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Abstract. We improve a previous unconditional result about the asymp-
totic behavior of

∑
n≤x r(n)r(n+m) with r(n) the number of represen-

tations of n as a sum of two squares when m may vary with x.
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1. Introduction

We consider the analogue of the additive divisor problem when the usual
divisor function τ(n) is replaced by r(n), the number of representations of n
as a sum of two squares, which is related to the divisor function for the
Gaussian integers. Namely, we study the asymptotic behavior of

S(x,m) =
∑

n≤x

r(n)r(n + m) with m ∈ Z
+. (1.1)

With a broad view, this can be considered a shifted convolution of theta
coefficients.

Apparently, Estermann was the first author considering this problem
[7]. His result implies that for m fixed and 2k, the 2-part in the factorization
of m

S(x,m) ∼ 8
∣
∣2k+1 − 3

∣
∣σ

(
m

2k

)
x

m
as x → ∞. (1.2)

Actually, in the original paper [7], the coefficient of x/m is expressed in the
more compact form 8

∑
d|m(−1)m+dd which arguably gives less insight about

its size for large values of m and about the role of the powers of 2.
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Estermann’s paper is hard to read (it includes a list of more than 40
abbreviations for limits of summation), but the underlying idea is clear: write
S(x,m) in terms of Kloosterman sums and use individual bounds for them.
The obtained error term is weak and it can be readily improved using Weil’s
bound not available at that time. Following [10], a more compact and stronger
approach without any reference to Kloosterman sums is to interpret S(x,m)
as a hyperbolic circle problem and use the spectral expansion of automor-
phic kernels. An old unpublished result by Selberg (cf. [23]) gives the error
term O(x2/3) for the hyperbolic circle problem. It is even today the best-
known result and it translates into a similar error term for S(x, 1) [10].

Here, we address the size of the error term and its uniformity in m to
study to what extent m can depend on x keeping (1.2) valid. This problem was
treated in [5]. Most of the results were stated there under a certain conjecture
on spectral theory, but the last section includes some unconditional results.
In connection with the asymptotic formula, it was proved [5, Cor.5.3] that
(1.2) is valid if m = m(x) satisfies m = O

(
x17/11−ε

)
for some ε > 0.

Our main result approximates S(x,m) improving the bound for the error
term given in [5]. We prefer to establish it in terms of the optimal exponent
for the Hecke eigenvalues λj(m) of the Maass–Hecke waveforms (see the next
section for more on the notation). This is defined as

θ = inf
{
t ≥ 0 : |λj(m)| = O

(
mt

)}
. (1.3)

The celebrated Ramanujan–Petersson conjecture [3] claims θ = 0 in the
stronger form |λj(m)| ≤ τ(m), but this is out of reach with current methods.

Our main result is:

Theorem 1.1. Define E(x,m) to be the error term in (1.2)

E(x,m) = S(x,m) − 8
∣
∣2k+1 − 3

∣
∣σ

(
m

2k

)
x

m
.

Then, we have for every ε > 0

m−εE(x,m) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x2/3 if m3/2+3θ ≤ x,

m(1+2θ)/4x1/2 if m3/2−θ ≤ x < m3/2+3θ,

m2θ/3x2/3 if m ≤ x < m3/2−θ,

m(1+2θ)/3x1/3 if x < m.

If |λj(p)| = O
(
pθ0

)
for p prime, the multiplicative properties of λj(m)

imply θ ≤ θ0 and Theorem 1.1 is valid replacing θ by θ0. In this case, mε

could be substituted by certain power of τ(m). In particular, if m is assumed
to have a bounded number of divisors, then we can take ε = 0.

Corollary 1.2. Under Ramanujan–Petersson conjecture

E(x,m) � x2/3 + m1/3+εx1/3 for every ε > 0.

Corollary 1.3. The asymptotic formula (1.2) holds for m = m(x) satisfying
m = O

(
xη

)
for η < 2/(1 + 2θ). In particular, Ramanujan–Petersson conjec-

ture would allow to take any η < 2.
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Unfortunately, with our present knowledge about θ, we cannot rule out
the possibility of θ belonging to a very thin interval of length 1/192 in which
one can carry out a different optimization getting a slight improvement in a
small range. To keep the statement simpler, we did not include it in Theo-
rem 1.1.

Theorem 1.4. If θ ∈ (5/48, 7/64], for m11(1−4θ)/7 < x < mmin(92θ−5, 46θ)/5,
the bound in Theorem 1.1 can be improved to

E(x,m) � x17/23+ε + (mx)17/46+ε + m(13+4θ)/28x1/4+ε

for every ε > 0.

To put into perspective the numerical size of the improvement of Theo-
rem 1.1 in the range indicated in Theorem 1.4, we mention that the maximal
gain is x4/1137 attached only when θ = 7/64 and m = x1232/1137. For in-
stance, for m = x, the saving is at most x1/2208. Note that the interval for x
collapses as θ → 5/48.

When we substitute the best-known upper bound for θ, due to H. Kim
and Sarnak (see Lemma 2.3 below), Theorems 1.1 and 1.4 show:

Corollary 1.5. With the notation as before

m−εE(x,m) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2/3 if m117/64 ≤ x,

m39/128x1/2 if m89/64 ≤ x < m117/64,

m7/96x2/3 if m161/160 ≤ x < m89/64,

x17/23 if m ≤ x < m161/160,

(mx)17/46 if m1137/1232 ≤ x < m,

m215/448x1/4 if m99/112 ≤ x < m1137/1232,

m13/32x1/3 if x < m99/112.

In the first of the following figures, it is represented the graph of the
piecewise linear function β = β(α), such that x−εE(x, xα) � xβ is the corre-
sponding bound in Corollary 1.5. The vertical dashed lines mark the change
from a linear function to another. The second figure shows the detail of the
range in which the improvement of Theorem 1.4 applies. The thinner line
represents the result from Theorem 1.1 not taking into account this improve-
ment.

Corollary 1.5 allows to improve the uniformity achieved in [5, Cor.5.3].
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Corollary 1.6. The asymptotic formula (1.2) holds for m = m(x) satisfying
m = O

(
xη

)
for η < 64/39.

2. Preliminary Results

The aim of this section is to introduce some notation and to state Proposi-
tion 2.2 that embodies all the information about the spectral expansion of
S(x,m). We also recall some known results about the Hecke eigenvalues and
we finish with some comments about the spectral meaning of (1.2). The ma-
terial of this section is essentially included in [5] and it is recalled here for
the sake of completeness and to fix the notation.

Consider the set

C(x,m) =
{
(a, b, c, d) ∈ Z

4 : c2 + d2 ≤ x and a2 + b2 − c2 − d2 = m
}
.

It is plain that S(x,m) in (1.1) and #C(x,m) coincide. Consider also the
allied quantity

A(x,m) = #
{
(a, b, c, d) ∈ C(x,m) : 2 | a − c, 2 | b − d

}
.

For m, even the formula

S(x,m) =

{
S(x/2,m/2) if 4 � m,

2A(x,m) − S(x/2,m/2) if 4 | m

is elementary (see the proof of Lemma 2.2 in [5] for a detailed discussion).
Clearly, if 8 | m, then the last S(x/2,m/2) can be reduced once more. In
general, we have the following.

Lemma 2.1. If m is even and 2k | m with k maximal, then

S(x,m) = 2
k−1∑

j=0

(−1)jÃ
(
x/2j ,m/2j

)
,

where Ã(x,m) = A(x,m) if 4 | m and Ã(x,m) = 1
2S(x/2,m/2) otherwise.

This is a re-formulation of the first part of [5, Lemma 2.2]. It implies
that to deal with (1.2), it is enough to consider the asymptotic behavior of
S(x,m) for 2 � m ∈ Z

+ and that of A(4x, 4m) for m ∈ Z
+. It turns out

that both expressions have a similar spectral expansion. This is the content
of the following proposition that summarizes §2 of [5] (see this reference for
the proof).

Proposition 2.2. The quantities A(4x, 4m) for m ∈ Z
+ and S(x,m) for 2 �

m ∈ Z
+ admit spectral expansions of the form

2
√

m
∑

j

λj(m)h(tj)|uj(z0)|2 +
√

m

2π

∑

a

∫

R

ηt(m)h(t)
∣
∣
∣
∣Ea

(

z0,
1
2

+ it

)∣
∣
∣
∣

2

dt,

where {uj} is a complete collection of normalized Maass–Hecke waveforms
(including the constant eigenfunction) with Hecke eigenvalues λj(m), Ea are
the Eisenstein series and ηt(m) their respective Hecke eigenvalues. Here, the
underlying Fuchsian group Γ and the point z0 are Γ = PSL2(Z), z0 = i for A
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and Γ = Γ0(2)/{± Id}, z0 = (i − 1)/2 for S. In both cases, writing y = x/m,
the function h satisfies

h(i/2) = 4πy + O
(
(y + y1/2)Δ

)
and h(t) � H(t) for t ∈ R, (2.1)

where Δ is an arbitrarily chosen number 0 < Δ < min(1, y1/2),

H(t) = y(1 + yt2)−3/4 min
(
1, (Δ|t|)−3/2

)
if 0 < y ≤ 1

and

H(t) = y1/2(1 + |t|)−3/2 min
(
1, (Δ|t|)−3/2

)
if y > 1 and |t| ≥ 1.

For y > 1, |t| < 1, the latter formula still holds multiplying the right-hand
side by log(2y).

We recall that in this context, the Hecke operators are given by

Tmf(z) =
1√
m

∑

ad=m

d−1∑

b=0

f

(
az + b

d

)

, (2.2)

and we have

Tmuj(z) = λj(m)uj(z) and TmEa(z, 1/2 + it) = ηt(m)Ea(z, 1/2 + it).
(2.3)

Here, ηt(m) =
∑

ad=m(a/d)it, and hence, |ηt(m)| ≤ τ(m). In this context, the
Ramanujan–Petersson conjecture claims that λj(m) is bounded in the same
way and the state of the art loses a small power using profound techniques
(see [21] for the ideas leading to this breakthrough).

Lemma 2.3 [13, App. 2]. We have θ ≤ 7/64 in (1.3). In fact, |λj(p)| ≤ 2p7/64

for p prime.

An application of the Kuznetsov formula gives the following average
result. For the proof of a stronger result, see [6, Cor.5.3] and use [10, (8.43)].

Lemma 2.4. For every ε > 0
∑

T≤|tj |<2T

|λj(m)|2 � T 2+ε + m1/2+ε.

For Theorem 1.4, we use the main result in [11] (see also [4, §10] and
[20]).

Lemma 2.5 [11, (A.15)]. For every ε > 0, |uj(z0)| � |tj |5/12+ε.

We devote the rest of this section to explain the spectral origin of the
main term in the asymptotic formula (1.2).

The Fuchsian groups appearing in Proposition 2.2 do not have excep-
tional eigenvalues [9], and then, tj only takes real values (satisfying |tj | > 5
[14]) and t0 = i/2 that corresponds to the zero eigenvalue 1/4 + t20 of the
Laplace–Beltrami operator coming from the constant eigenfunction u0. As
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the fundamental domain of PSL2(Z) has area π/3 and Γ0(2)/{± Id} is a
subgroup of index 3, we have that λ0(m)|u0(z)|2 is

3σ(m)
π
√

m
if Γ = PSL2(Z) and

σ(m)
π
√

m
if Γ = Γ0(2)/{± Id}.

If we tune Δ in such a way that h(i/2) ∼ 4πy and the contribution of the
rest of the terms in the spectral expansion in Proposition 2.2 is negligible
then for m fixed

A(4x, 4m) ∼ 24σ(m)
m

x for m ∈ Z
+, S(x,m) ∼ 8σ(m)

m
x for 2 � m ∈ Z

+.

Lemma 2.1 complements the latter formula producing for m even the asymp-
totics S(x,m) ∼ 8σ(m/2)x/m if k = 1 and

S(x,m) ∼ 48
k−2∑

j=0

(−1)jσ(m/2j+2)
x

m
+ 8(−1)k−1σ(m/2k)

x

m
if k > 1.

This equals 8
(
σ(2k) − 2

)
σ(m/2k)x/m with standard manipulations using

that σ is a multiplicative function. We can combine the three cases 2 � m,
4 � m with m even, and 4 | m in the somewhat artificial single formula of (1.2).

3. Proof of the Main Result

After Proposition 2.2 and knowing that the involved Eisenstein series behave
essentially as the square of the Riemann zeta function, a fundamental problem
to get uniform asymptotic formulas for S(x,m) is to find good upper bounds
for

S(m,T ) =
∑

T≤|tj |<2T

|λj(m)||uj(z0)|2. (3.1)

Even if we employ exactly the same techniques as in [5], the reduction
given in [13] for the upper bound of θ changes substantially the way in which
the optimization can be made to obtain Theorem 1.1, by this reason, the
unconditional results in [5] do not correspond to substitute θ ≤ 5/28, the
best upper bound available at that time, in Theorem 1.1. There is also a new
technique here not appearing in [5]. It consists in using the Hecke relation
[10, (8.39)]

|λj(m)|2 =
∑

d|m
λj

(
d2

)
(3.2)

(λj ∈ R because the Hecke operators are self-adjoint) to get via Cauchy’s
inequality

S2(m,T ) ≤
∑

d|m

∑

T≤|tj |<2T

λj

(
m2/d2

)|uj(z0)|2 ·
∑

T≤|tj |<2T

|uj(z0)|2.

The advantage of this expression is that for d 
= m now |uj(z0)|2 is multiplied
by a changing sign coefficient that we can exploit using spectral theory to
quantify the cancellation if T and m are not very large. In [5], Cauchy’s
inequality was applied directly to (3.1) and it required some knowledge about
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∑ |uj(z0)|4. The alternative use of Cauchy’s inequality described above was
suggested by Raphael Steiner (personal communication) and we fully credit
him for this important remark that conveniently developed is responsible for
the range m3/2−θ ≤ x < m3/2+3θ in Theorem 1.1.

Lemma 3.1. Let S(m,T ) be as in (3.1) and θ as in (1.3). Then

S(m,T ) � mεT 2
(
1 + min(mθ,m1/2T−1)

)

for every ε > 0.

Proof. We vary a little the previous scheme, smoothing the sum and com-
pleting the spectrum. Namely, we start noting that e4S(m,T ) is less than
∑

j

|λj(m)|e−t2j/T 2 |uj(z0)|2 +
1
4π

∑

a

∫

R

|ηt(m)|e−t2/T 2∣∣Ea(z0,
1
2

+ it)
∣
∣2 dt.

Using Cauchy’s inequality, (3.2), and recalling that ηt(m) are also Hecke
eigenvalues obeying this relation, we have

S2(m,T ) � S1(T )
∑

d|m
Sd(T ), (3.3)

where Sd(T ) is

∑

j

λj(d2)e−t2j/T 2 |uj(z0)|2 +
1
4π

∑

a

∫

R

ηt(d2)e−t2/T 2
∣
∣
∣
∣Ea

(

z0,
1
2

+ it

)∣
∣
∣
∣

2

dt.

Note that λj(1) = ηt(1) = 1. By [10, Prop.7.2] and (1.3), we have the crude
bound

Sd(T ) � d2θ+εT 2. (3.4)

This is the best possible for d = 1, but we expect some cancellation for larger
values of d at least in some ranges of T .

By the pretrace formula [10, Th.7.4] and (2.3)

Sd(T ) � Td2

∣
∣
∣
z=z0

∑

γ∈Γ

k
(
u(γz, z0)

)
where u(z, w) =

|z − w|2
4�z�w

,

and k(t) is the inverse Selberg–Harish-Chandra transform of h(t) = e−t2/T 2
.

As indicated, the Hecke operator Td2 acts on z.
Recall that the matrices corresponding to the maps z �→ (az+b)/d in the

definition of the Hecke operators (2.2) are representatives of Γ\Γm where Γm

formally has the same definition as Γ, but imposing that the determinant of
its elements is m instead of 1. Then

Sd(T ) � d−1
∑

γ∈Γd2

k
(
u(γz0, z0)

)
.

In [6, §5], it is shown a general estimate for the inverse Selberg–Harish-
Chandra transform that gives in this case

k(t) � φ(t) with φ

(

sinh2 t

2

)

= T 2e−T 2t2/4

√
t

sinh t
.
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In particular, k(t) decays faster than any power and as sinh2(t/2) ∼ t2/4 for t
small, the main contribution comes from u(γz0, z0) � T−2+ε. Let us define

M(t) = #
{
γ ∈ Γd2 : u(γz0, z0) < t

}
.

In [11, (A.9), (A.10)] (see [4, §10] for a more explicit statement), there is a
general bound for M(t) based on a counting argument. We will show that we
can take advantage of the special form of z0, as in [10, Lemma 13.1], to get

M(t) � dε + (d2t)1+ε. (3.5)

Hence

Sd(T ) � d−1T 2M(T−2) + d−1

∫ ∞

T−2
φ(t) dM(t) � d−1+εT 2 + d1+ε.

Combining this with (3.4), we deduce

Sd(T ) � dεT 2
(
d−1 + min(d2θ, dT−2)

)
.

And since (3.3)

S2(m,T ) � mεT 4 + mεT 4
∑

d|m
min(d2θ, dT−2)

)

which gives the result.
It remains to prove (3.5). The points z0 = i and z0 = (i − 1)/2 are in

the same orbit under PSL2(Z). If z0 = (i − 1)/2, let γ0 ∈ PSL2(Z), such that
z0 = γ0i, then in the definition of M , we have u(γz0, z0) = u(γγ0i, γ0i) =
u(γ−1

0 γγ0i, i) with γ−1
0 γγ0 an integral matrix of determinant d2. Whence to

prove (3.5), we can restrict ourselves to the case z0 = i, Γ = PSL2(Z). A
calculation shows that if γ has determinant d2

u(γi, i) =
(v − a)2 + (b + u)2

4d2
where γ =

(
a b
u v

)

.

Writing A = v − a, B = b + u, C = a + v, and D = b − u, u(γi, i) < t implies
A2 + B2 < 4d2t. Noting 4d2 = C2 + D2 − A2 − B2, we have

M(t) �
∑

A2+B2<4d2t

r(4d2 + A2 + B2) �
∑

n<4d2t

r(n)r(4d2 + n),

and this shows (3.5), because r(k) = O(kε). �

To ease references, we state here the bound for S(m,T ) obtained com-
bining Lemma 2.4 and a convexity bound coming from Lemma 2.5 and Bessel
inequality.

Lemma 3.2. For every ε > 0

S(m,T ) � T 17/12+ε
(
T + m1/4+ε

)
.

Proof. We have

|S(m,T )|2 ≤
∑

|λj(m)|2
∑

|uj(z0)|4

≤
∑

|λj(m)|2
∑

|uj(z0)|2 sup |uj(z0)|2,



MJOM The Additive Problem for the Number of Representations. . . Page 9 of 17    44 

where the sums and the supremum are over T ≤ |tj | < 2T . For the first sum
use Lemma 2.4, for the second Lemma 3.1 with m = 1 (or directly Bessel
inequality [10, Prop.7.2]), and for the supremum use Lemma 2.5. �

We divide the proof of Theorem 1.1 in two parts studying separately
the spectral contribution in the cases m ≤ x and m > x.

We first state an auxiliary result bringing Proposition 2.2 closer to the
estimation of E(x,m).

Lemma 3.3. Let E(x,m) be the result of subtracting 8πσ−1(m)x/|Γ\H| to the
quantities S(x,m) with 2 � m or A(4x, 4m). Then, for x ≥ 1

E(x,m) � mεΔ
(
x + (mx)1/2

)
+ x1/2 log(2x) +

∞∑

j=2

E2j (x,m),

where ET (x,m) =
√

mH(T )
(|S(m,T )| + T 2

)
.

Our bounds for S(m,T ) are greater than T 2, even under Ramanujan–
Petersson conjecture; hence, the term T 2 in ET is irrelevant in practice.

Proof. The normalized constant eigenfunction u0(z) = |Γ\H|−1/2 has Hecke
eigenvalue σ(m)/

√
m = O(m1/2+ε). Then, its contribution to the spectral

expansion in Proposition 2.2 is according to (2.1)

2
√

m
σ(m)√

m
|u0(z0)|2

(
4πy + O(Δ(y + y1/2))

)
,

where y = x/m. Subtracting 8πσ(m)y/|Γ\H|, we get O
(
mεΔ(x + (mx)1/2)

)
.

As we mentioned before, |tj | > 5 for the involved groups [14]. Then, the
sum of E2j for j ≥ 2 bounds the contribution of the discrete spectrum in
Proposition 2.2 subdividing into dyadic intervals. For the Eisenstein series,
it is known [17, Th.6.2] that

∫ 2T

T

∣
∣Ea(z, 1

2 + it)
∣
∣2 dt � T (log T )2, then the

term T 2 in ET absorbs their contribution for |t| > 4. Finally
∫ 4

−4

ηt(m)h(t)
∣
∣
∣
∣Ea

(

z0,
1
2

+ it

)∣
∣
∣
∣

2

dt � √
m

∫ 4

−4

H(t) dt,

and this is O
(
x1/2 log(2x)

)
using the crude bound H(t) � (x/m)1/2 log(2x)

if x > m and H(t) � x/m if x ≤ m. �

Proposition 3.4. Let E(x,m) be as in Lemma 3.3. Then, for 1 ≤ m ≤ x and
any ε > 0, we have

m−εE(x,m) �

⎧
⎪⎨

⎪⎩

x2/3 if m3/2+3θ ≤ x,

m(1+2θ)/4x1/2 if m3/2−θ ≤ x < m3/2+3θ,

m2θ/3x2/3 if m ≤ x < m3/2−θ.

Proof. We have
√

mH(T ) � x1/2T−3/2 min
(
1, (TΔ)−3/2

)
in Lemma 3.3 and

substituting the bound of Lemma 3.1, we get

ET (x,m) � mεx1/2T 1/2 min
(
1, (TΔ)−3/2

)(
1 + min(mθ,m1/2T−1)

)
.
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Defining

F (Δ, T ) = xΔ + x1/2T 1/2 min
(
1, (TΔ)−3/2

)(
1 + min(mθ,m1/2T−1)

)
,

it is enough to prove

inf
0<Δ<1

sup
T≥4

F (Δ, T ) �
{

x2/3 + m1/4+θ/2x1/2 if x ≥ m3/2−θ,

m2θ/3x2/3 if x < m3/2−θ,
(3.6)

because x2/3 ≥ m1/4+θ/2x1/2 if and only if x ≥ m3/2+3θ. Choosing T and
Δ as in the rest of the proof, one could show that (3.6) is in fact sharp, the
“�” sign could be replaced by “
”.

The values Δ−1, m1/2−θ and m1/2 subdivide [4,∞) into at most 4
intervals. On each of them F (Δ, T ) − xΔ behaves as a power of T , then
G(Δ) = supT≥4 F (Δ, T ) satisfies

G(Δ) 
 F (Δ,Δ−1) + F (Δ,m1/2−θ) + F (Δ,m1/2).

Clearly, min
(
1, (TΔ)−3/2

)
is not increasing in T and T 1/2 min(mθ,m1/2T−1)

is greater for T = m1/2−θ than for T = m1/2. It assures F (Δ,m1/2) �
F (Δ,m1/2−θ) and we have

G(Δ) � xΔ + x1/2Δ−1/2
(
1 + min(m1/2Δ,mθ)

)

+m(1+2θ)/4x1/2 min
(
1, (m1/2−θΔ)−3/2

)
.

If x ≥ m3/2−θ, we choose the first arguments in the minima to get

G(Δ) � xΔ + x1/2Δ−1/2 + m1/2x1/2Δ1/2 + m(1+2θ)/4x1/2.

Hence, inf G(Δ) ≤ G(x−1/3) � x2/3 + m1/2x1/3 + m(1+2θ)/4x1/2 and the
central term is negligible, because x2/3 > m1/2x1/3 if x > m3/2, and we have
m1/2x1/3 < m(1+2θ)/4x1/2 otherwise.

If x < m3/2−θ, we choose the second arguments in the minima to deduce

G(Δ) � xΔ + mθx1/2Δ−1/2 + m−1/2+2θx1/2Δ−3/2.

Hence, inf G(Δ) ≤ G(m2θ/3x−1/3) � m2θ/3x2/3 + m−1/2+θx, and in our
range, the last term is negligible. �

Proposition 3.5. Let E(x,m) be as in Lemma 3.3. Then, given ε > 0 for
x ≤ m < x2/(1+2θ), we have E(x,m) � m(1+2θ)/3+εx1/3.

Proof. In this case, H(T ) � m−1x(1 + m−1xT 2)−3/4 min
(
1, (TΔ)−3/2

)
in

Lemma 3.3 and the bound of Lemma 3.1 gives

ET (x,m) � m−1/2+εxT 2
(
1 + xT 2m−1

)−3/4 min
(
1, (TΔ)−3/2

)

·(1 + min(mθ,m1/2T−1)
)
.

Using
(
1 + xT 2m−1

)−3/4 � m3/4x−3/4T−3/2, the function to be optimized
is

F (Δ, T ) = m1/2x1/2Δ + m1/4x1/4T 1/2 min
(
1, (TΔ)−3/2

)

×(
1 + min(mθ,m1/2T−1)

)
.
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Namely, we have to prove

inf
0<Δ<(x/m)1/2

sup
T≥4

F (Δ, T ) � m(1+2θ)/3x1/3. (3.7)

The bound Δ < (x/m)1/2 is required by Proposition 2.2 and it is less im-
portant for the optimization. Note that F (Δ, T ) − m1/2x1/2Δ is like in the
proof of Proposition 3.4 except for a coefficient not depending on Δ and T .
Hence, the same argument applies to show that the supremum on T in (3.7),
say G(Δ), satisfies

G(Δ) � m1/2x1/2Δ + m1/4x1/4Δ−1/2
(
1 + min(mθ,m1/2Δ)

)

+m(1+θ)/2x1/4 min
(
1, (m1/2−θΔ)−3/2

)
.

In the last range of the case m ≤ x in the proof of Proposition 3.4,
the term mθ gave the minimum and was of greater order than m1/2Δ1/4,
and then, it is natural to consider by continuity that this is still the situa-
tion. With this idea in mind, let us take Δ−1 = x1/6m1/6−2θ/3 to balance
the corresponding terms. Note that in our range, it satisfies the assumption
Δ−1 > m1/2x−1/2. The result is that (3.7) holds with m(1+2θ)/3x1/3 accom-
panied with the extra terms

m(1−θ)/3x1/3 min(mθ,m(1+2θ)/3x−1/6) + m(1+θ)/2x1/4 min(1,m(θ−1)/2x1/4).

In our range, the minima are mθ and m(θ−1)/2x1/4, respectively. Hence, it
only remains to check that m(1+2θ)/3x1/3 ≥ mθx1/2 which follows from m ≥
x. �

Finally, we prove the estimate required for Theorem 1.4.

Proposition 3.6. Let E(x,m) be as in Lemma 3.3 and x and m in the range
indicated in Theorem 1.4. Then, for every ε > 0

E(x,m) � x17/23+ε + (mx)17/46+ε + m(13+4θ)/28x1/4+ε.

Proof. Let us consider first the case m < x that only occurs for θ > 5/46,
because x < m46θ/5. We have

√
mH(T ) � x1/2T−3/2 min

(
1, (ΔT )−3/2

)
. Let

us take Δ = x−6/23 in Lemma 3.3 and use S(m,T ) � mθ+εT 2 for T ≤ m1/4

and S(m,T ) � T 29/12+ε for T > m1/4, which follow from Lemmas 3.1 and
3.2, respectively. If we prove

x17/23 �
{√

mH(T )mθT 2 for T ≤ m1/4

√
mH(T )T 29/12 for T > m1/4,

then, since the right-hand side has a potential behavior in T and eventually
decays to zero, we would deduce E(x,m) � x17/23+ε which fulfills our needs.
Note that Δ−1 > m1/4, then the supremum only may be attached at T 
 1 or
T 
 m1/4 in the first case and at T 
 m1/4 or T 
 Δ−1 in the second case.
Adding the contributions, we get

(
mθx1/2 + m1/8+θx1/2

)
+

(
m11/48x1/2 +

x17/23
)

and this is O(x17/23), because m < x.
Now, we deal with the case x ≤ m. Using 1 + yt2 > yt2 in Proposi-

tion 2.2, we have
√

mH(T ) � (mx)1/4T−3/2 min
(
1, (ΔT )−3/2

)
. Let us take

Δ−1 = (mx)3/23 (it is easy to check that in our range, Δ < y1/2 is fulfilled
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in Proposition 2.2). Combining Lemmas 3.1 and 3.2 to bound E(m,T ) in
Lemma 3.3, it is enough to prove as before

√
mH(T )min

(
mθT 2, T 17/12(T + m1/4)

)

� (mx)17/46+ε + m(13+4θ)/28x1/4+ε (3.8)

for every T ≥ 4. We can, of course, replace T + m1/4 by max(T,m1/4) and
the values

T0 = m1/4, T1 = m3(1−4θ)/7, T2 = Δ−1 and T3 = m12θ/5,

coming, respectively, from the equations T0 = m1/4, mθT 2 = T 17/12m1/4,
1 = TΔ and mθT 2 = T 29/12, mark the points at which there is a possible
change in the dominant value of the maximum or the minima. In the rest of
the cases, the left-hand side of (3.8) is comparable to a function of the form
c(x,m)Tα, α 
= 0. This is strictly monotonic in the intervals determined by
the Tj , and then, it is enough to check (3.8) for T = T0, . . . , T3.

In our ranges, a calculation shows that T3 ≥ (mx)3/23 = Δ−1, and then,
we can substitute min

(
1, (ΔT3)−3/2

)
by (ΔT3)−3/2. Hence

√
mH(T3)mθT 2

3 � m41/92−7θ/5x41/92 = (mx)17/46
(
m1−92θ/5x)7/92,

and this is less than (mx)17/46, because x < m(92θ−5)/5.
For T0, T1, and T2, we use min

(
1, (ΔTj)−3/2

) ≤ 1. In this way, for T1

√
mH(T1)mθT 2

1 � m(13+4θ)/28x1/4,

which is part of the right-hand side of (3.8).
Finally, for T0 and T2, we choose T 17/12(T + m1/4) in the minimum.

For T0

√
mH(T0)T

17/12
0 (T0 + m1/4) � m23/48x1/4

and 23/48 ≤ (13 + 4θ)/28, because θ ≥ 5/48. For T2, a calculation shows
√

mH(T2)T
17/12
2 (T2 + m1/4) � (mx)1/4Δ1/12

(
Δ−1 + m1/4

)

= (mx)17/46 + m45/92x11/46.

The last term can be written as (m45/x)1/92x1/4. Since x > m11(1−4θ)/7,
m45/x < m4(76+11θ)/7 and 4(76+11θ)/7 ≤ 92(13+4θ)/28, because θ ≥ 5/48.

�

Proof of Theorems 1.1 and 1.4. If m is odd, then we have S(x,m) = 8σ(m)x/m
+ E(x,m), and the result follows directly from Propositions 3.4, 3.5 and 3.6.
If m is even, we use Lemma 2.1. By the comments at the end of Sect. 2, we
know that the main terms coming from Ã give rise to the main term in (1.2),
and then

E(x,m) = 2

(

E
(

x

22
,
m

22

)

− · · · + (−1)k−2E
(

x

2k
,
m

2k

))

+(−1)k−1E
(

x

2k
,
m

2k

)

,
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where the last E corresponds to the group Γ = Γ0(2)/{± Id} and the rest
to Γ = PSL2(Z).

In Propositions 3.4, 3.5, and 3.6, all the exponents in the bounds are
positive, and then, we have a geometric gain replacing (x,m) by (x/2,m/2)
when we stay in the same range. By the continuity of the bound (recall the
figures showing the graphs), we get comparable results each time we change
the range. As there are only a finite number of ranges, we conclude that the
bounds for E(x,m) are also valid for E(x,m). Note that the range required
in Proposition 3.5 can be assumed, because, otherwise, E(x,m) supersedes
the main term and S(x,m) = O(x1+ε) follows trivially from r(n) = O(nε).

�

4. Comparison with Other Results and Further Comments

In [5], it is studied the asymptotic behavior of S(x,m) under the conjecture
∑

T≤|tj |<2T

|uj(z0)|4 = O
(
T 2+ε

)
for every ε > 0. (4.1)

As the matter of fact, something similar is known in the so-called q-aspect
[2].

Unfortunately, the main result in [5] is not written explicitly in terms of
θ, but it was substituted the upper bound available at that time, θ ≤ 5/28.
If we replace along its proof 5/28 by θ, we would get the following.

Theorem 4.1 (Cf. [5, Th.3.1]). With the notation of Theorem 1.1 and under
(4.1), we have

x−εE(x,m) � x2/3 + x1/2m(1+4θ)/8

+x1/3m1/3 + min
(
x1/2m1/4, x1/4m(3+4θ)/8

)

for every ε > 0 and 1 ≤ m ≤ x2.

It turns out that this bound coincides (disregarding ε) with the best-
known bound for the binary additive problem included in [15]. This famous
problem, connected to the 4th moment of the Riemann zeta function [8],
deals with the sums

D(x,m) =
∑

n≤x

τ(n)τ(n + m).

The coincidence of the bounds is quite surprising, because the methods ap-
pearing in [15] are not entirely spectral; namely, it is employed a combi-
natorial decomposition of the divisor function introduced by Heath-Brown.
Recently, in [1], it has been proved that a purely spectral approach is possible
with a modification of [16]. Although the analogy between r(n) and τ(n) is
quite natural, because the former is like a divisor function in arithmetic pro-
gressions, it is puzzling that the proof of Theorem 4.1 is much simpler than
that of the main results of [15] or [16] and still leads to the same result under
(4.1). On the other hand, (4.1) has not an analogue in these papers which are
unconditional. It vaguely suggests that this conjecture admits a proof via the
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Kuznetsov formula, which is the core argument in [15,16]. Another possible
approach to (4.1) is to use a lift (a Waldspurger like formula) to turn the
sum of (4.1) at the considered special points into a sum of special values of
automorphic L-functions (this is related to [18,25] mentioned below; see also
[12] for an application of this idea). When the first version of this paper was
posted, Peter Humphries sent us a possible scheme to prove (4.1), but we
(the author) were not able to complete it.

A very vague argument, suggesting that (4.1) could be affordable relies
on the general bound ‖φ‖∞ ≤ λ1/4 [22] for a normalized eigenfunction φ with
eigenvalue λ. In our case, this is |u(z)| � T 1/2 and it marks a kind of barrier
for the difficulty (the ultimate conjecture is |u(z)| � T ε; see [19]). It can be
obtained from the average result

∑
T≤|tj |<T+1 |u(z)|2 = O(T ) dropping all

the terms except one and from (4.1) except for ε, while higher power analogues
would break the barrier of the difficulty. Although

∑
T≤|tj |<T+1 |u(z)|2 =

O(T ) and (4.1) have the same L∞ implications, the former follows from
pretrace formula, while our attempts to get a spectral proof of (4.1) have
been unsuccessful so far.

An important point to emphasize is that under (4.1), we have the uni-
formity in (1.2) for m = O

(
x2−ε

)
even using results much weaker than

Lemma 2.3, because the relevant term in Theorem 4.1 is x1/2m1/4+ε.
A natural question is to what extent we can relax (4.1) to improve the

unconditional range in Corollary 1.6. This question admits a neat answer.

Theorem 4.2. Let β ≥ 2, such that
∑

T≤|tj |<2T

|uj(z0)|4 = O
(
T β+ε

)
for every ε > 0. (4.2)

Then, the asymptotic formula (1.2) holds for m = m(x) satisfying m = O
(
xη

)

for any η < β/(β − 1).

To our knowledge, the best-known exponent in (4.2) is β = 17/6 deduced
by convexity from Lemma 2.5 as in Lemma 3.2. Actually, the main result in
the recent preprint [18] might improve this exponent via [25, (2.1), (2.2)], but
it is unclear if this is only valid for z0 = i. See also [24] for an advance in
the case of S3 which is a completely different setting with a somehow similar
flavor.

Proof. We assume m > x64/39−ε by Corollary 1.6, and consequently, β < 3.
By Lemma 2.4, (4.2), and Cauchy’s inequality

S(m,T ) � T β/2+ε
(
T + m1/4+ε

)
.

Taking Δ = x1/2m−1/2−ε in Lemma 3.3, the uniformity is assured if

xm−1/2
(
1 + xm−1T 2

)−3/4 min
(
1, (ΔT )−3/2

)
T β/2

(
T + m1/4

) � x1−δ

for some δ > 0 and any T > 4. Note that m−3ε/2 � (
1 + xm−1T 2

)−3/4 � 1
for T ≤ Δ−1 and the rest of the factors grow with T in this range, then it is
enough to consider T ≥ Δ−1 and prove for them

(mx)1/4T−3/2 min
(
1, (ΔT )−3/2

)
T β/2

(
T + m1/4

) � x1−δ.
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The maximum of the left-hand side is attached at T 
 m1/4 or T 
 Δ−1,
and then, we have uniformity whenever

(mx)1/4m−3/8mβ/8+1/4 + (mx)1/4Δ(3−β)/2
(
Δ−1 + m1/4

) � x1−δ.

The first term imposes the condition m = O
(
xη

)
with η < 6/(β + 1) that is

satisfied when η < β/(β−1), because 2 ≤ β < 3. In our range, Δ−1+m1/4 �
m1/4, then it only remains to consider m1/2x1/4Δ(3−β)/2 � x1−δ and a
calculation shows that this is equivalent to m = O

(
xη

)
with η < β/(β − 1).

�
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vista Matemática Iberoamericana, Madrid, second edition]

[11] Iwaniec, H., Sarnak, P.: L∞ norms of eigenfunctions of arithmetic surfaces.
Ann. Math. (2) 141(2), 301–320 (1995)

[12] Katok, S., Sarnak, P.: Heegner points, cycles and Maass forms. Isr. J. Math.
84(1–2), 193–227 (1993)

[13] Kim, H.H.: Functoriality for the exterior square of GL4 and the symmetric
fourth of GL2. J. Am. Math. Soc. 16(1), 139–183 (2003) [With appendix 1 by
D. Ramakrishnan and appendix 2 by Kim and P. Sarnak]

[14] The LMFDB Collaboration, The L-functions and modular forms database
(2020). http://www.lmfdb.org. Online; Accessed 25 May 2020

[15] Meurman, T.: On the binary additive divisor problem. In: Number Theory
(Turku, 1999), pp. 223–246. de Gruyter, Berlin (2001)

[16] Motohashi, Y.: The binary additive divisor problem. Ann. Sci. École Norm.
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