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CONTROLLABILITY OF ONE-DIMENSIONAL VISCOUS FREE 
BOUNDARY FLOWS 

BORJAN GESHKOVSKI AND ENRIQUE ZUAZUA 

Abstract. In this work, we address the local controllability of a one-dimensional 
free boundary problem for a fuid governed by the viscous Burgers equation. The 
free boundary manifests itself as one moving end of the interval, and its evolution is 
given by the value of the fuid velocity at this endpoint. We prove that, by means 
of a control actuating along the fxed boundary, we may steer the fuid to constant 
velocity in addition to prescribing the free boundary’s position, provided the initial 
velocities and interface positions are close enough. 
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1. Introduction and main result 

Let T > 0 be a given positive time. We consider the following problem for the 
viscous Burgers equation:8 

vt − vzz + vvz = 0 in (0, T ) × (0, `(t))>< v(t, 0) = u(t), (t, `(t)) = 0 in (0, T )vz (1.1) > `0(t) = v(t, `(t)) in (0, T ): 
v(0, z) = v0(z), `(0) = ` 0 in (0, ` 0). 

System (1.1) is a free boundary problem, where the unknown is the pair (v, `), with 
` representing the free boundary. Here ̀  0 > 0, and u = u(t) is a control actuating 
along the fxed boundary z = 0. Henceforth and in the above, we use the notation 
(0, T ) × (0, `(t)) for the set {(t, z) 2 (0, T ) × R : 0 < z < `(t)}, with analogue notation 
for the closure of the latter. 

Model (1.1) is presented and studied by Caboussat & Rappaz in [5, 6], where local-in-
time existence and uniqueness of strong solutions are shown, supplemented by numer-
ical studies. It may be seen as a one-dimensional simplifcation of the incompressible 
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Navier-Stokes equations with a free surface set in Rd with d = 2, 3, as encountered in 
the works of Beale [2, 3], and Maronnier, Picasso & Rappaz [29], where particular em-
phasis is given on the application to mould flling. The state of System (1.1) involves 
the velocity v(t, z) of the one-dimensional fuid and the free boundary ̀ (t), whose coun-
terpart in dimension d > 2 would represent the position of the free surface of the fuid. 
The fuid velocity is governed by the viscous Burgers equation, while the dynamics of 
the free boundary follow the fuid velocity, as per the equation ̀ 0(t) = v(t, `(t)). 

As the state of the system (1.1) consists of two components (v, `), the natural exact-
controllability problem, which is the main goal of this work, is to steer both components 
to a priori defned targets in a given time T > 0. This would ensure the entire system 
remains in such a confguration after the time T has elapsed. Formulated as such, 
this control problem has not been accurately addressed in the literature for systems 
where the coupling between the PDE and ODE components is only done through the 
boundary of the domain, as in (1.1). Through this work, we aim to present a systematic 
and ordered methodology for addressing such compound control problems. 

The most general and feasible targets to which one may control both components 
of (1.1) are time-dependent trajectories of (1.1), namely free solutions to (1.1). The 
question of controllability to non-trivial trajectories is however not straightforward at 
all. This is observed on the level of the system linearized around the non-trivial target 
trajectory, which contains several non-local trace terms (see (5.1)). Consequently, in 
terms of the adjoint problem one obtains non-standard boundary conditions (see (5.3)) 
for which, up to the best of our knowledge, observability inequalities are lacking. This 
is discussed in more detail in Section 5.1, and the general problem of controllability to 
arbitrary trajectories remains open. 

At this point, we observe that for any ̀  � > 0, the pair (v̄, `) with 

v 2 R, `(t) = ` � + vt > 0 in [0, T ], (1.2) 

is an explicit, non-trivial solution to System (1.1) with u � v. As discussed in Section 2, 
the system linearized around this trajectory does not manifest the issues appearing in 
the general trajectory case. The main goal of this work is to prove the local exact-
controllability for (1.1) to this particular trajectory. To be more precise, given an 
arbitrary constant velocity v and an initial position ̀  �, we want to show that whenever 
(v0, ` 0) are suÿciently close to (v, ` �) (see Figure 1), one can fnd a control u(t) such 
that the corresponding trajectory (v, `) to (1.1) connects (v0, ` 0) to the target (v, ` � + 
vT ) at time T . This is refected in our main result. 

Theorem 1.1. Let T > 0, ̀  � > 0 and v 2 R be such that ̀ (t) = ` � + vt > 0 for all 
t 2 [0, T ]. There exists r > 0 such that for all ̀  0 > 0 and v0 2 H1(0, ` 0) satisfying 

kv0 − vkH1(0,`0) + |` 0 − ̀ �| 6 r, 

there exists a control u 2 H3/4(0, T ) such that the unique solution � � � � 
` 2 C1([0, T ]) v 2 L2 0, T ; H2(0, `(·)) \ C0 [0, T ]; H1(0, `(·)) 

of (1.1) satisfes 

inf `(t) > 0 and `(T ) = `(T ) and v(T, ·) = v in (0, `(T )). 
t2[0,T ] 



Moreover, one has 

kukH3/4(0,T ) .T kv0 − vkH1(0,`0) + |` 0 − ̀ �|. 

Our proof combines several elements of control of parabolic equations in a systematic 
and ordered way, in view of establishing a well-defned and clear methodology for 
tackling controllability problems for free boundary systems such as (1.1). 

A couple of remarks are in order. 

Remark 1.1. It is readily seen that Theorem 1.1 also covers the case of null-controllability 
of the state and prescribing the position of the interface, by considering (v, `) = (0, ` �) 
with ` � > 0. Aside from the trivial solution (0, ` �), we may also look to potentially 
control to the stationary solutions of (1.1), namely, time-independent solutions. In 
other words, given ̀  � > 0 and v̄  2 R we seek to compute the solutions to ( 

−vzz + vvz = 0 in (0, ` �) (1.3) 
v(0) = v,¯ v(` �) = 0, vz(` �) = 0. 

It may be checked that the only solution to the second-order equation in (1.3) is v � 0, 
which enhances our interest in time-dependent trajectories as targets. 

Remark 1.2. The result we prove here is local (a global result is not known also for 
similar problems such as (1.4), (1.5)). One may think of combining this local result with 
a stabilization argument, which, should stabilization hold, would allow to steer System 
(1.1) to a neighborhood of the target wherein the local controllability result applies. 
However, while the PDE component may possess an inherent dissipative mechanism, 
the asymptotic position of the free boundary is generally not known for problems of this 
nature. See Section 5.2 for more details. 

t 

T 

r 

`� 
• 

• 

• x 

0 ` 0 

Figure 1. Controllability of the position of the free surface ` (blue 
curve) to the reference interface ̀ (black) at time T , provided the initial 
positions are close enough. 
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1.1. State of the art. The controllability aspects of one-dimensional, parabolic free-
boundary problems similar to (1.1) have been addressed in several recent works (see 
e.g. [13, 17, 16, 19]). In [13, 17], Fernández-Cara et al. consider the one-phase Stefan 
problem 8 >< 

>: 
vt − vzz = 0 in (0, T ) × (0, `(t)) 
v(t, 0) = u(t), v(t, `(t)) = 0 

`0(t) = −vz(t, `(t)) 
in (0, T ) 
in (0, T ) 

(1.4) 

v(0, z) = v0(z), `(0) = ` 0 in (0, ` 0). 

We stress that in [13, 17], a null-controllability result where only the frst component v 
is controlled is shown, i.e. v(T, ·) = 0 in (0, `(T )), for small initial data v0. Such results 
are partial as they cannot ensure that the entire system remain in such the prescribed 
confguration past the time horizon T . The authors’ proof relies on fxing the free 
boundary ̀  2 C1([0, T ]) (and removing the equation for the velocity ̀ 0), and proving 
an observability inequality for the linear heat equation in the non-cylindrical domain 
(0, T )×(0, `(t)), with a constant uniform in ̀ . The conclusion for (1.4) follows by meansR ˙ `of a Schauder fxed-point argument applied to the map ̀  7−! ̀ 0 − v (τ, `(τ)) dτ in0 x 

an appropriate subspace of C1([0, T ]). In [16], the authors obtain the same local con-
trollability result by means of a di˙erent technique, which relies on a transformation 
to a fxed domain, a linear controllability test and an inverse function argument. Our 
strategy of proof for the controllability of both states of (1.1) has some resemblance to 
that in [16], but with several important technical di˙erences. Moreover, with small ad-
justments, the control strategy we present herein also yields a local null-controllability 
result for both the solution and the free boundary of the Stefan problem (1.4), namely 
`(T ) = ` � and v(T, ·) = 0 in (0, ` �) whenever v0 and ̀  0 − ̀ � are small enough. 

1.1.1. Comparison with fuid-structure interaction problems. Free boundary problems 
which arise in fuid-structure interaction have also been addressed. Doubova & Fernández-
Cara [14] well Liu, Takahashi & Tucsnak [26] consider the systemas as8 

vt − vzz + vvz = 0 in (0, T ) × (−1, `(t)) [ (`(t), 1) 
v(t,−1) = u1(t), v(t, 1) = u2(t) in (0, T ) 
v(t, `(t)) = `0(t) in (0, T ) (1.5) 
m`00(t) = [vz](t, `(t)) in (0, T ) 
v(0, z) = v0(z), `(0) = ` 0, `0(0) = ` 1 in (−1, ` 0) [ (` 0, 1), 

>< 
>: 

which is frst introduced by Vázquez & Zuazua [33, 34], where global in-time well-
posedness, self-similar asymptotics and particle collision are addressed (see also [27] for 
a related study). The free boundary ̀ (t) represents the displacement/position of a solid 
particle of mass m > 0, which splits the domain in two parts. The null-controllability 
of (1.5) refers to controlling three components: the fuid velocity v(T, ·) = 0, the 
particle velocity ̀ 0(T ) = 0, and the particle’s position ̀ (T ) = 0. 

In [14], controls u1, u2 are used on both boundaries in view of applying a Carleman 
based strategy. Such an approach is not feasible when there is a control at only 
one end (i.e. u2 = 0) because of the lack of connectivity of the fuid domain. This 
issue was mended in [26], where the authors introduce a systematic methodology for 
tackling the null-controllability of parabolic systems in spite of source terms, without 
requiring Carleman inequalities (they thus use spectral techniques). We also refer to 
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the work of Cindea, Micu, Roventa and Tucsnak [7], where the authors consider a 
control actuating only on the moving particle: m`00(t) = [vz](t, `(t)) + u(t). They 
prove global null-controllability (in large time) for the fuid and particle velocities, and 
approximate controllability for the particle’s position. We refer to the recent work [32] 
for a technical improvement of this result. The lack of connectivity of the fuid domain 
does not appear in two and three dimensions, and the Carleman-based approach has 
been successfully applied for proving local null-controllability results for fuid-rigid-
body systems (see [4, 20] and the references therein) where the control is generally 
actuating along a part of the fxed boundary. 

Remark 1.3. At this point we remark that there is a notable di˙erence between prob-
lems of the type (1.5) and (1.1). Indeed, the former system has a stronger coupling 
than the latter systems due to the presence of two equations for the free boundary `. 
This can be seen when linearizing both systems around their trivial trajectory (after 
fxing the domain). In the linearization of (1.1) (see (5.1) with a � 1, b, c, d, e � 0 
and Section 2 for details), 8 >< 

>: 
yt − yxx = 0 in (0, T ) × (0, 1) 
y(t, 0) = u(t), yx(t, 1) = 0 in (0, T ) 

`0(t) = y(t, 1) in (0, T ) 
y(0, x) = y0(x), `(0) = ` 0 in (0, 1), 

the PDE and ODE components are decoupled, as the linear PDE may be solved without 
any knowledge of the ODE component. On the other hand, the linearization of (1.5) 
around the trivial solution (see [26]) 8 

>< 
>: 

yt − yxx = 0 

y(t,−1) = u(t), y(t, 1) = 0 

in (0, T ) × (−1, 0) [ (0, 1) 
in (0, T ) 

y(t, 0) = `0(t) in (0, T ) 

m`00(t) = [yx](t, 0) in (0, T ) 

y(0, x) = y0(x), `(0) = ` 0, `0(0) = ` 1 in (−1, ` 0) [ (` 0, 1), 

preserves the coupling of the PDE component and the ODE component because of the 
presence of two equations for the latter. 

In the above-cited works on fuid-structure problems, the controllability problem ad-
dressed is that of controlling the PDE component to zero and the ODE component(s) 
to some given reference points. For the case of non-trivial stationary solutions and 
trajectories as targets, much less is known. In [1], Badra & Takahashi prove feedback 
stabilization to non-trivial stationary solutions for (1.5). Therein, it can also be seen 
that the question of controllability to non-trivial stationary solutions is not straightfor-
ward. This is observed on the level of the system linearized around the target, which 
contains several trace terms (as in (5.1)). As a result, in terms of the adjoint problem, 
one obtains non-local boundary conditions (similar to (5.3)), for which observability 
inequalities are lacking. 

We also refer to Dunbar et al. [10, 9] for motion planning and fatness control, and 
Krstic et al. [21, 22, 23, 24] and the references therein for feedback stabilization via 
backstepping design of the Stefan problem (1.4), see also Phan & Rodrigues [31] for 
stabilization to trajectories for general parabolic problems. 
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As discussed in what precedes, up to the best of our knowledge, the question of 
controllability to non-trivial trajectories (or even non-trivial stationary states) for par-
abolic free boundary problems such as (1.1), (1.4), (1.5) has not been addressed in the 
literature. We aim to present some of the diÿculties which appear in solving this kind 
of control problem through this work. 

1.2. Scope. In Section 2, we reformulate the control problem (1.1) on the time-
independent domain (0, 1). We give the linearization of (1.1) around the target trajec-
tory (see Section 5 for the general linearization and a brief discussion on the possible 
strategies for the general controllability to trajectories problem). In Section 3, we 
prove the null-controllability of the system linearized around (v, `). The PDE compo-
nent is a linear heat equation with a source term, and the ODE component is simply 
an integrator of the heat solution’s Dirichlet trace. The controllability requirement 
for the second component may thus be seen as a fnite-dimensional constraint on the 
control. An improved observability inequality along with an adaptation of the HUM 
method provide the desired controllability result for both components of the linearized 
system. In Section 4, we come back to the nonlinear problem by means of a Banach 
fxed point argument. 

2. Reformulation of the problem 

Transformation. To take advantage of a simplifed functional setting, it is more ad-
vantageous to reformulate (1.1) in a domain which is time-independent. In view of 
linearizing, perturbations around the target trajectory would be defned in the same 
domain. 

To this end, let us defne the pull-back velocity function w : (0, 1) ! R by 
z 

w(t, x) = v(t, z), x = for x 2 (0, 1). (2.1)
`(t) 

A simple application of the chain rule gives the following system of equations for w: 8 
`0 

wt − wxx − xwx + wwx = 0 in (0, T ) × (0, 1) 1 1 > `2 ` ` < 
w(t, 0) = u(t), (t, 1) = 0 in (0, T )wx (2.2) 
`0(t) = w(t, 1) in (0, T )>: 
w(0, x) = w0(x), `(0) = ` 0 in (0, 1), 

where w0(x) = v0(` 0x). As (1.1) and (2.2) are equivalent provided ̀ (t) > 0 in [0, T ], 
we will henceforth concentrate our controllability analysis on the latter system. 

Linearization. We shall now linearize the transformed system (2.2) around the target 
trajectory (v, `) given in (1.2). In order to illustrate some key diÿculties related to 
the controllability to general trajectories for free boundary problems such as (1.1), we 
postpone to Section 5.1 the linearization of (2.2) around an arbitrary smooth time-
dependent trajectory (w, `), associated to initial and boundary data (w0, ` 0, u). 

To proceed with the linearization around (v, `), we write w = v + y and ̀  = ` + h, 
and keep all the terms which are linear with respect to (y, h). The nonlinear problem 
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satisfed by the perturbation variables reads 8 >< 
>: 
yt − ayxx + byx = N (y, h) in (0, T ) × (0, 1) 
y(t, 0) = u(t) − v, 
h0(t) = y(t, 1) 

yx(t, 1) = 0 in (0, T ) 
in (0, T ) 

(2.3) 

y(0, x) = y0(x), h(0) = h0 in (0, 1). 

where y0(·) = w0(·)−v, h0 = ` 0 − `(0), and the smooth, bounded coeÿcients are given 
by 

a(t) = 
1 

, 
`(t)2 

b(t, x) = 
v

0 − ̀(t)x 

`(t) 
in [0, T ] × [0, 1]. (2.4) 

and the nonlinear term is of the form 

N (y, h) = a − h2 yt − 2h`yt + h0hxyx + h0`xyx + `hxyx 
� 

− hyyx − hvyx − ̀yyx . 

0It is important to note that since ` (t) = v, from (2.4) it follows that b(t, 1) = 0. 
Moreover, the nonlinearity N (·, ·) only consists of (at least) quadratic terms, which 
will facilitate the application of a Banach fxed point argument. The linearized problem 
corresponds to (2.3) with N � 0. 

Remark 2.1. At this point we notice that the linearized problem, namely (2.3) with 
N � 0, the PDE component y and the ODE component h are decoupled – namely, y 
can be solved independently of h, and thus the coupling between the PDE and ODE is 
done solely through the nonlinear term. As seen in Section 5.1, the problem linearized 
around an arbitrary trajectory, namely (5.1), contains the terms dh0 and eh, which are 
non-local as they may be expressed in terms of the Dirichlet trace of y at x = 1. As 
these terms act on a single point in space, at the level of the adjoint problem one could 
expect to obtain a non-local integral boundary condition over all points in space (see 
(5.3)). See Section 5.1 for more details. 

Distributed control problem. Taking the previous transformations into account, Theo-
rem 1.1 would in essence be a consequence of the null-controllability of System (2.3). 
To prove the latter, using common methodology for parabolic equations, we will frst 
consider the distributed control problem 8 >< 

>: 
yt − ayxx + byx = N (y, h) + u1ω in (0, T ) × (−1, 1) 
y(t,−1) = yx(t, 1) = 0 

h0(t) = y(t, 1) 

in (0, T ) 
in (0, T ) 

(2.5) 

y(0, x) = y0(x), h(0) = h0 in (−1, 1) 

where ω ( (−1, 0) is an open and non-empty interval. The initial datum y0 2 H1(0, 1) 
is also extended to a datum ye0 with kye0kH1(−1,1) 6 ky0kH1(0,1). By abuse of notation, 
we continue denoting the extended initial datum by y0. Once the null-controllability 
problem for (2.5) is solved, u(t) := y(t, 0) + v would provide the desired control for 
Problem (2.2), which in view of the previous discussion, also provides a solution to 
(1.1). 
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To prove the null-controllability for system (2.5), we will frst consider the associated 
linear system 8 >< 

>: 
yt − ayxx + byx = f + u1ω in (0, T ) × (−1, 1) 
y(t,−1) = yx(t, 1) = 0 

h0(t) = y(t, 1) 

in (0, T ) 
in (0, T ) 

(2.6) 

y(0, x) = y0(x), h(0) = h0 in (−1, 1), 

where f is a given source term. The null-controllability at time T of the linearized 
system is the goal of the next section. The nonlinear term appearing in (2.5) will be 
seen as a small perturbation and will be dealt with by means of a Banach fxed-point 
argument. 

3. Null-controllability of the linearized system 

In this Section, given T > 0, arbitrarily large initial data (y0, ` 0), and a source 
term f with appropriate decay as t % T , we seek a trajectory (y, h) of the linearized 
problem (2.6) satisfying 

y(T, ·) = 0 in (−1, 1) and h(T ) = 0. 

In (2.6) we are dealing with a cascade-like system, as knowing y immediately yields h, 
with the latter being reduced to the integrator Z t 

h(t) = h0 + y(τ, 1) dτ. 
0 

In other words, the null-controllability of (2.6), would follow from solving the linear 
control problem (recall that a(t) > 0 and b(t, 1) = 0) 8 >< 

>: 
yt − ayxx + byx = f + u1ω in (0, T ) × (−1, 1) 
y(t,−1) = yx(t, 1) = 0 

y(0, x) = y0(x) 

in (0, T ) 
in (−1, 1) 

(3.1) 

y(T, x) = 0 in (−1, 1) 

subject to the linear fnite-dimensional constraint Z T 
h0 + y(τ, 1) dτ = 0. (3.2) 

0 

We will see this as a constrained controllability problem, namely with a linear fnite-
dimensional constraint on the control u. 

Carleman weights. Let us recall that ω = (γ1, γ2) ( (−1, 0). We take (a0, b0) with 
γ1 < a0 < b0 < γ2 and introduce a function α0 2 C2([−1, 1]) such that 

α0(x) > 0 in (−1, 1), α0(±1) = 0, |α0,x| > 0 in (−1, 1) \ (a0, b0), 

and for λ > 1 consider the function α defned by �� 
2λkα0kL∞ λα0(x)α(t, x) = θ(t) e − e , in (0, T ) × (−1, 1), (3.3) 
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where θ 2 C2([0, T )) is given by ��8 >< 4 T 
on 0,

T 2 2� �θ(t) = 
1 T 

t(T − t) 
on , T 

2 
. >: 

Notice that the weight θ(t) does not blow up as t& 0. This is because in view of the 
fxed-point argument, we will need to work with source-terms which do not vanish at 
t = 0. 

The main goal of this section is to prove the following result. 

Theorem 3.1. Let T > 0 be given. There exists s > 1 such that for any data y0 2 
L2(−1, 1), h0 2 R and f 2 L2(0, T ; L2(−1, 1)) with Z T Z 1 

θ−3 e 2sα|f |2 dx dt <1, (3.4) 
0 −1 

there exists a control u 2 L2(0, T ; L2(ω)) such that the associated solution 

y 2 L2(0, T ; H1(−1, 1)) \ C0([0, T ]; L2(−1, 1)) and h 2 H1(0, T ) 

of Problem (2.6) satisfes y(T, ·) = 0 and h(T ) = 0. Moreover, 
sα (3.5)ekukL2(0,T ;L2(ω)) + y 

L2(0,T ;L2(−1,1))� � 
6 C ky0kL2(−1,1) + |h0| + θ−

3/2 e sαf 
L2(0,T ;L2(−1,1)) 

holds for some C = C(T, ω, s) > 0. 

It is well known that a Carleman inequality (see Lemma 3.1) along with the HUM 
method yield the null-controllability of the linear heat equation (3.1) with a source 
term f as in (3.4). 

To control the second component h to zero at time T , we will reformulate the constraint 
(3.2) by introducing an augmented adjoint problem for the heat equation with a non-
homogeneous boundary condition at x = 1. The requirement h(T ) = 0 may then 
be achieved by adding a corrector term to the HUM control for the heat equation. 
To guarantee the existence of this control by means of the HUM method, we will 
need to prove an improved observability inequality. This idea appears in the work 
of Nakoulima [30] (see also [11] for a recent generalization), and has been applied 
in works on fuid-structure interaction problems (see [4, 14] for instance) where the 
structure’s displacement at time T is deduced after having controlled the fuid and 
structure velocities. 

3.1. An improved observability inequality. We will make use of the following 

8 >< 
Carleman inequality for solutions to (recall that b(t, 1) = 0) the adjoint heat equation 

−ζt − aζxx − (bζ)x = g in (0, T ) × (−1, 1) 
ζ(t,−1) = ζx(t, 1) = 0 in (0, T ) (3.6) 
ζ(T, x) = ζT (x) in (−1, 1), 

>: 
and the weights defned in (3.3). The proof follows by combining the well-known 
Carleman inequality shown in Fursikov & Imanuvilov [18, Lemma 1] (see also [35]) 
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with the parameters s > s0 > 1 and λ > λ0 > 1 appearing therein being henceforth 
fxed, and energy estimates (recall that b(t, 1) = 0) as done in [15, Section 3]. 

Lemma 3.1. Let T > 0. There exists C = C(T, ω, s, λ) > 0 such that for every 
datum ζT 2 L2(−1, 1) and source g 2 L2(0, T ; L2(−1, 1)), the unique weak solution 
ζ 2 L2(0, T ; H1(−1, 1)) \ C0([0, T ]; L2(−1, 1)) to (3.6) satisfes Z T Z 1 Z 1 

θ3 e −2sα|ζ|2 dx dt+ |ζ(0, x)|2 dx (3.7) 
0 −1 −1�Z T Z 1 Z T Z � 

−2sα|g|2 dx dt+ −2sα|ζ|2 dx dt6 C e θ3 e . 
0 −1 0 ω 

The Carleman inequality (3.7) guarantees the coercivity and continuity of the strictly 
convex HUM functional, the unique minimizer of which yields a solution to the adjoint 
heat equation (3.6) and subsequently a solution to the control problem (3.1) after 
investigating the corresponding Euler-Lagrange equation. 

To take care of the constraint h(T ) = 0, let us consider the augmented adjoint problem 8 > −ψt − aψxx − (bψ)x = 0 in (0, T ) × (−1, 1)< 
ψ(t,−1) = 0, ψx(t, 1) = 1 in (0, T ) (3.8)>: 
ψ(T, x) = 0 in (−1, 1). 

Multiplying the heat equation appearing in System (2.6) by the unique weak solution 
ψ 2 L2(0, T ; H1(−1, 1))\C0([0, T ]; L2(−1, 1)) of (3.8) and integrating, we see that due 
to (3.2), a control u is such that the corresponding solution of (2.6) satisfes h(T ) = 0 
if and only if Z T Z Z 1 Z T Z 1 

uψ dx dt = − y0(x)ψ(0, x) dx+ h0 − fψ dx dt. (3.9) 
0 ω −1 0 −1 

Let us defne the projectorZ 
ψζ dx dt 

(0,T )×ωP(ζ) := Z for all ζ 2 L2(0, T ; L2(−1, 1)). 
|ψ|2 dx dt 

(0,T )×ω 

The key property of the operator P(·) is its fnite-dimensional range (in fact, one-
dimensional range). Our next result is the desired improved observability inequality. 
The proof follows an indirect, compactness-uniqueness argument (following ideas in 
[4, 14]). We assume the setting of Lemma 3.1. 

Proposition 3.1. There exists a constant Cobs = Cobs(T, ω, s, λ) > 0 such that for ev-
ery datum ζT 2 L2(−1, 1) and source g 2 L2(0, T ; L2(−1, 1)), the unique weak solution 
ζ 2 L2(0, T ; H1(−1, 1)) \ C0([0, T ]; L2(−1, 1)) to (3.6) satisfes Z T Z 1 Z 1 

θ3 e −2sα|ζ|2 dx dt+ |ζ(0, x)|2 dx+ |P(ζ)|2 (3.10) 
0 −1 −1�Z T Z 1 Z T Z � 

6 Cobs e −2sα|g|2 dx dt+ |ζ − P(ζ)ψ|2 dx dt . 
0 −1 0 ω 
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Proof. We will begin by showing by means of an indirect argument that Z T Z 1 Z 1 
θ3 e −2sα|ζ|2 dx dt+ |ζ(0, x)|2 dx 

0 −1 −1�Z T Z 1 Z T Z � 
6 C2 e −2sα|g|2 dx dt+ |ζ − P(ζ)ψ|2 dx dt (3.11) 

0 −1 0 ω 

for some C2 = C2(T, ω, s, λ) > 0 and any (ζT , g) as in the statement, which would cover 
the two leftmost terms of the desired inequality (3.10). To do so, let us assume by 
contradiction that (3.11) is false, thus there exist two sequences {ζk }1 and {gk}1 T k=1 k=1 
such that Z T Z 1 Z 12 

θ3 −2sα ζk1 = e dx dt+ |ζk(0, ·)|2 dx 
0 −1 −1�Z T Z 1 Z T Z � 

2 2 −2sα k> k e g dx dt+ ζk − P(ζk)ψ dx dt , (3.12) 
0 −1 0 ω 

for any k 2 N, with ζk being the corresponding solution to the adjoint problem (3.6). 
Elementary inequalities giveZ T Z 2 

θ3 −2sα
1 

e P(ζk)ψ dx dt 
2 0 ωZ T Z Z T Z 2 2 −2sα −2sα6 θ3 e ζk dx dt+ θ3 e ζk − P(ζk)ψ dx dt, 

0 ω 0 ω 

thus the left-most integral is uniformly bounded for any k 2 N in view of (3.12) (recall 
also the defnition of the weights in (3.3)). Hence, P(ζk) is uniformly bounded in R 
with respect to k 2 N, whence it follows that 

P(ζk) −! P� as k −! 1 (3.13) 

for some P� 2 R, along some subsequence. From (3.12), we see that the functions ζk 
and ζk(0, ·) are uniformly bounded in L2(0, T−ε; L2(−1, 1)) and L2(−1, 1) respectively, 
for all ε > 0, as well as Z T −ε Z 1 12 

g k dx dt . . 
k0 −1 

Whence, using the well-known energy estimates for the heat equation (recall that 
b(t, 1) = 0), one also has that 

ζk * ζ weakly in L2(0, T − ε; H1(−1, 1)) 

ζk * ζt weakly in L2(0, T − ε; H−1(−1, 1))t 

along subsequences as k −! 1. It can thus be seen that ζ satisfes ( 
−ζt − aζxx − (bζ)x = 0 in (0, T ) × (−1, 1) 
ζ(t,−1) = 0, ζx(t, 1) = 0 in (0, T ). 

In (0, T ) × ω, we have ζk = (ζk − P(ζk)ψ) + P(ζk)ψ, so in view of (3.12) and (3.13) 
we have 

ζk −! P�ψ strongly in L2(0, T ; L2(ω)) (3.14) 
as k −! 1. The above convergence implies that ζ = P�ψ in (0, T ) × ω. As ψ is also 
in the kernel of the heat operator (thus, so is P�ψ), by unique continuation we deduce 
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that ζ = P�ψ in (0, T ) × (−1, 1). But this can only hold if ζ � 0 and P� = 0, since 
ψx(t, 1) = 1. 

From (3.14), we may thus deduce that 

ζk −! 0 strongly in L2(0, T ; L2(ω)) 

as k −! 1, and using (3.7) (noting that (3.12) is used for gk) we deduce that Z T Z 1 Z 12 2 −2sαθ3 e ζk dx dt+ ζk(0, x) dx −! 0 
0 −1 −1 

as k −! 1, which contradicts (3.12). Consequently, (3.11) holds. Arguing as for 
(3.11), we can show Z T Z 2 �Z T Z 1 Z T Z � 

θ3 −2sαζψ dx dte 6 C5 e −2sα|g|2 dx dt+ |ζ − P(ζ)ψ|2 dx dt 
0 ω 0 −1 0 ω 

(3.15) 
for some C5 = C5(T, ω, s) > 0. Indeed, setting up an assumption for (3.15) as in (3.12) 
and applying Cauchy-Schwarz, after following the lines of the previous step, it may be 
seen that this would provide the necessary contradiction. � 

Remark 3.1. While Proposition 3.1 yields the desired improved observability inequality 
for what follows, due to the indirect argument used for the proof an explicit dependence 
of the newly obtained constant on the parameters (T, ω) is not guaranteed. 

3.2. Proof of Theorem 3.1. We are now in a position to complete the proof of 
Theorem 3.1, which follows by adapting the well-known HUM arguments. 

Proof of Theorem 3.1. For a solution ψ of (3.8), let us henceforth denote Z 1 Z T Z 1 
M0 := − y0(x)ψ(0, ·) dx+ h0 − fψ dx dt. (3.16) 

−1 0 −1 

We split the proof in three steps. 

Step 1: Minimization problem. Consider the functional Z T Z Z T Z 11 1 
Jobs(ζT , g) := |ζ − P(ζ)ψ|2 dx dt+ e −2sα|g|2 dx dt 

2 20 ω 0 −1Z T Z 1 Z 1 
− fζ dx dt− y0(x)ζ(0, x) dx− P(ζ)M0, 

0 −1 −1 

initially defned for (ζT , g) 2 L2(−1, 1) × L2(0, T ; L2(−1, 1)) with corresponding solu-
tion ζ 2 L2(0, T ; H1(−1, 1)) \ C0([0, T ]; L2(−1, 1)) to the adjoint heat equation (3.6), 
and ψ being the solution to the augmented adjoint problem (3.8). We will show the 
existence of a minimizer to Jobs, which will consequently be used to build the desired 
control – state pair for Problem (2.6). 

We remark that the quantityZ T Z Z T Z 1 
k(ζT , g)k2 = |ζ − P(ζ)ψ|2 dx dt+ e −2sα|g|2 dx dtobs 

0 ω 0 −1 

defnes a norm on L2(−1, 1) × L2(0, T ; L2(−1, 1)). In order to have completeness, we 
thus introduce the space 

k·kobs
Xobs := L2(−1, 1) × L2(0, T ; L2(−1, 1)) . 
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The set Xobs is then endowed with the Hilbert structure given by the above norm. 

On Xobs, the functional Jobs may be extended by continuity in a unique way. Indeed, 
the improved weighted observability inequality (3.10) implies (recall that f is assumed 
to satisfy (3.4)) Z T Z 1 �Z T Z 1 �1/2 �Z T Z 1 �1/2 

θ−3 2sα|f |2 dx dt θ3 −2sα|ζ|2 dx dtfζ dx dt 6 e e 
0 −1 0 −1 0 −1 

θ−
3/2 sαf6 CT e k(ζT , g)kobs, (3.17)

L2(0,T ;L2(−1,1)) 

as well as Z 1 �Z 1 �1/2 �Z 1 �1/2 

y0(x)ζ(0, x) dx 6 |y0|2 dx |ζ(0, x)|2 dx 
−1 −1 −1 

6 CT y0 k(ζT , g)kobs (3.18)
L2(−1,1) 

and 
|P(ζ)| 6 CT k(ζT , g)kobs (3.19) 

for some CT = CT (ω, s, λ) > 0. Due to (3.17) – (3.18) – (3.19), it can be seen that the 
functional Jobs is also coercive. As Jobs is also strictly convex on Xobs (since k · kobs is 
a Hilbert norm), it admits a unique minimizer (ζ,b bg) 2 Xobs by the direct method in 
the calculus of variations. � � cStep 2: Null-controllability requirements. Now the unique minimizer ζT , gb 2 Xobs 

of Jobs satisfes the Euler-Lagrange equationZ T Z � � Z T Z 1 
−2sαb0 = ζb− P(ζb) ψ ϕ dx dt+ e gF dx dt 

0 ω 0 −1Z T Z 1 Z 1 
− fϕ dx dt− y0(x)ϕ(0, x) dx− P(ϕ)M0 (3.20) 

0 −1 −1 

for all (ϕT , F ) 2 Xobs, where ζb and ϕ denote the solutions to (3.6) corresponding to� � cζT , bg and (ϕT , F ) respectively. Comparing (3.20) with (3.22), we are led to consider 
the control function � � �Z T Z �−1 

u := − ζb− P(ζb)ψ + M0 ψ2 dx dt ψ 
0 ω 

restricted to ω, where ψ is the unique solution to the augmented adjoint problem (3.8). 
Let y 2 L2(0, T ; H1(−1, 1))\C0([0, T ]; L2(−1, 1)) be the solution to the heat equation 
in (2.6) with control u. Let us justify this choice. Noting that Z T Z Z T Z � � 

uϕ dx dt = − ζb− P(ζb) ψ ϕ dx dt+ P(ϕ)M0, 
0 ω 0 ω 

we come back to (3.20) and deduce thatZ T Z 1 Z T Z 
2sαb0 = − e gF dx dt+ uϕ dx dt 

0 −1 0 ωZ T Z 1 Z 1 
+ fϕ dx dt+ y0ϕ(0, ·) dx. (3.21) 

0 −1 −1 
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On the other hand, multiplying the heat component in (2.6) by any ϕ weak solution 
of (3.6) with initial data ϕT and source term F , we see (modulo a density argument) 
that Z 1 Z T Z 1 Z 1 Z T Z 

y(T, ·)ϕT dx = − (yF + fϕ) dx dt+ y0ϕ(0, ·) dx+ uϕ dx dt. 
−1 0 −1 −1 0 ω 

(3.22) 
Comparing with (3.21), for all (ϕT , F ) 2 L2(−1, 1) × L2(0, T ; L2(−1, 1)) one has Z 1 Z T Z 1 � �

2sαby(T, ·)ϕT dx = e g − y F dx dt. 
−1 0 −1 

As F is arbitrary, choosing F � 0, we get the desired control requirement y(T, ·) = 0. 
On the other hand, as ϕT is arbitrary, choosing ϕT � 0, we see also that 

−2sα y = b .ge 

We now defne h 2 H1(0, T ) by Z t 
h(t) := h0 + y(τ, 1) dτ. 

0 

It remains to be seen that the above-defned control u is such that h(T ) = 0. Recalling 
the defnition of M0 in (3.16), a straightforward computation shows that Z T Z 

uψ dx dt = M0, 
0 ω 

which in view of (3.9) yields the conclusion h(T ) = 0, as desired. � � 
Step 3: Estimates. As Jobs ζbT , gb 6 Jobs(0, 0) = 0, straightforward estimates along 
with (3.17) – (3.19) give 

b −sαbζ − P(ζb) ψ + e g (3.23)
L2(0,T ;L2(−1,1))L2(0,T ;L2(ω))� � 

θ−
3/2 sαf6 C1 ky0kL2(−1,1) + |h0| + e 

L2(0,T ;L2(−1,1)) 

for some C1 = C1(T, ω, s, λ) > 0. On another hand, it may easily be checked that Z T Z Z T Z � �Z T Z �−1�2 
u 2 dx dt = ζb− P(ζb)ψ dx dt+ M2 ψ2 dx dt (3.24)0 

0 ω 0 ω 0 ω 

Thus, in view of the defnitions of the control u and the state y and (3.23) and (3.24) 
lead us to conclude that 

sαkukL2(0,T ;L2(ω)) + ke ykL2(0,T ;L2(−1,1))� � 
6 C2 ky0kL2(−1,1) + |h0| + θ−

3/2 e sαf 
L2(0,T ;L2(−1,1)) 

for some C2 = C2(T ) > 0. This concludes the proof. � 

The following Lemma gives additional estimates of the controlled trajectory in the 
weighted spaces provided more regular initial data. 
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Lemma 3.2. Let (v, y, h) denote the control-state pair given by Theorem 3.1. Assume 
moreover that y0 2 H1(−1, 1). Then 

θ−1 sα θ−2 sα e yx + e ytL2(0,T ;L2(−1,1)) L2(0,T ;L2(−1,1)) 

θ−2 sα θ−2 sα+ e yxx + e y
L2(0,T ;L2(−1,1)) L∞(0,T ;H1(−1,1))� � 

6 C ky0kH1(−1,1) + |h0| + θ−
3/2 e sαf 

L2(0,T ;L2(−1,1)) 

holds for some C = C(T, ω, s) > 0. 

Proof. The proof for estimating the frst three norms follows standard energy esti-
mate arguments, and we refer to [16, Lemma 3.4] for details. To obtain the weighted 
L1(H1)-estimate, we note that by interpolation 

1/2 1/2 
θ−2 sα θ−2 sα θ−2 sα e y . e y e y ,

L∞(0,T ;H1(−1,1)) L2(0,T ;H2(−1,1)) H1(0,T ;L2(−1,1)) 

and the right-hand side is bounded by the properties of the Carleman weights and the 
three previous estimates. � 

4. The nonlinear problem 

We now look to conclude the proof of Theorem 1.1 by virtue of a fxed-point argu-
ment for nonlinear system 8 

yt − ayxx + byx = N (y, h) + u1ω in (0, T ) × (−1, 1)>< y(t,−1) = yx(t, 1) = 0 in (0, T ) 
(4.1) > h0(t) = y(t, 1) in (0, T ): 

y(0, x) = y0(x), h(0) = h0 in (−1, 1), 

a restriction argument and reverting the transformations performed in Section 2. We 
recall that the nonlinear term in (4.1) is of the form � � 
N (y, h) = a − hyt(h+ 2`) + h0 yx(hx+ `x) + hyx(`x+ v) − yyx(h+ `) , (4.2) 

only consisting of (at least) quadratic terms. 

Let us consider the norm 
sα θ−1 sαkykY : = ke e yxykL2(0,T ;L2(−1,1)) + 

L2(0,T ;L2(−1,1)) 

θ−2 sα θ−2 sα+ e yt + e yxxL2(0,T ;L2(−1,1)) L2(0,T ;L2(−1,1)) 

θ−2 sα+ e y .
L∞(0,T ;H1(−1,1)) 

We begin by the following lemma, which provides the appropriate estimates of each 
nonlinear term with respect to the k · kY – norm. 

Lemma 4.1 (Nonlinear estimates). For y0 2 H1(−1, 1), let (y, h) denote the controlled 
trajectory of the linearized problem (2.6) given by Theorem 3.1. Then 

θ−
3/2 e sαN (y, h) 6 Ckyk2 

L2(0,T ;L2(−1,1)) Y 

holds for some C = C(T, ω, s) > 0. 



   

    

     
 

���� ����
�����

�����



 

16 BORJAN GESHKOVSKI AND ENRIQUE ZUAZUA 

Proof. We begin by noting that a 2 L1(0, T ). Using interpolation estimates, 
1/2 1/2kykL∞(L∞) . kykL∞(H1) . kyk kyk . kykY . (4.3)
H1(L2) L2(H2) 

Let us begin by estimating the right-most term of (4.2). Since h + ` 2 L1(0, T ) as 
well as θ−1 2 L1(0, T ), using (4.3) one deduces 

θ−
3/2 θ−

3/2 sα e sα(h+ `)yyx . kykL∞(L∞) e yx 
L2(0,T ;L2(−1,1)) L2(0,T ;L2(−1,1)) 

. kyk2 Y . (4.4) 

To estimate the two middle terms in (4.2), we frst observe that since h(T ) = 0, for 
any t 2 [0, T ] we may write 

h(t) = h(t) − h(T ) .T sup |h0(t)|. (4.5) 
t2[0,T ] 

Moreover, as h0(t) = y(t, 1) for t 2 (0, T ), (h+ `) · 2 L1((0, T ) × (−1, 1)) and ̀  · +v 2 
L1((0, T ) × (−1, 1)) and θ−1 2 L1(0, T ), we may estimate the middle terms using 
(4.5) and (4.3) as follows: 

θ−
3/2 sαh0 θ−

3/2 e yx(h+ `) + e sαhyx(`+ v) 
L2(0,T ;L2(−1,1)) L2(0,T ;L2(−1,1)) 

−3/2 sα . kykL∞(L∞) e e yx 
L2(0,T ;L2(−1,1)) 

. kyk2 Y . (4.6) 

To estimate the leftmost term, we need further arguments. Indeed, arguing as above 
we deduce 

θ−
3/2 1/2h θ−2 sα e sαhyt(h+ 2`) . θ e yt .

L2(0,T ;L2(−1,1))L2(0,T ;L2(−1,1)) L∞(0,T ) 

The desired estimate would thus follow provided 
1/2hθ . kykY (4.7)

L∞(0,T ) 

2λkα0kL∞holds. To prove (4.7), let 0 < α < minx2(−1,1)(e − eλα0 ) and we frst notice 
− sαθ(T )

that since h(T ) = 0 and e 2 = 0, by the Cauchy mean-value theorem 

h(t) h(t) − h(T ) h0 h0 
= . � �0 .T (4.8)

− sαθ − sαθ(t) − sαθ(T ) − sαθ − sαθ 

e 2 e 2 − e 2 e 2 e 2 L∞(0,T ) 
L∞(0,T ) 

for t 2 [0, T ]. We proceed in estimating the right-most term in (4.8). For t 2 [0, T ], 
using trace estimates and the decay properties of the Carleman weights, 

sαθ(t)|h0(t)|2 sαθ(t)|y(t, 1)|2 e = e Z 1 Z 1 
. sup e sαθ(t)|y(t, x)|2 dx+ sup e sαθ(t)|yx(t, x)|2 dx 

t2[0,T ] −1 t2[0,T ] −1 Z 1 Z 1 
.T sup θ−4 e 2sα|y|2 dx+ sup θ−4 e 2sα|yx|2 dx, (4.9) 

t2[0,T ] −1 t2[0,T ] −1 
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and the right-most terms are bounded by Lemma 3.2. By (4.9), (4.8) holds, and the 
latter rewrites as 

− sαθ(t) h0 |h(t)| .T e 2 . (4.10)
− sαθ 

2e L∞(0,T ) 

Consequently, (4.10) along with the decay properties of the Carleman weights yield 
(4.7), which concludes the proof. � 

We are now in a position to state and prove the null-controllability result for Problem 
(4.1). 

Theorem 4.1. Let T > 0 and ω = (γ1, γ2) ( (−1, 0) be non-empty. There exists 
r > 0 such that for all (y0, h0) 2 H1(−1, 1) × R satisfying ky0kH1(−1,1) + |h0| 6 r, 
there exists a control u 2 L2(0, T ; L2(ω)) such that the corresponding strong solution 

y 2 L2(0, T ; H2(−1, 1)) \ C0([0, T ]; H1(−1, 1)) h 2 H1(0, T ) 

of (4.1) satisfes y(T, ·) = 0 in (−1, 1) and h(T ) = 0. 

The proof follows a Banach fxed point argument. For r > 0, we consider the associated 
ball of H1(−1, 1): n o 

Br := y0 2 H1(−1, 1) : ky0kH1(−1,1) 6 r , 

and we also set ̂ ˙ 
θ−

3/2 sαfFr = f 2 L2(0, T ; L2(−1, 1)) : e 6 r . 
L2(0,T ;L2(−1,1)) 

We construct a map N : Br × (−r, r) × Fr −! Fr by setting, for y0 2 Br, h0 2 (−r, r) 
and f 2 Fr, 

N(y0, h0, f) = N (y, h), 
where (y, h) is the controlled trajectory provided by Theorem 3.1. 

Proof of Theorem 4.1. We split the proof in 3 steps. 

Step 1. For each y0 2 Br and h0 2 (−r, r), the application N(y0, h0, ·) maps Fr to 
itself whenever r > 0 is small enough. Indeed, by Lemma 4.1 and Lemma 3.2 

θ−
3/2 e sαN(y0, h0, f) 6 C1kyk2 

L2(0,T ;L2(−1,1)) Y � �2 r 
θ−

3/2 sαf6 C1C2
2 ky0kH1(−1,1) + |h0| + e 6 

L2(0,T ;L2(−1,1)) 2 

1whenever r 6 (where C1 > 0 is the constant from Lemma 4.1 and C2 > 0 the18C1C2 
2 

constant from Lemma 3.2). 

Step 2. For each y0 2 Br and h0 2 (−r, r) with r > 0 small enough, the application 
N(y0, h0, ·) is a contraction on Fr with a uniform constant < 1. This follows by 
estimating similarly as in Lemma 4.1 and Step 1, and closely follows the estimates in 
[26]. 

Step 3. Thanks to the Banach fxed point theorem, given r > 0 small enough, for 
any y0 2 Br and h0 2 (−r, r), the application N(y0, h0, ·) admits a unique fxed point 
f 2 Fr, and consequently a unique solution to the control problem for (4.1). � 

We may thus conclude the proof of Theorem 1.1. 
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Proof of Theorem 1.1. The result follows by virtue of the transformations performed 
in Section 2 and Theorem 4.1. Indeed, given initial data (v0, ` 0) 2 H1(0, ` 0) × R+ 

� , we 
consider y0(·) := v0(` 0·) − v and h0 = ` 0 − ̀ �. As y0 2 H1(0, 1), we may extend it 
to a function ye0 2 H1(−1, 1), which coincides with y0 on (0, 1). Let ω = (γ1, γ2) ˆ 
(−1, 0) be a non-empty set. By Theorem 4.1, there exists r > 0 such that whenever 
kye0kH1(−1,1) +|h0| 6 r, there exists a control ue 2 L2(0, T ; L2(ω)) such that the solution 
(y, h) to (4.1) satisfes y(T, ·) = 0 in (−1, 1) and h(T ) = 0. This in turn implies that the 
control u(t) := y(t, 0) + v guarantees the null-controllability of the boundary control 
system (2.3) on (0, 1), with initial data (y0, h0). We now set w(t, x) := y(t, x) + v 
in [0, T ] × [0, 1] and ̀ (t) = h(t) + `(t) in [0, T ]. It is readily seen that (w, `) satisfy 
(2.2) for initial data (v(` 0 ·), ` 0), as well as w(T, ·) = v in (0, 1) and ̀ (T ) = `(T ). As 
the result is local, one also has ̀ (t) > 0 in [0, T ] by continuity, and thus reversing the 
transformation (2.1) gives the desired result. � 

5. Concluding remarks 

In this work, we addressed the local controllability of both components of the state 
of a one-dimensional free boundary problem governed by the viscous Burgers equation. 
By means of a control actuating along the fxed boundary, we showed that we may steer 
the fuid to constant velocity and also control the position of its free surface, whenever 
the di˙erence between the initial velocities and the interface positions respectively is 
small enough. While the existence of this non-trivial trajectory is a particularity of 
the system under consideration, our result also implies its null-controllability. 

We present hereinafter several topics closely related to our work. 

5.1. Controllability to arbitrary trajectories. A challenging problem to which we 
have not given a solution herein is the controllability to arbitrary smooth trajectories 
for parabolic free boundary problems. Up to the best of our knowledge, this problem 
has not been addressed in the literature, even in the one-dimensional case. Let us give 
a brief overview of the issues that may arise in doing so for system (1.1). 

We recall that as per Section 2, after fxing the domain for (1.1), we consider per-
turbations around a given smooth solution (w, `) of (2.2) – we write w = w + y and 
` = `+h, and keep all the terms which are linear with respect to (y, h). The linearized 
system reads 8 >< 

>: 
yt − ayxx + byx + cy + dh0 + eh = 0 in (0, T ) × (0, 1) 
y(t, 0) = u(t) − u(t), 
h0(t) = y(t, 1) 

yx(t, 1) = 0 in (0, T ) 
in (0, T ) 

(5.1) 

y(0, x) = y0(x), h(0) = h0 in (0, 1), 

where u(t) = w(t, 0), y0(·) = w0(·) − w(0, ·), h0 = ` 0 − ̀(0), with a as in (2.4), and the 
remaining coeÿcients given by 

0 
w(t, x) − ̀(t)x wx(t, x)

b(t, x) = , c(t, x) = 
`(t) `(t) 

0 
xwx(t, x) 2wt(t, x) w(t, x)wx(t, x) − x` (t)wx(t, x)

d(t, x) = − , e(t, x) = + , 
`(t) `(t) `(t)2 
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in [0, T ] × [0, 1]. We remark that by applying a Banach fxed-point argument to the 
source term dh0 + eh, it can be shown that the linearized problem (5.1) is well-posed 
in the energy space XT = L2(0, T ; H1(−1, 1)) \ C0([0, T ]; L2(−1, 1)). 

Contrary to the specifc case we treated in this paper, there is no reason as to why 
the factors d, e would vanish for an arbitrary trajectory (v, `), so the fnite-dimensional 
constraint techniques presented herein are not applicable. Thus, as done in Section 2, 
let us frst consider a distributed control system in the extended domain (−1, 1): 

yt − ayxx + byx + cy + dh0 + eh = u1ω in (0, T ) × (−1, 1) 
y(t,−1) = yx(t, 1) = 0 in (0, T ) 

(5.2)
h0(t) = y(t, 1) in (0, T ) 
y(0, x) = y0(x), h(0) = h0 in (−1, 1), 

8 >< 
>: 

where the coeÿcients and initial data are extended accordingly. The localized control 
u = u(t, x) actuates inside some open, non-empty set ω ( (−1, 0). Since we consider 
the case d, e 6� 0, the PDE and ODE components remain coupled. Moreover the 
adjoint problem one obtains is more diÿcult to handle – multiplying (5.2) by a pair 
of smooth functions (ζ, s) and integrating leads us to 

−ζt − aζxx − (bζ)x + cζ = 0 in (0, T ) × (−1, 1)Z 1 
ζ(t,−1) = 0, ζx(t, 1) = − d ζ dx+ s(t) in (0, T ) 

−1 (5.3)Z 1 
s 0(t) = d ζ dx in (0, T ) 

−1 
ζ(T, x) = ζT (x), s(T ) = sT in (−1, 1). 

8 
>< 
>: 

The adjoint problem (5.3) is much like the forward problem appearing in certain works 
on population dynamics, see [28] for instance. The authors prove an observability 
inequality for (5.2), which in our case is the forward problem. Up to the best of our 
knowledge, an observability inequality for (5.3) has not been shown in the literature. 

Another possible strategy for tackling the null-controllability of (5.2) is to "absorb" 
the nonlocal terms dh0 and eh in the source term f . The fact that these terms are 
linear would raise an issue in proving the invariance of the fxed-point map (Step 1 in 
Proof of Theorem 4.1). An idea which is used in several papers on the controllability 
to trajectories for the non-homogeneous Navier-Stokes equations (see [12] and the 
references therein) is to keep the Carleman constants s, λ > 1 arbitrary throughout 
the proofs. Thus, when proving the fxed-point, one may appeal to these constants as 
an additional degree of freedom which could render the linear terms small. The main 
issue in applying this strategy is the compactness-uniqueness method used to prove 
the improved observability inequality in Proposition 3.1. Indeed, the indirect nature of 
this proof means that the explicit dependence of the new observability constant on the 
parameters s, λ is a priori unknown. Hence, taking s, λ arbitrarily large a posteriori 
may not be feasible. 

5.2. Global results. As discussed in Remark 1.1, Theorem 1.1 is a local result, as 
while the PDE component may possess a dissipative mechanism, the asymptotic posi-
tion of the free boundary is generally not known for problems of this nature. This is 
in part due to the lack of conservation properties satisfed by the position of the free 
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boundary ̀ , making its asymptotic position signifcantly more diÿcult to determine 
when compared to similar problems with a stronger coupling and set on the whole 
line [33, 25]. In fact, by means of some maximum principle argument, it could be 
possible that the free boundary increases as time grows, which could in turn stipulate� � 

1 xan asymptotic behavior of the velocity v to a self-similar profle of the form p f p ,
t t 

well known in the context of the viscous Burgers equation set on R (see e.g. [36]). 
Thus, even the set of attraction points of trajectories of (1.1) is not evident. 

It would most certainly be interesting to know whether one may prove a global con-
trollability result in large time. This question is in fact also open in the simpler case 
of the one-phase Stefan problem (1.4), and also in the fuid-structure problem (1.5). 

5.3. Multi-dimensional problem. One may also consider an appropriate controlla-
bility problem for the incompressible Navier-Stokes equations with a free surface, as 
encountered in the works of Beale [2, 3]. This would represent a natural extension of 
our work to the multi-dimensional setting. 

The main di˙erence with the one-dimensional case presented herein and existing works 
on multi-dimensional fuid-rigid body control (see e.g. [20, 4]) is the fact that the free 
boundary would be given by the graph of a space-dependent function, whence the 
second component of the system would be governed by an infnite-dimensional ODE 
and controlling this component would not represent a fnite-dimensional constraint. 
This is an obvious impediment to the direct application of the techniques presented 
herein. The null-controllability of the PDE component in the two-dimensional Stefan 
problem in a radial geometry has been addressed in [8], following the strategy of 
the one-dimensional counterpart presented in [17]. However, up to the best of our 
knowledge, the controllability of both components in such a geometrical setting has 
not been addressed in the literature. 
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