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A B S T R A C T   

The photocatalytic degradation of methylparaben was investigated under simulated solar light using a syn-
thesised metal–organic framework (UiO-66-NH2). For that purpose, the pollutant was spiked in different water 
matrices: distilled water, water from Lima River (Northwestern Portugal), and urban wastewater. Complete 
removal of the methylparaben in distilled water was achieved in 1 h reaction. In natural water matrices, the 
photocatalytic performance decreased to 70% removal after 3 h reaction, owing to the physical–chemical 
properties of the water samples. The UiO-66-NH2 photocatalyst revealed high stability under the continuous 
mode, reaching a steady state in 5 h, from which the removal percentage was kept constant for 25 h. The 
photocatalytic degradation of methylparaben gave five main reaction byproducts and four short-chain carboxylic 
acids, identified by LC/ESI-MS and UHPLC analyses, respectively. The mechanism of degradation was investi-
gated by using selective scavengers. Photogenerated holes and superoxide radicals were found as the main 
species responsible for the degradation of methylparaben. The abatement of other parabens (as ethyl- and 
propylparaben) was also evaluated, being the conversion influenced by the length of the alkyl side chain. The 
results of this study give a comprehensive sight into the effective photocatalytic remediation of parabens using 
UiO-66-NH2.   

1. Introduction 

Parabens (alkyl side chains based p-hydroxybenzoates) are exten-
sively used as preservatives and antimicrobial/antifungal agents in the 
formulation of cosmetics, pharmaceuticals and food commodities [1] 
owing to their capacity to disrupt cell membranes and intracellular 
proteins while conditioning enzymatic activity [2]. Its use in personal 
care products is considered to be non-toxic to humans at the maximum 
concentration allowed in those commercial products (0.4% w/w) [3], 
although it is associated with an increased risk of atopic dermatitis re-
actions [4]. These compounds can be introduced into the water cycle by 
using pharmaceuticals and personal care products (PPCPs), as proved by 
their detection in human tissues and urine samples [5]. Their presence in 
natural water bodies and specifically in wastewaters (up to 120 µg⋅L-1 for 
methylparaben, the most identified paraben in wastewater treatment 
plants (WWTPs) inlet streams [6]) as a consequence of the not complete 
elimination in WWTPs (ranging from 25.9% to total removal) [7] can 
affect the reuse of treated wastewater negatively. Besides, the endocrine 

disruptor character of parabens derived into their classification as con-
taminants of emerging concern by the U.S. Environmental Protection 
Agency [8], establishing certain limitations for their use in cosmetic and 
food industries in Europe [3]. 

Among the parabens family, the compounds more frequently detec-
ted are methyl-, ethyl- and propylparaben (MP, EP and PP, respectively). 
Several technological approaches for the abatement of these compounds 
have been reported, including adsorption [9], activated sludge [10] and 
advanced oxidation processes (AOPs) as ozonation [11] or heteroge-
neous photocatalysis [12]. Regarding the photocatalytic removal of 
parabens, TiO2 has been widely investigated [13,14]. However, its 
photocatalytic efficiency is reduced under solar irradiation owing to the 
wide bandgap (Eg ≈ 3.2 eV) that partially hinders the light-harvesting 
from the visible region. Modifications of this photocatalyst, as well as 
the design and preparation of different ones, have been explored to 
improve the solar light-driven photocatalytic elimination of parabens 
[15]. The photocatalytic removal of MP has been reported with TiO2 P25 
[12,16], with different photocatalysts based on g-C3N4 [17] or Bi4O5Br2 
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[18] under different radiations (as summarised in Table S1). 
As part of the new photocatalytic materials for environmental ap-

plications, the development of metal–organic frameworks (MOFs) has 
gained increasing interest. MOFs are crystalline porous materials 
constituted by clusters of metal ion nodes (mainly Fe-, Ti- or Zr-based 
ones) connected through organic linkers [19,20]. These materials are 
characterised by a well-developed porous texture and outstanding op-
tical properties as semiconductors [21], therefore allowing their use for 
several purposes as gas storage or photocatalytic water treatment [22]. 
Regarding this last application, some works report the removal of PPCPs 
using MOFs, highlighting the elimination of the pharmaceuticals acet-
aminophen [23], diclofenac [24], tetracycline [25] or ciprofloxacin 
[26], among others. Recently, the photocatalytic degradation of organic 
pollutants has been investigated using Zr-based MOFs (as UiO-66 series) 
due to their remarkable activity and their stability in aqueous media 
[27–29]. For example, the solar-driven conversion of acetaminophen 
was evaluated using UiO-66 based MOFs [30]. The presence of an amine 
group in the ligand, leading to UiO-66-NH2, resulted in a higher light- 
harvesting from the visible region and better photocatalytic perfor-
mance than the unmodified MOF. This MOF, forming a composite with 
ZnO, also proved the good photocatalytic activity in the degradation of 
tetracycline [31]. The successful synthesis of heterojunctions using 
other Zr-based MOF, UiO-67, and their use for the photocatalytic 
removal of the antibiotic ofloxacin [32] has also been reported, with the 
complete conversion after 3 h under solar light. 

To the best of our knowledge, the photocatalytic removal of parabens 
in aqueous solutions using UiO-66-NH2 was not previously reported. In 
this study, preparation, characterization and photocatalytic perfor-
mance of this MOF are comprehensively described in connection with 
the neutralization of the threat derived from the presence of parabens in 
water. Due to the lack of previous information, this work assesses a 
detailed set of experiments using MP as target paraben regarding the 
optimal reaction conditions (in terms of photocatalyst dose and pH of 
the solution) and the use of different water matrices (namely river water 
and wastewater). The tentative radical mechanism and the degradation 
pathway are also proposed. In addition, a comparison of the photo-
catalytic conversion of different parabens is considered (i.e., MP, EP and 
PP) in both individual and mixture tests. Moreover, MOF stability 
through successive batch cycles and continuous flow operation is eval-
uated, giving a complete perspective for the feasible use of UiO-66-NH2 
to abate this type of contaminants under solar light. 

2. Materials and methods 

2.1. Chemicals and reagents 

Zirconium butoxide (Zr(OC4H9)4, 80% in 1-butanol), 2-amino-
terephthalic acid (ATA, 99%), formic acid (≥95%), HCl (≥37%), 1,4- 
benzoquinone (p-BQ, ≥98%), KI (≥99%), 2,2,6,6-tetramethyl-1-piperi-
dinyloxy (TEMPO, 99%), 5,5-dimethyl-1-pyrroline N-oxide (DMPO, 
≥98%) and the tested parabens, namely methylparaben (MP, (C6H4(OH) 
COO)CH3, 99%), ethylparaben (EP, (C6H4(OH)COO)C2H5, 99%) and 
propylparaben (PP, (C6H4(OH)COO)C3H7, ≥99%) were all purchased 
from Sigma-Aldrich. Table S2 collects the main physicochemical prop-
erties of these parabens. Acetonitrile (ACN, HPLC grade), NaOH (≥95%) 
and Na2SO4 (≥99%) were supplied by Scharlab. N,N- 
dimethylformamide (DMF, 99.8%), H3PO4 (85%) and 2-propanol 
(99.7%) were purchased from PanReac AppliChem. Methanol (MeOH, 
≥99.8%) and AgNO3 (≥99%) were supplied by Honeywell and Alfa 
Aesar, respectively. Unless otherwise indicated, distilled water (Type II) 
was used throughout the work. 

2.2. Synthesis of UiO-66-NH2 MOF 

UiO-66-NH2 was prepared following a synthesis procedure previ-
ously reported [33], being modified by using (Zr(OC4H9)4) and ATA as 

the metal precursor and organic linker, respectively. As schematised in 
Fig. 1, Zr(OC4H9)4 (1.5 mmol) and ATA (1.5 mmol) were placed in a 100 
mL Schott bottle and dissolved in DMF (20 mL). Then, the solution was 
ultrasonicated for 8 min to obtain a transparent yellow solution. Formic 
acid (10 mL) was dropwise added to the mixture, and it was furtherly 
ultrasonicated for 2 min. The bottle was sealed using an airtight Schott 
bottle cap, and the solution was heated at 120 ◦C for 24 h in a Memmert 
UN30 oven. After cooling to room temperature, the solid was recovered 
by centrifugation (9000 rpm, 2 min), and washed three times with fresh 
DMF (first time: 1 h; following ones: 20 min) and subsequently, three 
times with MeOH (first time: 24 h; successive ones: 20 min) as a solvent 
exchanger. The resulting material was centrifuged and dried under 
vacuum at 70 ◦C for 12 h and finally stored. 

2.3. Characterisation of photocatalyst 

A Bruker D8 diffractometer (Cu-Kα source, λ = 0.15406 nm; 2θ = 5- 
50◦) was used to determine the X-ray diffraction (XRD) pattern. The 
morphology of the material was observed by scanning electron micro-
scopy (SEM) using a Quanta 3D Field Emission Gun (FEG) microscope 
(FEI Company). A Micromeritics TriStar 123 static volumetric apparatus 
was used to assess the porous texture by N2 adsorption–desorption at 
− 196 ◦C. The material was previously degassed under vacuum at 120 ◦C 
for 16 h. The Brunauer-Emmett-Teller (BET) method [34] was used to 
determine the specific surface area (SBET), while the t-plot method [35] 
was used for the microporous area and micropore volume (SMP and VMP, 
respectively). Total pore volume (VT) was obtained by the amount of 
adsorbed nitrogen at a relative pressure (P/P0) of 0.99. The UV–vis 
diffuse reflectance (UV–vis DRS) spectrum was determined using a 
Shimadzu 2600 UV–vis spectrophotometer, using BaSO4 as the reference 
material. The bandgap (Eg) value was estimated by the Tauc plot method 
[36] considering UiO-66-NH2 as an indirect semiconductor [30]. The pH 
at the point of zero charge (pHPZC) was determined using the drift 
method [37]. X-ray photoelectron spectroscopy (XPS) spectra were 
recorded using a PHI VersaProbe II spectrometer and Al Kα X-ray 
(1486.68 eV) as the excitation source. C 1 s peak at 284.5 eV was used as 
the internal reference. Mott-Schottky plot was obtained applying a 
voltage between − 1.5 and 0.4 V under different scan frequencies (10, 
100 and 500 Hz) using a Metrohm Autolab PGSTAT204 station. The 
material suspension (1 mg⋅mL− 1) was prepared in 0.1 M Na2SO4 (pH ~ 
4.1 at 25 ◦C) and placed into the electrochemical cell (DropSens ITO10). 
This cell configuration comprises an indium tin oxide (ITO) working 
electrode, with counter and reference counterparts of carbon and silver 
electrodes, respectively. The flat band potential of the material, VFB, was 
obtained following Mott–Schottky equation (Eq. (1)) [38]: 

1
C2 =

2
ε⋅ε0⋅e⋅ND

⋅
(

V − VFB −
k⋅T
e

)

(1) 

being C the capacitance of the semiconductor-electrolyte junction at 
applied voltage V; ε and ε0 the permittivity of the semiconductor and the 
void, respectively; e the electron charge; k the Boltzmann’s constant; and 
T the temperature. The plot of 1/C2 vs V allows us to estimate the VFB 
from the intercept point of the tangent line with the potential axis. The 
conduction band potential (VCB) can be calculated with respect to the 
normal hydrogen electrode (NHE) at pH 7 following a Nernstian shift 
using Eq. (2) [39]: 

VCB = VFB(Ag/AgCl, pH) + ΔV(Ag/AgCl, NHE) − 0.059⋅(7 − pH) (2)  

where ΔV(Ag/AgCl, NHE) is the Ag/AgCl potential against NHE (0.21 V). 
Finally, the valence band potential (VVB) can be estimated following Eq. 
(3): 

VVB = VCB +Eg/e (3)  

where Eg is the bandgap of the semiconductor. A Bruker EMX (X band) 
spectrometer (with an ER4123D dielectric resonator using a capillary 
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quartz tube) was used to carry out the ESR spin-trap experiments. UV 
irradiation in situ ESR measurements was performed using a high- 
pressure mercury lamp (Bruker, UV Irradiation System, ER 203 UV), 
the capillary tube inside the cavity being irradiated at different times. 
The instrumental settings were as follows: centre field = 3480 G; sweep 
width = 300 G; microwave power = 0.2 mW; modulation amplitude =
1.0 G; modulation frequency = 100 kHz; receiver gain = 1.261⋅104; time 
constant = 81.92 ms; sweep time = 20.97 s; resolution in × = 1024 
points; number of scans = 1. The capillary tube was filled with 10 μL of a 
water/TEMPO solution (2 mM) containing the catalyst suspended in a 
ratio of 0.25 μg⋅μL− 1. Similar experiments were carried out with 5,5- 
dimethyl-1-pyrroline N-oxide (DMPO), using a solution water/DMPO 
(50 mM) or methanol/DMPO (50 mM) for the detection of HO• and O2

•- 

radicals, respectively. 

2.4. Photocatalytic performance 

Unless otherwise indicated, the photocatalytic experiments were 
performed in distilled water for 3 h under simulated solar light using a 
Solarbox 1500e (CO.FO.ME.GRA). The apparatus was equipped with a 
1500 W Xenon lamp (600 W⋅m− 2), a cut-off soda-lime glass UV filter 
(restrains λ less than 290 nm) and an infrared reflection coating to 
simulate the outdoor exposure. In a typical batch experiment, a photo-
catalyst dose of 0.75 g⋅L-1 was dispersed in 50 mL of MP solution (32.9 
µM, corresponding to 5 mg⋅L-1) placed in a borosilicate glass cylindrical 
reactor (300 mL, 8.0 cm of internal diameter) covered with transparent 
film. Before illumination, the photocatalyst and the paraben solution 
were left in the dark for 1 h to establish the adsorption–desorption 
equilibrium. The experiments were performed under continuous mag-
netic stirring, being the solution saturated with air (~50 mL⋅min− 1) and 
at natural pH (5.5). The temperature during the photocatalytic experi-
ment was set at 30 ± 2 ◦C. Preliminary photocatalytic tests for the 
removal of MP were performed in terms of photocatalyst dose 
(0.25–1.00 g⋅L-1) and solution pH (4.5–9.5). In those experiments, the 
pH of the solution was modified using 0.1 M HCl or NaOH solutions. The 
apparent pseudo-first-order rate constant of MP disappearance (kapp, 
min− 1) was obtained by fitting Eq. (4): 

ln
(

[MP]t
[MP]t=0

)

= − kapp⋅t ⇔ ln(1 − XMP) = kapp⋅t (4)  

where [MP]t and [MP]t=0 are the concentrations of MP at reaction time t 
and 0 (just before turning on the irradiation source), respectively, and 
XMP is the MP photocatalytic conversion. 

Once determined the optimal reaction parameters, the photo-
catalytic performance was investigated in different water matrices. 
Specifically, surface water samples were collected from the Lima River 
in Northwestern Portugal and secondary-treated wastewater from an 
urban wastewater treatment plant (UWWTP) in Northern Portugal. The 
removal of other paraben compounds, like EP and PP, was investigated 
individually and in the mixture of the three parabens (MP, EP and PP). 
Since the adsorption capacity of the MOF for each compound was 
different (not shown), the initial concentration of EP and PP was 
adjusted before the photocatalytic reactions (light on), ensuring similar 
experimental conditions. Scavenger experiments (1 mM, added before 
the illumination) were performed using 2-propanol as HO• quencher, KI 
to trap h+, as well as AgNO3 and p-BQ to quench e- and O2

•- [40], 
respectively. The removal of MP (32.9 µM) spiked in distilled water 
using a continuous flow system (Figure S1) under solar light was also 
investigated. A slurry configuration under continuous stirring was fol-
lowed, keeping constant the solution volume (250 mL) using two peri-
staltic pumps (0.8 mL⋅min− 1) at the entry and exit of the reactor. The 
solution was saturated with air, and a filter at the sample intake was set 
at 0.5 cm under the liquid surface to avoid the loss of the photocatalyst 
within the outlet flow, thus keeping constant the concentration of 
photocatalyst inside the reactor. All experiments were assessed in 
duplicate and average values were included. A third experiment was 
performed in case of more than 5% difference of the duplicates. 

2.5. Analytical techniques 

At different time intervals, aliquots (0.4 mL) from the reaction me-
dium were taken and centrifuged (10 min, 14500 rpm), being the su-
pernatant used for the determination of the contaminant concentration 
by Ultra-High-Pressure Liquid Chromatography (UHPLC). UHPLC was 
performed using a Shimadzu Nexera X2 LC-30AD apparatus with an 
SPD-M20A diode array detector, equipped with a Kinetex XB-C18 100 Å 
column (100 × 2.1 mm; 1.7 µm particle diameter). An isocratic method 
of 75/25 %v ACN/H2O (ultrapure water, Type I) was used as mobile 
phase, being the flow rate 0.15 mL⋅min− 1 at 35 ◦C. The excitation 
wavelength for MP, EP and PP was 255 nm in all cases. A Supelcogel C- 
610H column (300 × 7.8 mm) was used to quantify short-chain car-
boxylic acids (identified using corresponding standards solutions) at the 
excitation wavelength of 210 nm. An isocratic 0.1% H3PO4 mobile phase 
was used at a flow rate of 0.5 mL⋅min− 1 at 30 ◦C. The water matrices 
(Table S3) were characterized following standard methods [41]. A WTW 
InoLab pHmeter was used for the determination of the pH values. The 
detection and quantification of nitrates, nitrites, sulfates, phosphates, 

Fig. 1. Schematic diagram for the preparation of UiO-66-NH2.  
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and cations were performed by ionic chromatography using a Metrohm 
881 Cromaped IC Pro apparatus. The chemical oxygen demand (COD) 
was determined by colourimetry. A Shimadzu TOC-5000A was used to 
determine the total organic carbon (TOC). The identification of the MP 
degradation byproducts by liquid chromatography and electrospray 
ionisation-mass spectrometry (LC/ESI-MS) was performed using a 
Bruker Maxis II equipment with electrospray ionisation (ESI positive) 
under the following conditions: m/z range from 50 to 3000, capillary 
voltage of 3500 V, endplate offset of 500 V and dry heater at 300 ◦C with 
a gas flow of 8.0 L⋅min− 1. 

3. Results and discussion 

3.1. Characterisation of the synthesised UiO-66-NH2 

The diagrams in Fig. 2 depict the analysis of the XPS spectra of UiO- 
66-NH2. The full spectrum (Fig. 2a) confirmed the presence of Zr, C, N 
and O in the synthesised sample. Besides, the surface chemical compo-
sition in terms of molar ratio of O/Zr and C/Zr (5.2 and 8.1, respectively) 
agreed with the stoichiometric value (i.e., 5 and 8, respectively) corre-
sponding to the unitary cell Zr24O120C192H96N24. The experimental ratio 
of N/Zr was slightly lower than the stoichiometric one (0.6 and 1, 

Fig. 2. XPS spectra of UiO-66-NH2: (a) full spectrum, and high-resolution of (b) C 1 s, (c) Zr 3d, (d) N 1 s and (e) O 1 s.  
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respectively). The high-resolution spectrum of C 1 s (Fig. 2b) displays 
the contributions of the carbon species associated with the linker units. 
The deconvolution revealed the prominent presence of aliphatic sp3 C-C 
and C-H (284.2 eV), C-N (285.0 eV), aromatic sp2 C = C (285.9 eV) and 
O = C-O (288.5 eV) bonds as previously described [24,42]. Regarding 
the Zr 3d spectrum (Fig. 2c), two peaks at 182.5 and 184.9 eV were 
ascribed to Zr4+ 3d5/2 and 3d3/2 [43,44], respectively, suggesting the 
suitable formation of Zr-O bonds in the metal cluster. Fig. 2d depicts the 
N 1 s spectrum, showing the peaks related to the contribution of –NH2 
bonded to the phenyl ring of the linker (–NH2, 399.1 eV) and the pro-
tonated amidogen form (–NH3

+, 400.1 eV) [45,46]. The deconvolution 
of the O 1 s spectrum (Fig. 2e) shows the contribution of C = O (531.8 
eV) and Zr-O (530.7 eV) species [47]. 

SEM micrograph of the synthesised UiO-66-NH2 (Fig. 3a) shows 
particles of globular aspect with some appearance of triangular prism 
shape. The morphology of these particles differed from the octahedral 
one commonly reported in other works related to this MOF [47–49], 
while the average particle size (125 nm) is similar to that observed in 
those previous works (150–200 nm). XRD confirmed the crystallisation 
of UiO-66-NH2. The pattern shown in Fig. 3b coincides with the previ-
ously reported one [50] and with that obtained by the simulation of the 
crystalline structure using VESTA® software (included in Fig. 3b). The 
crystallite size was calculated from the most intense peak at 2θ = 7.33◦

using Scherrer’s equation. It was found to be 65.9 nm, more than four 
times higher than that reported by Tambat et al. [51], suggesting a 
highly defined crystallinity of the material. 

The synthesised MOF depicted a type I isotherm (corresponding to 
the IUPAC classification) (Fig. 3c), typical of solids with predominant 
microporous texture. The slope of the horizontal-like branch, and the 
small hysteresis loop reveal some minor contributions of mesoporosity. 
The BET surface area (Table 1) was within the range commonly reported 
for UiO-66-NH2 (around 800–1100 m2⋅g− 1) [33,48,52]. The 

microporous surface area and the micropore volume values (corre-
sponding to more than two-thirds of the total pore volume) support the 
essentially microporous character of this material. The DFT pore size 
distribution (inset of Fig. 3c) confirms the narrow microporous network 
of UiO-66-NH2, showing a bimodal pore size distribution centred around 
1.0 and 1.5 nm. The pHpzc of the sample (3.9, Table 1 and Figure S2) 
suggested a predominantly acidic surface of the synthesised MOF. 
Fig. 3d depicts the UV–Vis absorption spectrum of UiO-66-NH2 dis-
playing two characteristic absorption bands, the first one (≈ 255 nm) 
usually attributed to the electronic transferences from O to Zr centres in 
the [Zr6O4(OH)4] metal cluster and the second (≈ 325 nm) related to the 
transitions of conjugated π electrons from the NH2-based chromophores 
of the linker to the [Zr6O4(OH)4] cluster [53]. 

The bandgap value of the MOF (Eg = 2.85 eV, Table 1), obtained 
from the Tauc plot (inset of Fig. 3d), was similar or even slightly lower 
than those reported by Zhang et al. [54] and Ren et al. [47] (i.e., 2.86 
and 2.91 eV, respectively). From an optoelectronic point-of-view, this 
value leaves enough room for the synthesised MOF to harvest irradiation 
up to 435 nm in the blueish side of visible light of the electromagnetic 
spectrum. 

Fig. 3. (a) SEM image, (b) XRD pattern (including the simulated pattern of UiO-66-NH2 obtained by VESTA® software), (c) N2 adsorption–desorption isotherm 
(-196 ◦C) (Inset: DFT pore size distribution) and (d) UV–vis-DRS spectrum (Inset: Tauc plot) of the synthesised UiO-66-NH2. 

Table 1 
Porous texture characterisation, bandgap value and pHPZC of synthesised UiO- 
66-NH2.  

SBET 

(m2⋅g¡1) 
SMP  

(m2⋅g¡1) 
VT  

(cm3⋅g¡1) 
VMP  

(cm3⋅g¡1) 
Eg  

(eV) 
pHPZC 

863 706  0.524  0.338  2.85  3.9 

SBET, specific surface area; SMP, micropore surface area; VT, total pore volume; 
VMP, micropore volume; Eg, bandgap; and pHPZC, pH at point of zero charge. 
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3.2. Photocatalytic tests 

3.2.1. Preliminary tests of methylparaben (MP) removal 
The photocatalytic performance of the synthesised UiO-66-NH2 was 

evaluated in removing MP under simulated solar light at natural pH (pH 
= 5.5). Before the photocatalytic experiments, the adsorption of the 
contaminant on the MOF was studied under dark conditions (Figure S3), 
achieving the adsorption equilibrium in less than 60 min and showing an 
adsorption capacity of 6.4 µmol⋅g− 1. Preliminary tests were addressed to 
study the effect of the photocatalyst dose and the pH of the solution 
(Figs. 4 and S4, respectively). In the absence of photocatalyst (Fig. 4), a 
slight disappearance (i.e., around 10%) of MP by photolysis was regis-
tered after 3 h under solar light. Upon irradiation, the MP conversion 
increased as the photocatalyst dose increased to a maximum at 0.75 g⋅L- 

1, and then conversion decreased probably because the photocatalyst 
shields the radiation. Figure S4 shows the evolution of the contaminant 
concentration at different initial pH using 0.75 g⋅L-1 of UiO-66-NH2. It 
can be observed that the photocatalytic performance slightly differed 
within a wide pH range (from 4.0 to 8.5). However, at strong basic 
conditions (pH = 10), the MP conversion slightly decreased, probably 
due to the electrostatic repulsions between the negative surface of the 
photocatalyst (pHpzc = 3.9, Table 1) and the dissociated form of MP 
(pKa = 8.17, Table S2). According to the above results, the following 
experiments were carried out with a photocatalyst dose of 0.75 g⋅L-1 and 
natural pH (5.5) of the solution. 

The literature reports different photocatalysts used to remove MP 
under solar and visible radiations, as summarized in Table S1. In this 
respect, it must be highlighted that the use of MOFs for the abatement of 
MP is herein described for the first time. The different reaction condi-
tions used in the reported studies hinder a suitable comparison among 
the different materials tested, although the synthesised UiO-66-NH2 
depicts a remarkable photocatalytic performance in terms of MP elimi-
nation and apparent pseudo-first-order disappearance rate constant 
(kapp = 7.49⋅10-2 min− 1). 

3.2.2. Effect of the aqueous matrix 
The removal of MP was also assessed in two real aqueous matrices, 

namely river water and UWWTP secondary-treated effluent. Several 
studies have reported that organic and inorganic species influence 
photocatalytic performance during the degradation of contaminants 
[55,56]. Considering that the complex aqueous framework may have 
some effect, the main physicochemical characteristics of the water 
samples were analysed and collected in Table S3. Regarding the inor-
ganic species, as expected, the river and UWWTP samples depicted 

higher concentrations than the distilled counterparts of Cl- and SO4
2- 

anions as well as Na+, NH4
+, K+, Ca2+ and Mg2+, and, consequently, 

higher conductivity. A significant concentration of organic matter was 
also detected in the UWWTP effluent sample (13.31 mg⋅L-1). Fig. 5 
shows the MP conversion in those water matrices upon photocatalytic 
treatment with UiO-66-NH2 under solar irradiation. The resemblance 
between the experiments made with distilled and river water is note-
worthy, reaching almost complete conversion of MP after 1 h, while the 
UWWTP required 3 h to achieve 70% conversion. This lower photo-
catalytic performance can be attributed to multiple factors, including 
light attenuation caused by turbidity (Table S3) and blockage of the 
photocatalytic surface due to the adsorption of organic matter, among 
others [17,57]. 

Moreover, the inorganic ions in UWWTP effluent can act as scaven-
gers of the photogenerated charges (e.g., Cl- can interact with oxidant 
species as h+, allowing the formation of Cl• or HClO•- and impairing the 
process [11,55]). To prove this, Figure S5 depicts the conversion of MP 
in distilled water spiked with Cl- and SO4

2- at the highest concentration 
found in the WWTP effluent (Table S3). It can be observed that SO4

2- 

caused a more pronounced inhibition of MP removal than Cl-. This in-
hibition has been attributed by Rioja et al. [58] to the stronger scav-
enging character of sulphate anions. It can also be inferred from 
Figure S5 that other factors, as above indicated, reduced the photo-
catalytic activity in WWTP effluent. 

3.2.3. Continuous flow performance and photocatalyst stability 
The stability of the photocatalytic performance of synthesised UiO- 

66-NH2 was investigated using a continuous flow system. Fresh MP so-
lution ([MP]0 = 32.9 µM) was continuously fed (0.8 mL⋅min− 1) to the 
solar photocatalytic slurry reactor for 30 h, being around the first 5 h to 
reach the MP conversion steady state. The catalyst concentration was 
maintained at 0.75 g⋅L-1; thus the space–time being 0.12 gcat⋅h⋅µmolMP 
-1. Fig. 6 depicts the conversion once the steady state was reached, being 
observed that the photocatalytic performance was maintained almost 
constant during the whole experiment (25 h on stream). In the current 
study, the morphology, crystalline structure and porous texture of the 
solid obtained after use were characterised (Figure S6), depicting no 
significant changes compared to the as-prepared catalyst. The results 
obtained in continuous mode proved a good stability of the MOF in 
terms of both photocatalytic performances for MP removal and struc-
tural resistance. 

The performance of NH2-UiO-66 was further evaluated under four 

Fig. 4. Time-course of MP concentration using different doses of UiO-66-NH2 
under solar light (Intensity = 600 W⋅m− 2). 

Fig. 5. Photocatalytic conversion of MP spiked in different water matrices 
under solar light ([MP]0 ≈ 21.7 µM (after adsorption); UiO-66-NH2 dose = 0.75 
g⋅L-1; Intensity = 600 W⋅m− 2). 
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successive batch cycles. After each cycle, the resulting solid was recov-
ered by filtration, rinsed with distilled water and dried at 60 ◦C over-
night. Figure S7 displays the results obtained in terms of MP conversion. 
Only a slight reduction (around 4%) was observed after the fourth cycle 
with respect to the first one. 

3.2.4. Proposed photocatalytic mechanism 
To learn about the photocatalytic oxidation mechanism of MP using 

UiO-66-NH2, a set of radical trapping experiments were carried out 
(Fig. 7). The good fitting of the apparent pseudo-first-order kinetic data 
is shown in Figure S8a and Table S4. The addition of KI (Fig. 7a) strongly 
influences the photocatalytic performance, decreasing kapp around 20- 
fold (Fig. 7b), indicating the determinant role of h+ in the oxidation 
mechanism of MP. A remarkable conversion decrease was also found by 
the O2

•- quenching effect of p-BQ. In contrast, the photocatalytic con-
version of the target contaminant remained almost unaltered after 
adding 2-propanol and AgNO3, suggesting a minor contribution of HO•

and e-, respectively. The photocatalytic removal of parabens by means of 
the main contribution of O2

•- and h+ was also described in previous 
works reported by Guo et al. [59] and Xiao et al. [60], using different 
semiconductors than MOFs, as AgCl/Ag3PO4 and I-doped Bi4O5Br2, 
respectively. 

To better understand the photocatalyst performance, the Mott–-
Schottky electrochemical characterisation was used to determine the flat 
band potential, VFB. As shown in Fig. 8a, a VFB value of − 0.82 V was 
registered from the interception with the potential axis at different 
frequencies. Then, a VCB value of − 0.78 V (vs NHE at pH 7) was obtained 
using Eq. (2). This VCB was similar to the values already reported in the 
literature [30,61]. Besides, the VVB was estimated to be 2.07 V (vs NHE 
at pH 7) following Eq. (3). The proposed bands structure and a tentative 
mechanism for the removal of MP using UiO-66-NH2 under solar light 
are shown in Fig. 8b. It can be observed that the generation of O2

•- by 
reduction of dissolved oxygen (-0.33 V vs NHE at pH 7) is energetically 
allowed, while the formation of HO• is prevented. According to the re-
sults with scavengers displayed in Fig. 7, the aforementioned low 
contribution of HO• can also be attributed to the leading role of h+ as a 
direct oxidant of the MP, yielding to different byproducts that will be 
detailed in the next section. 

Besides the proposed band structure, ESR spin-trap experiments were 
performed to detect the presence of the different species generated after 
UiO-66-NH2 photoexcitation. Fig. 8c shows the ESR spectra of the 
TEMPO-h+ adducts in the dark and under in situ UV radiation. TEMPO 
presents a stable triplet in the ESR spectrum that can be reduced by the 
holes, with a concomitant decrease in the ESR signal intensity [62,63]. 
The reduction of TEMPO-h+ ESR strength upon irradiation supports the 
important contribution of holes in the oxidation mechanism. ESR ex-
periments were also assessed with DMPO in different media to detect the 
presence of O2

•- and HO• radicals [64]. Fig. 8d shows no ESR signals in 
the dark with the catalyst dispersed in methanol. Under irradiation, the 
characteristic ESR signals of the DMPO-O2

•- adduct can be seen [65], 
supporting the photogeneration of O2

•- detected above. However, no 
ESR signals were detected during the ESR experiments performed in 
aqueous dispersion at different times. The absence of DMPO-HO• adduct 
signals (Fig. 8e) reflects the non-formation of HO• radicals, in agreement 
with the unfavourable formation of this radical proposed in the photo-
catalytic mechanism of MP removal using UiO-66-NH2 (Fig. 8b). 

3.2.5. Photocatalytic degradation pathway of MP 
Fig. 9 displays a plausible photocatalytic degradation pathway of MP 

under solar light using UiO-66-NH2, according to the byproducts iden-
tified by LC/ESI-MS analysis (results collected in Table S5). The mo-
lecular formula of the proposed byproducts was supported on low mass 
error (<±1 mDa) compared to the experimental mass and the registered 
number of rings and double bonds (RDB) in each molecule [66]. Up to 
three different oxidation routes were proposed. The first one consisted of 
the demethylation of the terminal C8 methyl group and decarboxylation 
of C1 from the parent compound, as previously reported [13], allowing 

Fig. 6. Photocatalytic MP conversion upon time on stream (after reaching the 
steady state) in continuous experiment in slurry CSTR under solar light ([MP]0 
= 32.9 µM; [UiO-66-NH2] = 0.75 g⋅L-1; Flow-rate = 0.8 mL⋅min− 1; Intensity =
600 W⋅m− 2). 

Fig. 7. (a) Photocatalytic conversion of MP in presence of different scavengers (1 mM), and (b) corresponding apparent pseudo-first-order rate (kapp, min− 1) under 
solar light ([MP]0 ≈ 21.7 µM (after adsorption); UiO-66-NH2 dose = 0.75 g⋅L-1; Intensity = 600 W⋅m− 2). 
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the formation of hydroquinone (MP-1*, not detected in this study) and 
p-benzoquinone (MP-1, m/z 109.0647) after further oxidation. These 
byproducts are commonly identified during the photocatalytic degra-
dation of MP [67–70]. Subsequently, the ring opening followed by 
further oxidation would lead to the formation of the aliphatic byprod-
ucts MP-2 (m/z 163.1327) [13,71] and MP-3 (m/z 167.0553). The 
generation of MP-3 (2,3,4,5-tetrahydroxypentanoic acid), not previ-
ously reported as MP degradation byproduct, could be ascribed to a 
reiterative attack by oxidant species. Further oxidation would allow the 
generation of short-chain carboxylic acids, namely maleic, acrylic, 
acetic and formic acid (as identified by UHPLC). 

The second oxidation route proposed in Fig. 9 was ascribed to the 
hydroxylation of MP, leading to the generation of MP-4 (m/z 169.0852). 
According to Tomita et al. [72], the addition of a hydroxyl group can be 
produced via: i) hydroxyl radical attack or even by ii) the attack of O2

•- 

on the cationic radical form of the molecule obtained after direct 
oxidation by h+. This second via would agree with the photocatalytic 
mechanism proposed in Fig. 8b. Moreover, it can be found in the liter-
ature [13,67–69,73] that hydroxylation can occur either in the aromatic 
ring or in the C8 position. MP-4 can be further transformed into MP-2 
and MP-3 intermediates through the opening of the aromatic ring, 
finally resulting in short-chain carboxylic acids. The third proposed 
route in Fig. 9 comprises an intramolecular coupling process involving 
the addition of alkyl moieties to the terminal C8 methyl group, as re-
ported in previous works [13,71]. In the current study, adding an iso-
butene moiety would allow the formation of the newly identified MP-5 
(m/z 209.1172). A molecular coupling process could also be rationalised 
from MP-4 to generate MP-5. 

The evolution of the identified intermediates was registered by 
UHPLC (Fig. 10a). It can be highlighted that MP-1 and MP-4 peaked 
after 60 and 30 min, respectively, and they were subsequently removed, 
whereas the formation of MP-3 appeared to be initiated after 45 min of 
photocatalytic treatment, in agreement with the degradation routes 
proposed in Fig. 9. The concentration profiles of the four identified 
short-chain carboxylic acids are depicted in Fig. 10b. It can be observed 
that formic acid rapidly reached its maximum concentration at 30 min, 
whereas acetic acid is continuously formed along with the experiment. 
Similar behaviour was registered for maleic and acrylic acids, but the 
concentration was two orders of magnitude lower. 

Profiles depicted in Fig. 10 suggest that the synthesised MOF allows 
the complete conversion of parent MP and the progressive trans-
formation of the identified byproducts into compounds of lower 
complexity. 

3.2.6. Degradation of different parabens 
The photocatalytic performance of UiO-66-NH2 was also evaluated 

for removing other parabens, namely EP (ethylparaben) and PP (pro-
pylparaben). Fig. 11a shows the individual photocatalytic conversion of 
MP, EP and PP, conducted at a similar starting molar concentration (≈
21.7 µM after adsorption) to ensure similar molecular interactions 
among the different parabens. It can be observed that the photocatalytic 
conversion decreased with the length of the alkyl side chain. This 
observation is at variance with what has been described in the literature 
with other photocatalysts whose reaction mechanism was controlled by 
HO• [74]. It has been described that the apparent kHO• of parabens 
increased with the alkyl chain length [73]. Therefore, the lower activity 
observed with the increase in the length of the paraben alkyl side chain 
could be explained by the poor contribution of HO• in the oxidation 
mechanism described in Section 3.2.4. 

The conversion of the parabens was also studied in a mixture 
(Fig. 11b and S8b, and Table S6), reaching lower conversion values than 
in the individual tests. This difference could be due to competitive in-
teractions with the catalyst surface, resulting in a parallel conversion of 
these parabens. 

4. Conclusions 

The photocatalytic removal of parabens using UiO-66-NH2 under 
solar light was firstly reported in this work, showing outstanding per-
formances compared to different photocatalysts previously reported. 

Complete removal of MP was achieved in both distilled and river 
water samples, lowering when the contaminant was spiked in a WWTP 
effluent sample due to the higher concentrations of organic and inor-
ganic species. The steady state of the photocatalytic performance in a 
continuous-flow regime was kept practically constant in a 25-h experi-
ment, without structural and textural changes on the UiO-66-NH2. That 
result opens a promising outlook for the potential future application of 
this photocatalyst. 

Fig. 8. (a) Mott-Schottky plot at three frequencies and (b) proposed photocatalytic mechanism of MP removal using UiO-66-NH2. ESR spectra recorded in situ under 
UV radiation of (c) TEMPO-h+, (d) DMPO-O2

•- and (e) DMPO-HO•. 
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The photocatalytic mechanism of MP degradation was found to 
occur mainly by h+ and O2

•-. The interaction with those species led to 
the oxidation of MP and the identification of five intermediates (two of 
them not previously reported) and four short-chain carboxylic acids 
through three degradation routes involving demethylation followed by 
decarboxylation, hydroxylation, and molecular coupling. These findings 
will contribute to better understanding the consequences of paraben 
oxidation, addressing critical issues like the toxicity of the intermediates 

compared to the parent compounds. 
The degradation difficulties when dealing with complex mixtures are 

evidenced when other parabens depicting high individual conversions, 
like EP and PP, become less prone to breakdown in the ternary mixture 
due to competitive reactions. 

The current study demonstrates the stability of UiO-66-NH2 in 
aqueous solution, making this system of potential interest for effective 
water treatment, especially with the increasing importance of water 
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reclamation. With a considerable part of the world population lacking 
access to clean water, MOFs stable in an aqueous environment can 
contribute to the next generation of materials to offer a breakthrough 
solution in water remediation. 
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[16] H. Zúñiga-Benítez, G.A. Peñuela, Methylparaben removal using heterogeneous 
photocatalysis: effect of operational parameters and mineralization/ 
biodegradability studies, Environ. Sci. Pollut. Res. 24 (7) (2017) 6022–6030, 
https://doi.org/10.1007/s11356-016-6468-9. 
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C. Belver, A Review on the Synthesis and Characterization of Metal Organic 
Frameworks for Photocatalytic Water Purification, Catalysts. 9 (1) (2019) 52, 
https://doi.org/10.3390/catal9010052. 

[21] J. Gascon, A. Corma, F. Kapteijn, F.X. Llabrés I Xamena, Metal organic framework 
catalysis: Quo vadis?, ACS Catal. 4 (2014) 361–378. https://doi.org/10.1021/ 
cs400959k. 
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