
Journal of Pure and Applied Algebra 225 (2021) 106728
Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Finite morphisms and Nash multiplicity sequences ✩

A. Bravo a,∗, S. Encinas b

a Depto. Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid and Instituto de Ciencias 
Matemáticas CSIC-UAM-UC3M-UCM, Canto Blanco, 28049 Madrid, Spain
b Depto. Matemática Aplicada, and IMUVA, Instituto de Matemáticas, Universidad de Valladolid, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 November 2019
Received in revised form 1 February 
2021
Available online 9 March 2021
Communicated by S. Kovács

MSC:
14E15; 14E18

Keywords:
Rees algebras
Resolution of singularities
Arc spaces
Finite morphisms

We study finite morphisms of varieties and the link between their top multiplicity 
loci under certain assumptions. More precisely, we focus on how to determine that 
link in terms of the spaces of arcs of the varieties.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The multiplicity of a variety X at a singular point can be understood as a measure of the singularity: X
is regular if and only if the multiplicity at any of its points is 1. Observe also that the multiplicity defines 
an upper-semi continuous function on X. As a consequence, if m is the maximum multiplicity of X, then 
the set of points with multiplicity m, Fm(X), is closed.

The multiplicity does not increase when blowing up along regular centers contained in Fm(X) (see [32] or 
[20]). Motivated by this fact, we say that a closed regular subscheme Y ⊂ X is Fm-permissible if Y ⊂ Fm(X). 
A blow up at an Fm-permissible center is called an Fm-permissible blow up.

We say that a sequence of Fm-permissible blow ups

X = X0 X1
π1

. . .
π2

Xl,
πl (1.0.1)
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is a simplification of the multiplicity of X if

max mult(X0) = · · · = max mult(Xl−1) > max mult(Xl). (1.0.2)

When X is defined over a field of characteristic zero, one can achieve a resolution of singularities of X by 
iterating successive simplifications of the multiplicity of X (cf. [40]). This is shown by attaching a suitably 
defined Rees algebra GX to the closed set Fm(X). This Rees algebra helps to describe the closed set Fm(X). 
In addition, GX provides sufficient information to define invariants that ultimately lead to the construction 
of a sequence like (1.0.1) such that (1.0.2) holds. When the characteristic is positive, and X is defined over 
a perfect field, GX can still be defined, but it falls short to give enough information that eventually lead to 
a resolution. Resolution of singularities in positive characteristic is a long-standing open problem for which 
we only have positive answers in low dimensions ([4], [5], [6], [17,18], [19], [29], [31]).

In this paper we are interested in the study of a class of finite morphisms between varieties and the link 
between their top multiplicity loci. More precisely, let k be a perfect field and let β : X ′ → X be a finite 
(dominant) morphism of k-varieties of generic rank r. Suppose that the maximum multiplicity at the points 
of X is m. Then the maximum multiplicity at the points of X ′ is bounded above by rm. If this upper bound 
is attained we say that β : X ′ → X is transversal.

When β is transversal, there is an interesting link between the (closed) set of points of multiplicity rm
in X ′, Frm(X ′), and the top multiplicity locus of X, Fm(X). For instance, it can be proven that Frm(X ′)
is homeomorphic to β(Frm(X ′)), and that, moreover, there is a containment β(Frm(X ′)) ⊂ Fm(X). In 
addition, if Y ⊂ Frm(X ′) is Frm-permissible, then it can be shown that β(Y ) ⊂ Fm(X) is Fm-permissible, 
and after the blow ups at Y and β(Y ), there is a commutative diagram,

X ′

β

X ′
1

β1

π′
1

X X1,
π1

(1.0.3)

where β1 is finite and, if Frm(X ′
1) �= ∅, then β1 : X ′

1 → X1 is transversal too. These and other properties 
of transversal morphisms were studied in the context of constructive resolution of singularities in [3] (see 
section 3 in the present paper for details and precise statements).

Suppose now that Frm(X ′) is homeomorphic to Fm(X) (i.e., Frm(X ′) maps surjectively to Fm(X)). 
After diagram (1.0.3) it seems quite natural to wonder under which conditions there is a link between the 
simplifications of the multiplicities of X ′ and X. As it turns out, a study of the Rees algebras GX and GX′

leads to an answer, at least when the characteristic is zero.
More precisely, the algebra GX from above can always be defined for varieties over perfect fields [38]. 

When β : X ′ → X is transversal it can be shown that there is an extension of the Rees algebras GX ⊂ GX′

associated to Fm(X) and Frm(X ′) respectively (cf. [1]).
In the characteristic zero case, one of the results of [3] says that if the extension GX ⊂ GX′ is finite then 

a simplification of Fm(X) induces naturally a simplification of Frm(X ′) and vice versa, and a strong form 
of the converse can also be shown to hold (see [3, Theorem 7.2] or Theorem 3.9 in this paper). However, in 
positive characteristic there are examples where the extension GX ⊂ GX′ is finite but there is not such a 
strong link between the simplifications of Fm(X) and Frm(X ′) (see [3, Example 7.5]). Thus, what can be 
said about Frm(X ′) and Fm(X) when GX ⊂ GX′ is finite and k is only assumed to be perfect?

Our purpose is to address the previous question by studying the arc spaces of both X and X ′, L(X) and 
L(X ′). To this end, we will be looking at the Nash multiplicity sequences of the arcs with center in the top 
multiplicity loci of the varieties.
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Nash multiplicity sequences where first introduced by M. Lejeune-Jalabert in [30] for the case of a germ 
of a point of a hypersurface, and generalized afterwards by H. Hickel in [24] and [25]. To each arc ϕ with 
center a point ξ ∈ Fm(X), we can associate a sequence of non-increasing integers,

m = m0 ≥ m1 ≥ m2 ≥ . . . (1.0.4)

which can be interpreted the multiplicity of X along the arc ϕ. The previous sequence can be shown to 
stabilize at the multiplicity at the generic point of ϕ (see section 4, specially diagram (4.2.2) for details on 
the definition of this sequence).

When the generic point of ϕ is not contained in the stratum of multiplicity m of X, then there is some 
subindex l ≥ 1 in sequence (1.0.4) for which ml < m0. We are interested in the first subindex for which 
the inequality holds and call it the persistance of the arc ϕ, ρX,ϕ. This number can be interpreted as an 
infinitesimal multiplicity along ϕ. Our result says that GX ⊂ GX′ being finite means that X and X ′ somehow 
share the same infinitesimal multiplicities along corresponding arcs. More precisely, our purpose it to prove 
the following:

Theorem 1.1. Let β : X ′ → X be a transversal morphism of generic rank r between two singular algebraic 
varieties defined over a perfect field k, and let β∞ : L(X ′) → L(X) be the induced morphism.

Let m be the maximum multiplicity of X and assume that Frm(X ′) is homeomorphic to Fm(X). Then, 
the inclusion GX ⊂ GX′ is finite if and only if for each arc ϕ′ ∈ L(X ′) with center in Frm(X ′), we have the 
following equality of persistances:

ρX′,ϕ′ = ρX,β∞(ϕ′).

Using Theorem 1.1, now Theorem 3.9 says that the finiteness of the extension GX ⊂ GX′ indicates a 
strong link between the Nash multiplicity sequences of arcs with center at the top multiplicity loci of both 
X and X ′.

To clarify the role of the Rees algebra GX in resolution of singularities, in the following lines we will 
give some hints on how Rees algebras are used in constructive resolution. Precise details will be given in 
section 2.

Constructive resolution of singularities and multiplicity

After Hironaka’s Theorem on resolution of singularities in characteristic zero [26], a series of algorithms of 
resolution were found ([8], [36], and [37]; see also [12], [22] and [21]). An algorithmic resolution of singularities 
consists on describing a procedure to construct, step by step, a sequence of blow ups that leads to the 
resolution of a given variety X,

X = X0 ← X1 ← . . . ← Xn = T. (1.1.1)

Roughly speaking, to find a sequence like (1.1.1) one uses the so called resolution functions defined on 
varieties. These are upper semi-continuous functions,

fX : X → (Λ,≥)
ξ 	→ fX(ξ),

that are constant if and only if the variety is regular, and, whose maximum value, max fX , achieved in a 
closed regular subset MaxfX , selects the center to blow up. Thus the sequence (1.1.1) is defined so that

max fX0 > max fX1 > . . . > max fXn
,
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where max fXi
denotes the maximum value of fXi

for i = 0, 1, . . . , n.
Usually, fX is defined, at each point, as a sequence of rational numbers, the first set of coordinates being 

the Hilbert-Samuel function at the point (see [12]) or the multiplicity (see [40]). For the purposes of this 
paper we will be paying attention to the later. Therefore we will be considering a resolution function on X
as the following:

fX(ξ) = (multX(ξ), . . .). (1.1.2)

And we will be achieving a desingularization of X by concatenating successive simplifications of the multi-
plicity of X.

On refinements of the multiplicity

Now let us say a word about the other coordinates of fX in (1.1.2). Even though the multiplicity is an 
upper-semi continuous function on X, it usually does not define a resolution function. For instance the 
closed set Fm(X) may not be even regular. Therefore, in order to construct a resolution function we need to 
find refinements of the multiplicity. These are defined by using local presentations of the multiplicity (this 
was studied in [40, §7.1]).

Roughly speaking, by a local presentation of the multiplicity in a neighborhood of a point ξ ∈ Fm(X)
we mean that locally, in an étale neighborhood of ξ, which we denote again by X for simplicity, one can 
find an embedding of X in some smooth scheme, V , together with a set of weighted equations that (locally) 
describe Fm(X). We refer to Example 2.6 for the case of a hypersurface, and to Theorem 2.14 and §2.15
for the general case. The information given by such (finite) set of weighted equations is expressed in terms 
of a Rees algebra G defined on V . We say that the pair (V, G) as a local presentation of Fm(X). We refer to 
section 2 for precise definitions and statements regarding Rees algebras and local presentations.

Local presentations are not unique, i.e., there may be different embeddings and different Rees algebras 
that provide local presentations of Fm(X). However, it can be proven that they all lead to the same resolution 
function [16, Theorem 26.5]. In addition, it can be shown that the restriction of G to X, GX , is unique up to 
integral closure, (cf. [1]). We will say that GX is the OX-Rees algebra attached to Fm(X) in a neighborhood 
of ξ.

When the characteristic is zero, the pair (V, G) provides all the information needed to construct a simpli-
fication of Fm(X) locally in a neighborhood of ξ ∈ Fm(X); in other words, the remaining coordinates of fX
at the points in Fm(X) are determined by (V, G) (see (1.1.2)). For instance, if X is a d-dimensional variety, 
then

fX(ξ) = (multX(ξ), ord(d)
X (ξ), . . .), (1.1.3)

where ord(d)
X (ξ) is a rational number that we refer to as Hironaka’s order function in dimension d, and it 

can be seen as a refinement of the multiplicity that leads to the construction of a resolution function.
The number ord(d)

X (ξ) is obtained after performing some sort of elimination of variables on (V, G), that 
lead to the definition of an elimination algebra defined in some smooth scheme of dimension d (see [2], [14], 
[38]). When the characteristic is zero, this elimination algebra encodes all the information we need to define 
fX(ξ). As it turns out, it can be shown that GX also determines the so called elimination algebra (cf. [3, 
Corollary 7.7]).

On the organization of the paper

The paper is organized as follows. Rees algebras play a central role in constructive resolution, thus, we 
dedicate section 2 to their study and their use in resolution of singularities. In particular, details on the 
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construction of the Rees algebra GX are given in Remark 2.16. In Section 3 we review the meanings of 
transversality and strong transversality for finite morphisms and summarize some results from [3]. This 
section helps to put Theorem 1.1 in context. Section 4 is devoted to recalling the definition of the Nash 
multiplicity sequence of an arc, the concept of persistance associated to an arc in the variety, and its link 
with invariants from constructive resolution. Finally Theorem 1.1 is proven in section 5.

Acknowledgments. We profited from conversations with C. Abad, A. Benito, B. Pascual-Escudero and O.E. 
Villamayor. We also thank the referee for useful suggestions to improve the presentation of this paper.

2. Rees algebras

The stratum defined by the maximum value of the multiplicity function of a variety can be described 
using equations with weights ([40]). The same occurs with the Hilbert-Samuel function ([27]). Along this 
section we will see that Rees algebras are natural objects to work with this setting.

Definition 2.1. Let R be a Noetherian ring. A Rees algebra G over R is a finitely generated graded R-algebra 
G = ⊕l∈NIlW

l ⊂ R[W ] for some ideals Il ∈ R, l ∈ N, such that I0 = R and IlIj ⊂ Il+j , ∀l, j ∈ N. Here, 
W is just a variable to remind us the degree of the ideals Il. Since G is finitely generated, there exist some 
f1, . . . , fr ∈ R and positive integers (weights) n1, . . . , nr ∈ N such that

G = R[f1W
n1 , . . . , frW

nr ]. (2.1.1)

Rees algebras can be defined over Noetherian schemes Z in the obvious manner. In this case G is a sheaf of 
graded algebras and Il is a sheaf of ideals for every l ∈ N≥1.

Remark 2.2. Note that this definition is more general than the (usual) of Rees ring where one considers 
algebras of the form R[IW ] for some ideal I ⊂ R. There is another special type of Rees algebras that will 
play a role in our arguments: these are Rees algebras of the form R[IW b], for some ideal I ⊂ R and some 
positive integer b ≥ 1. We refer to them as almost Rees rings. In fact, every Rees algebra will be equivalent
in some sense to an almost Rees ring (see Remark 2.4 below).

Definition 2.3. Two Rees algebras over a Noetherian ring R are integrally equivalent if their integral closure 
in Quot(R)[W ] coincide. We say that a Rees algebra over R, G = ⊕l≥0IlW

l is integrally closed if it is 
integrally closed as a ring in Quot(R)[W ]. We denote by G the integral closure of G.

Remark 2.4. Note that G is also a Rees algebra over R, when R is excellent ([13, §1.1]). It can be shown 
that every Rees algebra is finite over some almost Rees ring. In fact, if G = ⊕lIlW

l, then there is some 
positive integer N such that G is finite over R[INWN ]. Moreover, if G is finite over R[INWN ] then it can 
be checked that G is finite over R[ILWL] for any L multiple of N (see [23, Remark 1.3 and Lemma 1.7]).

2.5. The Singular Locus of a Rees Algebra. ([23, Proposition 1.4]). Now let G be a Rees algebra over a 
smooth scheme V defined over a perfect field k. In such case, we can attach a closed set to G, its singular 
locus, Sing(G), by considering all the points ξ ∈ V such that νξ(Il) ≥ l, ∀l ∈ N. Here νξ(I) denotes the 
order of the ideal I at the regular local ring OV,ξ. If G = R[f1W

n1 , . . . , frWnr ], then it can be checked that:

Sing(G) = {ξ ∈ Spec(R) : νξ(fi) ≥ ni, ∀i = 1, . . . , r} ⊂ V.

Example 2.6. Suppose that R is smooth over a perfect field k. Let X ⊂ Spec(R) = V be a hypersurface 
with I(X) = (f) and let b > 1 be the maximum value of the multiplicity of X. If we set G = R[fW b] then 
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Sing(G) = Fb(X). Along this paper we will be using a generalization of this description of the maximum 
multiplicity locus in the case where X is an equidimensional singular algebraic variety (defined over a perfect 
field k) (see Theorem 2.14 and the discussion in 2.15).

2.7. Singular locus, integral closure and differential saturation. A Rees algebra G = ⊕l≥0IlW
l defined on a 

smooth scheme V over a perfect field k, is differentially closed (or differentially saturated) if there is an affine 
open covering {Ui}i∈I of V , such that for every D ∈ Diffr(Ui) and h ∈ Il(Ui), we have D(h) ∈ Il−r(Ui)
whenever l ≥ r (where Diffr(Ui) is the locally free sheaf over Ui of k-linear differential operators of order 
less than or equal to r). In particular, Il+1 ⊂ Il for l ≥ 0. We denote by Diff(G) the smallest differential Rees 
algebra containing G (its differential closure). (See [38, Theorem 3.4] for the existence and construction.)

It can be shown (see [39, Proposition 4.4 (1), (3)]) that for a given Rees algebra G on V ,

Sing(G) = Sing(G) = Sing(Diff(G)).

The problem of simplification of the multiplicity of an algebraic variety can be translated into the problem 
of resolution of a suitably defined Rees algebra (see Theorem 2.14). This motivates Definitions 2.8 and 2.9
below (see also Example 2.10 and §2.13).

Definition 2.8. Let G be a Rees algebra on a smooth scheme V . A G-permissible blow up V
π← V1, is the 

blow up of V at a smooth closed subset Y ⊂ V contained in Sing(G) (a permissible center for G). We denote 
then by G1 the (weighted) transform of G by π, which is defined as

G1 :=
⊕
l∈N

Il,1W
l,

where

Il,1 = IlOV1 · I(E)−l (2.8.1)

for l ∈ N and E the exceptional divisor of the blow up V π← V1.

Definition 2.9. Let G be a Rees algebra over a smooth scheme V . A resolution of G is a finite sequence of 
transformations

V = V0 V1
π1

. . .
π2

Vl

πl

G = G0 G1 . . . Gl

(2.9.1)

at permissible centers Yi ⊂ Sing(Gi), i = 0, . . . , l− 1, such that Sing(Gl) = ∅, and such that the exceptional 
divisor of the composition V0 ←− Vl is a union of hypersurfaces with normal crossings.

Example 2.10. With the setting of Example 2.6, a resolution of the Rees algebra G = R[fW b] induces a 
sequence of transformations such that the multiplicity of the strict transform of X decreases:

G = G0 G1 . . . Gl−1 Gl

V = V0 V1
π1

. . .
π2

Vl−1
πl−1

Vl

πl

∪ ∪ ∪ ∪
X = X0 X1

π1
. . .

π2
Xl−1

πl−1
Xl

πl

b = max mult(X0) = max mult(X1) = · · · = max mult(Xl−1) > max mult(Xl).
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Here each Xi is the strict transform of Xi−1 after the blow up πi. Note that the set of points of Xl having 
multiplicity b is Sing(Gl) = ∅.

Remark 2.11. Resolution of Rees algebras is known to exists when V is a smooth scheme defined over a 
field of characteristic zero ([26], [27]). In [36] and [8] different algorithms of resolution of Rees algebras are 
presented (see also [22], [21]).

2.12. Hironaka’s order function for Rees algebras. ([23, Proposition 6.4.1]) We define the order of the Rees 
algebra G at ξ ∈ Sing(G) as:

ordξ(G) := inf
l≥0

{
νξ(Il)

l

}
.

This is what we call Hironaka’s order function of G at the point ξ. If G = R[f1W
n1 , . . . , frWnr ] and 

ξ ∈ Sing(G) then it can be shown that ordξ(G) = mini=1,...,r {ordξ(fiWni)}, where ordξ(fiWni) := νξ(fi)
ni

, 
(see [23, Proposition 6.4.1]). Finally, it can be proven that for any point ξ ∈ Sing(G) we have ordξ(G) =
ordξ(G) = ordξ(Diff (G)) (see [23, Remark 3.5, Proposition 6.4 (2)]).

Along this paper we use ‘ν’ to denote the usual order of an element or an ideal at a regular local ring, 
and ‘ord’ for the order of a Rees algebra at a regular local ring.

2.13. Local presentations of the Multiplicity. In the following paragraphs we will see that the constructions 
of Examples 2.6 and 2.10 can be extended to the case in which X is not necessarily a hypersurface. To be 
more precise, in [40] it is proven that for each ξ ∈ Fm(X) there is an (étale) neighborhood U ⊂ X of ξ
which we denote again by X to ease the notation, and an embedding X ⊂ V = Spec(R) for some smooth 
k-algebra R, together with an R-Rees algebra, G, so that

Fm(X) = Sing(G), (2.13.1)

and so that, in addition, given a sequence of blow ups at regular equimultiple centers,

V = V0 V1
π1

. . .
π2

Vl

πl

∪ ∪ ∪
X = X0 X1 . . . Xl

G = G0 G1 . . . Gl

(2.13.2)

the following equality of closed subsets holds:

Fm(Xj) = Sing(Gj), j = 0, 1, . . . , l. (2.13.3)

It is worth mentioning that in fact, the link between Fm(X) and G is much stronger: it can be checked 
that equality (2.13.3) is also preserved after considering local transformations as the ones that will be defined 
in §3.6. Thus the problem of finding a simplification of the multiplicity of an algebraic variety is translated 
into the problem of finding a resolution of a suitable Rees algebra defined on a smooth scheme. The local 
embedding together with the Rees algebra G strongly linked to Fm(X) is what we call a local presentation 
of the multiplicity on X, multX , and we denote it by (V, G). Precise statements about local presentations 
can be found for instance in [15, Part II] or in [35].

Theorem 2.14. [40, §7.1] Let X be a reduced equidimensional scheme of finite type over a perfect field k. 
Then for every point ξ ∈ X there exists a local presentation for the function multX in an (étale) neighborhood 
of ξ.
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We give some ideas about the proof of Theorem 2.14 since we will use them in the proof of Theorem 1.1.

2.15. Some ideas behind the proof of Theorem 2.14. [40, §5, §7] The statement of the theorem is of local 
nature. So, let us assume that X is an affine algebraic variety of dimension d, and let ξ ∈ Fm(X). Then 
it can be shown that, after considering a suitably étale extension of B, which we denote by B again for 
simplicity, we are in the following setting: X = Spec(B), there is a smooth k-algebra, S, and a finite extension 
S ⊂ B of generic rank m, inducing a finite morphism δ : Spec(B) → Spec(S). Under these assumptions, 
B = S[θ1, . . . , θn], for some θ1, . . . , θn ∈ B and some n ∈ N. Observe that the previous extension induces 
a natural embedding X ⊂ V (n+d) := Spec(R), where R = S[x1, . . . , xn]. Let K(S) be the field of fractions 
of S and let Quot(B) be the total quotient ring of B. Now, if fi(xi) ∈ K(S)[xi] denotes the minimal 
polynomial of θi for i = 1, . . . , n, then it can be shown that in fact fi(xi) ∈ S[xi] and as a consequence 
〈f1(x1), . . . , fn(xn)〉 ⊂ I(X), where I(X) is the defining ideal of X in V (n+d). Finally, if each polynomial
fi is of degree li, it is proven that the differential Rees algebra

G(n+d) = Diff (R[f1W
l1 , . . . , fnW

ln ]) (2.15.1)

gives a local presentation of Fm(X) at ξ in V (n+d).

Remark 2.16. Local presentations are not unique. For instance, once a local (étale) embedding X ⊂ V is 
fixed, there may be different OV -Rees algebras representing Fm(X). However, it can be proven that they 
all lead to the same simplification of the multiplicity of X, i.e., they all lead to the same sequence (2.13.2)
with SingGl = ∅ (at least in characteristic zero, see [13], [16] and [23]). Moreover, in [1] it is proven that 
the restriction to X of the Rees algebra G(n+d) defined in (2.15.1) is well defined up to integral closure. 
We denote it by GX and refer to it as the OX-Rees algebra attached to Fm(X). Finally, notice that since 
G(n+d) = ⊕JiW

i is a differential Rees algebra, Sing(G(n+d)) = V (Ji) for all i ≥ 1 (cf. [38, Proposition 3.9]). 
Therefore, if GX = ⊕IiW

i for suitable ideals Ii ⊂ OX , it can be assumed that V (Ii) = Fm(X) for i ≥ 1.

3. Transversality and strong transversality

As indicated in the introduction, we are interested in studying certain finite morphisms between singular 
varieties. We will start by recalling Zariski’s multiplicity formula for finite projections. Let (R, m) be a local 
Noetherian ring and let a ⊂ R be an m-primary ideal. We denote by eR(a) the multiplicity of R with respect 
to the ideal a. The multiplicity of a Noetherian scheme X at a point ξ ∈ X is defined as that of the local 
ring OX,ξ at its maximal ideal. Zariski’s multiplicity formula is stated in the following Theorem:

Theorem 3.1. [42, VIII, Theorem 24, Corollary 1] Let (A, m) be a local domain and let C be a finite extension 
of A. Let K denote the quotient field of A, and let L = K ⊗A C. Let n1, . . . , nr denote the maximal ideals 
of the semi-local ring C, and assume that dimCni

= dimC for i = 1, . . . , r. Then

eA(m)[L : K] =
∑

1≤i≤r

eCni
(mCni

)[ki : k],

where ki is the residue field of Cni
, k is the residue field of (A, m), and [L : K] = dimK L.

Let X be an irreducible algebraic variety over a perfect field k, and let X ′ be an equidimensional algebraic 
variety over k. Denote by K the field of rational functions of X and let L be the total ring of fractions of 
X ′. If β : X ′ → X is a finite and dominant k-morphism, then by Zariski’s formula in Theorem 3.1,

max mult(X ′) ≤ [L : K] · max mult(X). (3.1.1)
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Definition 3.2. [3, Definition 2.5] With the previous notation, we will say that β : X ′ → X is transversal if:

max mult(X ′) = [L : K] · max mult(X). (3.2.1)

Remark 3.3. Assume that we are in the affine case, X = Spec(B) and X ′ = Spec(B′), where B and B′ are 
k-algebras and the finite morphism β : X ′ → X is given by a finite extension B → B′. Let P ∈ Spec(B′)
be a point and set p = P ∩B ∈ Spec(B). Then the equality:

eB′
P
(PB′

P ) = eBp
(pBp)[L : K] (3.3.1)

holds if and only if the following three conditions hold simultaneously:

(i) P is the only prime in B′ dominating p (i.e., B′
P = B′ ⊗B Bp);

(ii) Bp/pBp = B′
P /PB′

P ;
(iii) eB′

P
(pB′

P ) = eB′
P
(PB′

P ).

In particular, condition (3.3.1) necessarily holds for all primes P ⊂ B′ with multiplicity rm, where m is the 
maximum multiplicity in Spec(B), and r = [L : K].

Now, suppose that B and B′ are formally equidimensional locally at any prime. Then, condition (iii) is 
equivalent to saying that pB′

P is a reduction of PB′
P , i.e., that the ideal PB′

P is integral over pB′
P (cf. [34]).

Remark 3.4. Observe that the finite morphism δ : Spec(B) → Spec(S) from §2.15 is transversal with generic 
rank m, the maximum multiplicity of X. Therefore conditions (i)-(iii) from Remark 3.3 hold for all primes 
in Fm(X).

Remark 3.5. If β : X ′ → X is transversal, then it can be shown that:

(1) β(Frm(X ′)) ⊂ Fm(X);
(2) Frm(X ′) is homeomorphic to β(Frm(X ′));
(3) If Y ⊂ Frm(X ′) is an irreducible regular closed subscheme, then β(Y ) ⊂ Fm(X) is an irreducible regular 

closed subscheme;
(4) If Z ⊂ Fm(X) is an irreducible closed regular subscheme, and if β−1(Z)red ⊂ Frm(X ′), then β−1(Z)red

is regular.

See [3, Proposition 2.7 and Corollary 2.8].

3.6. Local transformations. We will see that transversality is stable under permissible blow ups and other 
special morphisms that play an important role in resolution of singularities.

A morphism X1 → X is an Fm-local transformation if it is of one of the following types:

(i) The blow up of X along a regular center Y contained in Fm(X). This will be called an Fm-permissible 
blow up. In this case we will also say that Y is an Fm-permissible center.

(ii) An open restriction, i.e., X1 is an open subscheme of X. In order to avoid trivial transformations, we 
will always require X1 ∩ Fm(X) �= ∅.

(iii) The multiplication of X by an affine line, X1 = X ×A1
k.

Note that, in either case, max mult(X) ≥ max mult(X1). A sequence of transformations,

X = X0 X1
φ1

. . .
φ2

XN

φN

,
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is an Fm-local sequence on X if φi is an Fm-local transformation of Xi−1 for i = 1, . . . , N , and

m = max mult(X0) = . . . = max mult(XN−1) ≥ max mult(XN ).

The morphisms defined in (i)-(iii) above are the starting point for the definition of some of the fundamental 
invariants in resolution related to the so called Hironaka’s trick [22, Proposition 7.3].

Theorem 3.7. [3, Theorem 4.4, Remark 4.5]. Let X be an algebraic variety with maximum multiplicity m
and let β : X ′ → X be a transversal morphism of generic rank r. Then:

(i) An Frm-permissible center on X ′, Y ′ ⊂ Frm(X ′), induces an Fm-permissible center on X, Y = β(Y ′) ⊂
Fm(X), and a commutative diagram of blow ups of X at Y , X ← X1, and of X ′ at Y ′, X ′ ← X ′

1, as 
follows,

X ′

β

X ′
1

β1

X X1,

where β1 is finite of generic rank r. In addition, if Frm(X ′
1) �= ∅, then Fm(X1) �= ∅, and the morphism 

β1 is transversal.
(ii) Any Frm-local sequence on X ′, X ′ ← X ′

1 ← · · · ← X ′
N−1 ← X ′

N , induces Fm-local sequence on X, and 
a commutative diagram as follows,

X ′

β

X ′
1

β1

· · · X ′
N−1

βN−1

X ′
N

βN

X X1 · · · XN−1 XN ,

where each βi is finite of generic rank r. Moreover, if Frm(X ′
N ) �= ∅, then Fm(XN ) �= ∅, and the 

morphism βN is transversal.

It is natural to study conditions under which, given a transversal morphism β : X ′ → X, the set Frm(X ′)
is mapped surjectively onto Fm(X), in such a way that Frm(X ′) and Fm(X) are homeomorphic and, in 
addition, the condition is after considering sequences of Fm-permissible blow ups. In [3] these morphisms 
are called strongly transversal:

Definition 3.8. [3, Definition 4.8] We will say that a transversal morphism of generic rank r, β : X ′ → X, 
is strongly transversal if Frm(X ′) is homeomorphic to Fm(X) via β, and every Frm-local sequence over X ′, 
X ′ ← X ′

1 ← · · · ← X ′
N , induces an Fm-local sequence over X and a commutative diagram as follows,

X ′

β

X ′
1

β1

· · · X ′
N−1

βN−1

X ′
N

βN

X X1 · · · XN−1 XN ,

(3.8.1)

where each βi is finite of generic rank r and induces a homeomorphism between Frm(X ′
i) and Fm(Xi). In 

this case we will also say that Frm(X ′) is strongly homeomorphic to Fm(X). Note in particular that this 
definition yields Frm(X ′

N ) = ∅ if and only if Fm(XN ) = ∅.
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Observe that if β : X ′ → X is strongly transversal then a simplification of the multiplicity of X ′ induces 
a simplification of the multiplicity of X and vice versa.

Strong transversality is closely related to asking that the extension of Rees algebras GX ⊂ G′
X be finite; 

moreover, when the characteristic is zero, we have an equivalent condition. In fact, the following theorem 
holds:

Theorem 3.9. [3, Theorem 7.2] Let β : X ′ → X be a transversal morphism of generic rank r between two 
singular algebraic varieties defined over a perfect field k. Then:

(1) If β : X ′ → X is strongly transversal then the inclusion GX ⊂ GX′ is finite;
(2) If k is a field of characteristic zero, then the converse holds. Namely, if the inclusion GX ⊂ GX′ is finite, 

then β : X ′ → X is strongly transversal.

Thus, when the characteristic is positive, strong transversality implies that GX′ is integral over GX but 
the converse may fail (see [3, Example 7.5] for a counterexample in the latter case). It is natural to ask what 
piece of information is encoded if the containment GX ⊂ GX′ is finite.

Notice that in Theorem 1.1 the hypothesis is only that Frm(X ′) is homeomorphic to Fm(X). This is 
weaker than saying that the sets Frm(X ′) and Fm(X) are strongly homeomorphic.

Remark 3.10. In some of our arguments we will need to work in étale topology, and it is worth noticing 
that transversality and strong transversality are preserved after considering étale change of basis. Suppose 
we are given a transversal morphism X ′ → X and an étale morphism X̃ → X. Then it can be checked that 
the induced morphism X̃ ×X X ′ → X̃ is transversal again (in the sense that equality (3.2.1) is preserved by 
base change, replacing K by the total ring of fractions of X̃).

Remark 3.11. Recall that the Rees algebras GX and GX′ are only defined locally in étale topology. However, 
as we will see in section 5, given a point ξ ∈ Fm(X), one can find an étale neighborhood of X at ξ, 
X̃ → X, where the intrinsic algebra G

X̃
associated to X̃, as well as the intrinsic algebra G

X̃′ associated 
to X̃ ′ = X ′ ×X X̃ are defined. It is in this setting that there is an inclusion G

X̃′ ⊂ G
X̃

, and in which we 
compare these algebras. See also [3, Remark 7.3]. Also, as indicated above, transversality is preserved by 
étale base change.

4. Arcs, jets and Nash multiplicity sequences

Definition 4.1. Let Z be a scheme over a field k, and let K ⊃ k be a field extension. An m-jet in Z is a 
morphism ϑ : Spec

(
K[[t]]/〈tm+1〉

)
→ Z for some m ∈ N.

If Sch/k denotes the category of k-schemes and Set the category of sets, then the contravariant functor:

Sch/k −→ Set
Y 	→ Homk(Y ×Spec(k) Spec(k[[t]]/〈tm+1〉), Z)

is representable by a k-scheme Lm(Z), the space of m-jets over Z. If Z is of finite type over k, then so 
is Lm(Z) (see [41]). For each pair m ≥ m′ there is the (natural) truncation map Lm(Z) → Lm′(Z). In 
particular, for m′ = 0, Lm′(Z) = Z and we will denote by Lm(Z, ξ) the fiber of the (natural) truncation 
map over a point ξ ∈ Z. Finally, if Z is smooth over k then Lm(Z) is also smooth over k (see [28]).

By taking the inverse limit of the Lm(Z), the arc space of Z is defined,

L(Z) := limLm(Z).

←
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This is the scheme representing the functor (see [7]):

Sch/k −→ Set
Y 	→ Homk(Y ×̃Spf(k[[t]]), Z).

A K-point in L(Z) is an arc of Z and can be seen as a morphism ϕ : Spec(K[[t]]) → Z for some K ⊃ k. 
The image by ϕ of the closed point is called the center of the arc ϕ. If the center of ϕ is ξ ∈ Z then it 
induces a k-homomorphism OZ,ξ → K[t]] which we will denote by ϕ too; in this case the image by ϕ of the 
maximal ideal, ϕ(mξ), generates an ideal 〈tl〉 ⊂ K[[t]] and then we will say that the order of ϕ is l and we 
will denote it by νt(ϕ). We will denote by L(Z, ξ) the set of arcs in L(Z) with center ξ. The generic point 
of ϕ in Z is the point in Z determined by the kernel of ϕ.

Definition 4.2. An arc ϕ : Spec(K[[t]]) → Z is thin if it factors through a proper closed subscheme of Z. 
Otherwise we say that ϕ is fat.

Nash multiplicity sequences

Let X be an algebraic variety defined over a perfect field k and let ξ ∈ X be a (closed) point. Assume 
that X is locally a hypersurface in a neighborhood of ξ, X ⊂ V , where V is smooth over k, and work at 
the completion ÔV,mξ

. Under these hypotheses, in [30], Lejeune-Jalabert introduced the Nash multiplicity 
sequence along an arc ϕ ∈ L(X, ξ) (in fact, the hypotheses in [30] are weaker, but we are interested in working 
over perfect fields). The Nash multiplicity sequence along ϕ is a non-increasing sequence of non-negative 
integers

m0 ≥ m1 ≥ . . . ≥ ml = ml+1 = ... ≥ 1, (4.2.1)

where m0 is the usual multiplicity of X at ξ, and the rest of the terms are computed by considering suitable 
stratifications on Lm(X, ξ) defined via the action of certain differential operators on the fiber of the jets 
spaces Lm(Spec(ÔV,mξ

)) over ξ for m ∈ N. The sequence (4.2.1) can be interpreted as the multiplicity of X
along the arc ϕ: thus it can be seen as a refinement of the usual multiplicity. The sequence stabilizes at the 
value given by the multiplicity ml of X at the generic point of the arc ϕ in X (see [30, §2, Theorem 5]).

In [24], Hickel generalized Lejeune’s construction to the case of an arbitrary variety X, and in [25] he 
presented the sequence (4.2.1) in a different way which we will explain along the following lines.

Since the arguments are of local nature, let us suppose that X = Spec(B) is affine. Let ξ ∈ X be a point 
(which we may assume to be closed) of multiplicity m, and let ϕ : B → K[[t]] be an arc in X centered at 
ξ. Consider the natural morphism

Γ0 = ϕ⊗ i : B ⊗k k[t] → K[[t]],

which is additionally an arc in X0 = X ×A1
k centered at the point ξ0 = (ξ, 0) ∈ X0. This arc determines a 

sequence of blow ups at points:

Spec(K[[t]])

Γ0
Γ1 Γl

X0 = X ×A1
k X1

π1
. . .

π2
Xl

πl

. . .

ξ0 = (ξ, 0) ξ1 . . . ξl . . .

(4.2.2)
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Here, πi is the blow up of Xi−1 at ξi−1, where ξi = Im(Γi) ∩ π−1
i (ξi−1) for i = 1, . . . , l, . . ., and Γi is 

the (unique) arc in Xi with center ξi which is obtained by lifting Γ0 via the proper birational morphism 
πi ◦ . . . ◦ π1. This sequence of blow ups defines a non-increasing sequence

m = m0 ≥ m1 ≥ . . . ≥ ml = ml+1 = ... ≥ 1, (4.2.3)

where mi corresponds to the multiplicity of Xi at ξi for each i = 0, . . . , l, . . .. Note that m0 is nothing but 
the multiplicity of X at ξ, and it is proven that for hypersurfaces the sequence (4.2.3) coincides with the 
sequence (4.2.1) above. We will refer to the sequence of blow ups in (4.2.2) as the sequence of blow ups 
directed by ϕ.

The persistance

Definition 4.3. Let ϕ be an arc in X with center ξ ∈ X, a point of multiplicity m > 1. Suppose that the 
generic point of ϕ is not contained in the stratum of points of multiplicity m of X. We denote by ρX,ϕ the 
minimum number of blow ups directed by ϕ which are needed to lower the Nash multiplicity of X at ξ. 
That is, ρX,ϕ is such that m = m0 = . . . = mρX,ϕ−1 > mρX,ϕ

in the sequence (4.2.3) above. We call ρX,ϕ

the persistance of ϕ (we will see in Remark 4.10 that the persistance is always finite).

Remark 4.4. Using Hickel’s construction, it can be checked that the first index i ∈ {1, . . . , l + 1} for which 
there is a strict inequality in (4.2.3) (i.e., the first index i for which m0 > mi) can be interpreted as the 
minimum number of blow ups needed to separate the graph of ϕ from the stratum of points of multiplicity 
m0 of X0 (actually, to be precise, this statement has to be interpreted in B ⊗K[[t]], where the graph of ϕ
is defined).

Next we define a normalized version of ρX,ϕ in order to avoid the influence of the order of the arc in the 
number of blow ups needed to lower the Nash multiplicity.

Definition 4.5. For a given arc ϕ : Spec(K[[t]]) → X with center ξ ∈ X, we will write

ρ̄X,ϕ = ρX,ϕ

νt(ϕ) .

Definition 4.6. For each point ξ ∈ X we define the functions:

ρX : L(X, ξ) → Q≥0 ∪ {∞} and ρX : L(X, ξ) → Q≥0 ∪ {∞}
ϕ 	→ ρX,ϕ ϕ 	→ ρX,ϕ.

(4.6.1)

Remark 4.7. Many of our arguments will be developed, locally, in an étale neighborhood of a point ξ ∈ X, 
but the persistance is stable after considering étale morphisms. In fact the whole sequence {mi}i≥0 in (4.2.3)
does not change in an étale neighborhood of ξ ∈ X in the following sense. Suppose μ : X̃ → X is an étale 
morphism with μ(ξ̃) = ξ, and let ϕ : Spec(K[[t]]) → X be an arc with center ξ. Then there is a lifting with 
center ξ̃, ϕ̃ : Spec(K̃[[t]]) → X̃, where K̃ is a separable extension of K. If the Nash multiplicity sequence 
for the arc ϕ̃ is {m̃i}i≥0, and the Nash multiplicity sequence for ϕ is {mi}i≥0, then it can be checked that 
mi = m̃i for all i ≥ 0. In particular the persistance of ϕ is the same as the persistance of ϕ̃, and so does 
the normalized persistance at ϕ and ϕ̃, i.e., ρX,ϕ = ρ

X̃,ϕ̃
and ρX,ϕ = ρ

X̃,ϕ̃
. We refer to [9, Remark 2.8] for 

full details.

The Q-persistance
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Definition 4.8. Let ϕ be an arc in X with center ξ ∈ X, a point of multiplicity m > 1, ϕ : Spec(K[[t]]) −→ X. 
Consider the family of arcs given as ϕn = ϕ ◦ in for n > 1, where i∗n : K[[t]] −→ K[[tn]] is the K-morphism 
that maps t to tn. Then the Q-persistance of ϕ, rX,ϕ, is defined as the limit:

rX,ϕ := lim
n→∞

ρX,ϕn

n
. (4.8.1)

And the normalized Q-persistance of ϕ is:

r̄X,ϕ := rX,ϕ

νt(ϕ) = 1
νt(ϕ) · lim

n→∞
ρX,ϕn

n
. (4.8.2)

As we will see in Remark 4.10 below, the Q-persistance of ϕ can be interpreted as the order of contact 
of the arc ϕ with the stratum of multiplicity m0 of the variety X0 (see expression (4.10.1)). There we will 
also justify that both limits (4.8.1) and (4.8.2) exist.

Definition 4.9. For each point ξ ∈ X we define the functions:

rX : L(X, ξ) → Q≥0 ∪ {∞} and rX : L(X, ξ) → Q≥0 ∪ {∞}
ϕ 	→ rX,ϕ ϕ 	→ rX,ϕ.

(4.9.1)

Remark 4.10. Let ϕ ∈ L(X, ξ) and suppose that GX is defined on X. Then, it can be shown that:

rX,ϕ = ordt(ϕ(GX)) ∈ Q≥1, (4.10.1)

and hence,

r̄X,ϕ = ordt(ϕ(GX))
νt(ϕ) ∈ Q≥1, (4.10.2)

where, if we assume that GX is generated by g1W
b1 , . . . , grW br in some affine chart Spec(B) of X containing 

the center of the arc ϕ : B → K[[t]], then

ϕ(GX) := K[[t]][ϕ(g1)W b1 , . . . , ϕ(gr)W br ] ⊂ K[[t]][W ]. (4.10.3)

See [33, Corollary 4.3.4], and [10, Proposition 6.8, Remark 6.9 and §7]. From here it can be checked that, if 
the generic point of the arc ϕ is not contained in Fm(X) = Sing(G(n)), then ϕ(GX) ⊂ K[[t]] is a non zero 
Rees algebra. As a consequence, rX,ϕ is finite.

Now, notice that the expression (4.10.1) can be computed in an étale neighborhood X̃ of ξ ∈ X where 
GX is defined (see 2.15). If ϕ ∈ L(X, ξ) then there is always a lifting ϕ̃ ∈ L(X̃, ξ̃) as in Remark 4.7 with the 
same Nash multiplicity sequence. Hence,

r̄X,ϕ = 1
νt(ϕ) · lim

n→∞
ρX,ϕn

n
= 1

νt(ϕ̃) · lim
n→∞

ρX,ϕ̃n

n
= ordt(ϕ̃(GX))

νt(ϕ̃) = r̄
X̃,ϕ̃

. (4.10.4)

Persistance vs. Q-persistance

The functions introduced in Definitions 4.6 and 4.9 are closely related. In fact, if we interpret them as 
functions on L(X, ξ) then these two functions provide the same information about arcs in L(X, ξ) since:

ρX,ϕ = �rX,ϕ� and rX,ϕ = lim ρX,ϕn ∈ Q≥1, (4.10.5)

n→∞ n
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where for each n ≥ 1, ϕn = ϕ ◦ in and i∗n : K[[t]] −→ K[[t]] is the K-morphism mapping t to tn. See 
[10, Proposition 6.10 and §7] [11]). In particular, this also shows that ρX,ϕ is a finite number when the 
multiplicity of X at the generic point of ϕ is different from the multiplicity of X at the center of ϕ.

Nash multiplicity sequences and constructive resolution

Hironaka’s order function ord(d)
X (ξ) can be defined whenever k is a perfect field (in positive characteristic 

it does not provide enough information to define a resolution function). In [11] and [10] with B. Pascual-
Escudero, we showed that ord(d)

X (ξ), can be read using Nash multiplicity sequences: from the set of arcs 
with center ξ, L(X, ξ).

Theorem 4.11. [11, Theorem 3.6], [10, Theorem 7.1] Let X be a d-dimensional algebraic variety defined over 
a perfect field k, and let ξ ∈ Fm(X). Then

ord(d)
X (ξ) ≤ inf

ϕ∈L(X,ξ)

{
1

νt(ϕ) lim
n→∞

ρX,ϕn

n

}
. (4.11.1)

Moreover, the infimum is a minimum, i.e., there is some arc η ∈ L(X, ξ) such that:

ord(d)
X (ξ) = 1

νt(η)
lim
n→∞

ρX,ηn

n
. (4.11.2)

Note that for the definition of ord(d)
X (ξ) (2.14), it is necessary to find a suitable étale neighborhood of ξ, 

a local embedding in a smooth scheme, and the construction of a convenient Rees algebra. A consequence 
of Theorem 4.11 is that ord(d)

X (ξ) can be defined without using étale topology and only studying properties 
of its space of arcs. Moreover the arc η realizing the minimum in (4.11.2) can be chosen, and constructed 
explicitly, being fat and divisorial [9, Theorem 6.3]. In particular, the refinement of the multiplicity for the 
resolution function in (1.1.2) can be obtained by studying sequences of Nash multiplicities sequences in 
L(X).

On the other hand, Theorem 4.11 also gives some insight on a possible meaning of Hironaka’s order 
function in positive characteristic, which is defined whenever k is a perfect field: the theorem says that 
Hironaka’s order gives information on infinitesimal multiplicities, and, conversely, Hironaka’s order at a 
given point is determined by the infinitesimal multiplicities along arcs centered at that point.

4.12. Integral closure of Rees algebras and arcs. Let k be a field, let B be a (not necessarily smooth) 
reduced excellent k-algebra, and let G be a Rees algebra over B. Set X = Spec(B). For any arc ϕ ∈ L(X), 
ϕ : B → K[|t|], with k ⊂ K a extension field, the image via ϕ of G generates a Rees algebra over K[|t]]. It 
can be checked (see [10, §5.6]) that for all arcs ϕ ∈ L(X),

ordt(ϕ(G)) = ordt(ϕ(G)). (4.12.1)

On the other hand, given two Rees algebras G and G′ on X, it can be shown that if for any fat arc 
ϕ ∈ L(X), ordt(ϕ(G)) = ordt(ϕ(G′)), then G = G′. This follows from the fact that there are ideals I, J ⊂ OX

such that, up to integral closure it can be assumed that G = OX [IW b] and G = OX [JW b] for some 
positive integer b (see Remark 2.4). Thus G = G′ if an only if I = J . Now our hypothesis implies that 
νt(ϕ(G))/b = νt(ϕ(G′))/b for all fat arcs ϕ ∈ L(X). And now the claim follows from the valuative criterion 
for integral closure of ideals.
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5. Proof of Theorem 1.1

Proof. The statement is of local nature so we may assume that X = Spec(B) and X ′ = Spec(B′) are an 
affine algebraic varieties of dimension d. Let ξ′ ∈ Frm(X ′), and let ξ = β(ξ′). Then ξ ∈ Fm(X). Arguing 
as in 2.15, after considering a suitably defined étale extension of B, which we denote by B again, we may 
assume that there is a finite morphism δ : X → Spec(S) = V (d), of generic rank m, with S a smooth 
k-algebra of dimension d, an immersion X ↪→ V (n+d) = Spec(S[x1, . . . , xn]) and an OV (n+d)-Rees algebra 
G(n+d) (see (2.15.1)), which we assume to be differentially closed, representing the multiplicity of X. The 
étale extension of B induces an étale extension of B′ which we denote by B′ too. Recall that transversality 
is preserved by étale morphisms (see Remark 3.10). Thus, since X ′ → X is transversal, it follows that the 
induced extension S ⊂ B′ is transversal too. Hence we have the following diagram:

R′ = S[x1, . . . , xn, xn+1, . . . , xn′ ] A′ B′ = S[θ1, . . . , θn, θn+1, . . . , θn′ ]

R = S[x1, . . . , xn] A B = S[θ1, . . . , θn]

β∗

S

α∗

δ∗

(5.0.1)

where A = S[x1, . . . , xn]/〈f1, . . . , fn〉, A′ = S[x1, . . . , xn, xn+1, . . . , xn′ ]/〈f1, . . . , fn, fn+1, . . . , fn′〉 and each 
fi(xi) ∈ S[xi] is the minimum polynomial of θi over K(S) for i = 1, . . . , n, n + 1, . . . , n′. Therefore, the 
differential R′-Rees algebra

G(d+n′) := Diff (R′[f1W
l1 , . . . , fnW

ln , fn+1W
ln+1 , . . . , fn′W ln′ ]) (5.0.2)

and the differential R-Rees algebra

G(d+n) := Diff (R′[f1W
l1 , . . . , fnW

ln ]) (5.0.3)

represent the maximum multiplicity of X ′ and X respectively. Observe that there is a natural inclusion of 
R′-Rees algebras, G(d+n)R′ ⊂ G(d+n′), that induces a natural inclusion GX ⊂ GX′ .

Now, by Remark 3.3, mδ(ξ)B is a reduction of mξ, and mξB
′ is a reduction of mξ′ . Thus, for an arc 

ϕ′ ∈ L(X ′, ξ′)

νt(ϕ′) = νt(β∞(ϕ′)). (5.0.4)

(⇒) Suppose that GX ⊂ GX′ is a finite extension of Rees algebras. Then by 4.12, for any arc ϕ′ ∈ L(X ′)
with center a point ξ′ ∈ Frm(X ′), ordt(β∞(ϕ′)(GX)) = ordt(ϕ′(GX′)). Thus the conclusion follows from 
(4.10.1) and (4.10.5).

(⇐) Assume now that for each arc ϕ′ ∈ L(X ′) with center contained in Frm(X ′), the equality

ρX′,ϕ′ = ρX,β∞(ϕ′)

holds. Then by (4.10.5), for all arcs with center in Frm(X ′),

rX′,ϕ′ = rX,β∞(ϕ′).

From here it follows that for these arcs, ordt(β∞(ϕ′)(GX)) = ordt(ϕ′(GX′)). On the other hand, if the center 
of an arc ϕ′ ∈ L(X ′) is not contained in Frm(X ′), then by the hypotheses of the theorem, the center of 
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β∞(ϕ′) is not in Fm(X), and by Remark 2.16, ordt(ϕ′(GX′)) = ordt(β∞(ϕ′)(GX)) = 0. Thus the conclusion 
follows from 4.12. �
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