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Abstract 

The mesophilic anaerobic co-digestion of the liquid fraction from hydrothermal 

carbonization (LFHTC) of dewatered waste activated sludge with primary sewage 

sludge (PSS) has been studied. Mixtures of different composition (25, 50 and 

75% of LFHTC on a chemical oxygen demand (COD) basis), as well as the 

individual substrates, have been tested using two inocula (flocculent (FS) and 

granular (GS) sludges). Methane production decreased as the LFHTC/PSS ratio 

increased, which can be related to the presence of recalcitrant compounds in the 

LFHTC, such as alkenes, phenolics, and other oxygen- and nitrogen-bearing 

aromatics hard-to-degrade through anaerobic digestion. Methane yield reached 

248 ± 11 mL CH4 STP/g CODadded with the GS inoculum and 25% LFHTC. A 

74 and a 30% increase of methane production was achieved in the 25% LFHTC 

runs respect to the obtained in the similar experiments with 100% LFHTC, using 

the FS and GS inocula, respectively. In those late runs, the COD was reduced 

more than 86%, with a negligible concentration of total volatile fatty acids. With 

both inocula, total Kjeldahl nitrogen hydrolysis increased as the LFHTC to PSS 

mixture ratio decreased, reaching values higher than 79% at the end of the  
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experiments. Methane yield values fitted well the first-order, Cone and Weibull kinetic 24 

models for both inocula. Significant differences in the kinetic constant values, ranging 25 

from 0.100-0.168 d-1 and 0.059-0.068 d-1, were found with the FS and GS inocula, 26 

respectively. The results obtained support the potential integration of HTC of dewatered 27 

waste activated sludge in wastewater treatment plants. 28 

 29 

Keywords 30 

Anaerobic co-digestion (AcoD); biochemical methane potential (BMP); hydrothermal 31 

carbonization (HTC); sewage sludge; primary sewage sludge; kinetic model 32 

 33 

1. Introduction  34 

The management of sewage sludge (SS) plays a crucial role in wastewater treatment 35 

plants (WWTP). The huge generation of this biowaste could reach 13 Mt/year (on a dry 36 

basis) in 2020 in the European Union (Kelessidis and Stasinakis, 2012). Moreover, the 37 

high costs associated with SS treatment accounts for an essential part of total 38 

operational costs (Batstone et al., 2011). The conventional treatment of SS in large 39 

WWTP is mainly performed by anaerobic digestion. This technology allows recovering 40 

energy as biogas (≈36 MJ/Nm3) in combined heat and power systems (cogeneration) 41 

and generators, to produce electricity and heat (Calise et al., 2015; Puyol et al., 2017, 42 

Wandera et al., 2018). However, anaerobic digestion suffers from some drawbacks 43 

such as the negative effect of biodegradable carbon and nutrient imbalance of the 44 

substrate on the biogas production. Optima carbon-to-nitrogen ratios (C/N) between 20 45 

and 30 are commonly accepted for adequate anaerobic digestion. In this sense, SS is 46 
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characterized by a high organic matter content (60-70% on a dry basis), a relatively low 47 

C/N ratio, ranging between 6 and 16, and high buffer capacity, which affects to the 48 

nutrition balance of microorganisms (Silvestre et al., 2011). Therefore, the anaerobic co-49 

digestion (AcoD) of sewage sludge with carbon-rich substrates with an adequate C/N 50 

ratio has been widely used for nutrients adjustment. These include the organic fraction 51 

of municipal solid wastes (OFMSW), food wastes, livestock and poultry manure and 52 

microalgae, among others (Mata-Alvarez et al., 2014, Nghiem et al., 2017; Nguyen et 53 

al., 2014; Thorin et al., 2018; Xie et al., 2017). 54 

There are other technical solutions available for SS management such as incineration, 55 

composting and landfilling (Fijalkowski et al., 2017, Gutiérrez et al., 2017; Piippo et al., 56 

2018). However, the emissions of greenhouse gases during incineration or the odor 57 

caused by composting process, make these solutions less attractive in many cases 58 

(Werther and Ogada, 1999). Several thermal processes for energy recovery, such as 59 

pyrolysis or gasification, are gaining attention, since the resultants products may be 60 

used as bio-fuels or source of chemicals (Alvarez et al., 2015; Manara and Zabaniotou, 61 

2012). The main drawback of these technologies is the high energy requirements 62 

needed for moisture reduction. 63 

In this context, hydrothermal carbonization (HTC) can be an environmentally friendly 64 

technology to manage SS allowing to reduce the energy-intensive drying of high-65 

moisture organic feedstocks, as well as to produce the so-called hydrochar, a valuable 66 

solid fuel (Kumar et al., 2018). In this thermochemical process, wet biomass is treated 67 

within the range of 180 to 250 ºC and the corresponding equilibrium pressure (Funke 68 

and Ziegler, 2010; Libra et al., 2011). Different reactions such as hydrolysis, 69 
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dehydration, decarboxylation, condensation, and polymerization occur, yielding the 70 

abovementioned hydrochar, a gas stream (mainly CO2) and a liquid fraction (LFHTC) 71 

containing volatile fatty acids (VFAs), furan compounds, glucose, phenols, pyrazines, 72 

pyrroles, among others (Danso-Boateng et al., 2015; De la Rubia et al., 2018a; Villamil 73 

et al., 2018a). Hydrochar from sewage sludge can be used as fuel due to its good 74 

higher heating value ((HHV) ≈ 19-24 MJ/kg), comparable to sub-bituminous coals 75 

(Danso-Boateng et al., 2015). Moreover, this carbon material can be applied in soil 76 

amendment, environmental remediation and as low-cost adsorbent (Gwenzi et al., 77 

2017, Kim et al., 2014). The liquid by-product from SS carbonization is characterized by 78 

high organic matter and nitrogen contents (De la Rubia et al., 2018b; Posmanik et al., 79 

2017; Villamil et al., 2018b) and must be treated to avoid adverse environmental 80 

impacts. Taking into account the presence of several compounds readily biodegradable 81 

(formic, acetic, iso-butyric and butyric acids), this fraction can be valorized as a 82 

substrate for anaerobic digestion (Luz et al., 2018; Qiao et al., 2011; Wirth and Mumme, 83 

2013). The main drawback for that is its low C/N ratio (around 7) (Villamil et al., 2018a). 84 

Thus, AcoD with PSS can provide a potential solution which would allow the integration 85 

of waste activated sludge HTC in the scheme of sludge processing in WWTP with the 86 

benefit of producing hydrochar in addition to biogas. Fig. 1 shows a proposal of a flow 87 

diagram for this approach.  88 

The aim of the current work is to evaluate this new concept for sewage sludge 89 

management. Mesophilic anaerobic co-digestion of mixtures of the LFHTC of dewatered 90 

waste activated sludge and thickened primary sewage sludge, as well as the two bare 91 

substrates (PSS and LFHTC), have been tested using two fairly different inocula (a 92 
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flocculent sludge from a mesophilic digester of a municipal wastewater treatment and a 93 

granular ones from a brewery wastewater treatment plant). Several key parameters 94 

(alkalinity, Total Kjeldahl nitrogen (TKN), total ammoniacal nitrogen (TAN), VFA, COD 95 

and methane yield) of anaerobic process were assessed upon digestion time. Finally, 96 

cumulate methane production was fitted to widely applied kinetic models (first order, 97 

Gompertz, modified Gompertz, Cone, and Weibull equations) in anaerobic digestion. 98 

Waste activated sludge was selected for HTC experiments instead of a mixture of both 99 

primary (PSS) and sencondary sewage sludge, because of some advantages: (i) 100 

Improve the quality of the hydrochar since SS has lower ash content (usually around 101 

20%) versus more than 30% of PSS and (ii) increase of the potential phosphorus 102 

recovery from the liquid fraction since secondary SS presents higher P content 103 

(McGaughy and Reza, 2018). In addition, it is well known that secondary SS shows 104 

poor digestibility compared to PSS.  105 

 106 

2. MATERIALS AND METHODS 107 

2.1. Inocula and substrates characterization 108 

Two different inocula were used: (i) An anaerobic flocculent sludge (FS inoculum) from 109 

a full-scale mesophilic digester treating mixed sewage sludge, and (ii) a granular 110 

inoculum obtained from a high rate anaerobic reactor, which treats brewery wastewater 111 

(GS inoculum). Table 1 depicts representative analysis of those inocula. 112 

LFHTC was obtained from HTC of DSS (15% dry matter) was collected from a cosmetic 113 

factory full-scale membrane bioreactor (Madrid, Spain), frozen (-20 °C) and stored 114 

before use. HTC experiments were conducted in a 4 L stainless steel reactor 115 
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(ZipperClave). In each batch experiment, approximately 1.5 kg of the DSS was loaded 116 

into the vessel. The chosen temperature (208 ºC) was reached heating at 3 ºC/min and 117 

maintaining the carbonization time for 1 h. Once cooled, the liquid fraction was 118 

centrifuged and filtered (0.45 µm). PSS was drawn from the thickener of a WWTP 119 

(Madrid, Spain). Table 1 includes representative analysis of both substrates. 120 

 121 

2.2. Batch anaerobic experiments 122 

AcoD experiments were performed in 120 mL glass digesters. Each flask contained a 123 

final concentration of 10 g COD/L inoculum, and different concentrations of PSS and 124 

LFHTC, together with a stock mineral medium solution and deionized water to make up 125 

the working volume (60 mL), following the indications provided by Holliger et al. (2016). 126 

Blank tests were performed with inoculum and mineral medium. Tests with starch as 127 

sole substrate were also carried out as positive controls. The vials were flushed with N2 128 

to get anaerobic conditions and placed in a shaking water bath at 35 ± 1 °C. An ISR of 2 129 

on a COD basis (or 1.7 on a volatile solid (VS) basis) were selected as operational 130 

conditions. All the experiments were run until the accumulated gas production remained 131 

essentially unchanged, so that biodegradation could be considered essentially 132 

completed. Mixtures of different LFHTC to PSS ratios (on a COD basis) (25, 50 and 133 

75% LFHTC), as well as the two bare substrates (LFHTC and PSS) were tested. These 134 

co-substrates are referred as 0LF, 25LF, 50LF, 75LF and 100LF. Nine glass serum vials 135 

were used for each experiment, sacrificing periodically samples one to six for 136 

characterization (after centrifuging and filtering them), and using the other three for 137 

biogas composition and volume determinations. Moreover, three blank tests with only 138 
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inoculum and three positive control tests with starch as the sole substrate were 139 

performed with each inoculum. 140 

 141 

2.3. Analytical methods 142 

Elemental composition (C, H, N, S) content of DSS and hydrochar was determined 143 

using a LECO CHNS-932 Elemental Analyzer. ASTM methods D3173-11, D3174-11 144 

and D3175-11, were used to determine the moisture, ash and volatile matter, 145 

respectively.  146 

Total solids (TS), VS, soluble COD (SCOD) and TAN, were measured using standard 147 

methods (2540b, 2540d, 5220-d and 4500-NH3 APHA, 1998, respectively) while free 148 

ammonia nitrogen (FAN) was calculated according to Hansen et al. (1998). pH was 149 

measured with a Crison Basic pH meter. Alkalinity was measured by titration with 0.02 150 

N H2SO4 to endpoints of pH 5.75 and 4.3, allowing calculation of total (TA), partial (PA) 151 

and intermediate alkalinity (IA) (Ripley et al., 1986). Total COD (TCOD) was determined 152 

by the proposed method by Raposo et al. (2008). TKN was determined as it has been 153 

described elsewhere (Villamil et al., 2018a), total organic carbon (TOC) was measured 154 

with TOC-VCPN (Shimadzu) automatic analyzer. Volatile fatty acids (VFA) were 155 

quantified in a Varian 430-GC gas chromatograph (De la Rubia et al., 2018b). Chemical 156 

species were identified in a GC–MS CP-3800/Saturn 2200 using a Varian CP-8200 157 

autosampler injector (De la Rubia et al., 2018b).  158 

Biogas volume produced was measured by an electronic manometer (ifm, PN 7097) 159 

and expressed at standard pressure and temperature conditions (STP) (273 K, 1 bar). 160 

Gas composition (H2, H2S, CO2 and CH4) was analyzed by a Thermo Scientific Trace 161 
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1310 gas chromatography (De la Rubia et al., 2018b). Cumulative methane yield on the 162 

last day for FS and GS inocula, were assessed by analysis of variance (ANOVA) using 163 

Origin software (version 9.0). Fisher’s least significant difference (Fisher’s LSD) was 164 

calculated at a confidence level of 0.05. 165 

3. RESULTS AND DISCUSSION 166 

Fig. 2 shows the TKN values and the evolution of TAN upon the AcoD of the two 167 

substrates tested. As can be seen, the hydrolytic stage was shorter for the experiments 168 

with the FS inoculum (Fig. 2a) than for those with GS (Fig. 2b). TKN hydrolysis 169 

decreased at increasing the HTC percentage in the mixture, reaching similar final 170 

values (79-95%) for each mixture ratio with both inocula. Final TAN values were within 171 

the range of 600-800 and 460-650 mg N/L for the experiments with FS and GS, 172 

respectively, much lower than the considered inhibitory value for methanogenic 173 

microorganism (1700 mg N/L) (Franke-Whittle et al., 2014). The pH values (6.8-7.3) 174 

remained relatively constant in all the runs within the adequate range for methanogenic 175 

Archaea growing (Parameswaran and Rittmann, 2012).  176 

Fig. 3 shows the evolution of alkalinity along the experiments. The initial TA ranged from 177 

1.1 to 1.6 g/L CaCO3 and showed a continuous increase along the anaerobic process, 178 

probably due to the release of carbon dioxide and ammonia nitrogen upon the 179 

decomposition of the organic matter with time, which improves the buffer capacity 180 

(Córdoba et al., 2016). Final TA values in the range of 2.4-2.8 g/L CaCO3 were reached, 181 

providing enough buffer capacity (> 2 g/L CaCO3) as has been recommended in the 182 

literature (Angenent et al., 2002; Cook et al., 2017).  183 
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Fig. 4 depicts the time-course of total VFA (TVFA) expressed as mg COD/L. The 184 

concentration of acetic, propionic and iso-valeric acids in the LFHTC of DSS, yielded 185 

values of 3532 ± 123 mg/L, 620 ± 10 mg/L and 78 ± 19 mg/L, respectively. In the FS 186 

experiments (Fig. 4a), values of COD attributable to VFA ranged from 455 to 805 mg 187 

COD/L in the first days. TVFA concentration decrease after the hydrolytic-acidogenic 188 

stage, reaching negligible values after 10 days digestion time. The TVFA concentrations 189 

in the GS experiments (Fig. 4b) were significantly higher than the obtained with FS in 190 

the first days, reaching values between 778 and 1284 mg COD/L, but then follows a 191 

similar trend. Therefore, no VFA were accumulated under the experimental conditions 192 

tested, which means that there was no imbalance in the anaerobic process with none of 193 

the inocula used. 194 

Fig. 5 shows the evolution of SCOD upon digestion time. The initial SCOD values in all 195 

the experiments were around 5 g COD/L. Somewhat higher COD removal was achieved 196 

with the granular inoculum (78-95% vs. 70-87%). Similar SCOD removal (80%) for 197 

anaerobic batch reactor treating the LFHTC of digestate (220 ºC-30 min) has been 198 

reported (Aragón-Briceño et al., 2017). The COD attributable to VFA was less than 27% 199 

in the FS runs during the hydrolytic-acidogenic stage. In the GS experiments, the VFAs 200 

were consumed completely during that stage (first 10 days). The remaining COD 201 

corresponds to refractory compounds which were detected in the LFHTC of DSS such 202 

as heterocyclic organic species (pyrroles, pyridines), ketones and alcohols (De la Rubia 203 

et al., 2018a; Villamil et al., 2018a), inhibiting methanogenesis, mainly in the case of 204 

aromatics (Chen et al., 2008). It can also be ascribable to pyrazine compounds which 205 

are Maillard products generated in HTC reactions between reducing sugars and amino 206 
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acids (Titirici, 2013). Moreover, the presence of several nitrogen-containing aromatic 207 

compounds could be related to the high TKN concentration in the liquid phase. 208 

Fig. 6 shows the cumulative methane production along the anaerobic digestion 209 

experiments. Final values ranged within 98 ± 3-204 ± 1 and 191 ± 1-308 ± 1 mL CH4 210 

STP/g CODadded for FS and GS experiments, respectively. Several authors have also 211 

observed higher methane yields with granular inocula than with the flocculent ones due 212 

to the abundance and diversity of methanogenic microorganisms in the granules (De la 213 

Rubia et al., 2018b; De Vrieze et al., 2015; Neves et al., 2004; Rincon et al., 2011). With 214 

both inocula, the methane production increased at decreasing the LFHTC to PSS ratio 215 

mixture. In this way, for FS inoculum, a 1.30-fold increase in methane yield was 216 

achieved for 25LF experiment compared to the experiment performed with LFHTC as 217 

mono-substrate (100LF), while for GS a 1.74-fold increase was reached.  218 

The yield obtained with the FS inoculum in the 25LF experiment (172 ± 1 mL CH4 STP/g 219 

CODadded) was similar to the reported by Wirth et al. (2015) (120-180 mL CH4 STP/g 220 

CODadded) for the continuous anaerobic digestion of LFHTC of digested sewage sludge. 221 

Qiao et al. (2011) reported a methane yield of 257 mL CH4/g COD operating a 222 

continuous UASB reactor, while Aragón-Briceño et al. (2017) found values up to 277 mL 223 

CH4 STP/g CODadded  for batch operation, both of them fed with LFHTC of digested 224 

sewage sludge. This yield is similar to the obtained in the current work from the 25LF 225 

mixture with GS inoculum (248 ± 11 mL CH4 STP/g CODadded). Recently, De la Rubia et 226 

al. (2018a) have studied the mesophilic co-digestion of the LFHTC of secondary SS and 227 

OFMSW using a flocculent inoculum, reaching an ultimate methane yield within the 228 

range of 124 ± 9 and 194 ± 1 mL CH4 STP/g CODadded, very close to the obtained now 229 
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with the FS inoculum. Several studies can be found in the literature dealing with 230 

anaerobic digestion of the LFHTC of several biomass wastes. The ultimate methane 231 

yield depends on nature of the raw residue and the HTC conditions (time and 232 

temperature). Close values to the obtained in the 25LF experiments of this study (175-233 

300 mL CH4/g COD) have been reported with the LFHTC of lignocellulosic residues 234 

(Erdogan et al., 2015, Weiner et al., 2016, Wood et al., 2013).  235 

Fig. 7 shows the daily methane production rate, calculated as the derivative of the 236 

cumulative methane yield. As can be seen, with the FS inoculum the methane 237 

production rate decreased at increasing the relative amount of LFHTC in the mixture. 238 

The highest values (12.7-33.3 mL CH4/g COD d) were reached in the 2nd day, 239 

corresponding with the VFA concentration peak. Lower values (11.1-21.3 mL CH4/g 240 

COD d) were obtained with the GS inoculum, probably due to mass-transfer limitation of 241 

VFA in this granular sludge (Gonzalez-Gil et al., 2001).  242 

The results of methane yield were fitted to first-order, Gompertz, modified Gompertz, 243 

Cone and Weibull kinetic models, which have been widely applied for anaerobic 244 

digestion (El-Mashad, 2013; Nielfa et al., 2015; Ragaglini et al., 2014; Raposo et al., 245 

2011; Zhao et al., 2016). Table 3 collects the above-mentioned kinetic equations. Origin 246 

software (version 8.0) was used to fit the experimental data to those kinetic equations. 247 

The results are summarized in Tables 4 (FS experiments) and 5 (GS experiments).   248 

Except for modified Gompertz model, all the kinetic equation checked describe well the 249 

evolution of methane production upon digestion time. In general, the fitting was better 250 

for the experiments with the flocculent inoculum (FS). The k values obtained for first-251 

order apparent rate constant fall within the range of 0.100-0.168 d-1 and 0.059-0.068 d-1 252 
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for FS and GS experiments, respectively. The lower k values with the granular sludge 253 

can be due to the occurrence of mass-transport limitation (Gonzalez-Gil et al., 2001). All 254 

the k values are higher than the reported by Villamil et al. (2018a) for the anaerobic 255 

digestion of the LFHTC of DSS (0.031-0.043 d-1) but significantly lower than the 256 

previously reported by De la Rubia et al. (2018a) for the AcoD of the OFMSW with the 257 

LFHTC of waste activated sludge (0.44-0.56 d-1).  258 

 259 

4. CONCLUSIONS 260 

The co-digestion of LFHTC and PSS can provide a feasible way of integrating the HTC 261 

of waste activated sludge in a WWTP. Increasing the LFHTC to PSS ratio decreases 262 

the methane production, due to the presence of inhibitory nitrogen-containing aromatic 263 

compounds detected in the LFHTC. The granular inoculum (GS) was better in terms of 264 

ultimate methane yield than the flocculent one (FS). The highest methane yields were 265 

found for the experiments with 25% LFHTC (1.76 and 1.30-fold increase with respect to 266 

the bare LFHTC, with FS and GS inocula, respectively). With that mixture, SCOD 267 

removals around 85-90% were obtained, with no residual VFAs detected. Further 268 

research will be required to evaluate the co-digestion of LFHTC and PSS in semi-269 

continuous experiments and with LFHTC below 25% in the mixture. 270 
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Table 1. Representative analysisa of the inocula (FS and GS) and substrates (PSS and LFHTC). 

 Inoculum Substrate 
 FS GS PSS LFHTC 

pH 6.9 ± 0.1 7.2 ± 0.2 5.1 ± 0.1 4.9 ± 0.2 

TS (g/kg) 21.1 ± 0.1 46.1 ± 0.7 53.1 ± 0.1 51.9 ± 0.5 

VS (g/kg) 13.9 ± 0.3 40.3 ± 0.1 45.7 ± 0.1 24.0 ± 0.5 

TCOD (g O2/L) 24.8 ± 0.8 91.2 ± 1.4 78.9 ± 4.2 110.1 ± 2.3 

TKN (g N/L) 3.9 ± 0.2 5.1 ± 0.1 3.8 ± 0.3 8.4 ± 0.6 

Na (mg/g) 3.0 ± 0.1 0.8 ± 0.1 3.1 ± 0.1 1074.0 ± 11.6 

Mg (mg/g) 3.7 ± 0.1 0.1 ± 0.0 3.8 ± 0.2 23.2 ± 1.3 

Al (mg/g) 8.9 ± 0.1 0.6 ± 0.0 9.5 ± 0.4 15.8 ± 0.7 

K (mg/g) 4.7 ± 0.1 0.5 ± 0.1 4.9 ± 0.8 1182.7 ± 66.1 

Ca (mg/g) 39.2 ± 1.4 0.3 ± 0.1 33.0 ± 0.3 67.5 ± 4.4 

Fe (mg/g) 24.8 ± 0.5 < 0.1 28.5 ± 0.5 32.5 ± 0.1 
                                             a Average values of three determinations with standard deviations.  
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Table 2. Representative analysisa of the dewatered secondary sludge and the resulting hydrochar (% d.b.). 

 Waste activated sludge Hydrochar 

C  41.5 ± 0.1 43.1 ± 0.2 

H  6.0 ± 0.1 5.8 ± 0.1 

N  6.8 ± 0.2 4.6 ± 0.1 

S  0.7 ± 0.1 0.2 ± 0.1 

Ob  31.3 ± 0.2 26.5 ± 0.1 

Ash content (%) 13.7 ± 0.1 19.7 ± 0.2 

Volatile matter (%) 73.6 ± 0.1 65.4 ± 0.3 

Fixed carbonc (%) 12.7 ± 0.1 14.9 ± 0.2 

HHV (MJ/kg) 17.6 ± 0.1 21.6 ± 0.1 
                                                                                             a Average values of three determinations with standard deviations. 
                                                                                             b By difference 
                                                                                             c 100 – (moisture + ash + volatile matter). 
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Table 3. Kinetic model checked to fit the experimental results of cumulative methane yield. 

Model Equation Parameters 

First-order                         

G (mL CH4/g COD): cumulative specific methane production 

Gmax (mL CH4/g COD): ultimate methane production  

k (d-1): specific rate constant 

t (d): digestion time 

 Gompertz                              µ (mL CH4/g COD d): maximum methane production rate 

λ (d): lag-phase time constant. 
Modified 

Gompertz 
                      

 

    
               e1 = 2.7182 

Cone      
    

         
 n: dimensionless shape factor 

Weibull                                 d: dimensionless factor 
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                  Table 4. Experimental maximum methane yield* (Gme) and fitting parameters for FS experiments. 

Model Parameter LFHTC to PSS mixture ratio (%) 
  0 25 50            75 100 

Experimental Gme (mL CH4/g COD) 204 ± 1a 172 ± 1b 142 ± 4c 124 ± 6d 98 ± 3e 

First-order 

Gm (mL CH4/g COD) 199 ± 4 166 ± 3 137 ± 3 120 ± 2 98 ± 2 
k (d-1) 0.160 ± 0.011 0.168 ± 0.012 0.162 ± 0.011 0.137 ± 0.009 0.100 ± 0.006 

R2 0.985 0.984 0.985 0.986 0.992 
RCS 74.7 54.1 35.2 24.2 9.3 

Gompertz 

Gm (mL CH4/g COD) 192 ± 4 161 ± 4 133 ± 3 117 ± 3 100 ± 4 
µ (mL CH4/g COD d) 0.987 ± 0.156 0.935 ± 0.165 0.811 ± 0.160 0.757 ± 0.145 0.737 ± 0.116 

λ (d) 0.315 ± 0.043 0.315 ± 0.047 0.271 ± 0.042 0.215 ± 0.032 0.141 ± 0.020 
R2 0.968 0.962 0.955 0.956 0.960 

RCS 125.0 100.6 78.9 61.6 38.9 

Modified 
Gompertz 

Gm (mL CH4/g COD) 71 ± 2 59 ± 1 50 ± 1 50 ± 3 50 ± 10 
µ (mL CH4/g COD d) 8.181 ± 1.032 6.860 ± 0.948 4.616 ± 0.656 2.110 ± 0.399 1.045 ± 0.226 

λ (d) 3.138 ± 0.271  2.965 ± 0.289 3.074 ± 0.371 4.458 ± 1.027  8.916 ± 4.338 
R2 0.968 0.962 0.953 0.893 0.835 

RCS 125.0 100.6 81.7 149.6 159.6 

Cone 

Gm (mL CH4/g COD) 204 ± 3 171 ± 3 144 ± 4 131 ± 4 111 ± 5 
k (d-1) 0.236 ± 0.010 0.246 ± 0.012 0.232 ± 0.014 0.185 ± 0.014 0.123 ± 0.012 

n 1.646 ± 0.107 1.591 ± 0.118 1.430 ± 0.116 1.293 ± 0.107 1.208 ± 0.091 
R2 0.995 0.993 0.992 0.992 0.994 

RCS 27.1 23.9 18.9 14.4 7.1 

Weibull 

Gm (mL CH4/g COD) 201 ± 3 169 ± 3 143 ± 3 128 ± 4 106 ± 4 
k (d-1) 0.926 ± 0.091  0.925 ± 0.082 0.929 ± 0.067 0.946 ± 0.055 0.938 ± 0.076 
λ (d) 0.807 ± 0.061 0.761 ± 0.061 0.695 ± 0.053 0.677 ± 0.044 0.735 ± 0.043 

d 0.200 ± 0.013 0.206 ± 0.015 0.185 ± 0.016 0.139 ± 0.013 0.095 ± 0.009 
R2 0.992 0.991 0.992 0.995 0.996 

RCS 31.2 23.8 13.8 7.6 3.7 
                   *Average values of three determinations with standard deviations. Means with different superscript significant differ (p < 0.05). 

RCS: Reduced Chi-Square. 
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                    Table 5. Experimental maximum methane yield* (Gme) and fitting parameters for GS experiments. 

Model Parameter LFHTC to PSS mixture ratio (%) 
  0 25                     50          75 100 

Experimental Gme (mL CH4/g COD) 308 ± 1a 248 ± 11b 224 ± 11b,c 204 ± 9c,d 191 ± 1d 

First-order 

Gm (mL CH4/g COD) 328 ± 18 249 ± 8 221 ± 6 199 ± 4 186 ± 3 
k (d-1) 0.059 ± 0.007 0.066 ± 0.005 0.068 ± 0.004 0.068 ± 0.003 0.060 ± 0.002 

R2 0.979 0.990 0.994 0.996 0.998 
RCS 251.2 68.2 34.5 17.4 7.7 

Gompertz 

Gm (mL CH4/g COD) 292 ± 5 232 ± 4 209 ± 4 191 ± 4 181 ± 5 
µ (mL CH4/g COD d) 1.179 ± 0.084 1.007 ± 0.078 0.947 ± 0.083 0.897 ± 0.084 0.820 ± 0.078 

λ (d) 0.147 ± 0.010 0.135 ± 0.010 0.130 ± 0.011 0.122 ± 0.011 0.098 ± 0.009 
R2 0.990 0.988 0.985 0.983 0.981 

RCS 110.6 78.6 78.8 73.0 68.3 

Modified 
Gompertz 

Gm (mL CH4/g COD) 107± 2 85 ± 2 77 ± 2 70 ± 2 67 ± 2 
µ (mL CH4/g COD d) 5.804 ± 0.345 4.235 ± 0.266 3.676 ± 0.257 3.149 ± 0.233 2.415 ± 0.18 

λ (d) 8.016 ± 0.327 7.471 ± 0.364 7.291 ± 0.415 7.351 ± 0.462 8.33 2 ± 0.583 
R2 0.990 0.988 0.985 0.983 0.981 

RCS 110.6 78.6 78.8 73.0 68.3 

Cone 

Gm (mL CH4/g COD) 300 ± 16 264 ± 7 242 ± 5 226 ± 5 235 ± 6 
k (d-1) 0.091 ± 0.008 0.090 ± 0.005 0.088 ± 0.004 0.083 ± 0.004 0.060 ± 0.003 

n 1.793 ± 0.249 1.487 ± 0.085  1.382 ± 0.062 1.290 ± 0.047 1.108 ± 0.033 
R2 0.976 0.995 0.997 0.998 0.999 

RCS 284.1 33.4 16.3 8.7 4.2 

Weibull 

Gm (mL CH4/g COD) 297 ± 7 242 ± 6 222 ± 5 205 ± 5 206 ± 5 
k (d-1) 0.119 ± 0.949 0.269 ± 0.599 0.514 ± 0.402 0.641 ± 0.273 0.686 ± 0.149 
λ (d) 1.321 ± 0.183 1.1 ± 0.115 0.992 ± 0.083 0.922 ± 0.059 0.833 ± 0.033 

d 0.073 ± 0.006 0.072 ± 0.004 0.071 ± 0.004 0.067 ± 0.004 0.051 ± 0.003 
R2 0.990 0.992 0.994 0.996 0.999 

RCS 119.8 51.2 30.3 16.2 4.8 
*Average values of three determinations with standard deviations. Means with different superscript significant differ (p < 0.05). 

 RCS: Reduced Chi-Square.
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Fig. 1. Integration of HTC of dewatered waste activated sludge into the scheme of 

sludge processing in a WWTP. 
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Fig. 2. Time-course of total ammonia nitrogen (TAN) along the anaerobic co-digestion of 

PSS and LFHTC with FS (a) and GS (b) inocula. Tables show the TKN values.  
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Fig. 3. Time-course of total alkalinity along the anaerobic co-digestion of PSS and 

LFHTC with FS (a) and GS (b) inocula. 
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Fig. 4. Time-course of total VFA along the anaerobic co-digestion of PSS and LFHTC 

with FS (a) and GS (b) inocula. 
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Fig. 5. Time-course of soluble COD along the anaerobic co-digestion of PSS and 

LFHTC with FS (a) and GS (b) inocula. 
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Fig. 6. Cumulative methane yield along the anaerobic co-digestion of PSS and LFHTC 

with FS (a) and GS (b) inocula. 
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Fig. 7. Time-course of daily methane production rate along the anaerobic co-digestion 

of PSS and LFHTC with FS (c) and GS (d) inocula. 
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