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Abstract

VAR models are popular to forecast macroeconomic time series. However, the

model, the parameters, and the error distribution are rarely known without

uncertainty, so bootstrap methods are applied to deal with these sources of

uncertainties. In this paper, the performance of the popular forecast

Bonferroni cubes based on the Gaussian method and variants of the bootstrap

procedure that incorporate error distribution, parameter uncertainty, bias cor-

rection, and lag order uncertainty are compared. Monte Carlo simulations sug-

gest that the best performance of bootstrap cubes are obtained when the

parameter uncertainty is considered, being the bias and model uncertainties

important for long-run forecast regions in persistent VAR models. Similar con-

clusions are found in an empirical application based on a four variate system

containing US monthly percent changes of the industrial production index, the

S&P500 stock market index, its dividend yield, and the unemployment rate.
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1 | INTRODUCTION

When forecasting the evolution of multivariate time
series systems, analysts are increasingly interested in
obtaining the full probability distribution; see, for exam-
ple, Diebold et al. (1999), Jore et al. (2010) and Giacomini
and Ragusa (2014). A popular model to forecast macro-
economic and financial time series is the VAR(p) model;
see, for example, Stock and Watson (2001). The standard
procedure to construct VAR forecast densities assumes
Gaussian errors and known lag order and parameters;
see, for instance, Lütkepohl (1991). However, in practice,
the lag order needs to be selected, the parameters need to
be estimated, and the error distribution is rarely known.
Consequently, the forecast model is actually an estimated
VAR model that is treated as if it were the true data

generating process (DGP). This is to say that forecast den-
sities are conditional on the selected lag order, the esti-
mated parameters, and the errors distribution with
uncertainties due to these factors being ignored. Further-
more, the least squares (LS) parameter estimator can suf-
fer from small-sample bias for processes that have roots
close to the unit circle so density forecasts may be con-
taminated; see Lawford and Stamatogiannis (2009) for
non-stationary VAR models.

Some of these issues can be addressed by the asymp-
totic theory. This is the case of the bias of the LS estima-
tor, which can be adjusted using, for instance, the
correction proposed by Pope (1990). Likewise, the param-
eter uncertainty can be incorporated into the forecast var-
iability by using the asymptotic distribution of the LS
estimator as proposed by Reinsel (1980) and

Received: 11 March 2020 Revised: 22 February 2021 Accepted: 10 August 2021

DOI: 10.1002/for.2809

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2021 The Author. Journal of Forecasting published by John Wiley & Sons Ltd.

Journal of Forecasting. 2021;1–15. wileyonlinelibrary.com/journal/for 1

https://orcid.org/0000-0003-1478-6772
mailto:diego.fresoli@uam.es
https://doi.org/10.1002/for.2809
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/for
http://crossmark.crossref.org/dialog/?doi=10.1002%2Ffor.2809&domain=pdf&date_stamp=2021-08-30


Lütkepohl (1991). The lag order uncertainty can be
selected by an information criteria, but as far as we
know, there is no asymptotic proposal to incorporate the
uncertainty surrounding this selection into forecast den-
sities; see Schorfheide (2005) for an analysis of the effect
of the lag order uncertainty on the forecast uncertainty.
Alternatively, Bayesian procedures can generate forecast
densities that incorporate the model and parameter
uncertainties; see Koop (2013) and Cross et al. (2020) for
some references. Notwithstanding, Bayesian methods are
strongly tied to the error Gaussianity assumption because
their computation burden is very strong when this
assumption is abandoned.

Bootstrap procedures can deal with all the sources of
model uncertainty described above. Thus, several authors
have pointed out the attractiveness of bootstrap methods
to forecast VAR models because they are able to incorpo-
rate lag order and parameter uncertainties without
assuming any particular error distribution; see Berkowitz
and Kilian (2000) and Cavaliere et al. (2020) for surveys.
This is the reason why bootstrap forecast densities and
their associated forecast regions have often been consid-
ered for VAR models; see, for example, Staszewska-
Bystrova and Winker (2013), Wolf and Wunderli (2015),
Fresoli et al. (2015) and Beyaztas (2019) for some applica-
tions. However, there have been no attempts to simulta-
neously consider the different sources of uncertainty to
assess their relative importance.

By building bootstrap regions, this paper aims to ana-
lyze the contribution of the model parameter, its bias, the
lag order, and error uncertainties in the context of multi-
variate VAR(p) models. To measure the contribution of
each source of uncertainty, we generate artificial time
series of different sizes from VAR models with different
number of parameters, autoregressive roots, and error
distributions. First, we construct forecast regions using
the standard approach based on estimated VAR models
with Gaussian errors. Second, we implement the boot-
strap procedure proposed by Fresoli et al. (2015) incorpo-
rating the uncertainty about the error distribution with
fixed parameters and lag order. Third, we consider a
bootstrap procedure that deals with the parameter uncer-
tainty. Then, we add bias-correction. Finally, we imple-
ment the bootstrap incorporating also the lag order
uncertainty. We compare the alternative procedures in
terms of the empirical coverages of the Bonferorri fore-
cast cubes which are often implemented when con-
structing forecast regions; for instance, see Jord�a
et al. (2013)., Staszewska-Bystrova and Winker (2014)
and Beyaztas (2019). The conclusions of the Monte Carlo
experiments are important for practitioners given that
the relative importance of each source of uncertainty is
established in terms of the model dimension, error

distribution, persistence of shocks, and sample size. To
illustrate the relevance of the results for real systems of
time series, the proposed procedures are implemented to
obtain forecast densities of a macroeconomic system.

There are procedures to construct confidence regions
with some nominal coverage for a multivariate system at
a given forecast horizon (i.e., forecast regions). For
instance, we may construct ellipsoids with a given nomi-
nal coverage, but they are based on a Gaussianity
assumption and are hard to obtain for high dimensional
systems; see, for instance, Kim (1999). Alternatively, we
can obtain Bonferroni cubes with a lower bound nominal
coverage that are easy to implement as they are formed
by using individual forecast intervals for each of the vari-
ables in the system; see Fresoli et al. (2015) and Wolf and
Wunderli (2015). In this paper, instead of pursuing a
comparison across different forecast regions, we aim to
assess how different sources of uncertainty affect the
empirical coverages of the Bonferroni forecast cubes. It is
also worth mentioning the growing literature that ana-
lyzes methods to construct confidence paths, either for
impulse response coefficients or out-of-sample forecasts;
see, for example, Lütkepohl et al. (2015), Bruder and
Wolf (2018) and Lütkepohl et al. (2020). Identifying
and assessing the different sources of uncertainty are crit-
ical to the construction of forecast regions or paths with a
certain nominal coverage.

The structure of this paper is the following. Section 2
establishes notation. By describing briefly the VAR(p)
model and the construction of forecast densities and
regions using the standard Gaussian and bootstrap proce-
dures, we provide in Section 2 all the necessary notation.
Section 3 describes the Monte Carlo study based on VAR
models with different orders, persistence properties and
error distributions. Section 4 contains an empirical appli-
cation to a four-dimensional macroeconomic system.
Finally, Section 5 presents the conclusions.

2 | FORECASTING WITH VAR
MODELS

Consider the following multivariate VAR(p) model

yt ¼ cþΦ1yt�1þ :::þΦpyt�pþ εt ð1Þ

where yt is the N � 1 vector of observations at time t, c is
a N � 1 vector of constants, Φj are N � N autoregressive
matrices, for j¼ 1,…,p, satisfying the stationary condi-
tions and εt is a sequence of independent white noise
N� 1 vectors with nonsingular contemporaneous covari-
ance matrix Σε. Let ΠðpÞ ¼ Φ1,…,Φp

� �
be the N�Np

matrix of autoregressive parameters. Stationarity
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guarantees that the VAR process has a vector moving
average (VMA) representation given by
yt�μ¼P∞

i¼0Ψiεt�i, where μ¼ðIN �Φ1� :::�ΦpÞ�1c is
the N� 1 vector of means, Ψ0 ¼ IN and Ψj ¼

P j
i¼1Ψj�iΦi,

j¼ 1,2, …, with IN being a N�N identity matrix.
Denote by ĉ and Π̂ðp̂Þ the matrices containing the LS

estimates of the parameters obtained after selecting the
lag order p̂ by the Akaike information critetia (AIC) or
Schwartz criteria (BIC), and by Σ̂ε and Ψ̂i the sample
covariance matrix of the residuals and the estimates of
the MA matrices, respectively. Then, the standard h-
steps-ahead forecast density is constructed—after assum-
ing Gaussian errors—as follows

yTþh �NðŷTþhjT , Σ̂yðhÞÞ, ð2Þ

where ŷTþhjT ¼ ĉþP p̂
i¼1Φ̂jŷTþh�ijT , with ŷTþjjT ¼ yTþj for

j<0, is the conditional mean of yT+ h given {y1,… , yT},
which is obtained by substituting the unknown lag order
and parameters by their corresponding estimates, and
Σ̂yðhÞ¼

Ph�1
i¼1 Ψ̂iΣ̂εΨ̂

0
i. The forecast densities in (2) are

denoted as standard (STD). The STD densities can be
inadequate to construct forecast regions for several rea-
sons. First, they do not tackle the parameter bias of the
LS estimates which affects both ŷTþhjT and Σ̂yðhÞ. Second,
Σ̂yðhÞ partially reflects the uncertainty around the point
forecast because other sources of uncertainty, such as
those associated with the selection of the lag order and
the estimation of the parameters, are omitted. Finally,
the Gaussianity assumption may be misleading for many
macroeconomic and financial systems; see
Kilian (1998b). The bias of the LS estimator can be
corrected by using an asymptotic bias-correction formula
as proposed by Pope (1990). The matrix of the corrected
LS estimates Π̂

c
ðp̂Þ will be used to obtain ŷcTþhjT and Σ̂c

yðhÞ.
Bootstrap procedures implemented in this paper to

construct multivariate forecast densities are based on the
proposal in Fresoli et al. (2015). This procedure is of
interest because it does not use the backward representa-
tion (BR) of the VAR models as needed by, for example,
Kim (1999); Kim (2004), Grigoletto (2005) and
Staszewska-Bystrova (2011). Consequently, it is simple
and widely applicable, making it also attractive to fore-
cast more complex models; see Fresoli and Ruiz (2016)
and Bauwens et al. (2017) for similar procedures to fore-
cast dynamic conditional correlations and realized
covariance matrices, respectively.

Steps involved in the bootstrap procedure to construct
h-steps-ahead forecast densities for VAR(p) models are
described in detail in Fresoli et al. (2015). By applying
this method, we obtain fŷ ∗ ð1Þ

TþhjT ,…, ŷ
∗ ðBÞ
TþhjTg, with B being

the number of bootstrap replicates, which can be used to

approximate the h-steps-ahead forecast distribution of
the process. More specifically, if G ∗ ðxÞ¼ Pðy ∗

Tþh < xÞ is
the distribution function of y ∗

Tþh, then its Monte Carlo
estimate is given by

Ĝ
∗
h ðxÞ¼

XB
b¼1

I ŷ ∗ ðbÞ
TþhjT < x

� �
B

,

where I(�) is an indicator function. The estimated boot-
strap distribution can be used either to construct forecast
intervals and regions with appropriate probability con-
tent or to provide the probability forecasts associated to
some events of interest; see Garratt et al. (2003). The
asymptotic validity of the procedure is analyzed by
Fresoli et al. (2015).

When the bootstrap procedure is run with a fixed lag
order and given parameters, using the parameter esti-
mates without bias-correction, the bootstrap forecast den-
sities (denoted as distribution bootstrap, DB) only
incorporate errors distribution uncertainty; for example,
STATA implements a somewhat similar approach to DB
in which out-of-sample bootstrap draws are constructed
conditioned on estimated parameters, lag order, and the
last p observations (StataCorp, 2013).1 Second, we con-
sider the bootstrap procedure that avoids bias-correction
and does not re-estimate the lag order for each of the
bootstrap series. This bootstrap procedure, which is
called parameter bootstrap (PB), tackles, in addition to
the error distribution uncertainty, the forecast variability
due to parameter uncertainty; see, for instance, Wolf and
Wunderli (2015) who construct bootstrap forecast
regions using this procedure. Third, the PB procedure
can be implemented with bias-corrected parameters; see
Clements and Kim (2007) who highlight that in the
presence of biased parameters, the resulting bootstrap
forecast regions may be double biased because the
bootstrap estimates of the parameters might also suffer
from bias. This procedure implements the asymptotic-
bias correction formula of Pope (1990) and is denoted as
bias-corrected parameter bootstrap(BCB).2 A bootstrap
procedure of this type is the one proposed by
Alonso et al. (2018) for forecasting highly persistent
dynamic autoregressive factors. Finally, we consider the

1The difference with respect to DB is that, however, STATA forecast
intervals are obtained using the standard formula ŷ ∗

i,Tþh� z1�α
2
Σ̂ ∗
yi
ðhÞ

with the ith individual point and MSFE replaced by their bootstrap
counterparts.
2There are alternatives to the asymptotic bias-correction formula as the
bootstrap-after-bootstrap or doubled bootstrap approach; see
Kilian (1998c). However, the latter does not guarantee a better
performance than the asymptotic formula in terms of empirical
coverages but is computationally more demanding.
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bias-corrected parameter and endogenous bootstrap
(EB) in which the uncertainty about the lag order is tack-
led by re-estimating it for each bootstrap series; see, for
example, Staszewska-Bystrova and Winker (2013) and
Schreiber and Soldatenkova (2016).

It is worth noting that finite order VAR can be consid-
ered as an approximation to finite order VMA, infinite
order VAR, or VAR models exhibiting some non-linearity
(e.g., multivariate GARCH errors). Model uncertainty
arising from the approximation of a general DGP with a
finite order VAR model is not addressed in this paper.

3 | MONTE CARLO EXPERIMENTS

To asses the impact of bias and model uncertainty on
multivariate Bonferroni bootstrap forecast regions, we
carry out Monte Carlo experiments in this section.
We consider six bivariate VAR(p) models with lag orders
p¼ 2, 4, and 8, and two VAR(2) models with four vari-
ates. For each model, we choose autoregressive matrices
with different persistence dynamics.3 Table 1 summarizes
the eight models considered. Four error distributions are
assumed, namely, the Gaussian, Student-3, χ4, and
Bimodal 0.7�N(1, 1)+ 0.3�N(� 7/3, 1) distributions. We
generate multisame covariance matrix, given by
vechðΣεÞ¼ ð1:84,0:03,0:03Þ and (1.84, 0.03, 0.03, 0.00, 0.03,
0.00, 0.00, 0.02, 0.002, 0.03) for the two and four variable
models, respectively, where vech denotes the lower diag-
onal column stacking operator. M¼ 2000 replicates of
sizes T¼ 100 and 250 are generated for each of the
models considered. The sample sizes assumed here are
representative of those commonly used in practice and
our design includes models with different VAR dimen-
sion, model lag, autoregressive roots, and error distribu-
tions so that their effects can be explored.variate errors

by drawing samples from these independent univariate
distributions. Errors are then centered and appropriately
re-scaled through a Cholesky matrix to have the

For each replicate, AIC or BIC is implemented to
choose the lag order, with the maximum order being
equal to 8, 12, and 16 for the models with p¼ 2, 4, and
8, respectively. After estimating the parameters by LS,
h-steps-ahead forecast densities for h¼ 1,…,12 are con-
structed assuming Gaussian errors (STD) as in (2). Fur-
thermore, bootstrap forecast densities are constructed
based on B¼ 2000 bootstrap replicates by implementing
the DB, PB, BCB and EB procedures. In each case, we
construct the corresponding 100�(1-α)% Bonferroni cube
as follows:

CTþh ¼ yi,Tþhjyi,Tþh � [N
i¼1 qi

α

2N

� �
,qi 1� α

2N

� �h in o
ð3Þ

where qi(τ) is the τth quantile of the empirical
marginal forecast distribution of ŷ ∗

i,Tþh. We consider
100α%=5% and 10%. After generating 2000 future true
values of yT+ h, and counting the number of them lying
inside the 90% and 95% forecast Bonferroni cubes, we
obtain the corresponding empirical coverages that are
used to asses the adequacy of the STD, DB, PB, BCB, and
EB densities.

Figure 1 reports the differences between the empirical
and nominal coverages of the Bonferroni cubes for h¼ 1
and 12, for the different procedures and VAR models
when T¼ 100, the nominal coverage is 90% and the lag
order is estimated by AIC. The first row displays results
when the errors are Gaussian. Note that, in this case, the
STD cubes are constructed using the true forecast error
distribution. For h¼ 1, STD have coverages that are
always below the nominal. The undercoverage can be
severe, reaching, for instance, 8% for a highly persistent
model like M6 in which p¼ 8. Note that, in models with
smaller persistence, the coverages are closer to the

3In Appendix 2, we report the autoregressive matrices for each of the
eight VAR models used in this MC experiments.

TABLE 1 VAR(p) models considered in the Monte Carlo experiments

Model Dimension Number of parameters (c and Φjs) Dominant root

M1: Moderate persistent VAR(2) 2 10 0.75

M2: High persistent VAR(2) 2 10 0.95

M3: Moderate persistent VAR(4) 2 18 0.75

M4: High persistent VAR(4) 2 18 0.95

M5: Moderate persistent VAR(8) 2 34 0.75

M6: High persistent VAR(8) 2 34 0.95

M7: Moderate persistent VAR(2) 4 36 0.75

M8: High persistent VAR(2) 4 36 0.95
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FIGURE 1 Monte Carlo difference between empirical coverages of 90% h-steps-ahead of bootstrap Bonferroni cubes and nominal

coverage, for h¼ 1 (1st column) and 12 (2nd column). Based on STD (light blue), DB (orange), B (dark red), BCB (green), and EB (blue) for

VAR models with sample sizes T¼ 100 and Gaussian (1st row), Student-3 (2nd row), χ4 (3rd row), and Bimodal (4th row) errors. Lag order is

selected by using AIC [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Monte Carlo difference between empirical coverages of 90% h-steps-ahead Bonferroni cubes, for h¼ 1 (1st column) and

12 (2nd column). Based on STD (light blue), DB (orange), PB (dark red/deep mars), BCB (mantle green), and EB (blue) for VAR models with

sample sizes T¼ 250 and Gaussian (1st row), Student-3 (2nd row), χ4 (3rd row), and Bimodal (4th row) errors. Lag order is selected by

using AIC [Colour figure can be viewed at wileyonlinelibrary.com]
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nominal when h¼ 12, but in those with higher persis-
tence, the coverages are worse as the forecast horizon
increases. If we look at the empirical coverages of DB, it
is observed that, for h¼ 1 and T¼ 100, they are slightly
smaller than those of STD regions, regardless of the VAR
models under consideration. Although this result could
be expected given that the true error distribution is
Gaussian, it is important to point out that for h¼ 12 the
coverages of the DB cubes are comparable to those of the
STD cubes. By including the parameter uncertainty using
PB, we obtain Bonferroni regions with accuracy closer to
the nominal, for all VAR models if T¼ 100 and h¼ 1.
The improvement is larger for large and high persistent
VAR models as, for example, model M6, and h¼ 12; see
Kim (1999) for a similar result.

With respect to the VAR dimension, note the differ-
ences between the empirical and nominal coverages of
the STD cubes as we move from M1 to M8. For instance,
increasing the number of variables to four—as in models
M7 and M8—produces larger differences between the
nominal and empirical coverages of the STD and DB
cubes than models M1 and M2 and rises the changes cau-
sed by the inclusion of the parameter uncertainty. In
addition, there are no significant changes in empirical
coverages for M7 and M8 if the bias correction is
implemented, as it happens with M1 and M2 models, for
h¼ 1, and there is evidence of marginal coverages gains
when h¼ 12, being especially visible for highly persistent
models.

The main conclusions are similar for T¼ 250
although, as expected, all empirical coverages get closer
to the nominal as Figure 2 shows. We also observe that
differences among empirical coverages of bootstrap pro-
cedures become less visible for T¼ 250.4

According to our Monte Carlo results when fore-
casting one-step-ahead, the improvement of the boot-
strap cubes accuracy is to a large extent due to the
parameter uncertainty; see, for example, Clements and
Taylor (2001) and Pascual et al. (2004) for a similar
result in the context of forecasting univariate AR
models. With respect to bias-correction, it seems
advantageous when we deal with long horizon fore-
casts of highly persistent VAR models because the
effect of bias raises through powering; see Clements
and Taylor (2001), Kim (2004) and Clements and
Kim (2007). Moreover, even though bias can be more
severe in large dimensional VAR models as shown by
Abadir et al. (1999) and Lawford and

Stamatogiannis (2009), its effect on the accuracy of
forecast regions seems to be similar to that observed
for low-dimensional VAR models. In addition, our
Monte Carlo results shed light on the role played by
the lag order uncertainty, suggesting that it can be
substantial. This, in part, qualifies the arguments by
Chatfield (1993); Chatfield (1996) who suggests that
model uncertainty could severely worsen the accuracy
of forecast regions; see alternatively Kilian (1998a)
who found out that the gains of tackling the lag order
uncertainty can differ substantially among commonly
estimated VAR models, when construing bootstrap
forecast intervals for impulse response functions. As
expected, given that the LS estimator is consistent, our
results confirm that the effects of bias, model, and
parameter uncertainty tend to vanish as the sample
size increases.

Rows 2–4 of Figures 1 and 2 report the Monte Carlo
coverages when the errors are generated by the
Student-3, χ4, and Bimodal distributions. First, note that,
for T¼ 100, one-step-ahead STD regions do not worsen
their coverage accuracy in presence of non-Gaussian
errors. Moreover, the one-step-ahead bootstrap cubes that
only incorporate the uncertainty about the error distribu-
tion do not provide better empirical coverages than STD
cubes, regardless of the errors distributions and models,
with the exception of the four variate VAR models with
Student-3 errors. The last result may be surprising given
that the true error distribution is not Gaussian. However,
notice that for h¼ 12, the empirical coverages of the DB
cubes are comparable to those of the STD cubes for all
errors distributions and models. Therefore, using DB
seems like a minimum loss when the errors are other
than Gaussian. Also note that, dealing with non-
Gaussian errors does not alter the fact that parameter
uncertainty is important. Likewise, bias-correction pro-
vides only marginal coverages gains when we forecast
long horizons. Finally, tackling the lag order uncertainty
gives additional accuracy gains for both, short and long
horizons, which seem more pronounced when the errors
distribution is either χ4 or Bimodal. Again, Figure 2
shows that, regardless of the errors distributions consid-
ered, all empirical coverages improve when we increase
the number of observations to T¼ 250. Nonetheless, DB
performs much worse than STD when we consider short
horizons and the errors distribution is either χ4 or
Bimodal.

Finally, Figure 3 reports the Monte Carlo results for
the 90% Bonferroni cubes when the BIC is used to select
the lag order and T¼ 100. In general, the order of merit
of the procedures across models is not affected when the
lag order is obtained by BIC (instead of the AIC). For this
reason, we do not delve into a detailed description of the

4When the confidence level is 95%, Monte Carlo results for all the VAR
models and procedures are quantitatively the same and, for this reason,
are not reported. They are available upon request.
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FIGURE 3 Monte Carlo difference between empirical coverages of 90% h-steps-ahead of bootstrap Bonferroni cubes and nominal

coverage, for h¼ 1 (1st column) and 12 (2nd column). Based on STD (light blue), DB (orange), PB (dark red), BCB (green), and EB (blue) for

VAR models with sample sizes T¼ 100 and Gaussian (1st row), Student-3 (2nd row), χ4 (3rd row), and Bimodal (4th row) errors. Lag order is

selected by using BIC [Colour figure can be viewed at wileyonlinelibrary.com]

8 FRESOLI

http://wileyonlinelibrary.com


results.5 Notwithstanding, the comparison of Figures 1
and 3 suggests that the BIC is preferable in terms of
empirical coverages for h¼ 1, whereas AIC is preferred
for h¼ 12. A possible explanation is that the AIC tends to
select, on average, a larger lag order than the BIC. Conse-
quently, the AIC uses more in-sample information than
the BIC when constructing out-of-sample forecasts. This
information may be more valuable when we forecast long
instead of short horizons; see, for instance, Marcellino
et al. (2006), Clements and Kim (2007), and Müller and
Stock (2011).

4 | EMPIRICAL APPLICATION

A strong belief says that market conditions and economic
activity are closely linked. The foundation of this belief is
often based on empirical studies that analyze the predic-
tive power of a set of variables representing market con-
ditions on both the monthly returns S&P500 and the
growth rate of industrial production; see Fama (1990);
Campbell and Diebold (2009); Camilleri et al. (2019),
among others. In this section, forecast densities for

monthly percent changes of the seasonally adjusted
industrial production total index (ipitÞ, the S&P500 stock
market index (sp500t), the dividend yield of S&P500
index (divtÞ, and the seasonally adjusted unemployment
rate (unetÞ are constructed by using the standard Gauss-
ian approach and the bootstrap procedures described in
Section 3.6 The data is observed from February 1960 to
April 2020, accounting for 723 months.7 The parameters
are estimated using a fixed rolling windows of T¼ 100,
starting with the estimation period 1960m1–1968m4 and
finishing with 2011m1–2019m4. The number of windows
used in the estimation is 611. For each window, the lag
order is chosen by implementing AIC with an upper
bound of 12.

Figure 4 plots the lag order and the dominant root for
each window. First, it shows that predominant VAR
models are of small lag order (the percentage estimated
lag order smaller or equal than 2 and 4 is 59.7% and
73.9%, respectively). Second, concerning the dominant
root, Figure 5 suggests that the VAR models are highly
persistent with a dominant root larger than 0.9 most of
the times (98.8%). Thus, in Figure 5, there are many win-
dows for which the dominant root of estimated VAR
models is near or equal to one. For instance, the number

FIGURE 4 Estimated lag order (left axis) and dominant root (right axis) of VAR models for ipit , sp500t ,divt , and unet with fixed

windows of T¼ 100 observations [Colour figure can be viewed at wileyonlinelibrary.com]

5When the sample size is T¼ 250, differences between the empirical
coverages of all procedures using BIC or AIC are insignificant even
quantitatively, so that we do not report the results here. They are made
available upon request.

6Appendix 3 includes a time series plots of the series used in the
empirical application.
7The series implemented in the application are available upon request.
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of estimated VARs with dominant root larger than 0.999
reaches 149 (24.4%). It is worth remarking that bootstrap
procedure implemented in this paper is asymptotically
valid for a dominant root smaller than one. For this rea-
son, we separately consider the stationary VARs, which
we define as those having a dominant root smaller than
0.999, and the non-stationary VAR models, having a
dominant root larger than 0.999 or equal to 1.8 The aver-
age dominant root is 0.96 and (roughly) 1 for the station-
ary and non-stationary VAR models. Finally, we also
carried out a multivariate Gaussianity test (Doornik and
Hansen (2008)) for the errors for each of the estimation
windows and found that Gaussianity is hard to be
maintained (rejection of Gaussian errors at a significance
level of 5% rises to 78.1% of the windows). Furthermore,
the presence of non-Gaussian kurtosis is more frequent
than non-Gaussian skewness (e.g., multivariate Gaussian

kurtosis is rejected at 5% on 65.1% of windows while
skewness only on 41.9% of the windows).

Using the h-steps-ahead, for h¼ 1,…,12, forecast den-
sities at each window, 90% forecast cubes are obtained.
We calculate their empirical coverages by counting the
number of observations belonging to them, and we report
them in Figure 5 for the stationary and non-stationary
VAR models. The upper part of Figure 5 shows that, for
stationary VAR models, all procedures' empirical cover-
ages are below the nominal, especially for those dealing
only with error uncertainty as STD and DB. As expected,
the bootstrap procedures that tackle the parameter uncer-
tainty as PB, BCB, and EB, always get better coverage
accuracy than STD and DB, for h¼ 1 and h¼ 12. This
fact is in line with the results in Figure 1 for model M8,
which has four variables, p¼ 2 and shows high persis-
tence.9 Also, note that PB and BCB achieve roughly the
same empirical coverage when forecasting short hori-
zons, although there are marginal gains when forecasting
long horizons. Finally, among all procedures that tackle
the parameter uncertainty, EB provides the empirical
coverages closest to the nominal, regardless of the fore-
cast horizon.

8Beyond the absence of asymptotic validity in the case of non-stationary
VAR models, the bootstrap approach can still be useful as an
approximation and provide good coverages properties; see, for instance,
Kilian (1998a). for the case of impulse response functions.
9Nonetheless, we should be careful because the lag order and the
persistence of the estimated VAR model change for each window.

FIGURE 5 90% empirical coverages of h-steps-ahead Bonferroni cubes, h¼ 1 left) and 12 (right), for ipit , sp500t , divt , and unet with T¼
100 observations: STD (light blue), DB (orange), PB (red), BCB (green), and EB (deep blue). Stationary (first row) refers to estimated VAR

models with dominant root smaller than 0.999 and non-stationary (second row) to estimated VAR with the largest root greater than 0.999 or

equal to 1 [Colour figure can be viewed at wileyonlinelibrary.com]
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The bottom of Figure 5 reports results for the non-
stationary VAR models. Note that the overall effect of
uncertainties described for stationary VAR models
remains. However, all regions' empirical coverages drop
substantially, especially for h¼ 1, compared with the sta-
tionary VAR models. Remarkably, for the non-stationary
VARs, Bonferroni regions dealing only with errors uncer-
tainty suffer from a considerable underestimation of cov-
erages. On the other hand, by tackling other sources of
uncertainties, we can obtain much better empirical cover-
ages than DB and STD; for instance, see Kim (1999);
Kim (2004) for a similar result.

Overall, the results plotted in Figure 5 are in line with
those obtained with simulated data. There are large dif-
ferences when the parameter is included and that the
additional gains obtained by tackling bias are not always
guaranteed, at least when dealing with small and station-
ary VAR models. Nonetheless, they become more visible
for large and high persistence VAR models when fore-
casting more than one-step-ahead. Finally, incorporating
the lag order uncertainty provides additional empirical
coverages gains.

5 | CONCLUSION

In this paper, we asses the impact of bias, model, and
parameter uncertainties on empirical coverages of fore-
cast cubes for several VAR(p) models. With this purpose,
we carry out Monte Carlo experiments and construct
Bonferroni cubes using bootstrap procedures which are
able to differentiate between these uncertainty sources.
Our results suggest that a better performance of bootstrap
cubes is obtained by considering the parameter and lag
order uncertainties. Furthermore, the gains of including
the parameter uncertainty are larger when the forecast
horizon increases and for large and persistent VAR
models, in which the uncertainty surrounding parame-
ters estimates is large; see Riise and Tjøstheim (1984).
Likewise, we assess the bias uncertainty and find a lower
effect than the one often assumed in applications of boot-
strap methods, becoming their gains visible for long-run
forecast cubes of persistent VAR models; see, for exam-
ple, Clements and Kim (2007). Recently, Grabowski
et al. (2020) implemented bias-adjustment to higher
moments and found additional empirical coverage gains
for constructing confidence paths for impulse response
coefficients. Nonetheless, it is still an open question how
well this approach works when the aim is to forecast a
VAR model. Finally, our findings suggest that, when the
sample size is large and the parameter uncertainty
decreases, it is important to obtain forecast densities that
are robust to non-Gaussian errors. The results for highly

persistent models are relevant in practice as many macro-
economic time series appear to be closed to a unit root
process.
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APPENDIX A

A.1 | Autoregressive matrices of VAR models
considered in the Monte Carlo experiments
• M1: moderate persistent VAR(2)

c¼
0:00000

0:00000

 !
, Φ1¼

0:91000 0:00000

�0:50000 �0:70000

 !
,

Φ2¼
�0:120000:00000

0:80000�0:10000

 !

• M2: high persistent VAR(2)

c¼
�0:20625

0:01838

 !
, Φ1 ¼

�0:20691 �0:32086

�0:01757 1:35420

 !
,

Φ2 ¼
�0:00273 0:80028

�0:01128 �0:37040

 !

• M3: moderate persistent VAR(4)

c¼
0:00728

0:00033

 !
,

Φ1 ¼
0:04099 0:55634

�0:00685 0:75000

 !
,

Φ2 ¼
�0:01898 �1:07422

0:00909 �0:14508

 !

Φ3 ¼
0:01162 0:47984

0:00324 0:12549

 !
,

Φ4 ¼
�0:01581 0:01160

0:00821 �0:01480

 !

• M4: high persistent VAR(4)

c¼
�0:14484

0:01929

 !
,

Φ1 ¼
�0:22473 0:10421

�0:01516 1:33365

 !
,

Φ2 ¼
0:04478 �0:91441

�0:01416 �0:40684

 !
,

Φ3 ¼
0:26229 2:37921

�0:01656 0:17703

 !
,

Φ4 ¼
0:10312 �1:39369

�0:00392 �0:11927

 !

• M5: moderate persistent VAR(8)

c¼
�0:03364

�0:00786

 !
,

Φ1 ¼
0:13168 �1:54757

0:01416 0:03502

 !
,

Φ2 ¼
�0:06126 �0:03538

0:00120 �0:15980

 !
,

Φ3 ¼
0:16472 0:74271

�0:01248 0:14484

 !
,

Φ4 ¼
0:10607 0:20376

0:00277 �0:22805

 !
,

Φ5 ¼
0:02244 1:09158

�0:00027 0:02589

 !
,

Φ6 ¼
�0:06455 �0:95196

0:00189 �0:13828

 !
,

Φ7 ¼
�0:06974 0:11470

�0:00331 0:09584

 !
,

Φ8 ¼
0:02267 �1:01689

0:00104 �0:01570

 !

• M6: high persistent VAR(8)
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c¼
�0:14157

0:02344

 !
,

Φ1 ¼
�0:21424 0:07731

�0:01831 1:33474

 !
,

Φ2 ¼
0:13679 �0:97594

�0:01295 �0:41153

 !
,

Φ3 ¼
0:27222 2:21005

�0:01667 0:15595

 !
,

Φ4 ¼
0:07416 �0:79696

�0:00127 �0:04901

 !
,

, Φ5 ¼
�0:09255 �0:65870

0:00664 �0:10567

 !
,

Φ6 ¼
�0:00518 0:39616

�0:00731 0:10600

 !
,

Φ7 ¼
0:08311 �0:39243

�0:00135 �0:01933

 !
,

Φ8 ¼
�0:03162 0:22306

�0:00931 �0:02929

 !

• M7: four variate moderate persistent VAR(2)

c¼

0:00126

0:00583

0:00039

0:00219

0
BBBBB@

1
CCCCCA,

Φ1 ¼

0:08866 0:00900 0:01707 �0:05252

0:66523 0:03143 0:29869 0:00746

0:02310 �0:00786 0:80788 �0:01472

�1:06748 �0:06759 �0:85935 �0:14195

0
BBBBB@

1
CCCCCA,

Φ2 ¼

0:09782 0:01865 �0:14153 �0:03233

0:47503 �0:02711 �0:54817 �0:07754

�0:00066 0:00818 �0:00268 �0:01156

�0:27399 �0:05551 0:39760 0:10151

0
BBBBB@

1
CCCCCA

• M8: four variate high persistent VAR(2)

c¼

�0:24573

�0:01343

0:07546

0:03063

0
BBBBB@

1
CCCCCA,

Φ1 ¼

�0:24354 �3:06832 0:19194 �0:92199

�0:00517 0:22130 0:01722 0:00093

�0:00985 0:45274 1:06714 0:21231

�0:01148 �0:05668 �0:04232 1:39830

0
BBBBB@

1
CCCCCA,

Φ2 ¼

�0:01812 �0:34562 0:06277 0:88184

�0:00595 0:44134 �0:00457 �0:00670

�0:00967 0:08813 �0:14173 �0:18343

�0:01164 0:27688 0:03169 �0:41785

0
BBBBB@

1
CCCCCA
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FIGURE B . 1 First panel, monthly industrial production total growth rate (ipit = 100�ΔlogðIPItÞ), second panel, monthly S&P500

returns (sp500t ¼100�ΔlogðS&P500tÞÞ, third panel, S&P500 dividend yields growth rate (divt ¼ 100�ΔlogðYIELDStÞÞ, and fourth panel,

unemployment rate (level). Shaded areas correspond to US recession according to NBER

APPENDIX B: TIME SERIES PLOT OF SERIES USED IN THE EMPIRICAL APPLICATION
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