluated. If the hypotheses are correct, useless evaluations will be saved.
Hence, if our assumptions about the objective function f(x) are correct, BO has more
information to determine whether a given point x is useful to be evaluated than random
search, that basically does not use any information to decide what point should be
evaluated at each iteration. In practice, one of these assumptions is the smoothness of
the objective function f(x). Intuitively, let the distance of an evaluated point x with
respect to other point x′ be very small and the evaluation of that point x be a value far
from the optimal value. We would not evaluate x′, since we know that it is very likely
that its evaluation f(x′) is going to be more or less as bad as f(x). BO will behave in
a similar way. In particular, in the case of a GP the covariance function k(x,x′) and
its hyper-parameters encode that assumption. On the other hand, random search will
evaluate that point x′ with the same probability as any other point. Moreover, the
acquisition function α(x) of BO can enforce the exploitation of areas where we have
retrieved good evaluations. Given the information encoded in the model M and the
preferences encoded in the acquisition function α(x), BO determines which regions of
the input space X are interesting to evaluate and which are worthless. Computing the
predictive distribution p(f(x)|D) and optimizing the acquisition function α(x) is costly.
Nevertheless, BO assumes that the cost of evaluating the objective function f(x) is much
more expensive than the cost of computing the predictive distribution p(f(x)|D) and
optimizing the acquisition function α(x). In other words, the cost of suggesting a point
x with BO to evaluate the objective function f(x) is negligible compared to the cost
of evaluating the objective function f(x). Therefore, spending a little time carefully
thinking about the following evaluation f(x) is worth in the case that the objective
function f(x) is very expensive.

This chapter describes how BO works in detail, its main components and the most
popular software libraries that implement BO. BO uses a probabilistic surrogate model,
typically a GP, as a source of information to make decisions. If the reader has skipped
Chapter 2 and it is not familiarized with the GP probabilistic model, the reader is
encouraged to return to Chapter 2. BO also computes acquisition functions. Acquisition
functions use the information given by the GP surrogate model to guide the search.
Several acquisition functions have been proposed in the literature. We will describe the
most relevant ones from our point of view. Some acquisition functions use information
theory concepts. Therefore, we also include a subsection that explains the basics of
information theory. Finally, we also cover the most popular BO free software libraries in
our opinion.

3.2 Bayesian Optimization

This section describes BO in depth. BO is a class of methods used to retrieve the extremum
x? of a black-box function f(x): x? = arg minx∈X f(x), assuming minimization. In order
to perform this task, it depends on a probabilistic surrogate model of the black-box
function f(x), which is typically a GP. BO uses the GP predictive distribution p(f(x)|D)
to generate a response surface that measures the expected utility of evaluating every
point x ∈ X . This response surface is called an acquisition function, α(x). BO uses the
acquisition function α(x) to guide the search of the minimizer x? of the black-box function
f(x). In particular, the next point x to be evaluated is the one that maximizes the
acquisition function α(x), that can be optimized inexpensively. An acquisition function

Chapter 3. Fundamentals Of Bayesian Optimization 59

α(x) represents an exploration-exploitation trade-off. Specifically, the acquisition function
α(x) favors exploration in the sense that it is high in areas where no point x has been
evaluated before. These areas may contain values near the optimum value. It also needs
to perform exploitation, i.e., the acquisition function α(x) favors the evaluation of points
that are near of good evaluations. Concretely, we expect that the new evaluations are
near the optimum as we assume that the function is smooth. We will justify and develop
this idea in Section 3.3.1 of this chapter.

BO is an iterative methodology. In each iteration, it performs a sequence of steps.
The number of iterations is delimited by the budget that an user can afford to evaluate
the black-box, which is assumed to be costly. For example, the user may only be able to
test 50 configurations of a machine learning algorithm. In this case, the number of BO
iterations would be 50. At each iteration t, a point xt is suggested. In this particular
example, the point xt represents a configuration of the machine learning algorithm, i.e.,
a set of values of the machine learning algorithm hyper-parameters. This point, xt, is
the maximizer of the acquisition function α(x):

xt = arg max
x∈X

αt(x) , (3.3)

where αt(x) represents the acquisition function built at iteration t. Therefore, this
point xt is used to evaluate the black-box function f(x). Specifically, we obtain an
observation yt = f(xt)+ ε by evaluating the black-box function f(x) at xt. Note from the
previous expression that we do not have access to the latent value f(x) of the black-box
function, as we only observe y which is corrupted by noise ε. In particular, this noise is
typically modelled as additive Gaussian noise over the latent function value: ε ∼ N (0, σ2),
although, it can be other type of noise. By doing this process iteratively, we obtain a set
D = {(xi, yi)|i = 1, ..., t} of observations (xt, yt) at iteration t that we define as dataset
D. At every iteration t, a new tuple (xt, yt) is added to the dataset D. The GP is then
fitted to the augmented dataset D, acquiring new knowledge about the potential values
of the objective function f(x). The process is repeated iteratively until the budget of
evaluations T is consumed. Finally, BO recommends the point x whose observation
value y has been the best as the solution of the problem. That is, the point x whose
observation value y minimizes the evaluation of the black-box function f(x). It can also
recommend as a solution the point x that minimizes the GP prediction of the objective
function f(x). Ideally, we would like to have as many iterations T as possible, to better
explore the input space X . In practice, BO is launched for 10 to 500 iterations because,
generally, in practice we cannot afford to evaluate the objective function f(x) more
times. Recall that the evaluation of the objective function f(x) is a very costly process.
Therefore, the budget of evaluations of the objective function f(x) is limited and the
number of evaluations are usually limited to the mentioned interval, 10 to 500. Moreover,
the complexity of the GP is cubic on the number of observations O(t3), where t is the
number of observations.

The acquisition function α(x) is generally not difficult to maximize. In particular,
we can compute the gradient ∇xα(x) of the acquisition function and use it for its
optimization. We can compute the gradient ∇xα(x) because the acquisition function
α(x) is cheap to evaluate, as it is only based on the GP predictive distribution p(f(x)|D)).
It is important to observe that we do not need to evaluate the black-box f(x) to compute
the acquisition function α(x). Recall that the bottleneck of the optimization process is
the evaluation of the objective function f(x). Therefore, as it has been said before, the
evaluation of the acquisition function α(x) is a cheap process. Hence, the gradient of the

Chapter 3. Fundamentals Of Bayesian Optimization 60

acquisition function ∇xα(x) is also cheap to evaluate, which makes the optimization of
the acquisition function a feasible process that is significantly cheaper than evaluating
the black-box. Therefore, the computational time of finding the next point to evaluate
can be considered negligible. Under these circumstances, when the objective function
f(x) is costly to evaluate, it is worth to spend a few seconds thinking carefully which
point to evaluate next.

The acquisition function α(x) will only have as many dimensions D as dimensions
has the black-box being optimized f(x). In particular, the number of dimensions is
typically small in practice. We expect that, for high-dimensionality, BO has problems. In
particular, if the dimensionality of the input space X is high, it is difficult to extrapolate
and make predictions of the objective function f(x) since the number of evaluations is
small and the input space is huge. Therefore, the model is not expected to be very useful
and BO does not significantly improve the results given by a random search. Although,
there exist several approaches for high-dimensional BO (Li et al., 2018; Rana et al., 2017;
Wang et al., 2013).

There are several acquisition functions α(x) that have been proposed. Depending on
the choice of acquisition function α(x), we can also obtain its gradient ∇xα(x). If an
analytical expression for the gradient ∇xα(x) cannot be computed, we can obtain the
gradient ∇xα(x) via automatic differentiation (Paszke et al., 2017) or we can approximate
it by using finite differences. Although, it is generally more costly to use automatic
differentiation than computing the analytical expression of the gradient ∇xα(x). In most
problems we can solve the optimization of the acquisition function α(x) by combining a
grid search with a local optimizer such as L-BFGS-B (Zhu et al., 1997). A local optimizer
uses an initial point x ∈ X , the bounds of the input space X and the gradient ∇xf(x)
of a function f(x) to obtain a local optima. Often, L-BFGS-B is initialized at the best
point given by the grid search. Then, L-BFGS is used to refine the result and to find a
local optimum of the acquisition function.

We can gain an intuition of why BO is useful to optimize black-boxes through a
graphical example. In particular, we can see in Figure 3.1 an example of the steps
performed by BO. In this figure, the acquisition function α(x) is plotted on green, the GP
posterior distribution on blue, observations are represented as black dots and the latest
observation is represented as a red dot. The ground truth is plotted as a dashed black
line, the GP posterior mean as a continuous black line and the GP posterior uncertainty
of its prediction as a blue area, surrounding the mean. The GP posterior uncertainty
represents one standard deviation of the predictive distribution around the mean. We
can see how the GP predictive distribution p(f(x)|D) and the acquisition function α(x)
shapes change at each iteration. In the first figure, we can see the posterior distribution
of a GP fitted to 3 observations. The acquisition function α(x) will take higher values
in areas with high uncertainty and promising predictions. From a practical point of
view, the only interesting point of the acquisition function α(x) is its maximizer xt,
represented by an inverted red triangle. In particular, in the next iteration, BO evaluates
the black-box function at that point yt = f(xt) + ε. Recall that the noise ε ∼ N (0, σ2)
can be modelled as additive Gaussian noive over the latent function f(xt). After this, BO
augments the dataset D of previous observations with the new evaluation (xt, yt). Then,
the GP is fitted to the augmented dataset D, as it is shown in the figure of the middle.
We can see how, in the point xt and in its neighbourhood, the acquisition function
α(x) now has a low value. This happens because there is now low uncertainty in that
region. Points x surrounding an evaluation xt will have a high covariance function value
k(x,xt). This will make the uncertainty of the prediction, y, low, making the acquisition

Chapter 3. Fundamentals Of Bayesian Optimization 61

function value α(x) lower than in points that are located far away from an evaluation.
At the beggining of the optimization process, the first candidate point x1 at which to
evaluate the objective function f(x) can be chosen at random. Then, BO repeats the
mentioned steps iteratively. In that way, the acquisition function α(x) is recomputed,
giving a new maximizer xt, where t represents the index of the iteration. After the
optimization of the acquisition function α(x), the black-box function f(xt) is evaluated at
the maximizer xt. When the computational budget of T evaluations is consumed, we can
retrieve a final recommendation x?. Generally, the final recommendation can just be the
point xt associated with the best observation value yt retrieved by BO. Another possible
recommendation point is the one whose value optimizes the GP predictive mean of the
objective function f(x). Algorithm 3 summarizes the steps that have been described in
previous paragraphs.

t = 3

●
● ●

●
● ●

acquisition max

Acquisition function, α(·)

Observation Actual Objective, f(·)

t = 4

●
● ●

●

●
● ●

●

acquisition max

●

New observation

t = 5

●
● ●

●

●

●
● ●

●

●

acquisition max

●

GP posterior mean
GP posterior uncertainty, µ(·) ± σ(·)

Figure 3.1: BO acquisition function α(x) and GP predictive distribution p(f(x)|D)
on a toy 1D noiseless problem. The figures show a GP estimation of the objective f(x)
over three iterations. The acquisition function α(x) is shown in the lower part of the
plot. The acquisition α(x) is high where the GP predicts a low value of the objective
f(x) and where the uncertainty about its prediction is high. Those regions in which it
is unlikely to find the global minimum x? of f(x) have low acquisition values, and will
not be explored.

Chapter 3. Fundamentals Of Bayesian Optimization 62

Input: Maximum number of evaluations T .
for t = 1, 2, 3, . . . , T do

1: if N = 1:
Choose xt at random from X .

else:
Find xt by maximizing the acquisition function: xt = arg max

x∈X
αt(x).

2: Evaluate the black-box objective f(·) at xt: yt = f(xt) + εt.
3: Augment the dataset with the new observation: D1:t = D1:t−1

⋃
{xt, yt}.

4: Fit again the GP model using the augmented dataset D1:t.
end
5: Obtain the recommendation x?: Point associated with the value that
optimizes the GP prediction or with the best observed value.
Result: Recommended point x?

Algorithm 3: BO of a black-box objective function f(x).

BO is an useful methodology when we assume and the black-box function f(x) actually
has some properties such as smoothness. The GP covariance function k(x,x′) encodes
the mentioned properties of the black-box function f(x). It also stores the information
given by the dataset of previous observations D in the Gram matrix K, whose entries are
Kij = k(xi,xj). Therefore, we can search for the minimizer x? using that information in
an intelligent way. In order to do so, BO effectively builds an acquisition function α(x)
from the GP predictive distribution p(f(x)|D). If we know that the black-box function
does not have the mentioned properties, for example that the objective function is not
smooth, we can alternatively perform a random search of the objective function f(x).
Random search is a pure explorative procedure. Being model-free, it does not take into
account any assumption of the objective function f(x). Hence, if the black-box f(x)
properties are the ones modelled by the GP, we can hypothesize that random search is
going to perform worse than BO. Due to the GP, BO performs a more intelligent search
procedure. Let us compare the performance of BO with respect to random search. We
can observe in Figure 3.2 how BO tends to explore a particular region. According to
the previous information, the assumptions encoded in the covariance function k(x,x′)
and the acquisition function α(x), that region is promising. The search is guided by that
information into that region. In contrast, we can observe how random search does not
suggest a point based on any criterion rather than pure exploration. Hence, random
search does not identify the promising region, evaluating uniformly all the space at
random. Therefore, random search will incur in evaluations that will not be useful for
the search of the optimizer if the black-box function has smoothness or other properties
that can be captured by the GP covariance function k(x,x′).

Nevertheless, it seems that BO will perform better than random search in all scenarios,
that is not necessarily true. Let us suppose that we want to optimize a black-box f(x)
that is white noise. This function is not smooth. We do not obtain any advantage
by modelling such a function with a GP. Hence, any acquisition function α(x) would
probably do as well as random search in this scenario but BO would be more costly
than random search due to the overhead of having to optimize the acquistion function
and fit the GP. However, white noise is not the common black-box optimization case.
Usually, the assumptions made by the GP covariance functions or the ones implied by
another surrogate model are accurate about the objective function f(x). When this is

Chapter 3. Fundamentals Of Bayesian Optimization 63

y

10 5 0 5 10
10

5

0

5

10

0.
10

0

0.100

0.200

0.200

0.200

0.200

0.300

0.
30

0
0
.4

0
0

0
.5

0
0

PESMBayesian optimization OC: Evaluations and AcquisitionBayesian optimization

10 5 0 5 10
10

5

0

5

10

Random search

Figure 3.2: 2-dimensional toy optimization problem. 20 evaluations performed by a
BO procedure (top) and random search (bottom). The contour printed at the top figure
represent the acquisition function values, i.e. where BO considers that is more useful to
evaluate the objective function at the next iteration. Random search uniformly searches
the space whilst BO focuses more on promising regions based on the information given
by the GP model.

Chapter 3. Fundamentals Of Bayesian Optimization 64

the case, BO obtains, in average, better results than random search, as we can see in a
synthetic example in Figure 3.3. in which the actual objective is known. In this figure,
the X axis shows the number of evaluations of the objective function f(x). Concretely,
400 evaluations of the objective function f(x) were done in that problem. The Y axis
represents the goodness metric, the lower its value the better the result. As in each
iteration t both BO and random search suggest a point xt to be evaluated, then, we
can compute the goodness metric of the evaluation of that point xt in every iteration t.
The black and yellow line represent the average performance obtained in terms of the
goodness metric on 100 experiments, of BO and random search, respectively. The bars of
the lines represent the standard deviation of the average performance. At each iteration,
represented on the X axis, we can see how the metric is significantly lower in the case of
BO. Moreover, if the cost of optimizing the acquisition function and adjusting the GP is
negligible, BO provides much better results in less computation time.

●

●

●
●

●●
●
●
●
●●

●
●●●●●●

●●
●●

●
●●●

●●●●●
●●

●●●
●
●●●●

●
●●

●●●
●●●●●●

●
●
●●●●●●●●●●

●
●
●
●●●●●●●●●

●
●
●●●

●●●●●●●
●
●
●
●●●

●●●●

●

●

●●

●
●
●
●●●

●●
●●●●

●●

●

●
●

●●
●●●

●●

●
●●●●●

●●
●●

●●
●●●●●●

●●●●
●
●
●
●●●

●●●
●
●●

●●●
●
●●●●

●
●●●●●●●●●

●
●●●●●

●●●●
●●●●●●●●

●

−10.80

−9.26

−7.72

−6.18

−4.64

−3.10

0 100 200 300 400
Number of Function Evaluations

L
o

g
 d

is
ta

n
c

e
 t

o
 t

h
e

 o
p

ti
m

u
m

Methods

●

●

Bayes. Opt.
Random

Bayesian optimization vs random search

Figure 3.3: Obtained performance by BO and random search methods in an opti-
mization problem. The X axis shows the number of evaluations (400) of the objective
function f(x). The Y axis represents the goodness metric, the lower the value of this
metric, the closer the recommendation to the optimum. We can see how BO outperforms
random search in this setting.

3.3 Acquisition Functions

This section describes the details of the, from our point of view, most popular acquisition
functions used in BO. We add a special emphasis on those acquisition functions based
on information theory concepts. An acquisition function α(x) specifies an exploration
and exploitation trade-off. Hence, this section starts covering the trade-off between
exploration of unknown areas and exploitation of promising results of objective functions
f(x). Then, we describe the most popular acquisition functions used in BO. We conclude
the section explaining information theory and acquisition functions based on this theory.

3.3.1 Defining the BO Strategy: Exploration and Exploitation

Acquisition functions α(x) are heuristics that represent an equilibrium between explo-
ration of unknown areas and exploitation of promising solutions. In BO, the shape of
the objective function f(x) can only be known through evaluations y = f(x) + ε of it.
Remember that ε ∼ N (0, σ) is often additive Gaussian noise, as it has been explained

Chapter 3. Fundamentals Of Bayesian Optimization 65

in previous sections. Let x? be the minimizer of f(x). Good solutions x are the ones
that minimize the regret with respect to the minimum x?. The regret is defined as
r = |f(x?)− f(x)|. The lower the associated regret r of a point x is, the better this point
x is as a recommendation for the solution of the optimization problem. Points with low
regret can be found in unexplored areas and in areas where we have already detected a
good point x. We will first comment exploration of unexplored regions of the objective
function f(x). These unknown areas may contain points x with low associated regret
r with respect to the extremum x?, although we are not certain about this fact, as we
have not explored those regions. In particular, they may also contain only bad solutions.
Hence, we must also focus on exploiting areas that have provided a point x with low
regret r before. We focus on the latter areas as we assume characteristics of the objective
function f(x) such as smoothness. BO assumes that the neighbourhood of a promising
evaluation yt = f(xt) + ε can also have promising results. This happens as the function
f(x) is assumed to be smooth. Recall that the level of smoothness in every dimension
is modelled by the GP lengthscales `j with j = 1, ..., D and D the dimensionality of
the input space. The GP provides analytical expressions for the predictive distribution
p(f(x)|D) of the value yt associated to a new point x. Acquisition functions α(x) enforce
exploration by giving high values to points with associated predictions for f(x) with high
uncertainty. At the same time, acquisition functions enforce high values for low predictive
mean values f(x) assuming minimization. Acquisition functions balance exploration and
exploitation of the input space X by having an analytic expression that balances between
the two of them.

Let us describe what happens if the acquisition function explores or exploits excessively.
For simplicity, we are assuming that the objective function evaluation is not contaminated
by noise, y = f(x). However, it is trivial to extend the reasoning that is going to be
described in this paragraph for the noisy scenario. In the case of non-pathological
scenarios, if the acquisition function α(x) exploits too much, it is likely that it focuses
the evaluations near a local optima x at the end of the process. Let us define the
neighbourhood n(x) of a point x as the set of all points n(x) = S whose distance from
the point x is lower than a certain value ν: ||x − x′|| < ν ∀ xi ∈ S. A local optimum
x is a point x whose evaluation y has lower associated regret than the evaluations of
its neighbourhood y = f(n(x)), that is, f(x) < f(xi) ∀ xi ∈ S assuming minimization.
However, it has worse regret than f(x?), retrieved by the global optimum x?. Specifically,
the associated regret of evaluating x? is zero. Importantly, the global optimum x? may
be found in a different place in space than the neighbourhood S of the local optimum
x. Recall that this set of points S is a hyper-sphere that belongs to the input space
S ∈ X . In a minimization context, the local optima x satisfies both f(x) < f(si) ∀ si ∈ S
and f(x?) < f(x). An acquisition function α(x) that exploits too much will drive its
suggestions xα = argmaxx∈Xα(x) towards a region with low prediction values assuming
minimization. Unexplored regions will then not be visited with high probability. On
the other hand, if the acquisition function α(x) explores too much, it will focus on the
evaluation of points with high associated uncertainty and will miss to exploit promising
regions of the input space X according to the information given by the GP model. In
particular, this would incur in useless evaluations of the space X if the assumptions taken
by the GP covariance function k(x,x′) about the objective function f(x) are correct.
In this way, the promising regions of the input space X will probably not be evaluated
enough to find a point x with low associated regret.

Nevertheless, we would think, given the provided arguments, that the optimum
behaviour for an acquisition function α(x) is a middle term between exploration and

Chapter 3. Fundamentals Of Bayesian Optimization 66

exploitation, it may also not be the best strategy. Let X be the domain of a function
f . The function f is convex if ∀t ∈ [0, 1] and ∀x1, x2 ∈ X we have f(tx1 + (1− t)x2) ≤
tf(x1) + (1− t)f(x2). Consider, for example, that the objective function f(x) is convex,
and we did not know it a priori. In this case, using an acquisition function α(x)
with a strong exploitation behaviour may be a good idea. On the other hand, if the
objective function f(x) has multiple optima, an acquisition function α(x) that gives
more importance to exploration may have more probability to find the global optimum
x?. Let us consider, as an example, the GP posterior distribution plotted in Figure 3.4.
Let us assume that the GP prediction µ(x) perfectly matches an objective function f(x),
although, we do not know it in practice. We can observe that the optimum x?, assuming
minimization, lies in a region contained in the interval [0.2, 0.4]. A exploitative acquisition
function α(x) would, in this case, explore this area. An explorative acquisition function
α(x) would by contrast focus on the area above 0.8. It will do it because this region is
associated with high uncertainty values according to the GP predictive distribution. It is
also associated with better prediction values that the area below 0.2. In this particular
scenario, exploiting is better, as the area above 0.8 contains a local optimum x, as we had
assumed that the GP prediction µ(x) matches the objective function f(x), x? ∈ [0.2, 0.4].
Nevertheless, if we do not know the objective function f(x) shape, the optimum x?

may belong to the area above 0.8. In this case, exploitative acquisition functions α(x)
will fail to discover, with a high probability, the area above 0.8, missing the optimum
x?. We can hence not provide a perfect criterion for exploration and exploitation. It
strongly depends on the particular shape of the objective function f(x). There is no
single perfect criterion for all function shapes. Since there is an infinite number of shapes

0.0 0.2 0.4 0.6 0.8 1.01.5

1.0

0.0

0.5

1.0

1.5
Mean
Std.dev.
Observations

Figure 3.4: GP posterior distribution. Observations are plotted as points, the
prediction µ(x) of the objective function f(x), or mean of the GP, is shown as a
continuous green line and the standard deviation σ(x), or uncertainty over the prediction
µ(x), is shown as shaded green.

Chapter 3. Fundamentals Of Bayesian Optimization 67

for an objective function f(x). Hence, given the provided arguments, there is not a
perfect strategy α(x) that is the best for all of them. Nevertheless, designing a criterion
α(x) that represents a good trade-off between exploration and exploitation is, generally,
the best idea. In practice, objective functions are generally smooth functions. A good
trade-off between exploration and exploitation provides good results for such functions.

Another thing to consider in BO is to take into account prior knowledge (Souza
et al., 2020). Depending on this knowledge, we may consider using a particular model or
acquisition function α(x). Let us consider the case that a black-box f(x) is non-stationary.
Concretely, a non-stationary function f is a function whose smoothness changes across
the input space X where the function f is evaluated. Non-stationary functions are not
modelled by common GP covariance functions. Hence, this is a problem, as BO is not
going to deliver great results if the model assumptions about the objective function f(x)
are not satisfied. In this particular case, we may have to resort to a transformation
of the space such as the beta-warp transformation (Snoek et al., 2014). In particular,
the beta-warp transformation converts a non-stationary objective function f(x) it to a
stationary function. But before applying this transformation, the input space X range is
normalized into a [0, 1]d hyper-cube where d is the number of dimensions of the input
space X . Then, the beta-warp transformation performs the warping of the input space
X using a beta cumulative function. More concretely, the beta cumulative function has
two parameters: α and β. Specifically, the transformation is carried out by applying a
beta cumulative function to every dimension d of the input space X . Hence, we have
two vectors of parameters in this transformation α = (α1, ..., αd)

T and β = (β1, ..., βd)
T .

In order to be successful, the values of the parameters α and β need to be adjusted by
the BO method. It is useful to first see how the transformation is applied to understand
how the process learns these values. When the entries of the Gram matrix need to be
computed for the posterior distribution of the GP, the method changes the covariance
function to be k(w(x), w(x̂)), such that for every dimension d a function wd(xd) is
applied:

wd(xd) = betaCDF(xd, αd, βd) =

∫ xd

0

uαd−1(1− u)βd−1

B(αd, βd)
du , (3.4)

where d is an index of a dimension of the input space, u are the values of the input
space, betaCDF is an acronym for the beta cumulative function and B(αd, βd) is the beta
function (Abramowitz et al., 1988). The values of α and β that convert the function
into an stationary one will maximize the marginal likelihood of the GP since the GP
assumes a stationary function. Hence, if the function is stationary the GP will perform
a more accurate fit than if the function is not stationary. Unfortunately, providing a
point estimate of these values by maximizing the marginal likelihood is likely to incur in
overfitting as we are going to jointly maximize the hyper-parameters of the GP covariance
function along with the α and β hyper-parameters. To avoid the described issue, these
vectors, α and β, can as well be treated as hyper-parameters of the GP covariance
function. Therefore, we can use Markov Chain Monte Carlo via slice sampling to obtain
samples from them, as described in Chapter 2. Finally, a log-normal distribution is used
for every hyper-parameter αd and βd as a prior distribution. We can observe in Figure
3.5 how the beta transformation can change functions shape. More concretely, in the
figures of the left we can observe non-stationary functions, an exponential decay function
and a periodic non-stationary function. Additionally, in the figures of the center we can
see the beta cumulative functions adjusted to convert the non-stationary functions of
the figures of the left to stationary functions. Finally, we observe how, by applying the

Chapter 3. Fundamentals Of Bayesian Optimization 68

beta transformation, the functions plotted on the figures of the left are converted on
stationary functions, plotted on the figures of the right.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

p g p y

0.0 0.2 0.4 0.6 0.8 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

j p

0.0 0.2 0.4 0.6 0.8 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

p g p

Figure 3.5: Beta transformation effects on non-stationary functions. (Top-left) Ex-
ponential decay function. (Top-center) Adjusted beta cumulative function to make
the exponential decay stationary. (Top-right) Beta transformation on the exponential
decay function. (Down-left) Non-stationary periodic function. (Down-center) Adjusted
beta cumulative function to make the periodic function stationary. (Down-right) Beta
transformation on the periodic function.

As we have said before, if we know that the objective function f(x) is monotonic or
convex in the majority of space X , we may consider an exploitative acquisition function
α(x). If instead, the black-box f(x) is multi-modal, we may choose an exploratory
acquisition function α(x). On the other hand, if we do not have prior knowledge about
the objective function f(x), there is no single optimum strategy. This issue is defined as
the No Free Lunch theorem of optimization (Ho and Pepyne, 2002). It basically tells
us that a general-purpose, universal optimization strategy α(x) will not be optimal for
every possible function shape. Concretely, the only way one strategy can outperform
another is if it has characteristics that are more suitable for solving a specific problem.
Nevertheless, we can compare the behaviour of the most popular acquisition functions.
In order to do so, the performance of a set of acquisition functions can be compared in a
benchmark of popular objective functions f(x). In particular, it can be observed that
certain strategies α(x) tend to outperform others in the majority of cases (Jamil and
Yang, 2013). It is because of this reason that research on acquisition functions α(x) is
important. Although theoretically we cannot propose an universal best strategy α(x),
in practice certain strategies outperform others in several problems of interest used as
benchmarks to compare acquisition functions.

3.3.2 Acquisition Function criteria

We now describe in detail the, from our point of view, most popular acquisition functions
α(x). We will first study acquisition functions α(x) that are not based on information
theory concepts. Acquisition functions based on information theory will be illustrated
after studying the fundamentals of information theory.

• Probability of Improvement (PI): Let κ = maxi µi(xi) be the best observed
predicted value, where the i index represents the iteration i = 1, ..., t with t the

Chapter 3. Fundamentals Of Bayesian Optimization 69

current iteration. κ is also known as the incumbent. This acquisition function
measures the probability of improvement with respect to κ of every point x ∈ X
according to the predictive distribution p(f(x)|D) (Kushner, 1964). The intuitive
idea of this acquisition function α(x) is to select the point x whose expected
associated value y maximizes the probability of improvement over the current
best value κ. As it is easy to observe, this acquisition function α(x) is merely
exploitative, ignoring an exploration behaviour. We may only consider this kind of
acquisition function α(x) when we suspect, according to prior knowledge, that the
objective function f(x) is convex or monotonic. To remedy this behaviour, we can
add to the PI acquisition function α(x) analytical expression an ε ≥ 0 trade-off
parameter. If this parameter has a high value, exploration is priorized, if it has a
value near zero, exploitation is encouraged. An popular heuristic is to decrease this
value over iterations, although empirical evidence suggest that it has not shown
good practical results (Lizotte, 2008). PI is defined as:

PI(x) = p(f(x) ≥ κ+ ε) = Φ

(
µ(x)− κ− ε

σ(x)

)
. (3.5)

Where Φ is the standard Gaussian cumulative distribution function (CDF). We can
see an example of the PI acquisition function shape in Figure 3.6. In particular, we
can observe that PI tends to evaluate an infinitesimally close point to an already
evaluated point as ε = 0. Although the improvement is infinitesimally small,
the probability of improvement is very high. Nevertheless, as we can see, the
exploitative behaviour does not let PI explore a different area from the one already
observed. This behaviour may cause that PI will not discover the global optimum
of the objective function f(x).

−4 −2 0 2 4

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

●

●

●

0.
0

0.
2

0.
4

Figure 3.6: (Top) GP model fitting un unknown function f(x). It is assumed that
there is no additive noise. Observations are displayed in red. The prediction of the
unknown function µ(x) is plotted as a continuous black line. The uncertainty over the
unknown function is shown in blue. (Down) PI acquisition function α(x). The point
x? associated with the maximum PI value x? = argmaxx∈Xα(x) is the suggested for
evaluation.

Chapter 3. Fundamentals Of Bayesian Optimization 70

• Gaussian Process Upper Confidence Bound (GP-UCB): This acquisition
function is a simple yet effective criterion that easily trades-off exploration and
exploitation (Srinivas et al., 2009). Its details have already been described in
Chapter 1 as a quick example of an acquisition function α(x). Its main advantage
with respect to other acquisition functions is its interpretability. The analytical
expression is just a summation of the mean and the standard deviation given by the
GP predictive distribution of f(x): α(x) = µ(x) + κσ(x) ∀ x ∈ X , where X is the
input space, κ is a parameter to switch exploration and exploitation, µ(x) is the GP
predictive mean and σ(x) is the standard deviation. Figure 1.5 shows the GP-UCB
acquisition function in Chapter 1. GP-UCB is easy to tune, as one only has to
modify the κ parameter to trade-off exploration and exploitation. More concretely,
higher values of κ make GP-UCB exploit more and lower values of κ make GP-UCB
explore more. Moreover, GP-UCB also has lots of theoretical properties involving
the regret r of the suggestions that other acquisition functions lack of. Hence, from
a theoretical point of view, it is a robust acquisition function. However, in practice,
it tends to deliver worse results than other acquisition functions α(x) (Wang and
Jegelka, 2017).

The GP-UCB acquisition function shape can be seen in Figure 3.7. We can see,
in the top plot, the GP predictive distribution p(y|x,D) of an unknown function
f(x). The predictive mean µ(x) is shown as a black line and the standard deviation
σ(x) is shown in blue. In the lower plot, it is displayed the GP-UCB acquisition
function α(x). We see how it takes higher values where the prediction given by
the GP model µ(x) is low and the uncertainty about the prediction σ(x) is high.
For example, in areas where the GP has already been conditioned on previous
observations, GP-UCB values are lower than in unexplored zones.

−4 −2 0 2 4

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

●

●

●

0.
0

1.
0

2.
0

Figure 3.7: (Top) GP model fitting un unknown function f(x). It is assumed that
there is no additive noise. Observations are displayed in red. The prediction of the
unknown function µ(x) is plotted as a continuous black line. The uncertainty over
the unknown function σ(x) is shown in blue. (Bottom) GP-UCB acquisition function
α(x). The point x? associated with the maximum GP-UCB acquisition function value
x? = argmaxx∈Xα(x) is suggested for evaluation.

Chapter 3. Fundamentals Of Bayesian Optimization 71

• Expected Improvement (EI): This acquisition function α(x) generalizes PI
by studying the magnitude of the improvement over the incumbent κ that the
evaluation y associated with a point x is expected to produce. In particular, we
have seen that PI sometimes improves the solution infinitesimally although the
probability of improvement is very high. Fortunately, by also taking into account
the magintude of improvement we circumvent that issue. Moreover, due to its
simplicity of implementation and good empirical results, EI is arguably the most
popular BO acquisition function α(x). It does not explore as much as information
theoretical based acquisition functions α(x) but it works very well for objective

functions f(x) that are not very complex. Let χ(x) = µ(x)−κ−ε
σ(x) , EI is given by:

EI(x) = (µ(x)− κ− ε)Φ(χ(x)) + σ(χ(x))φ(χ(x)) , (3.6)

where Φ(·) is the Gaussian CDF and φ(·) is the Gaussian PDF. In the case of
σ(x) = 0, then EI(x) = 0, to avoid an indetermination. We can see the shape of EI
in Figure 3.8. It is a heavily based exploitative criterion.

As we have seen, acquisition functions that are not based on information theory
evaluate a point x ∈ X by maximizing a heuristic α(x) that converts the marginal
belief over the function evaluation y at that point x, which is an univariate Gaussian
distribution, into an utility for evaluation designed to a have high value at locations
close to the minimum of the objective function (Hennig and Schuler, 2012). Hence,
although being computationally lightweight and easy to implement, the described
acquisition functions are local measures that cannot capture the retrieved gain
of knowledge of an evaluation of an unknown broad region of space X with low
uncertainty. These acquisitions tend to evaluate a small region of high uncertainty
that may be less interesting to explore in terms of the knowledge that is gained
about the objective function f(x) (Hennig and Schuler, 2012). As we will describe
in Section 3.3.4, information theory acquisition functions circumvent this issue and
are global measures that tend to explore more than acquisition functions that are
not based on information theory. However, information theory acquisition functions
are not as popular as the expected improvement criterion, probably because they
are more difficult to implement.

• GP-Hedge: Previous acquisition functions α(x) deliver good empirical results in
a plethora of scenarios (Snoek et al., 2012). Nevertheless, we observe that there is
not a best acquisition function α(x) for every single objective function f(x), as we
have introduced earlier by the concept of No Free Lunch for optimization problems
(Ho and Pepyne, 2002). If there is not a single ideal acquisition function α(x), why
cannot we combine them in an intelligent way?. By performing this task, intuitively,
we could think that we gain the best from all the considered acquisition functions.
This is the motivation behind GP-Hedge. Let Γ be a set of acquisition functions,
also called acquisition function portfolio. Let N be its size and wi an associated
weight i to an acquistion function αi(x) ∈ Γ such that

∑N
i=1wi = 1. We can then

hypothesize that if we average
∑N

i=1 αi(x)/N the shapes of different acquisition
functions αi(x) ∈ Γ, we can incorporate the particular characteristics of every single
acquisition function Γ into a single aggregated acquisition function. This is the
idea of the Portfolio Allocation for Bayesian Optimization (Hoffman et al., 2011).
This approach, instead of employing a single acquisition function α(x), takes into
account a portfolio of acquisition functions Γ. The obvious disadvantage of this

Chapter 3. Fundamentals Of Bayesian Optimization 72

−4 −2 0 2 4

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

●

●

●

0.
00

0.
20

Figure 3.8: (Top) GP model fitting un unknown function f(x). It is assumed that
there is no additive noise. Observations are displayed in red. The prediction of the
unknown function µ(x) is plotted as a continuous black line. The uncertainty over the
unknown function σ(x) is shown in blue. (Bottom) EI acquisition function α(x). The
point x? associated with the maximum EI value x? = argmaxx∈Xα(x) is suggested for
evaluation.

technique is the extra computational time spent on computing the combination of
acquisition functions Γ. Another problem is the difficulty of implemntation, as it
requires the implementation of a portfolio of acquisition functions Γ. This means
that the difficulty of implementation and the computation time of GP-Hedge will
be, at least, the sum of the difficulties of implementation and the computational
time of the considered acquisition functions Γ. In the implementation GP-Hedge,
GP-UCB, EI and PI were considered (Hoffman et al., 2011). Although, GP-Hedge
could be generalized to any number of different acquisition functions α(x).

We now describe how GP-Hedge suggests a point x for evaluation. Let us consider
N different acquisition functions, i.e., the size of Γ. First, GP-Hedge suggests the
N points X, where X is a matrix whose rows xj are the N points that maximize
each acquisition function αj(x) separately xj = argmax

x∈X
αj(x), where j is the index

of the acquisition function αj(x) ∈ Γ. GP-Hedge places a generalized Bernoulli
distribution over the set of acquisition functions Γ. That is, GP-Hedge associates a
probability pt(j) to each point xj such that

∑N
j=1 pt(j) = 1 where t is an iteration

index. Let the cumulative reward cj of an acquisition function αj(x) be the sum of
inmediate rewards rtj of the evaluations ytj retrieved from an acquisition function

αj(x). That is, cj =
∑t

i=1 r
t
j . The probability pt(j) that GP-Hedge assigns to an

acquisition function αj(x) is based on the cumulative rewards cj of αj(x). GP-
Hedge selects the suggestion xj of X by sampling the categorical distribution. Those
acquisition functions αj(x) with a higher associated probability value pt(j) would
have more probability of being selected. After selecting an acquisition function
αj(x), GP-Hedge suggests the point xj = argmax

x∈X
αj(x) for evaluation. Let g be a

vector whose elements gj represent the probability pt(j) of choosing an acquisition
function αj(x). We define g as the gain vector. Once an evaluation y = f(xj)

Chapter 3. Fundamentals Of Bayesian Optimization 73

is retrieved, GP-Hedge computes a reward rj for each acquisition function αj(x)
and updates the gain vector g that contains the probability pt(j) of choosing
an acquisition function αj(x). More details about how these computations are
performed are given in the GP-Hedge article (Hoffman et al., 2011). By employing
such a procedure, the idea is that the optimum acquisition function α(x) for a given
objective function f(x) is learned as more evaluations y of f(x) are performed. The
drawback of GP-Hedge is that all the acquisition functions α(x) must be optimized
at every iteration t. Not only that, but if the gain vector g is not updated in
a smartly way, we can learn an acquisition function α(x) that is effective in the
early stage of the optimization but not at the end. For example, consider that an
exploratory acquisition function is sampled in the last stage of the optimization as
it has high probability value pt(j) in the gain vector. This is undesirable, as in the
last stage of the optimization, an exploitation behaviour is preferred as we assume
that we have already identified promising areas. We do not need to explore more
but to exploit those areas. Hence, if the gain vector g is not updated correctly, we
will not have the desired behaviour in the optimization process.

We can observe in Figure 3.9 how combining EI, PI and GP-UCB acquisition
functions can be considered a good idea as the aggregated acquisition function
combines the properties of the mentioned acquisition functions. This function is
simply the sum of these criteria divided by the number of the criteria

∑3
i=1 αi(x)/3.

−4 −2 0 2 4

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

●

●

●

0.
0

0.
4

0.
8

Figure 3.9: (Top) GP model fitting un unknown function f(x). It is assumed that
there is no additive noise. Observations are displayed in red. The prediction of the
unknown function µ(x) is plotted as a continuous black line. The uncertainty over the
unknown function σ(x) is shown in blue. (Bottom) Combined acquisition function α(x)
of EI, PI and GP-UCB. The point x? associated with the maximum GP-Hedge value
x? = argmaxx∈Xα(x) is suggested for evaluation.

There are another family of acquisition functions α(x) that are based on information
theory concepts. To better understand them, it is useful to first study the fundamentals
of information theory.

Chapter 3. Fundamentals Of Bayesian Optimization 74

3.3.3 Information Theory

Information theory studies the quantification, storage, and communication of information
(Cover and Thomas, 2012; Ghahramani, 2006; MacKay, 2003). In particular, is a computer
science subfield that, amongst other things, provides an answer to two fundamental
questions regarding information. First, one deals with the ultimate data compression.
Here, information theory provides the entropy H(·) measure. Second, it answers what is
the ultimate transmission rate of communication, proposing the channel capacity C(·).
Information theory is a broad field but, in this thesis, we do only need to know a pair of
concepts of the field. Those concepts are necessary to understand the methods described
in the following chapters. For further information regarding this field, we encourage to
read the work of MacKay (2003).

Both the entropy H(·) and the channel capacity C(·) are functions of underlying
probability distributions P . The entropy H(·) can be viewed as a measure of information
for a probability distribution P associated with a random variable X. That is, its
self-information. It can be used as a measure of uncertainty of a random variable X.
When the random variable is continuous, we refer to the entropy as differential entropy
(MacKay, 2003). The entropy of an uni-dimensional continuous random variable X
with a probability density function p(x), or differential entropy H[p(X)], is given by the
following expression:

H[p(X)] = −
∫
S
p(x) log p(x)dx . (3.7)

Where S is the support of the random variable X, that is, the space where p(x) is defined.
The entropy H(·) is useful to model the following relation: If we have a random variable
X with high entropy H(·), that means that we have low information about the values
that it may take. On the other hand, if we consider a random variable X with low entropy
H(·), it is a sign that we have high information about the potential values that the
variable X can take. In other words, the uncertainty about that random variable X is low.
We graphically illustrate this idea in Figure 3.10. Another interesting concept regarding

Figure 3.10: (Left) Probability distribution of a random variable with high entropy.
(Right) Probability distribution of a random variable with low entropy.

information theory, that is used in this thesis, is the mutual information I(X;Y) of two
random variables X and Y . Mutual information is defined as the amount of information
that a random variable X contains about another random variable Y . It is the reduction
in the uncertainty of one random variable X due to the knowledge of the other. Mutual
information is a symmetric function. Consider two random variables X and Y with a
joint probability density function p(x, y) and marginal probability density functions p(x)
and p(y). The mutual information I(X;Y) is the relative entropy between the joint

Chapter 3. Fundamentals Of Bayesian Optimization 75

distribution p(x, y) and the marginal distributions p(x) and p(y):

I(X;Y) =
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
. (3.8)

Interestingly, the mutual information I(X;Y) is also the KL divergence between the
joint distribution p(x, y) and the product of marginal distributions p(x) and p(y). In the
next subsection, we will illustrate how differential entropy H[p(X)] is used to search for
the extremum x? of an optimization problem. We will also describe how the concept of
mutual information I(X;Y) is used to propose an acquisition function α(x).

3.3.4 Information Theory Based Acquisition Functions

We can use the previously seen concepts related to information theory to build acquisition
functions α(x). In particular, we can model the extremum of an optimization problem
x? as a random variable X. Hence, it will have an associated probability distribution P
and a probability density function p(x). As we have seen, we can compute the entropy
H[p(x)] of a random variable X with associated probability density function p(x). This
entropy H[p(x)] is representing the amount of knowledge that we have about the random
variable X that models the extremum of the optimization problem x?. If the entropy is
high H(·) >>, that means that we have a high uncertainty about the location of the
extremum x?. On the other hand, if the entropy is low H(·) <<, that means that we
have low uncertainty about the location of the extremum x?. This is the desired situation
in an optimization problem, where we want to know the location of x? in X . Hence, the
intuition tells us that if we want to discover the location of the extremum x?, we need to
minimize the entropy of the location of the extremum H[p(x?)] at every BO iteration.
This is the idea behind information theory acquistion functions that we are going to
describe in this section. They basically measure the amount of information that we have
about the minimizer x? of the problem and try to increase it the most at each iteration.

As we have explained in Section 3.3.2, acquisition functions α(x) such as EI are local
measures based on heuristics over the marginal belief of the evaluation y associated with
a point x ∈ X . Hence, they do not take into account the gain of information that is
retrieved when a point x is evaluated. On the other hand, acquisition functions based
on information theory are global measures (Hennig and Schuler, 2012) that do take
into account that gain. As a result, they tend to be more exploratory. In other words,
acquisition functions that are based on information theory do not just give a measure of
the improvement over an incumbent κ, as EI does performing, hence, more exploitation
than exploration. More formally, let the image space Y be the one generated by the
evaluations f(x) or expected values µ(x) of the points x belonging to the input space
X , that is, Y = µ(X). As EI is only a function of a particular point x and not of all
the GP predictive variance over the image space Y, we can argue that the improvement
over the incumbent κ is a local measure and not a global measure (Frazier, 2018). If
the measure was taken by considering all the GP predictive distribution, it would be a
global measure of the uncertainty given by the GP predictive distribution. Precisely,
information based acquisition functions are more exploratory than the previous explained
acquisition functions. This is useful for highly dimensional, complex or multi-modal
objective functions f(x) where exploitative acquisition functions can guide the search to
local optima. We can hypothesize that, for these objective functions f(x), information
based acquisition functions may provide substantial benefits relative to other acquisition

Chapter 3. Fundamentals Of Bayesian Optimization 76

functions such as EI. The most popular acquisition functions that use information theory
are the following ones:

• Entropy Search (ES): This approach uses the differential entropy of probabil-
ity distributions to choose the next point to evaluate. It was first proposed by
Villemonteix et al. (2009) and then by Hennig and Schuler (2012). First, we must
consider the uncertainty over the objective function, given by the posterior distri-
bution of the GP, p(f(x)|D). Hence, we also have uncertainty over the optimum
x? of the problem. ES models the optimum x? as a random variable with p.d.f.
p(x?). By doing so, the optimum x? has an associated probability density function
p(x?) and, hence, an associated differential entropy H[p(x?)]. Let x? be the point
with associated optimum value y? and p(x?|D) be the posterior distribution of the
location of the optimum x? given by a GP conditioned on a dataset of observations
D. We can model the entropy of the location of the optimum x? at the current
iteration by H[p(x?|D)]. This quantity is representing the amount of knowledge
that we have about the location of x?. Bigger entropy will mean less knowledge
than lower entropy. We are hence interested in minimizing H[p(x?|D)] at each
BO iteration. Specifically, we aim at augmenting the dataset D with the point
x that is expected to minimize H[p(x?|D)]. Critically, we cannot evaluate every
single point x, as the objective function is very expensive. Nevertheless, we can
use the GP predictive distribution p(y|x,D) to predict the potential value y of the
resulting evaluation of x. Let H[p(x?|D ∪ (x, y)) be the entropy of the conditioned
posterior distribution of the optimum x? given the new observation (x, y). As said
before, we do not know the particular value of y but we can use the predicted
value y of the GP predictive distribution. Hence, we can compute the expected
entropy of the conditional distribution for x? given the new observation (x, y),
that is, Ey{H[p(x?|D ∪ (x, y))]} where the expectation is with respect to p(y|x,D).
If this quantity is low, it means that we are expected to learn a lot about the
location of the optimum x? by performing an evaluation at the candidate point
x. On the other hand, if it is high, it means that we can expect that evaluating
the objective at x does not give us significant information about the optimum
x?. Hence, we are interested in the point that minimizes the expected differential
entropy of the conditioned posterior distribution Ey{H[p(x?|D ∪ (x, y))]} of the
optimum x?. That is, the point x that maximizes the expected reduction in the
differential entropy H[·] of the posterior for x?. The analytical expression of ES
represents this idea. We can write the ES acquisition function α(x) as:

ES(x) = H[p(x?|D)]− Ey{H[p(x?|D ∪ {(x, y)})]} , (3.9)

where the expectation is taken with respect to the predictive distribution p(y|D,x) of
the black-box function f(x). The problem with ES is that the exact computation of
the above expression is infeasible in practice. Concretely, computing the probability
distribution of the minimizer given the data p(x?|D) is intractable. To circumvent
this issue, ES has to resort to complex approximations. In particular, this problem
has been addressed differently first by Villemonteix et al. (2009) and then by Hennig
and Schuler (2012). Specifically, in the paper of Villemonteix et al. (2009), p(x?|D)
is approximated via samples of the GP conditioned on previous observations.
Then, these samples are optimized by an algorithm similar to the Efficient Global
Optimization (EGO) algorithm (Jones et al., 1998). Hence, with the set of optimized
samples, we can compute the approximation of p(x?|D). However, in order for the

Chapter 3. Fundamentals Of Bayesian Optimization 77

approximation to be accurate, we need to compute and optimize a high number
of GP samples, because of the uncertainty that the GP model has of the areas
that have not been evaluated yet. On the other hand, in the paper of Hennig
and Schuler (2012) the distribution p(x∗|D ∪ {(x, y)}) is discretized. In particular,
a high resolution grid of x and y values is used during the optimization of the
previous expression. However, computing all the grid values is computationally very
expensive. Moreover, since both entropies H[p(x∗|D)] and H[p(x∗|D∪{(x, y)})] do
not have analytical expressions, Hennig and Schuler (2012) proposes to approximate
both entropies using a linear approximation or using the expectation propagation
algorithm. As it has been seen, these approaches result in a high number of
approximations. Hence, the approaches of Villemonteix et al. (2009) and Hennig
and Schuler (2012) are computationally very expensive and very hard to implement.

We can observe the shape of the ES acquisition function α(x) in Figure 3.11.
Concretely, we can see how both exploration and exploitation are taken into account
in this acquisition function α(x). Hence, we can see that its shape is different from
the one displayed by acquisition functions α(x) that are not information-theoretical
based.

−4 −2 0 2 4

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

●

●

●

0.
0

0.
2

Figure 3.11: (Top) GP model fitting un unknown function f(x). It is assumed that
there is no additive noise. Observations are displayed in red. The prediction of the
unknown function µ(x) is plotted as a continuous black line. The uncertainty over the
unknown function σ(x) is shown in blue. (Down) ES acquisition function α(x). The
point x? associated with the maximum ES value x? = argmaxx∈Xα(x) is suggested for
evaluation.

• Predictive Entropy Search (PES): As we have seen, entropy search uses various
difficult approximations that would be desirable to avoid. The PES acquisition
function α(x) is an ES equivalent expression that does not compute as many
approximations as ES and it is easier to implement (Hernández-Lobato et al.,
2014). As in the case of ES, PES maximizes the information about the location
of the global extremum x?. In order to alleviate the described issues of ES, it
is possible to perform a trick to convert the analytical expression of ES into
another analytical expression that is easier to approximate. This trick is based

Chapter 3. Fundamentals Of Bayesian Optimization 78

on the concept of mutual information I(X,Y) of random variables X and Y . In
particular, PES uses the fact that mutual information I(X,Y) is symmetric. Let D
be the dataset of all evaluations processed by BO until a given iteration t, namely,
D = {(xi, yi)|i = 1, ..., t}. The ES expression can be equivalently written as the
mutual information between x? and y given D, namely, ES(x) = I(x?, y). Since
the mutual information I(X,Y) is a symmetric function, we can swap the roles of y
and x? in the ES(x) analytical expression. By doing it so, ES can be rewritten as:

PES(x) = H[p(y|D,x)]− Ep(x?|D)[H[p(y|D,x,x?)]] , (3.10)

where p(y|D,x,x?) is the conditional predictive distribution for y at x given the
observed data D and the location x? of the global optimum of the objective function
f(x). Concretely, the expectation is now taken on the posterior distribution of the
optimizer p(x?|D). The main advantage with respect to ES is that this acquisition
function α(x) is based on the entropies of the predictive distributions H[p(y|D,x)]
and H[p(y|D,x,x?)], which are expected to be easier to evaluate than the entropy
of x?. These expressions are analytic or can be easily approximated. This is an
advantage with respect to ES, where the approximations of the entropies were more
challenging and costly to compute.

The first term of PES H[p(y|D,x)] corresponds to the entropy of the GP predictive
distribution p(y|D,x) of the objective function f(x) potentially contaminated
with noise. This is essentially the entropy of an univariate Gaussian distribution.
This computation can be solved analytically, since the entropy of an univariate
Gaussian distribution has a closed-form expression. Let p(x) = N(x|µ, σ2) be an
univariate Gaussian distribution. Its entropy H[p(x)] corresponds to the following
expression: H[p(x)] = ln(σ2

√
2πe). Nevertheless, the second term of PES in

Equation (3.10) must be approximated. First, the expectation is approximated
by averaging over samples of x? drawn from p(x?|D). The distribution of the
global minimizer given the observed data, p(x?|D), can be alternatively expressed
as p(f(x?) = minx∈X f(x)|D). That is, the probability that the evaluation of the
function f(x) of the point x is the minimum x? with respect to the input space
X . Let f be a vector that represents a discretization of a function that is sampled
from the GP. If we have represented a function sampled from a GP by a vector
f , we can measure the probability of the ith element of f of being the optimum.
This probability is computed as the product of the probability of the samples given
data p(f |D) multiplied by a factor that represents whether the ith element is the
optimum of that sample or not:

∫
p(f |D)δ[fi ≥ fj]df . We can sample from this

distribution by Thompson sampling, that is, sampling the GP and retrieving the
index of the optimum point. By doing this process iterativelly, we obtain several
samples of the extremum that in expectation represent the conditional distribution
of the global extremum given the observed data p(f(x?) = maxx∈X f(x)|D). In
particular, to obtain a sample from the GP, we can use a procedure defined as
random features (Rahimi et al., 2007). Random features accelerates the process of
sampling functions from a GP, avoiding costly matrix operations. First, this method
maps the input data to a randomized low-dimensional feature space. Concretely,
the random features are designed so that the inner products of the transformed
data are approximately equal to those in the feature space of popular GP covariance
functions. More information about how these features are sampled can be found
on the work by Rahimi et al. (2007).

Chapter 3. Fundamentals Of Bayesian Optimization 79

For each sample of the minimizer, the entropy of the conditional predictive distribu-
tion H[p(y|D,x,x?)] has to be computed. The conditional predictive distribution
p(y|D,x,x?) can be decomposed as

∫
p(y|f(x)p(f(x)|D,x?)df(x). When the like-

lihood is Gaussian, p(f(x)|D) has closed-form expression as it is the posterior
distribution of the GP. But if we condition the previous expression to the global
minimizer x?, that is, p(f(x)|D,x?), it includes additional constraints that are
not Gaussian distributions. Hence, it is intractable to compute. Although, this
conditional predictive distribution can be approximated using EP (expectation
propagation) (Hernández-Lobato et al., 2015). EP provides Gaussian factor approx-
imations to these step factors introduced as constraints on the potential values of
f(x) to account for x? being the global optimum of the function. These constraints
model that the associated value of x?, f(x?), must be larger than past observa-
tions and that f(x) < f(x?) for the candidate point x at which to evaluate the
acquisition. The approximated Gaussian factors computed by EP are multiplied
to p(f(x)|D), which results in a Gaussian approximation of p(f(x)|D,x?), making
the computation of PES feasible in practice. Importantly, it only involves EP
approximations on H[p(y|D,x,x∗)] rather than in the whole expression as ES,
making PES simpler to implement in practice than ES.

• Max-Value Entropy Search (MES): PES delivers exceptional empirical results
and computes less approximations than ES (Hernández-Lobato et al., 2015). How-
ever, it relies on using EP to approximate the conditional predictive distribution
p(y|x,x?,D) non-Gaussian factors regarding the optimum x? of the problem. It
would be desirable to propose a method with similar empirical performance as
ES and PES without resorting to EP. Driven by that motivation, Max-Value En-
tropy Search (MES) uses the information about the maximum function value y?

instead of its associated location x?. In this setting, we assume noiseless objective
functions that give as a result y? = f(x?). Instead of reducing the entropy of x?,
MES reduces the entropy of y? by considering the function value y? instead of its
associated location x?. By doing it so, it tremendously lightens the computational
burden (Wang and Jegelka, 2017). MES is able to use an entropy search derived
methodology being less expensive in computation time. MES is also more robust
to the number of samples used for computing the entropy, and hence more efficient
for higher-dimensional problems. It is important to remark that the maximum
function value y? belongs to a one-dimensional space. In contrast to the associated
location x? to this value, that belongs to the input space X . This fact greatly
facilitates the estimation of the mutual information. The mutual information is
estimated via an approximation done with a Gumbel distribution (Gumbel, 1958)
or a Monte Carlo approach that uses random features. More information about
the approximation of the mutual information is available on (Hernández-Lobato
et al., 2015).

MES uses the information about the maximum value y? = f(x?) instead of the
information about the location x?. MES maximizes the expected reduction of the
differential entropy of the unconditioned predictive distribution p(y|Dt,x) minus the
expected differential entropy of the conditioned predictive distribution p(y|Dt,x, y?).

Chapter 3. Fundamentals Of Bayesian Optimization 80

More formally,

MES(x) = H[p(y|Dt,x)]− E(H[p(y|Dt,x, y?)]) ≈

≈ 1

K

∑
y?∈Y ?

[
φy?(x)χ(φy?(x))

2Φ(χ(φy?(x))
− log(φ(χ(φy?(x)))] , (3.11)

where φy?(x)) = y?−µt(x)
σt(x) , φ is the probability density function of a normal distribu-

tion and Φ the cumulative density function of a normal distribution. The previous
expression is a result of approximating the conditional distribution p(y|D,x, y?)
by a Gaussian distribution truncated on y?. Considering the truncated Gaussian
distribution is a simpler approximation of MES than the approximation that uses
the conditional distribution p(y|D,x, y?). K are the number of samples used to
approximate the expectation. Samples of y? are approximated via a Gumbel dis-
tribution. We can also sample functions from the GP posterior distribution and
maximize them to empirically obtain samples of y? via a Monte Carlo random
features approach as in PES.

3.4 Constrained Multi-Objective Scenario

Until this section, we have considered optimization problems of a single objective function
f(x). In this section, we will give an overview of optimization problems with multiple
objectives and constraints. The constrained multi-objective scenario is more difficult to
solve, as we will further explain in detail in Chapters 4 and 5. As an example of this
setting, let the estimation of the generalization error of a machine learning algorithm
be an objective function f1(x). Let also be the prediction time of a machine learning
algorithm another black-box function f2(x). We may be interested in obtaining hyper-
parameters that both minimize the generalization error and the prediction time. However,
in most cases, a machine learning algorithm with low generalization error incurs in a high
prediction time and viceversa. In particular, consider the simultaneous optimization of
the estimation of the generalization error of a deep neural network trained on a dataset
D and its prediction time for new instances X?. We assume that wider deep neural
networks require more time to predict an instance and generally obtain less generalization
error. We can see that solutions that optimize the generalization error will incur in
a higher prediction time, which is undesirable. Moreover, small deep neural networks
that can optimize prediction time will provide a higher estimation error. It is hence not
possible to obtain solutions that optimize both objectives in this setting. Critically, the
objectives f1(x) and f2(x) are conflicting. In other words, a single global minimizer x?

of both objectives, f1(x) and f2(x), does not exist. However, BO can also be applied
for this scenario. In particular, it can be applied to the simultaneous optimization of
K objective functions. We define this setting as multi-objective BO. More formally, let
f(x) : X → RK define a set of K black-boxes to be optimized. The multi-objective
problem is defined by minimizing this set of functions as we can see in Eq. (3.12):

min
x∈X

f1(x), . . . , fK(x) . (3.12)

Recall that the black-boxes f1(x), . . . , fK(x) are conflicting. In this setting, we assume
that the functions f(x) are independent. Hence, for simplicity, we model each function
fk(x) by an independent GP. Although, it is also possible to get rid of the independence

Chapter 3. Fundamentals Of Bayesian Optimization 81

assumption and consider, in a more advanced scenario, correlations between the GP
models (Shah and Ghahramani, 2016).

In the single objective scenario, we were interested the point x? associated with the
minimum evaluation value f(x?) across all the input space X . In the multi-objective
scenario, we can obtain not only one point x? but a potentially infinite set of optimal
points X ?. These points X ? represent the best trade-off between the objectives f(x). The
set of the optimal points X ? is defined as the Pareto set (Shan and Wang, 2005). Let us
describe the properties of X ?. First, we define that a point x dominates another point
x′ if fk(x) ≤ fk(x′) ∀k, with at least one inequality being strict. The Pareto set X ? is
defined by the points in X that are not dominated by any other point in the input space
X . The size of the set is potentially infinite. The purpose of a multi-objective algorithm
is to approximate the Pareto set X ? by a countable set of points. If we evaluate the
points of the Pareto set X ? by the functions being optimized f(X ?) we obtain, in the
image space Y , a set of points defined as the Pareto frontier Y?. The Pareto frontier Y?
represents the values associated with the evaluation of the Pareto set X ?. These values
Y? are the best trade-off among the objectives f(x). Hence, the Pareto set X ? are the
points, solutions or configurations of the multi-objective problem.

As we have said, a Pareto set X is a set of points that best associated trade-off
among the objectives f(x) of the optimization problem. However, the user has to decide
a single configuration among the Pareto set X . Hence, we face the problem of which
point of the Pareto set X is the best one for the user preferences. To solve this problem,
the user can define a set of preferences, that is, criteria that help to determine which
is the best point of the Pareto set for the user. Let us recover the example of the deep
neural network optimization problem where we simultaneously minimize the estimation
of the generalization error and the prediction time. Recall that the objectives were
conflicting. In this scenario, an example of a simple preference can be that an user may
prefer to recover the configuration of the Pareto set that minimizes the prediction time,
independently of the estimation of the generalization error. Preferences can be more
complex. For example, we can assign a weight to each of the objectives and evaluate the
Pareto set solutions according to the values of its associated Pareto frontier Y. More
generally, we can also define a score given by an analytical expression that combines each
of the objectives of the associated Pareto frontier Y according to the user needs. The
retrieved configuration will be the one that gives the best score.

When we optimize a single objective function f(x), we can evaluate its solution x
by minimizing its regret r with respect to the optimum of the problem x?. Recall that
the regret can be computed as: r = |f(x?)− f(x)|. This metric is not applicable to the
multi-objective scenario. In this case, we need to define a different metric to evaluate the
quality of an estimate of the Pareto set X̂ ?. The metric that is usually used to evaluate
the quality of an estimated Pareto set X̂ ? is the hypervolume. The hypervolume is the
area covered by the Pareto frontier Ŷ? with respect to a reference point in the space.
There exist several mechanisms to efficiently compute the hypervolume metric (While
et al., 2006). For a two-objective problem we can visualize this area by plotting the
estimated Pareto frontier Ŷ? associated at the estimate of X̂ ?. We will consider the
best method the one whose Pareto frontier Y? is wider. Figure 3.12 illustrates curves
computed by interpolating the points belonging to the Pareto frontiers Ŷ? associated
to different methods trying to approximate the Pareto set X ? of the problem described
in previous paragraphs. The method whose associated Pareto frontier Ŷ? is the blue
curve would be the one with highest hypervolume since it is the one with the largest area
above it.

Chapter 3. Fundamentals Of Bayesian Optimization 82

1

2

5

7

0.02 0.03 0.05 0.10 0.20
Prediction Error

T
im

e
R

at
io

Methods

PESMOC
BMOO
RANDOM
PESMOC_DEC

Average Pareto Front After 100 Evaluations

Figure 3.12: Pareto frontiers computed by the solutions delivered by four different
Multi-objective BO methods, each one represented in one colour. The solutions are the
best trade-off between the prediction error of the deep neural network and the prediction
time normalized with respect to the smallest possible prediction time, i.e., the time
ratio.

The described scenario can be generalized to the broader constrained scenario. In
this scenario, the set of objectives f(x) is optimized under the presence of a set of C
constraint functions c1(x), ..., cC(x). As in the case of the objective functions f(x), these
constraints c(x) are also independent black-boxes. We will also model these constraints
c(x) by independent GPs. We formalize the problem in Equation (3.13):

min
x∈X

f1(x), . . . , fK(x) s.t. c1(x) ≥ 0, . . . , cC(x) ≥ 0 . (3.13)

In this setting, all the candidate points x ∈ X ? have to validate the non-negativity of
all the constraints, i.e., cc(x) ≥ 0 ∀ c. We define the feasible space F as the subset of
the input space F ⊂ X whose points satisfy all the constraints. Recall that we cannot
evalaute the real constraints c(x) for all F . Hence, we use the GP predictive distribution
to determine which points x ∈ X are expected to be feasible in each step of BO. If a
point is determined as feasible, i.e., the probability of being feasible given by all the GP
predictive distributions is above a predefined threshold, we can compute its hypervolume.
However, if a recommended point turns out to be infeasible according to the evaluations
of the constraints, we set its associated hypervolume to zero.

Figure 3.13 illustrates the constrained multi-objective scenario with its associated
objectives, constraints, Pareto set and Pareto frontier. In the first row of the figure,
we can see the shape of each black-box, f(x) and c(x). In the figure of the left of the
second row, we can observe the feasible space F as black dots that are distributed over
the input space X . We can also see its associated values in the feasible image space Y,
represented by black dots, in the figure of the right. The feasible Pareto set points F?
are represented by red dots. Critically, we can observe how the feasible Pareto set F? is
a subset of the feasible space F . We can observe its associated frontier Y? in the figure of
the right. Recall that the points of the Pareto frontier Y? dominate the other associated
values of the feasible space F points.

Constrained multi-objective problems demand specific Bayesian optimization tech-
niques, as the acquisition functions described in Section 3.3 do not work in this scenario.
Chapter 4 describes the predictive entropy search for multi-objective Bayesian optimiza-
tion with constraints method (Garrido-Merchán and Hernández-Lobato, 2019b), that is a

Chapter 3. Fundamentals Of Bayesian Optimization 83

Figure 3.13: Constrained multi-objective optimization problem with two objectives
and one constraint. (Top) Shapes of the objectives and constraints of the constrained
multi-objective optimization problem. (Bottom, left) Feasible space represented by black
dots and feasible Pareto set represented by red dots. (Bottom, right) Associated values
of the feasible space represented by black dots and Pareto frontier represented by red
dots.

generalization of the Predictive entropy search acquisition function described in Section
3.3.4 adapted to the constrained multi-objective scenario. Another acquisition function
that tackles this scenario is an extension of the expected improvement for the constrained
multi-objective scenario that is referred as BMOO, from Bayesian Multi-Objective Opti-
mization (Féliot et al., 2017). We also describe this approach more in detail in Chapter
4. Alternatively, we can always perform a random search of the input space X , but, in
this scenario, it will also incur in the issues described in Section 3.1.

3.5 Bayesian Optimization Software

Several BO free software tools are available online. Some examples are Spearmint,
BoTorch, Skopt, SMAC, GPyOpt or mlrMBO (Balandat et al., 2019; Bischl et al., 2017a;
González, 2016; Hutter et al., 2011; Markov, 2017; Snoek et al., 2012). All the methods
for BO described in this thesis have been implemented in the Spearmint tool, available
in this link https://github.com/EduardoGarrido90/Spearmint.

Spearmint is a Python 2.7 tool that can be used to optimize black-boxes (Snoek et al.,
2012). It allows to optimize a black-box f(x) whose implementation can be written in
several languages in a separate file. This file is imported in the tool via a configuration
file, where we can specify several options for BO. Some of these options include the
specification of multiple black-boxes as objectives f(x) and constraints c(x). We can
specify different acquisition functions such as EI or PES. We can also specify whether
the variables X involved in the optimization process are real, integer or categorical
valued. It is also possible to use different GP covariance functions k(x,x′). We can

https://github.com/EduardoGarrido90/Spearmint

Chapter 3. Fundamentals Of Bayesian Optimization 84

make different transformations for the input space variables X such as the beta-warp
transformation. Recall that this transformation is used for non-stationary input spaces
X . Spearmint delivers a recommendation after the configured BO number of iterations
based on the best observation value or the optimization of the GP mean. We can specify
the number of GP hyper-parameter samples to use for the optimization process. Each GP
has hyper-parameters θ obtained via slice sampling of the hyper-parameter distribution
p(θ|y). Spearmint averages the acquisition function α(x) and predictive distribution
p(y|x,D) of the black-box f(x) across the configured number of GP hyper-parameter
samples. Spearmint implements a Sobol and uniform grid to avoid local optima in the
optimization of the acquisition function and the GP mean. The resolution of those grids
is 1000 multiplied by the number of dimensions D of the problem. Spearmint has been
extensively used by researchers to implement novel BO methodologies. The tool can be
downloaded in this link https://github.com/EduardoGarrido90/Spearmint.

BoTorch is the BO module of the deep learning Python 3 framework pyTorch
(Balandat et al., 2019; Ketkar, 2017). It is an extensible modular library that enables the
implementation of new probabilistic models, acquisition functions and optimizers. It uses
autograd for automatic differentiation (Maclaurin et al., 2015). Autograd avoids having
to analytically derive gradients of acquisition functions. It enables parallel multi-objective
BO with a parallelization of the expected hypervolume criterion. BoTorch, as Spearmint,
uses GPs as the probabilistic surrogate model but it also contains multi-task GPs, scalable
and deep GPs. It can even work in a model-agnostic way, letting the user specify a
predictive distribution p(y|x,D) of the evaluation of the objective function independently
of the model used to build the acquisition function α(x). The target audience of this tool
are researchers and sophisticated practitioners in BO. More information about BoTorch
can be found in this link https://botorch.org/.

Skopt is the BO module of the famous machine learning Python 3 library library
Scikit-learn (Markov, 2017; Pedregosa et al., 2011). As the previous tools, Skopt uses a
GP as the probabilistic surrogate model. It includes methods to plot the evaluation of
the suggestions that the optimization is proposing. The main motivation of using this
library is that it is a part of the Scikit-learn framework. Nevertheless, it only includes
basic functionality and acquisition functions. As it is currently developed, it is tool for a
quick prototype of BO applications, but the rest of the tools described in this section are
more recommended than Skopt for BO research or deployment. More information about
this module is accesible in the Skopt BO web page https://scikit-optimize.github.

io/stable/auto_examples/bayesian-optimization.html.
SMAC is an alternative to the rest of GP based BO frameworks which uses ran-

dom forests as the probabilistic model surrogate (Hutter et al., 2011). It provides a
flexible API for Python 3 to define the input space X and optimize black-boxes f(x).
It has been used for AutoML. SMAC is suited for AutoML as random forest natu-
rally deal with hierarchical spaces and high dimensional spaces. Hence, we can not
only optimize the hyper-parameters of a single machine learning algorithm. Instead,
we can simultaneously optimize a function with respect to a set of machine learning
algorithms along with their hyper-parameters. Examples of automatic machine learning
tools that use SMAC are Auto-Weka and Auto-sklearn (Feurer et al., 2019; Thornton
et al., 2013). SMAC is available at the following location: https://www.automl.org/

automated-algorithm-design/algorithm-configuration/smac/.
GPyOpt is a Python 3 BO library included as an extension of the GP regression

library GPy https://sheffieldml.github.io/GPy/. GpyOpt was written and it was
maintained by the ML group at Sheffield University (González, 2016). It is currently

https://github.com/EduardoGarrido90/Spearmint
https://botorch.org/
https://scikit-optimize.github.io/stable/auto_examples/bayesian-optimization.html
https://scikit-optimize.github.io/stable/auto_examples/bayesian-optimization.html
https://www.automl.org/automated-algorithm-design/algorithm-configuration/smac/
https://www.automl.org/automated-algorithm-design/algorithm-configuration/smac/
https://sheffieldml.github.io/GPy/

Chapter 3. Fundamentals Of Bayesian Optimization 85

not maintained anymore, so although GPy is an excellent library of GPs, GPyOpt may
not be the best option for BO in production. It includes different acquisition functions
α(x), parallel BO, cost aware BO and mixed variable optimization. It also handles big
data sets by using an implementation of sparse GPs. GPyOpt is available at the web
site https://github.com/SheffieldML/GPyOpt.

mlrMBO, written on R, is an alternative to the previous libraries which are coded on
Python (Bischl et al., 2017a). It is an extension of the machine learning R framework
mlr3 (Bischl et al., 2016). mlrMBO is a configurable R toolbox for BO of black-box
functions f(x). It provides support for multi-objective BO, mixed variable optimization,
noisied black-boxes, parallel BO, visualizations, and several acquisition functions α(x).
It contains GPs and random forests as probabilistic surrogate models. It is available for
download at the web page https://mlrmbo.mlr-org.com/.

3.6 Conclusions

In this chapter, we have studied fundamental concepts about BO. In particular, the BO
algorithm is defined by two components: a probabilistic surrogate model of the objective
function f(x) and the acquisition function α(x). Acquisition functions are the criteria
that suggest, in each iteration, a point x to be evaluated. No single acquisition function
α(x) is better for all optimization problems. Acquisition functions α(x) are criteria that
represent an exploration-exploitation trade-off. For problems whose objective function
f(x) is convex or unimodal, acquisition functions α(x) that favour more exploitation are
preferred, as for example expected improvement. On the other hand, if the objective
function f(x) is supposed to be very complex and multi-modal, acquisition functions
α(x) like predictive entropy search are preferred, as they favour more exploration. In
this chapter, we have included a detailed list with the most popular acquisition functions
α(x) in BO. The other basic component of BO are probabilistic surrogate models, which
have been described in the previous chapter.

We have also introduced how BO can be applied to constrained multi-objective
scenarios. In this setting, each objective f(x) and constraint c(x) is modelled by
an independent probabilistic surrogate model. We have seen that BO is a powerful
methodology to be applied in practice, so we also included a section where we have
described some of the most popular BO free software. This software is available in
Python and R.

https://github.com/SheffieldML/GPyOpt
https://mlrmbo.mlr-org.com/

Chapter 4
Predictive Entropy Search For
Multi-Objective Bayesian Optimization
With Constraints

This chapter describes the first proposed approach in this thesis, PESMOC, Pre-

dictive Entropy Search for Multi-objective Bayesian Optimization with Constraints.

PESMOC is an information-based strategy for the simultaneous optimization of

multiple expensive-to-evaluate black-box functions under the presence of several

constraints. It is an enhancement of the previously shown PES acquisition func-

tion, adapted to a constrained multi-objective scenario. Concretely, it expands the

PESM approach, that applied PES to multiple objectives and the PESC approach,

that applied PES to multiple constraints. PESMOC gains the best of the two worlds,

being able to solve multiple objectives restricted to multiple constraints. The con-

straints considered in PESMOC have similar properties to those of the objectives in

typical Bayesian optimization problems. In this chapter, we present strong empiri-

cal evidence in the form of synthetic, benchmark and real-world experiments that

illustrate the effectiveness of PESMOC with respect to other methods that are also

going to be explained in this chapter. In the multi-objective setting, acquisition

functions are a linear combination of the information provided by each black-box.

We will see that, in PESMOC, the acquisition function is decomposed as a sum

of objective and constraint specific acquisition functions. This enables the use of

PESMOC in decoupled evaluation scenarios in which objectives and constraints can

be evaluated separately, each of them with different costs. The results obtained also

show that a decoupled evaluation scenario can lead to significant improvements over

a coupled one in which objectives and constraints are evaluated at the same input.

4.1 Introduction

Many practical problems involve the simultaneous optimization of several objectives
subject to a set of constraints being simultaneously satisfied. Furthermore, often these
functions are black-boxes, meaning that we will not have access to their analytical form,
and the time needed for their evaluation can be fairly large. An example is tuning the
control system of a four-legged robot. We may be interested in finding the optimal
control parameters to minimize the robot’s energy consumption and maximize locomotion

87

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 88

speed (Ariizumi et al., 2014), under the constraint that the amount of weight placed on
a leg of the robot does not exceed a specific value, or similarly, that the maximum angle
between the legs of the robot is below some other value for safety reasons. Measuring the
objectives and the constraints in this case may involve an expensive computer simulation
or doing some actual experiment with the robot. There is no analytical expression to
describe the output of that process which can take a significant amount of time. Another
example can be found in the design of a new type of low-calorie cookie (Gelbart et al.,
2014). In this case, the parameter space is the space of possible recipes and baking
times. Here we may be interested in minimizing the number of calories per cookie and
maximizing tastiness. Moreover, we may also want to keep production costs below a
particular level or we may want that the cookie is considered to be crispy for at least 90%
of the population. A last example considers finding the architecture of a deep neural
network and training parameters to simultaneously maximize prediction accuracy on
some task and minimize prediction time. We may also be interested in codifying such
network in a chip so that the energy consumption or its area is below a particular value.

As we have explained in previous chapters, Bayesian Optimization (BO) has been
proved to be a good technique to tackle optimization problems with the characteristics
described above (Mockus et al., 1978). Namely, problems in which one does not have
access to the analytic expression of the objectives or the constraints, and can only obtain
(potentially noisy corrupted) values for some input by running some expensive process.
In BO methods an input location on which the objectives and constraints are evaluated is
iteratively suggested in an intelligent way. The aim is finding the solution of the problem
with the smallest possible number of evaluations of the objectives and constraints (Brochu
et al., 2010; Shahriari et al., 2015). At each iteration, the observations collected so far
are carefully used for this task. Moreover, because evaluating each black-box function is
expected to be very expensive, the time needed to suggest a candidate point is considered
negligible.

In the literature, there are several BO methods that have been proposed to efficiently
address multi-objective problems (Emmerich, 2008; Hernández-Lobato et al., 2016;
Knowles, 2006; Picheny, 2015; Ponweiser et al., 2008) and also constraint optimization
problems (Gelbart et al., 2014; Hernández-Lobato et al., 2016; Hernández-Lobato et al.,
2015). However, the problem of considering several objectives and several constraints at
the same time has received significantly less attention from the BO community, with a
few exceptions (Féliot et al., 2017). In this chapter we provide a practical BO method
based on information theory that can address this type of problems.

More precisely, in this chapter, we consider the problem of simultaneously minimizing
K functions f1(x), ..., fK(x) which we define as objectives, subject to the non-negativity
of C constraints c1(x),, cC(x), over some bounded domain X ∈ Rd, where d is the
dimensionality of the input space. The problem considered is:

min
x∈X

f1(x), . . . , fK(x) s.t. c1(x) ≥ 0, . . . , cC(x) ≥ 0 . (4.1)

We say that a point x ∈ X is feasible if cj(x) ≥ 0, ∀j, that is, it satisfies all the constraints.
This leads to the concept of feasible space F ⊂ X , that is the set of points that are
feasible. In this scenario, only the solutions contained in F are considered valid.

Focusing in the multi-objective optimization part of the problem, most of the times
is impossible to optimize all the objective functions at the same time, as they may
be conflicting. For example, in the control system of the robot described before, most
probably maximizing locomotion speed will lead to an increase in the energy consumption.

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 89

Similarly, in the low-calorie cookie example, minimizing the number of calories will also
decrease tastiness, and in the neural network example minimizing the prediction error
will involve using bigger networks, increasing the prediction time. In spite of this, it
is still possible to find a set of optimal points X ? known as the Pareto set (Siarry and
Collette, 2003). More formally, we define that the point x dominates the point x′ if
fk(x) ≤ fk(x

′) ∀k, with at least one inequality being strict. Then, the Pareto set is
the subset of non-dominated points in F , the feasible space, which is equivalent to this
expression ∀x? ∈ X ? ⊂ F , ∀x ∈ F ∃ k ∈ 1, ...,K such that fk(x

?) < fk(x). The Pareto
set is considered to be optimal because for each point in that set one cannot improve in
one of the objectives without deteriorating some other objective. Given X ?, a final user
may then choose a point from this set according to their preferences, e.g., locomotion
speed vs. energy consumption.

To solve efficiently the previous problems, i.e., find the Pareto set in F with a small
number of evaluations, BO methods fit a probabilistic model, typically, a Gaussian
process (GP) to the observed data of each black-box function (objective or constraint).
The uncertainty about the potential values of these functions given by the predictive
distribution of the GPs is then used to build an acquisition function. The maximum of this
function indicates the most promising location on which to evaluate next the objectives
and the constraints to solve the optimization problem. After enough observations have
been collected like this, the probabilistic models can be optimized to provide an estimate
of the Pareto set of the original problem. Importantly, the acquisition function only
depends on the uncertainty provided by the probabilistic models and not on the actual
objectives or constraints. This means that it can be evaluated and optimized very quickly
to identify the next evaluation point. By carefully choosing the points on which to
evaluate the objectives and the constraints, BO methods find a good estimate of the
solution of the original optimization problem with a small number of evaluations (Brochu
et al., 2010; Shahriari et al., 2015).

In this chapter, we describe a strategy for constrained multi-objective optimization.
For this, we extend previous work that uses information theory to optimize several
objectives (D. et al., 2016) or a single objective with several constraints (Hernández-
Lobato et al., 2015). The result is a strategy that can handle several objectives and
several constraints at the same time. The proposed strategy chooses the next point
on which to evaluate the objectives and the constraints as the one that is expected to
reduce the most the uncertainty about the Pareto set in the feasible space, measured in
terms of Shannon’s differential entropy. Intuitively, a smaller entropy implies that the
Pareto set is better-identified (Hennig and Schuler, 2012; Hernández-Lobato et al., 2014;
Villemonteix et al., 2009). The proposed approach is called Predictive Entropy Search
for Multi-objective Bayesian Optimization with Constraints (PESMOC).

Importantly, in PESMOC the acquisition function is expressed as a sum of acquisition
functions, one for each objective and constraint. This enables the use of PESMOC in
decoupled scenarios in which one can choose to only evaluate a subset of objectives and
constraints at any given location, each time. More precisely, PESMOC not only gives
information about what input location gives more information about the problem, but
also about what objective or constraint or subset of these to evaluate next. This may
have important applications in practice. Consider the robot’s example described before.
One might be able to decouple the problems by estimating energy consumption from
a simulator, even if the locomotion speed and the constraints could only be evaluated
by running a real experiment with the robot. In the low-calorie cookie, calories can
be a simple function of the ingredients. However, measuring crispness could require

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 90

human trials. Therefore, their evaluation could be decoupled. Similarly, in the neural
network example measuring prediction error could require training the network. However,
measuring power consumption may only require running an expensive simulation. The
benefit of decoupled evaluations in the context of BO has been already observed in the
case of a single objective and several constraints (Hernández-Lobato et al., 2016), and
in the case of several objectives and no constraints (Hernández-Lobato et al., 2016). In
this chapter we show that PESMOC can give significantly better results in decoupled
evaluation scenarios in problems involving several objectives and several constraints at
the same time.

This chapter is organized as follows: Section 4.2 describes the proposed approach,
PESMOC, and how to compute an approximate acquisition function based on the expected
reduction of the entropy. Section 4.3 reviews important work related to the problem or
techniques employed to solve multi-objective optimization problems under the presence
of constraints and also previous approaches that also allow for decoupled evaluations.
Section 4.4 describes several experiments where, using multiple synthetic, benchmark
and real-world problems, we show that the proposed approach has significant advantages
over current state-of-the-art methods. Finally, Section 4.5 gives the conclusions of this
chapter.

4.2 Predictive Entropy Search for Multi-objective Opti-
mization with Constraints

The proposed method, PESMOC, maximizes the information gain about the solution of
the problem. Namely, the Pareto set X ? over the feasible set F . X ? is assumed to be
unknown and can be regarded as a random variable. The uncertainty about X ? arises
naturally from considering a probabilistic model for each objective and constraint of the
problem. More precisely, each model will output a posterior probability distribution for
a particular black-box function. This posterior distribution summarizes the potential
values that the function can take given the observations collected so far. Therefore, the
uncertainty about the objectives and constraints is directly translated into uncertainty
about X ?.

4.2.1 Modeling Black-box Functions Using Gaussian Processes

A critical point of BO methods is therefore building a probabilistic model for each
black-box function. Such a model must provide a predictive distribution for the potential
values of the function at each point of the input space. This predictive distribution will
be used to guide the search, by focusing only on those regions of the input space that are
expected to provide the most information about the solution of the optimization problem.
Typically, the model employed is a Gaussian process (GP) (Rasmussen, 2003), although
other models such as random forests, T-Student processes or deep neural networks are
possible (Hutter et al., 2011; Shah et al., 2014; Snoek et al., 2015).

A GP is a prior distribution over functions. We assume each black-box function f(x)
has been generated from a GP, which is characterized by a zero mean and a covariance
function k(x,x′), that is, f(x) ∼ GP(0, k(x,x′)). The particular characteristics assumed
for f(·) (e.g., level of smoothness, additive noise, etc.) are specified by the covariance
function k(x,x′), which receives as an input two points, x and x′ at which the covariance
between f(x) and f(x′) has to be evaluated. A typical covariance function employed for
BO is the Matérn function (Snoek et al., 2012).

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 91

Given some observations D = (xi, yi)
N
i=1 of the black-box function, where yi =

f(xi) + εi with εi some additive Gaussian noise, a GP builds a predictive distribution for
the potential values of f(·) at a new input point x?. This distribution is Gaussian. Namely,
p(f(x?)|y) = N (f(x?),m(x?), v(x?)), where the mean and variance are respectively given
by

m(x?) = kT? (K + σ2I)−1y , (4.2)

v(x?) = k(x,x)− kT? (K + σ2I)−1k? , (4.3)

where y = (y1, . . . , yN)T is a vector with the observations collected so far; σ2 is the
variance of the additive Gaussian noise; k? is a N -dimensional vector with the prior
covariances between f(x?) and each f(xi); and K is a N × N matrix with the prior
covariances among each f(xi), for i = 1, . . . , N . See (Rasmussen, 2003) for further
details.

In practice, however, a GP has some hyper-parameters that need to be adjusted.
These include the variance of the additive Gaussian noise σ2, but also any potential
hyper-parameter of the covariance function k(·, ·). These can be, e.g., the amplitude
and the length-scales. Instead of finding point estimates for these hyper-parameters, an
approach that has shown good empirical results is to compute an approximate posterior
distribution for them using slice sampling (Snoek et al., 2012). The previous predictive
distribution is then simply averaged over the generated samples of the hyper-parameters.
The process of generating these samples and computing the final predictive distribution
takes only a few seconds at most. This time can be considered negligible compared to
the cost of evaluating the actual black-box function.

4.2.2 Specification of the Acquisition Function

Let the K black-box objectives of the optimization problem {f1, . . . , fK} be denoted
with f and the C black-box constraints {c1, . . . , cC} with c. We will assume a GP model
for each of these functions, as described in the previous section. For simplicity, we will
consider first a coupled setting, in which all functions are evaluated at the same candidate
input location at each iteration. Later on, we will describe the extension to a decoupled
evaluation setting in which only a subset of the objectives or constraints need to be
evaluated each time.

Let D = {(xn,yn)}Nn=1 denote all the observations collected up to step N of the
optimization process, where yn is a K + C-dimensional vector with the values resulting
from the evaluation of the K objectives and the C constraints at step n, and xn is a
vector in the input space representing the corresponding input location. In PESMOC, the
next point xN+1 on which the objectives and constraints should be evaluated is chosen
as the one that maximizes the expected reduction, after the corresponding evaluation, of
the differential entropy H(·) of the posterior distribution over the Pareto set X ? in the
feasible space F , p(X ?|D). More precisely, the acquisition function α(·) of PESMOC is

α(x) = H(X ?|D)− Ey[H(X ?|D ∪ {(x,y)})] , (4.4)

where H(X ?|D) is the entropy of X ? given by the current probabilistic models; H(X ?|D∪
{(x,y)}) is the entropy of X ? after including the observation (x,y) in D; and the
expectation is taken with respect to the potential values of y at x, given by the predictive
distribution of the GP models. Namely, the posterior distribution of the potentially noisy

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 92

evaluations of the objectives f and constraints c, at x. This distribution is

p(y|D,x) =

K∏
k=1

p(yk|D,x)

C∏
j=1

p(yK+j |D,x) , (4.5)

under the assumption of independence among objectives and constraints. This assumption
is maintained in the rest of the chapter. Each p(yk|D,x) and p(yK+j |D,x) in the previous
expression is simply given by the predictive distribution described in Section 4.2.2, in
which the variance of the additive Gaussian noise σ2 is added to the predictive variance
v(x). The next point at which the objectives and constraints should be evaluated is
hence chosen by PESMOC simply as xN+1 = arg max

x∈X
α(x).

Choosing the next point on which to perform the evaluation of the objectives and
constraints as the one that reduces the most the entropy of the solution of the optimization
problem is known in the BO literature as entropy search (Hennig and Schuler, 2012;
Villemonteix et al., 2009). Nevertheless, the practical evaluation of (4.4) is very challenging
since it involves the entropy of a set of points, the Pareto set X ?, of potentially infinite
size. Thus, in general, the exact evaluation of this expression is infeasible and it must be
approximated. For this, we perform a reformulation of the previous acquisition function
that significantly simplifies its evaluation. Following Houlsby et al. (2012) and Hernández-
Lobato et al. (2014), we note that (4.4) is simply the mutual information between X ?
and y, I(X ?; y). Since the mutual information is symmetric, i.e., I(X ?; y) = I(y;X ?),
the roles of X ? and y can be swapped, leading to the following simplified but equivalent
expression to (4.4). Namely,

α(x) = H(y|D,x)− EX ? [H(y|D,x,X ?)] , (4.6)

where the expectation is now with respect to the posterior distribution of the Pareto
set, X ? in the feasible space, given the observed data, D; H(y|D,x,X ?) measures the
entropy of p(y|D,x), i.e., the predictive distribution for the objectives and the constraints
at x given D; and H(y|D,x,X ?) measures the entropy of p(y|D,x,X ?), i.e., the same
predictive distribution conditioned to X ? being the solution of the optimization problem.
This alternative formulation significantly simplifies the evaluation of the acquisition
function α(·) because we no longer have to evaluate the entropy of X ?, which can be
very complicated. Importantly, the acquisition function obtained in (4.6) favors the
evaluation in regions of the input space in which X ? (the solution of the optimization
problem) is more informative about y. These are also the regions in which y is more
informative about X ?. We refer to the expression in (4.6) as Predictive Entropy Search
for Multi-objective Optimization with Constraints (PESMOC).

We now give the details about how to evaluate (4.6), approximately. Note that the
first term in the r.h.s. of (4.6) is simply the entropy of the predictive distribution of the
GP models, p(y|D,x), which is a factorizing K + C-dimensional Gaussian distribution.
Therefore,

H(y|D,x) =
K + C

2
log(2πe) +

K∑
k=1

0.5 log(vPD
k) +

C∑
j=1

log(sPD
j) , (4.7)

where vPD
k and sPD

j are the predictive variances of the objectives and the constraints
at x, respectively. The difficulty comes from the evaluation of the second term in
the r.h.s. (4.6), which is intractable and has to be approximated. For this, we follow

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 93

(Hernández-Lobato et al., 2016, 2014) and use a Monte Carlo estimate of the expectation.
This estimate is obtained by drawing samples of the Pareto set X ? given D. This
involves sampling several times the objectives and the constraints from their posterior
distributions given by the GP models. This is done following the approach based on
random features described in (Hernández-Lobato et al., 2016, 2014). Given a sample of
the objectives and the constraints, we solve the corresponding optimization problem to
generate a sample of X ?. For this, we use a grid search approach, although more efficient
methods based on evolutionary strategies may be used in the case of high dimensional
spaces. X ? needs to be located in the feasible space F . Thus, we discard all input grid
locations in which the sampled constraints are strictly negative. X ? is simply obtained
by returning all the non-dominated grid locations. Note that unlike the true objectives
and constraints, the sampled functions can be evaluated very fast. Given a sample of
X ?, the differential entropy of p(y|D,x,X ?) is estimated using expectation propagation
as described next.

4.2.3 EP Approximation of the Conditional Predictive Distribution

We employ expectation propagation (EP) to approximate the entropy of the conditional
predictive distribution (CPD) p(y|D,x,X ?) (Minka, 2001a). Consider the deterministic
distribution p(X ?|f, c) of the Pareto set in the feasible space given specific values for
the objectives and the constraints. The value of p(X ?|f, c) should be zero for any set of
points that is different from the actual Pareto set for the specific values of f and c. X ?
is the Pareto set in the feasible space F if and only if ∀x? ∈ X ?, ∀x′ ∈ X , cj(x

?) ≥ 0
∀j, and if cj(x

′) ≥ 0, ∀j, then ∃k s.t. fk(x
?) < fk(x

′) assuming minimization. In other
words, each point of the Pareto set has to be better or equal to any other feasible point
in at least one of the objectives. These conditions can be informally summarized as the
following unnormalized distribution:

p(X ?|f, c) ∝
∏

x?∈X ?

[C∏
j=1

Φj(x
?)

][∏
x′∈X

Ω(x′,x?)

] , (4.8)

where Φj(x
?) = Θ(cj(x

?)) with Θ(·) the Heaviside step function (using the convention
that Θ(0) = 1) and the factor Ω(x′,x?) is defined as:

Ω(x′,x?) =

 C∏
j=1

Θ(cj(x
′))

ψ(x′,x?) +

1−
C∏
j=1

Θ(cj(x
′))

 · 1 , (4.9)

ψ(x′,x?) = 1−
K∏
k=1

Θ(fk(x
?)− fk(x′)) . (4.10)

Note that
∏C
j=1 Φj(x

?) in (4.8) guarantees that every point in the Pareto set X ? belongs
to the feasible space F . Otherwise, p(X ?|f , c) is equal to zero. The factors Ω(x′,x?) in
(4.8) are explained as follows: The product

∏C
j=1 Θ(cj(x

′)) checks that the input location
x′ belongs to the feasible space F . If the point x′ is not feasible, we do not really care
about x′, i.e., we simply multiply everything by one. Otherwise, the input location x′

has to be dominated by the Pareto point x?. That is, x? has to be better than x′ in at
least one objective. That is precisely checked by (4.10). In summary, the r.h.s. of (4.8)
takes value one if X ? is a valid Pareto set and zero otherwise.

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 94

We now show how to approximate the conditional predictive distribution p(y|D,x,X ?).
For simplicity, we consider a noiseless case in which we observe the actual objectives
and constraints: p(y|x, f, c) =

∏K
k=1 δ(yk − fk(x))

∏C
j=1 δ(yK+j − cj(x)), where δ(·) is a

Dirac’s delta function. In the case of noisy observations, one simply has to replace the
Dirac’s delta function with a Gaussian with the corresponding noise variance (we assume
i.i.d Gaussian noise). The unnormalized version of p(y|D,x,X ?) is:

p(y|D,x,X ?) ∝
∫
p(y|x, f, c)p(X ?|f, c)p(f|D)p(c|D)dfdc ∝∫ K∏
k=1

δ(yk − fk(x))

C∏
j=1

δ(yK+j − cj(x))×

∏
x?∈X ?

C∏
j=1

Φj(x
?)×

∏
x?∈X ?

Ω(x,x?)
∏

x′∈X\{x}

Ω(x′,x?)

×
p(f|D)p(c|D)dfdc , (4.11)

where we have separated out the factors Ω(·, ·) that do not depend on x, i.e., the point
on which the acquisition function is going to be evaluated.

In (4.11) the posterior distribution of each objective and constraint (i.e., p(f|D) and
p(c|D)) and the delta functions are all Gaussian. The other factors are not. Furthermore,
X can potentially be of infinite size. All this makes the evaluation of (4.11) intractable
in practice. To overcome this limitation we provide an efficient approximation based
on two steps. First, X , the set of all potential input locations, is approximated as
X̂ = {xn}Nn=1∪X ?∪{x}, where {xn}Nn=1 are the input locations where the objectives and
constraints have been evaluated so far. Second, all non-Gaussian factors in (4.11), i.e.,
Φj(·) and Ω(·, ·) are replaced with corresponding approximate Gaussian factors, Φ̃j(·) and
Ω̃(·, ·). This last step is carried out using the expectation propagation (EP) algorithm
(Minka, 2001a). More precisely, each Φj(·) factor is approximated by a one-dimensional
un-normalized Gaussian over cj(x

?):

Φj(x
?) ≈ Φ̃j(x

?) ∝ exp{−0.5 · cj(x?)2ṽx?

j + cj(x
?)m̃x?

j } , (4.12)

where ṽx?
j and m̃x?

j are natural parameters adjusted by EP. Similarly, each Ω(x′,x?)
factor is approximated by a product of C one-dimensional and K two-dimensional
un-normalized Gaussians:

Ω(x′,x?) ≈ Ω̃(x′,x?) ∝
K∏
k=1

exp{−0.5 · υT
k ṼΩ

k υk + (m̃Ω
k)Tυk}×

C∏
j=1

exp{−0.5 · cj(x?)2ṽΩ
j + cj(x

?)m̃Ω
j } , (4.13)

where υk = (fk(x
′), fk(x

?))T and ṼΩ
k , m̃Ω

k , ṽΩ
j and m̃Ω

j are natural parameters adjusted

by EP. Note that ṼΩ
k is a 2× 2 matrix and m̃Ω

k is a two-dimensional vector.
EP refines all these approximate factors iteratively until their parameters do not

change any more. This ensures that they look similar to the corresponding exact factors.
The factors, that do not depend on x are reused each time that the acquisition function
has to be computed at a new input location x. The other factors that depend on x need

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 95

to be computed relatively fast to guarantee that the acquisition function is not very
expensive to evaluate. Therefore, these factors are only updated once by EP in practice.

4.2.4 The PESMOC’s Acquisition Function

Once EP has finished, the conditional predictive distribution p(y|D,x,X ?) is approxi-
mated by the distribution that results from replacing in (4.11) each non-Gaussian factor
by the corresponding EP Gaussian approximation. Because the Gaussian distribution is
closed under the product operation, the resulting distribution is Gaussian. That is:

p(y|D,x,X ?) ≈
K∏
k=1

N (fk(x)|mCPD
k , vCPD

k)
C∏
j=1

N (cj(x)|mCPD
j , sCPD

j) , (4.14)

where the parameters mCPD
k , vCPD

k ,mCPD
j , sCPD

j can be obtained from the product of
the approximate factors, p(f |D) and p(c|D), and the delta functions. Then, PESMOC’s
acquisition function is simply given by the sum of the differences between the entropies
before and after conditioning on the Pareto set. This, in combination with the expression
shown in (4.7) gives:

α(x) ≈
C∑
j=1

log sPD
j (x) +

K∑
k=1

log vPD
k (x)−

1

M

M∑
m=1

[C∑
j=1

log sCPD
j (x|X ?(m)) +

K∑
k=1

log vCPD
k (x|X ?(m))

]
, (4.15)

where M is the number of Monte Carlo samples of the Pareto set {X ?(m)}
M
m=1 used to

approximate the expectation in the r.h.s. of (4.6); and vPD
k (x), sPD

j (x), vCPD
k (x|X ?(m)) and

sCPD
j (x|X ?(m)) are the variances of the predictive distribution before and after conditioning

on the Pareto set X ?(m). In the case of noisy observations around each objective or
constraint we simply increase the predictive variances by adding the corresponding
variance of the Gaussian additive noise. The next point at which to evaluate the
objectives and the constraints is the one that maximizes (4.15).

We note that the acquisition function in (4.15) can be expressed as a sum across the
objectives and the constraints. That is,

α(x) =

K∑
k=1

αobj
k (x) +

C∑
j=1

αconst
j (x) , (4.16)

where

αobj
k (x) = log vPD

k (x)− 1

M

K∑
k=1

log vCPD
k (x|X ?(m)) , (4.17)

αconst
c (x) = log sPD

j (x)− 1

M

C∑
j=1

log sCPD
j (x|X ?(m)) . (4.18)

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 96

Intuitively each of these functions measures the reduction in the entropy of the Pareto
set after an evaluation of the corresponding objective or constraint. Therefore PESMOC
can be used to identify not only where to perform the next evaluation, but also which
black-box function (objective or constraint) or subset of these should be evaluated next.
This allows for a decoupled evaluation scenario. In the simplest case in which we consider
an acquisition function per black-box function, we only have to maximize independently
each of these K + C acquisition functions to identify the most promising black-box
function to evaluate next. We expect that this approach is more effective for reducing
the entropy of the Pareto set in the feasible space, leading to better optimization results
with a smaller number of black-box evaluations.

An illustrative example of the computation of PESMOC’s acquisition functions is
shown in Figure 4.1 for a simple one-dimensional problem with two objectives and one
constraint. The first column displays the data collected so far. Each black-box function
is modelled using a GP, whose predictive distribution is shown in terms of the mean
prediction and one standard deviation. The second column of the figure displays a
function sampled from the predictive distribution of each black-box function. These
samples are then optimized to obtain a sample of the Pareto set X ?(m), which is displayed
in the figure using blue crosses. These points dominate all other points for which the
corresponding values of the constraint are positive. The third column of this figure shows
the predictive distribution of each black-box function conditioned to X ?(m) being the
solution to the optimization problem. This predictive distribution is approximated using
EP. Note that the predictive variance is reduced significantly in some locations of the
input space. These are the locations that are expected to be most informative about
the actual Pareto set X ?. Finally, the last column shows the corresponding acquisition
function for each black-box function, alongside with the corresponding maximizer. The
acquisition is simply given by the difference in the logarithm of the predictive variance
before and after the conditioning. Note that those regions of the input space in which
the acquisition is high correspond to those regions in which the predictive variance is
significantly reduced.

The acquisition function obtained for a coupled evaluation setting is shown also
in Figure 4.2 for reference. A comparison between Figure 4.1 and Figure 4.2 shows
the potential benefits of a decoupled evaluation approach. The acquisition function
obtained in the coupled scenario is simply the sum of all the previous acquisition
functions. Furthermore, note that the maximizer of this function need not be equal to
the maximizers of any of the individual acquisition functions. Therefore, the sum of
the individual maximums of each of the three different acquisition functions displayed
in Figure 4.1 is expected to be larger than the maximum of the acquisition function
displayed in Figure 4.2. A decoupled evaluation setting is hence expected to be more
useful for decreasing the entropy of the Pareto set in the feasible space, and to give better
results with a smaller number of black-box evaluations.

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 97

vPD
1 (x) Sample of X ? vCPD

1 (x|X ?
1) αobj

1 (x)

f 1
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0

2

1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Max

vPD
2 (x) Sample of X ? vCPD

2 (x|X ?
1) αobj

2 (x)

f 2
(x

)

0.0 0.2 0.4 0.6 0.8 1.01.5

1.0

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0

2

1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.01.5

1.0

0.5

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Max

sPD
1 (x) Sample of X ? sCPD

1 (x|X ?
1) αconst

1 (x)

c 1
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0

2

1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Max

Figure 4.1: Different steps needed to compute PESMOC’s acquisition function in a
decoupled evaluation scenario. (first column) Predictive distribution for each black-box
function conditioned on the observed data given by a GP. (second column) Sample
from the posterior distribution of each GP alongside with the corresponding Pareto
set X ?(m) in the feasible space displayed using blue crosses. (third column) Predictive
distribution of each black-box function conditioned to the sampled Pareto set X ?(m)

being the solution to the optimization problem. (fourth column) Acquisition function
obtained by the difference in the entropy of the predictive distribution before and after
the conditioning.

4.2.5 Computational Cost of PESMOC’s Acquisition Function

The cost of running EP and evaluating the acquisition function is O((K + C)q3), where
q = N + |X ?(m)|, and N is the number of observations collected so far, K is the number of
objectives and C is the number of constraints. In practice EP is run only once per sample
of the Pareto set X ?(m) because it is possible to re-use the factors that are independent of
the candidate location x at which the acquisition function has to be evaluated. Thus,
the complexity of computing the predictive variance is O((K + C)|X ?(m)|

3). In practice,
we set the size of the Pareto set sample X ?(m) to be equal to 50, making q just a few

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 98

0.0 0.2 0.4 0.6 0.8 1.00.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Max

Figure 4.2: Acquisition function of PESMOC for the coupled setting. In this case α(·)
is simply the sum of the acquisition functions of the three black boxes shown in Figure
4.1, in which the decoupled approach was displayed.

hundreds at most. We provide more details in the supplementary material about how to
the conditional predictive distribution p(y|D,x,X ?) is obtained after running EP.

4.3 Related Work

In this section we review important related work to multi-objective optimization under
the presence of several constraints, when both the objectives and the constraints can be
regarded as black-boxes. We also describe related methods for Bayesian optimization
and previous approaches that also allow for decoupled evaluations.

4.3.1 Evolutionary Strategies and Meta-heuristics

The problem of constrained multiobjective optimization where the analytical form of
the objectives or the constraints is unknown has been already tackled in the literature.
In order to solve these problems one can employ evolutionary strategies such as the
ones described in (Cai and Wang, 2006; Fonseca and Fleming, 1998). Similarly, other
techniques adapted to this scenario include particle swarm optimization (Coello et al.,
2004) or ant colony optimization (Alaya et al., 2007). These techniques perform a
search in the target space guided by some criterion that tries to find the best trade-off
between exploration of good solutions far away from the regions already explored, and
exploitation of the best known solutions. The problem of these techniques, also known
as meta-heuristics, is that they usually require a large number of evaluations in order
to achieve good results. This is un-affordable in our scenario in which the black-box
functions are expected to be very expensive to evaluate. BO methods, which exploit
the information provided by the probabilistic models to make intelligent decisions about
where to evaluate next these functions, will perform much better in a scenario that
includes a limited evaluation budget (a few hundred evaluations at most). Empirical
evidence supporting this is found, for example, in (Bischl et al., 2017b; Hernández-Lobato
et al., 2016).

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 99

4.3.2 Related Bayesian Optimization Methods

In the literature most BO methods have traditionally focused on the un-constrained
single objective scenario. A comprehensive summary of different works targeting this
type of problems can be found in (Brochu et al., 2010; Shahriari et al., 2015). The first
BO methods based on entropy search were proposed to address these simple optimization
problems (Hennig and Schuler, 2012; Villemonteix et al., 2009). The corresponding
re-formulation based on predictive entropy search in such a setting is described in
(Hernández-Lobato et al., 2014). This reformulation provides an approximation of the
acquisition function of entropy search that is more accurate, as the required computations
are simplified significantly, and that also leads to better optimization results in practice.
In any case, all these works can only optimize a single objective under no constraints.

The multi-objective case in which several objectives need to be simultaneously
optimized in an un-constrained scenario has also received the attention of the BO
community. In particular, several BO methods have been proposed to address these
problems, including ParEGO, SMS-EGO, expected hyper-volume improvement (EHI)
and sequential uncertainty reduction (SUR) (Emmerich and Klinkenberg, 2008; Knowles,
2006; Picheny, 2015; Ponweiser et al., 2008). A multi-objective BO method based on using
entropy search and the corresponding re-formulation based on predictive entropy search
is described in (Hernández-Lobato et al., 2016). However, such a method cannot consider
constraints. The work described here is a natural extension that allows to incorporate
several constraints to the multi-objective problem. Importantly, this extension is not
trivial since it involves the use of more complicated factors in the computation of the
conditional predictive distribution. Furthermore, the EP update operations required to
compute the approximation of the acquisition function are also more arduous.

The problem of optimizing a single objective under several constraints has also been
considered by the BO community. The methods proposed with this goal include variants
of the expected improvement (EI) acquisition function in which one simply chooses
the point that is expected to improve the most the best observed result so far. For
example, the expected improvement with constraints (EIC) (Gardner et al., 2014; Gelbart
et al., 2014; Parr, 2013; Schonlau et al., 1998; Snoek, 2013). A method that is able to
tackle this type of problems and that is based on entropy search and the corresponding
reformulation using predictive entropy search has also been proposed in (Hernández-
Lobato et al., 2016; Hernández-Lobato et al., 2015). Such a method, however, cannot
optimize several objectives at the same time, unlike PESMOC, the method described
in this chapter. Optimizing several objectives at the same time is a significantly more
complicated problem. In particular, when the objectives are conflictive, the solution
to the optimization problem is a set of points, the Pareto set in the feasible space, of
potentially infinite size.

4.3.3 Bayesian Multi-Objective Optimization

A BO method proposed in the literature to optimize several objectives under several
constraints is Bayesian Multi-objective optimization (BMOO) (Féliot et al., 2017). Such
a method is based on the expected hyper-volume improvement acquisition function (EHI)
(Emmerich and Klinkenberg, 2008), in which the expected increase in the hyper-volume is
computed after performing an evaluation of the black-box functions at a particular input
location. The hyper-volume is simply the volume of points in functional space above the
Pareto front (i.e., the function values associated to the Pareto set), which is maximized
by the actual Pareto set. It is hence a natural measure of quality or utility of the current

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 100

solution of the multi-objective problem. When several constraints are introduced in the
problem, this criterion boils down to the product of a modified EHI criterion (where
only feasible points are considered) and the probability of feasibility, as indicated by
the probabilistic models. Importantly, the utility function of this acquisition function
(the acquisition is simply the expectation of the utility function under the predictive
distribution of the probabilistic models) is constant (equal to zero) as long as no feasible
point has been observed. Therefore, it is not an appropriate utility function for heavily
constrained problems, where finding feasible points is sometimes the main difficulty. As
indicated by Féliot et al. (2017), not all unfeasible points are equivalent. A point that
does not satisfy a constraint by a small amount has probably more value than one that
does not satisfy the constraint by a large amount, and should therefore contribute more
to the utility.

With the goal of overcoming the limitations described before, Féliot et al. (2017)
propose an extended domination rule to handle objectives and constraints in a unified
way. This domination rule considers both objectives f(x) = (f1(x), . . . , fn(x)) and
constraints c(x) = (c1(x), . . . , cm(x)). For this, the space of potential objective values
f(x) ∈ Yo ⊂ RK and the space of potential constraint values c(x) ∈ Yc ⊂ RC are joined,
giving as a result the extended space Yo×Yc. Define yox = f(x) and ycx = c(x). That is yox
is a vector with the objective values associated to x and ycx is a vector with the constraint
values. The extended domination rule states that a point x dominates another one x′,
if Ψ(yox,y

c
x) dominates Ψ(yox′ ,y

c
x′), using the classical Pareto domination rule. That is,

Ψ(yox,y
c
x) ≺ Ψ(yox′ ,y

c
x′) i.f.f Ψ(yox,y

c
x) is better than Ψ(yox′ ,y

c
x′) in at least one component.

Let R be the extended real line. The transformation Ψ(·, ·) : Yo × Yc → R
K × RC is

defined as:

Ψ(yox,y
c
x) =

{
(yox,0) if ycx ≥ 0,
(+∞,min (ycx,0)) otherwise.

(4.19)

That is, if the point is feasible (i.e., all the constraints are positive or equal to zero), only
the objective values are considered. Conversely, if the point is infeasible, the constraint
values will play a role. More precisely, under this rule a solution that is infeasible but
close to being feasible will dominate other infeasible solutions that are further away from
being feasible. As described by Féliot et al. (2017), the previous rule has these properties:

1. For unconstrained problems the extended domination rule boils down to the classical
Pareto domination rule.

2. Feasible solutions (corresponding to ycx ≥ 0) are compared using the Pareto
domination rule applied in the objective space.

3. Non-feasible solutions (corresponding to ycx � 0) are compared using the Pareto
domination rule applied to the vector of constraint violations.

4. Feasible solutions always dominate non-feasible solutions.

The extended domination rule presented above makes it possible to define a notion
of expected hyper-volume improvement in the extended space. This is the acquisition
function considered by Féliot et al. (2017). A problem is, however, that evaluating this
quantity can be expensive if the number of objectives and constraints is large. To overcome
this limitation an efficient approximate computation method is proposed by those authors.
This approximation is obtained by noticing that the proposed acquisition function at
a candidate point x is given by the expected value of the probability that Ψ(yox,y

c
x)

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 101

dominates a point y belonging to the set of non-dominated points in the extended output
space, when y is chosen uniformly at random from that set. In particular,

αBMOO(x) = Eyox,y
c
x

[∫
GN

I(Ψ(yox,y
c
x) ≺ y)dy

]
=

∫
GN

p(Ψ(yox,y
c
x) ≺ y)dy

≈ 1

M

M∑
m=1

p(Ψ(yox,y
c
x) ≺ ym) , (4.20)

where GN is the set of non-dominated points (up to the current iteration N) in the
extended output space; I(·) is an indicator function; the expectation is given by the
predictive distribution of the probabilistic models fitting each objective and constraint;
p(Ψ(yox,y

c
x) ≺ y) is the probability that Ψ(yox,y

c
x) dominates y and M is the number

of samples for y ∈ Gn used in the approximation. Importantly, there is a closed form
expression for p(Ψ(yox,y

c
x) ≺ y) when the probabilistic models are Gaussian processes.

The only problem is hence how to generate uniform variables over the set GN .
To generate the samples required in (4.20) Féliot et al. (2017) propose a Monte Carlo

method based on the Metropolis-Hastings algorithm targeting the uniform distribution
in GN . At each iteration of this algorithm the current samples (particles) are slightly
perturbed. This step is only accepted if the new particle falls in GN . Of course, when
a new observation is obtained, improving the current solution, the set GN+1 has a
smaller size than GN . Therefore, some particles may have to be removed. Féliot et al.
(2017) describe an intelligent method to avoid the elimination of a large number of
particles at each iteration, which will reduce the quality of the generated samples and
the approximation.

In our experiments we have compared the proposed approach, PESMOC, with the
BMOO method just described. We have observed that BMOO suffers from the limitations
of traditional methods based on the expected improvement (EI). In particular, it often
is too greedy and tends to explore the limits of the input space too much. In high
dimensions this can be a problem since there are a lot of these corners. An extra difficulty
of BMOO is that, in practice, one has to bound the space of potential output values
for the objectives and the constraints, and this information may not be available before
hand.

4.3.4 Existing Methods for Decoupled Evaluations

Decoupled evaluations in a BO setting were first considered by Gelbart et al. (2014) for
a single objective and several constraints. In that work it is shown that the standard
acquisition function known as expected improvement (EI) leads to a pathology that
prevents decoupled evaluations. The reason for that is that no-improvement over the
current best solution (this is the utility function of EI) can occur if we observe only the
objective or the constraints, separately. More precisely, two conditions are required to
produce positive values of the utility: (i) the evaluation for the objective must achieve
a lower value than the best observed feasible solution so far and, (ii), the evaluations
for the constraints must produce non-negative values. These two conditions cannot be
simultaneously satisfied by a single observation (objective or constraint). Therefore,
standard EI cannot be used for decoupled evaluations. The problem described is solved
by using a two stage process in which standard EI is used to pick-up a candidate point

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 102

xN+1, and then, entropy search is used to choose the black-box function to evaluate next
(Villemonteix et al., 2009). This approach is sub-optimal and a joint selection of xN+1

and the black-box is expected to perform better.
The limitations of the previous method are circumvented in (Hernández-Lobato et al.,

2016). In particular, PESC, the strategy described in that chapter for single-objective
constrained Bayesian optimization, allows to perform decoupled evaluations that can
simultaneously choose xN+1 and the black-box function to evaluate next. This strategy
is also based on predictive entropy search and expectation propagation. A comprehensive
analysis of the decoupled evaluation setting in this type of optimization problems is carried
out in that work. Importantly, two different decoupled configurations are evaluated: (i)
competitive decoupling, in which the black-boxes compete for a single resource available;
and (ii) non-competitive decoupling, in which the black-boxes can be evaluated in parallel
at different input locations. Only competitive decoupling is found to perform significantly
better than a coupled evaluation setting.

A decoupled evaluation method for un-constrained multi-objective Bayesian optimiza-
tion is described in (Hernández-Lobato et al., 2016). PESMO, the technique described
by those authors, also uses predictive entropy search and expectation propagation to
choose which black-box function and which input location xN+1 to evaluate next. These
authors only consider competitive decoupled evaluations. The results obtained show that
such a setting can significantly outperform coupled evaluations in the multi-objective
case.

The method we propose here, PESMOC, can be seen a natural extension of the
two works described above, PESC, and PESMO. PESMOC also allows for decoupled
evaluations and combines the possibility of considering several objectives and several
constraints at the same time. Our results also indicate that a decoupled evaluation setting
may have important benefits in the constrained multi-objective case. The method we
compare with, BMOO, is based on a generalization of EI for constrained multi-objective
problems. Therefore, this method suffers from the same limitations as standard EI for the
single-objective constrained setting and cannot be used to perform decoupled evaluations.

PESMOC is significantly different from PESC. In particular, PESC can only provide
solutions to single-objective constrained optimization probems. PESMOC, on the other
hand, can be used to find the solution of multi-objetive optimization problems under
several constraints. When the objectives are conflictive, the solution is a set of points, the
Pareto set in the feasible space, of potentially infinite size. This makes multi-objective
problems significantly more challenging.

PESMOC also differs from PESMO. In PESMO there are no constraints in the opti-
mizaton problem. Incorporating constraints in the multi-objective problem is challenging
and requires to add extra factors to compute the conditional predictive distribution
described in (4.11). These extra factors have to be approximated by expectation propa-
gation (EP), which results in different EP updates from those of PESMO. Furthermore,
when computing the acquisition funciton one has to take into account the predictive
variances of the latent functions corresponding to the constraints. In PESMO there are
no constraints, so they can be ignored. Importantly, when sampling X ? in PESMOC one
also needs to consdier the feasible space F by sampling also the constraints, which must
be taken into account when solving the corresponding optimization problem. This makes
the process of sampling X ? more complicated in PESMOC. PESMO does not have to
consider the possibility of having constraints. Finally, when doing a recommendation,
PESMOC has to take into account that the provided solution must be feasible with
high probability, as indicated in Section 4.4. PESMO does not have to worry about

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 103

this. Summing up, PESMOC can be used to solve a collection of problems that PESMO
cannot address.

4.4 Experiments

We carry out several experiments to evaluate the performance of PESMOC, the proposed
method for constrained multi-objective Bayesian optimization. In these experiments
we compare coupled evaluations and competitive decoupled evaluations. In the second
case, we not only choose which is the next input location but also which black-box
function should be evaluated next. We compare the results of PESMOC with those of
the BMOO method of Féliot et al. (2017) and a base-line strategy that explores the
input space uniformly at random (Random). Note that this strategy is expected to
perform worse than either PESMOC or BMOO because it does not use the probabilistic
models to identify the next point on which to do the next evaluation. All these methods
have been implemented in the software for Bayesian optimization Spearmint (https:
//github.com/EduardoGarrido90/Spearmint). In each experiment carried out in this
section we report average results and the corresponding standard deviations. The results
reported are averages over 100 repetitions of the corresponding experiment. Means and
standard deviations are estimated using 200 bootstrap samples. In the synthetic problems
we consider two scenarios. Namely, noiseless and noisy observations, and report results
for both of them.

In each method, i.e., PESMOC and BMOO, a Matérn covariance function is used
for the GPs that model the objectives and the constraints. The hyper-parameters of
each GP (length-scales, level of noise and amplitude) are approximately sampled from
their posterior distribution using slice sampling as in (Snoek et al., 2012). We generate
10 samples for each hyper-parameter, and the acquisition function of each method is
averaged over these samples. In PESMOC the parameter M which specifies the number
of Monte Carlo samples of X ? in (4.15) is set to 10. This is the value used by previous
approaches based on predictive entropy search for single objective and un-constrained
multi-objective optimization (Hernández-Lobato et al., 2016; Hernández-Lobato et al.,
2016). Furthermore, the supplementary material includes some experiments showing that
setting M to this value gives a good trade-off between performance and computational
cost. For each method, at each iteration of the optimization process, we output a
recommendation obtained by optimizing the GPs mean functions. For this, we use a
uniform grid of 1000× d points, where d is the dimensionality of the problem. We also
approximate the Pareto set with 50 points.

To guarantee that only points that are feasible with high probability are recommended,
we consider that a constraint cj(·) is satisfied at an input location x if the probability that
the constraint is larger than zero is above 1−δ where δ is 0.05. That is, p(cj(x ≥ 0) ≥ 1−δ.
When no feasible solution is found, we simply return the points that are most likely to
be feasible by iteratively increasing δ in 0.05 units. This is the approach followed by
Gelbart et al. (2014) and Hernández-Lobato et al. (2016) for single-objective constrained
optimization, and we have observed that it provides good empirical results in our
experiments. Under the assumption that the constraints have generated from a GP prior,
this approach will guarantee that the provided solutions are feasible with high probability.
Note that this approach to provide recommendations is not specific of PESMOC. It
is shared by all the methods considered for constrained multi-objective optimization.
Namely, PESMOC, BMOO and the random search strategy.

https://github.com/EduardoGarrido90/Spearmint
https://github.com/EduardoGarrido90/Spearmint

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 104

The acquisition function of each method is maximized using L-BFGS (a grid of size
1, 000× d, where d is the input dimension, is used to find a good starting point). The
gradients of the acquisition function are approximated by differences. In BMOO we set
the number of samples used to approximate the evaluation of the acquisition function to
1, 000. These samples are perturbed at each iteration as described in (Féliot et al., 2017).

The experiments contained in this section are organized as follows: A first set of
experiments evaluate the quality of PESMOC’s approximation to target acquisition
function described in (4.6). Then, we compare the performance of PESMOC and BMOO
on synthetic experiments where the objectives and constraints are sampled from a GP
prior. This comparison is then carried out using 7 well-known benchmark problems for
multi-objective optimization with constraints. In this case, the objectives and constraints
have not been sampled from GP prior and model bias can be important. Finally, we
consider two real optimization problems: finding an optimal ensemble of decision trees
on the dataset German IDA and finding an optimal deep neural network for the MNIST
dataset.

4.4.1 Quality of the Approximation to the Acquisition Function

As described previously, the acquisition function of the proposed method, PESMOC, is
intractable and needs to be approximated. The exact evaluation requires computing an
expectation that has no closed form solution and computing the conditional predictive
distribution of the probabilistic models given some Pareto set X ?. In Section ?? we
propose to approximate these quantities using Monte Carlo samples and expectation
propagation, respectively. In this section we check the accuracy of this approximation
to see if it resembles the actual acquisition function. For this, we consider a simple
one dimensional problem with two objectives and one constraint generated from a GP
prior. In this simple setting, it is possible to compute a more accurate estimate of
the acquisition function using a more expensive sampling technique, combined with a
non-parametric estimator of entropy (Singh et al., 2003). More precisely, we discretize
the input space and generate a sample of the Pareto set X ? by optimizing a sample of the
black-box functions. This sample is generated as in the PESMOC approximation. We
then generate samples of the black-box functions and keep only those that are compatible
with X ? being the solution to the optimization problem. This process is repeated 10, 000
times. Then, a non-parametric method is used to estimate the entropy of the predictive
distribution at each region of the input space before and after the conditioning. The
difference in the entropy at each input location gives a more accurate estimate of the
acquisition function of PESMOC. Of course, this approach is too expensive to be used in
practice for solving optimization problems.

We consider first a coupled evaluation setting. Figure 4.3 (top) shows the posterior
distribution (mean and one standard deviation) of the three black-box functions at a
particular step of the optimization process. The bottom of this figure shows a comparison
between the two estimates of the exact acquisition function. The one described above
(exact) and the one suggested as an approximation. We observe that both estimates of
the acquisition function take higher values in regions with high uncertainty and promising
predictions. Similarly, both estimates take lower values in regions with low uncertainty.
Importantly, both acquisition functions are pretty similar in the sense that they take
high and low values in the same regions of the input space. Therefore, both acquisition
functions are extremely correlated. This empirical result supports that the approximation
proposed in this chapter is an accurate estimate of the actual acquisition function.

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 105

●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●

●●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●

●●●●●●●●●
●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●
●●●

●●●●●●●
●●●●●●●

●●●●●●●●
●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●

●●●
●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●
●●●●●●

●●●●●
●●●●●
●●●●●
●●●●●●

●●●●●●●●●●
●●

●●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●

●
●

●

●

●●●

●

●
●

●●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
●

●
●

●

●●

●●

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00
Input Space

V
al

ue
s

●●
●●
●●

Constraint 1
Objective 1
Objective 2

Posterior Distribution of Each Objective

●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●

●

●

●

●
●
●●
●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●
●●●●●●●●

●●
●
●

●

●
●

●

●
●●
●●●●●●●●●●

●●●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●●●●

●●●
●

●

●

●

●

●

●
●●
●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●●●
●●

●
●
●●
●
●
●●●●●●●
●
●
●
●
●

●

●
●●●●●●●●●

●●●●●
●●●●●
●●●●●
●●●●●●●
●●

●

●

●

●

●
●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●
●●
●●●●●●●●●●●●

●●
●●●●●●●●●●●

●●●
●

●●

●
●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●

●

●

●

●

●
●●
●●●●●●●
●●●●●●●●●●

●●●●●●●
●●●●●●●●●

●●
●
●
●
●
●
●●●
●

●

●
●
●
●●●●
●
●

●

●
●●

●

●

●
●
●●
●●●

●

●

●

●
●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●
●●●

●●●

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00
Input Space

A
cq

ui
si

tio
n

V
al

ue

methods
●

●

PESMOC
Exact

α(·) − PESMOC approximation vs Exact Acquisition

Figure 4.3: (top) Posterior distribution of each black-box function (mean and standard
deviation). (bottom) Acquisition function estimated by PESMOC and by a more
expensive but accurate Monte Carlo method combined with a non-parametric estimator
of the entropy (exact).

We repeat these experiments in a decoupled scenario in which the different black-boxes
need not be evaluated at the same input location. The results are displayed in Figure
4.4. In this case, we show the estimates of the acquisition function corresponding to each
black-box function. Therefore, there are three different acquisition functions displayed.
The plots show again that the PESMOC’s approximation is accurate w.r.t the exact
acquisition function, as estimated by the more expensive process described above. Again,
each pair of estimates of the acquisition function for each black-box are heavily correlated,
suggesting similar maximizers and often similar acquisition values. We believe that
this results provides empirical evidence of the quality of the acquisition approximation
carried out in the proposed method, PESMOC. The accuracy of this approximation is
also validated by the good results obtained in the rest of the experiments described in
this chapter.

4.4.2 Synthetic Experiments

We compare the performance of PESMOC and BMOO with that of a random search
strategy when the objectives and constraints are sampled from a GP prior. For this,
we generate 100 optimization problems involving 2 objectives and 2 constraints in a
4-dimensional input space. This experiment is repeated to consider a more complicated
setting. In this case, we generate 100 optimization problems involving 4 objectives
and 2 constraints in a 6-dimensional input space. Each strategy (PESMOC, PESMOC

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 106

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●
●●●

●●●
●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●

●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●

●

●

●
●●

●

●●●

●●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●●●

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00
Input Space

V
al

ue
s

●●
●●
●●

Constraint 1
Objective 1
Objective 2

Posterior Distribution of Each Objective and Constraint

●●●
●

●

●
●

●

●
●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●
●

●

●

●

●

●
●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●
●●●

●
●

●

●●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●●
●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●
●

●●

●
●●●
●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●

●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●

●
●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●

●

●
●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●

●●●
●

●●

●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●●
●●●

●●
●●

●●●

0.0

0.1

0.2

0.3

0.00 0.25 0.50 0.75 1.00
Input Space

A
cq

ui
si

tio
n

V
al

ue

methods
●

●

PESMOC
Exact

α1
obj(·) − PESMOC approximation vs Exact Acquisition

●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●

●

●
●
●

●

●
●
●●
●●●●●●●●●●●

●
●

●

●●

●

●
●
●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●●●●●●

●●
●

●

●

●

●

●

●
●●
●●●●●●
●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●
●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●

●
●
●
●

●

●

●●
●
●
●
●●
●●●●●●
●
●
●
●●
●
●
●
●●
●●●
●●●●●●●●●●●

●●●
●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●

●●

●
●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●●●

●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●

●
●

●
●
●
●

●

●
●
●
●●
●●●●●●●●●

●
●

●

●
●●
●

●
●
●
●●
●●●●●●●
●●●●●●●
●●●●●●●●

●●●●●●
●●●●●●●
●●●●●●●●

●●●
●

●

●

●

●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●

●

●

●

●

●
●
●●
●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●
●●

●
●
●
●
●●
●

●
●
●
●●
●●●●
●
●
●
●●●●
●
●
●●
●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●
●●

●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●

●●

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.25 0.50 0.75 1.00
Input Space

A
cq

ui
si

tio
n

V
al

ue

methods
●

●

PESMOC
Exact

α2
obj(·) − PESMOC approximation vs Exact Acquisition

●●●●●●●●●●●●●●●●●●●●●●●
●

●

●
●●●●●
●●●

●●
●●●
●●
●●●●●●●●

●●●●●●●●●●●
●
●●
●
●●
●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●

●

●

●

●

●

●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●

●
●

●

●

●●

●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●
●
●
●●
●●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●●●●●●

●

●
●

●

●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●
●

●

●
●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●

●●●
●●

●●●●●●●●●
●
●
●●●
●
●
●
●●
●●●●
●●●●●●●●●

●
●
●

●
●●
●
●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●
●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●

●

●

●

●

●
●
●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●

●
●

●

●

●●

●

●
●
●●
●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●●

●

●
●
●●
●●●

●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●

●

●●

●

●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●

●●

0.0

0.1

0.2

0.00 0.25 0.50 0.75 1.00
Input Space

A
cq

ui
si

tio
n

V
al

ue

methods
●

●

PESMOC
Exact

α1
const(·) − PESMOC approximation vs Exact Acquisition

Figure 4.4: (top left) Posteriors distribution of each black-box function (mean and
standard deviation). (top right to bottom right) Acquisition function for each black-box
estimated by PESMOC and by a more expensive but accurate Monte Carlo method
combined with a non-parametric estimator of the entropy (exact).

decoupled, BMOO and Random) is run on each problem until 100 evaluations of each
black-box are made. We report results for a noiseless and noisy evaluation scenario, in
which we observe the evaluations are contaminated with additive Gaussian noise with
standard deviation equal to 0.1. After each iteration of the optimization process, each
strategy outputs a recommendation in the form of a Pareto set obtained by optimizing
the posterior means of the GPs, as indicated at the beginning of this section. The
performance criterion used is the hyper-volume of the corresponding solution. Recall that
the hyper-volume is the volume of points in functional space above the optimal points
contained in the recommendation. This quantity is maximized by the actual Pareto set
(Zitzler and Thiele, 1999). In the case that the recommendation produced contains an
infeasible point, we simply set the hyper-volume of the recommendation equal to zero.
For each method evaluated we report the logarithm of the relative difference between
the hyper-volume of the actual Pareto set and the hyper-volume of the recommendation.

Figure 4.5 shows the average results obtained for each method and the corresponding
error bars. We observe that the PESMOC approaches outperform both BMOO and the
random search approach in the two settings considered. In particular, PESMOC is able
to find better solutions to the optimization problems considered, which are more accurate
than those obtained by the other methods. These solutions have a hyper-volume that
is closer to the hyper-volume of the actual Pareto set. The random search method is
also outperformed by BMOO in the two settings considered. However, BMOO gives
worse results in the noisy scenario, as it tends to provide results that are closer to this
method. Importantly, the decoupled version of PESMOC is similar or even better than the
corresponding coupled counterpart. When the input dimension d grows the improvements
become evident. These results confirm the benefits of a decoupled evaluation setting. In
particular, the decoupled version of PESMOC is the best overall method, significantly
outperforming all other approach in the 6-dimensional setting.

We also compare here the average time used by each strategy to choose the next
evaluation. For this, we consider the synthetic experiments that involves 2 objectives and
2 constraints, in a 4-dimensional input space, with noisy evaluations, and the experiment

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 107

●

●

●

●

●

●
●●

●
●

●
●●

●
●●

●
●

●

●●

●●●●●
●●●

●
●

●
●

●

●
●●

●●
●

●
●

●
●

●
●

●

●●
●

●●●
●

●
●●●

●
●●

●
●●

●

●
●●

●●●
●●●

●●●
●

●●●●
●●●

●
●

●
●●●●●●

●●●●●●

●

●

●

●●
●

●●●●●
●●

●●
●

●●

●●
●

●
●

●
●

●
●

●●
●●●

●●●
●●

●●
●

●
●

●●●
●●●●●●●●●

●

●●
●●

●

●

●●●●
●

●
●●●

●●●
●●●●●●●●●●●

●
●

●●●●●●
●

●
●●●●●●

●

●

●
●

●
●

●
●

●●
●

●

●
●

●●●
●●

●●●●

●
●

●●●

●
●●●

●●●●
●

●●
●

●
●

●●●
●●

●
●

●●●
●

●●
●

●
●●●

●●●●●●●
●●

●
●●●

●●●●●●●
●

●●●●
●●●●●●●●●●●●●●●

●

●

●

●
●

●●
●●

●
●●

●●
●

●

●●

●

●●
●

●
●●

●●●
●●

●
●

●●●●
●●●

●●●
●●●

●●●●
●●●●●●

●
●●●

●●●●●●●
●

●●●●
●●●

●●●●●
●

●●●●●●●
●●

●●
●

●●●
●

●●
●●

−12.5

−10.5

−8.5

−6.5

−4.5

−2.5

0 100 200 300 400
Number of Function Evaluations

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods
●

●

●

●

PESMOC
RANDOM
PESMOC_decoupled
BMOO

2−objs, 2−cons, 4−D. Noiseless observations

●
●

●

●

●
●

●●●
●●

●
●●●●

●
●

●●●
●●

●

●●
●

●
●●

●
●

●●●
●

●●●

●●

●
●

●●●
●

●●
●

●
●●

●●
●●

●

●

●●
●

●
●●

●

●●●●●●
●

●●
●●

●
●

●●
●

●●●
●

●●●●●

●
●

●
●●

●
●

●●

●
●

●

●

●

●

●●
●●●●●

●
●●

●
●●●

●
●

●●●
●●●●

●●●●
●●●

●
●

●●●●●
●●●●

●
●●●

●
●●●●●

●

●

●●●●
●

●●●●●
●

●
●●

●
●

●●●
●

●●
●●

●
●

●●

●
●●●

●
●●●

●●

●
●

●

●

●

●

●

●
●●

●
●●●●●●

●
●

●

●
●●

●●
●

●●●●

●●●
●

●●

●

●
●

●
●

●
●●

●●
●●●●●●

●●
●●●●●

●

●●●
●

●●
●●●●

●●
●●

●●●
●●●

●●●●
●●●●●●●●●●●

●●
●

●●●●●

●

●

●

●

●●

●●●

●●●●
●●●

●
●●

●●●●●●●
●

●●●●
●

●

●
●●●

●●●●
●●

●●
●●●●

●
●

●
●●

●●●
●●●

●●●
●

●
●●●

●
●●●●

●●
●●

●
●●

●●●●●

●
●●

●
●●

●●
●

●●●
●●●

−9.4

−7.9

−6.4

−4.9

−3.4

−1.9

0 100 200 300 400
Number of Function Evaluations

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods
●

●

●

●

PESMOC
Random
PESMOC_decoupled
BMOO

4−objs, 2−cons, 6−D. Noiseless observations

●

●

●

●

●●
●●●

●●

●●
●●●●

●●
●●●

●●●
●

●
●●

●●
●

●

●

●
●

●●●
●

●●●●
●

●●

●
●

●●●●

●●●●●
●●

●
●●●●●●

●
●●●●●●

●
●

●●●●●
●●●●●●

●●●
●●

●●●●●●●●

●

●

●

●

●
●

●
●●●

●
●●●●

●●

●●

●●
●●●●

●
●

●●
●●●

●●
●●●

●
●

●●

●

●
●●

●

●

●

●●

●
●●●●●

●●
●●●●●

●
●

●●●
●●●

●
●

●

●
●

●

●

●●●
●

●
●●●

●

●●
●●●●●●●●●●

●

●

●

●●

●

●●
●●●

●●●
●

●
●●●

●
●●●

●

●
●●

●

●●●
●●

●
●

●●

●
●●●

●
●●●●

●
●●

●

●
●●●

●●●
●●

●●●●●
●

●●●●●
●●

●●
●●●●●●

●●
●●●

●●

●
●

●●●●●
●●●

●●
●●

●

●

●

●
●

●

●
●●●

●●
●●●

●●
●●●

●●●●●
●

●●●
●●

●●●●

●
●●

●●●
●●●●●●

●●●
●

●●

●
●

●●
●●

●
●●

●

●●●
●●●●●●●●●●●

●●●
●●●

●●
●●

●●●
●●●●●●●

●●
●

−12.3

−10.3

−8.3

−6.3

−4.3

−2.3

0 100 200 300 400
Number of Function Evaluations

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods
●

●

●

●

PESMOC
RANDOM
PESMOC_decoupled
BMOO

2−objs, 2−cons, 4−D. Noisy observations

●●

●

●

●
●

●●
●

●

●

●
●●●●

●
●●

●●●
●

●
●●●

●
●

●
●

●
●

●
●●●

●●●

●

●
●

●●●

●●
●●●●●●

●

●

●●
●●●●

●

●
●

●
●●●●●

●
●

●●●
●

●

●
●

●
●●

●
●●●●●●

●●●●●●●●●

●

●●

●

●●

●
●

●
●

●●

●
●

●

●

●●●●●
●●●●●●●

●●●●●●●
●

●●
●●●

●
●

●

●
●

●
●

●
●

●
●●●

●
●●

●
●●

●
●●

●
●

●●●
●

●●
●●●

●●●●
●

●

●

●●●●

●
●

●●
●●●

●
●

●

●
●●

●
●

●

●

●
●

●

●

●●
●●

●
●

●
●

●●
●●

●●●
●●●

●●●●●
●

●●●●●

●
●●

●
●●

●
●

●
●

●
●

●
●●

●
●●

●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●

●
●

●●●
●●●

●
●●●

●●●●●●●●●
●●

●●
●

●●●●●

●

●

●

●
●

●●

●
●●

●
●●

●●

●●●
●●●●●

●●●●●

●

●
●●●

●●●
●●●●

●
●●●●●●●●●

●●●●●●●●●●●
●●●●●●

●●
●●●●●●

●●●
●

●●●
●

●●●●
●

●
●●●●

●
●●●●

●●

−9.20

−7.78

−6.36

−4.94

−3.52

−2.10

0 100 200 300 400
Number of Function Evaluations

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods
●

●

●

●

PESMOC
Random
PESMOC_decoupled
BMOO

4−objs, 2−cons, 6−D. Noisy observations

Figure 4.5: Logarithm of the relative difference between the hyper-volume of the
recommendation obtained by each method and the hyper-volume of the actual solution.
We report results after each evaluation of the black-box functions. (left column) Two
objectives and two constraints. Input space of four dimensions (d = 4). (right column)
Four objectives and two constraints. Input space of six dimensions (d = 6). (top row)
Noiseless evaluation scenario. (bottom row) Noisy evaluation scenario. Best seen in
color.

that involves 4 objectives, 2 constraints and a 6-dimensional input space, not considering
noise. For each method and each iteration, we measure the average time spent in the
computation and maximization of the acquisition function. In the case of PESMOC
this time includes the time required to run EP until convergence, and the time required
to optimize the acquisition function. In the case of BMOO this time includes the
time required to generate the Monte Carlo samples used in (4.20) to approximate the
acquisition function, and the time required for its optimization. The results obtained are
shown in Table 4.1. We do not include in this table the random search strategy, since
the time it requires to choose the next evaluation is negligible.

Table 4.1: Average time in seconds spent on each iteration by each method. First row
corresponds to the 4-dimensional input space experiment and the second row corresponds
to the 6-dimensional input space experiment.

Experiment PESMOC coupled PESMOC decoupled BMOO
First 41.40± 1.48 49.63± 1.02 67.41± 4.29

Second 112.94± 3.25 264.60± 3.36 307.90± 34.00

Table 4.1 shows that the fastest strategy is PESMOC, followed by the decoupled
version of PESMOC and BMOO. BMOO is significantly slower than PESMOC, due
to the need of running the Metropolis-Hastings algorithm. By constrast, in PESMOC,
EP converges in just a few iterations. Note that the decoupled version of PESMOC is
slightly slower than the coupled counterpart per iteration. The reason is that it requires
the optimization of one acquisition function per each black-box function, to determine
the next evaluation, instead of just one as in the PESMOC case. Note that this only

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 108

represents a small fraction of the total time per iteration of PESMOC in the decoupled
setting (the time of fitting the GPs and running the EP algorithm to approximate the
factors that do not depend on the candidate point x is similar for the coupled and the
decoupled setting). Importantly, however, the decoupled version will need as many more
iterations as black boxes are present in the problem. For example, in the first problem,
which has 4 black-box functions, to perform 400 evaluations of the black-boxes, the
coupled version of PESMOC will require 100 iterations, while the decoupled version will
require 400. The results shown in the table are expected to generalize to other problems
involving a different number of black-boxes or input dimensions.

We also illustrate here the shape of the acquisition function of PESMOC on a toy
2-dimensional optimization problem with input domain X given by the box [−10, 10]×
[−10, 10]:

min
x∈X

f1(x, y) = xy, f2(x, y) = −yx s.t. x ≥ 0, y ≥ 0 .

In this experiment the feasible space F is given by the box [0, 10]× [0, 10]. Figure 4.6
shows the location of the first 20 evaluations made by each method (blue crosses) and
the level curves of the acquisition function of PESMOC and BMOO. We observe that
PESMOC and BMOO quickly identify the feasible space F , and focus on evaluating the
black-box functions in that region. By contrast, the random search strategy explores the
space more uniformly and evaluates the black-boxes more frequently in regions of the
input space that are infeasible. We observe that the acquisition functions of PESMOC
and BMOO take high values inside F and low values outside F .

10 5 0 5 10
10

5

0

5

10
RS: Evaluations

x

y

10 5 0 5 10
10

5

0

5

10

0.
10
0

0.100

0.200

0.200

0.200

0.20
0

0.300

0.
30
0

0
.4
0
0

0
.5
0
0

PESMOC: Evaluations and Acquisition

10 5 0 5 10
10

5

0

5

10

1500.000

1
5
0
0
.0
0
0

3000.000

3
0
0
0
.0
0
0

3000.000

4500.000
4500.000

BMOO: Evaluations and Acquisition

Figure 4.6: Location in input space (denoted with a blue cross) of each of the
evaluations made by PESMOC (left), random search (middle) and BMOO (right). In
the case of PESMOC and BMOO, we also plot the level curves of the acquisition function.
The feasible region is the the box [0, 10]× [0, 10]. Best seen in color.

4.4.3 Benchmark Experiments

In the previous experiments the black-boxes are sampled from a GP prior, which is the
underlying model assumed by the different BO methods compared. This hypothesis need
not be satisfied in practice. Therefore, model misspecification may have an impact in
the performance of BO methods. In this section we carry out extra experiments with the
goal of comparing the different methods under such a scenario. For this, we consider 7
classical benchmark problems used to assess multi-objective optimization methods with
constraints (Chafekar et al., 2003; Deb et al., 2002). A summary of these problems is
displayed in Table 4.2 and 4.3. All problems contain several input variables, multiple
objectives and several constraints. Importantly, in these experiments we transform each
constraint cj(x) so that the corresponding optimization problem can be expressed as

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 109

in (4.1). Furthermore, we also consider a noiseless and a noisy setting, in which the
evaluations of the black-boxes are contaminated with additive Gaussian noise. The
variance of the noise is set to 1% of the range of potential values of the corresponding
black-box. This range of values is found by evaluating each black-box function on a grid.
These experiments are repeated 100 times for each method and each dataset and we
report average results. The metric used to assess the performance of each method is the
same as the one employed in the previous section.

Table 4.2: Summary of BNH, SRN, TNK and OSY problems used in the benchmark
experiments.

Benchmark Experiments
Problem Name Input Space Objectives fk(x) and Constraints cj(x)

BNH
x1 ∈ [0, 5]
x2 ∈ [0, 3]

f1(x) = 4x21 + 4x22
f2(x) = (x1 − 5)2 + (x2 − 5)2

c1(x) ≡ (x1 − 5)2 + x22 ≤ 25
c2(x) ≡ (x1 − 8)2 + (x2 + 3)2 ≥ 7.7

SRN
x1 ∈ [−20, 20]
x2 ∈ [−20, 20]

f1(x) = 2 + (x1 − 2)2 + (x2 − 2)2

f2(x) = 9x1 − (x2 − 1)2

c1(x) ≡ x21 + x22 ≤ 225
c2(x) ≡ x1 − 3x2 + 10 ≤ 0

TNK
x1 ∈ [0, π]
x2 ∈ [0, π]

f1(x) = x1
f2(x) = x2

c1(x) ≡ x21 + x22 − 1− 0.1cos(16arctanx1

x2
) ≥ 0

c2(x) ≡ (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5

OSY

x1 ∈ [0, 10]
x2 ∈ [0, 10]
x3 ∈ [1, 5]
x4 ∈ [0, 6]
x5 ∈ [1, 5]
x6 ∈ [0, 10]

f1(x) = −[25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2

+(x4 − 4)2 + (x5 − 1)2

f2(x) = x21 + x22 + x23 + x24 + x25 + x26
c1(x) ≡ x1 + x2 − 2 ≥ 0
c2(x) ≡ 6− x1 − x2 ≥ 0
c3(x) ≡ 2− x2 + x1 ≥ 0
c4(x) ≡ 2− x1 + 3x2 ≥ 0

c5(x) ≡ 4− (x3 − 3)2 − x4 ≥ 0
c6(x) ≡ (x5 − 3)2 + x6 − 4 ≥ 0

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 110

Table 4.3: Summary of CONSTR, Two-bar Truss and Welded Beam problems used in
the benchmark experiments.

Benchmark Experiments
Problem Name Input Space Objectives fk(x) and Constraints cj(x)

CONSTR
x1 ∈ [0.1, 10]
x2 ∈ [0, 5]

f1(x) = x1
f2(x) = (1+x2)

x1

c1(x) ≡ x2 + 9x1 ≥ 6
c2(x) ≡ −x2 + 9x1 ≥ 1

Two-bar
Truss
Design

x1 ∈ [0, 0.01]
x2 ∈ [0, 0.01]
x3 ∈ [1, 3]

f1(x) = x1
√

16 + x23 + x2
√

1 + x23

f2(x) = max(20
√
16+x3

x1x3
,
80
√

1+x2
3

x2x3
)

c1(x) ≡ max(20
√
16+x3

x1x3
,
80
√

1+x2
3

x2x3
) ≤ 105

Welded
Beam
Design

h ∈ [0.125, 5]
b ∈ [0.125, 5]
l ∈ [0.1, 10]
t ∈ [0.1, 10]

f1(x) = 1.10471h2l + 0.04811tb(14 + l)
f2(x) = 2.1952

t3b
c1(x) ≡ 13600− τ(x) ≥ 0
c2(x) ≡ 30000− 504000

t2b ≥ 0
c3(x) ≡ b− h ≥ 0

c4(x) ≡ 64746.022(1− 0.0282346t)tb3 − 6000 ≥ 0

τ(x) =

√
γ(x)2 + ε(x)2 + lγ(x)ε(x)√

0.25(l2+(h+t)2)

γ(x) = 6000√
2hl

ε(x) =
6000(14+0.5l)

√
0.25(l2+(h+t)2)

2
√
2hl(l2

12+0.25(h+t)2
)

Figure 4.7 and 4.8 show the average results of each method on these experiments with
the corresponding error bars. In these experiments, when a particular method outputs
an infeasible solution, (i.e., a solution that does not fulfil at least one of the constraints),
that result is ignored. To guarantee a fair comparison, we have also recorded the fraction
of times that an infeasible solution is returned by each method. If the performance of
two methods is similar, it will be preferred the method that gives a lower percentage of
infeasible solutions. In practice, we have observed that all the BO methods compared
tend to provide a similar fraction of infeasible points. An exception is the random search
strategy that systematically tends to recommend infeasible solutions. The complete
results are found in the supplementary material.

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 111

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●●●●●●●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

●●

●●●●

●

●

●

●

●

●

●●−13.70

−11.52

−9.34

−7.16

−4.98

−2.80

0 25 50 75 100
Number of Function EvaluationsLo

g
di

ffe
re

nc
e

op
tim

um
 H

yp
er

vo
lu

m
e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

BNH. Noiseless Observations.
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●●●●

●
●●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●
●

●●●●●●●●
●

●
●

●
●●●●●

●●●
●

●●●●●●
●

●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●●●
●

●
●●●

●
●●

●
●●●●●●●●●

●
●●

●●●●●
●●●●

●●●●
●●

●
●●●

●

●

●

●

●

●

●

●

●

●●
●●

●●
●

●●−13.60

−11.44

−9.28

−7.12

−4.96

−2.80

0 25 50 75 100
Number of Function EvaluationsLo

g
di

ffe
re

nc
e

op
tim

um
 H

yp
er

vo
lu

m
e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

BNH. Noisy Observations.

●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●●●●●●●●
●

●●

●●●●●●●
●

●●●
●

●
●

●
●

●
●●

●
●●

●
●●●●●

●
●●●

●●
●

●
●●●

●●
●●

●
●

●●

●●●
●

●
●●●●●●●●

●●●
●●●●●●●●●

●●
●●

●●●
●●●

●
●●●●●

●●●●●●●●●●●●

●●●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●
●●●●●●●●●●●●●●●●●●●●

●●

●●●●●
●

●
●

●

●

●

●

●

●

●

●
●●●●

●●●
●●●

●●
●●−13.00

−10.74

−8.48

−6.22

−3.96

−1.70

0 25 50 75 100
Number of Function EvaluationsLo

g
di

ffe
re

nc
e

op
tim

um
 H

yp
er

vo
lu

m
e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

SRN. Noiseless Observations.
●●●●●●●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●●
●

●●●●●●●
●

●●●
●●●●

●●●●●●●●
●●

●
●

●
●●●●●●●

●
●●●●●●●●●●●

●●●●●●●●●●●●
●

●●●●●●●●●●●

●●●●●●●●●
●

●●
●

●
●

●
●

●●●●●●●
●●●

●●
●●●

●●
●●●●

●●●●
●●●

●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●

●●
●●

●●●●●●
●●●●●●●●●●●●●●

●●

●
●●●●●●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●●●●●●

●●
●●

●●●
●●

●●●●●
●●●

●●●●●
●

●●●
●

●
●●●●●●●●●●●●●

●●●●●
●●●

●
●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●●
●

●
●●

●
●●

●●●
●●●●●

●●
●●●●●●●●●

●
●●●●●●●●●●●●

●●
●

●
●●●●●●●●●●●●●

●
●●●●●●●

●●
●●●

●●●●●−10.90

−9.04

−7.18

−5.32

−3.46

−1.60

0 25 50 75 100
Number of Function EvaluationsLo

g
di

ffe
re

nc
e

op
tim

um
 H

yp
er

vo
lu

m
e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

SRN. Noisy Observations.

●
●●●●●●

●

●
●

●

●

●
●

●●

●
●

●

●
●

●
●

●
●●

●

●

●●●
●

●●
●

●●
●

●●●●●
●●●●●

●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●
●●●●●

●●●
●●●●

●●
●●●

●●●
●

●●
●●

●
●

●
●●

●
●●

●●●●●●
●

●

●●
●●

●
●●●

●●●
●●●●

●
●●

●
●

●

●●

●●

●●●

●
●

●●●●●
●●●

●

●

●●●

●
●

●●

●●

●
●●●●●

●

●

●

●

●●

●

●●

●
●●

●
●

●●
●

●●
●●●

●
●●

●●
●●●●●●●●●●●●

●●●

●
●●●

●
●

●

●

●

●

●
●

●

●●

●●
●

●●
●

●●●
●●●●●

●●●−13.00

−11.72

−10.44

−9.16

−7.88

−6.60

0 25 50 75 100
Number of Function EvaluationsLo

g
di

ffe
re

nc
e

op
tim

um
 H

yp
er

vo
lu

m
e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

TNK. Noiseless Observations.

●
●

●
●●●●●●●

●

●

●

●

●
●●

●
●●●

●
●

●
●

●●●
●

●

●●

●●●
●

●●●
●

●

●

●
●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●●
●

●
●●

●

●
●

●

●

●

●
●●

●●●●

●●●●

●

●
●

●

●

●
●

●
●●

●●●●●●●●
●

●●●
●

●●●●●
●●

●●●●●●
●●●

●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●
●●●

●●●
●

●●
●●

●●●
●

●●●
●●

●

●●
●

●●●●●
●

●●●●

●
●

●●●●●●●
●

●

●

●

●
●

●●

●●
●●●●●

●
●

●

●●●
●

●●
●

●

●
●

●●●●
●

●
●

●
●●

●●●
●

●

●

●●
●●●●

●
●

●●
●●●●

●●
●

●

●●●

●

●

●●●●●

●●
●

●●
●

●
●●●●●●

●●●●●●

●●
●●●●●●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●
●●●

●
●●

●●●●
●●●●●●●●●●●

●
●●●●●

●●
●●●●●●

●●●●
●

●
●

●
●●●●●●●

●●●
●●

●
●●●●●−12.20

−11.06

−9.92

−8.78

−7.64

−6.50

0 25 50 75 100
Number of Function EvaluationsLo

g
di

ffe
re

nc
e

op
tim

um
 H

yp
er

vo
lu

m
e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

TNK. Noisy Observations.

●
●●

●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●●●
●

●
●

●●

●●●●
●●●

●●
●●

●
●●●

●●●
●●●●

●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●●
●●●●●●●●●●●

●●
●

●
●●●

●●
●●

●●●●●●
●●●

●●●●●
●●

●●●
●●●

●●●●●
●●●

●●●●
●●●●

●●●
●●●

●●●
●●●

●●●●●●
●●●●●

●●●●
●●●●

●●

●

●
●●

●●●●●●
●

●
●

●
●

●

●
●

●
●

●
●

●●
●

●
●●●●

●●●
●

●●
●●

●●
●

●
●●●

●
●●●●

●
●●●●●

●
●

●
●

●●●●●●●●●
●

●●
●●

●●●●
●

●●

●
●

●
●●●●●●

●
●

●
●●●

●
●●●

●

●
●●●●●●●●●

●
●

●
●

●

●
●

●
●

●
●

●●
●●●

●
●

●

●●
●●

●
●

●
●●

●
●

●
●●

●●●
●●

●
●

●●●

●●●●●●●●●●●●●●●
●

●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●

−12.30

−11.14

−9.98

−8.82

−7.66

−6.50

0 25 50 75 100
Number of Function EvaluationsLo

g
di

ffe
re

nc
e

op
tim

um
 H

yp
er

vo
lu

m
e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

OSY. Noiseless Observations.

●

●
●

●
●●●

●●●●●●●●●
●

●
●

●
●

●

●
●

●
●●

●●
●

●
●

●
●●

●●
●

●●

●●
●

●●
●●

●
●●●

●
●

●
●

●●●●●
●

●●●●●
●●●●●●●

●●●●●
●

●
●●●●●●●

●●
●●●●●

●
●●●

●
●

●

●
●●●

●●●●●
●

●●●●●●●●●
●

●●
●

●
●

●●
●●●●

●
●●●

●●●
●●●●

●●●
●●●●

●●
●●

●●●
●●●

●●
●

●●●
●●●

●●●
●

●●●
●

●●●●
●●●

●●●●●●●●●
●●●●

●●●

●
●

●
●●

●●●●●
●●●

●
●

●
●

●
●

●
●

●
●●

●●
●

●●●●●●●
●●●●●●●●●●●●●●●

●●●●
●●●●●●●

●●●●●
●●

●
●●●●●●

●●●●●●
●●

●●
●●●

●
●●

●
●

●
●

●●
●

●●●

●

●

●●●●●●●●●●●
●

●
●

●

●
●

●
●

●
●

●●

●
●

●
●●

●
●●●

●●
●●

●●
●

●●●
●●●

●●●
●●

●

●

●
●

●
●

●●●●
●

●●●
●●●●

●●●●
●●●●●

●●●●●●
●

●●
●●

●
●●

●●
●

●●
●●−11.50

−10.46

−9.42

−8.38

−7.34

−6.30

0 25 50 75 100
Number of Function EvaluationsLo

g
di

ffe
re

nc
e

op
tim

um
 H

yp
er

vo
lu

m
e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

OSY. Noisy Observations.

Figure 4.7: Results for the problems BNH, SRN, TNK and OSY. Noiseless and noisy
settings. The plots show the average log difference w.r.t to the optimal hyper-volume.

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 112

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●●

●●
●●●

●
●●●

●
●●

●●●
●●●●

●●
●●●●

●
●

●
●●

●●●
●●●●●

●●
●●●●●

●●
●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●●
●

●

●

●

●

●

●●●−13.7

−12.1

−10.5

−8.9

−7.3

−5.7

0 25 50 75 100
Number of Function EvaluationsLo

g
di

ffe
re

nc
e

op
tim

um
 H

yp
er

vo
lu

m
e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

CONSTR. Noiseless Observations.

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●●●●●●●●●●
●

●
●●

●●
●

●
●●●●●

●●●
●●●●●●●●●●

●●●

●●●
●

●

●

●

●
●

●
●

●
●

●

●
●●●

●●
●●

●●●●●●
●

●●
●●●

●●●
●●

●●●
●

●
●●

●●●
●●

●
●

●
●●

●●●
●●

●●●●●●●●●
●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●
●●●

●

●

●

●

●

●

●

●

●

●●
●●

●
●●●

●●●●
●●●●

●
●●●●●●●●●

●●●●●●●●●●●●
●●●

●●
●●−13.10

−11.62

−10.14

−8.66

−7.18

−5.70

0 25 50 75 100
Number of Function EvaluationsLo

g
di

ffe
re

nc
e

op
tim

um
 H

yp
er

vo
lu

m
e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

CONSTR. Noisy Observations.

●

●
●

●
●

●●●●
●

●
●

●●●
●●

●●●
●●

●
●●●

●●
●

●●●●
●

●
●

●

●
●●

●●●
●●

●
●●●●●●

●
●

●
●

●●
●●

●
●

●●●
●●

●●●●●●
●

●●
●

●●●●
●●

●●●●●●●
●●●●●●●●●●

●

●
●

●●●
●●●

●●●
●

●●
●●●●

●●●●●●●●●●●
●●●●

●●●
●●●●●●●●●●●●●●●

●
●

●●

●
●

●
●

●
●

●
●●

●●
●

●
●

●
●

●
●

●
●●●●

●●
●●

●
●●●●

●●
●●

●
●●

●●
●●

●
●

●●

●●●
●●

●
●●●●

●●●●●●●●
●

●●
●●

●
●●

●
●

●●
●

●●
●

●
●●●●●●●

●
●●●●●

●
●

●
●●

●●
●

●●
●●

●●
●

●

●●●●
●

●
●

●
●●

●
●

●●
●

●

●

●

●●

●
●

●
●

●

●
●

●
●

●●●●

●●●●
●

●●
●

●
●

●●●●●●●
●●

●
●

●
●

●
●

●
●●●

●●●●
●

●
●●●

●●●
●●●●

●
●

●
●

●
●

●●●
●

●−12.80

−11.44

−10.08

−8.72

−7.36

−6.00

0 25 50 75 100
Number of Function EvaluationsLo

g
di

ffe
re

nc
e

op
tim

um
 H

yp
er

vo
lu

m
e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

TwoBarTruss. Noiseless Observations.
●

●
●

●●●
●●●●●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●●
●

●●●
●●●●●

●
●

●●●
●●●●

●●●●●●
●

●●●●●●
●●

●●
●●

●●●
●●●

●
●

●●●●●●●●●●●
●

●●●●

●

●
●●●

●
●●

●
●

●●
●●

●●●
●●●●●●●

●●
●

●●
●●●●●●●●●●●●●●●●●●

●
●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●

●
●

●●●●●●●●●
●

●
●●●

●●●
●●

●
●

●
●●

●●
●

●
●●

●

●
●

●●●
●●

●

●
●

●
●●●●

●●
●●

●●●●●●●●
●●●●●●

●
●●●●●●●

●
●

●
●●●●●●●●

●
●●●●●●●●●●●

●●●

●
●

●●
●●●●●

●●●
●

●●
●●●●

●
●

●●
●

●
●

●
●

●

●

●

●
●

●
●●

●
●●●●

●
●

●
●

●
●●

●●

●
●●

●●

●●●
●

●
●●●

●●
●●

●

●
●●●

●
●

●
●

●●●●●●●
●●●●

●●
●●●

●
●●●●●●●−12.5

−11.2

−9.9

−8.6

−7.3

−6.0

0 25 50 75 100
Number of Function EvaluationsLo

g
di

ffe
re

nc
e

op
tim

um
 H

yp
er

vo
lu

m
e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

TwoBarTruss. Noisy Observations.

●
●

●

●

●

●

●
●

●●

●
●●

●

●●●

●

●
●

●
●

●●
●

●●●
●

●●●●
●

●
●●●

●●

●
●●●

●
●

●●
●

●●
●●

●

●

●
●

●
●

●

●●

●

●●

●

●●●
●●●●

●●●●

●
●

●●●
●

●
●

●●

●●
●

●
●●

●

●
●●●

●●

●
●

●
●

●●

●
●●●●

●●

●

●
●

●

●

●
●

●●
●●●●

●
●●

●

●

●
●

●

●
●

●
●

●

●

●
●●

●
●

●

●
●

●●

●●●●

●●
●

●
●

●
●

●

●●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●●●●

●●●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●
●

●
●

●●
●●●

●

●

●
●

●

●
●●●

●●●
●●

●●
●

●
●●●●

●
●

●

●
●

●●
●●●

●●●
●

●
●

●

●
●●●●●

●●
●

●●
●●●●●

●
●

●●●●●●
●●●

●●●●
●●

●
●

●●●●
●●●

●

●

●
●

●
●

●

●●

●
●

●
●●

●
●

●●●

●
●

●
●

●●●●

●
●

●●●

●●
●

●●●●●●
●

●

●
●

●

●●●●●●●

●●
●

●
●

●●
●●●

●
●●●●●

●●●
●

●

●

●●●●●●

●

●

●
●

●●●
●●

●
●

●
●

●
●

●

●●
●●

−9.80

−9.28

−8.76

−8.24

−7.72

−7.20

0 25 50 75 100
Number of Function EvaluationsLo

g
di

ffe
re

nc
e

op
tim

um
 H

yp
er

vo
lu

m
e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

WeldedBeam. Noiseless Observations.

●

●●●

●
●●●

●

●

●●

●
●

●●●
●●

●

●●

●
●●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●●●
●

●

●
●

●
●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●●
●

●

●
●

●
●

●●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

●
●

●

●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●●
●

●

●●

●

●

●

●
●

●●

●

●

●

●●●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●●
●

●●
●

●●●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●
●

●
●●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●●●

●
●

−8.80

−8.46

−8.12

−7.78

−7.44

−7.10

0 25 50 75 100
Number of Function EvaluationsLo

g
di

ffe
re

nc
e

op
tim

um
 H

yp
er

vo
lu

m
e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

WeldedBeam. Noisy Observations.

Figure 4.8: Results for CONSTR, TwoBarTruss and WeldedBeam. Noiseless and noisy
settings. The plots show the average log difference w.r.t to the optimal hyper-volume.

We observe that, on average, PESMOC in the coupled and decoupled setting, outper-
forms the other methods for multi-objective constrained optimization. BNH is solved
pretty fast by all methods, but PESMOC, under a decoupled evaluation setting, obtains
better results with a smaller number of evaluations. These differences are also notable in
the noisy setting. In this case, PESMOC clearly outperforms BMOO and the random
search strategy. In the SRN, TNK and OSY problems, results are more or less the same
but with bigger differences among the methods. BMOO tends to systematically perform
worse in the presence of noise. Importantly, PESMOC decoupled performs significantly
better on TNK. This is because this strategy is able to focus on the evaluation of the most
difficult black-box functions. More precisely, in this problem one of the constraints plays
a critical role in the identification of the Pareto optimal set and PESMOC decoupled is
able to focus on its evaluation. This is a clear example of the benefits of a decoupled
evaluation setting. The OSY problem has a higher dimensionality and hence, due to the
greedy nature of BMOO that tends to explore too much, PESMOC approaches clearly
do better.

The problem CONSTR is very easy to solve so BMOO does a good job on it,
leaving PESMOC behind but resulting in the same performance as PESMOC decoupled.
TwoBarTruss has the same nature as TNK, with the optimum lying in the frontier
of the feasible and infeasible space. Again, PESMOC decoupled explores massively
the constraints, solving the problem and giving better results that the other methods

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 113

with a smaller number of evaluations. In the noise scenario, however, both PESMOC
approaches tie. The last problem reported is WeldedBeam, where both PESMOC
approaches outperform the other methods. In the noisy scenario PESMOC under a
coupled evaluation setting wins. We believe that model misspecification and the influence
of noise may affect negatively the decoupled approach in certain scenarios.

4.4.4 Finding an Optimal Ensemble of Decision Trees

We compare the different methods on a practical problem in which the optimal hyper-
parameters of an ensemble of decision trees are optimized. We consider two objectives:
the prediction error of the ensemble and its size. These two objectives are conflictive since
smaller ensembles will have in general higher error rates and the other way around. The
ensemble size is related to the storage requirements and also to the speed of classification,
which can play a critical role in real-time prediction systems. The dataset considered is
the German Credit dataset, which is extracted from the UCI repository (Dheeru and
Karra Taniskidou, 2017). This is a binary classification dataset with 1, 000 instances
and 20 attributes. The prediction error is measured using a 10-fold-cross validation
procedure that is repeated 5 times to reduce the variance of the estimates. We measure
the ensemble size in terms of the logarithm of the sum of the total number of nodes in
each of trees of the ensemble.

To get ensembles of decision trees with good prediction properties it is essential to
enforce diversity among the ensemble classifiers (Dietterich, 2000). In particular, if all
the decision trees of the ensemble are equal, there is no expected gain from aggregating
their predictions. However, too much diversity in the ensemble can also lead to a poor
prediction performance. For example, if the predictions made are completely random,
one cannot obtain improved results by aggregating the individual classifiers. Therefore,
we consider here several mechanisms to encourage diversity in the ensemble, and let the
amount of diversity be specified in terms of adjustable parameters.

To build the ensemble we employ decision trees in which the best split at each node
corresponds to the attribute that decreases the most the data impurity among a randomly
chosen set of attributes (we use the DecisionTree implementation provided in the python
package scikit-learn), and the number of random attributes is an adjustable parameter.
This is the approach followed in random forest (Breiman, 2001). Each tree is trained on
a random subset of the training data of a particular size, which is another adjustable
parameter. This approach is known in the literature as subbagging (Bühlmann and Yu,
2002). We consider also an extra method to introduce diversity known as class-switching
(Mart́ınez-Muñoz and Suárez, 2005). In class-switching, the labels of a random fraction
of the training data are changed to a different class. The final ensemble prediction is
computed by majority voting.

More precisely, the adjustable parameters of the ensemble are: the number of decision
trees built (between 1 and 1, 000), the number of random chosen attributes considered at
each split in the building process of each tree (between 1 and 20), the minimum number
of samples required to split a node (between 2 and 200), the fraction of randomly selected
training data used to build each tree (between 0.5 and 1.0), and the fraction of training
instances whose labels are changed after the sub-sampling process (between 0.0 and 0.7).

A problem of classification ensembles is that computing predictions can take much
longer than using a single classifier. The reason for this is that one has to query all
the ensemble classifiers about the class label of each test instance. A potential way of

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 114

accelerating predictions is to use a dynamic ensemble pruning technique (Hernández-
Lobato et al., 2009). Assume that for a test instance we have queried only a fraction of
the ensemble classifiers. It is possible to estimate the probability that the majority vote
decision of the ensemble is not changed by the votes of the remaining classifiers. If this
probability exceeds a particular threshold (e.g., 99%), the querying process can be early
stopped and the current majority class can be returned as the final ensemble prediction.
Therefore, we introduce as a constraint of the optimization problem, that the average
speed up factor of the classification process given by the previous dynamic ensemble
pruning technique is at least 25%. We have carefully chosen this value to guarantee that
the constraint is active at the optimal solution. In practice, the methods compared rarely
provide infeasible solutions. If this is the case, we simply ignore those recommendations.

Note that the setting described is suited for the decoupled version of PESMOC since
both objectives and the constraint can be evaluated separately. In particular, the total
number of nodes is estimated by building only once the ensemble without leaving any
data aside for validation, as opposed to the cross-validation approach used to estimate the
ensemble error, which requires to build several ensembles on subsets of the data, to then
estimate the prediction error on the data left out for validation. Similarly, evaluating
the constraint involves building a lookup table whose entries indicate, for each different
number of classifiers queried so far, how many votes of the most common class are needed
to early stop the prediction process. This table is expensive to build and is different for
each ensemble size. See (Hernández-Lobato et al., 2009) for further details.

We report in Figure 4.9 the results obtained for each method after 100 and 200
evaluations of the corresponding black-box functions. This figure shows the average Pareto
front obtained by each method across the 100 different repetitions of the experiments.
The Pareto front is simply given by the objective values associated to the recommendation
made by each method. In general, and assuming minimization, the higher the volume
of points that is above this set of points in the objective values space the better the
performance of a method, as estimated by the hyper-volume metric. We observe that
PESMOC outperforms BMOO and the random search strategy. Furthermore, PESMOC
decoupled obtains better results that PESMOC. More precisely, PESMOC and PESMOC
decoupled find better solutions in the sense that the ensembles obtained have a lower size
and a smaller prediction error. Last, we note that BMOO is able to find the ensembles
of the smallest size, but with higher levels of error, in a smaller number of evaluations.

We also show in Table 4.4 the average hyper volume of the solutions provided by
each method. In general, a higher hyper-volume implies that the method gives better
results. The values obtained agree with the previous figure. Namely, PESMOC decoupled
outperforms the other methods, followed closely by PESMOC in a coupled setting,
BMOO and the random search strategy. After 200 evaluations the differences in the
hyper-volume between PESMOC decoupled and the other methods become bigger. This
is probably a consequence of PESMOC decoupled performing more evaluations of the
most complicated black-box function.

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 115

1e+03

1e+04

1e+05

0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31
Prediction Error

N
um

be
r

of
 S

pl
itt

in
g

N
od

es
Methods

PESMOC
BMOO
RANDOM
PESMOC_dec

Average Pareto Front After 100 Evaluations

1e+03

1e+04

1e+05

0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31
Prediction Error

N
um

be
r

of
 S

pl
itt

in
g

N
od

es

Methods

PESMOC
BMOO
RANDOM
PESMOC_dec

Average Pareto Front After 200 Evaluations

Figure 4.9: Results of each method on the problem of finding an optimal ensemble
of classification trees. The Pareto frontier is shown for each method. The volume of
points above the frontier (hyper-volume) represents the quality of the solution. A wider
volume is always better.

Table 4.4: Average hyper-volume of each method on the task of finding an optimal
classification ensemble. Larger hyper-volumes means better quality. PESMOC c. means
PESMOC coupled and PESMOC d. means PESMOC decoupled.

Eval. PESMOC c. PESMOC d. BMOO Random
100 0.309± 0.001 0.311± 0.002 0.293± 0.001 0.265± 0.002
200 0.325± 0.001 0.338± 0.001 0.309± 0.001 0.279± 0.001

In the problem described, we expect the prediction error to be the black-box function
with the most important role in solving the optimization problem. Probably, it is more
difficult to model than the the ensemble size or the speed-up factor due to the dynamic
pruning technique. To check this hypothesis we record for PESMOC decoupled the
number of times that each black-box function is evaluated. The average results obtained
are shown in Figure 4.10. This figure shows, for each iteration of the optimization process,
the average number of evaluations of each black-box function performed by PESMOC
decoupled. We can see that the previous hypothesis is validated by the plot. Namely,

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 116

the prediction error is evaluated more frequently than the other black-box functions.
This also explains the better results obtained by PESMOC decoupled. In particular, this
technique is able to focus on the evaluation of the most important black-box function.
Of course, the prediction error takes more time to evaluate than the other black-box
functions, so PESMOC decoupled also takes a bit more time than the other techniques.
In any case, this result illustrates the potential benefits of a decoupled evaluation strategy,
which chooses not only at which point to perform the evaluation, but also which black-box
function should be evaluated each time.

●●●●●●●●●●●●
●●●●●●●

●●●

●●

●●

0

50

100

150

0 100 200 300
Iteration of the Optimization Process

N
um

be
r

of
 E

va
lu

at
io

ns

Methods
●

●

●

Obj. − Prediction Error
Obj. − Log Node Count
Con. − Avg. Speed Up

Avg. Evaluations Performed by PESMOC_decoupled

Figure 4.10: Evaluations of each black-box function made by PESMOC decoupled
in the problem of finding an optimal ensemble of decision tree classifiers. The error
objective is black-box function chosen most frequently for evaluation.

4.4.5 Finding an Optimal Deep Neural Network

In this section we evaluate the performance of the different methods on the task of finding
an optimal deep neural network on the MNIST dataset (LeCun et al., 2010). This dataset
contains a training set of 60,000 instances. The objectives that we consider for this
problem include minimizing the prediction error of the neural network on a validation
dataset of 10,000 instances (extracted from the original training set) and minimizing the
time that such a neural network will take for making predictions on such a set. Note that
these are conflictive objectives in the sense that most probably minimizing the prediction
error on the validation set will require bigger neural networks with a larger number of
hidden units and layers. Of course, these neural networks will require longer prediction
times. Conversely, the minimization of the prediction time will probably involve using
neural networks of smaller size whose prediction performance will be worse.

Besides this, we also consider that we may be interested in codifying such a neural
network into a chip. This can be interesting for example if we would like to use that
neural network in an electronic device such as an smart-phone. Motivated by this scenario
we propose to constrain the optimization problem in such a way that the area of the
resulting deep neural network, after being codified into a chip, is below one squared
millimeter. We have carefully chosen this value to guarantee that the constraint is active
at the optimal solution. To measure this area we use the hardware simulator Aladdin

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 117

(Shao et al., 2014), which given a computer program describing the operations carried
out by the deep neural network, outputs an estimate of the area of a chip implementing
those operations.

In practice, the methods compared rarely provide infeasible solutions. If this is the
case, we simply ignore those recommendations. To train the deep neural network we use
the Keras library (Chollet, 2015). Prediction time is measured on the validation set of
10, 000 training instances. The prediction time is normalized by the smallest possible
prediction time, which corresponds to a neural network of a single layer with 5 hidden
units.

Importantly, the different black-box functions involved in the optimization problem
just described can be evaluated separately in a decoupled way. The reason for this is that
the prediction time and the chip area does not need specific values for the neural network
weights and biases. These can simply be initialized randomly. These two black-box
functions only depend on the particular architecture of the neural network (the number of
layers and the number of hidden units on each layer). Therefore, the problem described is
adequate for PESMOC decoupled. The specific steps involved in measuring the different
black-boxes are displayed in Figure 4.11.

Figure 4.11: Diagram showing the architecture of systems that we have used for the
deep neural network experiments. The different steps involved in the evaluation of each
black-box function are displayed here.

The input parameters that we consider for optimization in this problem are: The
logarithm of the `1 and `2 weight regularizers; the dropout probability; the logarithm of
the initial learning rate; the number of hidden units per layer; and the number of hidden
layers. We have also considered two variables that have an impact in the hardware
implementation of the neural network. Namely, the logarithm (in base 2) of the array
partition factor and the loop unrolling factor. See (Shao et al., 2014) for further details.

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 118

A summary of the parameters considered, their potential values, and their impact in
each black-box function (prediction error, time and chip area) is displayed in Table 4.5.

Table 4.5: Parameter space of the deep neural network experiments. PE = Prediction
error. T = Time. CA = Chip area.

Parameter Min Max Step Black-box

Hidden Layers 1 3 1 PE/T/CA
Neurons per Layer 5 300 1 PE/T/CA
Learning rate e−20 1 ε PE
Dropout rate 0 0.9 ε PE
`1 penalty e−20 1 ε PE
`2 penalty e−20 1 ε PE

Memory partition 1 32 2x CA
Loop unrolling 1 32 2x CA

In these experiments we evaluated the performance of each method after 50 and 100
evaluations of the black-boxes. Furthermore, the training of the deep neural networks
is carried out using ADAM with the default parameter values (Kingma and Ba, 2014).
The loss function is the categorical cross-entropy. The last layer of the neural network
contains 10 units and a soft-max activation function. All other layers use Re-Lu as the
activation function. Finally, each neural network is trained during a total of 150 epochs
using mini-batches of size 4, 000 instances.

The average results obtained across 100 repetitions of the experiments can be shown in
Figure 4.12 after 50 and 100 evaluations of the black-boxes. This figure shows the average
Pareto frontier obtained by each method. As in the previous experiments PESMOC
decoupled outperforms the others methods. PESMOC is the second best method, giving
solutions with a best trade-off between prediction error and time ratio (prediction time
normalized with respect to the smallest possible prediction time), under the constraint
that the chip area is below the specified value. BMOO also gives better results than
the random search strategy which is the worst performing method. These experiments
show strong empirical evidence supporting that PESMOC is a competitive strategy for
constrained multi-objective optimization. We also provide the average hyper-volume of
the solutions found by each method after 50 and 100 evaluations of the black-boxes. These
results are displayed in Table 4.6. We observe that PESMOC decoupled outperforms the
rest of the methods. This strategy finds solutions that, on average, have a significantly
higher hyper-volume than any of the other methods. Furthermore, PESMOC is able to
find solutions that are slightly better than those obtained by BMOO.

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 119

Table 4.6: Average hyper-volume of each method on the task of finding an optimal
neural network on the MNIST dataset. Larger hyper-volumes means better quality.
PESMOC c. means PESMOC coupled and PESMOC d. means PESMOC decoupled.

Eval. PESMOC c. PESMOC d. BMOO Random

50 47.230± 0.079 47.608± 0.056 46.104± 0.267 44.886± 0.135

100 47.621± 0.054 48.069± 0.039 47.304± 0.083 45.714± 0.093

1

2

5

7

0.02 0.03 0.05 0.10 0.20
Prediction Error

T
im

e
R

at
io

Methods

PESMOC
BMOO
RANDOM
PESMOC_DEC

Average Pareto Front After 50 Evaluations

1

2

5

7

0.02 0.03 0.05 0.10 0.20
Prediction Error

T
im

e
R

at
io

Methods

PESMOC
BMOO
RANDOM
PESMOC_DEC

Average Pareto Front After 100 Evaluations

Figure 4.12: Results of each method on the problem of finding an optimal neural
network on the MNIST dataset. The Pareto frontier is shown for each method. The
volume of points above the frontier (hyper-volume) represents the quality of the solution.
A wider volume is always better.

We also analyze in these experiments which black-box function is evaluated more
frequently by PESMOC decoupled. For this, we record the number of evaluations of
each black-box made by this strategy as a function of the total evaluations made. The
average results obtained across the 100 repetitions of the experiments are shown in
Figure 4.13. We observe that PESMOC decoupled tends to evaluate a significantly higher
number of times the prediction error of the neural network. This also explains the better
results obtained by this strategy which is able to focus on the evaluation of the black-box

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 120

function that is most difficult to model or that plays a critical role in the optimization
problem. Of course, the prediction error takes more time to evaluate than the other
black-box functions, so PESMOC decoupled also takes a bit more time than the other
techniques in this problem. In any case, this result illustrates again the potential benefits
of a decoupled evaluation strategy, which can be used to choose in an intelligent way
which black-box function should be evaluated next at each iteration of the optimization
process.

●●

●●

●●

0

50

100

150

200

0 100 200 300
Iteration of the Optimization Process

N
um

be
r

of
 E

va
lu

at
io

ns

Methods
●

●

●

Obj. − Prediction Error
Obj. − Prediction Time
Con. − Chip Area

Avg. Evaluations Performed by PESMOC_decoupled

Figure 4.13: Evaluations of each black-box function made by PESMOC decoupled in
the problem of finding an optimal neural network on the MNIST dataset. The error is
black-box function that is chosen most frequently for evaluation by PESMOC decoupled.

4.5 Conclusions

We have described an information-based approach that can be used to address a wide
range of Bayesian optimization problems, including multiple objectives and several
constraints. Motivated by the lack of methods that are available to solve these problems
with an adequate exploration-exploitation balance, PESMOC has been presented. At
each iteration, PESMOC evaluates the objective functions and the constraints at an
input location that is expected to reduce the entropy of the posterior distribution of the
Pareto set in the feasible space the most. The computation of the expected reduction of
the entropy of such a random variable is intractable. Nevertheless, we have described how
the required computations can be approximated using expectation propagation (Minka,
2001a).

Importantly, in the proposed approach the acquisition function can be expressed as
a sum of a different acquisition per black-box function (objective or constraint). This
means that PESMOC allows for a decoupled evaluation setting. In this scenario one is
not only interested in finding which is the next point at which the black-boxes should
be evaluated, but also in finding what black-box function or subset of these should be
evaluated next. For this, one simply has to optimize the individual acquisition functions
and compare their corresponding values. Other related methods from the literature do
not allow for such a setting since the utility function they are based on (the improvement
of the hyper-volume metric) requires the evaluation of all the black-box functions.

Chapter 4. Predictive Entropy Search For Multi-Objective Bayesian Optimization With
Constraints 121

We have illustrated in a wide range of experiments, including synthetic, benchmark and
real-world problems the benefits of PESMOC. Furthermore, we have compared results in
these experiments with a state-of-the-art method for constrained multi-objective Bayesian
optimization, BMOO (Féliot et al., 2017), which is based on the expected improvement
of the hyper-volume, and with a baseline method that explores the input space uniformly
at random. These experiments show that PESMOC is able to obtain better results in
terms of the hyper-volume of the recommendations made. More precisely, it provides
estimates of the Pareto set in the feasible space that are more accurate with a smaller
number of evaluations. Furthermore, PESMOC in a decoupled setting is able to provide
significantly better results in several of these problems. This is very useful in practical
situations in which the objectives and the constraints are very expensive to evaluate.

A more general scenario involves the evaluation of several points in parallel. If the
scenario also involves the simultaneous optimization of several objectives and constraints,
this scenario can be defined as the batch constrained multi-objective scenario. In the
next chapter of the thesis, we are going to present an enhancement of PESMOC to
tackle the batch constrained multi-objective scenario. In this scenario we also have to
optimize several objectives and constraints but now we have several resources to evaluate
suggestions in parallel. The method that we are going to present is able to suggest several
points for evaluation at the same time at every iteration. By contrast PESMOC can only
suggest a single point for evaluation at each iteration. It is, hence, an improved version
of PESMOC that will require additional methodologies and more approximations. These
approximations will be carried out using again EP.

Chapter 5
Parallel Predictive Entropy Search For
Multi-Objective Bayesian Optimization
With Constraints

As we have seen in the previous chapter, real-world problems often involve the op-

timization of several objectives under multiple black-boxes. We have also described

how BO can recommend a valid Pareto set at the end of its execution. A limitation

of the described methodology, however, is that current BO methods, as PESMOC,

for these problems, choose a point at a time at which to evaluate the black-boxes.

If the expensive evaluations can be carried out in parallel (as when a cluster of

computers is available), this results in a waste of resources. In this chapter, we

introduce PPESMOC, Parallel Predictive Entropy Search for Multi-objective Op-

timization with Constraints, an extension of PESMOC for solving the problems

described. PPESMOC selects, at each iteration, a batch of input locations at which

to evaluate the black-boxes, in parallel, to maximally reduce the entropy of the

problem’s solution. To our knowledge, this is the first batch method for constrained

multi-objective BO. In this chapter we present empirical evidence in the form of

synthetic, benchmark and real-world experiments that illustrate the effectiveness of

PPESMOC.

5.1 Introduction

A limitation of BO methods for constrained multi-objective optimization like PESMOC,
which was described in the previous chapter, is that they choose a point at a time at
which to evaluate the black-boxes. Assume that a cluster of computers or some other
resource is available to perform the evaluation of the black-boxes at several points in
parallel. If only a single point is evaluated each time, this results in a a waste of resources
and leads to sub-optimal optimization results. The problem described can be solved
by using BO methods that suggest not only a single point at which to evaluate the
black-boxes, but a batch or collection of points of adjustable size (Azimi et al., 2012;
Bergstra et al., 2011; González et al., 2016; Shah and Ghahramani, 2015).

To the best of our knowledge, no parallel BO method has been proposed to deal
with the optimization of multiple objectives under several constraints. Only sequential
methods exist. Therefore, the literature about BO is missing important methods to

123

Chapter 5. Parallel Predictive Entropy Search For Multi-Objective Bayesian
Optimization With Constraints 124

address BO problems with the characteristics described. In this chapter, we propose a
BO method that can precisely address the problems described and can suggest, at each
iteration, a batch of points at which to evaluate all the black-boxes in parallel. The
method proposed is based on an extension of the PESMOC method described in the
previous chapter and an extension of sequential constrained multi-objective BO (Shah
and Ghahramani, 2015). More precisely, the acquisition function that we consider receives
as an input a batch of candidate input locations at which to perform the evaluation of
the black-boxes in parallel and estimates the expected reduction in the entropy of the
solution of the optimization problem. The difference with PESMOC is that here, the
acquisition function evaluates a batch of points instead of a single one.

We have carried out extensive experiments to evaluate the performance of PPESMOC
in synthetic, benchmark and real-world optimization problems. Furthermore, we have
compared results with a base-line which chooses the points to evaluate at random and
with a simple method that applies iteratively a sequential BO method for constrained
multi-objective BO (as many times as the batch size). This last method introduces virtual
observations (fantasies) to avoid choosing many times the same point. The results show
that PPESMOC performs better than a random search strategy and similarly or better
than sequential base-lines. The advantage of the proposed approach is, however, that its
cost scales much better with respect to the batch size than the sequential base-lines.

5.2 Parallel Bayesian Optimization

Any sequential BO strategy can be transformed into a batch one by iteratively applying
the sequential strategy B times. To avoid choosing similar points each time, one
can simply hallucinate the results of the already chosen pending evaluations (Snoek
et al., 2012). For this, the acquisition function is simply updated from α(x|D) to
α(x|D

⋃
(xi,hi) , ∀xi ∈ P), where D are the data collected so far, P is the set of pending

evaluations, and hi denotes the hallucinated evaluation result for the pending evaluation
xi. A simple approach is to update the surrogate model after choosing each batch point
by setting hi equal to the mean of the predictive distribution given by the GPs (Desautels
et al., 2014). Of course, this strategy, to which we refer to as parallel sequential, has the
disadvantage of requiring the optimization of the acquisition B times, and also updating
the GPs using hallucinated observations. This is expected to lead to extra computational
cost than in PPESMOC.

PPESMOC is a generalization of PESMOC, which was described in the previous
chapter. PESMOC is the current state-of-the-art for solving constrained multi-objective
BO problems. Nevertheless, PESMOC is a sequential BO method that can only suggest
one point at a time to be evaluated. It cannot suggest a batch of points as PPESMOC.
PESMOC also works by choosing the next candidate point as the one that is expected
to reduce the most the entropy of the Pareto set in the feasible space. The required
computations are also approximated using the expectation propagation algorithm (Minka,
2001a). Notwithstanding, the extension of PPESMOC over PESMOC is not trivial.
In particular, in PPESMOC the acquisition function involves additional non-Gaussian
factors (one per each point in the batch) and requires the computation of its gradients.
These are not needed in PESMOC as the input dimensionality in that method is smaller,
i.e., D vs. B ×D.

Chapter 5. Parallel Predictive Entropy Search For Multi-Objective Bayesian
Optimization With Constraints 125

5.3 Parallel Predictive Entropy Search for Multi-Objective
Bayesian Optimization with Constraints

Consider N observations D = {(xi,yi)}Ni=1 of the black-boxes obtained so far. We define
XN+1 = {x1, . . . ,xB} as the batch of B points where the black-boxes should be evaluated
at the next iteration. In this chapter, we describe how PPESMOC can be used to identify
such a batch of points by maximizing an acquisition function.

5.3.1 Modeling the Black-boxes Using Gaussian Processes

As in PESMOC, we model each objective fk(·) and constraint cj(·) using a Gaussian
process (GP) (Rasmussen, 2003). We assume independent GPs for each black-box
function, objective or constraint. Consider the observations of a particular black-box
function {(xi, yi)}Ni=1, where yi = f(xi) + εi, with f(·) the black-box function and εi
some Gaussian noise. A GP gives a distribution for the potential values of f(·) at a
new set of input points X? = (x?1, . . . ,x

?
B)T of size B. Let f? = (f(x?1), . . . , f(x?B))T.

The predictive distribution for f? is Gaussian. p(f?|y) = N (f?|m(X?),V(X?)), where
y = (y1, . . . , yN)T and the mean and covariances are, respectively:

m(X?) = KT
? (K + σ2I)−1y , V(X?) = K?,? −KT

? (K + σ2I)−1K? . (5.1)

In Equation (5.1) σ2 is the variance of the Gaussian noise; K? is a N ×B matrix with
the prior covariances between f? and each f(xi); and K is a N ×N matrix with the prior
covariances among each f(xi). That is Kij = k(xi,xj), for some covariance function
k(·, ·). Finally, K?,? is a B ×B matrix with the prior covariances for each entry in f?.

5.3.2 Specification of the Acquisition Function

We choose XN+1 as the batch of points that maximizes the expected reduction in the
entropy of the Pareto set in the feasible space, X ?. This is a popular strategy that has
shown good empirical results in other optimization settings including in the PESMOC
acquisition function presented in the previous chapter (Garrido-Merchán and Hernández-
Lobato, 2019b; Hernández-Lobato et al., 2016, 2014; Shah and Ghahramani, 2015).
Therefore, the PPESMOC acquisition function, α(·), is:

α(X) = H[p(X ∗|D)]− Ep(Y|D,X)[H[p(X ∗|D ∪ (X,Y)]] , (5.2)

where X is the candidate batch of B points at which to evaluate the black-boxes; Y
is a matrix with the set of B noisy evaluations associated to X, for each black-box
function; H[p(x)] = −

∫
p(x) log p(x)dx is the differential entropy of the distribution

p(x); the expectation is with respect to the posterior predictive distribution of Y at
the candidate batch X, given the data we have observed so far, D; finally, p(X ∗|D)
is the probability distribution of potential Pareto sets X ? given the data we have
observed so far D. The distribution p(Y|D,X), is given by the product of the predictive
distributions of each GP, as indicated in Equation (5.1), for each black-box function
(the level of Gaussian noise, Iσ2, has to be added to each covariance matrix). Namely,
p(Y|D,X) =

∏K
k=1 p(y

o
k|D,X)

∏J
j=1 p(y

c
j |D,X), where yok and ycj are B-dimensional

vectors with the potential observations of each black-box function, objective or constraint,
for each point in the batch X. Recall that an independent GP is modeling each black-box
function.

Chapter 5. Parallel Predictive Entropy Search For Multi-Objective Bayesian
Optimization With Constraints 126

Note that Equation (5.2) involves the entropy of X ? which can be very difficult
to compute. To simplify the computation of the acquisition function, we use the
same trick based on the symmetry of mutual information that we carried out in the
PESMOC acquisition function. For this, we observe that Equation (5.2) is the mutual
information between X ? and Y, I(X ?,Y). Since the mutual information is symmetric,
i.e., I(X ?,Y) = I(Y,X ?), we swap the roles of X ? and Y obtaining:

α(X) = H[p(Y|D,X)]− Ep(X ?|D)[H[p(Y|D,X,X ?)]], (5.3)

where p(Y|D,X,X ?) is the predictive distribution for the values of the black-boxes at
X, given the observed data D, and given that the solution of the optimization problem,
i.e., the Pareto set in the feasible space, is given by X ?. Furthermore, the expectation
is with respect to p(X ?|D). Namely, the posterior distribution of X ? given the data we
have observed so far D.

Importantly, the first term in Equation (5.3) can be evaluated analytically since it
is just the entropy of the predictive distribution, H[p(Y|D,X)], which is a factorizing
K + J dimensional multivariate Gaussian. In particular,

H[p(Y|D,X)] = 0.5((K + J)B log(2πe) +
K∑
k=1

log |Vo
k(X)|+

J∑
j=1

|Vc
j(X)|) (5.4)

where Vo
k(X) and Vc

j(X) are the covariance matrices of the predictive distribution for
each black-box function (objective or constraint, respectively) given by Equation (5.1),
plus the corresponding additive Gaussian noise, Iσ2.

Moreover, the expectation in Equation (5.3) can be approximated by a Monte Carlo
average. More precisely, one can generate random samples of the black-box functions
using a random-feature approximation of each GP as we described in the previous chapter.
These samples can then be easily optimized to generate a sample from p(X ?|D). Because
the samples of the black-box function are cheap to evaluate, this optimization process
has little cost and can be done using, e.g., a grid of points. In practice, we use a finite
Pareto set approximated by 50 points. A problem, however, is evaluating the second term
that appears in Equation (5.3). Namely, the entropy of p(Y|D,X,X ?s), for a particular
sample of X ?, X ?s . Such a distribution is intractable. As in the case of PESMOC, we
resort to expectation propagation to approximate its value (Minka, 2001a).

5.3.3 Approximating the Conditional Predictive Distribution

Assume both X and X ? have finite size and that X ? is known. Later on, we will show
how to approximate X with a finite size set. Let F and C be a matrix with the actual
objective and constraint values associated to X . Then,

p(Y|D,X,X ?) =

∫
p(Y|X,F,C)p(X ?|F,C)p(F|D)p(C|D)dFdC , (5.5)

where p(Y|X,F,C) =
∏B
b=1

∏K
k=1 δ(y

k
b − fk(xb))

∏J
j=1 δ(y

j
b − cj(xb)), with ykb the eval-

uation corresponding to the k-th objective associated to the batch point xb, y
j
b the

evaluation corresponding to the j-th constraint associated to the batch point xb, δ(·)
a Dirac’s delta function and B the batch size. We have assumed no additive Gaussian
noise. In the case of noisy observations, one simply has to replace the delta functions
with Gaussians with the corresponding variance, σ2.

Chapter 5. Parallel Predictive Entropy Search For Multi-Objective Bayesian
Optimization With Constraints 127

In Equation (5.5) p(F|D) and p(C|D) denote the posterior predictive distribution
for the objectives and constraints, respectively. Note that we assume independent GPs.
Therefore, these distributions factorize across objectives and constraints. They are
Gaussians with parameters given in Equation (5.1). Last, in Equation (5.5) p(X ?|F,C) is
an informal probability distribution that takes value different from zero, only for a valid
Pareto set X ?. More precisely, X ? has to satisfy that ∀x? ∈ X ?, ∀x′ ∈ X , cj(x

?) ≥ 0, ∀j,
and if cj(x

′) ≥ 0, ∀j, then ∃k s.t. fk(x
?) < fk(x

′). Namely, each point of the Pareto set
has to be better than any other feasible point in at least one of the objectives. These
conditions can be summarized as:

p(X ?|F,C) ∝
∏

x?∈X ?

 J∏
j=1

Φj(x
?)

[∏
x′∈X

Ω(x′,x?)

] (5.6)

where Φj(x
?) = Θ(cj(x

?)), with Θ(·) the Heaviside step function, using the convention
that Θ(0) = 1. Furthermore,

Ω(x′,x?) =

 J∏
j=1

Θ(cj(x
′))

Ψ(x′,x?) +

1−
J∏
j=1

Θ(cj(x
′))

 · 1 , (5.7)

where Ψ(x′,x?) = 1−
∏K
k=1 Θ(fk(x

?)− fk(x′)). The goal of
∏J
j=1 Φj(x

?) in Equation
(5.6) is to guarantee that every point in X ? is feasible. Otherwise, p(X ?|F,C) takes
value zero. Similarly, Ω(x′,x?) can be understood as follows:

∏J
j=1 Θ(cj(x

′) checks
that x′ is feasible. If x′ is infeasible, we do not care and simply multiply everything by
1. Otherwise, x′ has to be dominated by x?. That is checked by Ψ(x′,x?). This last
factor takes value one if x? dominates x′ and zero otherwise. Summing up, the r.h.s. of
Equation (5.6) takes value 1 only if X ? is a valid Pareto set.

Critically, in Equation (5.5) all the factors that appear in the r.h.s are Gaussian,
except for p(X ?|F,C). The non-Gaussian factors contained in this distribution are
approximated by Gaussians using expectation propagation (EP) (Minka, 2001a). Each
Φj(x

?) factor is approximated by a univariate Gaussian that need not be normalized.
Namely, Φj(x

?) ≈ Ñ (cj(x
?|m̃x?

j , ṽ
x?
j)). The parameters of this Gaussian are tuned by

EP. Similarly, each Ω(x′,x?) is approximated by a product of K bivariate Gaussians and
J univariate Gaussians that need not be normalized. That is,

Ω(x′,x?) ≈
K∏
k=1

Ñ (υ|m̃x?,x′

k , Ṽx?,x′

k)
J∏
j=1

Ñ (cj(x
′)|m̃x′

j , ṽ
x′
j)), (5.8)

where υ = (fk(x
?), fk(x

′))T. The parameters of these Gaussians are also adjusted by
EP. The approximate factors are refined iteratively until their parameters do not change.
This ensures that they look similar to the corresponding exact factors.

In our experiments, and when running EP, we replace the set X in Equation (5.6)
by a finite set given by {xn}Nn=1

⋃
X
⋃
X ?. Namely, the union of all points that have

already being evaluated, the candidate batch X and the current Pareto set X ? that has
been sampled from p(X ?|D) when using a Monte Carlo approximation of the expectation
in the r.h.s. of Equation (5.3). These are the input points we have so far. Finally, the
factors that belong to the batch X where the acquisition is going to be evaluated are
only refined once, as in the PESMOC case.

Chapter 5. Parallel Predictive Entropy Search For Multi-Objective Bayesian
Optimization With Constraints 128

5.3.4 PPESMOC’s Acquisition Function

After EP has converged, the conditional predictive distribution in Equation (5.5) is
approximated by replacing each non-Gaussian factor by the corresponding Gaussian
approximation obtained by EP. Because all factors are then Gaussian, and the Gaussian
family is closed under the product operation, their product can be easily evaluated,
resulting in another Gaussian distribution for p(Y|D,X,X ?). Consider S Monte Carlo
samples of X ? to approximate the expectation in the r.h.s. of Equation (5.3). Let
Vo
k(X; s)CPD and Vc

j(X; s)CPD denote the covariance matrices of the Gaussian approx-
imation of p(Y|D,X,X ?) for each objective k and constraint j, for sample X ?s . The
PPESMOC’s acquisition is simply given by the difference in the entropy before and after
conditioning to X ?. Namely,

α(X) =
K∑
k=1

log |Vo
k(X)|+

J∑
j=1

log |Vc
k(X)|

− 1

S

S∑
s=1

 K∑
k=1

log |Vo
k(X; s)CPD|+

J∑
j=1

log |Vc
k(X; s)CPD|

 . (5.9)

The cost of computing Equation (5.9), assuming a constant number of iterations of EP
until convergence, is in O((K + J)N3 + (K + J)B3), where N is the number of points
observed so far, and B is the batch size. This cost is a consequence of the GP inference
process and having to compute the determinant of matrices of size B ×B. Importantly,
the gradients of Equation (5.9) w.r.t X can be computed using automatic differentiation
tools as Autograd (Maclaurin et al., 2015). This is key to guarantee that the acquisition
can be optimized using, e.g., quasi-Newton methods (L-BFGS), to find XN+1. Appendix
C has further details about the computation of the acquisition and its gradients. We
implemented PPESMOC in the software for BO Spearmint.

We illustrate the PPESMOC’s acquisition function in two scenarios of a 1-dimensional
problem (for the sake of visualization) with batch size B = 2 in Fig. 5.1 (left) and (right).
This problem has two objectives and two constraints. The observations obtained so far
are displayed with a blue cross (previous evaluated batch). Each axis corresponds to the
potential values (in the interval [0, 1]) for each one of the two points in the batch. Fig.
5.1 displays the contour curves of the acquisition function. We remark here some of its
properties: (i) It is symmetric w.r.t the diagonal, meaning that the order of the points in
the batch does not affect its value. (ii) In the neighborhood of the observed point the
acquisition value is low, meaning that the acquisition favors unexplored regions. (iii)
In the diagonal the acquisition takes lower values, meaning that it favors diversity in
the batch. These are expected properties of a batch BO acquisition function. In these
experiments the number of Monte Carlo samples S is set equal to 10. This is also the
number of samples used for the GP hyper-parameters.

5.3.5 Quality of the Approximation to the Acquisition Function

As described previously, the acquisition function of the proposed method, PPESMOC, is
intractable and needs to be approximated. The exact evaluation requires computing an
expectation that has no closed form solution and computing the conditional predictive
distribution of the probabilistic models given some Pareto set X ?. In Section 5.3.4 we
propose to approximate these quantities using Monte Carlo samples and expectation

Chapter 5. Parallel Predictive Entropy Search For Multi-Objective Bayesian
Optimization With Constraints 129

Figure 5.1: Acquisition function visualization. Each figure corresponds to a different
repetition of the optimization problem. The batch size is B = 2. The problem is in one
dimension. Each axis corresponds to different values for one of the 2 points in the batch,
taking values in the interval [0, 1]. Blue crosses show already evaluated locations.

propagation, respectively. In this section we check the accuracy of this approximation
to see if it resembles the actual acquisition function. For this, we consider a simple
one dimensional problem with a batch of two points, two objectives and one constraint
generated from a GP prior. In this simple setting, it is possible to compute a more
accurate estimate of the acquisition function using a more expensive sampling technique,
combined with a non-parametric estimator of entropy (Singh et al., 2003). More precisely,
we discretize the input space and generate a sample of the Pareto set X ? by optimizing
a sample of the black-box functions. This sample is generated as in the PPESMOC
approximation. We then generate samples of the black-box functions and keep only
those that are compatible with X ? being the solution to the optimization problem. This
process is repeated 100, 000 times. Then, a non-parametric method is used to estimate
the entropy of the predictive distribution at each possible batch of the input space before
and after the conditioning. The difference in the entropy at each input location gives
a more accurate estimate of the acquisition function of PPESMOC. Of course, this
approach is too expensive to be used in practice for solving optimization problems.

We consider first a coupled evaluation setting. Figure 5.2 shows a comparison between
the two estimates of the exact acquisition function. In both plots, the acquisition function
values are displayed for all the batch combinations of the input space. The one described
above (left, exact) and the one suggested in Section 5.3.4 (right, approximate). We
observe that both estimates of the acquisition function take higher values in regions
with high uncertainty and promising predictions. Similarly, both estimates take lower
values in regions with low uncertainty. Importantly, both acquisition functions are pretty
similar in the sense that they take high and low values in the same regions of the input
space. Therefore, both acquisition functions are extremely correlated. This empirical
result supports that the approximation proposed in this chapter is an accurate estimate
of the actual acquisition function.

Chapter 5. Parallel Predictive Entropy Search For Multi-Objective Bayesian
Optimization With Constraints 130

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.5

1

Exact acquisition function

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.4

0.8

1.2

1.6

2

Approximate acquisition function

Figure 5.2: Acquisition function visualization. The batch size is B = 2. The problem
is in one dimension. Each axis corresponds to different values for one of the 2 points in
the batch, taking values in the interval [0, 1].

5.4 Related Work

In this section we review other works from the literature that describe related batch BO
methods and BO methods that can address multi-objective problems with constraints.
Nevertheless, to our knowledge PPESMOC is the only batch BO method for constrained
multi-objective problems. PPESMOC is related to parallel predictive entropy search
(PPES) (Shah and Ghahramani, 2015). At each iteration, PPES also selects a batch
of points maximizing the expected information gain about the global maximizer of
the objective. The computations are also approximated using expectation propagation
(EP). The main difference is that PPES is limited to single-objective and un-constrained
optimization problems, unlike PPESMOC, which can address multiple objectives and
several constraints. This is a non-trivial extension of PPES. In particular, several
objectives and constraints require the use of several GPs, not only one. Furthermore,
including constraints and several objectives leads to more complicated non-Gaussian
factors that need to be approximated using EP. Therefore, the EP update operations
of PPESMOC are significantly more complicated than those of PPES. Solving multi-
objective problems is also more complicated than solving a single-objective problem. The
solution of the later is the Pareto set, a set of potentially infinite size.

Other batch BO methods form the literature include local penalization. This is an
heuristic that penalizes the acquisition function in each neighborhood of already selected
points (González et al., 2016). The advantage of this method is that it can be used
with arbitrary acquisition functions. A limitation, however, is that it requires to fix the
amount of penalization, which depends on the Lipschitz constant of the objective. Such
a constant needs to be estimated from data. Furthermore, González et al. (2016) only
addresses unconstrained single-objective problems.

Hybrid batch Bayesian optimization dynamically switches, based on the current state,
between sequential and batch evaluation policies with variable batch sizes (Azimi et al.,
2012). This strategy uses expected improvement as the acquisition function. However, it
can only address unconstrained single-objective problems. A batch BO approach can also
be implemented via a multi-objective ensemble of multiple acquisition functions (Lyu
et al., 2018). In each iteration, a multi-objective optimization of multiple acquisition
functions is carried out. A sample of points from the Pareto set is then selected as

Chapter 5. Parallel Predictive Entropy Search For Multi-Objective Bayesian
Optimization With Constraints 131

the batch of points to evaluate. Even though this strategy can address multi-objective
problems, it cannot deal with constraints in the optimization process. Other strategies for
batch BO that do not address the constrained multi-objective setting include (Daxberger
and Low, 2017; Desautels et al., 2014; Gupta et al., 2018; Kathuria et al., 2016).

5.5 Experiments

We evaluate the performance of PPESMOC and compare results with two base-lines.
Namely, a strategy that chooses at each iteration a random batch of points at which to
evaluate the black-boxes. We also compare results with two parallel sequential methods
(see Section 5.4) that use the acquisition function of PESMOC and BMOO, respectively.
We refer to these methods as PS PESMOC and PS BMOO. In each experiment, we report
average results and error bars across 100 repetitions. We measure the logarithm of the
relative difference in absolute value of the hyper-volumes of the recommendation and the
the problem’s solution. The solution is found via exhaustive search in synthetic problems.
In real-world problems we use the best recommendation obtained by any method. We
use a Matérn covariance function for the GPs. The GP hyper-parameters are sampled
from the posterior using 10 slice samples, as in (Snoek et al., 2012). The predictive
distribution and acquisition functions are averaged over the samples. In PPESMOC, the
number of samples S of X ? is also set to 10 as it was done for PESMOC. In each method,
at each iteration, we output a recommendation obtained by optimizing the GP means.
For this, we use a grid of points. Finally, to recommend only feasible solutions with high
probability, we perform the same operation as the one described in the previous chapter.

5.5.1 Synthetic Experiments

We compare the performance of each method when the objectives and the constraints
are sampled from a GP prior. The problem considered has 2 objectives and 2 constraints
in a 4-dimensional input space. We consider a noiseless and a noisy scenario. In this last
case, the evaluations are contaminated with Gaussian noise with variance equal to 0.1.
We report results for different batch sizes. Namely, 4, 8, 10 and 20 points. We allow for
100 evaluations. In the case that the recommendation produced contains an infeasible
point, we simply set the hyper-volume of the recommendation equal to zero. For the
optimization of the PPESMOC and parallel sequencial acquisition functions, we select
an initial random point from the grid and launch L-BFGS from it. If a high amount of
computational resources are available, we suggest to compute PPESMOC and parallel
sequencial acquisition functions in a grid and select the initial point for the L-BFGS
optimization algorithm as the one that maximizes the respective acquisition function.

The results obtained are displayed in Figure 5.3 and Figure 5.4 for the noiseless
and noisy case, respectively. We observe that PS PESMOC and PPESMOC and better
than the other methods. The random search strategy gives the worst results followed
by PS BMOO. The results for the noise and the noiseless scenario are similar. We can
observe that, for every scenario, PPESMOC outperforms the other methods.

The disadvantage of PS PESMOC (and also PS BMOO) is that it has a bigger
computational cost with respect to the batch size B than PPESMOC. More precisely, it
requires updating the GP models and optimizing the acquisition B times. PPESMOC is
computationally cheaper. We add empirical evidence for this claim by showing, in Table
5.1, the median of the time used by each method to determine the next batch of points
to evaluate. PPESMOC consumes a computational time that grows less with respect to

Chapter 5. Parallel Predictive Entropy Search For Multi-Objective Bayesian
Optimization With Constraints 132

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●●
●

●●
●●●●●●●●

●
●●●●●●●

●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●
●●

●

●
●

●

●●

●●●

●●
●●

●●
●●●●

●
●

●
●●●●●●●

●
●●

●●●●●●
●●●●●

●●
●●●●●●●●●

●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●
●

●

●
●

●
●

●
●

●

●●●●
●

●●
●●●●●●●●●●

●
●●

●●●
●●

●
●●

●●●●●
●●●●

●●●●●●●●●●
●●●

●●●●●●●●●●●●●
●●●

●●●●●●
●●●●●●●●●

●
●●

●

●
●●

●●
●●

●
●●

●
●●●

●
●

●●
●●

●●●
●●●●●●●

●
●●●

●●●●●
●

●
●●●

●●●●●●●●●
●●●●●●

●
●

●
●●●●

●●●●●●●●
●●

●
●●●●

●
●

●
●●●●

●●●●●●
●●

●
●

●

−14.80

−12.66

−10.52

−8.38

−6.24

−4.10

0 25 50 75 100
Evaluated Batches of Points

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods

●

●

●

●

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

Synthetic Experiments. 4−dimensional. Batch size = 4.

●
●

●

●

●

●

●

●

● ●

●

●

● ●
●

●
●

●

● ●
● ●

● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

●

●

●
●

●

● ● ●

● ●
●

●
● ●

●

●

● ● ●
●

● ● ● ●
● ● ●

●
●

●
● ●

●
●

●
●

●
● ● ● ● ● ● ● ● ●

●

●

● ●

●

●

●

●
●

●

●

● ●

●
●

●
●

●

● ●

●

● ●

●
●

●

●

●
●

● ● ● ● ●
●

●
● ● ●

●
●

● ●
● ● ● ●

●
●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

● ● ● ● ●
● ● ●

●
●

● ●

●

●

●
●

●

●

● ● ●

●

●
● ●

● ●

● ● ●

●
●

● ● ●
● ●

●

−14.80

−12.98

−11.16

−9.34

−7.52

−5.70

0 10 20 30 40 50
Evaluated Batches of Points

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods

●

●

●

●

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

Synthetic Experiments. 4−dimensional. Batch size = 8.

●

●

●
●

●

●

●

● ●
●

● ●
●

●

●
●

●
● ● ●

● ● ●
● ●

● ●
● ● ● ●

● ● ●
●

● ● ● ● ●

●

●

●

●

●

●

●

●

●
● ●

● ●
● ●

●
● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ●

●
● ● ●

● ● ●
●

●

●
●

●

●

●

●

●

●

●
● ●

● ●
● ●

●

● ●

●
● ●

●
● ● ● ●

● ●
● ● ●

●
● ●

● ● ●
● ●

●

●
●

●

●

●
●

● ●
● ● ●

●
● ●

●

● ● ●

●

● ● ●
●

●
●

●
● ● ●

●
●

●
●

● ●
●

●
● ●

−14.3

−12.6

−10.9

−9.2

−7.5

−5.8

0 10 20 30 40
Evaluated Batches of Points

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods

●

●

●

●

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

Synthetic Experiments. 4−dimensional. Batch size = 10.

●

●

●

●

●

●

●

● ● ●
●

●
●

● ● ● ● ●
●

●

●

●

●

●

●

●

● ●
● ● ● ●

● ●
● ● ● ●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

● ●
●

● ● ●

●

● ●
●

●
●

●

● ●
●

●

●
●

●
●

●

●
●

●
●

−14.00

−12.44

−10.88

−9.32

−7.76

−6.20

0 5 10 15 20
Evaluated Batches of Points

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce Methods

●

●

●

●

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

Synthetic Experiments. 4−dimensional. Batch size = 20.

Figure 5.3: Average results for the synthetic experiments in the noiseless evaluation
setting.

Table 5.1: Median time in seconds to choose the next batch of points to evaluate of
PPESMOC and the parallel sequential approaches.

Method B=4 B=8 B=10 B=20 B=50

PPESMOC 697.3±27.5 913.9±28.1 960.7±27.8 1044.8±30.7 1273.9±30.1
PS PESMOC 191.3±7.0 346.2±6.1 406.2±6.5 799.8±26.6 1960.3±31.6
PS BMOO 379.4±12.3 551.7±22.8 594.2±19.9 895.9±27.9 1874.2±42.4

the batch size B than parallel sequential approaches. By contrast, PS PESMOC, as well
as PS BMOO, requires, on average, more and more computation time as the batch size
B increases.

5.5.2 Benchmark Experiments

We carry out extra experiments in which the black-boxes are not sampled from a GP. For
this, we consider 6 classical constrained multi-objective optimization problems (Chafekar
et al., 2003). We consider two scenarios. A noiseless scenario and a noisy scenario, where
the black-box evaluations are contaminated with additive Gaussian noise. The variance
of the noise is set to 1% of the range of potential values of the corresponding black-box.
The batch size considered is B = 4. The average results obtained in these experiments,
for each method and each scenario, are displayed in Figure 5.5, that shows plots of the
noiseless case, and Figure 5.6, showing the noisy setting. We observe that, most of
the times, PPESMOC outperforms or performs similarly to the other methods in every
scenario, noiseless and noisy, as it was expected.

Chapter 5. Parallel Predictive Entropy Search For Multi-Objective Bayesian
Optimization With Constraints 133

●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●
●

●

●
●●

●
●

●●●
●

●●
●●●

●●●
●●●

●
●●

●●●
●●

●
●●

●●
●●●●

●

●●●

●

●

●
●●

●●
●

●
●

●
●

●

●
●●

●●
●●

●

●

●
●

●●●●
●●●●●●●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●●

●

●

●
●

●
●

●

●●
●

●

●

●

●
●

●●
●

●●

●

●●
●

●
●●

●●

●
●●●

●
●●●●

●

●
●●●●●●

●●
●

●
●

●
●

●
●

●●●
●

●●
●

●

●
●●

●
●

●
●●●

●
●●

●●
●

●
●●

●

●

●●

●

●

●●

●

●

●●

●
●●●

●

●
●●●●

●●

●
●●

●●●●●
●●

●●●
●●●

●
●●●●

●
●●

●

●

●
●●

●●●
●●●●

●●
●

●
●

●
●

●

●
●●●

●

●
●●

●

●

●●
●●●●●

●
●

●●
●

●
●●

●●●
●

●●
●

●

●●

●

●
●●

●●●

●

●

●

●
●●

●
●

●●

●
●

●
●

●●

●

●
●

●
●

●
●●●

●

●

●●

●
●

●
●

●●

●

●
●●●

●●

●●
●

●

●●●
●

●
●●

●●●

●
●

●●
●

●
●●●●●●●

●●●●●
●

●
●

●●

●
●

●●
●

●

●
●

●

●

−10.3

−9.3

−8.3

−7.3

−6.3

−5.3

0 25 50 75 100
Number of Evaluated Batches

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods

●

●

●

●

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

Synthetic exps. Noise. 4−dimensional. Batch size = 4

●
●

●
●

●

●

●

●
●

● ●

●

●

●

●
● ● ●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●
●

●
●

●

● ●

●

●

●

●
●

●

●

●

●
●

● ● ●
● ●

●

●

●
● ●

●

●
● ● ●

●

●

● ●
● ●

● ●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

● ●
●

−9.90

−9.08

−8.26

−7.44

−6.62

−5.80

5 10 15 20 25
Number of Evaluated Batches

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods

●

●

●

●

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

Synthetic exps. Noise. 4−dimensional. Batch size = 8

●

● ●

● ●

●

●
●

● ●
●

● ● ●
●

●

●

●

● ●
● ●

●
● ●

● ●

● ●

●

●

●

●

●

●
●

●

● ●
●

●

●

● ●
● ●

●
●

●
● ●

●
● ●

●
● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●
● ●

● ●

● ●

●
●

● ●
●

●

●
●

●
●

●
● ●

● ●
●

●
●

●
●

●

●

● ●
● ●

●

●
●

● ● ●
● ●

−10.20

−9.34

−8.48

−7.62

−6.76

−5.90

10 20 30
Number of Evaluated Batches

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods

●

●

●

●

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

Synthetic exps. Noise. 4−dimensional. Batch size = 10

●

●

●

●

● ●

●
●

●

● ●
●

● ●

● ●
●

●

●

●

●

●

●

●

● ●
●

●
● ●

●

●

●
● ●

● ●

●

●

●

●

●
●

●

● ● ● ●

●

●

●
● ● ●

●

●

●

●

●
●

●
●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

−10.0

−9.3

−8.6

−7.9

−7.2

−6.5

5 10 15 20
Number of Evaluated Batches

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods

●

●

●

●

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

Synthetic exps. Noise. 4−dimensional. Batch size = 20

Figure 5.4: Average results for the synthetic experiments in the noisy evaluation
setting.

5.5.3 Real-world Experiments

We compare each method in the task of finding an optimal ensemble gradient-boosting
ensemble. We consider two objectives: the prediction error of the ensemble and its size.
These objectives are conflictive since smaller ensembles will have in general higher error
rates and the other way around. We introduce as a constraint of the problem, that
the average speed up factor of the classification process given by a dynamic ensemble
pruning technique is at least 25% as we did in the previous chapter. We have carefully
chosen this value to guarantee that the constraint is active at the optimal solution. The
dataset considered is the German credit dataset extracted from the UCI repository (Dua
and Graff, 2017). This is a binary classification dataset with 1, 000 instances and 20
attributes. The prediction error is measured using 10-fold-cross validation, repeated 5
times. The ensemble size is the logarithm of the sum of the total number of nodes in the
trees of the ensemble.

The adjustable parameters of the ensemble are: the number of trees (between 1 and
1, 000), the number of random attributes considered for split in each tree (between 1 and
20), the minimum number of samples required to split a node (between 2 and 200), the
fraction of randomly selected training data used to build each tree (between 0.5 and 1.0),
and the fraction of training instances whose labels are changed after the sub-sampling
process (between 0.0 and 0.7).

Table 5.2 shows the average hyper-volume obtained in this task, for each method,
after 25 and 50 evaluations using a batch size of 4. Figure 5.7 (left) shows also the
average Pareto front obtained by each method. The Pareto front is simply given by the
objective values associated to the recommendation made by each method. The higher
the volume of points that is above this set of points in the objective values the better the
performance of a method. We observe that PPESMOC slightly outperforms the other
approaches. As described in PESMOC, we also evaluate each method on the task of

Chapter 5. Parallel Predictive Entropy Search For Multi-Objective Bayesian
Optimization With Constraints 134

●

●

●●●

●

●

●
●●

●

●

●

●
●●●

●

●

●

●

●●●●

●●●●
●●●−13.70

−12.28

−10.86

−9.44

−8.02

−6.60

0 25 50 75 100
Number of Evaluated Batches

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods

●

●

●

●

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

BNH . Noiseless. Batch size = 4.

●

●

●

●

●

●●●
●

●●●●●●●●●●
●●

●

●

●

●

●

●●●●
●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●
●●

●●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●●●

●
●●●●●●●●

●●−13.10

−10.96

−8.82

−6.68

−4.54

−2.40

0 25 50 75 100
Number of Evaluated Batches

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods

●

●

●

●

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

SRN . Noiseless. Batch size = 4.

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●●

●●

●

●

●

●

●

●
●

●
●

●
●●

●
●

●●
●●●●●

●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●

●●●●
●

●●
●

●●
●●

●●●
●

●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●
●●●●●●

●●
●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●
●●●●●●●

●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●

−13.30

−11.78

−10.26

−8.74

−7.22

−5.70

0 25 50 75 100
Number of Evaluated Batches

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods

●

●

●

●

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

TNK . Noiseless. Batch size = 4.

●

●

●
●

●

●

●●

●

●
●

●
●●●●

●●
●●●●

●

●
●●

●●
●●●

●
●●

●●

●●●

●●●●

●

●
●

●

●

●

●●
●●●●

●

●

●

●
●●

●●
●

●●
●

●
●●

●

●●●●
●

●
●●

●●

●

●●●●

●●●
●

●

●
●●

●
●●

●
●

●
●

●

●

●

●●

●

●

●

●●
●●

●

●
●

●
●

●
●

●
●

●●

●

●

●

●
●

●

●
●

●●

●
●●●

●
●

●
●

●
●

●
●●●

●

●●●●

●
●

●●

●
●

●
●

●●

●

●●●●

●●●
●●

●

●●
●

●

●●●
●●●●

●
●

●●●●

●
●

●●

●
●●

●
●

●●

●

●
●

●

●

●

●

●●
●

●

●
●

●
●

●
●●●

●●●●
●●

●●●
●●●●●●

●●●●●
●●●●

●●●
●

●●●●●●●
●

●

●
●

●
●●●●●●●●●●

●

●
●●

●
●

●●●●●
●●●●

●●●
●●

●●
●

●●●

●
●

●●

●

●

●●

●

●

●

●

●●
●

●●●●●●●
●

●

●
●

●●●
●●

●
●●

●
●

●●●●
●

●●●
●

●

●●●●●
●●

●●●●●
●

●
●●

●●
●

●

●

●●
●●

●●●
●●

●●

●●
●●●●

●●●
●●●●●●

●
●●●●

●

−13.7

−12.4

−11.1

−9.8

−8.5

−7.2

0 25 50 75 100
Number of Evaluated Batches

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods

●

●

●

●

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

TwoBarTruss . Noiseless. Batch size = 4.

●

●

●

●

●

●
●

●●

●

●

●

●

●●
●●●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●
●

●

●●

●●
●

●●
●●

●●
●●●

●●●●●●
●

●●●−13.70

−12.44

−11.18

−9.92

−8.66

−7.40

0 25 50 75 100
Number of Evaluated Batches

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods

●

●

●

●

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

CONSTR . Noiseless. Batch size = 4.

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●●
●●●●●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●●●●●
●●●●●●●

●●●●
●●●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●●●

●●
●

●
●

●●
●

●●●
●●●●●●●●●●●●●●

●●●●●●●
●●

●

●
●

●
●

●
●

●
●

●
●

●

●
●●

●
●

●
●

●●
●

●●
●

●●
●●●

●
●

●
●●●●●●●●●●●●●●●●●●●●●

●
●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−11.50

−9.38

−7.26

−5.14

−3.02

−0.90

0 25 50 75 100
Number of Evaluated Batches

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods

●

●

●

●

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

OSY . Noiseless. Batch size = 4.

Figure 5.5: Logarithm of the relative difference between the hyper-volume of the
recommendation obtained by each method and the hyper-volume of the actual solution.
We report results after each evaluation of the black-box functions. Benchmark functions
corrupted by noise.

PPESMOC PS PESMOC PS BMOO P RANDOM

0.231±0.005 0.228±0.005 0.228±0.008 0.218±0.006

Table 5.2: Average hyper-volume in the task of finding an optimal ensemble of trees.

finding an optimal deep neural network (DNN) on the MNIST dataset (LeCun et al.,
2010). The objectives are the prediction error of the DNN on a validation dataset of
10, 000 instances (extracted from the original training set) and the time that such a
DNN will take for making predictions. These are conflictive objectives in the sense that
minimizing the prediction error will often lead to bigger DNN with a bigger prediction
times. We are also interested in codifying such a DNN into a chip. Thus, we constrain the
problem by enforcing that the area of the resulting DNN, after being codified into a chip,
is below 1 mm2. We have carefully chosen this value to guarantee that the constraint is
active at the optimal solution. To measure the chip area we use the Aladdin simulator,
which given a computer program describing the operations of the DNN, outputs an
estimate of the area of a chip implementing those operations (Shao et al., 2014). To train
the DNN we use the Keras library. Prediction time is normalized by the smallest possible
prediction time, which corresponds to a DNN of a single layer with 5 hidden units.

Chapter 5. Parallel Predictive Entropy Search For Multi-Objective Bayesian
Optimization With Constraints 135

●

●

●

●●

●

●

●

●●

●

●

●

●
●●●

●

●

●

●

●●●−11.50

−10.34

−9.18

−8.02

−6.86

−5.70

0 25 50 75 100
Number of Evaluated Batches

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods

●

●

●

●

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

BNH . Noisy. Batch size = 4.

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●
●●

●

●

●

●

●

●

●

●

●
●

●
●●

●●●●●●
●

●●●●●●●●●●●●●●●●●
●●●●●●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●●●●●●
●

●●●
●

●●●
●●−6.20

−5.32

−4.44

−3.56

−2.68

−1.80

0 25 50 75 100
Number of Evaluated Batches

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods

●

●

●

●

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

SRN . Noisy. Batch size = 4.

●

●

●

●
●

●●●
●

●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●
●●●●●●●

●●●

●

●

●

●
●●●

●
●

●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●●●

●
●

●
●

●
●

●●●

●

●

●

●

●●
●●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

−9.70

−8.28

−6.86

−5.44

−4.02

−2.60

0 25 50 75 100
Number of Evaluated Batches

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods

●

●

●

●

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

TNK . Noisy. Batch size = 4.

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●●

●●
●

●●●●●●●●●●●●●●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●●

●
●●

●
●●

●
●●

●●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●●
●●

●●
●

●●●
●

●●●●●●●●
●●●

●●
●

●●●●●●
●●●●●

●●●●●
●●●

●

●

●●
●

●
●

●
●

●
●

●
●

●
●

●●●
●

●●
●●

●
●●●

●
●●

●●
●

●
●●●●●●●●●

●●●
●●●

−9.3

−7.6

−5.9

−4.2

−2.5

−0.8

0 25 50 75 100
Number of Evaluated Batches

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods

●

●

●

●

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

OSY . Noisy. Batch size = 4.

●

●

●

●
●

●●●

●

●

●

●
●●

●

●

●
●●●

●

●

●

●

●
●●●

−6.50

−6.22

−5.94

−5.66

−5.38

−5.10

0 25 50 75 100
Number of Evaluated Batches

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods

●

●

●

●

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

CONSTR . Noisy. Batch size = 4.

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●●
●

●●●●●●●●●●●●
●●●

●

●

●

●

●

●

●

●

●
●●

●●−11.50

−10.86

−10.22

−9.58

−8.94

−8.30

0 25 50 75 100
Number of Evaluated Batches

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods

●

●

●

●

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

TwoBarTruss . Noisy. Batch size = 4.

Figure 5.6: Average results for the problems BNH, SRN, TNK and OSY, CONSTR
and TwoBar Truss. Noisy setting.

1e+04

1e+05

0.23 0.24 0.25 0.26 0.27 0.28 0.29
Prediction Error

N
um

be
r

of
 S

pl
itt

in
g

N
od

es

Methods

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

Avg. Pareto Front. 100 Evaluations, 25 batches

1e+03

1e+04

1e+05

0.23 0.24 0.25 0.26 0.27 0.28 0.29
Prediction Error

N
um

be
r

of
 S

pl
itt

in
g

N
od

es

Methods

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

Avg. Pareto Front. 200 Evaluations, 50 batches

Figure 5.7: Average Pareto front in the task of finding an optimal ensemble for 100
(left) and 200 evaluations (right).

The input parameters to be optimized are: The logarithm of the `1 and `2 weight
regularizers; the dropout probability; the logarithm of the initial learning rate; the number
of hidden units per layer; and the number of hidden layers. We have also considered two
variables that have an impact in the hardware implementation of the DNN. Namely, the
logarithm (in base 2) of the array partition factor and the loop unrolling factor.

We report the performance after 15 and 25 evaluations using a batch size B = 4.
The DNN is trained using ADAM with the default parameters. The loss function is the

Chapter 5. Parallel Predictive Entropy Search For Multi-Objective Bayesian
Optimization With Constraints 136

Table 5.3: Hypervolume dominated by the proposed methods in the experiment.
Larger hypervolume means better quality.

PPESMOC PS PESMOC PS BMOO P RANDOM

25.55±0.03 25.44±0.05 25.01±0.05 24.61±0.03

cross-entropy. The last layer of the DNN contains 10 units and a soft-max activation
function. All other layers use Re-Lu as the activation function. Finally, each DNN is
trained during a total of 150 epochs using mini-batches of size 4, 000.

1

2

5

7

0.03 0.05 0.10 0.20
Prediction Error

T
im

e
 R

a
ti

o

Methods

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

Average Pareto Front After 60 Evaluations

1

2

5

7

0.02 0.03 0.05 0.10 0.20
Prediction Error

T
im

e
 R

a
ti

o

Methods

PPESMOC
PS_PESMOC
PS_BMOO
P_RANDOM

Average Pareto Front After 100 Evaluations

Figure 5.8: Average Pareto front in the task of finding an optimal neural network for
60 (left) and 100 evaluations (right).

The average Pareto front obtained by each method is shown in Figure 5.8. Table
5.3 shows the average hyper-volume of each method. Here, PPESMOC outperforms
by little PS PESMOC. PS BMOO gives worse results than PS PESMOC. The random
search strategy is the worst performing method. We can see in the frontier how the
difference between the PPESMOC and PS PESMOC method is slight. PS PESMOC
method suggests configurations with less prediction error and PPESMOC suggests neural
networks with less energy consumption.

5.6 Conclusions

In this chapter we have described PPESMOC, the first method to address batch Bayesian
optimization problems with several objectives and constraints. More precisely, PPESMOC
suggests, at each iteration, at batch of points at which the objectives and constraints
should be evaluated in parallel. We have compared the performance of PPESMOC on
several optimization problems, including synthetic, benchmark and real-world problems.
Furthermore, we have compared results with two simple base-lines. Namely, a random
exploration strategy and two methods derived from the literature about sequential
Bayesian optimization, PS PESMOC and PS BMOO. We have observed that PPESMOC
performs well in general, giving similar and sometimes better results than PS PESMOC
and PS BMOO. The main advantage is, however, that the PPESMOC scales much
better with respect to the batch size. Unlike PPESMOC, the sequential strategies
require repeating an iterative process as many times as the batch size. This process
includes hallucinating observations, re-fitting the underlying GP models, and optimizing
a sequential acquisition function. This leads to a prohibitive computational cost for large
batch sizes.

Chapter 6
Dealing With Categorical And
Integer-Valued Variables In Bayesian
Optimization With Gaussian Processes

In the context of Bayesian optimization, GPs assume input variables taking values

in the real line. When this is not the case, for example when some of the input

variables take categorical or integer values, the practitioner has to introduce extra

approximations to tackle these variables. Consider a BO optimization problem with

non-real input variables and a suggested input location at which to evaluate the

objective taking values in the real line. Before doing the evaluation of the objective,

a common approach is to use a one hot encoding approximation for categorical

variables, or to round to the closest integer, in the case of integer-valued variables.

We show that this methodology can lead to problems in the Bayesian optimization

process and describe a more principled approach to account for input variables

that are categorical or integer-valued. We illustrate in both synthetic and real

experiments the utility of our approach, which significantly improves the results

of standard BO methods using Gaussian processes on problems with categorical or

integer-valued variables.

6.1 Introduction

Many problems involve the optimization of a function with no analytical form. An example
is tuning the parameters of the control system of a robot to maximize locomotion speed
(Lizotte et al., 2007). There is no closed-form expression to describe the function that,
given specific values for these parameters, returns an estimate of the corresponding speed.
A practical experiment with the robot or a computer simulation will have to be carried
out for this purpose. Moreover, the time required for such an evaluation can be high,
which means that in practice one can only perform a few evaluations of the objective.
Importantly, these evaluations may be noisy and hence different for the same input
parameters. The noise can simply be related to the environmental conditions in which
the robot’s experiment is performed. When a function has the characteristics described
it is called a black-box function f(x) over some bounded domain X ∈ Rd, where d is the
dimensionality of the input space. Examples of problems involving the optimization of
black-box functions include automatic tuning machine learning hyper-parameters (Snoek,

137

Chapter 6. Dealing With Categorical And Integer-Valued Variables In Bayesian
Optimization With Gaussian Processes 138

2013), finding optimal control parameters in robotics (Lizotte et al., 2007), optimal
weather sensor placement (Garnett et al., 2010) or the optimization search strategies
(Cornejo-Bueno et al., 2018).

Bayesian Optimization (BO) methods are popular for optimizing black-box functions
(Shahriari et al., 2015) with the characteristics described (Mockus et al., 1978). More
formally, BO methods optimize a real-valued function f(x) over some bounded domain X .
The objective function is assumed to lack an analytical expression (which prevents any
gradient computation), to be very expensive to evaluate, and the evaluations are assumed
to be noisy (i.e., rather than observing f(x) we observe y = f(x) + ε, with ε some
additive noise). The goal of BO methods is to reduce the number of objective evaluations
that need to be performed to solve the optimization problem. For this, they iteratively
suggest, in a careful and intelligent way, an input location at which the objective that is
being optimized should be evaluated each time. For this, at each iteration N = 1, 2, 3, . . .
of the optimization process, BO methods fit a probabilistic model, typically a Gaussian
process (GP) (Rasmussen, 2003), to the collected observations of the objective {yi}Ni=1.
The uncertainty about the potential values of the objective are provided by the predictive
distribution of the GP. This uncertainty is used to generate an acquisition function α(·),
whose value, at each input location, indicates the expected utility of evaluating f(·)
there. The next point xN+1 at which to evaluate f(·) is the one that maximizes α(·).
After collecting this observation, the process is repeated. When enough data has been
collected, the GP predictive mean value for f(·) can be optimized to find the solution of
the problem.

The key to BO success is that evaluating the acquisition function α(·) is very cheap
compared to the evaluation of the objective f(·). This is so because the acquisition
function only depends on the GP predictive distribution for f(·) at a candidate point
x. Thus, α(·) can be maximized with very little cost. BO methods hence spend a small
amount of time thinking very carefully where to evaluate next the objective function
with the aim of finding its optimum with the smallest number of evaluations. This is a
useful strategy when the objective function is very expensive to evaluate and it can save
a lot of computational time.

A problem, however, of GPs is that these probabilistic models assume that the
input variables take real-values. If this is not the case and, for example, some of the
variables can take categorical or integer values, extra approximations in the BO method
have to be introduced to address this issue. In the case of integer-valued variables,
the approximations often involve simply doing some rounding to the closest integer
after optimizing the acquisition function. In the case of a categorical variable, one
simply uses a one-hot encoding. This involves adding as many extra input variables as
different categories this variable can take. Then, after optimizing the acquisition function,
the extra variable that is largest is set equal to one and all the others equal to zero.
This is the approach followed, for example, in the popular software for BO Spearmint
(https://github.com/HIPS/Spearmint).

We show here that the approaches described for handling categorical and integer-
valued variables may make the BO method fail. These problems can be overcome by
doing the rounding (to the closest integer or the corresponding one-hot encoding) inside
the wrapper that evaluates the objective. Nevertheless, this will make the objective
constant in some regions of the input space, i.e., those rounded to the same integer
value, in the case of integer-valued variables, or those that lead to the same one-hot
encoding, in the case of categorical variables. This constant behavior of the objective
will be ignored by the GP model. To overcome this, we introduce a transformation

https://github.com/HIPS/Spearmint

Chapter 6. Dealing With Categorical And Integer-Valued Variables In Bayesian
Optimization With Gaussian Processes 139

of the input variables that will lead to an alternative covariance function for the GP
model. With this covariance function, the GP will correctly describe the objective as
constant in particular regions of the input space, leading to better modeling results and,
in consequence, to better optimization results.

Practical examples of optimization problems involving a mix between real, categorical
and integer-valued variables include finding the optimal hyper-parameters of a machine
learning system (Snoek, 2013). Specifically, in a deep neural network, we may want to
adjust the learning rate, the number of layers and the activation function. These two last
variables can only take integer and categorical values, respectively, while the learning
rate can take real values. Similarly, in a gradient boosting ensemble of decision trees
(Friedman, 2001) we may try to adjust the learning rate and the maximum depth of
the trees, which can only take integer values. Our experiments show that the proposed
approach for dealing with a mix of real, categorical, and integer-valued variables in BO
methods leads to improved results over standard techniques and other alternatives from
the literature.

The rest of the chapter is organized as follows: Section 6.2 gives a short introduction
to BO and Gaussian processes. Section 6.3 describes the proposed approach to deal
with categorical and integer-valued variables in BO methods using GPs. Section 6.4
reviews related methods from the literature. Section 6.5 describes synthetic and real-
world experiments that show that the proposed approach has advantages over standard
methods for BO and related techniques. Finally, Section 6.6 gives the conclusions of this
chapter.

6.2 Background on Gaussian Processes and Bayesian Op-
timization

BO methods rely on a probabilistic model for the black-box function being optimized.
This model must generate a predictive distribution for the potential values of the objective
at each point of the input space. This predictive distribution is used to guide the search,
by focusing only on regions of the input space that are expected to deliver the most
information about the solution of the optimization problem. Most commonly used
models are Gaussian processes (GPs) (Rasmussen, 2003), Random Forests implemented
in Auto-WEKA (Thornton et al., 2013), Student’s-T processes (Shah et al., 2014) or
deep neural networks (Snoek et al., 2015). In this chapter, we will focus on the use of
GP, but the same ideas can be implemented in a Student’s-T process.

A GP is defined as a prior distribution over functions. When using a GP as the
underlying model, the assumption made is that the black-box function f(·) to be
optimized has been generated from such a prior distribution, which is characterized
by a zero mean and a covariance function k(x,x′). That is f(·) ∼ GP(0, k(·, ·)). The
particular characteristics of f(·), e.g., smoothness, additive noise, amplitude, etc., are
specified by the covariance function k(x,x′) which computes the covariance between f(x)
and f(x′). A typical covariance function employed in the context of BO is the Matérn
function, in which the ν parameter is set equal to 3/2 (Snoek, 2013). This covariance
function is:

k(x,x′) = σ2(1 +

√
3r

`
) exp(−

√
3r

`
) , (6.1)

Chapter 6. Dealing With Categorical And Integer-Valued Variables In Bayesian
Optimization With Gaussian Processes 140

where r is the Euclidean distance between x and x′. Namely, |x− x′|. Note that k(·, ·)
only depends on r. This particular covariance function and others that share this property
are known as radial basis functions (RBFs). ` is simply a hyper-parameter known as
length-scale, which controls the smoothness of the GP. Most of the times a different
length scale `j is used for each dimension j. σ2 is the amplitude parameter, which
controls the range of variability of the GP samples. Finally, ν is a hyper-parameter
related to the number of times that the GP samples can be differentiated. Another
popular covariance function is the squared exponential. In this case k(·, ·) is given by:

k(x,x′) = σ2 exp

(
− r2

2`2

)
. (6.2)

Assume that we have already evaluated the objective at N input locations. Let
the corresponding data be summarized as D = {(xi, yi)}Ni=1, where yi = f(xi) + εi,
with εi some additive Gaussian noise with variance σ2

0. A GP provides a predictive
distribution for the potential values of f(·) at different regions of the input space. This
distribution is Gaussian and is characterized by a mean µ(x) and a variance σ2(x). Namely,
p(f(x?)|y) = N (f(x?)|m(x?), σ2(x?)), where the mean and variance are respectively
given by:

µ(x) = kT∗ (K + σ2
0I)−1y , (6.3)

σ2(x) = k(x,x)− kT∗ (K + σ2
0I)−1k∗ . (6.4)

In the previous expression y = (y1, . . . , yt−1)N is a vector with the objective evaluations
observed so far; k∗ is a vector with the prior covariances between f(x) and each yi; σ

2
0 is

the variance of the additive Gaussian noise; K is a matrix with the prior covariances
among each f(xi), for i = 1, . . . , N ; and k(x,x) is the prior variance at the candidate
location x. All these quantities are simply obtained by evaluating the covariance function
k(·, ·) on the corresponding input values. See Rasmussen (2003) for further details.

BO methods use the previous predictive distribution to determine at which point
xN+1 the objective function has to be evaluated. Once this new observation has been
collected, the GP model is updated with the new data and the process repeats. After
collecting enough data like this, the GP posterior mean given by (6.3) can be optimized
to provide an estimate of the solution of the optimization problem. Notwithstanding,
a GP has some hyper-parameters that need to be adjusted during the fitting process.
These include the variance of the additive Gaussian noise σ2

0, but also any potential
hyper-parameter of the covariance function k(·, ·). These can be, e.g., the amplitude
parameter and the length-scales (Rasmussen, 2003). Instead of finding point estimates
for these hyper-parameters, an approach that has shown good empirical results is to
compute an approximate posterior distribution for them using slice sampling (Snoek,
2013). The previous Gaussian predictive distribution described in (6.3) and (6.4) is
then simply averaged over the hyper-parameter samples to obtain the final predictive
distribution of the probabilistic model.

The key for BO success is found in the acquisition function α(·). This function uses
the predictive distribution given by the GP to compute the expected utility of performing
an evaluation of the objective at each input location. The next point at which the
objective has to be evaluated is simply xN+1 = arg maxx α(x). Because this function
only depends on the predictive distribution given by the GP and not on the actual
objective f(·), the maximization of α(·) is very cheap. A popular acquisition function is
expected improvement (EI) (Jones et al., 1998). EI is given by the expected value of the

Chapter 6. Dealing With Categorical And Integer-Valued Variables In Bayesian
Optimization With Gaussian Processes 141

utility function u(y) = max(0, ν − y) under the GP predictive distribution for y, where
ν = min({yi}Ni=1) is the best value observed so far, assuming minimization. Therefore, EI
measures in expectation how much we will improve on the current best found solution by
performing an evaluation at each candidate point. The EI acquisition function is given
by the following expression:

α(x) = σ(x)(γ(x)Φ(γ(x) + φ(γ(x)) , (6.5)

where γ(x) = (ν − µ(x))/σ(x) and Φ(·) and φ(·) are respectively the c.d.f. and p.d.f. of
a standard Gaussian distribution.

Another popular acquisition function for BO is Predictive Entropy Search (PES)
(Hernández-Lobato et al., 2014). PES is an information-theoretic method that chooses
the next input location xN+1 at which the objective function has to be evaluated as the
one that maximizes the information about the global maximum x? of the optimization
problem. The information about this maximum is given in terms of the differential entropy
of the random variable x?. This random variable is characterized by the corresponding
posterior distribution p(x?|DN). PES simply chooses xN+1 as the point that maximizes
the expected reduction in the differential entropy of x?. The PES acquisition function is:

α(x) = H[p(x?|DN)]− Ey[H[p(x?|DN ∪ (x, y))] , (6.6)

where the expectation w.r.t. y is given by the predictive distribution of the GP at x.
A problem is, however, that evaluating (6.6) in closed form is intractable. This

expression has to be approximated in practice. In Hernández-Lobato et al. (2014), the
authors use the fact that the previous expression is simply the mutual information
between x? and y, I(x?; y), which is symmetric. Therefore one can swap the roles of y
and x? in (6.6). This greatly simplifies the evaluation of the acquisition function and an
efficient approximation based on the expectation propagation algorithm is possible. PES
has been compared to other acquisition functions showing improved optimization results.
In particular, it shows a better trade-off between exploration and exploitation than EI.

6.3 Dealing with Categorical and Integer-valued Variables

In the framework described, the objective function f(·) is assumed to have input variables
taking values on the real line. This is so, because in a GP the variables introduced in
the covariance function k(·, ·) are assumed to be real. A problem may arise when some
of the input variables can only take values in a closed subset of a discrete set, such as
the integers, or when some of the input variables are categorical. In this second case
a typical approach is to use a one-hot encoding of categorical variables. That is, the
number of input dimensions is extended by adding extra variables, one per potential
category. The only valid configurations are those in which one of the extra variables takes
value one (i.e., the extra variable corresponding to the active category), and all other
extra variables take value zero. For example, consider a categorical input dimension xj
taking values in the set C = {red, green, blue}. We will replace dimension j in x with
three extra dimensional variables taking values (1, 0, 0), (0, 1, 0) and (0, 0, 1), for each
value in C, respectively.

When not all input variables take real values, a standard GP will ignore that only some
input variables configurations are valid and will place some probability mass on points
at which f(·) cannot be evaluated. These incorrect modeling assumptions about f(·)

Chapter 6. Dealing With Categorical And Integer-Valued Variables In Bayesian
Optimization With Gaussian Processes 142

may have a negative impact on the optimization process. Furthermore, the optimization
of α(·) will give candidate points xN+1 in which integer-valued or categorical variables
will be assigned invalid values. In practice, some mechanism must be implemented to
transform real values into integer or categorical values before the evaluation can take
place. Importantly, if this is not done with care, some problems may appear.

6.3.1 Naive and Basic Approaches

As described before, if the problem of interest considers some categorical or integer-
valued variables, f(·) cannot be evaluated at all potential input locations. It can only be
evaluated at those input locations that are compatible with the categorical or integer-
valued variables. A naive approach to account for this is to (i) optimize α(·) assuming
all variables take values in the real line, and (ii) replace all the values for the integer-
valued variables by the closest integer, and replace all categorical variables with the
corresponding one-hot encoding in which only one of the extra input variables takes
value one and all the others take value zero. In this second case, the active variable is
simply chosen as the one with the highest value among the extra input variables. More
precisely, let Qk be the set of extra input dimensions of x corresponding to the categorical
input variable k and let j ∈ Qk. Then, we simply set xj = 1 if xj > xi ∀i ∈ Qk and
i 6= j. Otherwise, xj = 0. This is the approach followed by the popular software for BO
Spearmint (https://github.com/HIPS/Spearmint).

The first row of Figure 6.1 shows, for an integer-valued input variable, that the
naive approach just described can lead to a mismatch between the points in which the
acquisition takes high values, and where the actual evaluation is performed. Importantly,
this can produce situations in which the BO method always evaluates the objective at a
point where it has already been evaluated. This may happen simply because the next and
following evaluations are performed at different input locations from the one maximizing
the acquisition function. More precisely, since the evaluation is performed at a different
point, it may not reduce at all the uncertainty about the potential values of the objective
at the point maximizing the acquisition function. Of course, in the case of categorical
input variables this mismatch between the maximizer of the acquisition function and the
actual point at which the objective is evaluated will also be a problem. For this reason,
we discourage the use of this approach.

The previous problem can be easily solved. In the case of integer-valued variables,
one can simply do the rounding to the closest integer value inside the wrapper that
evaluates the objective. In the case of categorical variables, a similar approach can be
followed inside the wrapper using one-hot encoding. Namely, (i) look at which extra
input variable has the largest value, (ii) set that input variable equal to one, and (iii) set
all other extra input variables equal to zero. This basic approach is shown in the second
row of Figure 6.1 for the integer-valued case. Here, the points at which the acquisition
takes high values and the points at which the objective is evaluated coincide. Thus,
the BO method will tend to always perform evaluations at different input locations, as
expected. This will avoid the problem described before, in which the BO method may
get stuck. The problem is, however, that the actual objective is constant in the intervals
that are rounded to the same integer value. This constant behavior is ignored by the GP,
which can lead to sub-optimal optimization results. The same behavior is expected in
the case of categorical input variables.

https://github.com/HIPS/Spearmint

Chapter 6. Dealing With Categorical And Integer-Valued Variables In Bayesian
Optimization With Gaussian Processes 143

N
a
iv

e

Round variable before evaluation. 4 evaluations.

●

●

●
●

●

●

●
●●

0 1 2 3 4

Round variable before evaluation. 5 evaluations.

●

●

●
●

●
●

●

●
●

●●

0 1 2 3 4

B
a
si

c

Round variable inside wrapper. 4 evaluations.

●

●

●
●●

0 1 2 3 4

Round variable inside wrapper. 5 evaluations.

●

●

●
●

●●

0 1 2 3 4

P
r
o
p

o
se

d

Integer Transformation. 3 evaluations.

●

●

●

0 1 2 3 4

Integer Transformation. 5 evaluations.

●

●

●
●

●
●

●

●
●

●●

0 1 2 3 4

Figure 6.1: Different methods for dealing with integer-valued variables. At the top of
each image, we show a GP fit to the data (posterior mean and 1-std confidence interval,
in purple) that models a 1-dimensional objective taking values in the set {0, 1, 2, 3, 4}
(dashed line). To display the objective we have rounded the real values at which to
do the evaluation to the closest integer. Below the GP fit, it is shown the acquisition
function whose maximum is the recommendation for the next new evaluation. Each
column shows similar figures before and after evaluating a new point, respectively. The
proposed approach leads to no uncertainty about the objective after two evaluations.
Best seen in color.

6.3.2 Proposed Approach

We propose here a method to alleviate the problems of the basic approach described in
Section 6.3. For this, we consider that the objective should be constant in those regions
of the input space that lead to the same input variable configuration on which the actual
objective has to be evaluated. This property can be easily introduced into the GP by
modifying the covariance function k(·, ·). Covariance functions are often stationary and
only depend on the distance between the input points (Rasmussen, 2003). If the distance
between two points is zero, the values of the function at both points will be the same
(the correlation is equal to one). Based on this fact, we suggest to transform the input
points to k(·, ·), obtaining an alternative covariance function k′(·, ·):

k′(xi,xj) = k(T (xi), T (xj)) , (6.7)

where T (x) is a transformation in which all non real input variables of f(·) in x are
modified as follows:

• The input variables corresponding to an integer-valued input variable are rounded
to the closest integer value.

• All extra input variables corresponding to the same categorical input variable are
assigned zero value unless they take the largest value among the corresponding
group of extra variables. If they take the largest value, they are assigned value one.

Essentially T (·) does the same transformation on x as the one described in Section 6.3.1
for the basic approach inside the wrapper that evaluates the objective. Importantly,

Chapter 6. Dealing With Categorical And Integer-Valued Variables In Bayesian
Optimization With Gaussian Processes 144

however, this transformation takes place in the covariance function of the GPs, which
will allow for a better modeling of the objective.

The beneficial properties of k′(·, ·) when used for BO are illustrated in the third row
of Figure 6.1 for the case of an integer-valued input variable. We can see that the GP
model correctly identifies that the objective function is constant inside intervals of real
values that are rounded to the same integer. The uncertainty is also the same in those
intervals, and this is reflected in the acquisition function. Furthermore, after performing
a single measurement in each interval, the uncertainty about f(·) goes to zero. This
better modeling of the objective is expected to be reflected in a better performance of the
optimization process. The same behavior is expected in the case of categorical variables.

In the case of integer-valued variables, the transformation T (x) will round all integer-
valued variables values in R to the closest integer k ∈ Z. The set of integer values, Z,
has a notion of order. That is, for all z ∈ Z, we can define operators of order that involve
two values: <,>,≤ and ≥, such that zi < zj , zj > zi, zi ≤ zj and zj ≥ zi, having that
zi, zj ∈ Z. This order will be preserved by the resulting transformation. More precisely,
assume an integer input variable and that T (x) and T (x′) only differ in the value of such
integer input variable. The prior covariance between f(x) and f(x′) under k(T (x), T (x′))
will be higher the closer the corresponding integer values of T (x) and T (x′) are one from
another. Therefore, the GP will be able to exploit the smoothness in the objective f(·)
when solving the optimization problem.

In the case of categorical variables (e.g., variables that can take values such as red,
green, blue) there is no notion of order. That is, the operators <,>,≥ and ≤ have no
meaning nor purpose. One cannot compare two different values c1, c2 of any categorical-
valued set C according to these operators. However, what does exist in a categorical
set is a notion of equality or difference, given by the operators =, 6=. The proposed
transformation is able to preserve this notion of no order and notion of equal or different.
More precisely, assume a single categorical variable and that T (x) and T (x′) only differ
in the values of the corresponding extra variables associated to that categorical variable.
The prior covariance between f(x) and f(x′) under k(T (x), T (x′)) will be the same as
long as T (x) and T (x′) encode a different value for the categorical variable. Of course if
T (x) and T (x′) encode the same value for the categorical variable, the covariance will be
maximum.

It is straight-forward to show that the proposed transformation generates a valid
kernel function. In particular, a kernel is valid if we can find an embedding φ(·) such
that k(x,x′) = φ(x)T · φ(x) (Shawe-Taylor et al., 2004). Assume that the original
kernel is valid and hence k(x,x′) = φ(x)T · φ(x) for some embedding φ(·). Then
k(T (x), T (x′)) = φ(T (x))T ·φ(T (x)), and the embedding of the resulting kernel is simply
given by φ(T (·)).

6.3.2.1 Visualization of the Proposed Transformation

Figure 6.2 illustrates the modeling properties of the proposed transformation in the case
of a real and an integer-valued variable (6.7). It shows the mean and standard deviation
of the posterior distribution of a GP given some observations. It compares results with a
standard GP that does not use the proposed transformation. In this case, the data has
been sampled from a GP using the covariance function in (6.7) with k(·, ·) the squared
exponential covariance function (Rasmussen, 2003). One dimension takes continuous
values and the other dimension takes values in {0, 1, 2, 3, 4}. Note that the posterior
distribution captures the constant behavior of the function in any interval of values that

Chapter 6. Dealing With Categorical And Integer-Valued Variables In Bayesian
Optimization With Gaussian Processes 145

are rounded to the same integer, only for the integer dimension (top). A standard GP
(corresponding to the basic approach in Section 6.3) cannot capture this shape (bottom).

Figure 6.3 illustrates the proposed transformation for the categorical case and a single
variable that can only take two values, e.g., True and False. Using one-hot encoding,
these two values will be represented as (0, 1) and (1, 0), respectively. In the naive
approach described before, this categorical variable will be replaced by two real variables
taking values in the range [0, 1]. Notwithstanding, any combination of values in which
the first component is larger than the second will lead to the configuration value (1, 0).
Conversely, any combination of values in which the second component is larger will lead
to the configuration value (0, 1). Therefore, the corresponding objective will be constant
in those regions of the input space that lead to the same configuration. This behavior is
illustrated by Figure 6.3 (top), in which the posterior distribution of the GP is plotted
given two observations. In this case we use the proposed transformation of the covariance
function. Note that the uncertainty goes to zero after just having a single observation
corresponding to the True value and a single observation corresponding to the False
value. This makes sense, because the objective is constant in all those regions of the input
space that lead to the same configuration of the extra variables introduced in the input
space. In Figure 6.3 (bottom) we show that a standard GP cannot model this behavior,
and the posterior distribution of the mean is not constant in those regions of the input
space that lead to the same configuration for the categorical variable. Furthermore, the
posterior standard deviation is significantly different from zero, unlike in the proposed
approach. Summing up, Figure 6.3 shows that by using the proposed covariance function,
we are better modeling the objective function, which in the end will be translated in
better optimization results.

6.3.3 Optimization of the Acquisition Function

A consequence of the transformation described in the previous section is that the
acquisition function will be flat in some regions of the input space, depending on the
number of integer and categorical variables. This behavior is illustrated in Figure 6.1 for
one integer-valued variable. Often, the typical approach to optimize the acquisition is
to evaluate it first on a grid of points to search for a good candidate point at which to
start a gradient-based search using, e.g., L-BFGS. This is the approach employed by the
BO software Spearmint. However, if the acquisition function is not smooth, this may
be sub-optimal. Assume that we want to optimize a function with D binary categorical
inputs, with large D, for example, 30. The best point after evaluating the acquisition
function on a grid is extremely unlikely to be the best among the 2D choices, and the
gradient-based optimization of the acquisition function will not leave the starting point,
since the acquisition function is expected to be flat at the starting point.

To overcome this problem, we consider a block coordinate ascent optimization
methodology which iterates between optimizing the non-real variables (integer-valued
and categorical) and real variables, similar to the one-exchange neighborhood (OEN)
strategy described in (Hutter, 2009; Lévesque et al., 2017). Our methodology consists in
using the grid and the L-BFGS methods to optimize all real variables and then, the OEN
strategy to optimize the transformed integer and categorical variables. The OEN strategy
is a greedy method. Under it, one iteratively evaluates for each non-real dimension, the
corresponding neighbors of that dimension, and if some improvement is made in terms of
the acquisition function, that new value is kept as the best one. This process is repeated
until no further progress is made. Of course, to evaluate the quality of each neighbor, for

Chapter 6. Dealing With Categorical And Integer-Valued Variables In Bayesian
Optimization With Gaussian Processes 146

P
r
o
p

o
se

d
A

p
p

r
o
a
c
h

Integer Variable

0
1

2

3

4

5
R

ea
l v

ar
ia

bl
e

0

1

2

3

4

5

G
P

 P
osterior M

ean

−2

−1

0

1

Posterior Mean

−1

0

1

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

−1

0

1

0.0

0.2

0.4

0.6

0.8

1.0

Posterior Standard Deviation

Integer Variable

R
e
a
l
V
a
ri

a
b

le

S
ta

n
d

a
r
d

G
P

Real Variable

0
1

2

3

4

5

R
ea

l v
ar

ia
bl

e

0

1

2

3

4

5

G
P

 P
osterior M

ean

−2

−1

0

1

2

Posterior Mean

−2

−1

0

1

2

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

−2

−1

0

1

2

0.0

0.2

0.4

0.6

0.8

1.0

Posterior Standard Deviation

R
e
a
l
V
a
ri

a
b
le

Real Variable

Figure 6.2: (top) Posterior mean and standard deviation of a GP model over a
2-dimensional space in which the first dimension can only take 5 different integer values
and when the covariance function in (6.7) is used. Note that the second dimension can
take any real value. (bottom) Same results for a GP model using a covariance function
without the proposed transformation. Best seen in color.

a given integer-valued or categorical dimension, the real variables have to be optimized.
For that task, we use the L-BFGS method.

Of course, at this point one may ask whether the proposed transformation of the
GP covariance function is beneficial at all, and if simply optimizing the acquisition
function as described here could be enough. To answer this question, we have also
implemented block coordinate ascent optimization methodology without transforming
the integer-valued and categorical variables in the GP covariance function. We compared
in a toy problem the results given by both approaches, the proposed approach and the
alternating optimization methodology alone, which we refer to as OEN optimization only.

Figure 6.4 shows the evaluations performed by the proposed approach and by OEN
optimization only in a 2-dimensional optimization problem with one real variable and
one integer-valued variable taking 5 different values. The contour curves show the
value of the acquisition function. We show results after 10, 20 and 30 evaluations. We
observe that the proposed approach performs a more evenly evaluation of the input
space. By contrast, the OEN optimization only strategy, which does not make use of
the proposed transformation, tends to concentrate all evaluations in a particular region
of the input space. This is a consequence of using a model (i.e., a GP without the
proposed transformation) that ignores that the actual objective will take the same value

Chapter 6. Dealing With Categorical And Integer-Valued Variables In Bayesian
Optimization With Gaussian Processes 147

P
r
o
p

o
se

d
A

p
p

r
o
a
c
h

True

0.0
0.2

0.4

0.6

0.8

1.0

Fa
ls

e

0.0

0.2

0.4

0.6

0.8

1.0

G
P

 P
osterior M

ean

−2

−1

0

1

2

Posterior Mean

●

●

●

●

−0.6

−0.4

−0.2

0.0

0.2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Posterior Std Dev.

True

Fa
ls

e

−1.0

−0.5

0.0

0.5

1.0
●

●

S
ta

n
d

a
r
d

G
P

True

0.0
0.2

0.4

0.6

0.8

1.0

Fa
ls

e

0.0

0.2

0.4

0.6

0.8

1.0

G
P

 P
osterior M

ean

−2

−1

0

1

2

Posterior Mean

●

●

●

●

−0.6

−0.4

−0.2

0.0

0.2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Posterior Std Dev.

True

Fa
ls

e

0.0

0.2

0.4

0.6

0.8

1.0
 0.2

 0.2

 0.25

 0.3

 0.35

 0
.3

5

 0.4

 0.4

 0
.4

5

 0.45

 0.5

 0.5

 0.55

 0.55

 0.6

 0.6

 0.65 0.65

 0.65

 0.65

 0.7

 0.7

 0.75

 0.75

 0.8

 0.8

 0.85

 0
.8

5

 0.9

 0.9

 0.95

 0.95

 1

 1
●

●

Figure 6.3: (top) Posterior mean and standard deviation of a GP model over a
1-dimensional binary variable. The covariance function in (6.7) is used. Same results
for a GP model using a covariance function without the proposed transformation. Best
seen in color.

in those regions of the input space that lead to the same integer value. In any case, our
experiments of Section 6.5 show that OEN optimization only often performs better than
the basic approach described in Section 6.3, which simply uses a grid of points combined
with L-BFGS to optimize the acquisition function with respect to all input variables,
independently of whether they take real, integer or categorical values.

6.4 Related Work

We describe here two approaches that can be used as an alternative to BO methods
using GPs when categorical and/or integer-valued variables are present in a black-
box optimization problem. These are Sequential model-based optimization for general
algorithm configuration (SMAC) (Hutter et al., 2011) and the Tree-structured Parzen
Estimator Approach (TPE) (Bergstra et al., 2011). Both can naturally handle integer
and categorical-valued variables. SMAC is present in the popular machine learning tool
AutoWeka (Thornton et al., 2013). TPE is used in the HyperOpt tool (Bergstra et al.,
2013).

SMAC uses a random forest as the underlying surrogate model of the black-box
objective (Breiman, 2001). The predictive distribution given by this model is used to

Chapter 6. Dealing With Categorical And Integer-Valued Variables In Bayesian
Optimization With Gaussian Processes 148

10 evaluations 20 evaluations 30 evaluations

O
E

N
O

p
t.

O
n

ly

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.1
00

0.1
00

0.100

0.
20

00.200

0.300

0.400

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.100

0.
10

0

0.200

0.2000.300
0.400

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.080

0.080

0.080

0.080

0.080

0.160

0.160

0.160

0.240

0.240

0.240

P
r
o
p

o
se

d
A

p
p

r
o
a
c
h

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.008

0.008

0.008

0.008

0.
01

6

0.
01

6

0.024

0.024

0.032

0.032

0.040

0.040

0.048

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.000

0.0000.0000.0000.0010.0010.0010.001

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0000.0000.0000.0000.0000.000

Figure 6.4: Evaluations plotted by crosses performed by the OEN optimization only
method (top) and the proposed approach (bottom) of a 2-dimensional sample from a
GP where one of the variables is integer-valued with range 5. The contour represents
the value of the acquisition function in the input space. From left to right, acquisition
function with 10, 20 and 30 evaluations. Best seen in color.

select promising parameter values on which the objective should be evaluated. In random
forest T random regression trees are iteratively fit using each time a bootstrap sample of
training data. Each bootstrap sample is obtained by drawing with replacement from the
observed data N instances. Furthermore, in random forest, at each node, a randomly
chosen subset of variables are tested to split the data. This introduces variability in the
generated regression trees. Given a candidate test location, the prediction for that point
is computed for each of the T trees. The predictive distribution of the model is simply a
Gaussian distribution with the empirical mean and variance across the individual tree
predictions. Given this predictive distribution, the EI criterion described in Section 6.2 is
computed and used to select a new point at which the objective f(·) should be evaluated.
The main advantage of random forest is that it has a smaller computational cost than a
GP.

The regression trees used by random forest to compute the predictive distribution can
naturally consider integer and categorical-valued variables. Therefore this method does
not suffer from the limitations described in Section 6.3 for GPs. A problem, however, is
that the predictive distribution of random forest is not very good. In particular, it relies
on the randomness introduced by the bootstrap samples and the randomly chosen subset
of variables to be tested at each node to split the data. This result is confirmed by our
experiments, in which BO methods using GPs tend to perform better than SMAC.

In SMAC, the EI criterion is optimized by a simple multi-start local search algorithm.
This method considers the ten resulting configurations with locally maximal EI from
previous runs, and initiates a local search at each of them. To handle mixed categorical
and integer parameter spaces, they use a randomized one-exchange neighbourhood search
method. The search is stopped when none of the neighbours improves the EI criterion.
The configuration with the highest EI value is chosen as the candidate on which to

Chapter 6. Dealing With Categorical And Integer-Valued Variables In Bayesian
Optimization With Gaussian Processes 149

evaluate the objective at the next iteration. More details on this method are given in
(Hutter et al., 2011).

TPE uses EI as the acquisition function. However, its computation is carried out
in a different way, using a different modeling strategy. Whereas standard BO methods
fit a discriminative model for p(y|x) directly, TPE follows a generative approach. More

precisely, p(x|y) and p(y) are fit instead. Both approaches are related as p(y|x) = p(x|y)p(y)
p(x)

where p(x) =
∫
p(x|y)p(y)dy. To obtain an estimate of p(x|y), TPE models each

dimension with a probability distribution that serves as a prior for that dimension. Then,
TPE replaces those distributions with non-parametric densities. TPE redefines p(x|y) by
using two different densities, `(x) and g(x). `(x) is estimated using the observations in
which the evaluation is lower than a chosen value y?. g(x) is estimated using the rest of
observations, respectively. That is,

p(x|y) =

{
`(x) if y ≤ y? ,
g(x) if y > y? .

(6.8)

Importantly, these two densities are obtained using Parzen estimators, a non-parametric
density estimator, in the case of continuous random variables. In the case of categorical
variables, a categorical distribution is used instead. Similarly, in the case of a variable
over the integers, a distribution that considers only this domain is used instead. This
can easily account for categorical and integer-valued input variables in TPE. y? is simply
set as some quantile of the observed y values. An interesting property of this approach is
that no specific model for p(y) is necessary. TPE derives a different expression for the
EI acquisition function. Namely,

α(x) =

∫ y?

−∞
(y? − y)p(y|x)dy

=

∫ y?

−∞
(y? − y)

p(x|y)p(y)

p(x)
dy ∝ (γ +

g(x)

`(x)
(1− γ))−1 , (6.9)

where we have used that γ = p(y < y?) and that p(x) =
∫
p(x|y)p(y)dy = γl(x) + (1−

γ)g(x). See (Bergstra et al., 2011) for further details. Importantly, both of the models,
`(x) and g(x), are hierarchical processes that naturally take into account discrete-valued
and continuous-valued variables.

The TPE EI criterion is hence maximized simply by choosing points with high
probability under `(x) and low probability under g(x). More precisely, in TPE, at
each iteration, the evaluation is performed at the candiate point with greatest EI of
many simulated points sampled from `(x) and evaluated according to (proportionally)
`(x)/g(x). The particular form of `(x) makes it easy to draw candidates with a mix
between discrete and continous variables.

In the literature there are other approaches for BO with GPs that can account for
categorical and integer-valued input variables. For example, (Lévesque et al., 2017;
Rainforth et al., 2016) suggest to constrain the optimization of the acquisition function
to consider only those values that are valid. This is essentially equivalent to the method
OEN optimization only described in Section 6.3.3. This method is expected to give
sub-optimal results for the reasons explained in that section.

A related approach to our proposed transformation to deal with categorical variables
is the kernel proposed in (Hutter, 2009). In that work it is used a weighted Hamming
distance kernel to account for this type of variables. That method can be equivalent to

Chapter 6. Dealing With Categorical And Integer-Valued Variables In Bayesian
Optimization With Gaussian Processes 150

our methodology when the squared exponential kernel is used. However, as we transform
the inputs before feeding them into the kernel, our approach is more general and has the
advantage of being able to use any valid kernel for GPs. More over, (Hutter, 2009) does
not include any empirical evaluation of the benefits of considering such a kernel, nor it
explains how to deal with integer-valued variables.

6.5 Experiments

We carry out several experiments to evaluate the performance of our proposed approach
for dealing with both integer and categorical-valued variables in Bayesian optimization.
We compare the performance of this method with (i) the basic approach described in
Section 6.3. We also compare results with (ii) the basic approach that uses the OEN
methodology for optimizing the acquisition function (without performing our suggested
transformation in the covariance function of the GP). We refer to such a method as OEN
optimization only. Each method has been implemented in the software for BO Spearmint
in this branch (https://github.com/EduardoGarrido90/Spearmint). Finally, we also
compare results in both synthetic and real scenarios with two other methods that do not
use GPs as the surrogate model. These methods are the ones described in the related
work section. Namely, (iii) SMAC and (iv) TPE, as implemented in the HyperOpt
platform.

In each experiment carried out in this section, we report average results and the
corresponding standard deviations. The results reported are averages over 100 repetitions
of the corresponding experiment. Means and standard deviations are estimated using
200 bootstrap samples of the corresponding estimates. For the GPs we use a Matérn
covariance function and estimate the GP hyper-parameters using slice sampling (Murray
and Adams, 2010). The acquisition function that we employ in these experiments is
PES. The hyper-parameters of each GP (length-scales, level of noise and amplitude)
are approximately sampled from their posterior distribution using slice sampling as in
Snoek (2013). We generate 10 samples for each hyper-parameter, and the acquisition
function of each method is averaged over these samples. In the real world scenarios, we
generate 50 samples for each hyper-parameter. For each method, at each iteration of
the optimization process, we output a recommendation obtained by optimizing the GPs
mean functions in the synthetic experiments. In the real-world experiments we return
the best observation. Both SMAC and TPE deliver their recommendation based on the
best-observed evaluation in both synthetic and real-world scenarios.

The experiments contained in this section are organized as follows: The first set of
experiments are synthetic and the objective is sampled from a GP prior. Then, in order
to compare GP Bayesian Optimization with non-GP Bayesian Optimization in scenarios
where the function is not obtained from a GP, we consider three real optimization
problems: Finding an optimal ensemble of trees on the digits dataset and finding an
optimal deep neural network on the digits and MNIST datasets.

6.5.1 Synthetic Experiments

We compare the five methods described before when the objective is sampled from a GP
prior. For this, we generate optimization problems involving 4 and 6 dimensions. We
also consider two settings for each problem involving noisy and noiseless observations.
The variance of the additive Gaussian noise is set equal to 0.01 in the noisy setting. In

https://github.com/EduardoGarrido90/Spearmint

Chapter 6. Dealing With Categorical And Integer-Valued Variables In Bayesian
Optimization With Gaussian Processes 151

each problem the objective is randomly sampled from the corresponding GP prior 100
times and we report average optimization results across the different samples.

The first batch of experiments considers 4 input variables. The first 2 variables take
real values and the rest of the variables take 4 and 3 different integer values, in the
integer case. In the categorical case, the variables take 3 different categories. In the
second batch of experiments we consider 6 input variables. The first 3 variables take real
values and the other 3 take 4, 3 and 2 different integer values, in the integer case, and 3
different categories, in the categorical case. The next section considers real, categorical
and integer-variables at the same time.

In each setting, we sample the objective from a GP prior using (6.7) as the covariance
function. Furthermore, we run each BO method (Basic, Proposed, OEN optimization
only, SMAC and TPE) for 50 iterations in the 4 inputs problem and for 100 iterations in
the 6 inputs problem. For each method, we report the logarithm of the distance to the
minimum value of each objective as a function of the evaluations done. In each of the
100 random repetitions of the experiments we use a different random seed to generate
the objective.

The average results of each method are displayed in Figure 6.5 for the 4 input setting.
We observe that the proposed approach gives better results than the other methods. In
particular, it finds points that are closer to the optimal one with a smaller number of
evaluations of the objective, both in the case of integer-valued (noiseless and noisy) and
categorical-valued scenarios (noiseless and noisy). Figure 6.6 shows similar results for
the 6 input setting.

● ●
●

● ●
●

●
●

●

●
●

●
●

● ● ●

● ●

● ● ●

●
● ● ● ●

●
● ●

● ●
●

●

●
●

● ●
● ●

● ● ● ● ●
● ● ●

●
● ●

● ●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
● ●

● ●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

●

●
●

● ●
●

● ●

●

●

●

●
●

●

●
●

●
●

●
●

●

● ●

●
● ●

●
● ● ●

● ● ● ●
● ● ● ● ● ●

● ● ●
● ● ● ● ● ● ● ●

●
● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

−11.20

−8.88

−6.56

−4.24

−1.92

0.40

0 10 20 30 40 50
Number of Function Evaluations

N
eg

at
iv

e
LL

 w
.r.

t b
es

t o
bs

er
ve

d

Methods
●

●

●

●

●

Basic Approach

OEN Optimization Only

Proposed Approach

SMAC

HyperOpt_TPE

4−dimensions. Two integer variables. Noiseless Observations.

● ●
●

●
●

●
●

●
●

● ●

●
●

●

● ●

●

● ● ●

●
● ●

●
● ● ●

●
● ● ● ● ●

●
●

● ●
● ●

● ●
●

●

●
●

●
● ●

●
●

● ●

●
● ●

●
●

● ● ● ●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

● ●
● ● ●

●

●
● ●

● ● ●
● ●

●
● ● ● ● ● ● ●

● ●

●
●

●
●

●
●

●

● ●

●
●

●

●
●

●

●

●

● ● ● ●

●

● ● ●
● ●

●

● ●

● ● ● ●
●

● ● ●
● ● ● ● ●

● ●

●
● ● ● ●

●
●

●
● ● ● ●

● ●
● ● ● ● ●

● ● ● ● ●
● ●

● ● ● ● ● ● ●

●
● ●

● ●
● ●

● ● ●
● ●

● ● ● ● ●
● ● ●

●
● ●

● ● ● ●
●

● ●
●

● ● ● ●
●

● ● ● ● ● ● ●
● ● ●

● ● ● ●

−8.60

−6.82

−5.04

−3.26

−1.48

0.30

0 10 20 30 40 50
Number of Function Evaluations

N
eg

at
iv

e
LL

 w
.r.

t b
es

t o
bs

er
ve

d

Methods
●

●

●

●

●

Basic Approach

OEN optimization Only

Proposed Approach

SMAC

HyperOpt_TPE

4D sample from GP prior. Two integer variables. Noisy scenario

● ●
●

● ● ● ●
● ● ● ● ● ● ●

● ●

●
● ●

●

● ● ●

●
●

● ●
●

● ● ● ● ●
● ●

●
●

● ●
●

● ● ● ●

●
●

●
● ● ●

● ● ●
● ●

●
●

●
●

●

●

●

●
●

●
●

● ●

● ●
●

●

●

●
●

●
● ● ● ●

● ● ● ●
● ●

● ● ● ●

●

●

●
●

● ● ● ● ● ●

● ●
●

●
●

●
●

● ●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

● ● ● ● ●
● ●

●
●

● ●

●
● ●

−13.00

−10.36

−7.72

−5.08

−2.44

0.20

0 10 20 30 40 50
Number of Function Evaluations

N
eg

at
iv

e
LL

 w
.r.

t b
es

t o
bs

er
ve

d

Methods
●

●

●

●

●

Basic Approach

OEN Optimization Only

Proposed Approach

SMAC

HyperOpt_TPE

4−dimensions. Two categorical variables. Noiseless Observations.

● ●
●

● ●
● ●

● ● ● ●
● ● ●

● ●
● ● ●

● ●

● ● ●

●

● ● ●

●
●

● ●
●

●
●

● ●

●

● ●
●

●
●

● ●
●

●
●

● ●

●

●
●

●

●
●

●
●

● ●

● ●

● ●

●

● ●

● ● ●

●

● ●

●

●

●
●

● ●
●

●
●

●
●

● ●

● ●
● ● ●

●

●
●

● ●

●

●
●

●

● ●

●

●
●

●
●

●
●

●

● ●
●

● ●

● ●

●

● ●

●

●

●

●
● ●

● ● ● ●
●

●
● ● ● ●

●
●

●

●
●

● ●
● ●

●
●

● ● ●

●

●
● ●

●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ●

● ●

−9.10

−7.28

−5.46

−3.64

−1.82

0.00

0 10 20 30 40 50
Number of Function Evaluations

N
eg

at
iv

e
LL

 w
.r.

t b
es

t o
bs

er
ve

d

Methods
●

●

●

●

●

Basic Approach

OEN Optimization Only

Proposed Approach

SMAC

HyperOpt_TPE

4−dimensions. Two categorical variables. Noisy Observations.

Figure 6.5: Average results on the synthetic experiments with 4 dimensions.

We observe that GP based BO outperforms clearly the non-GP based BO, being
the proposed approach better than the basic approach or the OEN optimization only
method. This last method works better than the basic approach, showing that optimizing
the acquisition function with the proposed methodology delivers better results. In the
6-dimensional scenario the difference of performance between the basic approach, OEN
optimization only and the proposed approach is slightly higher than in the 4-dimensional
scenario. SMAC and TPE also perform worse than the other methods in the 6-dimensional

Chapter 6. Dealing With Categorical And Integer-Valued Variables In Bayesian
Optimization With Gaussian Processes 152

●●
●

●●●●
●●●

●
●

●
●

●

●●
●●

●●

●
●

●
●●

●
●●●

●

●

●

●●

●
●

●●●
●●

●
●●

●●
●

●
●

●●●
●●●

●
●●

●
●

●
●

●●
●

●●●●●●●

●●●
●●

●●
●●●●

●
●

●●●●●●●
●

●
●●●●

●

●●
●

●●●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●
●

●
●●

●
●●

●
●●●●

●●●●
●●●●

●●●●●●
●

●●●●●●●●●●●●●●●●
●

●●●●●●●●●●
●●●

●
●●

●
●

●●●●●●
●●●

●●●●●●●

●●
●●●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●

●●

●

●
●

●
●●

●●
●

●●
●

●●●●
●●●●●

●●●●●●●
●

●●●●●●●
●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●
●●●●●●●●●●●

●
●

●●

●
●

●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●
●●

−7.5

−5.9

−4.3

−2.7

−1.1

0.5

0 25 50 75 100
Number of Function Evaluations

N
eg

at
iv

e
LL

 w
.r.

t b
es

t o
bs

er
ve

d

Methods
●

●

●

●

●

Basic Approach

OEN Optimization Only

Proposed Approach

SMAC

HyperOpt_TPE

6−dimensions. Three integer variables. Noiseless Observations.

●●
●

●
●

●●
●●

●
●

●
●

●
●

●●
●

●●

●
●●

●
●

●
●

●
●

●●
●

●
●●

●
●●

●●
●●

●
●

●●
●

●
●●●

●●
●●●●

●

●●●●
●●●●●●

●●

●
●

●

●●
●

●●
●

●●●●●
●

●●●●
●●●●●

●●●●
●●

●●
●

●
●●●●

●
●

●
●●

●

●
●

●

●
●

●

●●
●●

●
●

●
●

●●●
●

●●
●

●●●●●

●

●
●●●●●

●
●●●●●

●●
●●●

●
●●

●
●●

●●●
●●

●

●
●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●

●

●●●●●
●

●●●
●

●
●

●●

●
●

●

●

●●

●●
●

●
●●

●
●●●●

●
●

●
●

●●●
●

●
●●●●

●
●

●●
●●

●
●●●●●●●●●●●●

●
●●

●
●

●●
●

●●
●

●
●

●●
●

●●●●●●
●●

●●
●●●●

●●●●●●●

●

●
●●●●●●

●●●●●●●●●●●●●●●●●●
●●

●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●

●●●●
●

●
●

●●●●●●●
●●●●●

●●
●●●●

●
●

●
●

●●
●

●
●

●
●

●●
●●●●●●●●●●●●●●●●

●
●●●

●●●
●●●

●●●●●●●
●●

●●●
●

●●●●●●●●●●●
●

●●●
●

●

●
●●

●
●●●●●

●
●

●
●●●●

●●●●●●●●●
●●

●●●●
●

●●
●●●●●●

−6.80

−5.34

−3.88

−2.42

−0.96

0.50

0 25 50 75 100
Number of Function Evaluations

N
eg

at
iv

e
LL

 w
.r.

t b
es

t o
bs

er
ve

d

Methods
●

●

●

●

●

Basic Approach

OEN Optimization Only

Proposed Approach

SMAC

HyperOpt_TPE

6−dimensions. Three integer variables. Noisy Observations.

●
●

●●●●●●●●●●●●●●●●
●●

●●●
●●●

●●●
●●

●
●●

●●●
●

●
●●

●
●

●●●●
●

●
●●●

●
●

●●●
●●

●
●●

●●
●

●
●●

●●
●●

●●
●●●●

●
●

●●●●●●●
●●

●
●●

●
●●

●●
●

●
●

●
●

●
●●●●●●●

●
●

●
●

●
●

●●
●●

●
●●●

●●

●
●

●●●
●

●
●

●
●

●●

●●
●●

●●
●●

●●
●●●

●●●●●
●

●
●●●●

●●●
●●●●●

●●
●●●

●●
●

●
●

●●
●

●●●●●●
●

●●
●

●●●●●●
●

●
●

●●●●●●
●●●●

●
●

●
●

●
●

●●

●
●

●

●

●

●
●

●
●

●
●

●

●●
●●

●●
●●

●
●●●●●

●●

●
●●●

●
●●●

−8.60

−6.82

−5.04

−3.26

−1.48

0.30

0 25 50 75 100
Number of Function Evaluations

N
eg

at
iv

e
LL

 w
.r.

t b
es

t o
bs

er
ve

d

Methods
●

●

●

●

●

Basic Approach

OEN Optimization Only

Proposed Approach

SMAC

HyperOpt_TPE

6−dimensions. Three categorical variables. Noiseless Observations.

●
●

●●
●●

●●●
●●●●●●●●

●●●●●●●●●
●

●●●
●●

●●
●

●●
●●●

●
●●●

●
●●

●●●●
●●●●

●

●●

●●●
●

●●
●

●
●

●●●●●●●

●●●●●
●●●●●

●●●●
●

●●●
●●

●
●

●
●●

●

●

●●
●●●●

●
●●●●●●

●●
●●

●●●
●

●●
●●●

●

●

●●●
●●

●●

●
●●

●●

●●
●

●●
●

●●●
●●

●●
●

●
●●●

●●
●

●●●●
●●

●
●

●
●

●
●●

●
●●

●●
●

●●●
●

●

●
●●

●

●

●●●
●

●
●

●

●

●

●

●
●●

●●●●●
●●●

●
●

●●●
●

●
●●●●●

●

●
●

●

●
●●

●●

●
●

●●
●●

●
●●●

●●

●●
●

●●●●
●

●
●●

●●●●

●●●
●

●

●
●

●

●●●
●●

●

●●
●●

●
●●

●●
●●●

●●●
●●●●●●●

●●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●

−6.50

−5.14

−3.78

−2.42

−1.06

0.30

0 25 50 75 100
Number of Function Evaluations

N
eg

at
iv

e
LL

 w
.r.

t b
es

t o
bs

er
ve

d
Methods

●

●

●

●

●

Basic Approach

OEN Optimization Only

Proposed Approach

SMAC

HyperOpt_TPE

6−dimensions. Three categorical variables. Noisy Observations.

Figure 6.6: Average results on the synthetic experiments with 6 dimensions.

case. Finally, in the noisy setting, the methods are more equal but the proposed approach
works slightly better. TPE and SMAC also deliver worse results in the noisy setting.

Note that SMAC and TPE do not assume a GP for the underlying model and could
be in disadvantage in these experiments. However, we believe it is still interesting to
compare results with them in this setting in which the exact solution of the optimization
problem can be easily obtained and the level of noise can be controlled. In the following
section we carry out experiments in which the actual objectives need not be sampled
from a GP, to illustrate the advantages of the proposed approach in a wider range of
problems.

6.5.2 Hyper-parameter Tuning of Machine Learning Algorithms

We compare all methods on the practical problem of finding the optimal parameters of a
gradient boosting ensemble (Friedman, 2001) and a deep neural network on the digits
dataset. This dataset has 1,797 data instances, 10 class labels and 64 dimensions. It
has been extracted from the python package scikit-learn (Pedregosa, 2011). Similarly,
we also consider finding the optimal hyper-parameters of a deep neural network on the
MNIST dataset (LeCun, 1998). This dataset has 60, 000 data instances, 768 dimensions
and 10 class labels. In this set of experiments, we use Predictive Entropy Search (PES)
as the acquisition function, for both the basic, the proposed approach and the OEN
optimization only method.

In the task of finding an optimal ensemble on the digits dataset, the objective that
is considered for optimization is the average test log likelihood of the ensemble. This
objective is evaluated using a 10-fold cross-validation procedure. Note that model bias
can be an issue for all methods in this case, since the actual objective is unknown. We
consider a total of 200 evaluations of the objective. A summary of the parameters
optimized, their type and their range is displayed on Table 6.1. These parameters
are: The logarithm of the learning rate, the maximum depth of the generated trees
and the minimum number of samples used to split a node in the tree building process.

Chapter 6. Dealing With Categorical And Integer-Valued Variables In Bayesian
Optimization With Gaussian Processes 153

Importantly, while the first parameter can take real values, the other two can only take
integer values.

Table 6.1: Names, types and range of the parameters optimized for the ensemble of
trees.

Name Type Range

Log Learning Rate Real [−10, 0]
Maximum Tree Depth Integer [1, 6]
Minimum Number of Samples to Split Integer [2, 6]

In each repetition of the experiment described (there are 100 repetitions) we consider
a different 10-fold cross validation split of the data. The average results obtained are
displayed in Figure 6.7. This figure shows the average difference, in absolute value,
between the test log-likelihood of the recommendation made and the best observed
test-log likelihood, for that particular split, in a log scale. We observe that the proposed
approach significantly outperforms the basic approach. More precisely, it is able to
find parameter values that lead to a gradient boosting ensemble with a better test log
likelihood, using a smaller number of evaluations of the objective. Furthermore, the
proposed approach also performs better than SMAC, TPE, or the OEN optimization
only method.

●

●

●

●

●
●●

●
●●●●●

●●●●
●
●●●

●

●

●
●

●
●
●●

●●
●●●●●

●●●●●●●●
●●●●●●●●●●

●●

●

●

●

●
●
●
●●●●●

●●●
●●

●●●
●●●●●●●●●

●●●

●

●

●

●

●
●
●
●
●
●
●●●

●

●

●

●
●
●
●
●
●
●●●●●●

●●●●●●
●
●●

●●●

−6.5

−5.5

−4.5

−3.5

−2.5

−1.5

0 50 100 150 200
Number of Function Evaluations

N
eg

at
iv

e
LL

 w
.r.

t b
es

t o
bs

er
ve

d

Methods
●

●

●

●

●

Basic Approach

OEN Optimization Only

Proposed Approach

SMAC

HyperOpt_TPE

Hyperparameter Tuning of an ensemble of trees.

Figure 6.7: Average results on the Digits dataset using Gradient Boosting.

In the task of finding an optimal deep neural network on the digits and MNIST
dataset, the objective considered is the test log-likelihood of the network. This objective
is evaluated using a 10-fold cross-validation procedure in the digits dataset. In the
MNIST dataset a validation set of 10, 000 instances, extracted from the training set is
used. We consider 125 and 150 evaluations of the objective for the digits and the MNIST
dataset, respectively. A summary of the parameters optimized, their type and their range
is displayed on Table 6.2. These parameters are: The logarithm of the learning rate, the
activation function and the number of hidden layers. The first parameter can take values
in the real line. The second and third parameters are categorical and integer-valued. The
number of units in each layer, is set equal to 75.

The average results obtained in the two classification problems are displayed in
Figure 6.8. The figure shows the average difference, in absolute value, between the test
log-likelihood of the recommendation made and the best observed test-log likelihood, in

Chapter 6. Dealing With Categorical And Integer-Valued Variables In Bayesian
Optimization With Gaussian Processes 154

Table 6.2: Name, type and range of the deep neural network parameters optimized.

Name Type Range

Log Learning Rate Real [−10, 0]
Activation Function Categorical Linear, Sigmoid, Tanh or ReLU

Number of hidden layers Integer [1, 3]

a log scale. Again, the proposed approach significantly outperforms the basic approach.
More precisely, it is able to find parameter values that lead to a deep neural network with
a better test log likelihood on the left-out dataset, using a smaller number of evaluations
of the objective. The proposed approach also outperforms SMAC. However, on the
MNIST dataset, TPE is only slightly worse than the proposed approach at the end and
it outperforms the basic approach. We believe that the better results of TPE obtained in
this problem can be a consequence of model bias in the GP that is used to fit the objective
in the proposed approach. In both problems, the proposed approach outperforms the
OEN optimization only method and the basic approach.

●

●

●

●
●
●●

●
●●

●●●●●●
●●

●●●●
●●●

●

●

●
●

●
●
●
●
●
●●

●
●●●●

●●●

●

●

●
●

●
●
●
●●

●●
●
●
●
●
●●

●●●
●●●

●

●

●

●
●
●
●
●●

●●

●

●

●

●

●
●
●
●●

●
●●

●●●●●●●

●
●●

●●●
●
●
●●

−6.40

−5.48

−4.56

−3.64

−2.72

−1.80

0 50 100 150
Number of Function Evaluations

N
eg

at
iv

e
LL

 w
.r.

t b
es

t o
bs

er
ve

d

Methods
●

●

●

●

●

Basic Approach

OEN Optimization Only

Proposed Approach

SMAC

HyperOpt_TPE

Hyperparameter Tuning of a Deep Neural Network in Digits.

●

●

●

●

●
●

●
●●●

●
●●●●●●●●●●●●

●●

●

●

●
●

●
●

●●

●●●●●●
●●

●●●

●

●

●

●
●●

●
●

●●
●●●●

●
●●●●●

●●●●
●●●●●●

●●●

●

●

●

●

●
●

●
●●

●●●●
●●

●

●

●

●

●
●●

●
●●

●●●●●●●●
●●●−6.50

−5.38

−4.26

−3.14

−2.02

−0.90

0 40 80 120
Number of Function Evaluations

N
eg

at
iv

e
LL

 w
.r.

t b
es

t o
bs

er
ve

d

Methods
●

●

●

●

●

Basic Approach

OEN Optimization Only

Proposed Approach

SMAC

HyperOpt_TPE

Hyperparameter Tuning of a Deep Neural Network in MNIST

Figure 6.8: Average results on the Digits and MNIST dataset using deep neural
networks.

Chapter 6. Dealing With Categorical And Integer-Valued Variables In Bayesian
Optimization With Gaussian Processes 155

6.6 Conclusions

BO methods rely on a probabilistic model of the objective function, typically a Gaussian
process (GP), upon which an acquisition function is built. The acquisition function is
used to select candidate points, on which the objective should be evaluated, to solve
the optimization problem in the smallest number of evaluations. Nevertheless, GPs
assume continuous input variables. When this is not the case and some of the input
variables take categorical or integer values, one has to introduce extra approximations.
A common approach before doing the evaluation of the objective is to use a one-hot
encoding approximation for categorical variables, or to round the value to the closest
integer, in the case of integer-valued variables. We have shown that this can lead to
problems as the BO method can get stuck, always trying to evaluate the same candidate
point.

The problem described is a consequence of a mismatch between the regions of the
input space that have high acquisition values and the points on which the objective is
evaluated. A simple way of avoiding this problem is to do the approximations (a one-hot
encoding in the case of categorical variables or the approximation to the closest integer
in the case of integer-valued variables) inside the wrapper that is used to evaluate the
objective. This technique works in practice, but it has the limitation that it makes the
objective constant in those regions of the input space that lead to the same configuration.
This constant behavior cannot be modeled by standard GPs.

In this chapter we have proposed to modify the covariance function of the underlying
GPs model to account for those regions of the input space in which the objective should
be constant. The transformation simply rounds integer-valued variables to the closest
integer. In the case of categorical variables in which one-hot encoding has been used,
we simply set the largest extra variable equal to one and all the other equal to zero.
The consequence of this transformation is that the distance between those points of the
input space that lead to the same configuration becomes zero. This enforces maximum
correlation between the GP values at those input values, leading to a constant behavior.

The proposed approach has been compared to a basic approach for dealing with
categorical and integer-valued input variables in the context BO and GPs. Furthermore,
we have also compared results with two other approaches that can be used to solve
these optimization problems and that can naturally account for integer and categorical
variables. Namely, SMAC and TPE. Several experiments involving synthetic and real-
world experiments illustrate the benefits of the proposed approach. In particular, it
outperforms the basic approach and SMAC and is most of the times better or at least
equivalent to TPE.

The proposed approach also performs better than a strategy that constraints the
optimization of the acquisition function to evaluate the objective only at those points
that are feasible (i.e., the OEN optimization only method). Such a strategy partially
solves the problems of doing a one-hot encoding approximation for categorical variables,
or rounding the values to the closest integer, in the case of integer-valued variables.
However, we show that it turns out to be sub-optimal in practice, since the GP model
considered ignores that the objective becomes constant in those regions of the input
space that lead to the same one-hot encoding or the same integer value.

Chapter 7
Bayesian Optimization Of A Hybrid
System For Robust Ocean Wave Features
Prediction

This chapter describes a Bayesian optimization application on a real case involving

the robust prediction of ocean wave features. Specifically, we propose the Bayesian

optimization of a hybrid Grouping Genetic Algorithm with an Extreme Learning

Machine (GGA-ELM) approach. The system uses data from neighbor stations (usu-

ally buoys) in order to predict the significant wave height and the wave energy

flux at a goal marine structure facility. The proposed BO methodology has been

tested in a real problem involving buoys data in the Western coast of the USA.

The results show that BO outperforms the performance of a random search of the

hyper-parameters space and the result given by a human expert on the problem.

7.1 Introduction

The accurate prediction of waves features plays a key role in different ocean engineering–
related activities, such as safe ship navigation (Liu et al., 2016; Zheng and Sun, 2016),
the design of marine structures (Comola et al., 2014; Kim and Suh, 2014), such as
oil platforms and harbours, and in marine energy management problems Arinaga and
Cheung (2012); Esteban and Leary (2012), like the proper operation of wave energy
converters (López et al., 2013), among others. Thus, the topic has a clear impact on
human safety, economics and clean energy production. One of the most important
features to define the severity of a given ocean wave field is the significant wave height,
Hm0 . Hm0 is usually estimated using in-situ sensors, such as buoys, recording time
series of wave elevation information. Buoys provide reliable sea state information that
characterizes wave field in a fixed position (i.e. the mooring point). In addition, as buoys
are anchored in a hostile media (the ocean), the probability that measuring problems
(and therefore missing data) occur in situations of severe weather is very high (Rao and
Mandal, 2005). Besides this, marine energy is currently one of the most promising sources
of renewable energy, still minor at a global level, but playing a major role in several
offshore islands (Bahaj, 2011; Fadaeenejad et al., 2014; Falcao, 2010; Rusu and Soares,
2012). In this case, the accurate estimation of the wave energy flux P is relevant to

157

Chapter 7. Bayesian Optimization Of A Hybrid System For Robust Ocean Wave
Features Prediction 158

characterize the wave energy production from Wave Energy Converters (WECs) facilities
(Cuadra et al., 2016).

In this chapter we test a BO methodology to improve the performance of a hybrid
prediction system for wave features (Hm0 and P) prediction. Specifically, the prediction
system is formed by a Grouping Genetic Algorithm for feature selection, and an Extreme
Learning Machine for carrying out the final energy flux prediction (Cornejo-Bueno et al.,
2016). This hybrid prediction system has a number of parameters that may affect its
final performance, and need to be previously specified by the practitioner. Traditionally,
these parameters have been manually tuned by a human expert, with experience in both
the algorithm and the problem domain. However, it is possible to obtain better results
by an automatic fine tuning of the prediction system’s parameters. In this case, the
parameters of GGA-ELM approach include the probability of mutation in the GGA or
the number of neurons in the ELM hidden layer, among others. We propose then to use
a Bayesian Optimization (BO) approach to automatically optimize the parameters of
the whole prediction system (GGA-ELM), with the aim of improving its performance
in wave energy prediction problems. BO has been shown to obtain good results in the
task of obtaining good parameter values for prediction systems (Snoek et al., 2012). In
the chapter we detail the basic prediction system considered and the BO methodology
implemented, along with the improvements obtained in real problems of Hm0 and P
prediction in the Western coast of the USA.

The rest of the chapter is organized as follows: the next section details the calculation
of the features of interest in ocean wave characterization, Hm0 and P in this case. Section
7.2 describes the main characteristics of the hybrid system to be optimized, which is
formed by a GGA and an ELM for prediction. Section 7.3 presents the real experiments
that deal with buoys in the Western coast of the USA whose results show how BO
outperforms the random search of the space and the human expert criterion. Finally,
Section 7.4 closes the chapter with conclusions and remarks on this research.

7.2 Wave Features of Interest: Calculation of Hm0
and P

In the evaluation of marine systems it is essential to previously characterize as accurately
as possible the wave features of the zone under study. For example, in a wave energy
facility, it is necessary to characterize the amount of wave energy available at a particular
location, which is given by features such as Hm0 and P . In order to obtain these features,
it is necessary to focus on the water surface, and within the framework of the linear wave
theory, the vertical wave elevation, η(r, t), at a point r = (x, y) on the sea surface at time
t can be assumed as a superposition of different monochromatic wave components (Borge
et al., 2013; Yoshimi, 2010). This model is appropriate when the free wave components
do not vary appreciably in space and time (that is, statistical temporal stationarity and
spatial homogeneity can be assumed (Yoshimi, 2010)).

In the model described, the concept of “sea state” refers to the sea area and the time
interval in which the statistical and spectral characteristics of the wave do not change
considerably (statistical temporal stationarity and spatial homogeneity). The features of
a given sea state are then the combined contribution of all features from different sources.
For example, the “wind sea” occurs when the waves are caused by the energy transferred
between the local wind and the free surface of the sea. The “swell” is the situation in
which the waves have been generated by winds blowing on another far area (for instance,
by storms), and propagate towards the region of observation. Usually, sea states are the
composition of these two pure states, forming multi-modal or mixed seas. In a given sea

Chapter 7. Bayesian Optimization Of A Hybrid System For Robust Ocean Wave
Features Prediction 159

state, the wave elevation η(r, t) with respect to the mean ocean level can be assumed as a
zero-mean Gaussian stochastic process, with statistical symmetry between wave maxima
and minima. A buoy deployed at point rB can take samples of this process, η(rB, tj)
j = 1, 2, · · · , tMAX, generating thus a time series of empirical vertical wave elevations.
The Discrete Fourier Transform (DFT) of this sequence, using the Fast Fourier Transform
(FFT) algorithm, allows for estimating the spectral density S(f). Its spectral moments
of order n can be computed as follows:

mn =

∫ ∞
0

fnS(f)df. (7.1)

The Significant Wave Height (SWH) is defined as the average (in meters) of the
highest one-third of all the wave heights during a 20-minute sampling period, and it has
been widely studied. It can be calculated from the moment of order 0 in Equation (7.1),
as follows:

Hm0 = 4 · (m0)1/2 . (7.2)

On the other hand, the wave energy flux is a first indicator of the amount of wave
energy available in a given area of the ocean. Wave energy flux P , or power density per
meter of wave crest can be computed as

P =
ρg2

4π

∫ ∞
0

S(f)

f
df =

ρg2

4π
m−1 =

ρg2

64π
H2
m0
· Te, (7.3)

where ρ is the sea water density (1025 kg/m3), g is the acceleration due to gravity,
Hm0 = 4

√
m0 is the spectral estimation of the significant wave height, and Te ≡ T−1,0 =

m−1/m0 is an estimation of the mean wave period, normally known as the period of
energy, which is used in the design of turbines for wave energy conversion (Cahill and
Lewis, 2013). Expression (7.3) (with Hm0 in meters and Te in seconds) leads to

P = 0.49 ·H2
m0
· Te, (7.4)

measured in kW/m, which helps engineers estimate the amount of wave energy available
when planning the deployment of WECs at a given location. The grouping genetic
algorithm (GGA) is a type of evolutionary algorithm especially suited to tackle grouping
problems, i.e., problems where a number of items must be assigned to a set of predefined
groups (Falkenauer, 1993, 1998). The GGA has shown very good performance on different
real applications and problems (Agust́ın-Blas et al., 2011, 2009; Brown and Sumichrast,
2005; De Lit et al., 2000; James et al., 2007a,b). In the GGA, the encoding, crossover
and mutation operators of traditional GAs are modified to better deal with grouping
problems. In this chapter we use the GGA to obtain a reduced set of features (feature
selection) in a context of Hm0 and P prediction. We structure the description of the GGA
in Encoding, Operators and Fitness Function calculation (Extreme Learning Machine).

7.2.1 Problem Encoding

The GGA is a variable-length genetic algorithm. The encoding is defined by separating
each individual in the algorithm into two parts: an assignment part, which associates
each item to a given group, and a group part, which defines the groups that must be
taken into account for the individual. In problems where the number of groups is not
previously defined, it is straightforward that this is a variable-length algorithm: the

Chapter 7. Bayesian Optimization Of A Hybrid System For Robust Ocean Wave
Features Prediction 160

group part varies from one individual to another. In our implementation of the GGA for
feature selection, an individual c has the form c = [a|g]. An example of an individual in
the proposed GGA for a feature selection problem, with 20 features and 4 groups, is the
following:

1 1 2 3 1 4 1 4 3 4 4 1 2 4 4 2 3 1 3 2 | 1 2 3 4
where the group 1 includes features {1, 2, 5, 7, 12, 18}, group 2 features {3, 13, 16, 20},

group 3 features {4,9,17,19} and finally group 4 includes features {6, 8, 10, 11, 14, 15}.

7.2.2 Genetic Operators

In this chapter we use a tournament-based selection mechanism (Yao et al., 1999). This
mechanism has been shown to be one of the most effective selection operators, avoiding
super-individuals and performing a excellent exploration of the search space. Regarding
the crossover operator, we have chosen a modified version of the one initially proposed
by Falkenauer (1993, 1998). It follows the process outlined in Figure 7.1:

1. Choose two parents from the current population, at random.

2. Randomly select two points for the crossover, from the “Groups” part of parent
1, then, all the groups between the two cross-points are selected. In the example
of Figure 7.1 the two crossover points are G1 and G2. Note that, in this case the
items of parent1 belonging to group G1 and G2 are 1, 2, 4, 5, and 6.

3. Insert the selected section of the “Groups” part into the second parent. After the
insertion in the example of Figure 7.1, the assignment of the nodes 1, 2, 4, 5 and 6
of the offspring individual will be those of parent 1, while the rest of the nodes’
assignment are those of parent 2. The “Groups” part of the offspring individual
is that of parent 2 plus the selected section of parent 1 (8 groups in total, in this
case).

4. Modify the “Groups” part of the offspring individual with their corresponding
number. In the example, G = 1 2 3 4 5 6 1 2 is modified into G = 1 2
3 4 5 6 7 8. Modify also the assignment part accordingly.

5. Remove any empty groups in the offspring individual. In the example considered,
it is found that groups 1, 2, 3, and 6 are empty, so we can eliminate these groups’
identification number and rearrange the rest. The final offspring is then obtained.

Regarding mutation operator, we apply a swapping mutation in which two items are
interchanged (swapping this way the assignment of features to different groups). This
procedure is carried out with a very low probability (Pm = 0.01), to avoid increasing of
the random search in the process. In the next section we describe the fitness function
used to guide the search in the GGA, the ELM neural network, which is a very fast
algorithm with excellent performance in prediction problems.

7.2.3 Fitness Function: the Extreme Learning Machine

An ELM is a fast learning method based on the structure of MLPs with a novel way of
training feed-forward neural networks (Huang et al., 2006). One of the most important
characteristics of the ELM training is the randomness in the process where the network
weights are set, obtaining, in this way, a pseudo-inverse of the hidden-layer output matrix.
The simplicity of this technique makes the training algorithm extremely fast. Moreover,

Chapter 7. Bayesian Optimization Of A Hybrid System For Robust Ocean Wave
Features Prediction 161

it is remarkable the outstanding performance shown when compared to other learning
methods. For example, it is usually better than other established approaches such as
classical MLPs or SVRs.

The ELM algorithm can be explained as follows: given a training set

T = (xi,Wi)|xi ∈ Rn,Wi ∈ R, i = 1, · · · , l

, an activation function g(x) and number of hidden nodes (Ñ),

1. Randomly assign inputs weights wi and bias bi, i = 1, · · · , Ñ .

2. Calculate the hidden layer output matrix H, defined as

x= 3 4 5 | 1 2 3 4 51 2 1 1 2

y= 1 2 4 3 5 6 4 5 | 1 2 3 4 5 6

crossover points

x= 1 2 3 1 1 2 4 5 | 1 2 3 4 5

y= 1 2 4 3 5 6 4 5 | 1 2 3 4 5 6 } Initial couple

z= 1 2 1 1 24 4 5 | 1 2 3 4 5 6 1 2 } offspring

z= 7 4 4 5 | 1 2 3 4 5 68 7 7 8 7 8 } groups renamed

z= 3 4 1 3 3 4 1 2 | 1 2 3 4 } final offspring

Figure 7.1: Outline of the grouping crossover implemented in the proposed GGA.

Chapter 7. Bayesian Optimization Of A Hybrid System For Robust Ocean Wave
Features Prediction 162

H =

 g(w1x1 + b1) · · · g(wÑx1 + bÑ)
... · · ·

...
g(w1xl + b1) · · · g(wÑxN + bÑ)

l×Ñ

(7.5)

3. Calculate the output weight vector β as

β = H†T, (7.6)

where H† stands for the Moore-Penrose inverse of matrix H (Huang et al., 2006),
and T is the training output vector, T = [W1, · · · ,Wl]

T .

The number of hidden nodes (Ñ) is a free parameter of the ELM training, and it can
be fixed initially, or in a best convenient way, it must be estimated for obtaining good
results as a part of a validation set in the learning process. Hence, scanning a range of
Ñ values is the solution for this problem.

These experiments use the Matlab ELM implementation by G. B. Huang, freely
available on the Internet (http://www.ntu.edu.sg/home/egbhuang/elm_codes.html).

7.3 Experiments

This section presents the experiments carried out in order to show the improvement of
performance in the system when it is optimized with the BO techniques shown above.
We consider a real problem of wave energy flux prediction (P = 0.49 ·H2

s · Te kW/m)
from marine buoys (Yoshimi, 2010). Figure 7.2 shows the three buoys considered in this
study at the Western coast of the USA, whose data bases are obtained from the National
Data Buoy Center. The objective of the problem is to carry out the reconstruction
of buoy 46069 from a number of predictive variables from the other two buoys. Thus,
10 predictive variables measured at each neighbor buoy are considered (a total of 20
predictive variables to carry out the reconstruction). Table 7.1 shows details of the
predictive variables for this problem. Data for two complete years (1st January 2009 to
31st December 2010) are used, since complete data (without missing values in predictive
and objective P) are available for that period in the three buoys. These data are divided
into training set (year 2009) and test set (year 2010) to evaluate the performance of the
proposed algorithm.

We evaluate the utility of the BO techniques for finding good parameters for the
prediction system described in Section 7.2. More precisely, we try to find the parameters
that minimize the RMSE of the best individual found by the GGA on a validation set
that contains 33% of the total data available. The parameters of the GGA that are
adjusted are the probability of mutation p ∈ [0, 0.3], the percentage of confrontation
in the tournament q ∈ [0.5, 1.0], and the number of epochs e ∈ [50, 200]. On the other
hand, the parameters of the ELM that is used to evaluate the fitness in the GGA are
also adjusted. These parameters are the number of hidden units n ∈ [50, 150] and the
logarithm of the regularization constant of a ridge regression estimator, that is used to
find the weights of the output layer γ ∈ [−15,−3]. Note that a ridge regression estimator
for the output layer weights allows for a more flexible model than the standard ELM, as
the standard ELM is retrieved when γ is negative and large (Albert, 1972).

We compare the BO method with two techniques. The first technique is a random
exploration of the space of parameters. The second technique is a configuration specified

http://www.ntu.edu.sg/home/egbhuang/elm_codes.html

Chapter 7. Bayesian Optimization Of A Hybrid System For Robust Ocean Wave
Features Prediction 163

46069

46025

46042

Figure 7.2: Western USA Buoys considered in this study. In red buoy where the P
prediction is carried out from data at blue ones.

Table 7.1: Predictive variables used in the experiments.

Acronym Predictive units
variable

WDIR Wind direction [degrees]
WSPD Wind speed [m/s]
GST Gust speed [m/s]

WVHT Significant wave height [m]
DPD Dominant wave period [sec]
APD Average period [sec]
MWD Direction DPD [degrees]
PRES Atmospheric pressure [hPa]
ATMP Air temperature [Celsius]
WTMP water temperature [Celsius]

Chapter 7. Bayesian Optimization Of A Hybrid System For Robust Ocean Wave
Features Prediction 164

by a human expert. Namely, p = 0.02, q = 0.8, e = 200, n = 150 and γ = −10. These
are reasonable values that are expected to perform well in the specific application tackled.
We set our computational budget to 50 different parameter evaluations for both the BO
and the random exploration strategy. After each evaluation, we report the performance
of the best solution found. The experiments are repeated for 50 different random seeds
and we report average results. All BO experiments are carried out using the acquisition
function EI and the software for BO Spearmint.

Fig. 7.3 and 7.4 show the average results obtained and the corresponding error bars
for the Wave Energy Flux and the Wave Height optimization. This figure shows the
average RMSE of each method (BO and random exploration) on the validation set as a
function of the number of configurations evaluated. The performance of the configuration
specified by a human expert is also shown. We observe that the BO strategy performs
best. After a few evaluations is able to outperform the results of the human expert
and it provides results that are similar or better than the ones obtained by the random
exploration strategy with a smaller number of evaluations.

0 10 20 30 40 50

2.
15

2.
20

2.
25

2.
30

2.
35

Number of Parameters Evaluated

A
vg

. R
M

S
E

 o
n

th
e

V
al

id
at

io
n

S
et

Wave Energy Flux

Bayesian Optimization
Random Exploration
Human Expert

Figure 7.3: Average results obtained for the Wave Energy Flux optimization after
evaluating the performance of 50 different parameters for the BO technique and a
random exploration of the parameter space. The performance a configuration specified
by a human expert is also shown for comparison.

0 10 20 30 40 50

0.
31

0
0.

31
5

0.
32

0
0.

32
5

Number of Parameters Evaluated

A
vg

. R
M

S
E

 o
n

th
e

V
al

id
at

io
n

S
et

Wave Height

Bayesian Optimization
Random Exploration
Human Expert

Figure 7.4: Wave Height optimization average results of the performance of the 50
different parameter values selected by the BO technique and a random exploration of
the parameter space. The plot also shows the performance of the parameter values
selected by a human expert.

Chapter 7. Bayesian Optimization Of A Hybrid System For Robust Ocean Wave
Features Prediction 165

7.4 Conclusions

In this section we have shown how a hybrid prediction system for wave energy prediction
can be improved by means of BO. The prediction system is formed by a grouping genetic
algorithm for feature selection, and an Extreme Learning Machine for effective prediction
of the target variable, the wave energy flux in this case. After this feature selection
process, the final prediction of the wave energy flux is obtained by means of an ELM or a
SVR approach. The chapter describes the specific application of BO in the optimization
of the GGA-ELM for a real problem of wave energy flux prediction from buoys data in
Western California USA. The results show how BO outperforms the results given by a
random search of the space and the results given by the criterion of a human expert on
the problem.

Chapter 8
Conclusions And Future Work

Bayesian optimization is used to optimize black-box functions, i.e., potentially noise
expensive functions with unknown analytical expressions. In particular, examples of
black-box optimization include hyper-parameter tuning of machine learning algorithms
to optimize an estimation of the generalization error, industry problems such as the
optimization of the configuration of a robot or even curious applications such as the
optimization of the cooking recipe of a cookie. Concretely, the standard BO scenario
concerns the optimization of a single black-box function. However, this thesis has
introduced methods that extend the applicability of BO to broader scenarios such as
constrained multi-objective scenarios (Chapter 4), parallel BO (Chapter 5) or dealing with
integer and categorical-valued variable (Chapter 6). We also include a real application
regarding the optimization of a hybrid grouping genetic algorithm applied to an extreme
learning machine for robust prediction of ocean wave features in Chapter 7. In those
chapters, we have illustrated the usefulness of the proposed methods with toy, synthetic,
benchmark or real problems. Finally, in this section, we illustrate the main conclusions
of this thesis.

8.1 Conclusions

We provide a list with the main conclusions of this thesis regarding the work that has
been shown in the previous chapters.

• First, we developed a method that performs Bayesian optimization in constrained
multi-objective scenarios. This method is called Predictive Entropy Search for
multi-objective optimization with constraints (PESMOC). Concretely, this method
optimizes conflicting black-boxes under the presence of several constraints. In
particular, solutions that do not fulfill the constraints are not considered valid. Most
importantly, PESMOC iteratively suggests the recommendation that minimizes the
expected reduction on the entropy of the Pareto set. In Chapter 4 we showed the
usefulness of PESMOC for optimizing several objectives and constraints regarding
ensembles and the implementation of deep neural networks in hardware. In those
experiments, PESMOC outperforms other methods tackling the constrained multi-
objective scenario such as a generalization of the expected improvement acquisition
function, that is expected to be greedy, or a random search, that only performs
pure exploration.

167

Chapter 8. Conclusions And Future Work 168

• As we have already seen, Bayesian optimization suggests a single recommendation
point in every iteration of the algorithm. Nevertheless, there are settings where
we may have a cluster of nodes available to process suggestions. Unfortunately,
standard Bayesian optimization leaves them idle as it can only provides a single
suggestion at a time. In order to solve this issue, we generalized the previous
constrained multi-objective approach to make it suggest a batch of points for every
iteration. In particular, this extension of PESMOC is called Parallel Predictive
entropy search for multi-objective optimization with constraints (PPESMOC). In
this case, the acquisition function now suggests a batch of points that minimize
the expected reduction on the entropy search of the Pareto set. As in the case
of PESMOC, we tested PPESMOC on the same experiments of PESMOC but
comparing it with greedy versions of PPESMOC where we iteratively create a
batch of points using the PESMOC acquisition function. Critically, PPESMOC
outperforms or performs similarly to these methods on the proposed experiments.
Moreover, it scales the batch size better than the proposed baselines.

• We have studied that BO uses Gaussian processes to model the black-box. GPs
assume continuous input real variables. When the problem involves other variables,
such as integer-valued or categorical variables, it is common to perform a one hot
encoding approximation for categorical variables or to round the integer-valued
variables to the closest integer. In this work, we show how such procedures incur
in a bad performance of the BO method. To circumvent this issue, we propose a
transformation for the input space variables that alleviates the issues that arise in
previous procedures. In particular, we include empirical evidence that shows how
our transformation outperforms previous approaches dealing with integer-valued
and categorical variables.

• Finally, we propose the Bayesian optimization of a hybrid grouping genetic algorithm
for attribute selection combined with an extreme learning machine (GGA-ELM)
approach for robust prediction of ocean wave features. The contribution of the
thesis regarding this work was the design and implementation of the experiments.
In Chapter 7, we perform two sets of experiments regarding the prediction of the
wave energy flux and wave height optimization. Critically, we showed how BO
outperforms the configuration suggested by experts on the field and the performance
delivered by random search.

8.2 Future Work

Our proposed methods show how BO can be effectively adapted to cover a wide range
of different scenarios with an excellent performance. Moreover, there are a plethora of
scenarios that BO can cover in addition to the described settings that could be targeted
by future work. Precisely, to conclude this document, we include some ideas as further
work that can be studied by future research.

• PESMOC assumes that the black-boxes to be optimized are independent. But
this is not necessarily true in real-world problems. The black-boxes can have
dependencies. For example, consider the optimization of the number of workers
of the company and the benefit. In this example, the benefit is dependent on the
hired number of employees. We hypothesize that, by modelling these dependencies,
we can improve the performance of the PESMOC method (Shah and Ghahramani,

Chapter 8. Conclusions And Future Work 169

2016). This work will need to use a multi-output GP to model these dependencies
and to propose a new acquisition function, for example extending PESMOC, that
takes into account the information provided by this model (Moreno-Muñoz et al.,
2018).

• We have used Bayesian optimization with Gaussian processes. Gaussian processes
are flexible priors over functions, but may have difficulties modelling non-stationary
functions. An extension of GPs, deep Gaussian processes, are designed to be priors
over non-stationary functions (Bui et al., 2016; Damianou and Lawrence, 2013).
Deep GPs consist of multiple GP mappings organized in several layers. The input
of every layer is the output of the previous layer, that consist of several sparse GP.
The nodes are sparse GPs to make the deep GP scale to more observations, typically
being used from 500 to 5000000 observations. However, Bayesian optimization
scenarios do not usually consider more than 300 observations. Hence, if deep GPs
are used for BO, they need to be modified to include GPs in their layers as the
complexity in the number of observations is not a problem in the BO setting but
if we use sparse GPs the performance will suffer. A future line of research is to
design a deep GP that can perform well for BO scenarios. In order to do so, we
will need to perform hyper-parameter sampling, that is not usually done for deep
GPs on regression problems.

• The acquisition function of Bayesian optimization can easily be optimized in a low
number of dimensions with a grid search procedure and a local optimizer method
such as L-BFGS. In most cases, it is also possible to compute the gradients of
the acquisition function. In particular, the number of points of the grid search
is implemented to scale linearly with the number of dimensions. However, due
to the curse of dimensionality, as we increment the number of dimensions or for
parallel acquisition functions such as PPESMOC (whose dimensional complexity
is a function of the size of the batch) and the number of dimensions of the input
space this methodology will deliver worse and worse results. In order to circumvent
this issue, it would be interesting to test evolutionary strategies such as NSGA-II
or other metaheuristic strategies to optimize the acquisition function in a high
number of dimensions to enhance the results obtained by the proposed methods
(Deb et al., 2002).

• An interesting application where we can apply constrained multi-objective BO is
to deploy fair ML algorithms (Perrone et al., 2020). Fairness strategies ensure
ML algorithms not to incur in discriminations such as racism, machism or ageism.
These strategies may be conflicting with the optimization of the estimation of the
generalization error. Moreover, they can be considered as black-boxes. Additionally,
if we want that these strategies can invalidate certain solutions, we can also
implement them as constraints. Therefore, the methods proposed, and more
precisely PESMOC, could be used to address the problem described. Further
research may analyze the utility of PESMOC for finding fair machine learning
models.

Appendix A
Probability Distributions

In this appendix, we define some probability theory concepts that are used in the chapters
of the thesis. We specifically describe the fundamentals of probability theory and some
ideas of the Gaussian distribution.

A.1 Probability Theory

Let x ∈ RN . Let X1, ..., XN be N random variables. The d-dimensional probability
density function p(X1 = x1, · · ·, XN = xn) of the random variables X1, ..., XN with
support in all RN satisfies ∫

RN
p(x)dx = 1 . (A.1)

For clarity, we abbreviate the notation of probability density functions from p(X1 =
x1, · · ·, XN = xn) to p(x). If p(x) is a probability density function of a N -dimensional
real-valued space, then, its cumulative distribution function F (x1

l ≤ X1 ≤ x1
u, · · ·, xNl ≤

XN ≤ xNu) is given by:

F (x1
l ≤ X1 ≤ x1

u, · · ·, xNl ≤ XN ≤ xNu) =

∫ x1
u

x1
l

· · ·
∫ xNu

xNl

p(x)dx . (A.2)

For clarity, we abbreviate the notation of cumulative distribution functions from F (x1
l ≤

X1 ≤ x1
u, · · ·, xNl ≤ XN ≤ xNu) to F (x). Let X = (Y,Z) ∈ R2 denote two random

variables Y ∈ R, Z ∈ R with a bivariate probability density function p(x) on R2. Then,
the marginal densities of Y and Z are given by the sum rule of probability:

p(y) =

∫
R
p(y, z)dz, p(z) =

∫
R
p(y, z)dy. (A.3)

This operation is also known as marginalization. It is usually performed to accumulate
the uncertainty of the random variables that are not used for future computations. The
conditional density p(y|z), for p(z) > 0, is given by the product rule of probability:

p(y|z) =
p(y, z)

p(z)
, p(y, z) = p(y|z)p(z) = p(z|y)p(y). (A.4)

171

Appendix A. Fundamental Concepts of Probability Theory 172

Using Eq. (A.4), we can analytically obtain Bayes theorem:

p(y|z) =
P (z|y)P (y)

P (z)
. (A.5)

In Bayes theorem, we define P (Z) as the model evidence, P (y) is the prior distribution,
P (Z|Y) is the likelihood function and P (Y |Z) is the posterior distribution. According
to the total probability theorem, we have that the model evidence can be computed by
the integral of the likelihood times the prior:

P (z) =

∫
P (z|y)P (y)dy . (A.6)

Let z be substituted by observed data D = {(xi, yi)|i = 1, ..., N} where N is the number
of tuples xi, yi) and y be the hyper-parameters θ of a model M. Bayes theorem can
compute the posterior distribution of the hyper-parameters given the data p(θ|D):

p(θ|D) =
p(D|θ)p(θ)

p(D)
, (A.7)

where the likelihood function p(D|θ) is computed as the product of the likelihood function
p(yi|xi,θ) of each of the tuples (xi, yi) as:

p(D|θ) =
N∏
i=1

p(yi|xi,θ) . (A.8)

p(θ) is the prior over the model hyper-parameters, that can be set as an uninformative
prior or to some probability distribution given previous knowledge. Subjective bias is,
from our opinion, always going to be present as, although we can set an uninformative
prior for the weights, we are conditioning the posterior distribution given our subjective
beliefs. We are setting an uninformative prior because we have the subjective belief that
it is the best decision for the prior distribution. Hence, we are including a subjective
bias in the computation. Finally, p(D) is the model evidence. We can also rewrite Bayes
theorem using the theorem of total probability as the following expression:

p(θ|D) =
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

. (A.9)

Let Θ be the space of hyper-parameter values. Let every possible value of the hyper-
parameters θ ∈ Θ be defined as a hypothesis that the modelM can formulate about the
data D. The model evidence p(D) represents the probability of the data given the model
M. In other words, how well does the model M fit the data D under every possible
hypothesis θ that can generate. It is used for Bayesian model selection. Models with
higher marginal likelihood p(D) explain the data better than those with lower marginal
likelihood p(D). The marginal likelihood p(D) acts as normalization constant of the
posterior distribution p(θ|D). The posterior distribution p(θ|D) of the hyper-parameters
θ given the data D represents all the possible hypotheses θ of a model M weighted by
their probability conditioned on data D. We can update the posterior distribution p(θ|D)
of the hyper-parameters θ given the data D every time that new data xi, yi) is available.
New data incorporates a new likelihood function p(yi|xi,θ) that affects the posterior
distribution p(θ|D). In a new iteration, we can state that the posterior p(θ|D) becomes

Appendix A. Fundamental Concepts of Probability Theory 173

the new prior and the process is repeated. Hence, we can say that iudicium posterium
discipulus est prioris than translated means, the posterior is the student of the prior.

Finally, we can use the posterior distribution p(θ|D) to make predictions with the
model. Let x be a new data instance. We want to predict the value y associated with the
data instance x. Let y = f(x) be the unknown ground truth. A model M performs a
prediction of the value y associated with the data instance x given the observed data D.
As we can consider every possible hypothesis θ that model M can compute of the data,
we can compute a predictive distribtion p(f(x)|x,D) of the value y associated with the
data instance x. The predictive distribution p(f(x)|x,D) can be seen as the pondered
average of all the possible model predictions p(f(x)|x,θ) times the probability of the
model being configurated with the hyper-parameter values θ given the data D. This
probability is computed with the posterior distribution p(θ|D). Hence, the predictive
distribution p(f(x)|x,D) can be computed as the product of p(f(x)|x,θ) and p(θ|D)
marginalizing the model hyper-parameters θ:

p(f(x)|x,D) =

∫
p(f(x)|x,θ)p(θ|D)dθ . (A.10)

A.2 Gaussian Distribution

Let us first consider the case of univariate Gaussian distributions. Let X be a ran-
dom variable that is normally distributed. The associated probability density function
N (x|µ, σ) of the normally distributed random variable X is parametrized by a mean
µ and its standard deviation σ. The analytical expression of the probability density
function associated to X = x is:

N (x|µ, σ) =
1

σ
√

2π
e−

1
2

(x−µ
σ

)2
. (A.11)

The multivariate Gaussian distribution is the generalization of the univariate Gaussian
distribution in the multi-dimensional scenario. Let X = [X1, ..., Xd] be a random variable
vector. The multivariate Gaussian distribution corresponds to the joint probability
density function of the vector of random variables. It is parametrized by a d-dimensional
mean vector µ and a positive semi-definite square covariance matrix Σd×d. The analytical
expression of the probability density function associated to X = x is:

N (x|µ,Σ) =
1√

(2π)d|Σ|
exp

{
−1

2
(x− µ)T Σ−1 (x− µ)

}
, (A.12)

where the superscript T means transpose. The analytical expression entropy H[N (x|µ, σ)]
of the univariate Gaussian distribution is:

H[N (x|µ, σ)] =
1

2
log(2πeσ2) . (A.13)

The entropy H[N (x|µ,Σ)] of the multivariate Gaussian distribution is:

H[N (x|µ,Σ)] =
1

2
log[(2πe)dΣ] . (A.14)

The Gaussian distribution is an exponential family member. Exponential family is closed
under product and division. Hence, both the multiplication and division operations
are closed for multivariate Gaussian distributions. That is, the multiplication of two

Appendix A. Fundamental Concepts of Probability Theory 174

Gaussian distributions N (x|µ1,Σ1) and N (x|µ2,Σ2) is another Gaussian distribution
N (x|µ,Σ). It is defined by the following expression,

N (x|µ1,Σ1)N (x|µ2,Σ2) ∝ N (x|µ,Σ) , (A.15)

where Σ =
(
Σ−1

1 + Σ−1
2

)−1
and µ = Σ

(
Σ−1

1 µ1 + Σ−1
2 µ2

)
. The previous expression

represents an unnormalized distribution. The normalization constant of N (x|µ,Σ) is
given by the following expression:

Z =

√
|Σ|

(2π)d|Σ1||Σ2|
exp

{
−1

2

(
µT1 Σ−1

1 µ1 + µT2 Σ−1
2 µ2 − µTΣ−1µ

)}
, (A.16)

where d is the dimensionality of the the Gaussian distribution. Regarding the division of
two multivariate Gaussian distributions, we also have equivalent analytical expressions.
In particular, the division of Gaussian distributions N (x|µ1,Σ1) and N (x|µ2,Σ2) is
also another Gaussian distribution N (x|µ,Σ) which is given by the following analytical
expression:

N (x|µ1,Σ1)/N (x|µ2,Σ2) ∝ N (x|µ,Σ) , (A.17)

where Σ =
(
Σ−1

1 −Σ−1
2

)−1
and µ = Σ

(
Σ−1

1 µ1 −Σ−1
2 µ2

)
. As in the case of the product

of two Gaussian distributions N (x|µ1,Σ1) and N (x|µ2,Σ2), we can also compute the
normalization constant Z of the unnormalized distribution N (x|µ,Σ). The normalization
constant Z can be computed via the following expression:

Z =

√
(2π)d|Σ||Σ2|
|Σ1|

exp

{
−1

2

(
µT1 Σ−1

1 µ1 − µT2 Σ−1
2 µ2 − µTΣ−1µ

)}
. (A.18)

The Gaussian distribution is an exponential family member. Therefore, the Gaussian
distribution N (x|µ,Σ) can be rewritten as an exponential family representation via the
following expression:

N (x|µ,Σ) = exp(ηTu(x)− g(η)) , (A.19)

where η is a vector of natural parameters, u(x) is a vector function of x known as the
sufficient statistics and g(η) is the cumulant generating function or log partition function.
The log partition function g(η) guarantees that exp(ηTu(x)− g(η)) integrates to 1. We
can compute the sufficient statistics u(x) and the log partition function g(η) via the
following expressions for the particular case of the Gaussian distribution N (x|µ,Σ):

u(x) = (x1, . . . , xd, η = −1

2

(
−2µTΣ−1 ,

x2
1, x1x2, . . . , x1xd, Σ−1

11 ,Σ
−1
12 , . . . ,Σ

−1
1d ,

x1x2, x
2
2, . . . , x2xd, Σ−1

21 ,Σ
−1
22 , . . . ,Σ

−1
1d ,

...
...

xdx1, xdx2, . . . , x
2
d

)T
, Σ−1

d1 ,Σ
−1
d2 , . . . ,Σ

−1
dd

)T
(A.20)

and g(η) = 1
2µ

TΣ−1µ+ d
2 log(2π) + 1

2 log(|Σ|). Let us consider an univariate Gaussian
distribution N (x|µg, σg). We can transform the parameters µg and σg of a Gaussian
distribution N (x|µg, σg) into its natural parameters µn and σn using the following

Appendix A. Fundamental Concepts of Probability Theory 175

expressions:

µn =
µg
σg

, (A.21)

σn =
1

σg
. (A.22)

We can also deconvert the natural parameters, µn and σn, into the Gaussian ones, µg
and σg, using the following expressions:

σg =
1

σn
, (A.23)

µg = µnσg . (A.24)

Let us now consider a joint Gaussian distribution N (µn,σnI) where I is the identity
matrix. This distribution factorizes as a product of univariate independent Gaussian
distributions N (µn,σnI) =

∏N
i=1N (µn, σn). We can convert the parameters of this joint

distribution N (µn,σnI) using the following analytical expression:

µn =
µg

diag(σg)
, (A.25)

σn =
1

diag(σg)
. (A.26)

We can also deconvert the natural parameters, µn and σn, into the Gaussian ones, µg
and σg, using the following expressions:

σg =
1

σn
, (A.27)

µg = µnσg . (A.28)

Transforming the Gaussian parameters, µg and σg, into the natural ones, µn and σn,
is interesting as the expressions for the product and division of Gaussian distributions
become simpler. Let us return to the case of the univariate Gaussian distribution.
The product of two Gaussian distributions N (µn1, σn1) and N (µn2, σn2) with natural
parameters µn1, σn1 and µn2, σn2 is a Gaussian distribution N (µn3, σn3) with parameters
µn3, σn3. The parameters µn3, σn3 are given by the addition of the parameters of the two
distributions N (µn1, σn1) and N (µn2, σn2) that are being multiplied:

µn3 = µn1 + µn2 , (A.29)

σn3 = σn1 + σn2 . (A.30)

Similarly, the division of two Gaussian distributions N (µn1, σn1) and N (µn2, σn2) with
natural parameters, µn1, σn1 and µn2, σn2, is a Gaussian distribution N (µn3, σn3) where
its natural parameters µn3, σn3 are given by the substraction of the two distributions
N (µn1, σn1) and N (µn2, σn2) that are being divided:

µg3 = µg1 − µg2 , (A.31)

σg3 = σg1 − σg2 . (A.32)

Appendix A. Fundamental Concepts of Probability Theory 176

Let us consider now a multivariate Gaussian distribution N (µg,Σg) with parameters
µg,Σg. We can compute its natural parameters µn,Σn using the following expressions:

µn = Σ−1
g µg , (A.33)

Σn = Σ−1
g . (A.34)

As in the case of univariate distributions, we can reconvert the natural parameters into
the Gaussian ones using the following expression:

Σg = (Σn)−1 , (A.35)

µg = Σgµn . (A.36)

Consider two multivariate Gaussian distributions N (µ1,Σ1) and N (µ2,Σ2) with natural
parameters µ1,Σ1 and µ2,Σ2. The product of two Gaussian distributions N (µ1,Σ1)
and N (µ2,Σ2) is another Gaussian distribution N (µ3,Σ3) with natural parameters
µ3,Σ3 such that µ3,Σ3 are given by:

µ3 = µ1 + µ2 , (A.37)

Σ3 = Σ1 + Σ2 . (A.38)

Consider two multivariate Gaussian distributions N (µ1,Σ1) and N (µ2,Σ2) with natural
parameters µ1,Σ1 and µ2,Σ2. The division of two Gaussian distributions N (µ1,Σ1)
and N (µ2,Σ2) is another Gaussian distribution N (µ3,Σ3) with natural parameters
µ3,Σ3 such that µ3,Σ3 are given by:

µ3 = µ1 − µ2 , (A.39)

Σ3 = Σ1 −Σ2 . (A.40)

LetN (x|µ,Σ) andN (y|µ′,Σ′) be two multivariate Gaussian distributions. The Kullback-
Leibler (KL) divergence between N (x|µ,Σ) and N (y|µ′,Σ′) is

KL
(
N (x|µ,Σ),N (y|µ′,Σ′)

)
=

1

2

(
|Σ′|
|Σ|

)
+trace

(
Σ′−1Σ− I

)
+(µ′−µ)TΣ′−1(µ′−µ) .

(A.41)
The moments of two Gaussian distributions N (x|µ,Σ) and N (y|µ′,Σ′) are matched if
KL (N (x|µ,Σ),N (y|µ′,Σ′)) = 0. Let p(x) be an unnormalized probability distribution,
the normalization constant Z of p(x) is given by:

Z =

∫
p(x)dx (A.42)

Let t(x) be an arbitrary function of x and let

Z =

∫
t(x)N (x|µ,Σ)dx , p(x) =

1

Z
t(x)N (x|µ,Σ) . (A.43)

In this case, p(x) is a probability distribution, as it has been normalized by the constant
Z. The first and second moments of a multivariate Gaussian distribution N (x|µ,Σ) are

Appendix A. Fundamental Concepts of Probability Theory 177

given by the following expressions:

E[x] = µ , (A.44)

E[xxT] = Σ + µµT . (A.45)

The first and second moments of two distributions can be matched via the following
expressions:

Ep[x] = µ+ Σ
∂ log(Z)

∂µ
, (A.46)

Ep[xxT]− Ep[x]Ep[x]T = Σ−Σ

(
∂ log(Z)

∂µ

(
∂ log(Z)

∂µ

)T
− 2

∂ log(Z)

∂Σ

)
Σ . (A.47)

In some practical situations, ∂ log(Z)/∂Σ is not robust. In that cases, we can use the
second derivative of the mean, ∂2 log(Z)/∂(µ)2, rather than ∂ log(Z)/∂Σ. By doing it
so, Eq. (2.43) is now given by the following expression:

Ep(x)[xxT]− Ep(x)[x]Ep(x)[x]T = Σ
∂2 log(Z)

∂(µ)2
Σ + Σ . (A.48)

Let the normalization constant of a distribution, Z, be defined by Eq. (A.43). Let µ and
Σ be the mean and covariance of the multivariate Gaussian distribution that appears
in Eq. (A.43) multiplying the factor t(x). Let ∂ log(Z)/∂µ be the derivative of Z with
respect to µ. Finally, let N (x|µ,Σ) be:

N (x|µ,Σ) =
1√

(2π)d|Σ|
exp

{
−1

2
(x− µ)T Σ−1 (x− µ)

}
. (A.49)

Then, we can infer Eq. (A.48) from the following expressions. First, we compute the
first derivative, ∂ log(Z)/∂µ:

∂ log(Z)

∂(µ)
=

1

Z

∂Z

∂µ
,

∂Z

∂µ
=

∫
t(x)N (x|µ,Σ)(−0.5)2(x− µ)TΣ−1(−1)dx ,

∂Z

∂µ
=

∫
t(x)N (x|µ,Σ)(x− µ)TΣ−1dx ,

∂ log(Z)

∂(µ)
=

1

Z

∫
t(x)N (x|µ,Σ)(x− µ)TΣ−1dx . (A.50)

Appendix A. Fundamental Concepts of Probability Theory 178

Then, we can compute the second derivative, ∂2 log(Z)/∂(µ)2. We need to know that
Ep(x)[x] =

∫
t(x)N(x|µ,Σ)xdx:

∂2 log(Z)

∂(µ)2
=
∂1/Z

∂µ

∫
t(x)N (x|µ,Σ)(x− µ)Σ−1dx+

1

Z

∂
∫
t(x)N (x|µ,Σ)(x− µ)TΣ−1dx

∂µ
,

∂1/Z

∂µ
= − 1

Z2

∂Z

∂µ
= − 1

Z2

∫
t(x)N (x|µ,Σ)(x− µ)TΣ−1dx ,

∂
∫
t(x)N (x|µ,Σ)(x− µ)TΣ−1dx

∂µ
=

∫
t(x)N (x|µ,Σ)Σ−1(x− µ)(x− µ)TΣ−1dx−∫

t(x)N (x|µ,Σ)Σ−1dx ,

∂2 log(Z)

∂µ2
= − 1

Z2

∫
t(x)N (x|µ,Σ)(x− µ)TΣ−1dx

∫
t(x)N (x|µ,Σ)(x− µ)Σ−1dx+

1

Z
[

∫
t(x)N (x|µ,Σ)Σ−1(x− µ)(x− µ)TΣ−1dx−

∫
t(x)N (x|µ,Σ)Σ−1dx] ,

∂2 log(Z)

∂µ2
= − 1

Z2
[

∫
t(x)N (x|µ,Σ)Σ−1(x− µ)dx][

∫
t(x)N (x|µ,Σ)(x− µ)TΣ−1dx]+

1

Z
[

∫
t(x)N (x|µ,Σ)Σ−1[xxT − 2µxT + µµT]Σ−1dx−

∫
t(x)N (x|µ,Σ)Σ−1dx] ,

∂2 log(Z)

∂µ2
= − 1

Z
[

∫
t(x)N (x|µ,Σ)Σ−1(x− µ)dx]

1

Z
[

∫
t(x)N (x|µ,Σ)(x− µ)TΣ−1dx]+

1

Z
[

∫
t(x)N (x|µ,Σ)Σ−1[xxT − 2µxT + µµT]Σ−1dx−

∫
t(x)N (x|µ,Σ)Σ−1dx] ,

∂2 log(Z)

∂µ2
= −Σ−1[Ep(x)[x]− µ]T [Ep(x)[x]− µ]Σ−1+

1

Z
[

∫
t(x)N (x|µ,Σ)Σ−1[xxT − 2µxT + µµT]Σ−1dx−

∫
t(x)N (x|µ,Σ)Σ−1dx] ,

∂2 log(Z)

∂µ2
= −Σ−1[Ep(x)[x]− µ]T [Ep(x)[x]− µ]Σ−1+

1

Z
[

∫
t(x)N (x|µ,Σ)Σ−1[xxT − 2µxT + µµT]Σ−1dx]−Σ−1 ,

(A.51)

Appendix A. Fundamental Concepts of Probability Theory 179

where the derivation continues as follows,

∂2 log(Z)

∂µ2
= −Σ−1[Ep(x)[x]− µ][Ep(x)[x]− µ]TΣ−1+

Σ−1[Ep(x)[xxT]− 2µEp(x)[x]T + µµT]Σ−1 −Σ−1 ,

= Σ−1[−[Ep(x)[x]− µ][Ep(x)[x]− µ]T+

[Ep(x)[xxT]− 2µEp(x)[x]T + µµT]]Σ−1 −Σ−1 ,

= Σ−1[−[Ep(x)[x]− µ][Ep(x)[x]− µ]T+

[Ep(x)[xxT]− 2µEp(x)[x]T + µµT]−Σ]Σ−1 ,

= Σ−1[−Ep(x)[x]Ep(x)[x]T + 2µEp(x)[x]T−
µµT + [Ep(x)[xxT]− 2µEp(x)[x]T + µµT]−Σ]Σ−1 ,

= Σ−1[−Ep(x)[x]Ep(x)[x]T + Ep(x)[xxT]−Σ]Σ−1 ,

= Σ−1[Ep(x)[xxT]− Ep(x)[x]Ep(x)[x]T −Σ]Σ−1 ,

(A.52)

where we see that we can finally substitute Ep(x)[xxT]− Ep(x)[x]Ep(x)[x]T by:

Σ
∂2 log(Z)

∂µ2
Σ = Ep(x)[xxT]− Ep(x)[x]Ep(x)[x]T −Σ ,

Ep(x)[xxT]− Ep(x)[x]Ep(x)[x]T = Σ
∂2 log(Z)

∂µ2
Σ + Σ . (A.53)

Appendix B
Appendix for Chapter 4

We provide, in this Appendix, additional material that complements the exposition of the
PESMOC approach introduced in Chapter 4. Concretely, we show the exact computations
done by the expectation propagation algorithm to approximate the intractable factors
of the conditional predictive distribution involved in the PESMOC acquisition function
approximation. We also include a sensitivity analysis of the number of Monte Carlo
iterations of the Slice sampling algorithm. Additionaly, we include another sensitivity
analysis of the sampled Pareto sets and an analysis of the infeasible solutions in benchmark
experiments.

B.1 The Gaussian Approximation to the Conditional Pre-
dictive Distribution

Recall from the main manuscript that, in this work, we wish to approximate the Condi-
tional Predictive Distribution of the set defined by the points X = {{xn}Nn=1∪X ∗∪{x}}.
This set is, the union between the N observation points in the input space {xn}Nn=1, the
M Pareto Set points X ∗ and the candidate point {x} to be evaluated. The Gaussian
Approximation will then be a multivariate Gaussian Distribution over N+M+1 variables.
The Conditional Predictive Distribution is given by the following expression

p(y|D,x,X ?) ∝
∫
p(y|x, f, c)p(X ?|f, c)p(f|D)p(c|D)dfdc (B.1)

, where p(y|x, f, c) =
∏K
k=1 δ(yk− fk(x))

∏J
j=1 δ(yK+j − cj(x)) and p(X ?|f, c) is given by

p(X ?|f, c) ∝
∏

x?∈X ?

[J∏
j=1

Φj(x
?)

][∏
x′∈X

Ω(x′,x?)

] , (B.2)

where Φj(x
?) = Θ(cj(x

?)) with Θ(·) the Heaviside step function, and Ω(x′,x?) is defined
as:

Ω(x′,x?) =

 J∏
j=1

Θ(cj(x
′))

ψ(x′,x?) +

1−
J∏
j=1

Θ(cj(x
′))

 · 1 , (B.3)

181

Appendix B. Appendix for Chapter 4 182

where ψ(x′,x?) is defined as

ψ(x′,x?) = 1−
K∏
k=1

Θ(fk(x
?)− fk(x′)) . (B.4)

The last two probability densities, p(f|D) and p(c|D) , involved in the Conditional Pre-
dictive Distribution are potentially infinite-dimensional Gaussians given by the Gaussian
Process predictive distributions for the objectives f and constraints c values. As these
distributions are Gaussian, they do not need to be approximated.

In order to find a Gaussian Approximation to Eq.(4) it is necessary to perform several
steps. First of all, we separate the factors that depend and not depend on x so that they
will be approximated separately. By doing this, the factors that depend on x are refined
only once by EP and the other factors are refined iteratively by EP until they change no
more.

The factors that depend on x are the Dirac Delta functions that can be replaced by
Gaussians with the corresponding noise variance in the noise case and no variance in the
noiseless case. As they are Gaussian Distributions, there is nothing to approximate.

The other factors are the ones that do not depend on x. We define the sampled
Pareto Set as X ∗ = {x∗1, ...,x∗M} of size M and the set of N observations in the input

space as X̂ = {x1, ...,xN} with the corresponding observations of the k-th objective
yk and of the c-th constraint yj . Then, the values of the posterior distributions of
the GPs of the objectives and the constraints at that points are defined by fk =
(fk(x

∗
1), ..., fk(x

∗
M), fk(x1), fk(xN))T and cj = (cj(x

∗
1), ..., cj(x

∗
M), cj(x1), cj(xN))T . If

we define f = {f1, ...,fK} and c = {c1, ..., cJ}, let q(f , c) be the distribution that we
want to approximate, p(X ?|f, c)p(f|D)p(c|D), with the factors that do not depend on x,
that is:

q(f , c) =
∏

x?∈X ?

[J∏
j=1

Φj(x
?)

][∏
x′∈X

Ω(x′,x?)

] p(f|D)p(c|D)dfdc . (B.5)

Because Eq.(10) is not tractable, we approximate the normalized version of q(f , c) with
a product of Gaussians, the Gaussian Approximation to the Conditional Predictive
Distribution. Eq.(10) can be expressed as this normalized product:

q(f , c) =
1

Zq

[K∏
k=1

N
(
fk | mfk

pred,V
fk
pred

)][J∏
j=1

N
(
cj | m

cj
pred,V

cj
pred

)]
×

∏
x?∈X ?

[J∏
j=1

Φj(x
?)

][∏
x′∈X

Ω(x′,x?)

] , (B.6)

where mfk
pred and V fk

pred are the mean and covariance matrix of the posterior distributions

of fk given the data in D and m
cj
pred and V

cj
pred are the mean and covariance matrix of the

posterior distribution of cj given the data in D. These means and variances are computed

Appendix B. Appendix for Chapter 4 183

according to the equations 2.22-2.24 provided by Rasmussen (Rasmussen, 2003):

mfk
pred = Kk

∗
(
Kf + v2

fI
)−1
yk ,

V fk
pred = Kk

∗,∗ −Kk
∗
(
Kk + v2

fI
)−1[

Kk
∗
]
, (B.7)

where Kk
∗ is an (N + 1)×N matrix with the prior cross-covariances between elements of

fk and fk,1, ..., fk,n and Kk
∗,∗ is an (N + 1)× (N + 1) matrix with the prior covariances

between the elements of fk and vk is the standard deviation of the additive Gaussian
noise in the evaluations of fk. Following the same reasoning, we have that:

m
cj
pred = Kj

∗
(
Kj + v2

j I
)−1
yj ,

V
cj
pred = Kj

∗,∗ −Kj
∗
(
Kj + v2

j I
)−1[

Kj
∗
]
, (B.8)

where Kj
∗ is an (N + 1)×N matrix with the prior cross-covariances between elements of

cj and cj,1, ..., cj,n and Kj
∗,∗ is an (N + 1)× (N + 1) matrix with the prior covariances

between the elements of cj and vj is the standard deviation of the additive Gaussian
noise in the evaluations of cj .

The other non-Gaussian factors presented in Eq.(11), Φj(x
?) and Ω(x′,x?), are

the problematic ones, as they are not Gaussian Distributions. Hence they will be
approximated by Gaussians with EP, as will be described in the next sections.

B.2 Using Expectation Propagation to Approximate the
Conditional Predictive Distribution

This section explains how the EP algorithm approximate the previous product of factors,
giving a product of Gausssian Distributions which we call the Gaussian Approximation to
the Conditional Predictive Distribution, shown in the previous section. As it is a product
where different factors are involved, we have to divide the problem in the approximation
of the different factors for Gaussian Distributions. These are the Φj(x

∗ factors and the
Ω(x′,x?) factors, which will be approximated by one-dimensional and two-dimensional
Gaussian Distributions respectively.

The factors Φ(x∗) that represent if a Pareto Set point x∗ is feasible evaluated in a
certain constraint cj(x

∗), are approximated by a one-dimensional un-normalized Gaussian
distribution Φ̃(x∗). This distribution is expressed in exponential family form in the next
equation:

Φ(x∗) ≈ Φ̃(x∗) ∝ exp

{
−
cj(x

∗)2v̂x
∗

j

2
+ cj(x

∗)m̂x
∗

j

}
, (B.9)

where v̂x
∗

j and m̂x
∗

j are natural parameters that are going to be adjusted by EP. The

variance of the Gaussian Distribution, v̂x
∗

j , EP factor in every point, x∗, for every

constraint, cj will be denoted by êj and the mean EP factor by f̂j . That is, the
one-dimensional Gaussian Distribution approximation of Φ(x∗), in every constraint cj
computed by EP, Φ̃(x∗) is defined in every point x∗ belonging to X ∗, by its mean f̂j and
its variance êj . There will be as many Gaussian Distributions as points multiplied by
constants.

The factors Ω(·, ·), that represent if a point xj is not dominated by the other point
xi and it is feasible over all the constraints c(xj), are approximated by a product of

Appendix B. Appendix for Chapter 4 184

J one-dimensional un-normalized Gaussian Distributions where J are the number of
constraints and K two-dimensional un-normalized Gaussian Distributions where K are
the number of objectives. This product of distributions is expressed by the following
equation:

Ω(x′,x∗) ≈ Ω̃(x′,x∗) ∝
K∏
k=1

exp

{
− 1

2
vTk Ṽ

Ω
k vk + (m̃Ω

k)Tvk

}
×

J∏
j=1

exp

{
−
cj(x

∗)2ṽΩ
j

2
+ cj(x

∗)m̃Ω
j

}
, (B.10)

where vk is defined as the vector (fk(x
′), fk(x

∗))T , and Ṽk, m̃k, ṽ
Ω
j and m̃Ω

j are natural
parameters adjusted by EP. As the product represents a product of two-dimensional
un-normalized Gaussian Distributions, Ṽk is a 2 × 2 matrix and m̃k is a two-dimensional
vector.

For the set of N observation points in the input space X̂ and the set ofM Pareto Set
points X ∗, we define the variance of the two-dimensional Gaussian Distribution, Ṽk, EP
factor of an observation point xi with respect to a Pareto Point xj as Âij and the mean

EP factor as b̂ij . We denote the variance of the one-dimensional Gaussian Distribution,

ṽΩ
j , EP factor in every point xj as âcj and the mean EP factor by b̂cj .

For the set ofM Pareto Set points X ∗, we define the variance of the two-dimensional
Gaussian Distribution, Ṽk, EP factor of a point xi with respect to another Pareto Point
xj as Ĉij and the mean EP factor as d̂ij . We denote the variance of the one-dimensional
Gaussian Distribution ṽΩ

j EP factor in every point xj as ĉcj and the mean EP factor by

d̂cj .
That is, the approximation Ω̃(x′,x∗) computed by EP consisting of a product of

one-dimensional Gaussian Distributions and two-dimensional Gaussian distributions of
the distribution Ω(x′,x∗), is defined in the set of points X̂ and X ∗ by a product of one-
dimensional Gaussian Distributions with mean b̂cj and variance âcj and a product of two-

dimensional Gaussian Distributions with variance Âij and mean b̂ij . The approximation
for the set of points X ∗ is defined by a product of one-dimensional Gaussian Distributions
with mean d̂cj and variance ĉcj and a product of two-dimensional Gaussian Distributions

with variance Ĉij and mean d̂ij .
In the next section, the computations of the Gaussian factor approximations Φ̃(·) and

Ω̃(·, ·) defined by the EP factors Âij , b̂ij , Ĉij , d̂ij , êj , f̂j , âcj , b̂cj , ĉcj and d̂cj , required
by EP, are explained in detail, following the algorithm described in Chapter 3.

B.3 The EP Approximation to the Φ(·) and Ω(·, ·) Factors

The EP algorithm updates each of the approximate factors presented in the previous
section until convergence. The following sections will describe the necessary operations
needed for the EP algorithm to update each of the factors. It the following subsection, it
is assumed that we have already obtained the mean and variances of each of the K and
J conditional predictive distributions, which will be explained in detail in section 4.3.

Appendix B. Appendix for Chapter 4 185

B.3.1 EP Update Operations for the Φ(·) Factors

As it was explained in section 3, for the M Pareto Set points defined by the set X ∗, in
every point xi ∈ X ∗, the EP algorithm will generate J approximations for the Φ(xj)

factors for every constraint cj that will be defined by its mean f̂xj and its variance êxj .
Computations are done for all the points xi ∈ X ∗. The operations for these factors are
described as follows.

B.3.1.1 Computation of the Cavity Distribution

The first step performed by the EP algorithm is the computation of the Cavity Distribution
q̃\n(x). In order to make the computations easier, we first obtain the natural parameters
of the Gaussian Distributions for all the M Pareto Set points by using the equations:

m̂j =
ξj

diag(Ξj)
,

v̂j =
1

diag(Ξj)
. (B.11)

Where Ξj is a vector of the variances of the M points for the constraint cj and Ξ is the
matrix of all the variances of allM and N points which construction will be explained in
detail in section 4.3. The term diag holds for the diagonal of Ξ as we are only interested
in the variance of the M points and not the variance of these points with the N points
for the factor Φ(·). In the same way, ξj , is the vector of means for the constraint cj and
ξ contains all the means of all the points for every constraint in c. m̂j and v̂j hold the
mean and variance natural parameters corresponding for all the points in the set X ∗.

Once we have obtain the natural parameters m̂j and v̂j , we obtain the cavity
distribution. As we are dealing with natural parameters, it is not necessary to use
the formula for the ratio of Gaussian Distributions, the cavity distribution defined by
mean m̂\j and variance v̂\j will simply be obtained by the substraction of the natural
parameters between the approximated distribution defined by parameters m̂j and v̂j
(which is equivalent to the product of all the factors for all the constraints) and the factor
êj and f̂j corresponding to the constraint cj that we want to update:

v̂
\j
nat = v̂j − êj ,

m̂
\j
nat = m̂j − f̂j . (B.12)

Once the substraction is done, we transform the natural parameters of the cavity
distribution into Gaussian parameters again by using the formula that converts natural
to Gaussian parameters.

v̂\j =
1

v̂
\j
nat

,

m̂\j = m̂natv̂
\j . (B.13)

The variances v̂\j need to be positive for the following operations.

Appendix B. Appendix for Chapter 4 186

B.3.1.2 Computation of the Partial Derivatives of the Normalization Con-
stant

Once the cavities v̂\j and m̂\j have been computed, the EP need to compute the
quantities required for the update of the factors êj and f̂j in order to minimize the KL
divergence between Φ(·) and the approximation distribution. These quantities are the
firr st and second moments of the distribution that we want to approximate. These
are given by the log of the partial derivatives of Zj , the constant that normalizes the
distribution that we want to approximate, in this case, Φ̂(·).

Zj =

∫
Φ̂(x∗) dcj . (B.14)

As Φ(x∗) is approximated by a Gaussian Distribution Φ̂(x∗) with mean m̂\j and variance
v̂\j , the normalization constant Zj can be computed in closed form and its given by the
cumulative distribution function ,Φ(·), of this Gaussian Distribution:

Zj = Φ

(
m̂\j√
v̂\j

)
. (B.15)

Let α = m̂\j√
v̂\j

, then log(Zj) = log(Φ(α)). For numerical robustness, if a, b ∈ R, we

apply the rule a
b = exp (log(a)− log(b)). Using these expressions, the log-derivatives are

computed as follows:

∂ log(Zj)

∂m̂\j
=

exp{log(N(α))− log(Zj)}√
v̂\j

,

∂ log(Zj)

∂v̂\j
= −exp{log(N(α))− log(Zj)}α

2v̂\j
. (B.16)

Where N(·) represent the Gaussian probability density function. These expressions are
valid for computing the first and second moments, but they do not present numerical

robustness in all experiments. Since the lack of robustness of
∂ log(Zj)

∂v̂\j
, we use the formula

given by the Appendix A of the work by Opper (Opper and Archambeau, 2009), and use

the second partial derivative
∂2 log(Zj)

∂[m̂\j]2
rather than

∂ log(Zj)

∂v̂\j
. This derivative is given by

the following expression:

∂2 log(Zj)

∂[m̂\j]2
= − exp{log(N(α))− log(Zj)}

α exp{log(N(α))− log(Zj)}
v̂\j

. (B.17)

Given these derivatives, in the next section it will be explained how to obtain the
individual approximate factors êj and f̂j .

B.3.1.3 Computation of the First and Second Moments for the Updates

We now have to compute the first and second moments for the mentioned updates. As
the distributions are going to be Gaussian, which belongs to the exponential family, we
know that the first and second moment of the Gaussian Distribution are given by:

E[x] = µ , (B.18)

E[xxT] = Σ + µµT , (B.19)

Appendix B. Appendix for Chapter 4 187

In order to match the moments, we make the Kullback-Leibler divergence between both
distributions zero. With the previous definition of Zj and given the computed robust
derivatives, the expressions that obtain the first and second moments that give the
approximate factors êj that represents the variance and f̂j that represent the mean for
the constraint cj(X

∗) are given by the following expressions according to EP:

f̂j =

∂ log(Zj)

∂m̂\j
− m̂\j ∂

2 log(Zj)

∂[m̂\j]2

1 +
∂2 log(Zj)

∂[m̂\j]2
v̂\j

,

êj = −
∂2 log(Zj)

∂[m̂\j]2

1 +
∂2 log(Zj)

∂[m̂\j]2
v̂\j

. (B.20)

In practice, the updates are not absolute, they are dumped as the section 5.2 of this
Appendix shows.

B.3.2 EP Update Operations for the Ω(·, ·) Factors

Recalling section 3, for the M Pareto Set points defined by the set X ∗ and the N input
space observation points defined by the set X̂ , for every pair of points xi ∈ X̂ and
xj ∈ X ∗, the EP will generate K two-dimensional gaussian approximations for every
objective fk that will be defined for the pair observation and pareto set point by factors
defined by mean b̂ij and variance Âij and for the pair of pareto set points by factors

defined by mean d̂ij and variance Ĉij . It will also define J one-dimensional gaussian
approximations for every constraint cj that will be defined for the pair observation and

pareto set point by factors defined by mean b̂cj and variance âcj and for the pair of

pareto set points by factors defined by mean d̂cj and variance ĉcj . Computations are
done for all the pairs of points from the sets X ∗ and X̂ . The necessary operations for
computing these factors are described in the following sections.

B.3.2.1 Computation of the Cavity Distribution

For the factors âcj , b̂cj , ĉcj and d̂cj that approximate the J one-dimensional gaussian
approximations for every constraint cj , the operations needed to extract the cavity
distribution from the approximate distribution are the same ones as the ones described in
Section 4.1.1. These operations are done for the observation points in X̂ for the factors
âcj , b̂cj and for the Pareto Set points in X ∗ for the factors ĉcj and d̂cj . That is, obtaining
the natural parameters of Ξj as in Eq. (16), substracting the natural parameters of the
factor that is approximated, Eq. (17), and obtaining the gaussian parameters of the

cavity that we define for a point xi, m
\bj
ij and v

\aj
ij , as shown in Eq. (18).

Obtaining the cavity distribution for the factors Âij , b̂ij , Ĉij and d̂ij that approximate
the K two-dimensional gaussian approximations for every objective fk follow different
expressions as in this case the Gaussian Distributions are bivariate for every pair of
points considered.

In the first case, for the case of approximating a distribution that consider a point xi
belonging to the observations set X̂ and a point xj from the pareto set X ∗, that is, the

factors Âij and b̂ij , it is necessary to obtain, for every objective k and each of the pair

of points mentioned, the natural parameters mk
ij(nat) and V k

ij
−1

of the Gaussian Process

that models each of the K objectives f(·)j . These natural parameters are obtained by

Appendix B. Appendix for Chapter 4 188

the following expressions:

mk
ij(nat) = V k

ij
−1
mk

ij ,

V k
ij
−1

= (V k
ij)
−1 , (B.21)

where V k
ij is a 2x2 matrix that represent in the points xi and xj the variance of the

gaussian approximation of the objective k and mk
ij is a vector that represent in the

points xi and xj the mean of the gaussian approximation of the objective k.
As in the constraints case, we now extract the cavity distribution that we define by

the natural parameters m
\b
ijk(nat) and V

\A
ijk(nat), by substracting to the computed natural

parameters mk
ij(nat) and V k

ij
−1

, computed in the previous step, the factors that we want

to update bkij and Ak
ij . That is:

m
\b
ijk(nat) = mk

ij(nat) − b
k
ij ,

V
\A
ijk(nat) = V k

ij
−1 −Ak

ij . (B.22)

For the bivariate gaussian distribution, the step of obtaining the gaussian parameters
from the natural parameters is defined by the following expressions:

m
\b
ijk = V

\A
ijk mijk(nat) ,

V
\A
ijk = (V

\A
ijk(nat))

−1 , (B.23)

where V
\A
ijk is a 2x2 matrix with the variances of each of the points and the correlation

between each of them and m
\b
ijk is a two position vector that represent the means. In the

case of the factors Ĉij and d̂ij that consider two Pareto Set points, the operations for
extracting the cavity distribution are the same ones as in the previous case.

B.3.2.2 Computation of the Partial Derivatives of the Normalization Con-
stant

In this section, the operations needed to compute the partial derivatives for all the
Âij , b̂ij , Ĉij , d̂ij , âcj , b̂cj , ĉcj and d̂cj are described. These derivatives need previous
computations in order to compute the normalization constant ZΩ of the factor Ω(·, ·) that
we want to approximate. These computations are given by the following expressions, all
of which depend upon terms computed in the previous section. The shown computations
are the result of applying rules in order to be robust such as a/b = exp{log(a)− log(b)}
and ab = exp{log(a) + log(b)}.These operations are equivalent for the two points cases,
but here, the necessary operations for computing the normalization constant ZΩ are

Appendix B. Appendix for Chapter 4 189

described for the case of the factors Âij , b̂ij , âcj and b̂cj :

sk = V
\A
ijk[0,0] + V

\A
ijk[1,1] − 2V

\A
ijk[0,1] , (B.24)

αk =
m
\b
ijk[0] −m

\b
ijk[1]√

sk
, (B.25)

βj =
m
\bj
ij√
v
\aj
ij

, (B.26)

φ = Φ(α) , (B.27)

(B.28)

where Φ(·) represents the c.d.f of a Gaussian distribution,

γ = Φ(β) , (B.29)

ζ = 1− exp{
K∑
k=1

log(φk)} , (B.30)

log(η) =
J∑
j=1

log(γj) + log(ζ) , (B.31)

λ = 1− exp{
J∑
j=1

log(γj)} , (B.32)

τ = max(log(η), log(λ)) , (B.33)

log(ZΩ) = log(exp{log(η)− τ}+ exp{log(λ)− τ}) + τ . (B.34)

Having computed these terms, the log partial derivatives for the update of the factors
that collaborate to the approximation of the objective variances Âij and the objective

means b̂ij are given by the expressions:

ρk = − exp{log(N (αk))} − log(ZΩ) +

K∑
k=1

{log(Φ(αk))} − log(Φ(αk)) +

J∑
j=1

{log(Φ(βj))} ,

(B.35)

∂ log(ZΩ)

∂m
\b
ijk

=
ρk√
sk

[
1,−1

]
,

∂ log(ZΩ)

∂V
\A
ijk

= −ρkαk
2sk

[[1,−1], [−1, 1]] . (B.36)

Derivatives are computed for the two position vector mean and the 2x2 variance matrix,
so they have the same structure, given by the [1, -1] and [[1, -1],[-1, 1]] expressions. The
change in the sign appears due to the fact that the expression changes, whether it is the
derivative of the mean of the observation point or the Pareto Set point or the derivative
of the variance of one point or their correlation.

Alas, the derivative of the variance presents the same lack of robustness as in the
constraint case shown in section 4.1.2. In order to ensure numerical robustness, we use
the second partial derivative of the mean of the normalization constant instead of the

Appendix B. Appendix for Chapter 4 190

first partial derivative of the variance for the further computation of the second moment.
That is,

∂2 log(ZΩ)

∂
[
m
\b
ijk

]2 = −ρk
sk

(αk + ρk)[[1,−1], [−1, 1]] . (B.37)

For the log partial derivatives for the update of the factors that collaborate to the
approximation of the constraint variances âcj and the constraint means b̂cj , let ωj be
defined as:

ωj = exp{log(N (βj))} − log(ZΩ) + log(ζ) +

J∑
j=1

(log(Φ(βj)))− log(Φ(βj))− exp{log(N (βj))} ,

− log(ZΩ) +
J∑
j=1

(log(Φ(βj)))− log(Φ(βj)) . (B.38)

Then, the robust log partial derivatives for the first and the second moments are given
by the expressions:

∂ log(ZΩ)

∂m
\bj
ij

=
ωj√
sj
,

∂2 log(ZΩ)

∂[m
\bj
ij]2

= −ωj
sj

(βj + ωj) . (B.39)

The expressions for the log partial derivatives of Ĉij , d̂ij , ĉcj and d̂cj are similar to the
presented expressions in this section, but taking into account pairs of points belonging
to the set X ∗.

B.3.2.3 Computation of the First and Second Moments for the Updates

Giving the expressions computed in the previous section, the first and second moments
of the different Gaussian Distributions that approximate the factor Ω(·, ·) can now be
computed.

The expressions for computing the factors Âij , b̂ij , Ĉij , d̂ij for each of the K

objectives and the factors âcj , b̂cj , ĉcj and d̂cj for each of the J constraints are the
following ones:

Âk
ij =

∂2 log(ZΩ)

∂
[
m
\b
ijk

]2 ((V
\A
ijk

∂2 log(ZΩ)

∂
[
m
\b
ijk

]2)−1[[1, 0], [0, 1]]) , (B.40)

b̂kij = ((
∂ log(ZΩ)

∂m
\b
ijk

−m\bijk)
∂2 log(ZΩ)

∂
[
m
\b
ijk

]2) ((V
\A
ijk

∂2 log(ZΩ)

∂
[
m
\b
ijk

]2)−1 + [[1, 0], [0, 1]]) , (B.41)

Ĉk
ij =

∂2 log(ZΩ)

∂
[
m
\b
ijk

]2 ((V
\A
ijk

∂2 log(ZΩ)

∂
[
m
\b
ijk

]2)−1[[1, 0], [0, 1]]) , (B.42)

d̂kij = ((
∂ log(ZΩ)

∂m
\b
ijk

−m\bijk)
∂2 log(ZΩ)

∂
[
m
\b
ijk

]2) ((V
\A
ijk

∂2 log(ZΩ)

∂
[
m
\b
ijk

]2)−1 + [[1, 0], [0, 1]]) , (B.43)

Appendix B. Appendix for Chapter 4 191

for the the rest of the factors, suppose that the index h refers to the points of the Pareto
Set X ∗:

âcjh = −

∂2 log(ZΩ)

∂[m
\bj
ic]2

1 + ∂2 log(ZΩ)

∂[m
\bj
ic]2

v
\aj
ic

, (B.44)

b̂c
j

h =

∂ log(ZΩ)

∂m
\bj
ic

−m\bjic
∂2 log(ZΩ)

∂[m
\bj
ic]2

1 + ∂2 log(ZΩ)

∂[m
\bj
ic]2

v
\aj
ic

, (B.45)

ĉcjh = −

∂2 log(ZΩ)

∂[m
\bj
ic]2

1 + ∂2 log(ZΩ)

∂[m
\bj
ic]2

v
\aj
ic

, (B.46)

d̂c
j

h =

∂ log(ZΩ)

∂m
\bj
ic

−m\bjic
∂2 log(ZΩ)

∂[m
\bj
ic]2

1 + ∂2 log(ZΩ)

∂[m
\bj
ic]2

v
\aj
ic

. (B.47)

All these factors are then used to rebuild the means and the variances of the Gaus-
sian Processes that model the K objectives and C constraints of a constrained multi-
objective optimization problem, as will be shown in the following section. That is, C
one-dimensional Gaussian Distributions for the constraint models and C one-dimensional
Gaussian Distributions and K two-dimensional Gaussian Distributions for the objective
models in each of the points in X = {X ∗ ∪ X̂ ∪ x}.

B.3.3 Reconstruction of the Conditional Predictive Distribution

In this section, we illustrate the way of obtaining a Conditional Predictive Distribution for
every objective fk and every constraint cj , given a sampled Pareto Set X ∗ = {x∗1, ...,x∗M}
of size M and a set of N input locations X̂ = {x1, ...,xN} with corresponding observations
of the k-th objective yk and of the j-th constraint yj . For the following, it is assumed
that we are given the EP approximate factors Φ(·) and Ω(·, ·), as an input for the next
operations, which computation is explained in the previous section.

Recalling Eqs. 7, 8 and 9 of section 2, we want to obtain the J Conditional Predictive
Distributions in the products of constraints and the K Conditional Predictive Distribu-
tions of the Gaussian Processes that model the objectives. The products presented in
these factors are not a problem, due to the fact that the Gaussian Distributions are closed
under the product operation, that is, the product of Gaussian Distributions is another
Gaussian Distribution. These Conditional Predictive Distributions of the objectives and
constraints are then used in Eq.(11) to build the final approximation.

Following the notation of section 4.1.1, let ξj and Ξj be the mean vector and variance
matrix of the one-dimensional Gaussian Distributions of the M +N points that generate
the Gaussian Processes that model the constraints and let mk and Vk be the mean vector
and variance matrix of the two-dimensional Gaussian Distributions of the M +N points
that generate the Gaussian Processes that model the objectives. In order to update
the constraint and objective distribution marginals, it is necessary to first follow the
operations given by the equations 14 and 22, to obtain the natural parameters from the
means and variances. Intuitively, as they are all natural parameters, these will be just
sums taking into account that the matrices are formed first by the Pareto Set Points ,M ,

Appendix B. Appendix for Chapter 4 192

and then by the observations N . Univariate factors are added to the diagonal of these
matrices, as they are not correlated with other points. Once the natural parameters are
computed, the new means ξj , mk and variances Ξj , Vk marginals are updated from the

EP factors Âij , b̂ij , Ĉij , d̂ij , êj , f̂j , âcj , b̂cj , ĉcj and d̂cj by the following expressions:

Ξj
ii = Ξj

ii(old) +

M∑
m=1

ĉcjmi + êji for i = 1, ...,M ,

Ξc
ii = Ξj

ii(old) +
M∑
m=1

âcjmi for i = M + 1, ..., N +M ,

ξci = ξji(old) +
M∑
m=1

d̂c
j

mi + f̂ ji for i = 1, ...,M ,

ξci = ξji(old) +
M∑
m=1

b̂c
j

mi for i = M + 1, ..., N +M ,

V k
ii = V k

ii(old) +

N∑
j=M+1

Âk
ji[1,1] +

M∑
j=1

Ĉk
ij[0,0] +

M∑
j=1

Ĉk
ji[1,1] for i = 1, ...,M ,

V k
ii = V k

ii(old) +
M∑
j=1

Âk
ij[0,0] for i = M + 1, ..., N +M ,

V k
ij = V k

ij(old) +Ck
ij[0,1] +Ck

ij[1,0]

T
for i = 1, ...,M, and for j = 1, ...,M ,

V k
ij = V k

ij(old) +Ak
ij[0,1] for i = M + 1, ..., N, and for j = 1, ...,M ,

V k
ij = V k

ij(old) +Ak
ij[0,1]

T
for i = 1, ...,M, and for j = M + 1, ..., N ,

mk
i = mk

i(old) +
N+M∑
j=M+1

b̂kji[1] +
M∑
j=1

d̂kij[0] +
M∑
j=1

d̂kji[1] for i = 1, ...,M ,

mk
i = mk

i(old) +
M∑
j=1

b̂kij[0] for i = M + 1, ..., N +M .

(B.48)

These natural parameters are then converted into Gaussian ones using the equations
and 16 and 24. Once these operations are done the Gaussian Processes that model the
objectives and constraints are updated from a full EP iteration.

B.3.4 The Conditional Predictive Distribution at a New Point

In this section, the computation of the conditional distributions for every model of the
objectives fk and the constraints cj at a new candidate location xN+1 is explained. This
requires that q(f ,c) is already computed approximated by the factors of EP. The interest
lies in evaluating the conditional predictive variances for fk(xN+1) and for cj(xN+1)
for every objective and constraint. With this variances, it is possible to compute the
PESMOC acquisition function given by the Negative Differential Entropy w.r.t the

Appendix B. Appendix for Chapter 4 193

Conditional Predictive Distribution and the Predictive Distribution:

α(x) ≈
J∑
j=1

log vPD
j (x) +

K∑
k=1

log vPD
k (x)− 1

M

M∑
m=1

[J∑
j=1

log vCPD
j (x|X ?(m)) +

K∑
k=1

log vCPD
k (x|X ?(m))

]
.

(B.49)

In order to obtain these variances, we need to execute the Expectation Propagation
algorithm once again, but as it is only a new observation point, it is not necessary to
compute the Φ(·) factor. The Conditional Predictive Distribution variances expressions
that we need to evaluate in order to obtain these variances are:

p(fk(xN+1))|X̂ ,X ∗,xN+1) ≈
∫
Z−1
k q(fk,fk(xN+1))

∏
x?∈X ?

(
Ω(xN+1,x

?)

)
dfk, dcj ,

(B.50)

p(cj(xN+1))|X̂ ,X ∗,xN+1) ≈
∫
Z−1
j q(cj , cj(xN+1))

∏
x?∈X ?

(
Ω(xN+1,x

?)

)
dfk, dcj ,

(B.51)

where Z is a normalization constant and q(f ,f(xN+1)) and q(c, c(xN+1)) are multivariate
gaussian distributions that results by extending q(f) and q(c) with the new point xN+1.
We have only taken into account the approximate factors that depend on fk and cj . The
covariances between fk and fk(xN+1) and the covariances between cj and cj(xN+1) are
obtained from the GP posteriors for fk and cj given the observed data. In the same
way, the mean and the variance of fk(xN+1) and cj(xN+1) can be obtained. As all the
factors are Gaussian and the product operation is closed the results are also Gaussian
Distributions.

Let f̃k = (fk(x
∗
1), ..., fk(x

∗
M), fk(x

∗
N+1))T and c̃j = (cj(x

∗
1), ..., cj(x

∗
M), cj(x

∗
N+1))T .

As
∏

x?∈X ?
(Ω(xN+1,x

?)) does not depend on fk(x1, ...,xN) nor in cj(x1, ...,xN), we can marginalize
these variables in Eq. (55) to obtain Gaussian Distributions for every objective k and
every constraint j in the point xN+1, proportional to:∫

q(f̃k)
∏

x?∈X ?

(
Ω(xN+1,x

?)

)
M∏
i=1

dfk(x
∗
i) , (B.52)

∫
q(c̃j)

∏
x?∈X ?

(
Ω(xN+1,x

?)

)
J∏
i=1

dcj(x
∗
i) , (B.53)

these expressions generate Gaussian Distributions, one for every objective and one for
every constraint, at the point xN+1:∫

N (f̃k|(V x)−1mx, (V x)−1)
M∏
i=1

dfk(x
∗
i) = N (fk(xN+1)|mk, vk) , (B.54)

∫
N (c̃j |(Ξx)−1ξx, (Ξx)−1)

J∏
j=1

dcj(x
∗
i) = N (cj(xN+1)|ξj , vj) , (B.55)

where mx, V x, ξx and Ξx are the natural parameters of the Conditional Predictive
Distributions for the objective k and the constraint j, which are Gaussian. The variances

Appendix B. Appendix for Chapter 4 194

vk and vj of the Gaussian Approximations of the objectives and the constraints are the
ones needed to the entropy computation in Eq.(54). These are given by the last diagonal
of the natural parameter variance matrices V x and Ξx. As the means are not needed,
no further details are here given in order to compute them.

Each entry in Ξx and V x, as they are natural parameters, is given by the reconstruc-
tion of the predictive distribution, which is the most expensive part:

Ξxi,j = Ξci,j for 1 ≤ i ≤M and 1 ≤ j ≤M , and i 6= j ,

V x
i,j = V k

i,j for 1 ≤ i ≤M and 1 ≤ j ≤M , and i 6= j ,

V x
i,j = cov(fk(xN+1), f(x∗j)) + c̃N+1,j,k for 1 ≤ j ≤M , and i = M + 1 ,

V x
j,i = V x

i,j for j 6= i , and 1 ≤ i , j ≤M ,

V x
i,i = V k

i,i + ṽ∗N+1,j,k , for 1 ≤ i ≤M ,

ΞxM+1,M+1 = var(cj(x)) +
M∑
j=1

s̃N+1,j,c ,

V x
M+1,M+1 = var(fk(x)) +

M∑
j=1

ṽN+1,j,k . (B.56)

where ṽN+1,j,k, ṽ
∗
N+1,j,k, c̃N+1,j,k and s̃N+1,j,c are the parameters of each of the M

factors Ω(xN+1,x
?), for j = 1, . . . ,M . The other terms, var(fk(x)), var(cj(x)) and

cov(fk(xN+1), f(x∗j)) are the posterior variances of fk(xN+1), cj(xN+1) and the posterior
covariance between fk(xN+1) and fk(x

∗
j).

The matrix Vx, has a block structure in which only the last row and column depends
on xN+1. This fact allows us to compute vk = (Vx)−1

M+1,M+1 with cost O(M3) using the
expressions for block matrix inversion. All these computations are carried out using the
open-BLAS library for linear algebra operations.

Given the variances vk and vj , the only task remaining is adding the variance of

the additive Gaussian noise εkN+1 and εjN+1 to obtain the final variance of the Gaussian

approximations to the conditional predictive distributions of ykN+1 = fk(xN+1) and
ycN+1 = cj(xN+1).

B.4 Final Gaussian Approximation to the Conditional Pre-
dictive Distribution

B.4.1 Initialization and convergence of EP

When the EP algorithm computes the Φ(·) and Ω(·, ·) factors, it requires to set an initial
value to all the factors that generates the Gaussians that approximate the Φ(·) and Ω(·, ·)
factors. These factors, Âij , b̂ij , Ĉij , d̂ij , êj , f̂j , âcj , b̂cj , ĉcj and d̂cj are all set to be
zero. The convergence criterion for stopping the EP algorithm updating the parameters
is that the absolute change in all the cited parameters should be below 10−4. Other
criteria may be used.

B.4.2 Parallel EP Updates and Damping

The updates of every approximate factor Âij , b̂ij , Ĉij , d̂ij , êj , f̂j , âcj , b̂cj , ĉcj and d̂cj are
executed in parallel as it is described in the work by Gerven (Gerven et al., 2009). The

Appendix B. Appendix for Chapter 4 195

cavity distribution for each of the factors is computed and then the factors are updated
afterwards. Once these operations are done the EP approximation is recomputed as it is
described in the section 4.3.

In order to improve the convergence behaviour of EP we use the damping technique
described in Minka & Lafferty (Gelman et al., 2014). We use this technique for all the
approximate factors. Damping simply reduces the quantity that the factor changes in
every update as a linear combination between the old parameters and the new parameters.
That is, if we define the old parameters of the factor to be updated as uold, the new
parameters as unew and the updated factor as u, then the update expression is:

u = θunew + (1− θ)uold . (B.57)

Where θ is the damping factor whose initial value is set to be 0.5, this factor controls
the amount of damping, if this value is set to be one then no damping is employed.
This factor is multiplied by 0.99 at each iteration, reducing the amount of change in
the approximate factors in every iteration of the Bayesian Optimization. An issue that
happens during the optimization process is that some covariance matrices become non
positive definite due to a high large step size, that is, a high value of θ. If this happens
in any iteration, an inner loop executes again the update operation with θnew = θold / 2
and the iteration is repeated. This inner loop is performed until the covariance matrices
become non positive definite.

B.5 Sensitivity Analysis of the Sampled Pareto Set Size

In this section, we present the details of a sensitivity analysis of PESMOC with respect to
the number of points included in each sample of the Pareto set X ?(m). We have considered
the 6-dimensional synthetic problem described in the main manuscript. In this problem
we have 6 black-boxes that are sampled from a GP prior. From these, 4 are objectives
and 2 are constraints. We performed 100 experiments in which we evaluate 100 times the
black-boxes and report average results. We consider different set sizes for X ?(m). Namely,
5, 10, 25, 50, 75 and 100. We include a figure that shows the average relative difference
in log scale of the hyper-volume of the recommendation made w.r.t. the hypervolume
of the actual soulution, at each iteration of the optimization process, for each Pareto
set size. Furthermore, Table B.1 shows the average time required to compute the next
evaluation using PESMOC, for each different size of the Pareto set X ? considered.

Table B.1: Average time in seconds required to choose the next evaluation for each
size of the Pareto Set sample X ?(m). These times do not include the GP fit, in contrast
with the average times of the 4 dimensional problem scenario shown in Section 4.2 of
the main manuscript.

Time
Size of X ?(m) Mean Standard Deviation

5 95.98 10.67
10 99.05 11.53
25 109.48 10.92
50 133.02 11.68
75 159.90 15.34
100 190.25 25.71

Appendix B. Appendix for Chapter 4 196

●

●

●●

●

●●

●
●

●
●●

●●●
●●

●●●●
●

●●●●●
●

●●●
●

●●●
●

●
●●

●
●

●
●

●

●
●

●●●

●
●●

●●

●

●●●
●

●●
●

●
●

●●●●●
●

●

●●●

●●
●

●

●●●●
●

●
●●●

●
●●●●

●
●

●

●●●●●

●
●

●●

●

●
●●

●
●

●●●●
●

●
●

●●●●
●●●

●
●

●●●●
●

●
●●

●●●●
●

●
●

●
●

●●
●●

●
●

●
●●

●●
●●

●

●●●●●●●●
●

●●
●

●●
●

●
●●●●

●●
●

●
●

●

●
●●

●
●

●
●●●

●
●●

●●
●●

●

●
●

●

●

●
●

●

●●●●
●

●
●●●●●

●●●●
●●

●●●●
●●●●

●
●

●
●●●●

●
●

●
●●●●●●●●●●●●

●●
●

●●●●●●
●●●

●●
●●

●
●

●
●

●
●●●

●
●●●

●
●

●●●
●●

●

●●●●
●

●●●
●

●

●

●

●

●

●
●

●
●

●●
●

●●●
●●

●
●●

●
●●

●
●●●

●
●●●

●
●

●●

●
●

●
●●

●●

●●●
●

●
●●●

●●
●

●●●●●●●●●
●

●●
●

●●●●●●●
●

●
●

●●
●

●

●

●
●●●

●●

●

●
●

●●●

●●●
●●●

●

●

●

●

●

●

●
●

●

●●●

●
●●●

●
●●

●
●

●●●
●●●●

●●●
●●●●

●●
●

●
●●●

●●●
●●

●

●

●
●

●
●

●●●
●

●
●

●
●●

●●

●
●●●

●●●●
●

●●
●

●
●

●

●

●
●

●●
●●●

●●●

●●

●●

●●
●●

●●
●●

●●

●

●

●●

●
●

●●
●●●

●
●

●●
●●

●
●

●
●●●

●●
●●●

●
●●

●
●

●●●

●●

●●

●
●

●

●
●

●●

●
●●●

●●
●

●●

●

●
●●

●
●

●

●
●

●●●●
●●●●

●●●
●

●
●

●

●
●

●●
●●●●●

●●
●

●

●●
●●●

−8.70

−7.36

−6.02

−4.68

−3.34

−2.00

0 25 50 75 100
Number of Function Evaluations

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce Methods

●

●

●

●

●

●

5
10
25
50
75
100

4−objs, 2−cons, 6−D. Noiseless observations

Figure B.1: Performance of PESMOC in the synthetic experiment for different Pareto
set sizes.

We observe that by including more points in the Pareto Set, in general, the reuslts of
PESMOC improve, as expected. However, after including around 25 points the results
saturate and no further improvement in performance is observed. In general one should
include as many points as possible in each X ?(m). However, including more points in each
sample X ?(m) also increases the computational cost, as described in Table B.1. We observe
that choosing 50 points shows a good trade-off between performance and computational
time. In particular, this value gives good results and is not significantly more expensie
than considering 25 points.

B.6 Sensitivity Analysis of the Number of Montecarlo It-
erations

In this section, we present the details of a sensitivity analysis of PESMOC with respect to
the number of Montecarlo iterations considered for sampling the hyperparameters of the
Gaussian Processes. We have considered the 4-dimensional synthetic problem described
in the main manuscript. In this problem we have 4 black-boxes that are sampled from
a GP prior. From these, 2 are objectives and 2 are constraints. We performed 100
experiments in which we evaluate 100 times the black-boxes and report average results.
We consider a different number of Montecarlo iterations. Namely, 2, 5, 10, 20, 30, 50,
80 and 100. We include a figure that shows the average relative difference in log scale
of the hyper-volume of the recommendation made w.r.t. the hypervolume of the actual
soulution, at each iteration of the optimization process, for each number of Montecarlo
iterations.

We observe that, for a small number of Montecarlo iterations, in general adding more
iterations make the reuslts of PESMOC improve, as expected. However, after including
around 10 iterations the results saturate and no further improvement in performance
is observed. In general one should include as many number of Montecarlo iterations as
possible. However, including more iterations also increases the computational cost, so
we observe that choosing 10 iterations shows a good trade-off between performance and
computational time.

Appendix B. Appendix for Chapter 4 197

●

●

●

●
●

●●
●

●●●
●●●

●●
●

●

●●
●●

●
●●●●

●
●●

●
●●

●●
●

●●●
●●●

●●
●

●
●

●
●●

●

●
●●

●●
●

●●●●
●

●
●

●
●●

●
●●●●

●●●
●●●●

●
●

●●●
●

●●●●●●●●
●●

●●●●
●

●

●

●
●●

●●
●●●●

●●
●●●

●●
●●●

●●
●

●●
●●●

●●●●

●

●●●
●

●
●

●●●
●●

●●●●●●
●●●●●

●●●
●●●

●
●●●

●●●●●●●●●●●●●●
●

●●
●●

●●●
●

●●
●

●●
●

●
●

●
●●

●

●

●
●

●●
●

●●●
●●

●●●
●

●
●●

●
●

●

●
●

●●●●

●●
●

●●

●
●

●●
●●

●
●

●●
●

●●
●

●
●

●●●●●●●●●
●●●●●

●●
●

●●
●●●

●
●●

●●●●
●

●●●
●●●●

●
●●●●●

●●●●
●●●

●

●

●

●●

●

●
●●●●●

●●●
●

●●

●
●

●
●

●●●●

●
●

●●
●

●
●●

●
●●

●
●

●●
●

●
●●●●●●

●●
●●●

●●●●●●●●●●●●
●●●

●
●●●●●●

●●
●●●●●●●●

●●●
●●

●●●●●●●●●●

●

●

●

●

●
●

●●
●●●●

●●●

●●●

●●

●●●
●

●●
●

●●
●

●●●

●●
●●●●●

●●
●●●●●●●●

●●●●●
●●

●●●
●

●●●●●
●

●●●●●●●●●
●●●●●●●●●

●
●●●●

●●●
●●●●●●

●

●
●

●

●●
●●

●
●●

●●●
●●

●
●

●
●

●
●

●

●●●
●

●●
●●

●
●

●●●●
●

●●●●
●

●●
●●

●●●
●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●

●

●

●

●

●
●●

●●
●●

●●●●
●

●
●

●
●●

●●
●

●●●
●●

●
●●●●

●●●
●●●●●●●

●●

●●
●●●●

●●
●

●●●●●●●●●●
●●

●●
●●●●

●●
●●●●

●●●●●●●●
●●●●

●●●●●●●●●

●

●

●

●
●

●●
●

●
●

●●●
●●

●
●

●
●●

●
●●●

●●●
●●●

●
●●

●
●●

●●●●
●

●
●●

●●
●●

●●●
●●

●
●

●●
●

●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●−16.20

−13.54

−10.88

−8.22

−5.56

−2.90

0 25 50 75 100
Number of Function Evaluations

Lo
g

H
yp

er
vo

lu
m

e
R

el
. D

iff
er

en
ce

Methods
●

●

●

●

●

●

●

●

2
5
10
20
30
50
80
100

2−objs, 2−cons, 4−D. Noiseless observations

Figure B.2: Performance of PESMOC in the synthetic experiment for different number
of Montecarlo iterations.

B.7 Percentage of Infeasible Solutions in Benchmark Ex-
periments

We show in the next figure the percentage of infeasible solutions for the different bench-
mark experiments shown in the main manuscript. The plots show the percentage of
infeasible solutions for every iteration of Bayesian Optimization on these problems for
every tested acquisition function. A higher percentage of infeasible solutions implies that
the suggestions provided by the Bayesian Optimization criterion were not located in
the feasible region and hence, are poorer that feasible ones. We remind that to be an
infeasible point means that the probability of satisfying any of the constraints in that
point was lower in at least one of them than 1 minus δ, typically set to 0.05 in these
experiments. This fact may occur, for example for the PESMOC criteria, because the
criterion has selected a point that may be close to the border of the feasible region and
may be a good point in order to gain information about the Pareto Set, but unfortunately,
is infeasible as it lies in the infeasible side of the border, same analogy can be applied
for BMOO, which can suggest an infeasible point if it considers it good for optimizing
the multiobjective problem. In the random case this does not apply, as the approach
performs pure exploration. At the beggining, the infeasibility percentage of solutions is
higher due to he fact that the shape of the constraints is unknown and all the criteria
are basically exploring the space, hence, they suggest infeasible solutions with a high
probability until the shape of the constraints is reasonably known so the approaches
can take the constraints into account for suggesting new points. Then, the infeasibility
percentage drops down as iterations are computed.

It is shown that, in average, both PESMOC approaches outperform the other al-
ternatives of multi-objective constrained optimization in infeasibility percentage. The
TNK problem has the particular feature that it contains an optimum near one of its
constraints, that is the reason why the infeasibility grows around iteration 20 in all the
approaches. This is because as the optimum is more located and the constraint is defined,
the methods tend to search in that area, leaving unfeasible results. Once the constraint
is defined, they do not search outside of the Feasible Space anymore, and hence, the
unfeasible results dissapear. TwoBarTruss problem has the same nature as TNK, with

Appendix B. Appendix for Chapter 4 198

the optimum lying in the frontier of the feasible and infeasible space. We, once again,
see how PESMOC decoupled explores massively this area, giving lots of infeasible results
in iterations 20 to 30. PESMOC decoupled, as it evaluates every black box separately,
learns the shape of these constraints and, as the main manuscript states, it delivers a
better solution that the other approaches in less evaluations once it knows the shape of
these constraints and it is able to suggest points inside of the feasible space and close to
the Pareto set.

●●●
●

●●

●
●●

●●●●●
●●●

●●
●●●●●

●●
●●●

●
●●

●●●
●

●●
●

●
●

●●●0

25

50

75

100

0 25 50 75 100
Iterations

In
fe

as
ib

le
 r

es
ul

ts
 p

er
ce

nt
ag

e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

BNH. Noiseless Observations.

●●●
●●

●●
●●●●●●●

●
●

●●●●●
●●●●●●●●●●●●●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●

●●●●●●●●●●●
●●

●
●●

●●

●●
●●0

25

50

75

100

0 25 50 75 100
Iterations

In
fe

as
ib

le
 r

es
ul

ts
 p

er
ce

nt
ag

e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

BNH. Noisy Observations.

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●

●
●

●
●●●0

25

50

75

100

0 25 50 75 100
Iterations

In
fe

as
ib

le
 r

es
ul

ts
 p

er
ce

nt
ag

e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

SRN. Noiseless Observations.

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●
●

●●
●●

●●●0

25

50

75

100

0 25 50 75 100
Iterations

In
fe

as
ib

le
 r

es
ul

ts
 p

er
ce

nt
ag

e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

SRN. Noisy Observations.

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●
●

●

●
●

●

●

●

●●

●
●●

●
●●●

●●

●●●

●

●

●

●

●

●

●

●

●●
●●

●

●●

●

●●
●

●●

●●●●

●
●●

●
●●

●

●●●

●
●●●

●
●

●
●

●●●
●

●
●●

●
●

●

●
●

●●
●●●●

●
●

●●●●●
●

●

●
●●

●
●●●●●

●●
●

●●●●
●

●●●

●●

●●●
●●●●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●

●●
●●

●

●

●

●

●

●
●

●●
●

●●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●0

25

50

75

100

0 25 50 75 100
Iterations

In
fe

as
ib

le
 r

es
ul

ts
 p

er
ce

nt
ag

e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

TNK. Noiseless Observations.

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●●

●

●
●●

●
●

●
●●●●

●●

●

●
●

●●●

●
●

●
●●

●●

●●
●●

●●
●

●
●●

●
●●

●
●●

●

●
●●

●

●

●

●

●
●●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●●●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●●
●

●
●

●●

●

●●●
●●

●
●

●

●●
●●

●
●

●

●
●

●●
●

●●
●

●●

●

●

●
●●

●●●●

●
●

●●

●
●●●●●

●●●

●●●●
●●●

●●●
●●●●●

●●
●

●
●

●
●

●●

●●
●●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●●

●●●
●●

●●

●
●●

●

●●●
●

●
●

●●

●●●
●●●

●
●

●
●

●●

●
●

●●

●

●

●●

●
●

●●
●●

●

●

●

●

●

●●
●

●

●●
●●

●
●

●

●●●●
●

●●●
●

●●
●●●●

●●●
●

●

●

●●

●

●

●

●
●●

●
●

●

●

●
●

●●

●

●

●
●●●

●●●
●

●●
●

●

●

●

●

●

●
●

●

●
●●

●

●●
●

●●

●
●

●●●
●●●

●●
●

●
●●

●●●●●●●●
●●

●

●
●●

●
●●

●●
●●●

●
●●

●●
●●●

●●
●●●

●
●●

0

25

50

75

100

0 25 50 75 100
Iterations

In
fe

as
ib

le
 r

es
ul

ts
 p

er
ce

nt
ag

e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

TNK. Noisy Observations.

●

●

●

●

●

●

●

●

●

●
●●●●●

●
●●

●●

●●

●
●

●

●

●

●●

●

●

●
●

●

●
●●●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●●
●

●●●
●●

●

●

●

●

●

●

●

●●●
●

●●
●●●0

25

50

75

100

0 25 50 75 100
Iterations

In
fe

as
ib

le
 r

es
ul

ts
 p

er
ce

nt
ag

e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

OSY. Noiseless Observations.

●
●

●

●
●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●●●
●●

●●●

●
●

●

●

●

●

●

●
●

●
●●

●
●

●●

●
●●●●●●●●●

●●●●●
●

●●●●●
●●

●

●

●

●

●

●●

●●

●●●●
●●●0

25

50

75

100

0 25 50 75 100
Iterations

In
fe

as
ib

le
 r

es
ul

ts
 p

er
ce

nt
ag

e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

OSY. Noisy Observations.

Figure B.3: Percentage of infeasible results in every iteration of experiments BNH,
SRN, TNK and OSY.

Appendix B. Appendix for Chapter 4 199

●

●

●
●●●

●
●

●●

●
●

●
●●

●●●

●
●

●
●●●0

25

50

75

100

0 25 50 75 100
Iterations

In
fe

as
ib

le
 r

es
ul

ts
 p

er
ce

nt
ag

e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

CONSTR. Noiseless Observations.

●
●

●●●
●●●

●●●●●●●●●●
●●

●
●●●●●

●●●●●●●●●●●●●●●
●●●

●●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●0

25

50

75

100

0 25 50 75 100
Iterations

In
fe

as
ib

le
 r

es
ul

ts
 p

er
ce

nt
ag

e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

CONSTR. Noisy Observations.

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●●

●●
●

●

●●●●●●●●
●●

●●
●●●

●
●●●●

●●●
●

●
●●●●●●

●
●

●
●●

●●
●●

●

●
●

●●●
●

●●
●

●●
●

●●●●●●
●●●●●●

●
●

●●
●

●●●

●

●

●

●

●

●●●●

●
●

●
●

●
●

●
●

●●
●

●
●

●●

●

●
●

●
●

●

●●●

●

●●
●

●

●

●

●
●

●●

●●
●

●
●●●●

●
●

●●●●●●
●●

●
●●●●

●

●●
●

●●●●●●●●●●
●●

●●●
●●●

●●
●

●●
●●●●

●
●

●

●
●

●●●

●
●●

●

●●
●

●

●

●

●
●

●
●

●

●●
●●

●●●●●●●
●●

●
●

●●
●●●

●●●

●

●●
●

●●
●●

●

●●
●

●●●●
●

●
●

●
●

●
●

●●
●

●●●●●●●
●●●

●
●

●
●

●
●

●
●●●●●●●●

●●●●●●

●

●

●

●
●

●

●

●
●

●●
●●●

●
●

●●●

●●
●

●

●

●●

●

●●

●

●●

●
●

●
●

●

●●

●
●

●
●●

●
●●●●●●

●●●
●

●●
●

●

●
●●

●

●●
●

●

●
●●●

●●●●●
●

●●●●●
●●●

●●

●
●●

●
●●

●
●

●●
●●

0

25

50

75

100

0 25 50 75 100
Iterations

In
fe

as
ib

le
 r

es
ul

ts
 p

er
ce

nt
ag

e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

TwoBarTruss. Noiseless Observations.

●

●

●
●

●
●

●

●

●●
●

●
●

●
●●●●

●
●●●●●

●●●
●●●

●
●●●●●●●●●

●●
●●

●●
●

●
●

●
●●●●●●●●●●

●●●●●
●●●●●●●

●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●

●

●
●

●
●

●●

●●

●

●

●
●

●

●●●

●

●
●

●
●

●
●

●

●●
●●

●●
●

●
●

●
●●●

●●●

●
●●●●

●

●●●
●

●●
●●

●
●

●

●
●●●

●●
●

●
●

●

●

●
●●

●●●
●

●
●●●●●

●
●

●
●●

●●●●●●●●
●●●●●

●

●●
●

●

●

●

●

●
●

●
●●

●●●●●●
●

●●●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●

●●
●

●●●●●●●
●●●

●

●
●●

●

●●●●●●●
●

●
●●●●●

●
●●●●●●

●●●●
●●●

●●●●●

●
●●

●●●

●●
●

●

●●
●

●●●

●

●

●

●
●

●

●
●●

●●

●●●
●

●●
●

●●
●

●●
●●●

●●●●
●●●

●●
●●

●●
●●●

●
●

●●●●●●
●●●●

●●●●●●
●●

●
●●●

●
●●●●●●●●●●●●●

0

25

50

75

100

0 25 50 75 100
Iterations

In
fe

as
ib

le
 r

es
ul

ts
 p

er
ce

nt
ag

e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

TwoBarTruss. Noisy Observations.

●

●

●

●

●
●●

●●

●●●
●

●●●
●

●●
●

●

●
●

●●
●

●

●
●

●●

●●
●●

●

●
●

●

●
●

●●●
●

●
●

●
●

●●●●
●

●
●

●
●

●
●

●●
●

●●●●

●●
●●

●

●
●

●●●
●●●

●

●

●●

●
●

●●
●●

●
●

●●
●

●
●●●●

●

●

●
●

●
●

●●
●●●

●

●
●

●

●
●

●

●
●

●●

●

●
●

●●
●

●●
●●●●

●

●●

●
●●●

●

●

●

●
●●●

●

●

●
●●●

●●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●

●

●●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●
●

●●●●●●
●●

●
●

●
●

●
●

●
●●●

●●
●●

●●
●

●●●
●

●●
●

●
●

●●
●

●

●
●

●●●●
●

●
●

●
●●●●●

●●
●●

●
●

●●
●

●●●
●●●●●●

●●●●●●●●●●
●

●

●

●

●

●
●●

●

●●
●●

●●

●●
●

●●
●●●●

●
●●●●●●●●

●●●●
●●●●

●●●●●
●●

●●●

●

●
●●●

●

●
●

●
●

●
●

●●●●●
●

●
●

●
●

●
●●

●

●

●

●●●

●

●
●●●

●●

●
●●●

●●

●
●

●●
●

●

●

0

25

50

75

100

0 25 50 75 100
Iterations

In
fe

as
ib

le
 r

es
ul

ts
 p

er
ce

nt
ag

e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

WeldedBeam. Noiseless Observations.

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●●
●

●
●

●●●

●
●

●
●

●●
●●

●

●●●

●●

●●

●
●●

●

●

●
●●

●●●

●

●●

●

●●●
●

●●●●●
●●

●
●

●
●●

●●
●●

●●●●
●●

●●●●●●●●●
●

●●●
●

●

●

●

●

●

●

●
●●●

●

●●
●●●

●
●

●●●

●
●

●

●

●

●
●

●
●

●

●
●●

●
●

●
●

●
●

●

●●

●●

●

●●

●
●●

●
●

●
●

●●
●

●
●

●
●

●
●●

●
●

●

●

●●

●

●

●

●●●
●

●

●●●

●
●

●
●

●
●

●
●

●
●

●●

●

●

●
●●●

●

●
●

●
●

●●
●

●

●

●
●●●

●
●●●

●●
●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●

●
●●

●●●
●

●
●

●●●●●●
●

●●
●

●
●

●

●
●

●

●
●●●

●●●

●
●

●
●

●●
●

●●
●●

●

●
●●●

●
●

●
●

●

●

●

●

●

●
●●

●
●

●●●

●●
●●

●
●

●

●

●
●

●

●●●

●
●●

●

●●●

●●●

●

●

●

●
●●

●●

●
●

●●●
●

●

●

●

●●

●
●●

●
●●

●
●

●
●

●●

●●

●

●

●●

●●●
●

●●

●●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

0

25

50

75

100

0 25 50 75 100
Iterations

In
fe

as
ib

le
 r

es
ul

ts
 p

er
ce

nt
ag

e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

WeldedBeam. Noisy Observations.

Figure B.4: Percentage of infeasible results in every iteration of experiments CONSTR,
TwoBarTruss and WeldedBeam.

Appendix C
Appendix for Chapter 5

In this Appendix, we give additional information about PPESMOC. In particular, we
provide information about the EP algorithm used to compute the approximation to
the PPESMOC acquisition function, the computation of the PPESMOC gradients to
introduce them into the L-BFGS optimization algorithm in order to getter better results
from the optimization of the acquisition function and results of additional experiments.

C.1 Optimization of the PPESMOC Acquisition Function
Approximation

The PPESMOC acquisition function α(·) has B times more dimensions than the sequential
PESMOC acquisition function, where B is the number of points considered in the
batch. Due to the curse of dimensionality, obtaining an estimate of the maximum of
the acquisition function is not longer feasible by the procedure done in the PESMOC
acquisition function, based only on using a grid and a local search procedure, like the
L-BFGS algorithm, approximating the gradients by differences. Hence, it is necessary to
compute the exact gradients of the PPESMOC acquisition function w.r.t the inputs, X.

Importantly, as explained in the main document, the parameters of the approximate
factors can be considered to be fixed after EP has converged. This simplifies significantly
the gradient computation. We compute the gradients of the PPESMOC acquisition
function by using the Autograd tool. To optimize PPESMOC, we choose an initial point
of PPESMOC at random. Then, we run the L-BFGS algorithm with the initial point
and the gradients of PPESMOC computed by Autograd. We only compute the factors
of the observations and Pareto set point in the first iteration of the optimization as they
are the same for all the optimization process. For every new point in the optimization
done by L-BFGS we only refine once with EP the test factors. We set a maximum of 100
iterations of the L-BFGS optimization procedure.

C.2 Expectation Propagation Factors Computation

Recall from the main manuscript that, in this work, we wish to approximate the Condi-
tional Predictive Distribution of the set defined by the points X = {{xn}Nn=1 ∪ X ∗ ∪X}.
This set is, the union between the N observation points in the input space {xn}Nn=1,
the Pareto set points X ? of M points and the B candidate points X to be evaluated.
The Gaussian Approximation will then be a multivariate Gaussian Distribution over

201

Appendix C. Appendix for Chapter 5 202

N +M +B variables. The Conditional Predictive Distribution is given by the following
expression:

p(Y|D,X,X ?) =

∫
p(Y|X,F,C)p(X ?|F,C)p(F|D)p(C|D)dFdC , (C.1)

where

p(X ?|F,C) ∝
∏

x?∈X?

 J∏
j=1

Φj(x
?)

[∏
x′∈X

Ω(x′,x?)

] , (C.2)

and:

Ω(x′,x?) =

 J∏
j=1

Θ(cj(x
′))

Ψ(x′,x?) +

1−
J∏
j=1

Θ(cj(x
′))

 · 1 , (C.3)

ψ(x′,x?) = 1−
K∏
k=1

Θ(fk(x
?)− fk(x′)) , (C.4)

Φj(x
?) = Θ(cj(x

?)) , (C.5)

All the non-Gaussian factors (Θ(cj(x
?)),Θ(fk(x

?) − fk(x
′)),Θ(cj(x

′)),Ω(xq,x
?)) are

approximated using the expectation propagation algorithm. In this section, we provide
the necessary computations to approximate these factors. In the noiseless case the Dirac
delta functions are substituted by Gaussians.

In PESMOC the factors that depend and not depend on the candidate point x and
those that depend are treated differently. For the former ones, the EP algorithm is only
executed for one iteration. We employ the same procedure for the PPESMOC acquisition
function.

We define the sampled Pareto set as X ? = {x?1, ...,x?M} of size M and the set of

N observations in the input space as X̂ = {x1, ...,xN} with the corresponding batch
of observations of the k-th objective Yk and of the c-th constraint Yj . Then, the pro-
cess values for each objectives and constraints at that points observed are defined by Fk =
(fk(x?1), ..., fk(x?M), fk(x1), . . . , fk(xN))T andCj = (cj(x

?
1), ..., cj(x

?
M), cj(x1), . . . , cj(xN))T .

If we define F = {F1, ...,FK} and C = {C1, ...,CJ}, let q(F ,C) be the distribution that
we want tt o approximate, p(X ?|F,C)p(F|D)p(C|D) is:

p(F ,C|X ?) ∝
∏

x?∈X ?

[J∏
j=1

Φj(x
?)

][∏
x′∈X

Ω(x′,x?)

] p(F|D)p(C|D)dFdC . (C.6)

This last expression becomes equivalent to the next one using the fact that the posterior
distributions of the GPs factorize as a product of Gaussians:

Appendix C. Appendix for Chapter 5 203

p(F , c) =
1

Zq

[K∏
k=1

N
(
fk | mfk

pred,V
fk
pred

)][J∏
j=1

N
(
cj | m

cj
pred,V

cj
pred

)]
×

∏
x?∈X ?

[J∏
j=1

Φj(x
?)

][∏
x′∈X

Ω(x′,x?)

] , (C.7)

where mfk
pred and V fk

pred are the mean and covariance matrix of the posterior distributions

of fk given the data in D and m
cj
pred and V

cj
pred are the mean and covariance matrix of

the posterior distribution of cj given the data in D. These means and variances are
computed according to the equations 2.22-2.24 in (Rasmussen, 2003):

mfk
pred = Kk

∗
(
Kf + v2

fI
)−1
yk ,

V fk
pred = Kk

∗,∗ −Kk
∗
(
Kk + v2

fI
)−1[

Kk
∗
]
, (C.8)

where Kk
∗ is an (N + 1)×N matrix with the prior cross-covariances between elements of

fk and fk,1, ..., fk,n and Kk
∗,∗ is an (N + 1)× (N + 1) matrix with the prior covariances

between the elements of fk and vk is the standard deviation of the additive Gaussian
noise in the evaluations of fk. Following the same reasoning, we have that:

m
cj
pred = Kj

∗
(
Kj + v2

j I
)−1
yj ,

V
cj
pred = Kj

∗,∗ −Kj
∗
(
Kj + v2

j I
)−1[

Kj
∗
]
, (C.9)

where Kj
∗ is an (N +M)×N matrix with the prior cross-covariances between elements of

cj and cj,1, ..., cj,n and Kj
∗,∗ is an (N +M)× (N +M) matrix with the prior covariances

between the elements of cj and vj is the standard deviation of the additive Gaussian
noise in the evaluations of cj .

The other non-Gaussian factors presented in Eq.(11), Φj(x
?) and Ω(x′,x?), are

the problematic ones, as they are not Gaussian Distributions. Hence they will be
approximated by Gaussians with EP, as will be described in the next sections.

C.3 Using Expectation Propagation to Approximate the
Conditional Predictive Distribution

This section explains how the EP algorithm approximate the previous product of factors,
giving a product of Gaussian Distributions which we call the Gaussian Approximation to
the Conditional Predictive Distribution, shown in the previous section. As it is a product
where different factors are involved, we have to divide the problem in the approximation
of the different factors for Gaussian Distributions. These are the Φj(x

∗ factors and the
Ω(x′,x?) factors, which will be approximated by one-dimensional and two-dimensional
Gaussian Distributions respectively.

The factors Φ(x∗) that represent if a Pareto Set point x∗ is feasible evaluated in a
certain constraint cj(x

∗), are approximated by a one-dimensional un-normalized Gaussian
distribution Φ̃(x∗). This distribution is expressed in exponential family form in the next

Appendix C. Appendix for Chapter 5 204

equation:

Φ(x∗) ≈ Φ̃(x∗) ∝ exp

{
−
cj(x

∗)2v̂x
∗

j

2
+ cj(x

∗)m̂x
∗

j

}
, (C.10)

where v̂x
∗

j and m̂x
∗

j are natural parameters that are going to be adjusted by EP. The

variance of the Gaussian Distribution, v̂x
∗

j , EP factor in every point, x∗, for every

constraint, cj will be denoted by êj and the mean EP factor by f̂j . That is, the
one-dimensional Gaussian Distribution approximation of Φ(x∗), in every constraint cj
computed by EP, Φ̃(x∗) is defined in every point x∗ belonging to X ∗, by its mean f̂j and
its variance êj . There will be as many Gaussian Distributions as points multiplied by
constants.

The factors Ω(·, ·), that represent if a point xj is not dominated by the other point
xi and it is feasible over all the constraints c(xj), are approximated by a product of
J one-dimensional un-normalized Gaussian Distributions where J are the number of
constraints and K two-dimensional un-normalized Gaussian Distributions where K are
the number of objectives. This product of distributions is expressed by the following
equation:

Ω(x′,x∗) ≈ Ω̃(x′,x∗) ∝
K∏
k=1

exp

{
− 1

2
vTk Ṽ

Ω
k vk + (m̃Ω

k)Tvk

}
×

J∏
j=1

exp

{
−
cj(x

∗)2ṽΩ
j

2
+ cj(x

∗)m̃Ω
j

}
, (C.11)

where vk is defined as the vector (fk(x
′), fk(x

∗))T , and Ṽk, m̃k, ṽ
Ω
j and m̃Ω

j are natural
parameters adjusted by EP. As the product represents a product of two-dimensional
un-normalized Gaussian Distributions, Ṽk is a 2 × 2 matrix and m̃k is a two-dimensional
vector.

For the set of N observation points in the input space X̂ and the set ofM Pareto Set
points X ∗, we define the variance of the two-dimensional Gaussian Distribution, Ṽk, EP
factor of an observation point xi with respect to a Pareto Point xj as Âij and the mean

EP factor as b̂ij . We denote the variance of the one-dimensional Gaussian Distribution,

ṽΩ
j , EP factor in every point xj as âcj and the mean EP factor by b̂cj .

For the set ofM Pareto Set points X ∗, we define the variance of the two-dimensional
Gaussian Distribution, Ṽk, EP factor of a point xi with respect to another Pareto Point
xj as Ĉij and the mean EP factor as d̂ij . We denote the variance of the one-dimensional
Gaussian Distribution ṽΩ

j EP factor in every point xj as ĉcj and the mean EP factor by

d̂cj .
That is, the approximation Ω̃(x′,x∗) computed by EP consisting of a product of

one-dimensional Gaussian Distributions and two-dimensional Gaussian distributions of
the distribution Ω(x′,x∗), is defined in the set of points X̂ and X ∗ by a product of one-
dimensional Gaussian Distributions with mean b̂cj and variance âcj and a product of two-

dimensional Gaussian Distributions with variance Âij and mean b̂ij . The approximation
for the set of points X ∗ is defined by a product of one-dimensional Gaussian Distributions
with mean d̂cj and variance ĉcj and a product of two-dimensional Gaussian Distributions

with variance Ĉij and mean d̂ij .

Appendix C. Appendix for Chapter 5 205

In the next section, the computations of the Gaussian factor approximations Φ̃(·) and
Ω̃(·, ·) defined by the EP factors Âij , b̂ij , Ĉij , d̂ij , êj , f̂j , âcj , b̂cj , ĉcj and d̂cj , required
by EP, are explained in detail, following the algorithm described in Chapter 3.

C.4 The EP Approximation to the Φ(·) and Ω(·, ·) Factors

The EP algorithm updates each of the approximate factors presented in the previous
section until convergence. The following sections will describe the necessary operations
needed for the EP algorithm to update each of the factors. It the following subsection, it
is assumed that we have already obtained the mean and variances of each of the K and
J conditional predictive distributions, which will be explained in detail in section 4.3.

C.4.1 EP Update Operations for the Φ(·) Factors

As it was explained in section 3, for the M Pareto Set points defined by the set X ∗, in
every point xi ∈ X ∗, the EP algorithm will generate J approximations for the Φ(xj)

factors for every constraint cj that will be defined by its mean f̂xj and its variance êxj .
Computations are done for all the points xi ∈ X ∗. The operations for these factors are
described as follows.

C.4.1.1 Computation of the Cavity Distribution

The first step performed by the EP algorithm is the computation of the Cavity Distribution
q̃\n(x). In order to make the computations easier, we first obtain the natural parameters
of the Gaussian Distributions for all the M Pareto Set points by using the equations:

m̂j =
ξj

diag(Ξj)
,

v̂j =
1

diag(Ξj)
. (C.12)

Where Ξj is a vector of the variances of the M points for the constraint cj and Ξ is the
matrix of all the variances of allM and N points which construction will be explained in
detail in section 4.3. The term diag holds for the diagonal of Ξ as we are only interested
in the variance of the M points and not the variance of these points with the N points
for the factor Φ(·). In the same way, ξj , is the vector of means for the constraint cj and
ξ contains all the means of all the points for every constraint in c. m̂j and v̂j hold the
mean and variance natural parameters corresponding for all the points in the set X ∗.

Once we have obtain the natural parameters m̂j and v̂j , we obtain the cavity
distribution. As we are dealing with natural parameters, it is not necessary to use
the formula for the ratio of Gaussian Distributions, the cavity distribution defined by
mean m̂\j and variance v̂\j will simply be obtained by the subtraction of the natural
parameters between the approximated distribution defined by parameters m̂j and v̂j
(which is equivalent to the product of all the factors for all the constraints) and the factor
êj and f̂j corresponding to the constraint cj that we want to update:

v̂
\j
nat = v̂j − êj ,

m̂
\j
nat = m̂j − f̂j . (C.13)

Appendix C. Appendix for Chapter 5 206

Once the subtraction is done, we transform the natural parameters of the cavity distri-
bution into Gaussian parameters again by using the formula that converts natural to
Gaussian parameters.

v̂\j =
1

v̂
\j
nat

,

m̂\j = m̂natv̂
\j . (C.14)

The variances v̂\j need to be positive for the following operations.

C.4.1.2 Computation of the Partial Derivatives of the Normalization Con-
stant

Once the cavities v̂\j and m̂\j have been computed, the EP need to compute the
quantities required for the update of the factors êj and f̂j in order to minimize the
KL divergence between Φ(·) and the approximation distribution. These quantities are
the first and second moments of the distribution that we want to approximate. These
are given by the log of the partial derivatives of Zj , the constant that normalizes the
distribution that we want to approximate, in this case, Φ̂(·).

Zj =

∫
Φ̂(x∗) dcj . (C.15)

As Φ(x∗) is approximated by a Gaussian Distribution Φ̂(x∗) with mean m̂\j and variance
v̂\j , the normalization constant Zj can be computed in closed form and its given by the
cumulative distribution function ,Φ(·), of this Gaussian Distribution:

Zj = Φ

(
m̂\j√
v̂\j

)
. (C.16)

Let α = m̂\j√
v̂\j

, then log(Zj) = log(Φ(α)). For numerical robustness, if a, b ∈ R, we

apply the rule a
b = exp (log(a)− log(b)). Using these expressions, the log-derivatives are

computed as follows:

∂ log(Zj)

∂m̂\j
=

exp{log(N(α))− log(Zj)}√
v̂\j

,

∂ log(Zj)

∂v̂\j
= −exp{log(N(α))− log(Zj)}α

2v̂\j
. (C.17)

Where N(·) represent the Gaussian probability density function. These expressions are
valid for computing the first and second moments, but they do not present numerical

robustness in all experiments. Since the lack of robustness of
∂ log(Zj)

∂v̂\j
, we use the formula

given by the Appendix A of the work by Opper Opper and Archambeau (2009), and use

the second partial derivative
∂2 log(Zj)

∂[m̂\j]2
rather than

∂ log(Zj)

∂v̂\j
. This derivative is given by

the following expression:

∂2 log(Zj)

∂[m̂\j]2
= − exp{log(N(α))− log(Zj)}

α exp{log(N(α))− log(Zj)}
v̂\j

. (C.18)

Appendix C. Appendix for Chapter 5 207

Given these derivatives, in the next section it will be explained how to obtain the
individual approximate factors êj and f̂j .

C.4.2 EP Update Operations for the Ω(·, ·) Factors

Recalling section 3, for the M Pareto Set points defined by the set X ∗ and the N input
space observation points defined by the set X̂ , for every pair of points xi ∈ X̂ and
xj ∈ X ∗, the EP will generate K two-dimensional Gaussian approximations for every
objective fk that will be defined for the pair observation and Pareto set point by factors
defined by mean b̂ij and variance Âij and for the pair of Pareto set points by factors

defined by mean d̂ij and variance Ĉij . It will also define J one-dimensional Gaussian
approximations for every constraint cj that will be defined for the pair observation and

Pareto set point by factors defined by mean b̂cj and variance âcj and for the pair of

Pareto set points by factors defined by mean d̂cj and variance ĉcj . Computations are
done for all the pairs of points from the sets X ∗ and X̂ . The necessary operations for
computing these factors are described in the following sections.

C.4.2.1 Computation of the Cavity Distribution

For the factors âcj , b̂cj , ĉcj and d̂cj that approximate the J one-dimensional Gaussian
approximations for every constraint cj , the operations needed to extract the cavity
distribution from the approximate distribution are the same ones as the ones described in
Section 4.1.1. These operations are done for the observation points in X̂ for the factors
âcj , b̂cj and for the Pareto Set points in X ∗ for the factors ĉcj and d̂cj . That is, obtaining
the natural parameters of Ξj as in Eq. (16), subtracting the natural parameters of the
factor that is approximated, Eq. (17), and obtaining the Gaussian parameters of the

cavity that we define for a point xi, m
\bj
ij and v

\aj
ij , as shown in Eq. (18).

Obtaining the cavity distribution for the factors Âij , b̂ij , Ĉij and d̂ij that approximate
the K two-dimensional Gaussian approximations for every objective fk follow different
expressions as in this case the Gaussian Distributions are bivariate for every pair of
points considered.

In the first case, for the case of approximating a distribution that consider a point xi
belonging to the observations set X̂ and a point xj from the Pareto set X ∗, that is, the

factors Âij and b̂ij , it is necessary to obtain, for every objective k and each of the pair

of points mentioned, the natural parameters mk
ij(nat) and V k

ij
−1

of the Gaussian Process

that models each of the K objectives f(·)j . These natural parameters are obtained by
the following expressions:

mk
ij(nat) = V k

ij
−1
mk

ij ,

V k
ij
−1

= (V k
ij)
−1 , (C.19)

where V k
ij is a 2x2 matrix that represent in the points xi and xj the variance of the

Gaussian approximation of the objective k and mk
ij is a vector that represent in the

points xi and xj the mean of the Gaussian approximation of the objective k.
As in the constraints case, we now extract the cavity distribution that we define by

the natural parameters m
\b
ijk(nat) and V

\A
ijk(nat), by subtracting to the computed natural

parameters mk
ij(nat) and V k

ij
−1

, computed in the previous step, the factors that we want

Appendix C. Appendix for Chapter 5 208

to update bkij and Ak
ij . That is:

m
\b
ijk(nat) = mk

ij(nat) − b
k
ij ,

V
\A
ijk(nat) = V k

ij
−1 −Ak

ij . (C.20)

For the bivariate Gaussian distribution, the step of obtaining the Gaussian parameters
from the natural parameters is defined by the following expressions:

m
\b
ijk = V

\A
ijk mijk(nat) ,

V
\A
ijk = (V

\A
ijk(nat))

−1 , (C.21)

where V
\A
ijk is a 2x2 matrix with the variances of each of the points and the correlation

between each of them and m
\b
ijk is a two position vector that represent the means. In the

case of the factors Ĉij and d̂ij that consider two Pareto Set points, the operations for
extracting the cavity distribution are the same ones as in the previous case.

C.4.2.2 Computation of the Partial Derivatives of the Normalization Con-
stant

In this section, the operations needed to compute the partial derivatives for all the
Âij , b̂ij , Ĉij , d̂ij , âcj , b̂cj , ĉcj and d̂cj are described. These derivatives need previous
computations in order to compute the normalization constant ZΩ of the factor Ω(·, ·) that
we want to approximate. These computations are given by the following expressions, all
of which depend upon terms computed in the previous section. The shown computations
are the result of applying rules in order to be robust such as a/b = exp{log(a)− log(b)}
and ab = exp{log(a) + log(b)}.These operations are equivalent for the two points cases,
but here, the necessary operations for computing the normalization constant ZΩ are
described for the case of the factors Âij , b̂ij , âcj and b̂cj :

sk = V
\A
ijk[0,0] + V

\A
ijk[1,1] − 2V

\A
ijk[0,1] , (C.22)

αk =
m
\b
ijk[0] −m

\b
ijk[1]√

sk
, (C.23)

βj =
m
\bj
ij√
v
\aj
ij

, (C.24)

φ = Φ(α) , (C.25)

(C.26)

Appendix C. Appendix for Chapter 5 209

where Φ(·) represents the c.d.f of a Gaussian distribution,

γ = Φ(β) , (C.27)

ζ = 1− exp{
K∑
k=1

log(φk)} , (C.28)

log(η) =

J∑
j=1

log(γj) + log(ζ) , (C.29)

λ = 1− exp{
J∑
j=1

log(γj)} , (C.30)

τ = max(log(η), log(λ)) , (C.31)

log(ZΩ) = log(exp{log(η)− τ}+ exp{log(λ)− τ}) + τ . (C.32)

Having computed these terms, the log partial derivatives for the update of the factors
that collaborate to the approximation of the objective variances Âij and the objective

means b̂ij are given by the expressions:

ρk = − exp{log(N (αk))} − log(ZΩ) +

K∑
k=1

{log(Φ(αk))} − log(Φ(αk)) +

J∑
j=1

{log(Φ(βj))} ,

(C.33)

∂ log(ZΩ)

∂m
\b
ijk

=
ρk√
sk

[
1,−1

]
,

∂ log(ZΩ)

∂V
\A
ijk

= −ρkαk
2sk

[[1,−1], [−1, 1]] . (C.34)

Derivatives are computed for the two position vector mean and the 2x2 variance matrix,
so they have the same structure, given by the [1, -1] and [[1, -1],[-1, 1]] expressions. The
change in the sign appears due to the fact that the expression changes, whether it is the
derivative of the mean of the observation point or the Pareto Set point or the derivative
of the variance of one point or their correlation.

Alas, the derivative of the variance presents the same lack of robustness as in the
constraint case shown in section 4.1.2. In order to ensure numerical robustness, we use
the second partial derivative of the mean of the normalization constant instead of the
first partial derivative of the variance for the further computation of the second moment.
That is,

∂2 log(ZΩ)

∂
[
m
\b
ijk

]2 = −ρk
sk

(αk + ρk)[[1,−1], [−1, 1]] . (C.35)

For the log partial derivatives for the update of the factors that collaborate to the
approximation of the constraint variances âcj and the constraint means b̂cj , let ωj be

Appendix C. Appendix for Chapter 5 210

defined as:

ωj = exp{log(N (βj))} − log(ZΩ) + log(ζ) +

J∑
j=1

(log(Φ(βj)))− log(Φ(βj))− exp{log(N (βj))} ,

− log(ZΩ) +
J∑
j=1

(log(Φ(βj)))− log(Φ(βj)) . (C.36)

Then, the robust log partial derivatives for the first and the second moments are given
by the expressions:

∂ log(ZΩ)

∂m
\bj
ij

=
ωj√
sj
,

∂2 log(ZΩ)

∂[m
\bj
ij]2

= −ωj
sj

(βj + ωj) . (C.37)

The expressions for the log partial derivatives of Ĉij , d̂ij , ĉcj and d̂cj are similar to the
presented expressions in this section, but taking into account pairs of points belonging
to the set X ∗.

C.4.2.3 Computation of the First and Second Moments for the Updates

Giving the expressions computed in the previous section, the first and second moments
of the different Gaussian Distributions that approximate the factor Ω(·, ·) can now be
computed.

The expressions for computing the factors Âij , b̂ij , Ĉij , d̂ij for each of the K

objectives and the factors âcj , b̂cj , ĉcj and d̂cj for each of the J constraints are the
following ones:

Âk
ij =

∂2 log(ZΩ)

∂
[
m
\b
ijk

]2 ((V
\A
ijk

∂2 log(ZΩ)

∂
[
m
\b
ijk

]2)−1[[1, 0], [0, 1]]) , (C.38)

b̂kij = ((
∂ log(ZΩ)

∂m
\b
ijk

−m\bijk)
∂2 log(ZΩ)

∂
[
m
\b
ijk

]2) ((V
\A
ijk

∂2 log(ZΩ)

∂
[
m
\b
ijk

]2)−1 + [[1, 0], [0, 1]]) , (C.39)

Ĉk
ij =

∂2 log(ZΩ)

∂
[
m
\b
ijk

]2 ((V
\A
ijk

∂2 log(ZΩ)

∂
[
m
\b
ijk

]2)−1[[1, 0], [0, 1]]) , (C.40)

d̂kij = ((
∂ log(ZΩ)

∂m
\b
ijk

−m\bijk)
∂2 log(ZΩ)

∂
[
m
\b
ijk

]2) ((V
\A
ijk

∂2 log(ZΩ)

∂
[
m
\b
ijk

]2)−1 + [[1, 0], [0, 1]]) , (C.41)

Appendix C. Appendix for Chapter 5 211

for the the rest of the factors, suppose that the index h refers to the points of the Pareto
Set X ∗:

âcjh = −

∂2 log(ZΩ)

∂[m
\bj
ic]2

1 + ∂2 log(ZΩ)

∂[m
\bj
ic]2

v
\aj
ic

, (C.42)

b̂c
j

h =

∂ log(ZΩ)

∂m
\bj
ic

−m\bjic
∂2 log(ZΩ)

∂[m
\bj
ic]2

1 + ∂2 log(ZΩ)

∂[m
\bj
ic]2

v
\aj
ic

, (C.43)

ĉcjh = −

∂2 log(ZΩ)

∂[m
\bj
ic]2

1 + ∂2 log(ZΩ)

∂[m
\bj
ic]2

v
\aj
ic

, (C.44)

d̂c
j

h =

∂ log(ZΩ)

∂m
\bj
ic

−m\bjic
∂2 log(ZΩ)

∂[m
\bj
ic]2

1 + ∂2 log(ZΩ)

∂[m
\bj
ic]2

v
\aj
ic

. (C.45)

All these factors are then used to rebuild the means and the variances of the Gaus-
sian Processes that model the K objectives and C constraints of a constrained multi-
objective optimization problem, as will be shown in the following section. That is, C
one-dimensional Gaussian Distributions for the constraint models and C one-dimensional
Gaussian Distributions and K two-dimensional Gaussian Distributions for the objective
models in each of the points in X = {X ∗ ∪ X̂ ∪ x}.

C.4.3 Reconstruction of the Conditional Predictive Distribution

In this section, we illustrate the way of obtaining a Conditional Predictive Distribution for
every objective fk and every constraint cj , given a sampled Pareto Set X ∗ = {x∗1, ...,x∗M}
of size M and a set of N input locations X̂ = {x1, ...,xN} with corresponding observations
of the k-th objective yk and of the j-th constraint yj . For the following, it is assumed
that we are given the EP approximate factors Φ(·) and Ω(·, ·), as an input for the next
operations, which computation is explained in the previous section.

Recalling Eqs. 7, 8 and 9 of section 2, we want to obtain the J Conditional Predictive
Distributions in the products of constraints and the K Conditional Predictive Distribu-
tions of the Gaussian Processes that model the objectives. The products presented in
these factors are not a problem, due to the fact that the Gaussian Distributions are closed
under the product operation, that is, the product of Gaussian Distributions is another
Gaussian Distribution. These Conditional Predictive Distributions of the objectives and
constraints are then used in Eq.(11) to build the final approximation.

Following the notation of section 4.1.1, let ξj and Ξj be the mean vector and variance
matrix of the one-dimensional Gaussian Distributions of the M +N points that generate
the Gaussian Processes that model the constraints and let mk and Vk be the mean vector
and variance matrix of the two-dimensional Gaussian Distributions of the M +N points
that generate the Gaussian Processes that model the objectives. In order to update
the constraint and objective distribution marginals, it is necessary to first follow the
operations given by the equations 14 and 22, to obtain the natural parameters from the
means and variances. Intuitively, as they are all natural parameters, these will be just
sums taking into account that the matrices are formed first by the Pareto Set Points ,M ,

Appendix C. Appendix for Chapter 5 212

and then by the observations N . Univariate factors are added to the diagonal of these
matrices, as they are not correlated with other points. Once the natural parameters are
computed, the new means ξj , mk and variances Ξj , Vk marginals are updated from the

EP factors Âij , b̂ij , Ĉij , d̂ij , êj , f̂j , âcj , b̂cj , ĉcj and d̂cj by the following expressions:

Ξj
ii = Ξj

ii(old) +

M∑
m=1

ĉcjmi + êji for i = 1, ...,M ,

Ξc
ii = Ξj

ii(old) +
M∑
m=1

âcjmi for i = M + 1, ..., N +M ,

ξci = ξji(old) +
M∑
m=1

d̂c
j

mi + f̂ ji for i = 1, ...,M ,

ξci = ξji(old) +
M∑
m=1

b̂c
j

mi for i = M + 1, ..., N +M ,

V k
ii = V k

ii(old) +

N∑
j=M+1

Âk
ji[1,1] +

M∑
j=1

Ĉk
ij[0,0] +

M∑
j=1

Ĉk
ji[1,1] for i = 1, ...,M ,

V k
ii = V k

ii(old) +
M∑
j=1

Âk
ij[0,0] for i = M + 1, ..., N +M ,

V k
ij = V k

ij(old) +Ck
ij[0,1] +Ck

ij[1,0]

T
for i = 1, ...,M, and for j = 1, ...,M ,

V k
ij = V k

ij(old) +Ak
ij[0,1] for i = M + 1, ..., N, and for j = 1, ...,M ,

V k
ij = V k

ij(old) +Ak
ij[0,1]

T
for i = 1, ...,M, and for j = M + 1, ..., N ,

mk
i = mk

i(old) +
N+M∑
j=M+1

b̂kji[1] +
M∑
j=1

d̂kij[0] +
M∑
j=1

d̂kji[1] for i = 1, ...,M ,

mk
i = mk

i(old) +
M∑
j=1

b̂kij[0] for i = M + 1, ..., N +M .

(C.46)

These natural parameters are then converted into Gaussian ones using the equations
and 16 and 24. Once these operations are done the Gaussian Processes that model the
objectives and constraints are updated from a full EP iteration.

C.4.4 The Conditional Predictive Distribution at a New Batch

After running EP until convergence one simply has to compute the covariance matrix of
the posterior distribution for the process values of each objective and constraint at the
candidate points X. This implies computing the covariance matrix that results from the
EP approximation to (C.7). For this, one only has to replace the non-Gaussian factors
with the corresponding approximation. The covariance matrices that are needed can be
obtained using the fact that the Gaussian family is closed under the product operation.
See Eq. (??).

Appendix C. Appendix for Chapter 5 213

C.4.5 Initialization and Convergence of EP

When the EP algorithm computes the Φ(·) and Ω(·, ·) factors, it requires to set an initial
value to all the factors that generates the Gaussians that approximate the Φ(·) and Ω(·, ·)
factors. These factors, Âij , b̂ij , Ĉij , d̂ij , êj , f̂j , âcj , b̂cj , ĉcj and d̂cj are all set to be
zero. The convergence criterion for stopping the EP algorithm updating the parameters
is that the absolute change in all the cited parameters should be below 10−4. Other
criteria may be used.

C.4.6 Parallel EP Updates and Damping

The updates of every approximate factor Âij , b̂ij , Ĉij , d̂ij , êj , f̂j , âcj , b̂cj , ĉcj and d̂cj
are executed in parallel as it is described in the work by Gerven Gerven et al. (2009). The
cavity distribution for each of the factors is computed and then the factors are updated
afterwards. Once these operations are done the EP approximation is recomputed as it is
described in the section 4.3.

In order to improve the convergence behavior of EP we use the damping technique
described in Minka & Lafferty Minka and Lafferty (2012). We use this technique for all
the approximate factors. Damping simply reduces the quantity that the factor changes in
every update as a linear combination between the old parameters and the new parameters.
That is, if we define the old parameters of the factor to be updated as uold, the new
parameters as unew and the updated factor as u, then the update expression is:

u = θunew + (1− θ)uold . (C.47)

Where θ is the damping factor whose initial value is set to be 0.5, this factor controls
the amount of damping, if this value is set to be one then no damping is employed.
This factor is multiplied by 0.99 at each iteration, reducing the amount of change in
the approximate factors in every iteration of the Bayesian Optimization. An issue that
happens during the optimization process is that some covariance matrices become non
positive definite due to a high large step size, that is, a high value of θ. If this happens
in any iteration, an inner loop executes again the update operation with θnew = θold / 2
and the iteration is repeated. This inner loop is performed until the covariance matrices
become non positive definite.

C.5 Additional Experiments Information

In this section, we include additional information about the experiments described on
the main manuscript and their results.

C.5.1 Benchmark Experiments

We include tables with the analytical expressions of the benchmark of functions used for
the benchmark experiments.

Appendix C. Appendix for Chapter 5 214

Table C.1: Summary of BNH, SRN, TNK and OSY problems used in the benchmark
experiments.

Benchmark Experiments
Problem Name Input Space Objectives fk(x) and Constraints cj(x)

BNH
x1 ∈ [0, 5]
x2 ∈ [0, 3]

f1(x) = 4x21 + 4x22
f2(x) = (x1 − 5)2 + (x2 − 5)2

c1(x) ≡ (x1 − 5)2 + x22 ≤ 25
c2(x) ≡ (x1 − 8)2 + (x2 + 3)2 ≥ 7.7

SRN
x1 ∈ [−20, 20]
x2 ∈ [−20, 20]

f1(x) = 2 + (x1 − 2)2 + (x2 − 2)2

f2(x) = 9x1 − (x2 − 1)2

c1(x) ≡ x21 + x22 ≤ 225
c2(x) ≡ x1 − 3x2 + 10 ≤ 0

TNK
x1 ∈ [0, π]
x2 ∈ [0, π]

f1(x) = x1
f2(x) = x2

c1(x) ≡ x21 + x22 − 1− 0.1cos(16arctanx1

x2
) ≥ 0

c2(x) ≡ (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5

OSY

x1 ∈ [0, 10]
x2 ∈ [0, 10]
x3 ∈ [1, 5]
x4 ∈ [0, 6]
x5 ∈ [1, 5]
x6 ∈ [0, 10]

f1(x) = −[25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2

+(x4 − 4)2 + (x5 − 1)2

f2(x) = x21 + x22 + x23 + x24 + x25 + x26
c1(x) ≡ x1 + x2 − 2 ≥ 0
c2(x) ≡ 6− x1 − x2 ≥ 0
c3(x) ≡ 2− x2 + x1 ≥ 0
c4(x) ≡ 2− x1 + 3x2 ≥ 0

c5(x) ≡ 4− (x3 − 3)2 − x4 ≥ 0
c6(x) ≡ (x5 − 3)2 + x6 − 4 ≥ 0

Table C.2: Summary of CONSTR and Two-bar Truss problems used in the benchmark
experiments.

Benchmark Experiments
Problem Name Input Space Objectives fk(x) and Constraints cj(x)

CONSTR
x1 ∈ [0.1, 10]
x2 ∈ [0, 5]

f1(x) = x1
f2(x) = (1+x2)

x1

c1(x) ≡ x2 + 9x1 ≥ 6
c2(x) ≡ −x2 + 9x1 ≥ 1

Two-bar
Truss
Design

x1 ∈ [0, 0.01]
x2 ∈ [0, 0.01]
x3 ∈ [1, 3]

f1(x) = x1
√

16 + x23 + x2
√

1 + x23

f2(x) = max(20
√
16+x3

x1x3
,
80
√

1+x2
3

x2x3
)

c1(x) ≡ max(20
√
16+x3

x1x3
,
80
√

1+x2
3

x2x3
) ≤ 105

C.5.2 Real Experiments

A summary of the parameters considered in the experiment of the hyper-parameter
tuning of the deep neural network, their potential values, and their impact in each
black-box function (prediction error, time and chip area) is displayed in Table C.3.

Appendix C. Appendix for Chapter 5 215

Table C.3: Parameter space of the deep neural network experiments. PE = Prediction
error. T = Time. CA = Chip area.

Parameter Min Max Step Black-box

Hidden Layers 1 3 1 PE/T/CA
Neurons per Layer 5 300 1 PE/T/CA
Learning rate e−20 1 ε PE
Dropout rate 0 0.9 ε PE
`1 penalty e−20 1 ε PE
`2 penalty e−20 1 ε PE

Memory partition 1 32 2x CA
Loop unrolling 1 32 2x CA

Bibliography

Abramowitz, M. and Stegun, I. A. (1965). Handbook of mathematical functions with
formulas, graphs, and mathematical table. In US Department of Commerce. National
Bureau of Standards Applied Mathematics series 55.

Abramowitz, M., Stegun, I. A., and Romer, R. H. (1988). Handbook of mathematical
functions with formulas, graphs, and mathematical tables. American Association of
Physics Teachers.

Agust́ın-Blas, L., Salcedo-Sanz, S., Vidales, P., Urueta, G., and Portilla-Figueras, J.
(2011). Near optimal citywide wifi network deployment using a hybrid grouping genetic
algorithm. Expert Systems with Applications, 38(8):9543–9556.

Agust́ın-Blas, L. E., Salcedo-Sanz, S., Ortiz-Garćıa, E., Portilla-Figueras, A., and Pérez-
Bellido, A. (2009). A hybrid grouping genetic algorithm for assigning students to
preferred laboratory groups. Expert Systems with Applications, 36(3):7234–7241.

Alaya, I., Solnon, C., and Ghedira, K. (2007). Ant colony optimization for multi-objective
optimization problems. In 19th IEEE International Conference on Tools with Artificial
Intelligence, pages 450–457.

Albert, A. (1972). Regression and the moore-penrose pseudoinverse.

Ariizumi, R., Tesch, M., Choset, H., and Matsuno, F. (2014). Expensive multiobjec-
tive optimization for robotics with consideration of heteroscedastic noise. In IEEE
International Conference on Intelligent Robots and Systems, pages 2230–2235.

Arinaga, R. and Cheung, K. (2012). Atlas of global wave energy from 10 years of
reanalysis and hindcast data. Renewable Energy, 39(1):49–64.

Artin, E. (2015). The Gamma function. Courier Dover Publications.

Azimi, J., Jalali, A., and Fern, X. (2012). Hybrid batch Bayesian optimization. arXiv
preprint arXiv:1202.5597.

Bahaj, A. (2011). Generating electricity from the oceans. Renewable and Sustainable
Energy Reviews, 15(7):3399–3416.

Baheri, A., Bin-Karim, S., Bafandeh, A., and Vermillion, C. (2017). Real-time control
using Bayesian optimization: A case study in airborne wind energy systems. Control
Engineering Practice, 69:131–140.

217

Bibliography 218

Balandat, M., Karrer, B., Jiang, D., Daulton, S., Letham, B., Wilson, A., and Bakshy, E.
(2019). BoTorch: Programmable Bayesian Optimization in PyTorch. arxiv e-prints.

Bengio, Y. (2009). Learning deep architectures for AI. Now Publishers Inc.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-
parameter optimization. In Advances in neural information processing systems, pages
2546–2554.

Bergstra, J., Yamins, D., Cox, D. D., et al. (2013). Hyperopt: A python library for
optimizing the hyperparameters of machine learning algorithms. In Proceedings of the
12th Python in science conference, volume 13, page 20. Citeseer.

Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., Casalicchio,
G., and Jones, Z. M. (2016). mlr: Machine learning in r. The Journal of Machine
Learning Research, 17(1):5938–5942.

Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., and Lang, M. (2017a). mlrmbo:
A modular framework for model-based optimization of expensive black-box functions.
arXiv preprint arXiv:1703.03373.

Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., and Lang, M. (2017b). ml-
rMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box
Functions. arXiv:1703.03373.

Bishop, C. (2006). Pattern recognition and machine learning. springer.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review
for statisticians. Journal of the American statistical Association, 112(518):859–877.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight uncertainty
in neural network. In International Conference on Machine Learning, pages 1613–1622.
PMLR.

Borge, J., Reichert, K., and Hessner, K. (2013). Detection of spatio-temporal wave
grouping properties by using temporal sequences of x-band radar images of the sea
surface. Ocean Modelling, 61:21–37.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and
regression trees. CRC press.

Brochu, E., Cora, V., and De Freitas, N. (2010). A tutorial on Bayesian optimization
of expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. arXiv preprint arXiv:1012.2599.

Brown, E. and Sumichrast, R. (2005). Evaluating performance advantages of grouping
genetic algorithms. Engineering Applications of Artificial Intelligence, 18(1):1–12.

Bühlmann, P. and Yu, B. (2002). Analyzing bagging. The Annals of Statistics, 30:927–961.

Bui, T., Hernández-Lobato, D., Hernandez-Lobato, J., Li, Y., and Turner, R. (2016).
Deep Gaussian processes for regression using approximate expectation propagation. In
International Conference on Machine Learning, pages 1472–1481.

Bibliography 219

Cahill, B. and Lewis, T. (2013). Wave energy resource characterisation of the atlantic
marine energy test site. International Journal of Marine Energy, 1:3–15.

Cai, Z. and Wang, Y. (2006). A multiobjective optimization-based evolutionary algorithm
for constrained optimization. IEEE Transactions on evolutionary computation, (6):658–
675.

Chafekar, D., Xuan, J., and Rasheed, K. (2003). Constrained multi-objective optimization
using steady state genetic algorithms. In Genetic and Evolutionary Computation
Conference, pages 813–824.

Chaslot, G. M. J.-B. C. (2010). Monte-carlo tree search. Maastricht University.

Chen, T., Fox, E., and Guestrin, C. (2014). Stochastic gradient hamiltonian monte carlo.
In International conference on machine learning, pages 1683–1691.

Chen, Y., Huang, A., Wang, Z., Antonoglou, I., Schrittwieser, J., Silver, D., and de Freitas,
N. (2018). Bayesian optimization in alphago. arXiv preprint arXiv:1812.06855.

Chib, S. and Greenberg, E. (1995). Understanding the metropolis-hastings algorithm.
The american statistician, 49(4):327–335.

Chollet, F. (2015). Keras.

Coello, C. A., Pulido, G. T., and Lechuga, M. S. (2004). Handling multiple objectives
with particle swarm optimization. IEEE Transactions on evolutionary computation,
8:256–279.

Comola, F., Andersen, T., Martinelli, L., Burcharth, H., and Ruol, P. (2014). Damage
pattern and damage progression on breakwater roundheads under multidirectional
waves. Coastal Engineering, 83:24–35.

Córdoba, I., Garrido-Merchán, E., Hernández-Lobato, D., Bielza, C., and Larranaga,
P. (2018). Bayesian optimization of the pc algorithm for learning Gaussian Bayesian
networks. In Conference of the Spanish Association for Artificial Intelligence, pages
44–54. Springer.

Cornejo-Bueno, L., Garrido-Merchán, E., Hernández-Lobato, D., and Salcedo-Sanz, S.
(2018). Bayesian optimization of a hybrid system for robust ocean wave features
prediction. Neurocomputing, 275:818–828.

Cornejo-Bueno, L., Nieto-Borge, J., Garćıa-Dı́az, P., Rodŕıguez, G., and Salcedo-Sanz, S.
(2016). Significant wave height and energy flux prediction for marine energy applications:
A grouping genetic algorithm–extreme learning machine approach. Renewable Energy,
97:380–389.

Cover, T. and Thomas, J. (2012). Elements of information theory. John Wiley & Sons.

Cuadra, L., Salcedo-Sanz, S., Nieto-Borge, J., Alexandre, E., and Rodŕıguez, G. (2016).
Computational intelligence in wave energy: Comprehensive review and case study.
Renewable and Sustainable Energy Reviews, 58:1223–1246.

D., H.-L., J.M., H.-L., A., S., and R.P., A. (2016). Predictive entropy search for multi-
objective Bayesian optimization. In International Conference on Machine Learning,
pages 1492–1501.

Bibliography 220

Damianou, A. and Lawrence, N. (2013). Deep Gaussian processes. In Artificial Intelligence
and Statistics, pages 207–215.

Davis, L. (1991). Handbook of genetic algorithms.

Daxberger, E. A. and Low, B. K. H. (2017). Distributed batch Gaussian process
optimization. In International Conference on Machine Learning-Volume 70, pages
951–960.

De Lit, P., Falkenauer, E., and Delchambre, A. (2000). Grouping genetic algorithms: an
efficient method to solve the cell formation problem. Mathematics and Computers in
simulation, 51(3-4):257–271.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiob-
jective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation,
6:182–197.

Desautels, T., Krause, A., and Burdick, J. W. (2014). Parallelizing exploration-
exploitation tradeoffs in Gaussian process bandit optimization. Journal of Machine
Learning Research, 15:3873–3923.

Dheeru, D. and Karra Taniskidou, E. (2017). UCI machine learning repository.

Dietterich, T. G. (2000). Ensemble methods in machine learning. In International
workshop on multiple classifier systems, pages 1–15.

Dua, D. and Graff, C. (2017). UCI machine learning repository.

Duda, R. O., Hart, P. E., et al. (1973). Pattern classification and scene analysis, volume 3.
Wiley New York.

Emmerich, A. (2008). The computation of the expected improvement in dominated
hypervolume of Pareto front approximations. Technical Report LIACS TR-4-2008,
Leiden University, The Netherlands.

Emmerich, M. and Klinkenberg, J. W. (2008). The computation of the expected
improvement in dominated hypervolume of Pareto front approximations. Rapport
technique, Leiden University.

Esteban, M. and Leary, D. (2012). Current developments and future prospects of offshore
wind and ocean energy. Applied Energy, 90(1):128–136.

Fadaeenejad, M., Shamsipour, R., Rokni, S., and Gomes, C. (2014). New approaches
in harnessing wave energy: With special attention to small islands. Renewable and
Sustainable Energy Reviews, 29:345–354.

Falcao, A. (2010). Wave energy utilization: A review of the technologies. Renewable and
sustainable energy reviews, 14(3):899–918.

Falkenauer, E. (1993). The grouping genetic algorithms: widening the scope of the ga’s.
JORBEL-Belgian Journal of Operations Research, Statistics, and Computer Science,
33(1-2):79–102.

Falkenauer, E. (1998). Genetic algorithms and grouping problems. John Wiley & Sons,
Inc.

Bibliography 221

Féliot, P., Bect, J., and Vazquez, E. (2017). A Bayesian approach to constrained
single-and multi-objective optimization. Journal of Global Optimization, 67:97–133.

Fernández-Sánchez, D., Garrido-Merchán, E. C., and Hernández-Lobato, D. (2020).
Max-value entropy search for multi-objective Bayesian optimization with constraints.
arXiv preprint arXiv:2011.01150.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J. T., Blum, M., and Hutter, F.
(2019). Auto-sklearn: efficient and robust automated machine learning. In Automated
Machine Learning, pages 113–134. Springer, Cham.

Fonseca, C. M. and Fleming, P. J. (1998). Multiobjective optimization and multiple
constraint handling with evolutionary algorithms. i. a unified formulation. IEEE
Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 28:26–
37.

Frazier, P. I. (2018). A tutorial on Bayesian optimization. arXiv preprint
arXiv:1807.02811.

Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine.
Annals of statistics, pages 1189–1232.

Gardner, J. R., Kusner, M. J., Xu, Z. E., Weinberger, K. Q., and Cunningham, J. P.
(2014). Bayesian optimization with inequality constraints. In International Conference
on Machine Learning, pages 937–945.

Garnett, R., Osborne, M. A., and Roberts, S. J. (2010). Bayesian optimization for
sensor set selection. In Proceedings of the 9th ACM/IEEE international conference on
information processing in sensor networks, pages 209–219.

Garrido-Merchán, E. and Albarca-Molina, A. (2018). Suggesting cooking recipes through
simulation and Bayesian optimization. In International Conference on Intelligent Data
Engineering and Automated Learning, pages 277–284. Springer.

Garrido-Merchán, E. and Hernández-Lobato, D. (2019a). Dealing with categorical and
integer-valued variables in Bayesian optimization with Gaussian processes. Neurocom-
puting.

Garrido-Merchán, E. and Hernández-Lobato, D. (2019b). Predictive entropy search for
multi-objective Bayesian optimization with constraints. Neurocomputing.

Garrido-Merchán, E. C. and Hernández-Lobato, D. (2020). Parallel predictive entropy
search for multi-objective Bayesian optimization with constraints. arXiv preprint
arXiv:2004.00601.

Gelbart, M. A., Snoek, J., and Adams, R. P. (2014). Bayesian optimization with unknown
constraints. In Uncertainty in Artificial Intelligence, pages 250–259.

Gelman, A., Vehtari, A., Jylänki, P., Robert, C., Chopin, N., and Cunningham, J. P.
(2014). Expectation propagation as a way of life. arXiv preprint arXiv:1412.4869, 157.

Gerven, M., Cseke, B., Oostenveld, R., and Heskes, T. (2009). Bayesian source localization
with the multivariate Laplace prior. In Advances in Neural Information Processing
Systems, pages 1901–1909.

Bibliography 222

Ghahramani, Z. (2006). Information theory. Wiley Online Library.

Glover, F. and Kochenberger, G. (2006). Handbook of metaheuristics, volume 57. Springer
Science & Business Media.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-
Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P., and
Aspuru-Guzik, A. (2018). Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science, 4(2):268–276.

González, J. (2016). Gpyopt: a Bayesian optimization framework in python.

González, J., Dai, Z., Damianou, A., and Lawrence, N. D. (2017). Preferential Bayesian
optimization. arXiv preprint arXiv:1704.03651.

González, J., Dai, Z., Hennig, P., and Lawrence, N. (2016). Batch Bayesian optimization
via local penalization. In Artificial intelligence and statistics, pages 648–657.

Gonzalvez, J., Lezmi, E., Roncalli, T., and Xu, J. (2019). Financial applications of
Gaussian processes and Bayesian optimization. arXiv preprint arXiv:1903.04841.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep learning, volume 1.
MIT press Cambridge.

Griffiths, R. and Hernández-Lobato, J. (2020). Constrained Bayesian optimization for
automatic chemical design using variational autoencoders. Chemical Science.

Gumbel, E. J. (1958). Statistics of extremes. Columbia university press.

Gupta, S., Shilton, A., Rana, S., and Venkatesh, S. (2018). Exploiting strategy-space
diversity for batch Bayesian optimization. In International Conference on Artificial
Intelligence and Statistics, pages 538–547.

Hammersley, J. (2013). Monte Carlo methods. Springer Science & Business Media.

Havasi, M., Hernández-Lobato, J., and Murillo-Fuentes, J. (2018). Inference in deep
Gaussian processes using stochastic gradient hamiltonian monte carlo. In Advances in
Neural Information Processing Systems, pages 7506–7516.

Hebbal, A., Brevault, L., Balesdent, M., Talbi, E.-G., and Melab, N. (2019). Bayesian
optimization using deep gaussian processes. arXiv preprint arXiv:1905.03350.

Hebbal, A., Brevault, L., Balesdent, M., Talbi, E.-G., and Melab, N. (2020). Bayesian
optimization using deep gaussian processes with applications to aerospace system
design. Optimization and Engineering, pages 1–41.

Hennig, P. and Schuler, C. (2012). Entropy search for information-efficient global
optimization. Journal of Machine Learning Research, 13(Jun):1809–1837.

Hernández-Lobato, D., Hernandez-Lobato, J. M., Shah, A., and Adams, R. P. (2016).
Predictive entropy search for multi-objective Bayesian optimization. In International
Conference on Machine Learning, pages 1492–1501.

Hernández-Lobato, D., Mart́ınez-Muñoz, G., and Suárez, A. (2009). Statistical instance-
based pruning in ensembles of independent classifiers. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31:364–369.

Bibliography 223

Hernández-Lobato, J., Gelbart, M., R.P., A., M.W., H., and Ghahramani, Z. (2016).
A general framework for constrained Bayesian optimization using information-based
search. Journal of Machine Learning Research, 17:1–53.

Hern’andez-Lobato, J. M. and Adams, R. (2015). Probabilistic backpropagation for
scalable learning of bayesian neural networks. In International Conference on Machine
Learning, pages 1861–1869. PMLR.

Hernández-Lobato, J. M., Gelbart, M. A., Hoffman, M. W., Adams, R. P., and Ghahra-
mani, Z. (2015). Predictive entropy search for Bayesian optimization with unknown
constraints. In International Conference on Machine Learning, pages 1699–1707.

Hernández-Lobato, J. M., Gelbart, M. A., Reagen, B., Adolf, R., Hernández-Lobato, D.,
Whatmough, P., Brooks, D., Wei, G.-Y., and Adams, R. P. (2016). Designing neural
network hardware accelerators with decoupled objective evaluations.

Hernández-Lobato, J. M., Hoffman, M., and Ghahramani, Z. (2014). Predictive entropy
search for efficient global optimization of black-box functions. In Advances in neural
information processing systems, pages 918–926.

Ho, Y. and Pepyne, D. (2002). Simple explanation of the no-free-lunch theorem and its
implications. Journal of optimization theory and applications, 115(3):549–570.

Hoffman, M., Brochu, E., and de Freitas, N. (2011). Portfolio allocation for Bayesian
optimization. In UAI, pages 327–336. Citeseer.

Houlsby, N., Hernández-Lobato, J. M., Huszar, F., and Ghahramani, Z. (2012). Collabo-
rative Gaussian processes for preference learning. In Advances in Neural Information
Processing Systems, pages 2096–2104.

Huang, G., , Zhu, Q., and Siew, C. (2006). Extreme learning machine: theory and
applications. Neurocomputing, 70(1-3):489–501.

Hutter, F. (2009). Automated configuration of algorithms for solving hard computational
problems. PhD thesis, University of British Columbia.

Hutter, F., Hoos, H., and Leyton-Brown, K. (2011). Sequential model-based optimization
for general algorithm configuration. In International conference on learning and
intelligent optimization, pages 507–523. Springer.

Hutter, F., Kotthoff, L., and Vanschoren, J. (2019). Automated machine learning:
methods, systems, challenges. Springer Nature.

Jaffar, J. and Maher, M. (1994). Constraint logic programming: A survey. The journal
of logic programming, 19:503–581.

James, T., Brown, E., and Keeling, K. (2007a). A hybrid grouping genetic algorithm for
the cell formation problem. Computers & Operations Research, 34(7):2059–2079.

James, T., Vroblefski, M., and Nottingham, Q. (2007b). A hybrid grouping genetic
algorithm for the registration area planning problem. Computer Communications,
30(10):2180–2190.

Jamil, M. and Yang, X. (2013). A literature survey of benchmark functions for global
optimization problems. arXiv preprint arXiv:1308.4008.

Bibliography 224

Jones, D., Schonlau, M., and Welch, W. (1998). Efficient global optimization of expensive
black-box functions. Journal of Global optimization, 13(4):455–492.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduction
to variational methods for graphical models. Machine learning, 37(2):183–233.

Jylänki, P., Nummenmaa, A., and Vehtari, A. (2014). Expectation propagation for neural
networks with sparsity-promoting priors. The Journal of Machine Learning Research,
15(1):1849–1901.

Kathuria, T., Deshpande, A., and Kohli, P. (2016). Batched Gaussian process bandit
optimization via determinantal point processes. In Advances in Neural Information
Processing Systems, pages 4206–4214.

Ketkar, N. (2017). Introduction to pytorch. In Deep learning with python, pages 195–208.
Springer.

Kim, S. and Suh, K. (2014). Determining the stability of vertical breakwaters against
sliding based on individual sliding distances during a storm. Coastal engineering,
94:90–101.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Knowles, J. (2006). Parego: A hybrid algorithm with on-line landscape approximation
for expensive multiobjective optimization problems. Evolutionary Computation, IEEE
Transactions on, 10:50–66.

Kochanski, G., Golovin, D., Karro, J., Solnik, B., Moitra, S., , and Sculley, D. (2017).
Bayesian optimization for a better dessert.

Kotthoff, L., Thornton, C., Hoos, H., Hutter, F., and Leyton-Brown, K. (2017). Auto-
weka 2.0: Automatic model selection and hyperparameter optimization in weka. The
Journal of Machine Learning Research, 18(1):826–830.

Kushner, H. (1964). A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise. Journal of Basic Engineering, 86(1):97–106.

Kuss, M. and Rasmussen, C. E. (2005). Assessing approximate inference for binary
Gaussian process classification. Journal of machine learning research, 6(Oct):1679–
1704.

LeCun, Y. (1998). The MNIST Database of Handwritten Digits. http://yann. lecun.
com/exdb/mnist/.

LeCun, Y., Cortes, C., and Burges, C. (2010). Mnist handwritten digit database. at&t
labs.

Lévesque, J., Durand, A., Gagné, C., and Sabourin, R. (2017). Bayesian optimization for
conditional hyperparameter spaces. In 2017 International Joint Conference on Neural
Networks (IJCNN), pages 286–293. IEEE.

Li, C., Gupta, S., Rana, S., Nguyen, V., Venkatesh, S., and Shilton, A. (2018). High
dimensional Bayesian optimization using dropout. arXiv preprint arXiv:1802.05400.

Bibliography 225

Liu, L., Wang, D., and Peng, Z. (2016). Path following of marine surface vehicles
with dynamical uncertainty and time-varying ocean disturbances. Neurocomputing,
173:799–808.

Lizotte, D. (2008). Practical Bayesian optimization. University of Alberta.

Lizotte, D. J., Wang, T., Bowling, M. H., and Schuurmans, D. (2007). Automatic gait
optimization with Gaussian process regression. In IJCAI, volume 7, pages 944–949.

López, I., Andreu, J., Ceballos, S., De Alegŕıa, I., and Kortabarria, I. (2013). Review
of wave energy technologies and the necessary power-equipment. Renewable and
sustainable energy reviews, 27:413–434.

Lubinsky, D. S. and Rabinowitz, P. (1984). Rates of convergence of Gaussian quadrature
for singular integrands. mathematics of computation, 43(167):219–242.

Lyu, W., Yang, F., Yan, C., Zhou, D., and Zeng, X. (2018). Batch bayesian optimization
via multi-objective acquisition ensemble for automated analog circuit design. In
International conference on machine learning, pages 3306–3314. PMLR.

MacKay, D. (1992). A practical Bayesian framework for backpropagation networks.
Neural computation, 4(3):448–472.

MacKay, D. (2003). Information theory, inference and learning algorithms. Cambridge
university press.

MacKay, D. J. (1995). Probable networks and plausible predictions—a review of practical
Bayesian methods for supervised neural networks. Network: computation in neural
systems, 6(3):469–505.

Maclaurin, D., Duvenaud, D., and Adams, R. P. (2015). Autograd: Effortless gradients
in numpy. In ICML 2015 AutoML Workshop, volume 238, page 5.

Markov, S. (2017). Skopt documentation.

Mart́ınez-Muñoz, G. and Suárez, A. (2005). Switching class labels to generate classification
ensembles. Pattern Recognition, 38:1483–1494.

Minka, T. (2001a). Expectation propagation for approximate Bayesian inference. In
Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence,
pages 362–369. Morgan Kaufmann Publishers Inc.

Minka, T. and Lafferty, J. (2012). Expectation-propogation for the generative aspect
model. arXiv preprint arXiv:1301.0588.

Minka, T. P. (2001b). A family of algorithms for approximate Bayesian inference. PhD
thesis, Massachusetts Institute of Technology.

Mockus, J., Tiesis, V., and Zilinskas, A. (1978). The application of Bayesian methods for
seeking the extremum. Towards global optimization, 2(117-129):2.

Moreno-Muñoz, P., Artés, A., and Alvarez, M. (2018). Heterogeneous multi-output
Gaussian process prediction. In Advances in neural information processing systems,
pages 6711–6720.

Bibliography 226

Murphy, K. (2012). Machine learning: a probabilistic perspective. MIT press.

Murray, I. and Adams, R. P. (2010). Slice Sampling Covariance Hyperparameters of
Latent Gaussian models.

Neal, R. (2003). Slice sampling. Annals of statistics, pages 705–741.

Neal, R. (2012). Bayesian learning for neural networks, volume 118. Springer Science &
Business Media.

Nickisch, H. and Rasmussen, C. E. (2008). Approximations for binary Gaussian process
classification. Journal of Machine Learning Research, 9(Oct):2035–2078.

Opper, M. and Archambeau, C. (2009). The variational Gaussian approximation revisited.
Neural computation, 21(3):786–792.

Osman, I. and Laporte, G. (1996). Metaheuristics: A bibliography.

Pardalos, P. and Romeijn, H. (2013). Handbook of global optimization, volume 2. Springer
Science & Business Media.

Parr, J. (2013). Improvement criteria for constraint handling and multiobjective opti-
mization. PhD thesis. University of Southampton.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., and Lerer, A. (2017). Automatic differentiation in pytorch.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine
learning in Python. the Journal of machine Learning research, 12:2825–2830.

Pedregosa, F. e. a. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research, 12(Oct):2825–2830.

Perrone, V., Donini, M., Kenthapadi, K., and Archambeau, C. (2020). Fair Bayesian
optimization. arXiv preprint arXiv:2006.05109.

Picheny, V. (2015). Multiobjective optimization using Gaussian process emulators via
stepwise uncertainty reduction. Statistics and Computing, 25:1265–1280.

Ponweiser, W., Wagner, T., Biermann, D., and Vincze, M. (2008). Multiobjective
optimization on a limited budget of evaluations using model-assisted\ mathcal {S}-
metric selection. In Parallel Problem Solving from Nature–PPSN X, pages 784–794.

Rahimi, A., Recht, B., et al. (2007). Random features for large-scale kernel machines. In
NIPS, volume 3, page 5. Citeseer.

Rainforth, T., Le, T., van de Meent, J., Osborne, M., and Wood, F. (2016). Bayesian
optimization for probabilistic programs. In Advances in Neural Information Processing
Systems, pages 280–288.

Rana, S., Li, C., Gupta, S., Nguyen, V., and Venkatesh, S. (2017). High dimensional
Bayesian optimization with elastic Gaussian process. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 2883–2891. JMLR.
org.

Bibliography 227

Rao, S. and Mandal, S. (2005). Hindcasting of storm waves using neural networks. Ocean
Engineering, 32(5-6):667–684.

Rasmussen, C. (2003). Gaussian processes in machine learning. In Summer School on
Machine Learning, pages 63–71. Springer.

Ross, S., Kelly, J., Sullivan, R., Perry, W., Mercer, D., Davis, R., Washburn, T., Sager,
E., Boyce, J., and Bristow, V. (1996). Stochastic processes, volume 2. Wiley New York.

Rusu, L. and Soares, C. (2012). Wave energy assessments in the azores islands. Renewable
Energy, 45:183–196.

Salimbeni, H. and Deisenroth, M. (2017). Doubly stochastic variational inference for deep
Gaussian processes. In Advances in Neural Information Processing Systems, pages
4588–4599.

Schonlau, M., Welch, W. J., and Jones, D. R. (1998). Global versus local search
in constrained optimization of computer models. Lecture Notes-Monograph Series,
34:11–25.

Seeger, M. (2005). Expectation propagation for exponential families.

Shah, A. and Ghahramani, Z. (2015). Parallel predictive entropy search for batch global
optimization of expensive objective functions. In Advances in Neural Information
Processing Systems, pages 3330–3338.

Shah, A. and Ghahramani, Z. (2016). Pareto frontier learning with expensive correlated
objectives. In International Conference on Machine Learning, pages 1919–1927. PMLR.

Shah, A., Wilson, A., and Ghahramani, Z. (2014). Student-t processes as alternatives to
Gaussian processes. In Artificial intelligence and statistics, pages 877–885.

Shah, A., Wilson, A. G., and Ghahramani, Z. (2013). Bayesian optimization using
Student-t processes. In NIPS Workshop on Bayesian Optimisation.

Shahriari, B., Swersky, K., Wang, Z., Adams, R., and De Freitas, N. (2015). Taking the
human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE,
104(1):148–175.

Shan, S. and Wang, G. G. (2005). An efficient pareto set identification approach for
multiobjective optimization on black-box functions.

Shao, Y. S., Reagen, B., Wei, G., and Brooks, D. (2014). Aladdin: A pre-rtl, power-
performance accelerator simulator enabling large design space exploration of customized
architectures. In International Symposium on Computer Architecture, pages 97–108.

Shawe-Taylor, J., Cristianini, N., et al. (2004). Kernel methods for pattern analysis.
Cambridge university press.

Siarry, P. and Collette, Y. (2003). Multiobjective optimization: principles and case
studies.

Singh, H., Misra, N., Hnizdo, V., Fedorowicz, A., and Demchuk, E. (2003). Nearest
neighbor estimates of entropy. American journal of mathematical and management
sciences, 23:301–321.

Bibliography 228

Snelson, E. and Ghahramani, Z. (2005). Sparse Gaussian processes using pseudo-inputs.
Advances in neural information processing systems, 18:1257–1264.

Snelson, E. and Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo-inputs.
In Advances in neural information processing systems, pages 1257–1264.

Snoek, J. (2013). Bayesian optimization and semiparametric models with applications to
assistive technology. PhD thesis. University of Toronto.

Snoek, J., Larochelle, H., and Adams, R. (2012). Practical Bayesian optimization of
machine learning algorithms. In Advances in neural information processing systems,
pages 2951–2959.

Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M.,
Prabhat, M., and Adams, R. P. (2015). Scalable Bayesian optimization using deep
neural networks. In International Conference on Machine Learning, pages 2171–2180.

Snoek, J., Swersky, K., Zemel, R., and Adams, R. (2014). Input warping for Bayesian
optimization of non-stationary functions. In International Conference on Machine
Learning, pages 1674–1682.

Solé, X., Ramisa, A., and Torras, C. (2014). Evaluation of random forests on large-scale
classification problems using a bag-of-visual-words representation. In CCIA, pages
273–276.

Souza, A., Nardi, L., Oliveira, L. B., Olukotun, K., Lindauer, M., and Hutter, F. (2020).
Prior-guided Bayesian optimization. arXiv preprint arXiv:2006.14608.

Springenberg, J., Klein, A., Falkner, S., and Hutter, F. (2016). Bayesian optimization
with robust Bayesian neural networks. In Advances in Neural Information Processing
Systems, pages 4134–4142.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. (2009). Gaussian process
optimization in the bandit setting: No regret and experimental design. arXiv preprint
arXiv:0912.3995.

Stein, M. L. (2012). Interpolation of spatial data: some theory for Kriging. Springer
Science & Business Media.

Thornton, C., Hutter, F., Hoos, H., and Leyton-Brown, K. (2013). Auto-WEKA:
Combined selection and hyperparameter optimization of classification algorithms.
In Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 847–855.

Titsias, M. (2009). Variational learning of inducing variables in sparse Gaussian processes.
In Artificial Intelligence and Statistics, pages 567–574.

Törn, A. and Žilinskas, A. (1989). Global optimization, volume 350. Springer.

Tracey, B. D. and Wolpert, D. (2018). Upgrading from Gaussian processes to Student’s
t-processes. In 2018 AIAA Non-Deterministic Approaches Conference, page 1659.

Villemonteix, J., Vazquez, E., and Walter, E. (2009). An informational approach to the
global optimization of expensive-to-evaluate functions. Journal of Global Optimization,
44(4):509.

Bibliography 229

Wang, F., Zhang, J., Zheng, X., Wang, X., Yuan, Y., Dai, X., Zhang, J., and Yang,
L. (2016). Where does alphago go: From church-turing thesis to alphago thesis and
beyond. IEEE/CAA Journal of Automatica Sinica, 3(2):113–120.

Wang, Z. and Jegelka, S. (2017). Max-value entropy search for efficient Bayesian
optimization. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 3627–3635. JMLR. org.

Wang, Z., Zoghi, M., Hutter, F., Matheson, D., De Freitas, N., et al. (2013). Bayesian
optimization in high dimensions via random embeddings. In IJCAI, pages 1778–1784.

While, L., Hingston, P., Barone, L., and Huband, S. (2006). A faster algorithm for
calculating hypervolume. IEEE transactions on evolutionary computation, 10(1):29–38.

Williams, C. K. and Barber, D. (1998). Bayesian classification with Gaussian processes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12):1342–1351.

Yao, X., Liu, Y., and Lin, G. (1999). Evolutionary programming made faster. IEEE
Transactions on Evolutionary computation, 3(2):82–102.

Yoshimi, G. (2010). Random Seas and Design of Maritime Structures, volume 33. World
Scientific Publishing Company.

Zheng, Z. and Sun, L. (2016). Path following control for marine surface vessel with
uncertainties and input saturation. Neurocomputing, 177:158–167.

Zhu, C., Byrd, R., Lu, P., and Nocedal, J. (1997). Algorithm 778: L-bfgs-b: Fortran
subroutines for large-scale bound-constrained optimization. ACM Transactions on
Mathematical Software (TOMS), 23(4):550–560.

Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative
case study and the strength Pareto approach. IEEE transactions on evolutionary
computation, 3:257–271.

	Portada
	Abstract
	Resumen
	Acknowledgements
	Abbreviations
	1 Introduction
	1.1 Introduction
	1.2 Bayesian Optimization: A Visual Example
	1.3 Bayesian Optimization in Complex Scenarios
	1.4 Publications
	1.5 Summary by Chapters
	1.6 How to Read this Thesis
	1.7 Definitions and Notation

	2 Gaussian Processes And Approximate Inference
	2.1 Introduction
	2.2 Gaussian Processes
	2.3 Covariance Functions
	2.4 Hyper-Parameter Estimation
	2.4.1 Maximizing the Log Marginal Likelihood
	2.4.2 Slice Sampling from the Posterior Distribution

	2.5 Other Surrogate Models
	2.6 Approximate Inference
	2.6.1 Exponential Family
	2.6.2 Expectation Propagation
	2.6.3 Expectation Propagation in Practice

	2.7 Conclusions

	3 Fundamentals Of Bayesian Optimization
	3.1 Introduction
	3.2 Bayesian Optimization
	3.3 Acquisition Functions
	3.3.1 Defining the BO Strategy: Exploration and Exploitation
	3.3.2 Acquisition Function criteria
	3.3.3 Information Theory
	3.3.4 Information Theory Based Acquisition Functions

	3.4 Constrained Multi-Objective Scenario
	3.5 Bayesian Optimization Software
	3.6 Conclusions

	4 Predictive Entropy Search For Multi-Objective Bayesian Optimization With Constraints
	4.1 Introduction
	4.2 Predictive Entropy Search for Multi-objective Optimization with Constraints
	4.2.1 Modeling Black-box Functions Using Gaussian Processes
	4.2.2 Specification of the Acquisition Function
	4.2.3 EP Approximation of the Conditional Predictive Distribution
	4.2.4 The PESMOC's Acquisition Function
	4.2.5 Computational Cost of PESMOC's Acquisition Function

	4.3 Related Work
	4.3.1 Evolutionary Strategies and Meta-heuristics
	4.3.2 Related Bayesian Optimization Methods
	4.3.3 Bayesian Multi-Objective Optimization
	4.3.4 Existing Methods for Decoupled Evaluations

	4.4 Experiments
	4.4.1 Quality of the Approximation to the Acquisition Function
	4.4.2 Synthetic Experiments
	4.4.3 Benchmark Experiments
	4.4.4 Finding an Optimal Ensemble of Decision Trees
	4.4.5 Finding an Optimal Deep Neural Network

	4.5 Conclusions

	5 Parallel Predictive Entropy Search For Multi-Objective Bayesian Optimization With Constraints
	5.1 Introduction
	5.2 Parallel Bayesian Optimization
	5.3 Parallel Predictive Entropy Search for Multi-Objective Bayesian Optimization with Constraints
	5.3.1 Modeling the Black-boxes Using Gaussian Processes
	5.3.2 Specification of the Acquisition Function
	5.3.3 Approximating the Conditional Predictive Distribution
	5.3.4 PPESMOC's Acquisition Function
	5.3.5 Quality of the Approximation to the Acquisition Function

	5.4 Related Work
	5.5 Experiments
	5.5.1 Synthetic Experiments
	5.5.2 Benchmark Experiments
	5.5.3 Real-world Experiments

	5.6 Conclusions

	6 Dealing With Categorical And Integer-Valued Variables In Bayesian Optimization With Gaussian Processes
	6.1 Introduction
	6.2 Background on Gaussian Processes and Bayesian Optimization
	6.3 Dealing with Categorical and Integer-valued Variables
	6.3.1 Naive and Basic Approaches
	6.3.2 Proposed Approach
	6.3.2.1 Visualization of the Proposed Transformation

	6.3.3 Optimization of the Acquisition Function

	6.4 Related Work
	6.5 Experiments
	6.5.1 Synthetic Experiments
	6.5.2 Hyper-parameter Tuning of Machine Learning Algorithms

	6.6 Conclusions

	7 Bayesian Optimization Of A Hybrid System For Robust Ocean Wave Features Prediction
	7.1 Introduction
	7.2 Wave Features of Interest: Calculation of Hm0 and P
	7.2.1 Problem Encoding
	7.2.2 Genetic Operators
	7.2.3 Fitness Function: the Extreme Learning Machine

	7.3 Experiments
	7.4 Conclusions

	8 Conclusions And Future Work
	8.1 Conclusions
	8.2 Future Work

	A Probability Distributions
	A.1 Probability Theory
	A.2 Gaussian Distribution

	B Appendix for Chapter 4
	B.1 The Gaussian Approximation to the Conditional Predictive Distribution
	B.2 Using Expectation Propagation to Approximate the Conditional Predictive Distribution
	B.3 The EP Approximation to the () and (,) Factors
	B.3.1 EP Update Operations for the () Factors
	B.3.1.1 Computation of the Cavity Distribution
	B.3.1.2 Computation of the Partial Derivatives of the Normalization Constant
	B.3.1.3 Computation of the First and Second Moments for the Updates

	B.3.2 EP Update Operations for the (,) Factors
	B.3.2.1 Computation of the Cavity Distribution
	B.3.2.2 Computation of the Partial Derivatives of the Normalization Constant
	B.3.2.3 Computation of the First and Second Moments for the Updates

	B.3.3 Reconstruction of the Conditional Predictive Distribution
	B.3.4 The Conditional Predictive Distribution at a New Point

	B.4 Final Gaussian Approximation to the Conditional Predictive Distribution
	B.4.1 Initialization and convergence of EP
	B.4.2 Parallel EP Updates and Damping

	B.5 Sensitivity Analysis of the Sampled Pareto Set Size
	B.6 Sensitivity Analysis of the Number of Montecarlo Iterations
	B.7 Percentage of Infeasible Solutions in Benchmark Experiments

	C Appendix for Chapter 5
	C.1 Optimization of the PPESMOC Acquisition Function Approximation
	C.2 Expectation Propagation Factors Computation
	C.3 Using Expectation Propagation to Approximate the Conditional Predictive Distribution
	C.4 The EP Approximation to the () and (,) Factors
	C.4.1 EP Update Operations for the () Factors
	C.4.1.1 Computation of the Cavity Distribution
	C.4.1.2 Computation of the Partial Derivatives of the Normalization Constant

	C.4.2 EP Update Operations for the (,) Factors
	C.4.2.1 Computation of the Cavity Distribution
	C.4.2.2 Computation of the Partial Derivatives of the Normalization Constant
	C.4.2.3 Computation of the First and Second Moments for the Updates

	C.4.3 Reconstruction of the Conditional Predictive Distribution
	C.4.4 The Conditional Predictive Distribution at a New Batch
	C.4.5 Initialization and Convergence of EP
	C.4.6 Parallel EP Updates and Damping

	C.5 Additional Experiments Information
	C.5.1 Benchmark Experiments
	C.5.2 Real Experiments

	Bibliography

