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Abstract
Let E ∗ G be a crossed product of a division ring E and a locally indicable group
G. Hughes showed that up to E ∗ G-isomorphism, there exists at most one Hughes-
free division E ∗G-ring. However, the existence of a Hughes-free division E ∗G-ring
DE∗G for an arbitrary locally indicable groupG is still an open question. Nevertheless,
DE∗G exists, for example, ifG is amenable orG is bi-orderable. In this paper we study,
whether DE∗G is the universal division ring of fractions in some of these cases. In
particular, we show that if G is a residually-(locally indicable and amenable) group,
then there existsDE[G] and it is universal. In Appendix we give a description ofDE[G]
when G is a RFRS group.

Keywords Locally indicable groups · Universal division ring of fractions ·
Hughes-free division ring

Mathematics Subject Classification Primary 16S35 · 20F65; Secondary 12E15 ·
16S34 · 16K40

1 Introduction

A division R-ring φ : R → D is called epic if φ(R) generates D as a division ring.
Each division R-ring D induces a Sylvester matrix rank function rkD on R. Given
a ring R, Cohn introduced the notion of universal division R-ring (see, for example,
[4, Section 7.2]). In the language of Sylvester rank functions, an epic division R-ring
D is universal if for every division R-ring E , rkD ≥ rkE . By a result of Cohn [3,
Theorem 4.4.1], the universal epic division R-ring is unique up to R-isomorphism.
The universal division R-ringD is called universal division ring of fractions of R if
D is epic and rkD is faithful (that is R is embedded in D).
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If R is a commutative domain, then the field of fractionsQ(R) is the universal divi-
sion R-ring. The situation is much more complicated in the non-commutative setting.
For example, Passman [24] gave an example of a Noetherian domain which does not
have a universal division ring of fractions. Moreover, we show in Proposition 4.1 that
the group algebra Q[H ] does not have a universal division ring of fractions if H is
not locally indicable. In this paper we want to study whether a group algebra or, more
generally, a crossed product E ∗G, where E is a division ring, has a universal division
ring of fractions. Thus, from the previous observation it is natural to consider the case
of group algebras and crossed products E ∗ G where G is locally indicable.

Let E be a division ring and G a locally indicable group. Hughes [11] introduced a
condition on an epic division E ∗G-rings and showed that up to E ∗G-isomorphism,
there exists at most one epic division E ∗ G-ring satisfying this condition. We call
this division ring, the Hughes-free division E ∗ G-ring and denote it by DE∗G . For
simplicity, in this paper the Sylvestermatrix rank function rkDE∗G is denoted by rkE∗G .
We say that a locally indicable group G is Hughes-free embeddable if E ∗ G has a
Hughes-free division ring for every division ring E and every crossed product E ∗G.

The existence of a Hughes-free division E ∗G-ring is known for several families of
locally indicable groups. In the case of amenable locally-indicable groupsG,DE∗G =
Q(E ∗ G) is the classical ring of fractions of E ∗ G, and in the case of bi-orderable
groups G, DE∗G is constructed using the Malcev-Neumann construction [20,23] (see
[8]). The existence of DK [G] is also known for group algebras K [G], where K is of
characteristic 0 and G is an arbitrary locally indicable group [15].

In [15, Theorem 8.1] it is shown that if there exists a universal epic division E ∗G-
ring and a Hughes-free division E ∗ G-ring, they are isomorphic as E ∗ G-rings.
Following Sánchez (see [25, Definition 6.18]), we say that a locally indicable groupG
is aLewin group if it is Hughes-free embeddable and for all possible crossed products
E ∗G, where E is a division ring,DE∗G is universal (in Sect. 3.3 we will see that this
definition is equivalent to the Sánchez one). We conjecture that all locally indicable
groups are Lewin.

Conjecture 1 Let G be a locally indicable group, E a division ring and R = E ∗ G a
crossed product of E and G. Then

(A) the Hughes-free division R-ring DR exists and
(B) it is universal division ring of fractions of R.

We want to notice that at this moment it is also an open problem of whether the
universal division E ∗ G-ring of fractions (if exists) should be Hughes-free.

In this paper we study part (B) of the conjecture in some cases where part (A) is
known. Using Theorem 3.7 we can show that Conjecture 1 is valid for the following
locally indicable groups.

Theorem 1.1 Locally indicable amenable groups, residually-(torsion-free nilpotent)
groups and free-by-cyclic groups are Lewin groups.

In the case of group algebras we can prove a stronger result. The metric space Gn of
marked n-generated groups consists of pairs (G; S), where G is a group and S is an
ordered generating set of G of cardinality n. Such pairs are in 1-to-1 correspondence
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with epimorphisms Fn → G, where Fn is the free group of rank n, and thus the set
Gn can be identified with the set of all normal subgroups of F = Fn . The distance
between two normal subgroups M1 and M2 of F is defined by

d(M1, M2) = inf{e−k : M1 ∩ Bk(1F ) = M2 ∩ Bk(1F )},

where Bk(1F ) denotes the closed ball of radius k and center 1F .
We say that a sequence of n-generated groups {Gi }i∈N converges to an n-generated

group G if (Gi ; Si ) ∈ Gn converge to (G; S) ∈ Gn for some generating sets Si of Gi

(i ∈ N) and S of G, respectively.

Theorem 1.2 Let F be a free group freely generated by a finite set S and M and
{Mi }i∈N normal subgroups of F. We put G = F/M and Gi = F/Mi and assume that
(Gi , SMi/Mi ) converges to (G, SM/M). Assume that for all i , Gi is locally indicable
and DE[Gi ] exists. Then G is locally indicable, DE[G] exists and

rkE[G] = lim
i→∞ rkE[Gi ]

as Sylvester matrix rank functions on E[F].
As a corollary we obtain the following consequence.

Corollary 1.3 Let G be a residually-(locally indicable and amenable) group and let E
be a division ring. Then DE[G] exists and it is the universal division ring of fractions
of E[G].

The corollary can be applied to RFRS groups, because they are residually poly-Z.
The notion of RFRS groups arose in a work of Agol [1], in connection with the virtual-
fibering of 3-manifolds [2], and it abstracts a critical property of the fundamental
groups of special cube complexes. Kielak [18] realizes that the main result of [1] can
be stated not only for 3-manifold groups but also for virtually RFRS groups. The
proof of Kielak uses a new description of DQ[G] when G is RFRS. In Sect. 5 we give
a description of DE[G] when G is a RFRS group that generalizes the result of Kielak.

Let us consider now the case of group algebras K [G] where K is a subfield of C

and G is locally indicable. In this case it was shown in [15] that the division closure
D(K [G],U(G)) of K [G] in the algebra of affiliated operators U(G) is a Hughes-free
division K [G]-ring. We denote by rkG the von Neumann rank function (its definition
is recalled in Sect. 2.6), and by rk{1} the Sylvester matrix rank function on Q[G]
induced by the homomorphism Q[G] → Q that sends all the elements of G to 1 (in
the previous notation rk{1} is rkQ). In view of Conjecture 1, it is natural to ask for
which groups G, rkG ≥ rk{1}. It follows from [26, Proposition 1.9] that if a group G
satisfies the condition rkG ≥ rk{1}, then G is locally indicable. Thus, we propose also
a weak version of Conjecture 1.

Conjecture 2 Let G be locally indicable group. Then rkG ≥ rk{1} as Sylvester matrix
rank functions on Q[G].

From the discussion in the paragraph before the conjecture, we conclude that Corol-
lary 1.3 has the following consecuence.
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Corollary 1.4 Let G be a residually-(locally indicable and amenable) group. Then
rkG ≥ rk{1} as Sylvester matrix rank functions on Q[G].

Combining this result with the mentioned above result of Kielak [18], we obtain
the following corollary.

Corollary 1.5 Let G be a finitely generated group which is virtually RFRS. Then the
following are equivalent.

(1) G is virtually fibered, in the sense that it admits a virtual map onto Z with finitely
generated kernel.

(2) G admits a virtual map onto Z whose kernel has finite first Betti number.

Our next result is another consequence of Corollary 1.4 that generalizes a result of
Wise [28, Theorem 1.3],

Corollary 1.6 Let X be a compact CW-complex with π1X non-trivial residually-
(locally indicable and amenable) group. Then

b(2)
1 (˜X) ≤ b1(X) − 1 and b(2)

p (˜X) ≤ bp(X) if p ≥ 2.

The paper is structured as follows. We introduce the basic notions in Sect. 2. In
Sect. 3, we prove Theorem 1.1, Theorem 1.2 and Corollary 1.3. In Sect. 4 we study the
consequences of the condition rkG ≥ rk{1} and, in particular, we prove Corollary 1.5
and Corollary 1.6. In Sect. 5 we give an alternative description of the division ring
DE[G] when G is RFRS and E is a division ring.

2 Preliminaries

2.1 Notation and definitions

All rings in this paper are unitary and ring homomorphisms send the identity element
to the identity element. By a module we will mean a left module. Let G be a group
with trivial element e. We say that a ring R is G-graded if R is equal to the direct
sum ⊕g∈G Rg and RgRh ⊆ Rgh for all g and h in G. If for each g ∈ G, Rg contains
an invertible element ug , then we say that R is a crossed product of Re and G and
we will write R = S ∗ G if Re = S. In the following if H is a subgroup of G, S ∗ H
will denote the subring of R generated by S and {uh : h ∈ H}.

A ring R may have several different G-gradings. It will be always clear from the
contextwhatG-gradingweuse.However, under some conditions the grading is unique.
Assume that R ∼= E ∗G, where E is a division ring and G is locally indicable, then by
[9], the invertible elements U (R) of R are

⋃

g∈G Rg \ {0}. Hence Re is the maximal
subring in U (R) ∪ {0} and G ∼= U (R)/(Re \ {0}). Thus, R has a unique grading with
Re is a division ring and G is locally indicable.

An R-ring is a pair (S, φ) where φ : R → S is a homomorphism. We will often
omit φ if it is clear from the context.
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2.2 Ordered groups

A total order  on a group G is left-invariant if for any a, b, g ∈ G, if a  b then
ga  gb. It is bi-invariant if, moreover we have ag  bg.

Let  be a left-invariant order on a group G. A subgroup H is called convex if
H contains every element g lying between any two elements of H (h1  g  h2
with h1, h2 ∈ H ). We say that  is Conradian if for all elements f , g � 1, there
exists a natural number n such that f gn � g. In fact, one may actually take n = 2 ([6,
Proposition3.2.1]).Recall that a groupG is locally indicable if everyfinitely generated
non-trivial subgroup of G has an infinite cyclic quotient. A useful characterization of
locally indicable groups says that they are the groups admitting a Conradian order
([5]). We will need the following important property of a Conradian order.

Proposition 2.1 [6, Corollary 3.2.28] Let (G,) be a group with a Conradian order
and let N be the proper maximal convex subgroup of G. Then there exists an order
preserving homomorphism φ : G → R such that N = ker φ.

2.3 Hughes-free division rings

Let E be a division ring and G a locally indicable group. Let ϕ : E ∗ G → D be a
homomorphism from E ∗ G to a division ring D. We say that a division E ∗ G-ring
(D, ϕ) is Hughes-free if
(1) D is the division closure of ϕ(E ∗ G) (D is epic).
(2) For every non-trivial finitely generated subgroup H of G, a normal subgroup N

of H with H/N ∼= Z, and h1, . . . , hn ∈ H in distinct cosets of N , the sum
DN ,Dϕ(uh1) + · · · + DN ,Dϕ(uhn ) is direct. (Here DN ,D = D(ϕ(E ∗ N ),D) is
the division closure of ϕ(E ∗ N ) in D.)

Hughes [11] (see also [7]) showed that up to E ∗ G-isomorphism there exists at most
one Hughes-free division ring. We denote it byDE∗G . The uniqueness of Hughes-free
division rings implies that for every subgroup H of G, DH ,DE∗G is Hughes-free as a
division E ∗ H -ring.

Gräter showed in [8, Corollary 8.3] thatDE∗G (if it exists) is stronglyHughes-free,
that it satisfies the following additional conition:

(2’) For every non-trivial subgroup H of G, a normal subgroup N of H and
h1, . . . , hn ∈ H in distinct cosets of N , the sum DN ,DE∗Gϕ(uh1) + · · · +
DN ,DE∗Gϕ(uhn ) is direct.

In particular, this implies the following result thatwewill use oftenwithoutmentioning
it explicitly.

Proposition 2.2 Let G be a locally indicable group, N a normal subgroup of G and E
a division ring. Assume that for a crossed product E ∗ G, DE∗G exists. Then the ring
R generated by DN ,DE∗G and G has structure of a crossed product DE∗N ∗ (G/N ).
In particular,

(1) if N is of finite index in G, then DE∗G = DE∗N ∗ (G/N ) and
(2) if G/N is abelian, DE∗G is isomorphic to the classical Ore ring of fractions of

DE∗N ∗ (G/N ).
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2.4 Free division E ∗ G-ring of fractions

Let G be group with a Conradian left-invariant order  (so, G is locally indicable).
Let E be a division ring. Let ϕ : E ∗ G → D be a homomorphism from a crossed
product E ∗ G to a division ring D. We say that a division E ∗ G-ring (D, ϕ) is free
with respect to  if

(1) D is the division closure of ϕ(E ∗ G).
(2) For every subgroup H of G, and the maximal proper convex subgroup N of H

(which is normal by Proposition 2.1), and h1, . . . , hn ∈ H in distinct cosets of N ,
the sum DN ,Dϕ(uh1) + · · · + DN ,Dϕ(uhn ) is direct.

This notion was introduced by Gräter in [8].

Remark 2.3 Notice that in part (2) of the definition, we also can assume that H is
finitely generated. Indeed, assume (2) holds for finitely generated subgroups, but for
some H and h1, . . . , hn , there are d1, . . . , dn ∈ DN ,D, not all equal to zero, such that
d1ϕ(uh1) + · · · + dn(uhn ) = 0. Then we can find a finitely generated subgroup of
N ′ of N such that d1, . . . , dn ∈ DN ′,D. Let H ′ be the subgroup of G generated by
h1, . . . , hn and N ′. Since n ≥ 2, N ∩ H ′ is the maximal convex subgroup of H ′. This
contradicts our assumption that (2) holds for H ′.

Gräter proved the following result.

Proposition 2.4 [8, Corollary 8.3] Let G be a group with a Conradian left-invariant
order  and let E be a division ring. A division E ∗ G-ring is free with respect to 
if and only if it is Hughes-free (and so, it is E ∗ G-isomorphic to DE∗G).

2.5 Sylvester matrix rank functions

Let R be a ring. A Sylvester matrix rank function rk on R is a function that assigns a
non-negative real number to each matrix over R and satisfies the following conditions.

(SMat1) rk(M) = 0 if M is any zero matrix and rk(1) = 1;
(SMat2) rk(M1M2) ≤ min{rk(M1), rk(M2)} for any matrices M1 and M2 which can

be multiplied;

(SMat3) rk

(

M1 0
0 M2

)

= rk(M1) + rk(M2) for any matrices M1 and M2;

(SMat4) rk

(

M1 M3
0 M2

)

≥ rk(M1) + rk(M2) for any matrices M1, M2 and M3 of

appropriate sizes.

We denote byP(R) the set of Sylvester matrix rank functions on R, which is a compact
convex subset of the space of functions on matrices over R. If φ : F1 → F2 is an
R-homomorphism between two free finitely generated R-modules F1 and F2, then
rk(φ) is rk(A) where A is the matrix associated with φ with respect to some R-bases
of F1 and F2. It is clear that rk(φ) does not depend on the choice of the bases.

A useful observation is that a ring homomorphism ϕ : R → S induces a continuous
map ϕ� : P(S) → P(R), i.e., we can pull back any rank function rk on S to a rank
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function ϕ�(rk) on R by just defining

ϕ�(rk)(A) = rk(ϕ(A))

for every matrix A over R. We will often abuse the notation and write rk instead of
ϕ�(rk) when it is clear that we speak about the rank function on R.

A division ring D has a unique Sylvester matrix rank function which we denote
by rkD. If a Sylvester matrix rank function rk on R takes only integer values, then
by a result of P. Malcolmson [21] there are a division ring D and a homomorphism
ϕ : R → D such that rk = ϕ�(rkD). Moreover, ifD is equal to the division closure of
ϕ(R) (D is an epic division R-ring), then ϕ : R → D is unique up to isomorphisms of
R-rings. We denote the set of integer-valued rank functions on a ring R by Pdiv(R).
In the following, if a rank function on R is induced by a homomorphism toD we will
also use rkD to denote this rank function (in this case the homomorphism will be clear
from the context).

Given twoSylvestermatrix rank functions on R, rk1 and rk2,wewillwrite rk1 ≤ rk2
if for any matrix A over R, rk1(A) ≤ rk2(A). In the case where both functions are
integer-valued and come from homomorphisms ϕi : R → Di (i = 1, 2) from R to
epic division ringsD1 andD2, the condition rkD1 ≤ rkD2 is equivalent to the existence
of a specialization from D2 to D1 in the sense of P. M. Cohn ([3, Subsection 4.1]).
We say that an epic division R-ring D is universal if for every epic division R-ring
E , rkD ≥ rkE .

An alternative way to introduce Sylvester rank functions is via Sylvester mod-
ule rank functions. A Sylvester module rank function dim on R is a function that
assigns a non-negative real number to each finitely presented R-module and satisfies
the following conditions.

(SMod1) dim{0} = 0, dim R = 1;
(SMod2) dim(M1 ⊕ M2) = dim M1 + dim M2;
(SMod3) if M1 → M2 → M3 → 0 is exact then

dim M1 + dim M3 ≥ dim M2 ≥ dim M3.

There exists a natural bijection between Sylvester matrix and module rank functions
over a ring. Given a Sylvester matrix rank function rk on R and a finitely presented R-
module M ∼= Rn/Rm A (A is a matrix over R), we define the corresponding Sylvester
module rank function dim by means of dim(M) = n − rk(A). If a Sylvester matrix
rank function rkD comes from a division R-ring D, then the corresponding Sylvester
module rank function will be denoted by dimD. Then D is the universal epic division
R-ring if and only if for every epic division R-ring E and every finitely presented
R-module, dimD(M) ≤ dimE (M).

By a recent result of Li [19], any Sylvester module rank function on R can be
extended to a function (satisfying some natural conditions) on arbitrary modules over
R. In the case of an integer-valued Sylvester module rank function dimD and an
R-module M we simply have dimD(M) = dimD(D ⊗R M).
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2.6 Von Neumann rank function

Consider first the case where G is countable. Then G acts by left and right multipli-
cation on the separable Hilbert space l2(G). A finitely generated Hilbert G-module
is a closed subspace V ≤ l2(G)n , invariant under the left action of G. We denote by
projV : l2(G)n → l2(G)n the orthogonal projection onto V and we define

dimG V := TrG(projV ) :=
n

∑

i=1

〈(1i ) projV , 1i 〉l2(G)n ,

where 1i is the element of l2(G)n having 1 in the i th entry and 0 in the rest of the
entries. The number dimG V is the von Neumann dimension of V .

Let A ∈ Matn×m(C[G]) be a matrix over C[G]. The action of A by right multi-
plication on l2(G)n induces a bounded linear operator φA

G : l2(G)n → l2(G)m . We
put

rkG(A) = dimG Im φA
G .

If G is not countable then rkG can be defined in the following way. Take a matrix
A over C[G]. Then the group elements that appear in A are contained in a finitely
generated group H . We will put rkG(A) = rkH (A). One easily checks that the value
rkH (A) does not depend on the subgroup H .

Another obvious Sylvester matrix rank function on G arises from the trivial homo-
morphism G → {1} and it is defined as

rk{1}(A) = rkC(A),

where A is the matrix over C obtained from A by sending all the elements of G to 1.
More generally, if G is a quotient of G, rkG(A) is denoted to be rkG(A), where A is
the matrix over C[G] obtained from A by applying the obvious map C[G] → C[G].

2.7 The natural extension

Let R = E ∗ G be a crossed product of a division ring E and a group G. Let N be a
normal subgroup of G such that G/N is amenable. Consider a transversal X of N in
G. Since G/N is amenable there are finite subsets Xk of X such that {N Xk/N } is a
Følner sequence in G/N with respect to the right action. Put Xk = N Xk .

Let rk be a Sylvester rank function on E ∗ N and assume that rk is invariant under
conjugation by the elements {ug}g∈G . Observe that if rk = rkE for some epic division
E ∗ N -ring E , then the conjugation of E ∗ N by any ug(g ∈ G) can be extended to
a unique automorphism of E . Thus one can consider the crossed product E ∗ G/N
containing E ∗ G.

Let A ∈ Matn×m(R) and let S be the union of supports of the entries of A. For
any subset T of G we denote RT = ⊕t∈T Rt . Let φk : (RXk )

n → (RXk S)
m be
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the homomorphism of finitely generated free E ∗ N -modules induced by the right
multiplication by A. Let ω be a non-principal ultrafilter on N. Then we put

˜rkω(A) = lim
ω

rk(φi )

|Xi |
. (1)

Then ˜rkω is a Sylvester rank function on R. The rank function ˜rkω has been already
studied previously in different situations (see [14,15,17,27]). In [17] it is shown that
˜rkω does not depend on ω. Therefore in the following we denote ˜rkω by ˜rk. The
Sylvester rank function ˜rk is called the natural extension of rk. We describe now the
cases that appear in this paper.

Proposition 2.5 Let G be a group with a normal subgroup N such that G/N is
amenable. Let E be a division ring, and assume the previous notation. Then the
following holds.

(1) Assume that N and G/N are locally indicable and rk = rkE for some epic division
E ∗N-ring E . Then ˜rk coincides with rkQ(E∗(G/N )), whereQ(E ∗ (G/N )) denotes
the classical Ore ring of fractions of E ∗ (G/N ).

(2) Assume E ∗ G = K [G], where K is a subfield of C and rk = rkN . Then ˜rk is
equal to rkG.

(3) Assume E ∗ G = K [G], where K is a subfield of C and rk = rk{1}. Then ˜rk is
equal to rkG/N .

Proof (1) We can extend ˜rk to a Sylvester matrix rank function on E ∗ (G/N ) (which
we denote also by ˜rk) using the formula (1). Since G/N is locally indicable, the ring
E ∗ (G/N ) is a domain. Thus, by the definition of ˜rk, ˜rk(a) = 1 for every 0 �= a ∈
E ∗ (G/N ). Hence, applying [14, Proposition 5.2], we obtain that ˜rk = rkQ(E∗(G/N )).

The statements (2) and (3) follow from [14, Theorem 12.1]. ��

3 On the universality ofDE∗G

3.1 A general criterion of universality

In this subsection we present a general criterion of universality of a division R-ring.
The proof of the following lemma is immediate.

Lemma 3.1 Let R be a ring and E a division R-ring. Let M be a finitely generated left
R-module. Then the following are equivalent.

(1) dimE (M) �= 0.
(2) E ⊗R M �= 0.
(3) HomR(M, E) �= 0.

The following proposition tells us that in order to check universality of a division R-
ringD it is enough to understand the structure of its finitely generated R-submodules.
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Proposition 3.2 Let R be a ring andD an epic division R-ring. Then rkD is universal
in Pdiv(R) if and only if for every finitely generated left R-submodule L of D and
every division R-ring E , dimE (L) > 0.

Proof Assume that rkD is universal. Since HomR(L,D) �= 0, by Lemma 3.1,
dimD(L) > 0 and so

dimE (L) ≥ dimD(L) > 0.

This proves the “only if” part of the proposition.
Now, consider the “if” part. We want to show that for every finitely generated left

R-module M and every division R-ring E , dimE (M) ≥ dimD(M). We will do it by
induction on dimD(M).

Let M be the image of the natural R-homomorphism α : M → D⊗R M that sends
m ∈ M to 1 ⊗ m. Observe that, since D ⊗R M ∼= D ⊗R M , dimD(M) = dimD(M).
We have also that dimE (M) ≤ dimE (M). Thus, without loss of generality, we can
assume that α is injective.

Now assume that dimD(M) = 1. SinceM is a submodule ofD, then dimE (M) > 0,
and so, dimE (M) ≥ 1 = dimD(M). This gives us the base of induction.

Assume that the claim holds if dimD(M) ≤ n − 1. Consider the case dimD(M) =
n ≥ 2. Observe that dimE (M) �= 0, since M has a nontrivial quotient that lies in D.
Hence E ⊗R M �= {0}. Let m ∈ M be such that 1 ⊗ m is not trivial in E ⊗R M .
Then dimE (M/Rm) = dimE (M) − 1. Since we assume that α is injective, 1 ⊗ m
is non-trivial in D ⊗R M , and so, we also have dimD(M/Rm) = dimD(M) − 1.
Applying the inductive assumption we obtain that

dimD(M) = dimD(M/Rm) + 1 ≤ dimE (M/Rm) + 1 = dimE (M).

��

3.2 The universality ofDE∗G in the amenable case

Let E be a division ring and G a locally indicable group. Proposition 3.2 indicates
that in order to prove the universality we have to understand the structure of finitely
generated E∗G-submodules ofDE∗G . IfG is amenable, they are isomorphic to finitely
generated left ideals of E ∗ G. The following result shows that in the latter case the
condition of Proposition 3.2 holds.

Proposition 3.3 Let R = E ∗G be a crossed product of a division ring E and a locally
indicable group G. Then for every non-trivial finitely generated left ideal L of R and
every division R-ring E , dimE (L) > 0.

Proof We denote by Rg the gth component of R and let ug be an invertible element
of Rg . For any element r = ∑

g∈G rg ∈ R (rg ∈ Rg) denote by supp (r) the elements
g ∈ G for which rg �= 0 and put l(r) to be equal to the number of non-trivial elements
in supp (r). Thus, l(r) = 0 means that r ∈ Re. For a non-trivial finitely generated left
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ideal L of R we put

l(L) = min{l(r1) + · · · + l(rs) : L = Rr1 + · · · + Rrs}.

Observe that if a set of generators {r1, . . . , rs} of L satisfies the equality l(L) =
l(r1) + · · · l(rs), then for each i , l(ri ) = |supp (ri )| − 1. (If not, we can change ri by
u−1
g ri with g ∈ supp(ri ) and obtain a contradiction.) Moreover, if all ri are non-trivial

and L �= R, then s ≤ l(L). Now, we define

s(L) = max{s : L = Rr1 + · · · + Rrs , l(L) = l(r1) + · · · + l(rs) and ri are non-trivial}.

We will prove the proposition by induction on l(L). If l(L) = 0, then L = R and
we are done. Now assume that the proposition holds if l(L) ≤ n− 1, and consider the
case l(L) = n ≥ 1.

We will proceed by inverse induction on s(L). Observe that there is no L such that
s(L) ≥ l(L) + 1, so there is nothing to prove in this case. Assume that we can prove
the proposition if l(L) = n and s(L) ≥ k + 1 , and consider the case l(L) = n and
s(L) = k.

Let r1, . . . rk be a set of non-zero generators of L such that n = l(r1)+· · · l(rk). Let
H be the group generated by ∪k

i=1 supp(ri ). Since G is locally indicable there exists
a surjective α : H → Z. Let N = ker α and t ∈ H such that 〈t〉N = H . We write

ri =
∑

j

u
li j
t ri j with 0 �= ri j ∈ E ∗ N .

Let L ′ be a left ideal of R generated by {ri j }. Observe that
∑

i, j

l(ri j ) ≤
∑

i

l(ri ) and |{ri j }| > s(L) = k.

Thus, we obtain that either l(L ′) < l(L) or l(L ′) = l(L) and s(L ′) > s(L). Hence we
can apply the inductive hypothesis and obtain that rkE (L ′) > 0. Thus HomR(L ′, E) �=
0. Let 0 �= φ ∈ HomR(L ′, E).

Put S = E ∗ H . Observe that S ∼= E ∗ N [x±1; τ ], where τ is conjugation by ut .
Let ˜E be the Ore division ring of fractions of E[x±; τ ], where τ is conjugation by ut .
Then ˜E has a natural S-ring structure. We denote by dim

˜E the corresponding Sylvester
module rank function on S. By Proposition 2.5(1), rk

˜E is equal to the natural extension
of the restriction of rkE on E ∗ N .

Let L0 and L ′
0 be the left ideals of S generated by {ri } and {ri j } respectively.

We have that L0 ≤ L ′
0. Every element m of L ′

0 can be written in a unique way as

m = ∑

j u
j
t m j , where m j ∈ E ∗ N ∩ L ′

0. We define

˜φ(m) =
∑

j

x jφ(m j ).
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This defines a homomorphism of left S-modules ˜φ : L ′
0 → ˜E . Since φ is not trivial,

there exists ri j such that φ(ri j ) �= 0. Therefore, φ(ri ) �= 0. Thus, the restriction of ˜φ

on L0 is not trivial. Hence, by Lemma 3.1, dim
˜E (L0) > 0.

Let dim′
E be the Sylvester module rank function associated to the division S-ring

E . Since the restrictions of rkE and rk
˜E on E ∗ N coincide, [15, Lemma 8.3] implies

that rkE ≤ rk
˜E as Sylvester matrix rank functions on E ∗ H , and so

dim′
E (L0) ≥ dim

˜E (L0) > 0.

Now observe that L ∼= R ⊗S L0. Hence

dimE (L) = dim′
E (L0) > 0

and we are done. ��
Corollary 3.4 Let G be an amenable locally indicable group and let E be a division
ring. Then DE∗G is the universal division ring of fractions of E ∗ G.

Proof Observe that E ∗G satisfies the right Ore condition and soDE∗G is isomorphic
as E ∗G-ring to the classical ring of fractionsQ(E ∗G). Since any finitely generated
left submodule of Q(E ∗ G) is isomorphic to a left ideal of E ∗ G, Proposition 3.2
and Proposition 3.3 imply the desired result. ��
We remark that Corollary 3.4 can be also proved using arguments similar to the ones
used in the proof of [10, Lemma 2.1]. Also it is worth to be mentioned here that, by a
result of D. Morris [22], a left orderable amenable group is always locally indicable.

3.3 A criterion for a group to be Lewin

In this subsection we will show that in order to prove that a Hughes-free embeddable
groupG is Lewin, it is enough to consider only group algebras E[G]. As before, by rkE
we denote the Sylvester matrix rank function on E[G] induced by the homomorphism
E[G] → E that sends all the group elements from G to 1.

Proposition 3.5 Let G be a locally indicable group and E a division ring. Assume that
for every division ring E ,
(1) DE[G] exists and
(2) rkDE[G] ≥ rkE as Sylvester matrix rank functions on E[G].
If for a crossed product E ∗ G, the space Pdiv(E ∗ G) is not empty, then E ∗ G has
the Hughes-free division ring DE∗G and, moreover, DE∗G is universal.

Proof First let us show thatDE∗G exists. Let φ : E ∗G → E be a division E ∗G-ring.
Write R = E ∗ G = ⊕g∈G Rg . We fix an invertible element ug ∈ Rg for each g ∈ G.
For every g1, g2 ∈ G we define

α(g1, g2) = ug1ug2u
−1
g1g2 ∈ E .
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Observe that E is a E ∗ G-bimodule. This allows us to convert the E-space R̃ =
⊕g∈GEvg into a ring by putting

vga = (φ(ug)aφ(u−1
g ))vg and vgvh = φ(α(g, h))vgh, g, h ∈ G, a ∈ E .

Clearly the ring R̃ has a structure of a crossed product R̃ = E ∗ G. Define the map
˜φ : E ∗ G → E ∗ G by

˜φ(
∑

g∈G
kgug) =

∑

g∈G
φ(kg)vg, kg ∈ E .

Then ˜φ is a homomorphism.
For each g ∈ G we put wg = φ(u−1

g )vg ∈ E ∗ G. Then wg commutes with the
elements from E and for every g, h ∈ G,

wgwh = φ(u−1
g )vgφ(u−1

h )vh = φ(u−1
h )φ(u−1

g )vgvh

= φ(u−1
h )φ(u−1

g )φ(α(g, h))vgh = φ(u−1
gh )vgh = wgh .

Thus, we obtain that R̃ ∼= E[G]. In particular DE∗G , and so, DE∗G exist and
˜φ#(rkDE∗G ) is equal to rkDE∗G .

Now, we want to show thatDE∗G is universal. In other words we want to show that
rkDE∗G ≥ φ#(rkE ). Let ψ : E ∗ G → E be the map that sends all wg to 1. Denote by
rk′

E the Sylvester matrix rank function on E ∗ G induced by ψ . By our assumptions,
rk′

E ≤ rkDE∗G . Now observe that φ = ψ ◦ ˜φ. Hence

φ#(rkE ) = (ψ ◦ ˜φ)#(rkE ) = ˜φ#(ψ#(rkE )) = ˜φ#(rk′
E ) ≤ ˜φ#(rkDE∗G ) = rkDE∗G

as Sylvester matrix rank functions on E ∗ G. ��
Corollary 3.6 Any subgroup of a Lewin group is Lewin.

The corollary implies that our definition of Lewin group is equivalent to the one of
Sánchez ([25, Definition 6.18]).

3.4 Proofs of Theorem 1.2 and Corollary 1.3

Let F be a free group freely generated by afinite set S, and letM and {Mi }i∈N be normal
subgroups of F . We put G = F/M and Gi = F/Mi and assume that (Gi , SMi/Mi )

converges to (G, SM/M). Assume that for all i , Gi is locally indicable and DE[Gi ]
exists. Since Gi are quotients of F , abusing notation, we will also refer to rkE[Gi ] as
a Sylvester matrix rank function on E[F].

Let ω be an arbitrary non-principal ultrafilter on N. We put

rk = lim
ω

rkDE[Gi ] ∈ Pdiv(E[F]).
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Observe that for every g ∈ M , rk(g− 1) = 0. Thus, rk is also a Sylvester matrix rank
function on E[G]. We want to show that rk corresponds to the Sylvester matrix rank
function of a Hughes-free division E ∗ G-ring. This will prove Theorem 1.2.

For each i we fix a left-invariant Conradian order i on Gi . Define an order  on
G by

f M  hM if {i ∈ N : f Mi i hMi } ∈ ω.

The definition does not depend on the choice of representatives, because for every
m ∈ M , the set {i ∈ N : m ∈ Mi } is in ω. It is also clear that  is left-invariant and
Conradian. In particular, this proves that G is locally indicable.

Denote byα j the canonical homomorphism F → G j and extend it to the homomor-
phism α j : E[F] → DE[G j ]. The rank function rk corresponds to the homomorphism

α = (αi ) : E[F] →
∏

ω

DE[Gi ] := (
∏

i∈N
DE[Gi ])/Iω,

with Iω = {(di ) : limω rkDE[Gi ](di ) = 0}. Observe that ∏ω DE[Gi ] is a division ring.
We denote byD the division closure of α(E[F]) in ∏

ω DE[Gi ]. As we have observed
before, for each m ∈ M , α(m − 1) = 0. Thus, D is a epic division E[G]-ring. We
are going to show thatD is free with respect to . For simplicity, in what follows, for
each j ∈ N, DE[G j ] is denoted by D j .

Let H be a finitely generated subgroup of G and let N be the maximal convex
subgroup of H . Let h1, . . . , hn ∈ H be in distinct cosets of N . We want to show that
α(h1), . . . , α(hn) areDN ,Dω

-linearly independent. Without loss of generality we will
assume that H = G.

Let L j/Mj be the maximal convex subgroup of G j with respect to  j . By
Proposition 2.1, since  j is Conradian, there exists order-preserving homomorphism
φ j : G j → R such that ker φ j = L j/Mj . Without loss of generality we see
φ j as an element of H1(F; R). We can multiply φ j by a scalar in such way that
maxs∈S |φ j (s)| = 1. Let φ = limω φ j ∈ H1(F; R) and L = ker φ. Observe that φ is
non-trivial, M ≤ ker φ and φ is order-preserving with respect to  if we consider it
as a map G → R. In particular, N = L/M .

For each i choose fi ∈ F such that hi = fi M . By way of contradiction, assume
that there are d1, . . . , dn ∈ DN ,D such that

d1α( f1) + · · · + dnα( fn) = 0 inD (2)

with di �= 0 for some 1 ≤ i ≤ n.
Consider the subring R of D generated by D[G,G],D and N . It is a quotient of a

crossed productD[G,G],D ∗(N/[G,G]). Since N/[G,G] is finitely generated abelian,
D[G,G],D ∗ (N/[G,G]) is left and right Noetherian. Thus, R is also left and right
Noetherian. Since R is a domain,DN ,D is the classical division ring of fractions of R.
Hence, without loss of generality we can assume that di ∈ R in (2). Therefore, there
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are fil ∈ L and dil ∈ D[G,G],D such that

di =
∑

l

dil · α( fil).

Since h1, . . . , hn ∈ H belong to distinct cosets of N , all values φ( f1), . . . , φ( fn) are
distinct. Let ε = min j �=i |φ( f j ) − φ( fi )|. Since for all i, j , φ( fil) = 0, we obtain
that

{k ∈ N : |φk( fil)| ≤ ε

4
for all i, l and |φk( f j ) − φk( fi )| ≥ 3ε

4
for all i �= j} ∈ ω.

Thus, without loss of generality we assume that for every k ∈ N, |φk( fil)| ≤ ε
4 for all

i, l and |φk( f j ) − φk( fi )| ≥ 3ε
4 for all i �= j .

Since dil ∈ D[G,G],D, dil are in the division closure of α(E[([F, F])]). Therefore,
we can write

dil = (dilk)k and di =
(

∑

l

dilkαk( fil)

)

k

∈
∏

ω

Dk, with dilk ∈ D[G j ,G j ],D j .

Since d1α( f1) + · · · + dnα( fn) = 0, we obtain that

{k ∈ N :
∑

i,l

dilkαk( fil · fi ) = 0} ∈ ω.

Thus, we can assume that
∑

i,l dilkαk( fil · fi ) = 0 for all k ∈ N. Observe that since

|φk( fil)| ≤ ε
4 and |φk( f j ) − φk( fi )| ≥ 3ε

4 ,

φk( fil1 · fi ) �= φk( f jl2 · f j ) if i �= j .

Recall that Dk is free with respect to k . In particular, this implies that for all i ,

(

∑

l

dilkαk( fil)

)

αk( fi ) =
∑

l

dilkαk( fil · fi ) = 0.

Since this holds for all k, di = 0 for all i . This shows that D is free with respect to ,
and so it is Hughes-free by Proposition 2.4. This finishes the proof of Theorem 1.2.

Proof of Corollary 1.3 Without loss of generality we may assume that G is finitely
generated. Hence G is a limit of a collection of locally indicable amenable groups
{Gi }. Thus, by Theorem 1.2, for every division ring E , there exists DE[G]. Moreover,
since by Corollary 3.4, rkE[Gi ] ≥ rkE as Sylvester matrix rank functions on E[Gi ],
Theorem 1.2 also implies that rkE[G] ≥ rkE as Sylvester matrix rank functions on
E[G]. Now, by Proposition 3.5, we obtain that DE[G] is universal. ��
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3.5 Examples of Lewin groups

The following theorem shows that the groups that appear in Theorem 1.1 are Lewin.

Theorem 3.7 Let G be a locally indicable group.

(1) If all finitely generated subgroups of G are Lewin, then G is also Lewin.
(2) Any subgroup of a Lewin group is also Lewin.
(3) G is Lewin if G has a normal Lewin subgroup N such that G/N is amenable and

locally indicable.
(4) Any limit in Gn of Lewin groups which is Hughes-free embeddable is Lewin.
(5) A finite direct product of Lewin groups is Lewin.

Proof The first statement follows directly from the definition of Lewin groups and the
second one from Corollary 3.6. Let us prove now part (3).

First observe that G is Hughes-free embeddable by [12] (see also [25, Theorem
6.10]). Let E be a division ring. Observe that the restriction of rkDE[G] on E[N ] is equal
to rkDE[N ] andDE[G] ∼= Q(DE[N ] ∗G/N ) as E[G]-rings. Thus, by Proposition 2.5(1),
rkDE[G] = ˜rkDE[N ] .

Denote by rk′
E the Sylvestermatrix rank function on E[N ] coming from the obvious

map E[N ] → E . Then, again by Proposition 2.5(1), we obtain that rkDE[G/N ] =
rkQ(E[G/N ]) = ˜rk′

E .
Since N is Lewin, rkDE[N ] ≥ rk′

E , and so, ˜rkDE[N ] ≥ ˜rk′
E . Thus, rkDE[G] ≥ rkDE[G/N ]

as Sylvester matrix rank functions on E[G]. Since G/N is amenable and locally
indicable, Corollary 3.4 implies that rkDE[G/N ] ≥ rkE . Hence rkDE[G] ≥ rkE . Using
Proposition 3.5, we obtain (3).

The fourth statement follows from Proposition 3.5 and Theorem 1.2.
Consider now the fifth claim. First let us prove that the direct productG = G1×G2

of twoLewingroupsG1 andG2 is againLewin.By [12],G isHughes-free embeddable.
Let E be a division ring. Consider the natural homomorphisms

φ1 : E[G] → E[G1], φ2 : E[G1] → E and φ3 = φ2 ◦ φ1 : E[G] → E .

Since G2 is Lewin,

rkDE[G1][G2] ≥ rkDE[G1] in P(DE[G1][G2]).

Therefore, since DE[G] = DDE[G1][G2],

rkDE[G] ≥ φ#
1 (rkDE[G1]) in P(E[G]).

Since G1 is Lewin,

rkDE[G1] ≥ φ#
2 (rkE ) in P(E[G1]).
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Hence, we conclude that

rkDE[G] ≥ φ#
1 (rkDE[G1]) ≥ φ#

1 (φ
#
2 (rkE )) = φ#

3 (rkE ) in P(E[G]).

Since E is arbitrary, applying Proposition 3.5, we obtain that G is Lewin. The case of
two groups implies that (5) holds for an arbitrary finite product of Lewin groups. ��

4 Universality of rkG

As we have already mentioned in Introduction, when G is locally indicable rkG =
rkDC[G] . In this section we compare rkG with other natural Sylvester matrix rank
functions on C[G].

4.1 The condition rkG ≥ rk{1}

In this subsection we will see several consequences of the condition rkG ≥ rk{1}.
Recall that rk{1} is an alternative expression for rkC that has appeared in the previous
sections. We start with the following useful proposition.

Proposition 4.1 Let H be a finitely generated group and assume that H is not indi-
cable. Then rk{1} is maximal in P(Q[H ]). In particular, any group G for which Q[G]
has a universal division ring of fractions, is locally indicable.

Proof Suppose that H has the following presentation.

H = 〈x1, . . . , xd | r1, r2, . . .〉.

Reordering the relations {ri } of H , without loss of generality we can assume that the
abelianization of the group

˜H = 〈x1, . . . , xd | r1, r2, . . . , rd〉

is already finite.
Let F be a free group generated by x1, . . . , xd . For each 1 ≤ i ≤ d, we write

ri − 1 = ∑d
j=1 ai j (x j − 1), where ai j ∈ Z[F]. Let

A = (ai j ) ∈ Matd(Z[F]) and B =
⎛

⎜

⎝

x1 − 1
...

xd − 1

⎞

⎟

⎠
∈ Matd×1(Z[F]).

Denote by A and B the matrices over Z[H ] obtained from A and B, respectively, by
applying the obvious homomorphism Z[F] → Z[H ]. Since ˜H has finite abelianiza-
tion, we obtain that

rk{1}(A) = d − dimQ H1( ˜H ; Q) = d.
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Let rk ∈ P(Q[H ]) satisfy rk ≥ rk{1}. In particular,

rk(A) ≥ rk{1}(A) = rk{1}(A) = d.

Since AB =
⎛

⎜

⎝

r1 − 1
...

rd − 1

⎞

⎟

⎠
, we obtain that AB = 0. Thus, by [13, Proposition 5.1(3)],

rk(B) = 0. Therefore, rk(a) = 0 for every a ∈ I , where I is the augmentation ideal
of Q[H ]. Since Q[H ]/I is a division ring and so it has only one Sylvester matrix rank
function, rk = rk{1}. This shows the first part of the proposition.

Assume now that Q[G] has a universal division ring of fractions D. Let H be a
finitely generated subgroup of G. If H is not indicable, then, as we have just proved,
the restriction of rkD on Q[H ] is equal to rk{1}. Since rkD is faithful, H = {1}. ��
In the next proposition we will show that the condition rkG ≥ rk{1} implies that
rkG ≥ rkG for any amenable quotient G of G.

Proposition 4.2 Let G be a group and N a normal subgroup with G/N amenable. Let
K be a subfield of C. Assume that rkN ≥ rk{1} in P(K [N ]). Then rkG ≥ rkG/N as
Sylvester matrix rank functions on K [G].
Proof By Proposition 2.5, rkG is the natural extension of rkN and rkG/N is the natural
extension of rk{1}. Since rkN ≥ rk{1} in P(K [N ]), we obtain that rkG ≥ rkG/N in
P(K [G]) ��
Corollary 4.3 Let G be a group and N a normal subgroup with G/N residually
amenable. Let K be a subfield of C. If rkG ≥ rk{1} in P(K [G]), then rkG ≥ rkG/N

holds as well.

Proof Without loss of generality we may assume that G is finitely generated. Then
there exists a chain G = N0 > N1 > N2 > · · · of normal subgroups of G such that
G/Nk is amenable and ∩Nk = N . By [13, Theorem 1.3],

rkG/N = lim
k→∞ rkG/Nk in P(K [G]).

By Proposition 4.2, rkG ≥ rkG/Nk in P(K [G]) for every k. Hence rkG ≥ rkG/N holds
as well. ��
We conjecture that the corollary holds without the condition that G/N is residually
amenable.

Conjecture 3 Let G be a group and let K be a subfield of C. Assume that rkG ≥ rk{1}
in P(K [G]). Then rkG ≥ rkG in P(K [G]) for any quotient G of G.

4.2 Proof of Corollary 1.5

It is clear that part (1) of of Corollary 1.5 implies part (2). Kielak proved in [18] that
in order to show (1), it is enough to prove that the first L2-Betti number of G is zero.
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Using Theorem 1.1, we will show that the condition (2) of Corollary 1.5 implies that
the first L2-Betti number of G is zero.

First, let us recall the definition of RFRS groups. A group G is called residually
finite rationally solvable or RFRS if there exists a chain G = H0 > H1 > · · · of
finite index normal subgroups of G with trivial intersection such that Hi+1 contains
a normal subgroup Ki+1 of Hi satisfying that Hi/Ki+1 is torsion-free abelian. The
following proposition implies that RFRS groups are residually poly-Z.

Proposition 4.4 Let G be a finitely generated group, and let

G = H0 > H1 > H2 > · · · > Hn > · · ·

be a chain of finite index normal subgroups of G with
⋂∞

n=0 Hn = 1. Suppose that
for every n ≥ 0 there exists a subgroup Kn+1 � Hn such that Kn+1 ≤ Hn+1 and
Hn/Kn+1 is poly-Z. Then G is residually poly-Z.

Proof A pro-p version of this result is proved in [16, Proposition 5.1]. The same proof
works in our case. We include it for the convenience of the reader.

For n ≥ 1 let

˜Kn =
⋂

g∈G/Hn−1

gKng
−1 � G

be the normal core of Kn in G. Since the direct product of poly-Z-groups is poly-Z
and a subgroup of a poly-Z group is poly-Z, the group Hn−1/˜Kn is poly-Z as well.

For every n ≥ 1 set

Ln =
⋂

i≤n

˜Ki � G

and note that since
⋂∞

n=0 Hn = 1, this is a chain of subgroups that satisfies

∞
⋂

n=1

Ln ⊆
∞
⋂

n=1

˜Kn ⊆
∞
⋂

n=1

Kn ⊆
∞
⋂

n=1

Hn−1 = 1.

We shall argue, by induction on n, that G/Ln is poly-Z. For n = 1 we have

G/L1 = G/˜K1 = H0/˜K1 is poly-Z.

Once n ≥ 2 we have Ln = Ln−1 ∩ ˜Kn , and by induction G/Ln−1 is poly-Z. Thus,
since an extension of two poly-Z groups is poly-Z, it suffices to show that Ln−1/Ln

is poly-Z. Indeed, since Kn−1 ≤ Hn−1, we have that

Ln−1/Ln = Ln−1/Ln−1 ∩ ˜Kn ∼= Ln−1 ˜Kn/˜Kn ≤ Hn−1/˜Kn is poly-Z.

Therefore, we conclude by recalling that a subgroup of a poly-Z group is poly-Z. ��
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Now let us prove that the condition (2) of Corollary 1.5 implies that the first L2-
Betti number of G is zero. Let H be a subgroup of finite index such that there exists
a normal subgroup N of H with H/N ∼= Z and H1(N ; Q) is finite-dimensional.

Assume that H has the following presentation.

H = 〈x1, . . . , xd | r1, r2, . . .〉.

Observe that H1(N ; Q) ∼= H1(H ; Q[H/N ]).
Let F be a free group generated by x1, . . . , xd and consider Q[H/N ] as an

F-module. Then H1(F; Q[H/N ]) ∼= Q[H/N ]d−1 as a Q[H/N ]-module. Since
Q[H/N ] is a PID, we can reorganize the relations {ri } and without loss of gener-
ality we can assume that H1( ˜H ; Q[ ˜H/˜N ]) is finite-dimensional, where

˜H = 〈x1, . . . , xd | r1, r2, . . . , rd−1〉,

φ : ˜H → H is the canonical surjection and ˜N = φ−1(N ).
For each 1 ≤ i ≤ d − 1, we write ri − 1 = ∑d

j=1 ai j (x j − 1), where ai j ∈ Z[F].
Let

A = (ai j ) ∈ Mat(d−1)×d(Z[F]) and B =
⎛

⎜

⎝

x1 − 1
...

xd − 1

⎞

⎟

⎠
∈ Matd×1(Z[F]).

Denote by A and B the matrices over Z[H ] obtained from A and B, respectively,
by applying the obvious homomorphism Z[F] → Z[H ]. Since H1( ˜H ; Q[ ˜H/˜N ]) is
finite-dimensional, we obtain that

rkH/N (A) = rkH/N (A) = rk
˜H/˜N (A) = d − 1.

By Proposition 4.4, H is residually poly-Z. By Corollary 4.3, rkH ≥ rk{1} in
P(Q[H ]). Thus, by Corollary 4.3, rkH (A) ≥ rkH/N (A) = d − 1. Hence, since H is
infinite, the sequence

l2(H)d−1 φA
H−→ l2(H)d

φB
H−→ l2(H) → 0

is weakly exact. Therefore, the first L2-Betti number of H vanishes, and so the first
L2-Betti number of G vanishes as well.

4.3 Proof of Corollary 1.6

Consider the cellular chain complex of ˜X

C(˜X) : . . . Z[Cp+1(˜X)] ∂p+1→ Z[Cp(˜X)] ∂p→ Z[Cp−1(˜X)] . . . → Z → 0.
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Since G acts freely on ˜X and X = ˜X/G is of finite type, we obtain that
Z[Cp(˜X)] ∼= Z[G]n p is a free Z[G]-module of finite rank and the connected mor-
phisms ∂p are represented by multiplication by matrices Ap over Z[G]. Hence we
obtain the following equivalent representation of C(˜X):

C(˜X) : . . . . . . Z[G]n p+1
×Ap+1→ Z[G]n p

×Ap→ Z[G]n p−1 . . . → Z → 0.

Therefore, if p ≥ 1 the pth Betti number of X and the pth L2-Betti number of ˜X can
be expressed in the following way.

bp(X)=n p−(rk{1}(Ap)+rk{1}(Ap+1)) and b(2)
p (˜X)=n p−(rkG(Ap)+rkG(Ap+1)).

Thus, Corollary 1.4 implies that b(2)
p (˜X) ≤ bp(X) if p ≥ 2. If p = 1, then rkG(A1) =

1 and rk{1}(A1) = 0. Therefore b(2)
1 (˜X) ≤ b1(X) − 1.
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5 Appendix: The universal division ring of fractions of group rings of
division rings and RFRS groups

In this section G is assumed to be a finitely generated RFRS group and E is a division
ring. By Proposition 4.4, G is residually poly-Z. Therefore, Corollary 1.3 implies that
DE[G] exists and it is universal. In this section we will give an alternative description
of DE[G] (see Theorem 5.10). Our proof follows essentially the argument of Kielak
[18], where this description is done when E = Q.

5.1 Characters

A character of G is a homomorphism from G to the additive group of real numbers
R. The set of characters Hom(G, R) is denoted also by H1(G; R). A character φ is
called irrational if ker φ/[G,G] is a torsion group.

If H is a subgroup of finite index of G then the restriction map embeds H1(G; R)

into H1(H ; R). In what follows, we will often consider H1(G; R) as a subset of
H1(H ; R).

http://creativecommons.org/licenses/by/4.0/
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If H is a normal subgroup of G then G acts on H1(H ; R): for φ ∈ H1(H ; R) and
g ∈ G, we denote by φg the character that sends h ∈ H to φ(ghg−1).

Let G = H0 > H1 > H2 > · · · be a chain of subgroups of G of finite index and
n ≥ 0. For any U ⊂ H1(Hn; R) we denote

Un = Uo and Uk−1 = (Uk)
o ∩ H1(Hk−1; R) when 1 ≤ k ≤ n.

We say that U is (G, {Hi }i≥0)-rich if U0 contains all the irrational characters of G.
When G and {Hi }i≥0 are clear from the context, we will simply say that U is rich.

Lemma 5.1 Let G = H0 > H1 > H2 > · · · be a chain of subgroups of G of finite
index.

(1) If U is rich in H1(Hn; R) and g ∈ G, then Ug is also rich.
(2) The intersection of two rich subsets of H1(Hn; R) is again rich.

Proof Claim (1) is clear. Let us show the second claim.
First observe that if U and V are two open subsets of Rk , then

(U ∩ V )o = (U )o ∩ (V )o. (3)

Indeed, let x ∈ (U )o ∩ (V )o and let O(x) be a neighborhood of x such that

O(x) ⊆ U ∩ V .

Consider y ∈ O(x), and let O(y) be an arbitrary neighborhood of y such that

O(y) ⊆ U ∩ V .

In particular, there exists z ∈ U ∩ O(y). Recall that U is open. Consider an arbitrary
neighborhood O(z) of z such that O(z) ⊆ U ∩ V . Since V is open, O(z) ∩U ∩ V is
not empty. Hence z ∈ U ∩ V , and so, y ∈ U ∩ V as well. Thus, O(x) ⊆ U ∩ V and
x ∈ (U ∩ V )o.

Now let U and V be two rich subset of H1(Hn; R) and let W = U ∩ V . We put

Un = Uo and Uk−1 = (Uk)
o ∩ H1(Hk−1; R), when 1 ≤ k ≤ n,

and similarly we define Vk and Wk .
Then we have that Wn = Un ∩ Vn . Now, assume that we have proved that Wk =

Uk ∩ Vk for some k ≤ n. Then we obtain that

Wk−1 = (Wk)
o ∩ H1(Hk−1; R) = (Uk ∩ Vk)

o ∩ H1(Hk−1; R)
(3)= Uk−1 ∩ Vk−1.

In particular,W0 contains contains all the irrational characters of G, and so,W is rich.
��

We will need the following criterion of richness.
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Lemma 5.2 Let G = H0 > H1 > H2 > · · · be a chain of subgroups of G of finite
index. Take non-negative integers n ≥ k ≥ 0. Let U be an open subset of H1(Hk; R)

and let V be an open subset of H1(Hn; R). Assume that U is rich and all the irrational
characters of U belong to V . Then V is also rich.

Proof We put Vn = V o and Vi−1 = (Vi )o ∩ H1(Hi−1; R) when 1 ≤ i ≤ n. Then
by the inverse induction on i , we obtain that all the irrational characters of U belong
also to Vi for n ≤ i ≤ k. Hence U ⊆ Vk . This clearly implies that V is rich. ��

5.2 Novikov rings

Let S ∗ G be a crossed product and let φ ∈ H1(G; R). Denote by ‖ ‖φ a norm on
S ∗ G defined by

‖
∑

i

si ḡi‖φ = max{2−φ(gi ) : si �= 0}.

Our convention is that ‖0‖φ = 0. Let Ŝ ∗ G
φ
be the completion of S ∗G with respect

to the metric induced by the norm ‖ ‖φ . The ring S ∗ G
∧φ

is called the Novikov ring
of S ∗ G with respect to φ.

Let N = ker φ. Then φ is also a character of G/N and Ŝ ∗ G
φ
is canonically

isomorphic to (S ∗ N ) ∗ G/N
∧φ

. We will not distinguish between these two rings.

Any element of S ∗ G
∧φ

can be represented in the following form
∑∞

i=1 ai gi ,where
ai ∈ S ∗ N and {φ(gi )}i∈N is an increasing sequence tending to the infinity.

We would like to construct an environment, where we can calculate the intersection

DE[G] ∩ Ê[G]φ . In order to do this, consider the following commutative diagram of
of injective homomorphisms of rings.

E[G] ↪→ DE[G]
↓ ↓αG,φ

E[G]
∧φ

↪→βG,φ DE[N ] ∗ G/N
∧φ

, (4)

where the maps are defined as follows.

Notice that DE[N ] ∗ G/N
∧φ

is a division ring and DE[G] is the classical Ore ring
of fractions of DE[N ] ∗ G/N . Therefore, the map αG,φ is the unique extension of the
embedding

DE[N ] ∗ G/N ↪→ DE[N ] ∗ G/N
∧φ

.

Since Hughes-free division ring is unique, for every subgroup H of G, the division
ring DE[H ] can be identified with the division closure of E[H ] in DE[G]. Thus, the
ring DE[N∩H ] ∗ (H/(N ∩ H))
∧φ

can be identified with the closure of

DE[N∩H ] ∗ (H/(N ∩ H)) ∼= DE[N∩H ] ∗ (HN/N ) ⊂ DE[N ] ∗ G/N
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in DE[N ] ∗ G/N
∧φ

with respect to the topology induced by ‖ ‖φ . Using this identifi-
cations, we obtain that αH ,φ is the restriction of αG,φ . Therefore, in the following we
will simply write αφ instead of αG,φ .

The map βG,φ can be defined as the the continuous (with respect to ‖ ‖φ) extension
of the map

E[G] = E[N ] ∗ G/N ↪→ DE[N ] ∗ G/N .

Let H be a normal subgroup of G of finite index. Then the restriction of φ on H

is a character of H and E[H ]
∧φ

can be identified with the closure of E[H ] in E[G]
∧φ

with respect to the topology induced by ‖ ‖φ . It follows from the definitions that βH ,φ

is the restriction of βG,φ on E[H ]
∧φ

. Thus, in the following we will simply write βφ

instead of βG,φ .
For any subset S of H1(G; R) we put

DE[G],S = {x ∈ DE[G] : αφ(x) ∈ Im βφ for every φ ∈ S}. (5)

If φ ∈ H1(G; R), we will simply write DE[G],φ instead of DE[G],{φ}. Therefore, by
our definition,

DE[G],S =
⋂

φ∈S
DE[G],φ.

Proposition 5.3 Let H be a normal subgroup of G of finite index and let S be a subset
of H1(G; R). ThenDE[H ],S is G-invariant andDE[G],S is equal to the ring generated
by DE[H ],S and G. In particular DE[G],S is a crossed product DE[H ],S ∗ G/H.

Proof It is clear that DE[H ],S and G are contained in DE[G],S .
Now let x ∈ DE[G],S . Let Q be a transversal of H in G. Since DE[G] = DE[H ] ∗

G/H , we can write

x =
∑

q∈Q
xqq

with xq ∈ DE[H ]. We want to show that

xq ∈ DE[H ],S for all q ∈ Q. (6)

This will prove the proposition. Observe that this claim does not depend on the choice
of Q, because H ⊂ DE[H ],S .

In order to prove (6), it is enough to show that for every φ ∈ S, xq ∈ DE[H ],φ . Put
N = ker φ and T = HN . Let Q1 be a transversal of H in T and Q2 a transversal of
T in G. We assume that Q = Q1Q2. Thus, we obtain that

x =
∑

q2∈Q2

yq2q2, where yq2 =
∑

q1∈Q1

xq1q2q1.
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Since ker φ ≤ T and T has finite index in G,

E[G]
∧φ =

⊕

q2∈Q
E[T ]
∧φ

q2.

Thus, for all q2 ∈ Q2, yq2 ∈ DE[T ],φ .
Without loss of generality we can also assume that Q1 ⊂ N . Thus Q1 is also a

transversal of N ∩ H in N .
For each r ∈ φ(T ) = φ(H), choose, hr ∈ H such that φ(hr ) = r . Then there are

r1 > r2 > r3 > · · · such that we can write

αφ(xq) =
∞
∑

i=1

hri ai,q with ai,q ∈ DE[N∩H ].

For each q2 ∈ Q2, we obtain that

αφ(yq2) =
∞
∑

i=1

hri (
∑

q1∈Q1

ai,q1q2q1).

Since αφ(yq2) ∈ Im βφ , we obtain that for each i ≥ 1,

∑

q∈Q
ai,q1q2q1 ∈ E[N ].

Therefore, for each i ≥ 1 and q ∈ Q, ai,q ∈ E[N ∩ H ]. This implies, that αφ(xq) ∈
Im βφ , and so, xq ∈ DE[H ],φ for every q. ��

Let H be a normal subgroup of finite index ofG and let S be a subset of H1(H ; R).
Then we put

DE[G],S =
∑

g∈G
DE[H ],Sg.

In view of Proposition 5.3, this definition is coherent with the previous definition of
DE[G],S in (5).

Observe that if S is G-invariant, then g−1DE[H ],Sg ⊆ DE[H ],S for all g, and so,
DE[G],S is equal to the subring of DE[G] generated by G and DE[H ],S . In this case
DE[G],S has a structure of a crossed productDE[H ],S ∗G/H . For arbitrary S,DE[G],S
is not always a subring of DE[G].

Let φ ∈ H1(H ; R). We denote by φG the G-orbit in H1(H ; R). Then DE[G],φ is
a right DE[G],φG -module. Let N = ker φ. As in (4) we have

E[H ] ↪→ DE[H ]
↓ ↓αφ

E[H ]
∧φ

↪→βφ DE[N ] ∗ H/N
∧φ

, (7)
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which induces another commutative diagram

E[G] ↪→ DE[G]
↓ ↓α̃φ

E[H ]
∧φ ⊗E[H ] E[G] ↪→β̃φ DE[N ] ∗ H/N

∧φ ⊗DE[H ],φG DE[G],φG

, (8)

where α̃φ and β̃φ are homomorphisms of right E[G]-modules defined in the following
way. Fix a right transversal Q of H in G. Then β̃φ is defined on a basic tensor by

β̃φ(b ⊗ q) = βφ(b) ⊗ q.

In order to define α̃φ , we write an element a ∈ DE[G] as a = ∑

q∈Q aqq, with
aq ∈ DE[H ], and define

α̃φ(a) =
∑

q∈Q
αφ(aq) ⊗ q.

Observe that with this new notation we also have

DE[G],φ = {x ∈ DE[G] : α̃φ(x) ∈ Im β̃φ}. (9)

5.3 Continuity of ‖ ‖�

Let φ ∈ H1(G; R) and x ∈ DE[G]. Then we put

‖x‖φ = ‖αφ(x)‖φ.

Proposition 5.4 Let x ∈ DE[G]. Then the map H1(G; R) → R defined by

φ �→ ‖x‖φ

is continous.

Proof Let G/K be the maximal torsion-free abelian quotient of G. Let R be a subring
ofDE[G] generated byDE[K ] andG. Then the ringDE[G] is isomorphic to the classical
Ore ring of fractions of R. Thus, there are y ∈ R and 0 �= z ∈ R such that x = yz−1.
Since ‖x‖φ = ‖y‖φ‖z‖−1

φ , it is enough to prove the proposition in the case x ∈ R.
Thus, let us assume that x ∈ R.

Let A be a transversal of K in G. Then we can write x = ∑

a∈A0
xaa, where A0 is

a finite subset of A, and, for each a ∈ A0,xa ∈ DE[K ]. Observe that

‖x‖φ = max{‖a‖φ : a ∈ A0} = max{2−φ(a) : a ∈ A0}.

This clearly implies that ‖x‖φ is a continuous function in φ. ��
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5.4 Invertibility over Novikov rings

Let H be a normal subgroup ofG of finite index and φ ∈ H1(H ; R). In this subsection
we want to give a sufficient condition for x ∈ DE[G],φG to have its inverse inDE[G],φ .

Let G0 be a subgroup of G containing H and let Q be a transversal of H in G0.
Observe that

φG0 = {φg : g ∈ G0} = {φg : g ∈ Q} = φQ .

We can decompose any x ∈ DE[G0] as x = ∑

q∈Q xqq with xq ∈ DE[H ]. The (Q, φ)-
norm of x is defined by

‖x‖φ,Q = max{‖xq‖ψ‖q |Q|‖
1

|Q|
φ : ψ ∈ φQ, q ∈ Q}.

By the definition, ‖ ‖φ,Q has the following properties.

Lemma 5.5 Let z1, z2 ∈ DE[H ] and q ∈ Q. Then

(1) ‖z1z2q‖φ,Q ≤ ‖z1‖φ,Q‖z2q‖φ,Q.
(2) ‖z1q‖φ,Q = ‖z1‖φ,Q‖q‖φ,Q.

Observe that if φ ∈ H1(G0; R) ⊆ H1(H ; R) is a restriction of some character of
G0, then ‖x‖φ,Q = ‖x‖φ , and so, in this case ‖ ‖φ,Q is multiplicative. However, if
φ is an arbitrary character of H1(H ; R), then ‖ ‖φ,Q is not multiplicative in general.
This motivates the notion of the defect of ‖ ‖φ,Q .

defQ(φ) = max

{ ‖q1q2‖φ,Q

‖q1‖φ,Q‖q2‖φ,Q
: q1, q2 ∈ Q

}

.

Observe that if q1 ∈ H , then by Lemma 5.5, ‖q1q2‖φ,Q = ‖q1‖φ,Q‖q2‖φ,Q ,. Thus,
defQ(φ) is always at least 1. We have the following consequence of Proposition 5.4.

Corollary 5.6 Let H be a normal subgroup of finite index of G, H ≤ G0 ≤ G and Q a
transversal of H in G0. Let x ∈ DE[G0]. Then the following functions on H1(H ; R),

φ �→ ‖x‖φ,Q and φ �→ defQ(φ),

are continuous.

We will use the following properties of ‖ ‖φ,Q .

Proposition 5.7 Let H be a normal subgroup of finite index of G, H ≤ G0 ≤ G and
Q a transversal of H in G0. Let φ ∈ H1(H ; R). Then for every w, z ∈ DE[G0],

‖z+w‖φ,Q ≤max{‖z‖φ,Q, ‖w‖φ,Q} and ‖z · w‖φ,Q ≤‖z‖φ,Q · ‖w‖φ,Q · defQ(φ).
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Proof If g ∈ G0, let g ∈ Q be such that Hg = Hg. We write z = ∑

q∈Q zqq and
w = ∑

q∈Q wqq, with zq , wq ∈ DE[H ]. Then

z + w =
∑

q∈Q
(zq + wq)q and z · w =

∑

q∈Q

⎛

⎝

∑

q=q1q2

zq1(wq2)
q−1
1 q1q2

⎞

⎠ .

Letψ ∈ φQ . Since ‖zq +wq‖ψ ≤ max{‖zq‖ψ, ‖wq‖ψ }, we obtain that ‖z+w‖φ,Q ≤
max{‖z‖φ,Q, ‖w‖φ,Q}.

Observe that

‖zq1(wq2)
q−1
1 q1q2‖φ,Q

Lemma 5.5≤ ‖zq1‖φ,Q‖wq2‖φ,Q‖q1q2‖φ,Q

≤ ‖zq1‖φ,Q‖q1‖φ,Q‖wq2‖φ,Q‖q2‖φ,Q defQ(φ)

Lemma 5.5= ‖zq1q1‖φ,Q‖w‖φ,Q defQ(φ) ≤ ‖z‖φ,Q‖w‖φ,Q defQ(φ).

Therefore ‖z · w‖φ,Q ≤ ‖z‖φ,Q · ‖w‖φ,Q · defQ(φ). ��
Corollary 5.8 Let H be a normal subgroup of finite index of G, H ≤ G0 ≤ G and Q
a transversal of H in G0. Let φ ∈ H1(H ; R) and let w, y ∈ DE[G0],φQ . Assume that
w is invertible in DE[G0],φQ and

‖y‖φ,Q · ‖w−1‖φ,Q < defQ(φ)−2.

Then w + y �= 0 and (w + y)−1 ∈ DE[G0],φ .

Proof By Proposition 5.7,

(w + y)w−1 = 1 − z with ‖z‖φ,Q < defQ(φ)−1.

In particular w + y �= 0.
Let us put ε = ‖z‖φ,Q defQ(φ). Then ε < 1 and, by Proposition 5.7,

‖zn‖φ,Q ≤ εn

defQ(φ)
.

Thus, if we write

zn =
∑

q∈Q
zq,nq, with zq,n ∈ DE[H ],φQ ,

then we obtain that for every ψ ∈ φQ ,

‖zq,n‖ψ ≤ ‖zn‖φ,Q

‖q |Q|‖
1

|Q|
φ

= εn

defQ(φ)‖q |Q|‖
1

|Q|
φ

. (10)
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Consider

v =
∑

q∈Q

( ∞
∑

n=0

zq,n

)

⊗ q,

and observe that, by (10), v ∈ Im β̃ψ . On the one hand we have that

v(1 − z) =
⎛

⎝

∑

q∈Q

(

lim
k→∞

k
∑

n=0

zq,n

)

⊗ q

⎞

⎠ (1 − z)

=
(

lim
k→∞ β̃ψ

(

k
∑

n=0

zn
))

(1 − z) = lim
k→∞ β̃ψ (1 − zk+1) = 1 ⊗ 1.

On the other hand,

α̃ψ ((1 − z)−1)(1 − z) = α̃ψ (1) = 1 ⊗ 1.

Thus, α̃ψ ((1 − z)−1) = v. By (9), we conclude that (1 − z)−1 ∈ DE[G0],φ , and so,
(w + y)−1 ∈ DE[G0],φ . ��

5.5 A description ofDE[G].

For any x ∈ DE[G] and any normal subgroup H of finite index in G we put

UH (x) = {φ ∈ H1(H ; R) : x ∈ DE[G],φ}.

Informally,UH (x) consists of the set of characters of H such that x can be represented

as a matrix over E[H ]
∧φ

.

Lemma 5.9 Let H2 ≤ H1 be two normal subgroups of G of finite index. Let A be a
transversal of H1 in G. Consider x ∈ DE[G] and write x =

∑

a∈A

xaa with xa ∈ DE[H1].

Then

UH2(x) =
⋂

a∈A

UH2(xa).

Proof Let φ ∈ H1(H2; R). By the definition,

DE[G],φ =
∑

g∈G
DE[H2],φg and DE[H1],φ =

∑

g∈H1

DE[H2],φg.

Therefore, DE[G],φ = ∑

a∈A DE[H1],φa. Thus, x ∈ DE[G],φ if and only if xa ∈
DE[H1],φ for all a ∈ A. Hence, UH2(x) = ⋂

a∈A UH2(xa). ��
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Since G is RFRS, there exists a chain G = H0 > H1 > · · · of finite index normal
subgroups ofG with trivial intersection such that Hi+1 contains a normal subgroup Ki

of Hi satisfying Hi/Ki is torsion free abelian. The chain {Hi } satisfying this property
is called witnessing. We fix a witnessing chain {Hi } in G. Let KE[G] denotes the set
of all x ∈ DE[G] such that for some k ≥ 0, UHn (x) is (G, {Hi })-rich for every n ≥ k.

In this section we prove the following theorem. This is the main result of Appendix.

Theorem 5.10 We have that KE[G] = DE[G].

First let us see that KE[G] is a subring of DE[G]. Indeed, if a, b ∈ KE[G], using
Lemma 5.1, we obtain that there exists k ≥ 0 such that for every n ≥ k there is a
G-invariant rich subset Un of H1(Hn; R) with a, b ∈ DE[G],Un . Since DE[G],Un is a
subring of DE[G], a + b, ab ∈ DE[G]. Hence KE[G] a subring of DE[G].

Thus, in order to show thatKE[G] = DE[G], we have to prove that for any 0 �= x ∈
KE[G], x−1 ∈ KE[G]. First let us consider the case where x ∈ E[G].
Proposition 5.11 Let 0 �= x ∈ E[G]. Then x is invertible in KE[G].

Proof Write x = ∑

g∈G αgg and denote by supp x = {g ∈ G : αg �= 0}. We will

show that x−1 ∈ KE[G] by induction on |supp x |. The base of induction is clear. Let
us assume that |supp x | > 1. There exists k ≥ 0 such that

|{gHk : g ∈ supp x}| = 1 and |{gHk+1 : g ∈ supp x}| ≥ 2.

Let A be a transversal of Hk+1 in Hk . Hence, there exists g ∈ G such that we can
write

x =
∑

a∈A

xaag, with xa ∈ E[Hk+1].

Since g, g−1 ∈ KE[G], without loss of generality we may assume that g = 1. In
particular, x ∈ E[Hk].

For each i ≥ k we fix a transversal Qi of Hi in Hk . For any a ∈ A, we put

Vi,a = {φ ∈ H1(Hi ; R) : ‖x − xaa‖φ,Qi · ‖(xaa)−1‖φ,Qi < defQi (φ)−2}.

Let Vi = ⋃

a∈A Vi,a .

Claim 5.12 For each i ≥ k, the set Vi is rich in H1(Hi ; R).

Proof First observe that Corollary 5.6 implies that Vi,a , and so, Vi are open in
H1(Hi ; R). Let φ be an irrational character of H1(Hk; R). Since {Hi } is a witnessing
chain and φ is irrational, ker φ ≤ Hk+1. Therefore, there exists a ∈ A such that

‖x − xaa‖φ,Qi = ‖x − xaa‖φ < ‖(xaa)‖φ = 1

‖(xaa)−1‖φ

= 1

‖(xaa)−1‖φ,Qi

.
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Since defQi (φ) = 1, we obtain that φ ∈ Vi,a for all i ≥ k, and so Vi contains all
irrational characters of Hk . Now the claim follows from Lemma 5.2. ��

By the inductive assumption, xaa is invertible in KE[G]. Thus, there exists n ≥ k
such that for every i ≥ n and a ∈ A, UHi ((xaa)−1) is rich in H1(Hi , R). We put

Wi =
⋂

q∈Qi

(

Vi ∩
⋂

a∈A

UHi ((xaa)−1)

)q

.

By Lemma 5.1, Wi is rich. Let φ ∈ Wi . Observe that Wi is Hk-invariant. Hence
φQi ⊆ Vi ∩⋂

a∈A UHi ((xaa)−1). There exists a ∈ A such that φ ∈ Vi,a . Observe that
x − xaa, xaa, (xaa)−1 ∈ DE[Hk ],φQi . By Corollary 5.8, x−1 ∈ DE[Hk ],φ ⊆ DE[G],φ .
Thus, Wi ⊆ UHi (x

−1) and we are done. ��
Now, we consider the general case.

Proof of Theorem 5.10 We will show that x−1 ∈ KE[G] for every 0 �= x ∈ KE[G] by
induction on the level l(x) of x , that is defined as follows.

l(x) = min{n − k : x ∈ DE[Hk ] and UHi (x) is rich for every i ≥ n}.

Consider first the case l(x) ≤ 0. Then x ∈ DE[Hk ] and UHi (x) is rich for every i ≥ k.
Let Hk/K be the maximal torsion-free abelian quotient of Hk . Let R be the subring
of DE[Hk ] generated by DE[K ] and Hk . Since DE[Hk ] is the classical ring of quotients
of R, we can write x = yz−1 with non-zero y, z ∈ R. Let A be a transversal of K in
Hk . Then there are finite subsets A0 and B0 of A such that

y =
∑

a∈A0

yaa, z =
∑

a∈B0
zaa with non-zero ya, za ∈ DE[K ].

Let φ be an irrational character of Hk . Observe that φ takes different values on the
elements of A0 and on the elements of B0. Therefore, there are unique aφ ∈ A0 and
bφ ∈ B0 such that

φ(aφ) = min{φ(a) : a ∈ A0} and φ(bφ) = min{φ(b) : b ∈ B0}.

Claim 5.13 Let φ be an irrational character of Hk and w = (yaφaφ)(zbφbφ)−1. Then
‖x‖φ = ‖w‖φ > ‖x − w‖φ . Moreover, if x ∈ DE[Hk ],φ , then w ∈ E[Hk].
Proof The claim follows directly from the definitions. ��
Let

T = {wa,b = (yaa)(zbb)
−1 : a ∈ A0, b ∈ B0} ∩ E[Hk].

Since T−1 ⊆ KE[G] (Proposition 5.11), there exists n such that UHi (w
−1) is rich for

every w ∈ T and i ≥ n.
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For each i ≥ n let Qi be a transversal of Hi in Hk . For each w ∈ T and i ≥ n we
put

Vi,w = {φ ∈ H1(Hi ; R) : ‖x − w‖φ,Q · ‖w−1‖φ,Q < defQi (φ)−2}

and Vi = ∪w∈T Vi,w. Observe that Vi are open and if φ ∈ H1(Hk; R), defQi (φ) = 1.
Thus, byClaim5.13, for all i ≥ n,Vi contains all the irrational characters of (UHk (x))

o.
Since (UHk (x))

o is rich, Lemma 5.2 implies that Vi is rich for i ≥ n.
For each i ≥ n we define

Wi =
⋂

q∈Qi

(

Vi ∩UHi (x) ∩
⋂

w∈T
UHi (w

−1)

)q

.

By Lemma 5.1, Wi is rich. Let φ ∈ Wi . Observe that Wi is Hk-invariant. Hence
φQi ⊆ Vi ∩ ⋂

w∈T UHi (w
−1). There exists w ∈ T such that φ ∈ Vi,w. Observe that

x − w,w, (w)−1 ∈ DE[Hk ],φQi . By Corollary 5.8, x
−1 ∈ DE[Hk ],φ ⊂ DE[G],φ . Thus,

Wi ⊆ UHi (x
−1). Thus, x−1 ∈ KE[G].

Now, we assume that l(x) > 0 and that the non-zero elements of KE[G] of level
less than of l(x) are invertible in KE[G]. There are n and k such that l(x) = n − k,
x ∈ DE[Hk ] and UHi (x) is rich for every i ≥ n.

Let A be a transversal of Hk+1 in Hk . Hence, we can write

x =
∑

a∈A

xaag, with xa ∈ DE[Hk+1].

By Lemma 5.9, for every a ∈ A, xa ∈ KE[G] and l(xa) < l(x).
For each i ≥ k we fix a transversal Qi of Hi in Hk . For any a ∈ A we put

Vi,a = {φ ∈ H1(Hi ; R) : ‖x − xaa‖φ,Qi · ‖(xaa)−1‖φ,Qi < defQi (φ)−2}.

Let Vi = ⋃

a∈A Vi,a . Arguing as in the proof of Claim 5.12, we obtain that all Vi are
rich. By the inductive assumption, xaa is invertible inKE[G]. Thus, there exists n ≥ k
such that for every i ≥ n and a ∈ A, UHi ((xaa)−1) is rich in H1(Hi , R). We put

Wi =
⋂

q∈Qi

(

Vi ∩UHi (x) ∩
⋂

a∈A

UHi ((xaa)−1)

)q

.

By Lemma 5.1, Wi is rich. Let φ ∈ Wi . Observe that Wi is Hk-invariant. Hence
φQi ⊆ Vi ∩⋂

a∈A UHi ((xaa)−1). There exists a ∈ A such that φ ∈ Vi,a . Observe that
x − xaa, xaa, (xaa)−1 ∈ DE[Hk ],φQi . By Corollary 5.8, x−1 ∈ DE[Hk ],φ ⊆ DE[G],φ .
Thus, Wi ⊆ UHi (x

−1) and we are done. ��
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