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Abstract

Monthly and daily gridded precipitation datasets are one of the most

demanded products in climatology and hydrology. These datasets describe the

high spatial and temporal variability of precipitation as a continuous surface

and for defined periods. However, due to the complex characteristics of precip-

itation, it is difficult to obtain accurate estimations. Thus, the creation of a

gridded dataset from observations requires the comprehensive and precise

application of quality control, reconstruction, and gridding procedures. Yet,

despite multiple advances, most of the gridded datasets created and published

since the mid-1990s to the present use a wide variety of techniques, methods,

and outputs, which can completely change the final representativity of the

data. It is, therefore, critical to provide general guidelines for the development

of future and more robust gridded datasets based on the data characteristics,

geographical factors, and advanced statistical techniques. We identified gaps

and challenges for near-future perspectives and provide guidelines for

implementing improved approaches based on the performance of 48 products.

Finally, we concluded that, despite better spatial and temporal resolutions,

data access, and data processing capabilities, observational coverage remains a

challenge. Moreover, scientists should adopt tailored strategies to improve the

representativity and uncertainty of the estimates.
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1 | INTRODUCTION

Precipitation is a climatic variable that has a great influence on human activities (Arnell, 1999; Barnett et al., 2005;
Hatfield et al., 2011). Its duration, frequency, and intensity condition the accessibility to water resources and the
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occurrence of environmental and societal risks derived from floods, droughts, and landslides, among others (Konapala
et al., 2020; Serrano-Notivoli et al., 2020). Precipitation critically contributes to the characterization of the climate of the
Earth and is also the most measured variable at the thousands of weather stations worldwide (Menne et al., 2012). The
great spatial and temporal variability of the data, however, makes it difficult to summarize the characteristics of rainfall
at different scales. Therefore, the traditional methods for estimating climatic variables, such as temperature, are not
always valid, particularly when working at high-frequency temporal scales (daily or sub-daily). One of the main issues
regarding its estimation is that the frequency distribution (FD) of precipitation amounts is not normal and varies
according to its temporal aggregation (daily, monthly, seasonal, etc.) and the climate to which it belongs. This relation-
ship between the shape and dispersion of the FD and the climate means explains the occurrence and intensity of
extremes (Waggoner, 1989), which is critical in precipitation modeling research. All these components set precipitation
as one of the most complex climatic variables to model from a regional to global scale. However, precipitation datasets
are popular and necessary for assessing changes in various parts of the climatic system at very different spatial scales,
and in recent decades, many initiatives have resulted in the creation of various methods that attempt to profile the
behavior of precipitation.

Several of the first gridded precipitation datasets appeared in the early 1990s in parallel with the increasing accessibil-
ity to computational resources. Many of those works (e.g., Daly et al., 1994; Frei & Schär, 1998; New et al., 1999; Piper &
Stewart, 1996) are the basis of the methods that are still in use nowadays. For example, Daly et al. (1994) created the
Precipitation-elevation Regressions on Independent Slopes Model (PRISM) method, which is one of the most popular
gridding procedures used nowadays and has not changed much in 25 years. In the following decade, a wide collection of
improved global and regional datasets emerged, in which the spatial resolution, number of input data stations, and
reconstructed period were increased (e.g., Hijmans et al., 2005; Mitchell & Jones, 2005). The second decade of the 21st
century was characterized by an increase in the number of available gridded datasets that were mainly influenced by the
higher reproducibility of the methods, the computing power, and the availability of the data, which promoted the current
(and unprecedented) ease of data access. Datasets were then developed for most countries globally and included similar
methodologies but different spatial and temporal resolutions. At the beginning of the 2020s, the focus was on the creation
of datasets that are useful for operational systems. These new products must be updated constantly and are utilized for cli-
mate analysis and other purposes (e.g., risk probabilities management, biogeographical modeling, paleoclimatology cali-
bration, etc.). These products compete with other datasets of a different nature, such as reanalysis or data assimilation
forecasts, which are better at obtaining extremely high temporal resolution data (sub-daily) but are weaker for long-term
analyses due to the small proportion of observations compared with the observational datasets.

In addition to these technical aspects, the temporal resolution revealed climatic properties that must be considered
prior to choosing a reconstruction method. For example, most of the datasets are on a monthly (or lesser) scale, which is
reasonable for climatic studies that focus on global means and general spatial distributions. However, this is insufficient
for other fundamental aspects, such as extreme events analysis, for which a daily temporal scale (even higher) is required
(Zhang et al., 2011). The development of high temporal frequency precipitation datasets is less common due to several
challenges: (i) the increase in the abundance of data compared to the monthly scale, (ii) the trial of comprehensive quality
control methods, and (iii) the great short-term variability of the data, all of which demand considerable efforts in terms of
process automation and computing time. These considerations turned daily precipitation into one of the least-addressed
variables in climatic reconstruction despite its paramount importance in extreme events analysis (Easterling et al., 2000).
The first decades of the 21st century, however, altered the pathway to a more ambitious era of high-resolution gridded
datasets. Several studies used the daily precipitation reconstruction as a means to attain other objectives, such as the cal-
culation of climatic means (e.g., Daly et al., 2002; Frei & Schär, 1998; Schneider et al., 2014), the improvement of down-
scaling methods (e.g., Wong et al., 2014), the creation of station-based and/or gridded global or regional precipitation
datasets (a representative sample of these is presented in this review), or the extraction of long-term trends (e.g., Becker
et al., 2013; Philandras et al., 2011). Few studies, however, focused on the quality control and reconstruction of daily pre-
cipitation as a goal (e.g., Castro et al., 2014; Feng et al., 2004; Simolo et al., 2010; Vicente-Serrano et al., 2010; Serrano-
Notivoli, Begueria, et al., 2017). Higher temporal resolutions (sub-daily) are less popular among gridded datasets due to
difficulties in handling large amounts of data with extremely diverse temporal and spatial variability. However, several
attempts are available for certain regions (e.g., Lewis et al., 2018; Wüest et al., 2010).

Finally, various previous studies explicitly compared gridded precipitation datasets (e.g., Contractor et al., 2015;
Schumacher et al., 2020), interpolation methods (e.g., Brunetti et al., 2014; Hofstra et al., 2008; Vicente-Serrano
et al., 2003), or reconstruction techniques (e.g., Mir�o et al., 2017). Nonetheless, a description of the multi-perspective
complete methodological process for the creation of gridded datasets, from the initial data processing through the
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reconstruction process to the final spatial generalization of the results and a measure of their uncertainties, is lacking.
For the first time, this review includes a comparison of the most common methods for quality control, missing values
reconstruction, and gridding through 48 daily and monthly datasets in a grid format and at different spatial scales. The
analysis focused on gridded datasets built from rain gauges. We reviewed the existing techniques for creating gridded
precipitation datasets from observations and provide useful guidelines on improved approaches according to the spatio-
temporal resolution and coverage.

2 | FROM OBSERVATIONS TO ESTIMATES

The creation of precipitation gridded datasets (also valid for other climatic variables) is based on four main steps that
we propose as the general workflow to transform observations into estimates, although there are different methods with
slight variations:

1. Quality control:
a. The original dataset is filtered to remove the anomalous data that lie beyond the natural climatic variability of

the location to which the data series belongs. This is created by setting various criteria through statistical tests to
search for anomalies (e.g., from out-of-range values to the homogeneity of different parts of the series).

b. The nature of the observations (temporal frequency, number of observations, length of the series, etc.) will deter-
mine the suitability of the various types of criteria.

2. Data series reconstruction: the missing values are reconstructed using a wide variety of statistical techniques to
obtain a final serially complete dataset. It is important to note that most of the gridded datasets do not include this
step and proceed to the next stage by selecting the data series that have a lower amount of missing data.

3. Gridding: the quality-controlled observations are used to create a model that estimates precipitation amounts at each
grid point over the spatial domain. Several factors determine the accuracy of the estimates (the temporal frequency
of the data, the spatial resolution of the grid, the spatial density of the observations, the orography of the spatial
domain, etc.) that will determine the selection of the model.

4. Uncertainty: is the result of the validation process. The difference between the observations and estimates reflects
the accuracy of the gridding process. No method has been established to assess the uncertainty; however, most stud-
ies have used common error statistics (e.g., RMSE, BIAS, Pearson correlation coefficient, etc.).

The following sections present a description of the use of these steps in a representative selection of 48 works
(Table 1) from the mid-1990s to the present. In the included studies, gridded precipitation datasets were created at very
different spatial and temporal resolutions over spatial domains located across the globe. Instead of enumerating the
methodological details for each of the studies (which can be reviewed in the original references), they were grouped
according to the use of several generic methods, for example, by temporal or geographical checks in Quality control
(QC), the use of a reference series in gap-filling, or by interpolation methods at the gridding stage.

3 | QUALITY CONTROL

QC is the first fundamental step required to guarantee the internal consistency of the data (Feng et al., 2004). QC allows
for the elimination of nonsystematic errors. These errors jeopardize the validity of individual values due to diverse causes
that are frequently related to annotation or digitalization errors, as well as database manipulation (Aguilar et al., 2009).
These errors are, in most cases, only detected by comparing the data series with the observatories of the immediate sur-
roundings, which would be expected to retain the same temporal variability. As this variability is substantially more evi-
dent in daily data compared with monthly or annual data, the occurrence of extreme values that can be confused with
anomalous values (outliers) is also more frequent. Hence, the adoption of methodologies that can detect these types of
anomalies, by minimizing the number of false positives (correct values as invalid, also known as type I errors) and false
negatives (undetected errors, also known as type II errors), is of crucial importance and is a challenge.

Most of the QC processes, regardless of the size of the dataset, typically involve the removal of less than 2% of the
original data (Llabrés et al., 2019; Serrano-Notivoli, Begueria, et al., 2017; Serrano-Notivoli, de Luis, et al., 2017;
Vicente-Serrano et al., 2010). The deletion of the original data, however, is important (Reek et al., 1992) because
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(1) those data represent the most notorious errors that can cause statistical discordances, (2) it discredits the reliability
of the dataset, (3) it contributes to misunderstandings in the accuracy of the historical mean and extreme climatic
records, and (4) it induces flaws in models and climatic summaries. Considering this, the selection of the criteria for the
detection and removal of anomalies will rely on the correct interpretation of the potential sources of error and the use
of statistics according to the nature of the data.

3.1 | Sources of error

The recorded data are subject to factors that can distort the measure, such as the location of a station, evaporation or
even the wind, which could potentially mean a significant loss in a single event (Buisan et al., 2017). These are the sys-
tematic errors, represented by the failure of the rain gauges to measure the complete rainfall of an event, that result in
lower total amounts than the actual values. Previous intercomparison studies (Monesi et al., 2009; Sevruk et al., 2009)
revealed average losses of 4%–6% to greater than 10%, depending on the device, its location, and whether the observa-
tions were manual or automatic (Valik et al., 2020). These errors, which are constant under the same conditions, can be
corrected through transfer functions for adjusting the wind bias (Matsuda et al., 2019; Rubel & Hantel, 1999). However,
this procedure implies a comprehensive knowledge of the characteristics of the meteorological network, which is not
available in most cases, particularly concerning large datasets at a national level or larger regions.

Errors associated with observations and their measurement are generally caused by the observer. Most of the long-
term data series contain large portions of data that were recorded using manual rain gauges, which means that the data
was recorded daily by a person at the pluviometer. Although these types of data series are reliable, they are also associ-
ated with numerous issues that introduce errors that are difficult to evaluate in the final value. Viney and Bates (2004)
discovered that, in Australia, the frequency of missing values in data series increased during the weekends which, based
on the probability of occurrence, suggested that rainfall may be underestimated by up to 24%. This pattern can poten-
tially be repeated globally during vacation periods or due to unavoidable circumstances such as lock-down situations
(Spaccio et al., 2021) and can represent significant incoherencies in seasonal trends and lead to biased results. Con-
versely, errors can arise in the observation (e.g., erroneous observation, malfunctioning of the measurement instru-
ments, incorrect calibrations, unregistered changes in a station location, etc.) and in the codification process (causing
typos, errors in decimal places, duplicated records, errors in dates, etc.). A comprehensive QC process that involves the
inspection of individual values and compares them with those of the neighboring stations can partially solve this issue.
In the case of the automatic weather stations, the errors are generally associated with malfunctions in the data transfer,
mechanical fails, or the partial or total blocking of the pluviometer due to a lack of daily maintenance.

Finally, and common to all types of observations, the location of a station may change. Without a metadata report
that includes these changes, precipitation series are prone to suffer variations or unnoticed alterations.

3.2 | QC approaches

Several studies that involved the construction of gridded datasets did not focus on the QC and the initial quality of the
data was honored (e.g., Aalto et al., 2016; Jones et al., 2009). Moreover, numerous studies did not notice or apply
the QC stage (e.g., Hewitson & Crane, 2005; Ninyerola et al., 2007; Rubel & Hantel, 2001; Yatagai et al., 2008). Other
studies applied basic QC methods to the individual data series (e.g., Cornes et al., 2018; Crespi et al., 2018; Haylock
et al., 2008; Hollis et al., 2019; Shen et al., 2001) that were mainly based on the finding of anomalous values over
predefined thresholds. At this point, the temporal resolution of the data plays a fundamental role in the election of
thresholds to detect these anomalies. When considering the statistical differences between monthly and daily data
series, the QC methods are also different. In addition to the aforementioned FD of daily precipitation, the probability
distributions of this variable are typically biased and have extremely prominent right tails in which there are non-
negligible probabilities of observing very high magnitudes in individual episodes, exceeding the mean values by several
orders of magnitude. This circumstance creates an issue with setting thresholds to differentiate the outliers from the
extreme values.

Next, the number and length of the data series are of key importance in a QC approach because this will ascertain
the resources that will be dedicated to a more or less comprehensive analysis. In this regard, most of the methods
applied to large precipitation datasets are automatic that is, a collection of tests is applied to the original data all at once
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or iteratively. The advantage of these tests is that they only require computational efforts, and all the tests are applied
equally to all the data series, allowing for complex statistical calculations, even for individual values.

The QC methods can be based on a spatial comparison (geographical checks) or a temporal comparison (temporal
checks, also called internal consistency; Figure 1). In a spatial comparison, each value is compared with the neighboring
data to assess the spatial coherence in the distribution of the variable, albeit the most common methods utilize a com-
parison between the candidate series (the one to be quality-controlled) and the reference series (the one built from the
nearest stations) in all temporal dimensions (i.e., from the beginning to the end of the series; e.g., El-Kenawy
et al., 2012; Esteban et al., 2008; Herrera et al., 2012). The methods that are based on a temporal comparison examine
each of the data series independently and search for anomalous data in the range of observations
(e.g., Abatzoglou, 2011; New et al., 1999; New et al., 2002; Piper & Stewart, 1996).

The selection of the specific criteria to be applied to temporal and/or spatial verifications depends on the type of
error to be solved (see Section 3.1). For example, internal coherence is important in every data series (Aguilar, 2013)
and duplicated dates, rounding problems, out-of-range values (fixed threshold), quantile-based outliers, inter-day differ-
ences, and consecutive values (flat line) must be examined. Several popular global gridded datasets applied some or all
these criteria to the original data (Chen et al., 2002; Harris et al., 2014; Mitchell & Jones, 2005; New et al., 1999, 2002;
Piper & Stewart, 1996; Schamm et al., 2014). Nonetheless, since the second half of the 2010s, the new datasets began to
include improved QC methods and these criteria were combined with those that compared data series to each other,
and the data with a low degree of correlation or high dissimilarity to the nearest stations were rejected. In this context,
and with further investigation into the statistical structure of the series, several studies applied homogenization
methods (e.g., Alexander et al., 2006; Gofa et al., 2019; Gonz�alez-Hidalgo et al., 2011; Herrera et al., 2012; Rauthe
et al., 2013) based on tests to assess for non-natural breaks in data series (most of these tests were based on the work
conducted by Peterson et al., 1998 who summarized the state-of-the-art about homogenization techniques) or in combi-
nation with other QC tests within automatic software. A deeper analysis of the data for the QC stages is less common
during the creation of gridded datasets, although there are several exceptions (e.g., Durre et al., 2010; Llabrés
et al., 2019; Serrano-Notivoli, de Luis, et al., 2017). For example, Serrano-Notivoli, de Luis, et al. (2017) evaluated all the
data series that compared all values, day by day, with their surrounding observations to assess the magnitudes without
spatial coherence, the out-of-range values, and the precipitation regarding its probability of occurrence. The advantage
of such a method is that all data series, irrespective of the length, can be used.

The choice of the various criteria relies on (1) the user preferences, (2) the global reconstruction method (dependent
on the temporal/spatial resolution, the work by timesteps or individual series, etc.), and (3) the available resources
(computing, human, data, etc.). The choice of a group of specific criteria does not exclude the issues solved by others,
they are generally complementary, that is, the data can be quality controlled in many ways with similar results. Finally,
the availability of a metadata compilation that reports the changes in the observatory (changes in the location, measur-
ing instruments, etc.) is extremely useful. Unfortunately, this is not a standard practice in global observation networks,

Raw data Basic QC Advanced QC

- Negative values

- Impossible values

- Wrong coordinates

- Duplicated dates

- Repeated values

- Jumps

- Known limits

- Outliers

Temporal Spatial

- Wet/dry days

- Homogenization

- Suspect data

- Suspect zeros

- Outliers

Potential wrong 
values to detect
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User-defined
variations

Selection of the nearest 

stations based on 

distance/correlation

FIGURE 1 Three quality control workflow levels that depend on the comprehensiveness of the approach
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although great effort has been made in recent years to annotate each one of the modifications that can produce changes
in the climatic records (e.g., Mahmood et al., 2019; Mateus et al., 2020).

4 | DATA SERIES RECONSTRUCTION

The objective of the data series reconstruction process, also known as gap-filling or missing values estimation, is to
obtain complete data series from the initial to final date of the study period. Although this is not common practice (only
six of the analyzed works [12%] utilized this method), it has several advantages in the subsequent gridding process. The
most important advantage is that the number of observations does not change over time and temporal inconsistencies
are avoided. Although several homogenization methods that were applied to a few (8) gridded datasets already included
gap-filling processes, only 3 of them explicitly reported that procedure.

The reconstruction process for all climatic variables is generally based on weighted averages or modeling that con-
sists of creating a reference series formed as a weighted model of the data observed at some neighboring stations for
each location of interest. The weights featuring the data estimations are generally determined by the correlation or dis-
tance between the data series of observations; however, they can also be avoided by including all the observations
within a fixed radius (Begueria et al., 2019; Figure 2). These weights are used to estimate the amount of precipitation,
which is limited from zero (no precipitation) to a maximum based on the climatic characteristics of the spatial domain.
This limitation conditions the statistical modeling to those approaches that prevent out-of-range predictions.

4.1 | Probability of occurrence and magnitude

Several previous works that included precipitation datasets demonstrated that the completion of the reconstruction pro-
cess using a two-step approach (first estimating the occurrence of the precipitation, then the magnitude) provides
improved results compared to a single-step approach. For example, Simolo et al. (2010) calculated the probability of the
occurrence of a wet/dry day using the fit of a Gamma distribution of two parameters to all the original series and calcu-
lated the magnitude using multivariate logistic regressions (MLR). This is an extremely common methodology that pro-
duces suitable results (e.g., Hay et al., 2002; Helsel & Hirsch, 2002; Hwang et al., 2011; Syed et al., 2003). Wong
et al. (2014) used logistic models to predict the occurrence of wet days and a combination of probability distributions

(a)

(b)

(c)
Missing value to estimate

Observation

Missing value

Weighting

Distance 

weighting

Correlation

weighting

Fixed

radius

Requires only distance 

between stations

Requires a comparison

between a minimum

overlapping period of 

observations

Can be applied 

regardless of the

weighting

FIGURE 2 Three weighting schemes for the estimation of precipitation at new locations (red dots) from the nearest stations with

observations (blue solid dots). The weight of each observation (width of the arrows) varies depending on the geographical distance (a), the

correlation (b), or (c) a fixed radius that is set to limit the use of the farthest neighbors
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over a complete series of intensities. Conversely, Hwang et al. (2011) used a two-step method with logistic regression to
calculate the spatial occurrence of precipitation but used different interpolation methods to estimate magnitudes and
also considered the monthly climatologies. Serrano-Notivoli, de Luis et al. (2017) used a binomial prediction, referred
to as a wet (P[X > 0]) or dry (P([X = 0)]) day occurrence probability, and a magnitude prediction to estimate the
amount of precipitation (P([X = x)]). Furthermore, in the latter case, a quasi-binomial model was used that allowed for
upper and lower limits to be set. The commonality of all these approaches is that they are based on the use of the lon-
gest series, both in the candidate and neighboring stations, assuming that the relationships do not change over time.
Regardless of this assumption, which may not be valid for daily data, all methods require a minimum length and over-
lapping of the data series for the detection and modeling of the relationships.

4.2 | Reference series and reference values

The reconstruction of missing values can be achieved using two approaches (1) the creation of a new data series from
the observations of neighboring stations (reference series [RS]) and then replacing the gaps in the original series or
(2) estimating new values (reference values [RV]) by only considering the nearest observations at each timestep.

The construction of an RS requires that the candidate and the neighboring series have a minimum length and over-
lap during significant periods, which leads to the rejection of small data series and removes valuable information for
the reconstruction. Moreover, two hypotheses are assumed during the creation of an RS (1) the data series and their
relationships are stationary in the overlapping period and (2) they have a similar temporal structure. These hypotheses
are aggravated when working with daily data because the behavior of neighboring stations can be extremely different
on a temporal scale. Most of the gridded datasets that reported reconstruction procedures created an RS in various
forms: Efthymiadis et al. (2006) used spatial empirical orthogonal functions; Aybar et al. (2019) used the nearest and
most similar data series; Spinoni et al. (2014) used the Multiple Analysis of Series for Homogenization (MASH) soft-
ware; and others used the best-correlated series (e.g., Gonz�alez-Hidalgo et al., 2011; Mitchell & Jones, 2005).

However, considering the high temporal and spatial variability of precipitation, it is desirable not to assume a priori
climatic behaviors or stationary relationships between neighboring series; the only way to achieve this is by calculating
RV instead of an RS. The RV can be computed using various statistical models; however, previous works (Serrano-
Notivoli, Begueria, et al., 2017; Serrano-Notivoli, de Luis, et al., 2017) mostly involved multivariate regression proce-
dures. The covariates concerned can be geographical (e.g., elevation, longitude, and latitude) and/or climatic
(e.g., climatic normal, temporal averages, etc.). Nevertheless, topographic factors generally effectively explain the spatial
distribution of precipitation and they have been extensively studied during previous attempts of precipitation modeling
using linear regressions (Daly et al., 1994, 2008; Di Luzio et al., 2008). The climatic covariables undoubtedly provide
important support in precipitation estimations, and they are commonly used in gridding methods (e.g., Haylock
et al., 2008; Hofstra et al., 2008; New et al., 2002). However, long-term data series are required to facilitate the calcula-
tion of acceptable precipitation normals.

Reconstructions based on RS must use the best quality series and reject the rest (i.e., those that do not fulfill the
quality criteria, which are commonly based on correlation thresholds). Although this is the general approach and facili-
tates the work by reducing the amount of data, it implies a reduction of the variability (bias) and a loss of spatial resolu-
tion. Any gridded dataset based on these assumptions also represents the aforementioned simplification. Conversely,
the use of RV maintains the original resolution because all the original data series is used (after the QC process). The
election of an RS or RV is a key part of the reconstruction process, and the choice will determine the final reliability
and representativity of the estimates (Box 1).

5 | GRIDDING

Spatial prediction involves calculating new values of the variable throughout the spatial domain, and the results are typ-
ically presented in the form of a map. Prediction can imply interpolation and extrapolation, which is a prediction out-
side the range of the observations. In other words, extrapolation is the prediction in those locations (or times) where
there is not enough statistical evidence to guarantee significant estimates (Hengl, 2009). Precipitation gridding processes
include spatial and temporal interpolation and, in general, the extrapolation of observations due to the aforementioned
characteristics of its frequency distribution.
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There are numerous interpolation methods for climatic variables, from those that assign the nearest observation
(e.g., nearest neighbor, Thiessen polygons, etc.) to those that explicitly consider the synoptic state of the atmosphere at
the moment of the observation (e.g., conditional interpolation [CI]). The performance of any method primarily depends
on the spatial and temporal scales and the density of the observation network (Hofstra et al., 2008).

Concerning the temporal scale, the use of climatologies (averaged values over a predefined period) as covariates or
to set a starting point for the anomalies are general practices as they represent a common climatic signal that can be
easily spatialized (coarser temporal aggregations vary less over space). In light of this, methods such as climatologically
aided interpolation (CAI; Willmott & Robeson, 1995), became extremely popular and are still used nowadays
(e.g., Contractor et al., 2020; Hofstra et al., 2008). The use of climatologies imposes certain restrictions on the selected
data because a minimum-length data series is required to create a reliable climatic average. This leads to the rejection
of important observations, which represents a reduction in the usable information and the representativity of the final
estimates. Additionally, the use of climatologies is beneficial for monthly or smaller timescale temporal resolutions;
however, they are not always representative of the daily precipitation process, which is characterized by high variability
in space and time. This circumstance is also reflected through the election of the interpolation method. For example,
geostatistical interpolators generally produce unwanted effects on daily precipitation. The high frequency of low values
(low-intensity precipitation) can be increased while high values (corresponding to extreme events) are reduced
(Ensor & Robeson, 2008; Robeson & Ensor, 2006).

The spatial scale is also important prior to the interpolation process because it reflects the representativeness of the
estimates over the territory. However, there are no rules regarding the spatial resolution of a grid, and the datasets in
Table 1 demonstrate this argument and include values from 200 m to almost 300 km (2.5�). The size of the grid box
exclusively depends on the researcher's decision. None of the reviewed studies argued more than a compromise
between the density of stations and extension of the spatial domain, except for Haylock et al. (2008) who mentioned
one station per 25 km2 grid box as high-resolution. Most of the studies stated a spatial resolution without an explana-
tion for that choice. The setback is that the previously mentioned uneven distribution of observations makes it difficult
to select a representative grid box size, and this issue becomes greater with global datasets. Herein, the typical resolu-
tion is 0.5�–1�, although great variations exist (from 3000 to 2.5�) without any apparent justification (Figure 3a). A sub-
stantiated grid box decision should, therefore, be based on the density of the stations and the temporal resolution
(Figure 3b). For this reason, the use of the maximum amount of data available is key to represent the precipitation char-
acteristics in a wide range of environments, which can ultimately aid in the prediction of the variable in similar
ungauged locations.

5.1 | Examples of gridding methods

Due to the high number of options available in the literature for precipitation gridding procedures, only several of the
most representative examples are summarized in this section. Furthermore, numerous previous works described
the performance of several interpolation methods (e.g., Brunetti et al., 2014; Daly, 2006; Dobesch et al., 2007; Henn
et al., 2018; Hofstra et al., 2008; Vicente-Serrano et al., 2003) which is not the purpose of this review.

BOX 1 A reliable starting point

• All data matters. The longer the data series the better that is, the use of all the available information allows
for a better representation of the climatic characteristics.

• A progressive QC from basic verifications to advanced comparisons. This improves the detection of suspect
data. Criteria tailored to the target dataset (e.g., type of climate or local characteristics) are helpful.

• Spatial coherence is almost always a guarantee of quality; however, extreme values could fall by the wayside.
• A separated prediction of occurrence and magnitude of precipitation prevents unrealistic near-zero estimates

that can potentially bias further indicators (e.g., number of wet/dry days, droughts, etc.).
• An RS is robust in reconstructing missing values but implies the rejection of shorter data series.
• RV are preferred but this requires greater computational resources.
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Most of the datasets created over the past two decades adopted a previously established interpolation method not
specifically designed for climatic variables (e.g., Inverse distance weighting [IDW], kriging, TPS, etc.). However, at the
very early stage of the grids, the first investigations addressed the issue of creating representative areas of estimates
based on meteorological sources. One of the first methods was Spheremap (Willmott et al., 1985), which used the angu-
lar distance weighting (ADW) algorithm. Spheremap was used later in several grids (e.g., Piper & Stewart, 1996; Yatagai
et al., 2012) and, although the method did not evolve much further, it generated a foundation for grid creation.

The AWD was originally developed by Shepard (1968) and, since then, it has been widely used for the interpolation
of monthly data (e.g., Becker et al., 2013; Efthymiadis et al., 2006; Gonz�alez-Hidalgo et al., 2011; Harris et al., 2020) and
daily data (Alexander et al., 2006; Frei & Schär, 1998; Hiebl & Frei, 2017; Isotta et al., 2014; Wu & Gao, 2013). This
method is based on the weighting of the nearest stations within a predefined radius (Figure 2c). The weights are based
on a distance component that uses the correlation decay distance and an angular component relative to the spatial sepa-
ration between the candidate and the nearest observations. Shepard (1984) used a modified AWD to create the SYMAP
algorithm gridding procedure, which was also widely adopted (e.g., Adam & Lettenmaier, 2003; Efthymiadis
et al., 2006; Hiebl & Frei, 2017; Livneh et al., 2015), and Gonz�alez-Hidalgo et al. (2011) used the procedure based on an
improved version of Brunetti et al. (2006).

Regressions were widely used to model daily precipitation using various approaches, although they were more fre-
quently used to reconstruct precipitation data series (e.g., Marquínez et al., 2003; Partal et al., 2015; Simolo et al., 2010;
Tardivo & Berti, 2014) than for gridding procedures. However, a study of the relationships between precipitation and
environmental factors, through multiple linear regressions (MLRs), has been the core of several precipitation grids
(e.g., Gofa et al., 2019; Newman et al., 2015; Ninyerola et al., 2007) and, eventually, the MLR were used in combination
with other interpolators such as kriging (Crespi et al., 2016) or IDW (e.g., Hollis et al., 2019; Perry & Hollis, 2005;
Rauthe et al., 2013). Serrano-Notivoli, Begueria et al. (2017) used MLR as the basis for the creation of RV to compute a
grid that separately estimated the probability of the occurrence of a wet or dry day and the amount of precipitation. The
authors used latitude, longitude, and altitude as covariates (but many others can be used e.g., aspect, distance to
the coast, etc.), similar to several other methods such as PRISM or ANUSPLIN that were previously explored in this
type of approach. Despite the contrasting results, there are several issues regarding the use of MLR for precipitation:
(1) multicollinearity of dependent variables can provide a noisy signal of the estimates and uncertainty, highlighting
the importance of a realistic (not collinear) choice of covariates, (2) certain covariates (such as climatic variables) could
have different variability across the precipitation values (heteroscedasticity), leading to biases in the residuals, (3) the
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relatively high frequency of the occurrence of extremes (particularly on a daily scale) results in outliers that are difficult
to predict. While MLR tends to smooth estimates, outliers have a high influence on the data and can produce unwanted
extrapolations, (4) depending on the method, underfitting or overfitting issues can occur due to poor training or design
of a model. Strategies exist to avoid or minimize these issues (see Serrano-Notivoli, Begueria et al., 2017); however, they
are generally reflected in the uncertainty of the estimates (see Section 6).

The PRISM method (Daly, 2006; Daly et al., 1994, 2002, 2008) uses a weighted regression approach to account for
complex climate regimes associated with orography, rain shadows, temperature inversions, slope aspects, coastal prox-
imity, and other factors. It adopts the assumption that elevation is the most important factor in the distribution of pre-
cipitation and creates a linear relationship between the two variables, which is weighted by various environmental
factors such as elevation, coastal proximity, topographic facet, vertical layer, topographic position, and effective terrain.
PRISM is one of the most used methods for precipitation gridding, particularly in North America (e.g., Daly et al., 1994,
2008; Di Luzio et al., 2008; Milewska et al., 2005; Xie et al., 2007) due to its effective performance on dense observation
networks. This is a common issue for the other gridding procedures: they require dense networks that yield spatial dis-
tributions that perfectly represent the orographic effects.

Since the 1990s, thin-plate splines (TPSs) have been widely used to interpolate precipitation
(e.g., Hutchinson, 1995). TPS share similar features to kriging; however, they use a different covariance function, which
is defined by minimizing the generalized cross-validation error. Thus, the amount of data smoothing can easily be opti-
mized (Hofstra et al., 2008). TPS are appropriate for large heterogeneous areas, and many authors utilized this method
to create global datasets, such as the CRU TS (e.g., Harris et al., 2014; Mitchell & Jones, 2005; New et al., 1999, 2002)
until they adopted the newest version of AWD (Harris et al., 2020). Furthermore, several other researchers combined
TPS with kriging (e.g., Haylock et al., 2008; Jones et al., 2013) or with generalized additive models (Cornes et al., 2018).
TPS have also been used as the basis for ANUSPLIN software, developed at the Australian National University. This
software has been widely used to create several global gridded precipitation datasets (e.g., Fick & Hijmans, 2017;
Hijmans et al., 2005).

IDW or kriging (in any of its variants) are the most used techniques because they are easily implemented in geo-
graphic information system (GIS) and because of their contrasted reliability in the spatialization of environmental vari-
ables. IDW uses a simple weighting of the neighboring stations based on the distance to the candidate location. The
technique has been used in many gridded precipitation datasets, generally in combination with other interpolation
schemes but mostly with linear regressions and kriging (e.g., Aybar et al., 2019; Hollis et al., 2019; Perry & Hollis, 2005;
Rauthe et al., 2013; Shen et al., 2001). Overall, IDW is not recommended as a single method for precipitation gridding
due to its excessive dependence on an observation network that evenly covers the entire spatial domain.

Kriging operates similarly to IDW but considers the spatial variability of the observations. The estimates are a linear
combination of the predictors (nearest stations). The interpolated area is, therefore, a local function of the neighboring
data but is conditional on the data obeying a particular model of the spatial variability (the variogram; Hofstra
et al., 2008). There are diverse variants of kriging; however, two types are most used for precipitation grids. The first is
ordinary kriging (OK), which is based on the assumption of an unknown mean. The weights are obtained so that the
estimate is unbiased and the variance is minimized. Several datasets have used OK or its variant, block kriging, which
allows for an OK performance on areas larger than one pixel (e.g., Aybar et al., 2019; Belo-Pereira et al., 2011;
Contractor et al., 2020; Haylock et al., 2008; Herrera et al., 2012; Jones et al., 2013; Rubel & Hantel, 2001; Schamm
et al., 2014; Shen et al., 2001). The second variant is regression kriging (RKRG) which is similar to OK because it also
considers the trend as not constant on the spatial domain but dependent on the location of the observations. However,
RKRG models the relationship between precipitation and other environmental variables at sample locations and applies
it to ungauged locations (Hengl et al., 2007). Regression kriging has been widely used in datasets in the past decade
(e.g., Aalto et al., 2016; Crespi et al., 2016; Hiebl & Frei, 2017; Spinoni et al., 2014).

Several other gridding methods exist that have been used to estimate precipitation. For example, from simple area
averages (e.g., Becker et al., 2013; Liebmann & Allured, 2015) or bilinear interpolation (Abatzoglou, 2011) to more com-
plex procedures such as CI (developed by Hewitson & Crane, 2005) or optimal interpolation (OI). The CI approach first
defines the characteristics of the synoptic rainfall states in a region surrounding the target grid point, so it can deter-
mine the likelihood of a wet or dry day. Precipitation magnitudes are then interpolated using a weighted average of the
nearest stations, where the station weights vary as a function of the angular distance and are “conditional” on the syn-
optic state (Hofstra et al., 2008). OI is a completely different approach that aims to provide the minimum error variance
and an unbiased estimate of precipitation by combining prior information (i.e., background) on the grid with in situ
observations. This method is not common for precipitation datasets and only two previous studies were obtained
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(i.e., Chen et al., 2002; Lussana et al., 2018). A method that uses a combination of station data with radar observations
has recently been developed and has produced accurate results in overlapping periods of records (Barton et al., 2020;
Dumitrescu et al., 2020). While radar data contributes to an accurate representation of the spatial distribution of precip-
itation, this method is limited to the creation of high temporal resolution grids (sub-daily). The nonlinear translation
between the reflectance at the base of a cloud and the precipitation amount, however, requires further investigation,
particularly regarding how these factors can impact temporal trends. Additionally, the scarce data coverage in temporal
and spatial dimensions in most countries remains a challenge.

Last, it is worth mentioning the potential of the statistical inference (SI) in precipitation gridding, which is the basis
of the RV that are developed at the grid nodes (point prediction), as opposed to the customary prediction at the entire
grid cell (spatial prediction). Statistical interference allows the induction, from observations provided by a sample
(observations), of the behavior of a particular population (precipitation at the spatial domain) with a measurable error
margin in terms of probability. Although it is not a method per se (because most of its applications were created
through regression methods) but an alternative approach; its consideration is important because it shares several char-
acteristics with other interpolation methods (Serrano-Notivoli, de Luis, et al., 2017). For example, (i) it is a local method
(like IDW or kriging) because it considers the nearest observatories, (ii) it is inexact (like any other interpolation
method, except IDW) because the values at the rain gauges are not the originals but estimates based on the modeling of
the various geographical parameters, (iii) it considers the spatial autocorrelation and rejects the precipitation that
occurred far from the target grid point, (iv) it includes independent variables (like the regression methods) and
weighting them according to the function of their importance in the observations. Statistical interference allows for the
estimation of precipitation at any temporal scale over particular ungauged locations and focuses the climatic recon-
struction at specific sites and tailors the spatial resolution to the research objectives, without restrictions.

6 | UNCERTAINTY

Uncertainty is referred to as the error associated with a dataset, either observed or estimated. These errors can have dif-
ferent origins according to the source of the observations or the method used for the estimation. Since the source of
observation errors was previously addressed (see Section 3.1), the focus here is on modeling errors.

Errors in modeling are important because they can lead to biased results (Begueria et al., 2015; Fekete et al., 2004;
Rowell, 2012; Tsintikidis et al., 2002) and they have been systematically ignored in most of the existing gridded datasets.
Ignoring the potential errors in the observed data (most can be detected with a well-designed QC process) and assuming
that statistical models have their own error terms, favors the propagation of uncertainties in the final estimates at an
unknown magnitude.

6.1 | Sources of uncertainty

Gridded datasets are built from models, and that necessarily produces uncertainty. Several factors control the magni-
tude of uncertainty; however, in general, the station density and topographic factors are the most influential.

The station density can explain more than 60% of the variance regardless of other factors (e.g., interpolation method,
observation representativity, etc.) (Herrera et al., 2019). This is related to the distance-decay relationship between the
observations and the surrounding spatial region (Hewitson & Crane, 2005). Moreover, as the density of the stations
decreases (an increase in the distance between stations) the uncertainty increases, which is an aspect that can have
implications in further climatic analyses and must be carefully considered (Begueria et al., 2015; Merino et al., 2021).

Topographic factors, particularly elevation, are well-known covariates that condition the spatial occurrence of pre-
cipitation. Therefore, gridded products over high-elevation areas typically demonstrate poor performance compared to
those with a more homogeneous orography. The type of climate also has an impact on the uncertainty due to the irreg-
ularity of the occurrence of precipitation. This is characteristic of Mediterranean to arid climates and results in difficulty
obtaining an accurate prediction (Figure 4).

Additionally, great spatial and temporal variability and a lower density of observations increase the uncertainty of
the estimates (Sharifi et al., 2019). Frei and Isotta (2019) proposed a method to minimize the impact on predictions that
used an ensemble of possible fields that were conditional on the observations and dependent on local precipitation. The
proposed method, although computationally demanding, was useful for demonstrating the need to focus on the
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propagation of uncertainty to precipitation applications (i.e., climate indices). The spatial resolution is also of para-
mount importance due to the relationships between the grid cells and the surrounding stations, with which precipita-
tion is estimated. Merino et al. (2021) highlighted that an increase in the spatial resolution does not improve the
reduction of uncertainty as much as the density of the observations; however, it becomes relevant in areas with strong
altitudinal gradients due to the improved representativity of the estimates. Serrano-Notivoli, de Luis et al. (2017) dem-
onstrated that precipitation-altitude interactions have a great influence at high elevations. The authors showed that grid
cells at low elevations used stations at the same elevation range (usually below 1000 m a.s.l.), although cells that were
located at higher elevations still used the low-elevation stations (Figure 5). This situation indicated that the number of
stations at high elevations was not enough to equate precipitation reconstruction with lower elevations. Although the
authors conducted the study in Spain (and included 12,848 stations), the altitudinal distribution of the observations was
similar to that obtained in other countries. This confirmed a common issue in climatology: a lack of representativity at
high elevations. The absence of observations in these areas leads to nonrealistic extrapolations in the predictions, partic-
ularly when using linear relationships (Daly et al., 1994; Daly et al., 2008), which is an issue regarding the study of the
spatial distribution of any climatic variable (e.g., Chimani et al., 2013; Hwang et al., 2011; Marquínez et al., 2003).

Finally, the meteorological conditions at the moment of the observation, or the type of climate, also have a great
impact on the reliability of the estimates. For example, low amounts of precipitation generally occur in dry seasons
(zero values are common depending on the climate zone) and the events are typical of a small spatial extent, leading to
higher uncertainty of the estimates, thus, producing low values of fit between observed and estimated precipitation.

6.2 | Measuring the uncertainty

Uncertainty provides quantitative information about the reliability of the estimated data in a way that can be translated
to further calculations, such as precipitation indices or temporal aggregations. Uncertainty is directly related to the vali-
dation of the estimates. Most of the gridded datasets only compare observations and estimates and provide several error
statistics, which may be enough to account for the global accuracy of the dataset; however, it does not provide sufficient
information about the reliability of the data.

The estimation of uncertainty depends on the gridding method, so it varies spatially and from one-time step to the
next, reflecting the changes in the conditions that affect the estimates. No established method exists to measure uncer-
tainty, but it is always derived from the validation process of the model. Certain interpolation methods, such as OK,
provide the variance of the predictions for the entire spatial domain, which has been demonstrated as a reliable mea-
sure of prediction errors (Heuvelink & Pebesma, 2002), and several gridded datasets used that as uncertainty
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(Contractor et al., 2020; Frei & Schär, 1998; Haylock et al., 2008; Rubel & Hantel, 2001; Schamm et al., 2014). However,
most of the existing datasets, particularly up to the 2000s, did not provide an explicit value of uncertainty (29%) or they
included simpler expressions of the differences between the observations and predictions in the validation process
(40%). These were regularly expressed using the RMSE, SD, MAE, MSE, BIAS, or correlation coefficients (codified as
STATS in Table 1). The use of these error statistics can result in a misleading interpretation of the reliability of the
dataset because they are representative of variables with a normal FD, which is not the case concerning precipitation
(see Section 3.2). The correct approach for validating precipitation should include statistical tests that account for
heavy-tailed FD or separate analyses of the goodness-of-fit (GOF) by percentile ranges. Also, as precipitation is greatly
dependent on altitude (see Section 6.1), the GOF analysis by elevation ranges facilitates an understanding of how reli-
able the estimates are depending on their location.

Several other datasets applied a cross-validation process at the gridding stage based on a leave-one-out procedure (Daly
et al., 2008; Isotta et al., 2014; Rauthe et al., 2013; Serrano-Notivoli, de Luis, et al., 2017) or a significant proportion of the
original observations were reserved as a test dataset to validate the estimates that were built with the rest of the data (Belo-
Pereira et al., 2011; Fick & Hijmans, 2017; Herrera et al., 2012; Hiebl & Frei, 2017; Jones et al., 2013). Finally, Cornes
et al. (2018) used an alternative approach, based on a stochastic simulation, to produce an ensemble of realizations of each
daily field, which is more typical of climate projections. The ensemble spread, used as a measure of the uncertainty, was
calculated as the difference between the 95th and 5th percentiles from the 100 members at each grid box.
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In addition to a statistical comparison of the estimates and observations, hydrological modeling is also used in the
validation of gridded datasets (Beck et al., 2017; Lussana et al., 2018). This involves an indirect evaluation that com-
pares runoff measures (or water balance) with precipitation amounts in the same period, generally using a distributed
hydrological model. This is a useful practice in areas with scarce meteorological networks. The procedure, however,
adds additional uncertainties. For example, due to differences in soil properties, vegetation, or type of precipitation (rain
or snow), all catchments do not respond equally in space and time to the incident precipitation. Furthermore, changes
in land cover over time can produce variations in runoff that are not attributable to precipitation. All these com-
pounded uncertainties can largely affect the evaluation of precipitation, particularly at higher temporal resolutions
(daily and sub-daily; Box 2).

7 | CONCLUSIONS: ADVANCES, GAPS, AND THE CHALLENGES OF GRID
CREATION

This review of 48 studies that constructed gridded precipitation datasets revealed a wide range of data treatments for
QC and spatial and temporal resolutions, but less so regarding gridding (interpolation) methods (Figure 6). Moreover,
most of the datasets bypassed the intermediate step of reconstructing a quality-controlled data series to maintain tempo-
ral homogeneity, and many also failed to provide a measure of uncertainty.

Considering the techniques used in recent decades, gridded datasets have evolved to more complex approaches that
provide higher accuracy and improved representations of the occurrence of precipitation over large areas. This evolu-
tion occurred in parallel with:

1. Advances in spatial analysis. Although the methods did not undergo dramatic changes or improvements (ADW, TPS
and kriging are still the most used spatialization strategies), several new perspectives (e.g., based on the use of all
the available information or different approaches for the representation of uncertainty) have fulfilled the need for
high-resolution datasets.

2. Computational capacity, which has allowed for increases in the spatial and temporal resolution of the data and the
inclusion of a higher number of observations and environmental variables that explain the precipitation variability.

BOX 2 A reliable gridding

• Most of the interpolation methods tend to smooth the extreme values and increase the lower ones. This issue
is aggravated by (1) low density or uneven observations, (2) high temporal scales (daily and longer), and
(3) arid climates with extremely low frequency of precipitation.

• The size of the grid box is significant over complex orography areas; however, it mainly depends on the den-
sity of observations.

• The amount of data is the most decisive factor in gridding: lower densities dramatically reduce the accuracy.
• What works for missing values reconstruction also works for gridding: decoupling the occurrence and magni-

tude improves the accuracy of wet or dry situations.
• MLR in any of its variants is the most accurate method when choosing the appropriate covariates. It is com-

putationally expensive.
• TPS are appropriate for large heterogeneous areas, such as global and low resolutions (monthly to annual).
• AWD is advantageous as a weighting method but must be complemented with other climate-sensitive

methods (considering the FD).
• Kriging methods yield effective results in larger areas, and covariates are recommended for local scales.
• A measure of error arising from the statistical model must be provided for each estimate. It provides informa-

tion regarding reliability and aids in drawing the climatic characteristics.
• Validation cannot be addressed through statistics based on normal distributions. Datasets should be split by

quantiles or elevation.
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3. Data availability. An increase in the number of instrumental locations in recent decades has been accompanied by
unprecedented ease of access to these data, which has greatly contributed to the creation of new representations of
precipitation, not only on a global scale but also for other regions of interest.

4. These three factors have dramatically improved the creation of gridded precipitation datasets, yet challenges and
gaps remain that must be resolved to fulfill the new demands. In this regard, the new generation of grids will most
likely encounter a new demand of representativity for the datasets in near real-time conditions. Thus, there are two
potential challenges to be solved:

• First, most of the grids rely on the known average climate to obtain spatially coherent surfaces and a general climatic
signal for the entire spatial domain. This is useful for certain purposes; however, it often fails to provide reliable esti-
mates. There are several areas in the world, such as high-elevation mountains or remote areas (e.g., large tropical for-
ests, deserts), for which the models do not accurately reproduce the behavior of the precipitation. This is due to
uneven locations and the inaccessibility of rain gauges, and also the use of all-purpose models that do not reflect the
local conditions of such a high-scattered variable as precipitation.

• Second, most of the gridding (and reconstruction) methods require relatively long data series, which avoids the opti-
mal use of available information. If short data series are rejected, precious precipitation representativity is lost. This
is also associated with an aspect that is dependent on the administrations and not the researchers: most of the cli-
matic information remains unavailable due to administrative restrictions, resulting in extreme difficulty in creating
an intercomparison between countries.

The main limitation of observational gridded datasets is that observational coverage is scarce. Consequently, an
accurate estimate of precipitation at the same level for all regions of the world is extremely difficult when using large-
scale observations. However, spatial gaps could be complemented with other sources of observations such as satellite
information or radar-based data. Despite their different nature, several processes can be applied to fit satellite or radar-
based data in a single dataset, as has been performed in several studies (e.g., Ashouri et al., 2015; Joyce et al., 2004). In
this regard, data assimilation approaches have already been applied in climatic forecasting (Penny & Hamill, 2017; Xie
et al., 2003) and the first attempts involved observational gridded datasets (e.g., Abatzoglou, 2011). This would help to
keep the grids updated and reliable; however, these types of implementations require great computational resources.
An intercomparison with other datasets could also help to quantify uncertainties in grids in specific locations, types of

QC

REC

GRI

UNC

TMP

GEO
TMP

TMP

GEO

HOM

PQC

TMP
PQC

GEO

RS
RV

Others KRG TPS LRG ADW

STATS CV VAR
Others

0% 25% 50% 75% 100%

0 12 24 36 48

Number of grids

Percentage

FIGURE 6 Percentage of the datasets (48 in total) that used the various techniques at each of the four stages: Quality control (QC),

reconstruction (REC), gridding (GRI), and uncertainty (UNC). See Table 1 for a definition of the acronyms. The gray shaded boxes represent

the absence of methods. KRG, LRG, and ADW also include combinations with other methods. LRG includes PRISM, and ADW includes

Spheremap

18 of 25 SERRANO-NOTIVOLI AND TEJEDOR



climate, or precipitation regimes that are difficult to estimate using only station-based observations. Reanalysis prod-
ucts, which are built in a completely different manner but with a higher spatial and temporal resolution, can provide
complementary information to evaluate the uncertainty of precipitation.

New opportunities based on several technical advances will aid in solving previous issues (which should be
addressed) and improve the reliability of the gridded datasets. For example, machine learning techniques
(e.g., convolutional neural networks, deep learning, etc.) that have been applied to detect patterns in climate models
(e.g., Chen et al., 2020; Weber et al., 2020; Yu et al., 2020) could greatly aid in the estimation of precipitation at
ungauged locations. Accordingly, the use of high-performance computing (HPC) is essential for extensive, expected
amounts of data. Managing multi-dimensional datasets (commonly used for gridded datasets) requires an optimum
working strategy to extract the most effective outcomes at a scientific and computational level. Consequently, highly
efficient workflows must be designed and implemented in advance to benefit from the computational advantages of
working with HPC architectures. For example, strategies based on the dynamical splitting of raw data (Hoyer &
Hamman, 2017; Manubens et al., 2018) can be utilized to take advantage of distributed computer architectures.

Finally, accurate, versatile, and computationally efficient methods are highly valued. The new challenge is, there-
fore, to obtain a balance between reliability at high spatial and temporal resolutions and present-day information, with-
out losing the long-term perspective that climate studies deserve.

ACKNOWLEDGMENTS
This work was supported by the Government of Arag�on through the “Program of research groups” (group H09_20R,
“Climate, Water, Global Change, and Natural Systems”). Ernesto Tejedor is partially funded by the NSF-PIRE (OISE-
1743738).

CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.

AUTHOR CONTRIBUTIONS
Roberto Serrano-Notivoli: Conceptualization (equal); formal analysis (equal); investigation (equal); methodology
(equal); writing—original draft (equal); writing—review and editing (equal). Ernesto Tejedor: Conceptualization
(equal); formal analysis (equal); investigation (equal); methodology (equal); writing—original draft (equal); writing—
review and editing (equal).

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID
Roberto Serrano-Notivoli https://orcid.org/0000-0001-7663-1202
Ernesto Tejedor https://orcid.org/0000-0001-6825-3870

RELATED WIREs ARTICLES
Indices for monitoring changes in extremes based on daily temperature and precipitation data
Assessing precipitation trends in the Americas with historical data: A review

REFERENCES
Aalto, J., Pirinen, P., & Jylhä, K. (2016). New gridded daily climatology of Finland: Permutation-based uncertainty estimates and temporal

trends in climate. Journal of Geophisycal Research: Atmospheres, 121(8), 3807–3823. https://doi.org/10.1002/2015JD024651
Abatzoglou, J. T. (2011). Development of gridded surface meteorological data for ecological applications and modelling. International Journal

of Climatology, 33(1), 121–131. https://doi.org/10.1002/joc.3413
Adam, J. C., & Lettenmaier, D. P. (2003). Adjustment of global gridded precipitation for systematic bias. Journal of Geophysical Research:

Atmospheres, 108(D9), 4257. https://doi.org/10.1029/2002JD002499
Aguilar, E. (2013). EXTRA-QC (sobre Rclimdex; Conference PRESENTATION). WMO-CCl-ET-CRSCI Workshop on Applications of Climate

Indices to the Agriculture, Water and Health Sectors, CIIFEN, Guayaquil, Ecuador.
Aguilar, E., Sigr�o, J., & Brunet, M. (2009). Rclimdex con funcionalidades extras de control de calidad, Manual de Uso, version 1.12.
Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., Haylock, M., Collins, D., Trewin, B.,

Rahimzadeh, F., Tagipour, A., Rupa Kumar, K., Revadekar, J., Griffiths, G., Vincent, L., Stephenson, L. B., Burn, J., Aguilar, E.,

SERRANO-NOTIVOLI AND TEJEDOR 19 of 25

https://orcid.org/0000-0001-7663-1202
https://orcid.org/0000-0001-7663-1202
https://orcid.org/0000-0001-6825-3870
https://orcid.org/0000-0001-6825-3870
https://doi.org/10.1002/wcc.147
https://doi.org/10.1002/wcc.627
https://doi.org/10.1002/2015JD024651
https://doi.org/10.1002/joc.3413
https://doi.org/10.1029/2002JD002499


Brunet, M., … Vazquez-Aguirre, J. L. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal
of Geophysical Research: Atmospheres, 111(D5), D05109. https://doi.org/10.1029/2005JD006290

Arnell, N. W. (1999). Climate change and global water resources. Global Environmental Change, 9(1), S31–S49. https://doi.org/10.1016/
S0959-3780(99)00017-5

Ashouri, H., Hsu, K.-L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., Nelson, B. R., & Prat, O. P. (2015). PERSIANN-CDR:
Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American
Meteorological Society, 96(1), 69–83. https://doi.org/10.1175/BAMS-D-13-00068.1

Aybar, C., Fern�andez, C., Huerta, A., Lavado, W., Vega, F., & Felipe-Obando, O. (2019). Construction of a high-resolution gridded rainfall
dataset for Peru from 1981 to the present day. Hydrological Sciences Journal, 65(5), 770–785. https://doi.org/10.1080/02626667.2019.
1649411

Barnett, T., Adam, J., & Lettenmaier, D. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions.
Nature, 438, 303–309. https://doi.org/10.1038/nature04141

Barton, Y., Sideris, I. V., Raupach, T. H., German, U., & Martius, O. (2020). A multi-year assessment of sub-hourly gridded precipitation for
Switzerland based on a blended radar—Rain-gauge dataset. International Journal of Climatology, 40(12), 5208–5222.

Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J., &
Wood, E. F. (2017). Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrology
and Earth System Science, 21, 6201–6217.

Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., & Ziese, M. (2013). A description of the global land-
surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend)
analysis from 1901–present. Earth System Science Data, 5, 71–99. https://doi.org/10.5194/essd-5-71-2013

Begueria, S., Tom�as-Burguera, M., Serrano-Notivoli, R., & Gonz�alez-Hidalgo, J. C. (2019). Gap filling of monthly temperature data and its
effect on climatic variability and trends. Journal of Climate, 32, 7797–7821. https://doi.org/10.1175/JCLI-D-19-0244.s1

Begueria, S., Vicente-Serrano, S. M., Tom�as-Burguera, M., & Maneta, M. (2015). Bias in the variance of gridded data sets leads to misleading
conclusions about changes in climate variability. International Journal of Climatology, 36(9), 3413–3422. https://doi.org/10.1002/joc.4561

Belo-Pereira, M., Dutra, E., & Viterbo, P. (2011). Evaluation of global precipitation data sets over the Iberian Peninsula. Journal of Geophysi-
cal Research, 116, D20101. https://doi.org/10.1029/2010JD015481

Brunetti, M., Maugeri, M., Monti, F., & Nanni, T. (2006). Temperature and precipitation variability in Italy in the last two centuries from
homogenized instrumental time series. International Journal of Climatology, 26, 345–381. https://doi.org/10.1002/joc.1251

Brunetti, M., Maugeri, M., Nanni, T., Simolo, C., & Spinoni, J. (2014). High-resolution temperature climatology for Italy: Interpolation
method intercomparison. International Journal of Climatology, 34, 1278–1296. https://doi.org/10.1002/joc.3764

Buisan, S. T., Earle, M. E., Collado, J. L., Kochendorfer, J., Alastrué, J., Wolff, M., Smith, C. D., & L�opez-Moreno, J. I. (2017). Assessment of
snowfall accumulation underestimation by tipping bucket gauges in the Spanish operational network. Atmospheric Measurement Tech-
niques, 10, 1079–1091. https://doi.org/10.5194/amt-10-1079-2017

Castro, L., Giron�as, J., & Fern�andez, B. (2014). Spatial estimation of daily precipitation in regions with complex relief and scarce data using
terrain orientation. Journal of Hydrology, 517, 481–492. https://doi.org/10.1016/j.jhydrol.2014.05.064

Chen, M., Xie, P., Janowiak, J. E., & Arkin, P. A. (2002). Global land precipitation: A 50-yr monthly analysis based on gauge observations.
Journal of Hydrometeorology, 3, 249–266. https://doi.org/10.1175/1525-7541(2002)003%3C0249:GLPAYM%3E2.0.CO;2

Chen, R., Zhang, W., & Wang, X. (2020). Machine learning in tropical cyclone forecast modeling: A review. Atmosphere, 11, 676. https://doi.
org/10.3390/atmos11070676

Chimani, B., Matulla, C., Bohm, R., & Hofstatter, M. (2013). A new high resolution absolute temperature grid for the Greater Alpine Region
back to 1780. International Journal of Climatology, 33, 2129–2141. https://doi.org/10.1002/joc.3574

Contractor, S., Alexander, L. V., Donat, M. G., & Herold, N. (2015). How well do gridded datasets of observed daily precipitation compare
over Australia? Advances in Meteorology, 2015, 325718. https://doi.org/10.1155/2015/325718

Contractor, S., Donat, M., Alexander, L. V., Ziese, M., Meyer-Christofer, A., Scheneider, U., Rustemeier, E., Becker, A., Durre, I., &
Vose, R. S. (2020). Rainfall estimates on a gridded network (REGEN) – A global land-based gridded dataset of daily precipitation from
1950 to 2016. Hydrology and Earth System Sciences, 24(2), 919–943. https://doi.org/10.5194/hess-24-919-2020

Cornes, R. C., van der Schrier, G., van der Besselaar, E. J. M., & Jones, P. D. (2018). An ensemble version of the E-OBS temperature and pre-
cipitation data sets. Journal of Geophysical Research: Atmospheres, 123(17), 9391–9409. https://doi.org/10.1029/2017JD028200

Crespi, A., Brunetti, M., Lentini, G., & Maugeri, M. (2018). 1961–1990 high-resolution monthly precipitation climatologies for Italy. Interna-
tional Journal of Climatology, 38(2), 878–895. https://doi.org/10.1002/joc.5217

Daly, C. (2006). Guidelines for assessing the suitability of spatial climate data sets. International Journal of Climatology, 26, 707–721. https://
doi.org/10.1002/joc.1322

Daly, C., Gibson, W., & Taylor, G. (2002). A knowledge-based approach to the statistical mapping of climate. Climate Research, 22, 99–113.
https://doi.org/10.3354/cr022099

Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., Curtis, J., & Pasteris, P. P. (2008). Physiographically sensitive
mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology,
28, 2031–2064. https://doi.org/10.1002/joc.1688

20 of 25 SERRANO-NOTIVOLI AND TEJEDOR

https://doi.org/10.1029/2005JD006290
https://doi.org/10.1016/S0959-3780(99)00017-5
https://doi.org/10.1016/S0959-3780(99)00017-5
https://doi.org/10.1175/BAMS-D-13-00068.1
https://doi.org/10.1080/02626667.2019.1649411
https://doi.org/10.1080/02626667.2019.1649411
https://doi.org/10.1038/nature04141
https://doi.org/10.5194/essd-5-71-2013
https://doi.org/10.1175/JCLI-D-19-0244.s1
https://doi.org/10.1002/joc.4561
https://doi.org/10.1029/2010JD015481
https://doi.org/10.1002/joc.1251
https://doi.org/10.1002/joc.3764
https://doi.org/10.5194/amt-10-1079-2017
https://doi.org/10.1016/j.jhydrol.2014.05.064
https://doi.org/10.1175/1525-7541(2002)003%3C0249:GLPAYM%3E2.0.CO;2
https://doi.org/10.3390/atmos11070676
https://doi.org/10.3390/atmos11070676
https://doi.org/10.1002/joc.3574
https://doi.org/10.1155/2015/325718
https://doi.org/10.5194/hess-24-919-2020
https://doi.org/10.1029/2017JD028200
https://doi.org/10.1002/joc.5217
https://doi.org/10.1002/joc.1322
https://doi.org/10.1002/joc.1322
https://doi.org/10.3354/cr022099
https://doi.org/10.1002/joc.1688


Daly, C., Neilson, R., & Phillips, D. (1994). A statistical-topographic model for mapping climatological precipitation over mountainous ter-
rain. Journal of Applied Meteorology and Climatology, 33(2), 140–158. https://doi.org/10.1175/1520-0450(1994)033%3C0140:ASTMFM%
3E2.0.CO;2

Di Luzio, M., Johnson, G. L., Daly, C., Eischeid, J. K., & Arnold, J. G. (2008). Constructing retrospective gridded daily precipitation and tem-
perature datasets for the conterminous United States. Journal of Applied Meteorology and Climatology, 47, 475–497. https://doi.org/10.
1175/2007JAMC1356.1

Dobesch, H., Dumolard, P., & Dyras, I. (2007). Spatial interpolation for climate data: The use of GIS in climatology and meteorology. ISTE.
https://doi.org/10.1002/9780470612262

Dumitrescu, A., Brabec, M., & Matreata, M. (2020). Integrating ground-based observations and radar data into gridding sub-daily precipita-
tion. Water Resources Management, 34, 3479–3497.

Durre, I., Menne, M. J., Gleason, B. E., Houston, T. G., & Vose, R. S. (2010). Comprehensive automated quality assurance of daily surface
observations. Journal of Applied Meteorology and Climatology, 49, 1615–1633. https://doi.org/10.1175/2010JAMC2375.1

Easterling, D., Meehl, G., Parmesan, C., Changnon, S., Karl, T., & Mearns, L. (2000). Climate extremes: Observations, modeling, and impacts.
Science, 289(5487), 2068–2074. https://doi.org/10.1126/science.289.5487.2068

Efthymiadis, D., Jones, P. D., Briffa, K. R., Auer, I., Böhm, R., Schöner, W., Frei, C., & Schmidli, J. (2006). Construction of a 10-min-gridded
precipitation data set for the Greater Alpine Region for 1800–2003. Journal of Geophysical Research: Atmospheres, 111(D1), D01105.
https://doi.org/10.1029/2005JD006120

El-Kenawy, A., L�opez-Moreno, J., & Vicente-Serrano, S. M. (2012). Summer temperature extremes in northeastern Spain: Spatial regionaliza-
tion and links to atmospheric circulation (1960–2006). Theoretical and Applied Climatology, 113(3–4), 387–405. https://doi.org/10.1007/
s00704-012-0797-5

Ensor, L. A., & Robeson, S. M. (2008). Statistical characteristics of daily precipitation: Comparisons of gridded and point datasets. Journal of
Applied Meteorology and Climatology, 47(9), 2468–2476. https://doi.org/10.1175/2008JAMC1757.1

Esteban, P., Ninyerola, M., & Prohom, M. (2008). Spatial modelling of air temperature and precipitation for Andorra (Pyrenees) from daily
circulation patterns. Theoretical and Applied Climatology, 96(1), 43–56. https://doi.org/10.1007/s00704-008-0035-3

Fekete, B. M., Vörösmarty, C. J., Roads, J. O., & Willmott, C. J. (2004). Uncertainties in precipitation and their impacts on runoff estimates.
Journal of Climate, 17(2), 294–304. https://doi.org/10.1175/1520-0442(2004)017%3C0294:UIPATI%3E2.0.CO;2

Feng, S., Hu, Q., & Qian, W. (2004). Quality control of daily meteorological data in China, 1951–2000: A new dataset. International Journal
of Climatology, 24(7), 853–870. https://doi.org/10.1002/joc.1047

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of
Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

Frei, C., & Isotta, F. A. (2019). Ensemble spatial precipitation analysis from rain gauge data: Methodology and application in the European
Alps. Journal of Geophysical Research: Atmospheres, 124(11), 5757–5778.

Frei, C., & Schär, C. (1998). A precipitation climatology of the alps from high-resolution rain-gauge observations. International Journal of Cli-
matology, 18(8), 873–900. https://doi.org/10.1002/(SICI)1097-0088(19980630)18:8%3C873::AID-JOC255%3E3.0.CO;2-9

Gofa, F., Mamara, A., Anadranistakis, M., & Flocas, H. (2019). Developing gridded climate data sets of precipitation for Greece based on
homogenized time series. Climate, 7(5), 68. https://doi.org/10.3390/cli7050068

Gonz�alez-Hidalgo, J. C., Brunetti, M., & de Luis, M. (2011). A new tool for monthly precipitation analysis in Spain: MOPREDAS database
(monthly precipitation trends December 1945–November 2005). International Journal of Climatology, 31, 715–731. https://doi.org/10.
1002/joc.2115

Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly climatic observations—The CRU
TS3.10 dataset. International Journal of Climatology, 34, 623–642. https://doi.org/10.1002/joc.3711

Harris, I., Osborn, T. J., Jones, P. D., & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate
dataset. Scientific Data, 7, 109. https://doi.org/10.1038/s41597-020-0453-3

Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., Thomson, A. M., & Wolfe, D. (2011). Climate impacts on
agriculture: Implications for crop production. Agronomy Journal, 103(2), 351–370. https://doi.org/10.2134/agronj2010.0303

Hay, L., Clark, M., Wilby, R., Gutowski, W., Jr., Leavesley, G., Pan, Z., Arritt, R., & Takle, E. (2002). Use of regional climate model output for
hydrologic simulations. Journal of Hydrometeorology, 3(5), 571–590. https://doi.org/10.1175/1525-7541(2002)003%3C0571:UORCMO%
3E2.0.CO;2

Haylock, M. R., Hofstra, N., Tank, A. M. G. K., Klok, E. J., Jones, P. D., & New, M. (2008). A European daily high-resolution gridded data set
of surface temperature and precipitation for 1950–2006. Journal of Geophysical Research, 113, D20119. https://doi.org/10.1029/
2008JD010201

Helsel, D., & Hirsch, R. (2002). Statistical methods in water resources, techniques of water-resources investigations of the United States Geo-
logical Survey. Book 4, Hydrologic Analysis and Interpretation. Chapter A3, US Geological Survey.

Hengl, T. (2009). A practical guide to geostatistical mapping of environmental variables. Office for Official Publications of the European
Communities.

Hengl, T., Heuvelink, G. B. M., & Rossiter, D. G. (2007). About regression-kriging: From equations to case studies. Computers & Geosciences,
33(10), 1301–1315. https://doi.org/10.1016/j.cageo.2007.05.001

Henn, B., Newman, A. J., Livneh, B., Daly, C., & Lundquist, J. D. (2018). An assessment of differences in gridded precipitation datasets in
complex terrain. Journal of Hydrology, 556, 1205–1219. https://doi.org/10.1016/j.jhydrol.2017.03.008

SERRANO-NOTIVOLI AND TEJEDOR 21 of 25

https://doi.org/10.1175/1520-0450(1994)033%3C0140:ASTMFM%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(1994)033%3C0140:ASTMFM%3E2.0.CO;2
https://doi.org/10.1175/2007JAMC1356.1
https://doi.org/10.1175/2007JAMC1356.1
https://doi.org/10.1002/9780470612262
https://doi.org/10.1175/2010JAMC2375.1
https://doi.org/10.1126/science.289.5487.2068
https://doi.org/10.1029/2005JD006120
https://doi.org/10.1007/s00704-012-0797-5
https://doi.org/10.1007/s00704-012-0797-5
https://doi.org/10.1175/2008JAMC1757.1
https://doi.org/10.1007/s00704-008-0035-3
https://doi.org/10.1175/1520-0442(2004)017%3C0294:UIPATI%3E2.0.CO;2
https://doi.org/10.1002/joc.1047
https://doi.org/10.1002/joc.5086
https://doi.org/10.1002/(SICI)1097-0088(19980630)18:8%3C873::AID-JOC255%3E3.0.CO;2-9
https://doi.org/10.3390/cli7050068
https://doi.org/10.1002/joc.2115
https://doi.org/10.1002/joc.2115
https://doi.org/10.1002/joc.3711
https://doi.org/10.1038/s41597-020-0453-3
https://doi.org/10.2134/agronj2010.0303
https://doi.org/10.1175/1525-7541(2002)003%3C0571:UORCMO%3E2.0.CO;2
https://doi.org/10.1175/1525-7541(2002)003%3C0571:UORCMO%3E2.0.CO;2
https://doi.org/10.1029/2008JD010201
https://doi.org/10.1029/2008JD010201
https://doi.org/10.1016/j.cageo.2007.05.001
https://doi.org/10.1016/j.jhydrol.2017.03.008


Herrera, S., Gutiérrez, J. M., Ancell, R., Pons, M. R., Frías, M. D., & Fern�andez, J. (2012). Development and analysis of a 50-year high-
resolution daily gridded precipitation dataset over Spain (Spain02). International Journal of Climatology, 32, 74–85. https://doi.org/10.
1002/joc.2256

Herrera, S., Kotlarski, S., Soares, P. M. M., Cardoso, R. M., Jaczewski, A., Gutierrez, J. M., & Maraun, D. (2019). Uncertainty in gridded pre-
cipitation products: Influence of station density, interpolation method and grid resolution. International Journal of Climatology, 39(9),
3717–3729. https://doi.org/10.1002/joc.5878

Heuvelink, G. B. M., & Pebesma, E. J. (2002). Is the ordinary kriging variance a proper measure of interpolation error? Proceedings of the Fifth
International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Science, pp. 179–186. https://hdl.
handle.net/11245/1.195474

Hewitson, B. C., & Crane, R. G. (2005). Gridded area-averaged daily precipitation via conditional interpolation. Journal of Climate, 18, 41–57.
https://doi.org/10.1175/JCLI3246.1

Hiebl, J., & Frei, C. (2017). Daily precipitation grids for Austria since 1961—Development and evaluation of a spatial dataset for hydro-
climatic monitoring and modelling. Theoretical and Applied Climatology, 132(1–2), 327–345. https://doi.org/10.1007/s00704-017-2093-x

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land
areas. International Journal of Climatology, 25, 1965–1978. https://doi.org/10.1002/joc.1276

Hofstra, N., Haylock, M., New, M., Jones, P., & Frei, C. (2008). Comparison of six methods for the interpolation of daily, European climate
data. Journal of Geophysical Research: Atmospheres, 113, D21110. https://doi.org/10.1029/2008JD010100

Hollis, D., McCarthy, M., Kendon, M., Legg, T., & Simpson, I. (2019). Had UK-grid—A new UK dataset of gridded climate observations. Geo-
science Data Journal, 6(2), 151–159. https://doi.org/10.1002/gdj3.78

Hoyer, S., & Hamman, J. (2017). xarray: N-D labeled arrays and datasets in python. Journal of Open Research Software, 5(1), 10. http://doi.
org/10.5334/jors.148

Hutchinson, M. F. (1995). Interpolating mean rainfall using thin plate smoothing splines. International Journal of Geographical Information
Systems, 9(4), 385–403. https://doi.org/10.1080/02693799508902045

Hwang, Y., Clark, M., Rajagopalan, B., & Leavesley, G. (2011). Spatial interpolation schemes of daily precipitation for hydrologic modeling.
Stochastic Environmental Research and Risk Assessment, 26(2), 295–320. https://doi.org/10.1007/s00477-011-0509-1
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cipitation in the Alps: Development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. International Journal
of Climatology, 34, 1657–1675. https://doi.org/10.1002/joc.3794

Jones, D. A., Wang, W., & Fawcett, R. (2009). High-quality spatial climate datasets for Australia. Australian Meteorological and Oceano-
graphic Journal, 58, 233–248.

Jones, P. D., Lister, D. H., Harpham, C., Rusticucci, M., & Penalba, O. (2013). Construction of a daily precipitation grid for southeastern
South America for the period 1961–2000. International Journal of Climatology, 33, 2508–2519. https://doi.org/10.1002/joc.3605

Joyce, R. J., Janowiak, J. E., Arkin, P. A., & Xie, P. (2004). CMORPH: A method that produces global precipitation estimates from passive
microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5, 487–503. https://doi.org/10.1175/
1525-7541(2004)0052.0.CO;2

Konapala, G., Mishra, A. K., Wada, Y., & Mann, M. E. (2020). Climate change will affect global water availability through compounding
changes in seasonal precipitation and evaporation. Nature Communications, 11, 3044. https://doi.org/10.1038/s41467-020-16757-w

Kyriakidis, P. C., Kim, J., & Miller, N. L. (2001). Geostatistical mapping of precipitation from rain gauge data using atmospheric and terrain
characteristics. Journal of Applied Meteorology and Climatology, 40, 1855–1877. https://doi.org/10.1175/1520-0450(2001)040%3C1855:
GMOPFR%3E2.0.CO;2

Lewis, E., Quinn, N., Blenkinsop, S., Fowler, H. J., Freer, J., Tanguy, M., Hitt, O., Coxon, G., Bates, P., & Woods, R. (2018). A rule based qual-
ity control method for hourly rainfall data and a 1 km resolution gridded hourly rainfall dataset for Great Britain: CEH-GEAR1hr. Jour-
nal of Hydrology, 564, 930–943. https://doi.org/10.1016/j.jhydrol.2018.07.034

Liebmann, B., & Allured, D. (2015). Daily precipitation grids for South America. Bulletin of the American Meteorological Society, 86(11),
1567–1570. https://doi.org/10.1175/BAMS-86-11-1567

Livneh, B., Bohn, T., Pierce, D., Munoz-Arriola, F., Nijssen, B., Vose, R., Cayan, D. R., & Brekke, L. (2015). A spatially comprehensive, hydro-
meteorological data set for Mexico, the U.S., and Southern Canada 1950–2013. Scientific Data, 2, 150042. https://doi.org/10.1038/sdata.
2015.42

Llabrés, A., Rius, A., Rodríguez-Sol�a, R., Casas-Castillo, M. C., & Redaño, A. (2019). Quality control process of the daily rainfall series avail-
able in Catalonia from 1855 to the present. Theoretical and Applied Climatology, 137, 2715–2729. https://doi.org/10.1007/s00704-019-
02772-5

Lussana, C., Saloranta, T., Skaugen, T., Magnusson, J., Tveito, O. E., & Andersen, J. (2018). seNorge2 daily precipitation, an observational
gridded dataset over Norway from 1957 to the present day. Earth System Science Data, 10, 235–249. https://doi.org/10.5194/essd-10-235-
2018

Mahmood, R., Schargorodski, M., Foster, S., & Quilligan, A. (2019). A technical overview of the kentucky mesonet. Journal of Atmospheric
and Oceanic Technology, 36(9), 1753–1771. https://doi.org/10.1175/JTECH-D-18-0198.1

22 of 25 SERRANO-NOTIVOLI AND TEJEDOR

https://doi.org/10.1002/joc.2256
https://doi.org/10.1002/joc.2256
https://doi.org/10.1002/joc.5878
https://hdl.handle.net/11245/1.195474
https://hdl.handle.net/11245/1.195474
https://doi.org/10.1175/JCLI3246.1
https://doi.org/10.1007/s00704-017-2093-x
https://doi.org/10.1002/joc.1276
https://doi.org/10.1029/2008JD010100
https://doi.org/10.1002/gdj3.78
http://doi.org/10.5334/jors.148
http://doi.org/10.5334/jors.148
https://doi.org/10.1080/02693799508902045
https://doi.org/10.1007/s00477-011-0509-1
https://doi.org/10.1002/joc.3794
https://doi.org/10.1002/joc.3605
https://doi.org/10.1175/1525-7541(2004)0052.0.CO;2
https://doi.org/10.1175/1525-7541(2004)0052.0.CO;2
https://doi.org/10.1038/s41467-020-16757-w
https://doi.org/10.1175/1520-0450(2001)040%3C1855:GMOPFR%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040%3C1855:GMOPFR%3E2.0.CO;2
https://doi.org/10.1016/j.jhydrol.2018.07.034
https://doi.org/10.1175/BAMS-86-11-1567
https://doi.org/10.1038/sdata.2015.42
https://doi.org/10.1038/sdata.2015.42
https://doi.org/10.1007/s00704-019-02772-5
https://doi.org/10.1007/s00704-019-02772-5
https://doi.org/10.5194/essd-10-235-2018
https://doi.org/10.5194/essd-10-235-2018
https://doi.org/10.1175/JTECH-D-18-0198.1
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