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a b s t r a c t 

This paper introduces a series of new concepts under the name of Economic Cross-Efficiency, which is 

rendered operational through Data Envelopment Analysis (DEA) techniques. To achieve this goal, from 

a theoretical perspective, we connect two key topics in the efficiency literature that have been unre- 

lated until now: economic efficiency and cross-efficiency. In particular, it is shown that, under input (out- 

put) homotheticity, the traditional bilateral notion of input (output) cross-efficiency for unit l , when the 

weights of an alternative counterpart k are used in the evaluation, coincides with the well-known Farrell 

notion of cost (revenue) efficiency for evaluated unit l when the weights of k are used as market prices. 

This motivates the introduction of the concept of Farrell Cross-Efficiency (FCE) based upon Farrell’s notion 

of cost (revenue) efficiency. One advantage of the FCE is that it is well defined under Variable Returns to 

Scale (VRS), yielding scores between zero and one in a natural way, and thereby improving upon its stan- 

dard cross-efficiency counterpart. To complete the analysis we extend the FCE to the notion of Nerlovian 

cross-inefficiency (NCI), based on the dual relationship between profit inefficiency and the directional 

distance function. Finally, we illustrate the new models with a recently compiled dataset of European 

warehouses. 

© 2020 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

Data Envelopment Analysis (DEA) is a data-driven approach for 

stimating a piece-wise linear frontier enveloping from above a 

loud of points in a space with dimensions associated with vari- 

bles categorized as inputs and outputs. DEA is classified as a non- 

arametric and multidimensional technique, which is based on a 

ew postulates (mainly convexity, free disposability and minimum 

xtrapolation), and is usually used for assessing relative efficiencies 

f a homogeneous set of Decision Making Units (DMUs). Due to its 

exibility and other advantages, in recent times, DEA has become 

ne of the most used methodologies by researchers, practitioners 

nd scholars in Operations Research, Economics and Engineering to 

stimate best practice frontiers in many different contexts. In par- 

icular, this technique allows determining an efficiency score for 

ach evaluated unit, calculated as the distance from each DMU to 

he fitted frontier (see, for example, [11] ). 

Regarding the determination of the distance to the frontier, it 

s worth mentioning that there exist in the DEA literature many 
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ifferent ways of implementing this idea of proximity; being the 

eminal and most used that associated with the radial models of 

harnes et al. [9] and Banker et al. [6] . In these models, defined

s fractional linear programming formulations in its basic ratio- 

orm, the technique assigns a set of most favorable input and out- 

ut weights that maximize the ratio of a weighted sum of outputs 

o a weighted sum of inputs. In this manner, the assessed DMU 

s evaluated in the best possible way and DEA provides a self- 

valuation of the DMUs by using input and output weights that 

re unit-specific. Unfortunately, this flexibility that represents one 

f the distinctive landmarks of DEA makes it difficult to derive a 

uitable ordering of the units based on their efficiency score, as 

he best performing DMUs rank at the top with an equal value of 

ne. 

However, it is very common in real life that practitioners need 

o rank the set of assessed units with respect to their performance. 

ne example is the famous Academic Ranking of World Universi- 

ies (ARWU)—better known as the Shanghai Ranking, where over 

,200 universities are ranked according to six objective indicators 

very year. Other recent examples are the ranking of a list of 

ournals using data from the Thomson Reuters Journal Citation 

eports (JCR) (see [31] ) or the ranking of countries participating 

n a sporting event as the Summer Olympic Games (see [19] ). This 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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eed has motivated the introduction into the DEA literature of 

ifferent approaches for ranking the set of DMUs [1] . 

One of the most popular approaches for ranking units in DEA is 

hat known as Cross-Efficiency (CE) [10,33] . Cross-efficiency eval- 

ation was originally introduced in Sexton et al. [37] and pop- 

larized by Doyle and Green [13] . While DEA provides a self- 

valuation for each DMU, using unit-specific optimal input and 

utput weights, the cross-efficiency evaluation provides a peer- 

ppraisal of the DMUs in which each unit is also assessed using 

he optimal DEA weights of the remaining observations. From an 

conomic perspective based on duality theory the optimal weights 

btained from DEA can be interpreted as shadow prices defin- 

ng the trade-offs between inputs and outputs from a technolog- 

cal perspective, e.g., marginal rates of substitution between in- 

uts (see [15,27] ). These trade-offs correspond to the reference hy- 

erplanes obtained from DEA serving as benchmark for efficiency 

easurement. The cross-efficiency methodology relies on these 

eference hyperplanes, defined by the optimal weights or shadow 

rices obtained for each DMU, to calculate the so-called bilateral 

ross-efficiency scores, which again define as the usual ratio of a 

eighted sum of outputs to a weighted sum of inputs. The final 

multilateral) cross-efficiency scores of the different units are the 

verage of their (bilateral) cross-efficiencies, and such scores are 

sed to rank the DMUs. 

Whereas the ranking that we are determining through cross- 

fficiency is related to the notion of ‘technical’ efficiency, i.e., we 

re interested in evaluating the performance of a set of observa- 

ions operating in a similar technological environment by com- 

aring their activity with respect to the boundary enveloping the 

ata; there exists another type of efficiency, with a more gen- 

ral meaning. We are referring to the concept of economic or 

verall efficiency, which is normally associated with the perfor- 

ance of ‘for-profit’ organizations when information on market 

rices are considered (e.g. firms operating within an industry). In 

arket environments the measurement of, for example, cost effi- 

iency is key to understand the competitiveness of firms, Apari- 

io et al. [2] . These units are usually interested in changing the 

elative amounts of inputs (input mix) if this adjustment leads to 

eal economic gains (e.g., given revenue, more profit through less 

ost). In particular, cost efficiency may be defined as how close 

he firm is to the optimal (minimum) feasible cost of producing 

 given amount of output. In a similar manner, we can find in 

he literature analogous definitions of revenue efficiency and profit 

fficiency. 

Farrell [17] was the first author in showing how to measure 

ost efficiency from the estimation of a best practice frontier, as 

he ratio between minimum cost and actual cost of a firm given 

nput market prices. Additionally, he introduced a way of decom- 

osing this overall measure into technical efficiency and alloca- 

ive efficiency, as a means to understand what needs to be done 

o enhance the performance of the assessed unit. Technical effi- 

iency measures how close the firm is to the frontier of the tech- 

ology, whereas allocative efficiency measures the additional eco- 

omic loss due to a sub-optimal input mix given market prices, 

nce the firm is at the frontier. Moreover, under the Farrell ap- 

roach, when the best practice frontier is estimated by DEA, the 

echnical efficiency component coincides with the efficiency score 

inked to the (input-oriented) radial model by Charnes et al. [9] , 

n the case of assuming a constant returns to scale (CRS) tech- 

ology, and by Banker et al. [6] , in the case of adopting vari-

ble returns to scale (VRS). It is worth mentioning that a rev- 

nue efficiency measure à la Farrell can be defined in an analogous 

ay. 

Following Farrell [17] , the use of market prices as input and 

utput weights leads to a market oriented ranking based on eco- 
2 
omic performance. However, in many instances, prices are un- 

vailable, e.g. when studying public services such as health, educa- 

ion, etc. Then, based on the set of optimal multipliers (i.e., shadow 

rices), standard DEA provides a ranking with all the caveats pre- 

iously mentioned. Yet, as this paper introduces, it is possible to 

erform a cross-efficiency analysis in the vein of Farrell, but us- 

ng the obtained shadow prices. In this analysis, rather than cal- 

ulating cost efficiency under (unavailable) market prices, this is 

erformed with respect to the shadow prices obtained for each 

ne of the observations (hence the name of Farrell cross-efficiency 

hat we introduce later). As for the decomposition of this ‘shadow’ 

ost efficiency, units are first projected to the production fron- 

ier through their technical efficiency score, and then their rela- 

ive allocative efficiency is determined with respect to the shadow 

rices. Our method inaugurates an alternative family of cross- 

fficiency models. Although our approach uses the same informa- 

ion yielded by the standard cross-efficiency DEA models, namely 

he optimal weights, we reinterpret them as shadow prices and, 

nspired by Farrell [17] , offer a new method for cross-efficiency 

easurement. 

While Farrell [17] introduced the notion of economic efficiency 

n the cost minimizing case, the interest of extending his ideas 

o profit efficiency resulted in the introduction of the so-called 

erlovian efficiency measure [7] . This approach defines profit in- 

fficiency in an additive way and decomposes it into technical in- 

fficiency and allocative inefficiency. Technical inefficiency is deter- 

ined through the directional distance function, which is a graph 

easure in the sense that firms adjust both input and output 

uantities. As in the case of Farrell, the Nerlovian efficiency mea- 

ure also uses the information of market prices to determine profit 

fficiency of each evaluated observation, and can be decomposed 

nto mutually exclusive technical and allocative terms. Extending 

he new approach described above, in this study we also introduce 

he concept of Nerlovian Cross-Efficiency, comparing the economic 

profit) performance of DMUs with respect to one another but, 

nce again, rather than considering market prices, using the op- 

imal multipliers or shadow prices yielded by the directional dis- 

ance function DEA model. 

In spite of input and output weights determined by models in 

EA being interpreted as prices–i.e., as shadow prices specifically–

ross-efficiency and economic efficiency are two independent top- 

cs in the literature that have evolved in parallel, without ever 

aking a connection. Following this thread, this paper explores 

he existence of a common ground, providing a link between 

hese two research fields by introducing the concept of Economic 

ross-Efficiency , and its application through DEA. In particular, and 

o connect our new approach with the standard cross-efficiency 

ethods, we show that under the customary assumption of in- 

ut (output) homotheticity, the traditional bilateral notion of in- 

ut (output) cross-efficiency for unit l , when the weights of unit 

 are used in the evaluation, coincides with the Farrell notion of 

ost (revenue) efficiency for unit l when the weights of unit k are 

sed as market prices. This implies that, under homotheticity, the 

ultilateral traditional cross-efficiency notion matches the arith- 

etic mean of n Farrell’s cost efficiencies, where n denotes the 

ample size. Additionally, we show how to decompose the stan- 

ard cross-efficiency into technical efficiency and (shadow) alloca- 

ive efficiency. 

The above result motivates the definition in a first instance of 

he concept of Farrell Economic Cross-Efficiency ( FCE ), based upon 

he notion of Farrell’s cost efficiency. We prove that FCE coincides 

ith standard cross-efficiency ( CE ) in the context of production 

unctions, i.e., when only an output is produced, under restrictive 

ssumptions. To complete the analytical framework, once the Far- 

ell approach ( FCE ) has been introduced, we extend it to the wider 
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I

ase of profit inefficiency, by way of the notion of ‘Nerlovian’ Cross- 

nefficiency ( NCI ). This allows us to deal with the general situation 

f simultaneous output and input adjustments through the direc- 

ional distance function. 

In what constitutes a key advantage of the new FCE method, we 

how that it allows the extension of the concept of cross-efficiency 

o technologies characterized by variable returns to scale ( VRS ), 

btaining scores always between zero and one in a natural way, 

omething that contrasts with the standard cross-efficiency frame- 

ork. This point is important in the context of cross-efficiency be- 

ause the traditional cross-efficiency measure under VRS presents 

he problem of negative values for some DMUs, unamenable to 

ensible interpretation. However, many empirical situations require 

he assumption of VRS, for example when DMUs are of very differ- 

nt size (bank branches, universities, restaurants, etc.). This is the 

eason why some authors have tried to adapt the standard cross- 

fficiency to accommodate the need of using a VRS DEA model in 

rder to avoid meaningless values (e.g., [26,39] , and more recently, 

23] ). In the empirical section, resorting to example data from Wu 

t al., [39] , we compare our new method to some of these pro-

osals aimed at solving the problem of negative cross-efficiencies 

nder VRS. 

The paper is organized as follows. Section 2 is devoted to in- 

roduce the relationship between cross-efficiency and economic ef- 

ciency under homotheticity and to define the notion of Farrell 

cost) cross efficiency under any returns to scale. In Section 3 , we 

xtend the Farrell cross-efficiency to the context of graph measures 

y introducing the Nerlovian economic (profit) cross-inefficiency 

easure. In Section 4 we compare our economic cross-efficiency 

ethod with other proposals in the literature solving the problem 

f negative scores under VRS, and illustrate the general feasibility 

f our economic cross-efficiency models for large datasets by ap- 

lying the new approach to recently compiled data on European 

arehouses. Section 5 concludes. 

. The Farrell economic (cost) cross-efficiency 

Let there be m inputs, the (non-negative) quantities of which 

re measured by a vector X ≡ ( x 1 , ..., x m 

) , and s outputs, the 

non-negative) quantities of which are measured by a vector 

 ≡ ( y 1 , ..., y s ) . Given n observed observations or DMUs, we have 

he set of data denoted as { ( X k , Y k ) , k = 1 , ..., n } . The technol- 

gy or production possibility set is defined, in general, as T = 

 ( X, Y ) ∈ R m + s 
+ : X can produce Y } . 

Using Data Envelopment Analysis, T is characterized as T c = 

 ( X, Y ) ∈ R m + s 
+ : 

∑ n 
j=1 λ j x i j ≤ x i , ∀ i, 

∑ n 
j=1 λ j y r j ≥ y r , ∀ r, λ j ≥ 0 , ∀ j } 

nder constants returns to scale (CRS) and as T v = { ( X, Y ) ∈ 

 

m + s 
+ : 

∑ n 
j=1 λ j x i j ≤ x i , ∀ i, 

∑ n 
j=1 λ j y r j ≥ y r , ∀ r, 

∑ n 
j=1 λ j = 1 , 

j ≥ 0 , ∀ j} under variable returns to scale (VRS) [6] . 

In DEA, for each DMU k = 1 , ..., n the radial input technical ef-

ciency assuming CRS is calculated through the following linear 

ractional programing problem [9] : 

T E c ( X k , Y k ) = Max 
U,V 

s ∑ 

r=1 

u r y rk 

m ∑ 

i =1 

v i x ik 

s.t. 
s ∑ 

r=1 

u r y r j 

m ∑ 

i =1 

v i x i j 

≤ 1 , j = 1 , ..., n (1 . 1) 

u r ≥ 0 , r = 1 , ..., s (1 . 2) 
v i ≥ 0 , i = 1 , ..., m (1 . 3) 

(1) 

IT E c ( X k , Y k ) always takes values between zero and one and its 

nverse coincides with the well-known Shephard input distance 

unction in Economics [38] . Additionally, for computational pur- 
3 
oses, model (1) can be easily linearized as: 

T E c ( X k , Y k ) = Max 
U,V 

s ∑ 

r=1 

u r y rk 

s.t. 
m ∑ 

i =1 

v i x ik = 1 , (2 . 1) 

s ∑ 

r=1 

u r y r j −
m ∑ 

i =1 

v i x i j ≤ 0 , j = 1 , ..., n (2 . 2) 

u r ≥ 0 , r = 1 , ..., s (2 . 3) 

v i ≥ 0 , i = 1 , ..., m (2 . 4) 

(2) 

Any optimal solution of model (2) is an optimal solution of 

odel (1). Moreover, the optimal value of model (2) coincides with 

he optimal value of model (1). It is worth mentioning that the op- 

imal value of the dual linear program corresponding to model (2), 

.e. the well-known envelopment form in Data Envelopment Anal- 

sis, may be interpreted as a proportional reduction of inputs as 

ell as a cost index measuring the relative contraction of cost at 

he most preferred virtual or shadow prices, which are the optimal 

irtual multipliers in (2). 

As we aforementioned, one drawback of radial input technical 

fficiencies is that they exhibit a relevant shortcoming for ranking 

bservations. To judge this, let ( V ∗
k 
, U 

∗
k 
) be one of the possible op- 

imal solutions of problem (2) and, therefore, of model (1). In this 

ay, the comparison of the scores ITE c associated with two DMUs 

 and l involves not only their input and output quantities (as in 

tandard bilateral productivity comparisons), but also two different 

rofiles of shadow prices: ( V ∗
k 
, U 

∗
k 
) and ( V ∗

l 
, U 

∗
l 
) . 

 T E c ( X k , Y k ) ≥ I T E c ( X l , Y l ) ⇔ 

s ∑ 

r=1 

u 

∗
rk 

y rk 

m ∑ 

i =1 

v ∗
ik 

x ik 

≥

s ∑ 

r=1 

u 

∗
rl 

y rl 

m ∑ 

i =1 

v ∗
il 
x il 

. (3) 

Since usually ( V ∗
k 
, U 

∗
k 
) 	 = ( V ∗

l 
, U 

∗
l 
) , it is discouraged to compare

he performance of the two units by direct comparison of their 

cores. Moreover, all technically efficient units receive a unitary 

core: IT E c ( X k , Y k )= 1, and therefore it is not possible to discrimi- 

ate among them. Instead, a cross-evaluation strategy is suggested 

n the literature ( [37] , and [13] ). In particular, the (bilateral) cross 

nput technical efficiency of unit l with respect to unit k is defined 

y 

IT E c ( X l , Y l | k ) = 

s ∑ 

r=1 

u 

∗
rk 

y rl 

m ∑ 

i =1 

v ∗
ik 

x il 

. (4) 

CIT E c ( X l , Y l | k ) takes values between zero and one and satisfies 

IT E c ( X l , Y l | l ) = IT E c ( X l , Y l ) [P1]. 

Given the observed n units in the data sample, the literature on 

ross-efficiency suggests the aggregation of the bilateral cross input 

echnical efficiencies of unit l with respect to all units k, k = 1,…, n ,

hrough the arithmetic mean to obtain the multilateral notion of 

ross input technical efficiency of unit l : 

 IT E c ( X l , Y l ) = 

1 

n 

n ∑ 

k =1 

C IT E c ( X l , Y l | k ) = 

1 

n 

n ∑ 

k =1 

s ∑ 

r=1 

u 

∗
rk 

y rl 

m ∑ 

i =1 

v ∗
ik 

x il 

. (5) 

This measure satisfies several properties: 

[P2] The greater CIT E c ( X l , Y l ) , the better (meaning of efficiency); 

[P3] 0 ≤ CIT E c ( X l , Y l ) ≤ 1 ; 

[P4] If ( v ∗
k 
, u ∗

k 
) = ( v ∗

l 
, u ∗

l 
) , ∀ k = 1 , ..., n , then CIT E c ( X l , Y l ) =

T E c ( X l , Y l ) ; 
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1 Given the advantages of assuming homotheticity among the most common 

technological properties, it comes as no surprise that it is routinely assumed by 

researchers, Chambers and Mitchell [8] . 
[P5] CIT E c ( X l , Y l ) is units invariant. 

Before bridging the gap between the above cross-efficiency 

ethods and the economic efficiency literature, we need to 

riefly recall the latter through the classical Farrell approach 

17] . We start considering the Farrell radial paradigm for 

easuring and decomposing cost efficiency. Therefore, for the 

ake of brevity, we state our discussion in the input space, 

efining the input requirement set L ( Y ) as the set of non-

egative inputs X ∈ R m + that can produce non-negative output Y ∈ 

 

s + , formally L (Y ) = { X ∈ R m + : ( X , Y ) ∈ T } , and the isoquant of

 (Y ) : Isoq L (Y ) = { X ∈ L (Y ) : ε < 1 ⇒ εx / ∈ L (Y ) } . Let us also de-

ote by C L ( Y, W ) the minimum cost of producing the output 

evel Y given the input market price vector W ∈ R m + : C L ( Y, W ) =
in { ∑ m 

i =1 w i x i : X ∈ L (Y ) } . 
The standard (multiplicative) Farrell approach views cost effi- 

iency as originating from technical efficiency and allocative effi- 

iency. Specifically, Farrell quantified, and therefore defined, each 

f these terms as follows: 

 E L ( X, Y ) = 

C L ( Y, W ) 
m ∑ 

i =1 

w i x i ︸ ︷︷ ︸ 
Cost Efficiency 

= 

1 

D L ( X, Y ) ︸ ︷︷ ︸ 
Technical Efficiency 

· AE F L ( X, Y ;W ) ︸ ︷︷ ︸ 
Allocative Efficiency 

, (6) 

here D L ( X, Y ) = sup { δ > 0 : X/δ ∈ L (Y ) } is the Shephard input 

istance function [38] , and allocative efficiency is defined residu- 

lly as the ratio between cost efficiency and technical efficiency or, 

xplicitly, as AE F 
L 
( X, Y ;W ) = 

C L ( Y,W ) ∑ m 
i =1 w i ( 

x i 
D L ( X,Y ) 

) 
. 

We use the subscript L to denote that we do not assume a spe-

ific type of returns to scale when characterizing L (Y ) . Neverthe- 

ess, we will utilize C c ( Y, W ) and D c ( X, Y ) for CRS and C v ( Y, W )

nd D v ( X, Y ) for VRS when needed. Additionally, as shown in (6), 

t is well-known in Data Envelopment Analysis that the inverse 

f D c ( X, Y ) coincides with IT E c ( X k , Y k ) –program (1): IT E c ( X k , Y k )= 

 c ( X, Y ) −1 . Now, if common market prices existed for all firms 

ithin an industry, then the natural way of comparing the per- 

ormance of each one would be using the left-hand side in (6). We 

hen could assess the obtained values for each firm using the same 

eference weights (prices) for all the observations, creating a mar- 

et based ranking. 

We are now ready to show that, under input homotheticity, the 

raditional bilateral notion of the cross input technical efficiency 

f unit l with respect to unit k , CIT E c ( X l , Y l | k ) , coincides with

he Farrell notion of cost efficiency for unit l , i.e., the left-hand 

ide in (6), when the input weights of unit k , V ∗
k 

= ( v ∗
1 k 

, ..., v ∗
mk 

) ,

.e., its shadow prices, take the place of the market prices. For 

his purpose, we first recall the definition of input homotheticity 

20] . 

efinition 1. The technology T is input homothetic if and 

nly if L (Y ) = H(Y ) · L ( 1 s ) , where H(Y ) : R s → R ++ and 1 s =
 1 , ..., 1 ) ∈ R s . 

Input homotheticity is customarily assumed in empirical ap- 

lications measuring overall economic efficiency because it en- 

ures that radial reductions of inputs can be rightly interpreted 

s technical improvements resulting in cost savings. This is be- 

ause, whatever the allocative efficiency magnitude resulting from 

he first order conditions for cost minimization–i.e., summarized in 

he (in)equality of the marginal rates of substitution to the input 

rice ratios, it does not change along the radial contraction path 

epresented by the input distance function. This result stems from 

ne remarkable technological property normally taken for granted 

n the literature by customarily assuming homotheticity, that the 

arginal rates of substitution among inputs are independent of the 
4 
utput level, and therefore the radial contractions of input quan- 

ities leave allocative efficiency unchanged–see Proposition 2 in 

paricio and Zofío [ [4] :137]. The geometric idea behind the notion 

f input homotheticity is that the input requirement sets for dif- 

erent output vectors along factor beams are “parallel” blown-ups 

in contrast to Fig. 1 where the map of isoquants illustrates a non- 

omothetic technology). 1 

Indeed, the satisfaction of this property has relevant implica- 

ions for this study in terms of the input requirement set and the 

eparability of the cost function, which can be rewritten as follows 

see [15] ): 

 ( Y ) = H ( Y ) L ( 1 s ) , (7) 

 L ( Y, W ) = H ( Y ) C L ( 1 s , W ) . (8) 

Färe and Mitchell [14] refine this notion of input-homotheticity 

or the case of multiple outputs, beyond that corresponding to 

he usual scalar single-valued production function. In the case 

f multiple outputs, these authors differentiate between input 

omotheticity and ray-homotheticity (understood as ‘fixed out- 

ut mix/input mix independent ray-homotheticity’). On the one 

and, Definition 1 above simply recalls the standard definition 

f input-homotheticity for multiple outputs, implying both ray- 

omotheticity (linear expansion paths) and the separability of the 

ost function, which is the property required to prove the equiv- 

lence between the standard cross-efficiency model that assumes 

RS and Farrell’s cost efficiency model. On the other hand, if CRS 

re assumed, it implies that the technology is homogenous. There- 

ore, Theorem 1 below is presented under both input homothetic- 

ty and homogeneity. 

In order to prove the result that relates the standard DEA cross- 

fficiency under CRS to Farrell’s cost efficiency, we need to estab- 

ish some previous results. Based on (7) and (8) we start show- 

ng the conventional linear programming model that is used in 

EA to determine the minimum cost, given the output level Y l and 
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hadow prices V ∗
k 

: 2 

 c 

(
Y l , V 

∗
k 

)
= Min 

λ1 ,..., λn 
x 1 ,..., x m 

m ∑ 

i =1 

v ∗
ik 

x i 

s.t. 

−
n ∑ 

j=1 

λ j x i j 
+ x 

i 
≥ 0 , i = 1 , ..., m (9 . 1) 

n ∑ 

j=1 

λ j y r j 
≥ y rl , r = 1 , ..., s (9 . 2) 

λ j ≥ 0 , j = 1 , ..., n (9 . 3) 

x i ≥ 0 , i = 1 , ..., m (9 . 4) 

(9) 

Now, under input homotheticity, expression (8) holds, and the 

ptimal cost may be also determined through model (10) or by its 

ual, model (11): 

 c 

(
Y l , V 

∗
k 

)
= H ( Y l ) Min 

λ1 ,..., λn 
x 1 ,..., x m 

m ∑ 

i =1 

v ∗
ik 

x i 

s.t. 

−
n ∑ 

j=1 

λ j x i j 
+ x 

i 
≥ 0 , i = 1 , ..., m (10 . 1) 

n ∑ 

j=1 

λ j y r j 
≥ 1 , r = 1 , ..., s (10 . 2) 

λ j ≥ 0 , j = 1 , ..., n (10 . 3) 

x i ≥ 0 , i = 1 , ..., m (10 . 4) 

(10) 

 c 

(
Y l , V 

∗
k 

)
= H ( Y l ) Max 

E,F 

s ∑ 

r=1 

e r 

s.t. 
s ∑ 

r=1 

e r y r j 
−

m ∑ 

i =1 

f i x i j 
≤ 0 , j = 1 , ..., n (11 . 1)

f i ≤ v ∗
ik 
, i = 1 , ..., m (11 . 2)

E ≥ 0 s , F ≥ 0 m 

(11 . 3)

(11) 

emma 1. Let ( F ∗, E ∗) be an optimal solution of (11). Then, ( V ∗
k 
, E ∗)

s also an optimal solution of (11). 

roof. See appendix A.1. 

orollary 1. There always exists an optimal solution of model (11), 

 F ∗, E ∗) , with F ∗ = V ∗
k 
. 

roof. This result is a direct consequence of Lemma 1 . �

Corollary 1 , and given that H( Y l ) does not depend on the deci-

ion variables E and F , implies that C c ( Y l , V 
∗
k 
) can be computed as:

 c 

(
Y l , V 

∗
k 

)
= Max 

E 
H ( Y l ) 

s ∑ 

r=1 

e r 

s.t. 
s ∑ 

r=1 

e r y r j 
−

m ∑ 

i =1 

v ∗
ik 

x 
i j 

≤ 0 , j = 1 , ..., n (12 . 1) 

e r ≥ 0 , r = 1 , ..., s (12 . 2) 

(12) 

Now, we are ready to prove a key result in this paper: if 

 V ∗, U 

∗) is an optimal solution of model (2) then, under input- 

k k 

2 In the model, the decision variables are λ1 , ..., λn , x 1 , ..., x m , while v ∗
1 k 

, ..., v ∗
mk 

, x 
i j 

, 

 

r j 
, ∀ i = 1 , ..., m , ∀ r = 1 , ..., s , ∀ j = 1 , ..., n are data of the problem. 

p

s

5 
omotheticity, we have that the traditional (bilateral) cross input 

echnical efficiency of unit l with respect to unit k coincides with 

arrell notion of cost efficiency for unit l when V ∗
k 

is considered as 

nput prices, i.e., CIT E c ( X l , Y l | k ) = 

∑ s 
r=1 u 

∗
rk 

y rl ∑ m 
i =1 v 

∗
ik 

x il 
= 

C c ( Y l ,V 
∗
k 
) ∑ m 

i =1 v 
∗
ik 

x il 
. 

heorem 1. Let ( V ∗
k 
, U 

∗
k 
) be an optimal solution of model (2). If T c is

nput homothetic, then CIT E c ( X l , Y l | k ) = 

C c ( Y l ,V 
∗
k 
) ∑ m 

i =1 v 
∗
ik 

x il 
. 

roof. See Appendix A.2. 

Theorem 1 implies that, under input-homotheticity, the stan- 

ard notion of multilateral cross input technical efficiency of unit l 

oincides with the arithmetic mean of n Farrell’s cost efficiencies, 

.e., 

 IT E c ( X l , Y l ) = 

1 

n 

n ∑ 

k =1 

C IT E c ( X l , Y l | k ) = 

1 

n 

n ∑ 

k =1 

C c 
(
Y l , V 

∗
k 

)
m ∑ 

i =1 

v ∗
ik 

x il 

. (13) 

In this way, cross-efficiency can be reinterpreted in terms of 

arrell’s overall economic efficiency. This also implies that cross- 

fficiency can be easily decomposed into two components by ap- 

lying (6): 

IT E c ( X l , Y l ) = 

1 
n 

n ∑ 

k =1 

C c ( Y l ,V ∗k ) 
m ∑ 

i =1 

v ∗
ik 

x il 

= 

1 
n 

n ∑ 

k =1 

[
1 

D c ( X l , Y l ) 
· AE F c 

(
X l , Y l ;V 

∗
k 

)]

 

1 
D c ( X l , Y l ) 

· 1 
n 

n ∑ 

k =1 

AE F c 

(
X l , Y l ;V 

∗
k 

)
= IT E c ( X l , Y l ) · 1 

n 

n ∑ 

k =1 

AE F c 

(
X l , Y l ;V 

∗
k 

)
. 

(14) 

Hence, cross-efficiency of unit l can be seen as the technical 

fficiency of unit l times a ‘correction’ factor, associated with the 

rithmetic mean of n allocative efficiencies of unit l , each one cal- 

ulated from the input shadow prices of unit k , k = 1 , ..., n . 

Theorem 1 has also some interesting by-products. For example, 

n a DEA context where only an output is produced, i.e., when a 

roduction function is estimated, it can be proved that the stan- 

ard notion of multilateral cross input technical efficiency always 

oincides with Farrell’s notion of cost efficiency. This result, sum- 

arized in the next corollary, is verified because a single output 

EA technology under CRS is always input homothetic. 

orollary 2. Let s = 1. Then, 

IT E c ( X l , y l ) = 

1 

n 

n ∑ 

k =1 

C c 
(
y l , V 

∗
k 

)
m ∑ 

i =1 

v ∗
ik 

x il 

. (15) 

roof. Aparicio et al. [2] proved in their Proposition 3 that if s = 1

nd constant returns to scale are assumed, as happens in the com- 

utation of traditional cross-efficiency, then input-homotheticity is 

atisfied. Finally, by Theorem 1 , we have (15). �

The above discussion, which relates standard cross (input ori- 

nted) technical efficiency to a traditional measurement of eco- 

omic (cost oriented) efficiency, serves as inspiration for defining 

ext our new notion of cross-efficiency in DEA based on Farrell’s 

ost efficiency, regardless of assuming or not input homotheticity. 

n this way, for a given set of shadow prices obtained from solving 

rogram (2), we define the bilateral Farrell cross-efficiency of unit 

 with respect to unit k as 3 

 C E L ( X l , Y l | k ) = 

C L 
(
Y l , V 

∗
k 

)
m ∑ 

i =1 

v ∗
ik 

x il 

, (16) 
3 Note that our method based on shadow prices can be adapted to other sets of 

rices such as market prices when they differ across units, or even imputed prices 

ubjectively set by the researches, e.g. based on experts’ judgements. 
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4 It may be noted that in these expressions AE F L ( X l , Y l ;V ∗
l 
) = 1 since a unit is 

allocative efficient with respect to its own shadow prices. 
here L ∈ { c,v } denote constant and variable returns to scale. Again, 

t is worth remarking that the expression in (16) for evaluating unit 

is inspired by the formulation of Farrell’s cost efficiency, i.e. the 

eft-hand side of (6), substituting market prices by shadow prices, 

.e., the optimal weights associated with the solution of the multi- 

liers form of the input-oriented radial model (2) when DMU k is 

ssessed. 

As in (6), F C E L ( X l , Y l | k ) = 

1 
D L ( X l , Y l ) 

· AE F L ( X l , Y l ;V ∗
k 
) . Therefore, Far-

ell cross-efficiency of unit l with respect to unit k corrects the 

sual technical efficiency, the inverse of Shephard distance func- 

ion, through a term with meaning of allocative efficiency. 

Fig. 1 illustrates expression (16) and its decomposition. Let us 

ssume that unit l and unit k are represented by points D and A, 

espectively. Additionally, let us suppose that point D belongs to 

 (1), while A belongs to L (2). Then, first of all we need to solve

he input-oriented radial model for point A in order to obtain its 

orresponding multipliers or shadow prices. In this case, the pro- 

ection point on the isoquant of L (2) corresponds to point B. The 

adial model also yields the marginal rate of input substitution de- 

ned as the ratio of the shadow prices: −( v ∗
2 A 

/ v ∗
1 A 

) . Using the same

ate of substitution, point C on the isoquant of L (1) is determined. 

his is the optimal production plan incurring in the minimum cost 

n L (1) according to −( v ∗
2 A 

/ v ∗
1 A 

) , i.e. the cost minimizing bench- 

ark for point D. In this way, (16) corresponds to the ratio of the 

ost of C to the cost of D. In Fig. 1 , this ratio is 0F / 0D . The score

rovided by (16) for unit D regarding unit A coincides with the 

raditional radial input technical efficiency, 0E / 0D , whose calcula- 

ion does not involve the (shadow) prices of unit A, modified by 

 correction term, which is 0F / 0E , i.e., the corresponding (shadow) 

llocative efficiency. 

One more time, given we have observed n units in the data 

ample, the traditional literature on cross-efficiency suggests to ag- 

regate bilateral cross-efficiencies through the arithmetic mean to 

btain the multilateral notion of cross efficiency. In this case, the 

ggregate Farrell cross-efficiency defines as: 

 C E L ( X l , Y l ) = 

1 

n 

n ∑ 

k =1 

F C E L ( X l , Y l | k ) = 

1 

n 

n ∑ 

k =1 

C L 
(
Y l , V 

∗
k 

)
m ∑ 

i =1 

v ∗
ik 

x il 

. (17) 

Additionally, as in expression (14) under input-homotheticity, 

he general F C E L ( X l , Y l ) can be always decomposed (under any re- 

urns to scale) into (radial) technical efficiency and a correction 

actor defined as the arithmetic mean of n shadow allocative ef- 

ciency terms. I.e., 

 C E L ( X l , Y l ) = 

1 

n 

n ∑ 

k =1 

F C E L ( X l , Y l | k ) = 

1 

n 

n ∑ 

k =1 

C L 
(
Y l , V 

∗
k 

)
m ∑ 

i =1 

v ∗
ik 

x il 

= 

1 

n 

n ∑ 

k =1 

[
1 

D L ( X l , Y l ) 
· AE F L 

(
X l , Y l ;V 

∗
k 

)]

= 

1 

D L ( X l , Y l ) 
· 1 

n 

n ∑ 

k =1 

AE F L 

(
X l , Y l ;V 

∗
k 

)

= IT E L ( X l , Y l ) ·
1 

n 

n ∑ 

k =1 

AE F L 

(
X l , Y l ;V 

∗
k 

)
, (18) 

ith IT E L ( X l , Y l ) and AE F L ( X l , Y l ;V ∗
k 
) , L ∈ { c,v }, denoting constant and

ariable returns to scale technical and allocative efficiencies, re- 

pectively. Hence, F C E L ( X l , Y l ) can be interpreted as a value (cost 

fficiency) index resulting from the multiplication of a quantity in- 

ex, represented by the technical efficiency measure IT E L ( X l , Y l ) , 

nd a price index, defined as the arithmetic average of n alloca- 

ive efficiency terms, 1 
n 

∑ n 
k =1 AE F L ( X l , Y l ;V ∗

k 
) . This sheds lights on 

he dubious interpretation of the standard cross efficiency mea- 
6 
ure CIT E c ( X l , Y l ) in expression (5) as the average of n productiv- 

ty indices as discussed by Førsund [18] . This author notes that 

hile each bilateral cross efficiency CIT E c ( X l , Y l | k ) can be inter- 

reted as a productivity index, their aggregation into CIT E c ( X l , Y l ) 

y way of the arithmetic mean does not have a meaningful inter- 

retation because the vectors of shadow prices ( V ∗
k 
, U 

∗
k 
) constitute 

ifferent weights emanating from separate optimization problems. 

omparing the aggregate cross efficiency scores for two units, e.g. 

IT E c ( X l , Y l ) and CIT E c ( X k , Y k ) , implies using of different sets of 

eights (shadow prices) and variables (input and outputs quan- 

ities), which renders the comparison meaningless—see expression 

3). However, following our approach, the comparison of two cross- 

fficiency measures, F C E L ( X l , Y l ) and F C E L ( X k , Y k ) , implies the con-

raposition of two aggregate n cost efficiency indices, which can 

e further decomposed into the comparison of their correspond- 

ng technical efficiency scores, IT E L ( X l , Y l ) and IT E L ( X k , Y k ) , and two

rice indices aggregating the n allocative efficiencies for the set 

f shadow prices: 1 n 

∑ n 
k =1 AE F L ( X l , Y l ;V ∗

k 
) and 

1 
n 

∑ n 
l=1 AE F L ( X k , Y k ;V ∗

l 
) ; 

.e., the cost excess in which units l and k incur after being 

rojected to the production frontier through their technical effi- 

iencies, by not demanding the optimal input amounts given the 

hadow prices of all units . 4 

Regarding the properties that this new notion of cross- 

fficiency satisfies, we next list the most important: 

[P1] F C E L ( X l , Y l | l ) = 

1 
D L ( X l , Y l ) 

; 

[P2] The more F C E L ( X l , Y l ) , the better (meaning of efficiency); 

[P3] 0 ≤ F C E L ( X l , Y l ) ≤ 1 ; 

[P4] If ( V ∗
k 
, U 

∗
k 
) = ( V ∗

l 
, U 

∗
l 
) , ∀ k = 1 , ..., n , then F C E L ( X l , Y l ) =

1 
D L ( X l , Y l ) 

; 

[P5] F C E L ( X l , Y l ) is units invariant; 

[P6] Let ( W, P ) be a vector of input and output market prices. 

hen, if ( V ∗
k 
, U 

∗
k 
) = ( W, P ) , ∀ k = 1 , ..., n , we have that F C E L ( X l , Y l ) =

 E L ( X l , Y l ) , ∀ l = 1 , ..., n . 

roposition 1. The Farrell cross-efficiency meets properties P1-P6. 

Proof . See Appendix A.3 

Probably, the most remarkable property is P3 since it means 

hat cross-efficiency is well-defined regardless of the assumed re- 

urns to scale. As was noted in the Introduction, this issue is crit- 

cal in the context of cross-efficiency in DEA because the standard 

ross-efficiency measure under VRS presents the problem of nega- 

ive values for some DMUs, representing a meaningless result. Al- 

ost the totality of the empirical applications involves a VRS char- 

cterization of the technology; for example when the units to be 

valuated are universities with very different sizes (number of stu- 

ents, number of professors, budget, etc.). This is the reason why 

ome authors have adapted the standard cross-efficiency to accom- 

odate the need of using a VRS DEA model in order to avoid odd 

alues [26,39] . 

We illustrate this drawback associated with VRS through Fig. 2 

epresenting a single input-single output technology under VRS. 

et us assume that the multipliers form of the input-oriented BBC 

odel [6] is solved for DMU C and that the obtained solution is 

elated to the hyperplane graphically represented in Fig. 2 (with 

xpression 

3 
4 x − y + 3 = 0 ). If one determines the cross-efficiency 

f unit D = (4,2) relying on the standard cross-efficiency meth- 

ds by using the weights of unit C, then the calculation would 

e associated with the projection of D onto point D’’, which 

resents a negative value in the input. This is an extreme case 

f the bizarre projections outside the actual production possibil- 

ty set that the use of standard cross-efficiency methods entails. 

owever, as illustrated by Olesen [30] , projections outside the 
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Fig. 2. Illustration of projections and negative cross-efficiencies under VRS. 
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ctual technology are common regardless the orientation, although 

n this case the consequences are severe, resulting in negative 

ross-efficiencies. Under VRS, the formula to be applied would 

e CIT E v ( X l , Y l | k ) = 

∑ s 
r=1 u 

∗
rk 

y rl −α∗
k ∑ m 

i =1 v 
∗
ik 

x il 
(see, for example, [39] ), where 

 V ∗
k 
, U 

∗
k 
, α∗

k 
) is an optimal solution of the multipliers form of the 

nput-oriented BBC model when DMU C is assessed. In the exam- 

le, the standard cross-efficiency under VRS for DMU D through 

nit C would be CIT E v ( x D , y D | C ) = 

1 ·2 −4 
0 . 75 ·4 = − 2 

3 < 0 . In our case,

e do not need to adapt/modify the FCE to fit well to different 

ypes of returns to scale. It accommodates variable returns to scale 

n a natural way by its definition based on the Farrell cost effi- 

iency index. If the Farrell cross-efficiency of unit D with respect 

o unit C is calculated under VRS in the graphical example, i.e. 

 C E v ( x D , y D | C ) = 

C v ( y D , v ∗C ) 
v ∗

C 
x D 

following expression (16), we first need 

o determine the minimum cost of producing y D = 2 when v ∗
C 

= 

3 
4 , 

hich by definition is C v ( y D , v ∗C ) = min { 3 4 x : x ∈ L ( y D ) } . For this in- 

tance, L ( y D ) = [ 4 3 , + ∞ ) . Note that the technical efficiency projec-

ion is D’ = (4/3,2). Consequently, the minimum cost equals 3 
4 · 4 

3 = 

 , which is strictly positive. Secondly, we need to determine the 

ost v ∗C x D , which in this simple example coincides with 

3 
4 · 4 = 3 .

hus, F C E v ( x D , y D | C ) = 1 / 3 , which is again strictly positive, as de- 

ired. Additionally, it is worth mentioning that in cross-efficiency 

s possible to get projections points with negative values even if 

e resort to another type of technical efficiency measures, as, for 

xample, the directional distance function. This situation is shown 

lso in Fig. 2 when DMU E is considered for evaluation by the di- 

ection vector g. This context will be studied in detail in Section 3 .

Other important property is P6 since it means that, assuming 

or example perfect competition, the new approach collapses to the 

ell-known Farrell measure of cost efficiency in (6), which should 

e the standard reference to be used for evaluating performance 

nd ranking units when information on a common set of prices, in 

his case market prices, is available. This property is not satisfied 

y the traditional notion of cross input technical efficiency in the 

iterature, as CIT E c ( X l , Y l ) = 

1 
n 

∑ n 
k =1 

∑ s 
r=1 p r y rl ∑ m 
i =1 w 

i 
x il 

= 

∑ s 
r=1 p r y rl ∑ m 
i =1 w 

i 
x il 

, which is, 

n general, different from C E c ( X l , Y l ) = 

C c ( Y l ,W ) ∑ m 
i =1 w i x il 

. 

Next, we are going to prove another property, one that relates 

CE and the traditional CITE under CRS, without assuming input 
7 
omotheticity. The result states that F C E c ( X l , Y l ) is always an upper 

ound of CIT E c ( X l , Y l ) . To prove that, we first need to introduce 

ome additional notions. 

Given a vector of input and output prices ( W, P ) ∈ R m + s 
+ , and

 production possibility set T , the profit function � is defined 

s �T ( W, P ) = max 
x,y 

{ ∑ s 
r=1 p r y r −

∑ m 

i =1 w i x i : ( X, Y ) ∈ T } . In particu- 

ar, let �c ( W, P ) be the way of denoting the optimal profit given 

 W, P ) ∈ R m + s 
+ and the technology T c . 

Now, we prove that if ( W, P ) = ( V ∗
k 
, U 

∗
k 
) , where ( V ∗

k 
, U 

∗
k 
) is an

ptimal solution of model (2), then �c ( W, P ) = 0 . 

emma 2. Let ( V ∗
k 
, U 

∗
k 
) be an optimal solution of (2), then 

c ( V ∗k , U 

∗
k 
) = 0 . 

roof. See Appendix A.4. 

emma 3. CIT E c ( X l , Y l | k ) ≤ F C E c ( X l , Y l | k ) . 
roof. See Appendix A.5. 

Now, applying Lemma 3 , we get the desired result. 

roposition 2. CIT E c ( X l , Y l ) ≤ F C E c ( X l , Y l ) . 

Finally, it is worth mentioning that an analogous approach may 

e defined in a natural way for cross output technical efficiency 

rom the Farrell definition of revenue efficiency. 

. The Nerlovian economic (profit) cross-inefficiency 

In this section, we extend the newly proposed notion of eco- 

omic cross-efficiency, presented through the concept of Farrell 

ross-efficiency in the previous section, to the case of graph mea- 

ures that accommodate both input and output variations. In par- 

icular, we introduce the notion of Nerlovian cross-inefficiency based 

pon the dual relationship between the Nerlovian profit inef- 

ciency and the directional distance function, as presented by 

hambers et al. [7] . Luenberger [28] introduced the concept of 

enefit function as a representation of the amount that an individ- 

al is willing to trade, in terms of a specific reference commodity 

undle g , for the opportunity to move from a consumption bundle 

o a utility threshold. Luenberger also defined a so-called short- 

ge function ( [28] , p. 242, Definition 4.1), which basically measures 

he distance in the direction of a vector g of a production plan to 

he boundary of the production possibility set. In other words, the 

hortage function measures the amount by which a specific plan 

s short of reaching the frontier of the technology. In recent times, 

hambers et al. [7] redefined the benefit function and the short- 

ge function as efficiency measures, introducing to this end the 

o-called directional distance function. 

We first need to recall some concepts and introduce the neces- 

ary notation. Profit inefficiency à la Nerlove for a DMU k is defined 

s optimal profit (i.e., the value of the profit function at the mar- 

et prices) minus observed profit normalized by the value of a ref- 

rence vector ( G 

x 
k 
, G 

y 

k 
) ∈ R m + s 

+ : 
�T ( W,P ) −( 

∑ s 
r=1 p r y rk −

∑ m 
i =1 w i x ik ) ∑ s 

r=1 p r g 
y 
rk 

+ ∑ m 
i =1 w i g 

x 
ik 

. Addi- 

ionally, Chamber et al. [7] showed that profit inefficiency may be 

ecomposed into technical inefficiency and allocative inefficiency, 

here technical inefficiency is in particular the directional distance 

unction 

�
 D T ( X k , Y k ; G 

x 
k 
, G 

y 

k 
) = max { β : ( X k − βG 

x 
k 
, Y k + βG 

y 

k 
) ∈ T } : 

�T ( W, P ) −
(

s ∑ 

r=1 

p r y rk −
m ∑ 

i =1 

w i x ik 

)
s ∑ 

r=1 

p r g 
y 

rk 
+ 

m ∑ 

i =1 

w i g 
x 
ik 

= 

�
 D T 

(
X k , Y k ; G 

x 
k , G 

y 

k 

)
+ AI N T 

(
X k , Y k ;W, P ; G 

x 
k , G 

y 

k 

)
. (19) 

We use the subscript T in �T ( W, P ) , �
 D T ( X k , Y k ; G 

x 
k 
, G 

y 

k 
) and 

I N 
T 
( X k , Y k ;W, P ; G 

x 
k 
, G 

y 

k 
) to denote that we do not assume a 
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pecific type of returns to scale. Nevertheless, we will utilize 

c ( W, P ) , � D c ( X k , Y k ; G 

x 
k 
, G 

y 

k 
) and AI N c ( X k , Y k ;W, P ; G 

x 
k 
, G 

y 

k 
) for CRS and 

v ( W, P ) , � D v ( X k , Y k ; G 

x 
k 
, G 

y 

k 
) and AI N v ( X k , Y k ;W, P ; G 

x 
k 
, G 

y 

k 
) for VRS. 

In the case of DEA, when CRS is assumed, the directional dis- 

ance function for DMU k is calculated through the following linear 

rogramming model: 

�
 

 c 

(
X k , Y k ; G 

x 
k 
, G 

y 

k 

)
= max 

β, λ1 ,..., λn 

β

s.t. 
n ∑ 

j=1 

λ j x i j 
≤ x 

ik 
− βg x 

ik 
, i = 1 , ..., m, 

n ∑ 

j=1 

λ j y r j 
≥ y 

rk 
+ βg y 

rk 
, r = 1 , ..., s, 

λ ≥ 0 n 

(20) 

Additionally, when VRS is assumed, then the directional dis- 

ance function is determined through (21) for evaluating unit k . 

�
 

 v 
(
X k , Y k ; G 

x 
k 
, G 

y 

k 

)
= max 

β, λ1 ,..., λn 

β

s.t. 
n ∑ 

j=1 

λ j x i j 
≤ x 

ik 
− βg x 

ik 
, i = 1 , ..., m, 

n ∑ 

j=1 

λ j y r j 
≥ y 

rk 
+ βg y 

rk 
, r = 1 , ..., s, 

n ∑ 

j=1 

λ j = 1 , 

λ ≥ 0 n 

(21) 

In the particular case of the directional distance function under 

RS, we are interested in showing its corresponding (linear) dual 

rogram (22). 

Min 

,V,α
−

s ∑ 

r=1 

u r y rk + 

m ∑ 

i =1 

v i x ik + α

.t. 
s ∑ 

r=1 

u r y r j −
m ∑ 

i =1 

v i x i j − α ≤ 0 , j = 1 , ..., n, 

s ∑ 

r=1 

u r g 
y 

rk 
+ 

m ∑ 

i =1 

v i g x ik 
= 1 , 

U ≥ 0 s , V ≥ 0 m 

(22) 

Let also denote one of the possible optimal solutions of problem 

22) as ( � V ∗
k 
, � U 

∗
k 
, � α∗

k 
) . 

We are now in a position to define the Nerlovian cross- 

nefficiency of unit l with respect to unit k . We consider initially 

he case of variable returns to scale DEA technologies and, sub- 

equently, constant returns to scale production possibility sets. In 

his way, and inspired in the Farrell cross-efficiency notion intro- 

uced in the previous section when dealing with input-oriented 

odels, we now suggest to consider the shadow prices for inputs 

nd outputs of each unit k , ( � V ∗
k 
, � U 

∗
k 
) , as reference prices for evalu-

ting the performance of unit l through the left hand side of ex- 

ression (19). So, we define the Nerlovian cross-inefficiency of unit 

with respect to unit k as: 

C I T 
(
X l , Y l ; G 

x 
l , G 

y 

l 
, G 

x 
k , G 

y 

k 
| k ) = 

�T 

(
�
 V ∗
k 
, � U 

∗
k 

)
−

(
s ∑ 

r=1 

�
 u ∗
rk 

y rl −
m ∑ 

i =1 

�
 v ∗
ik 

x il 

)
s ∑ 

r=1 

�
 u ∗
rk 

g y 
rl 

+ 

m ∑ 

i =1 

�
 v ∗
ik 

g x 
il 

. 

(23) 

Additionally, it is worth mentioning that NC I T ( X l , Y l ; G 

x 
l 
, G 

y 

l 
, 

 

x 
k 
, G 

y 

k 
| k ) always takes values greater than zero. By definition,
N

8 
T ( � V ∗
k 
, � U 

∗
k 
) = max 

x,y 
{ ∑ s 

r=1 � u ∗
rk 

y r −
∑ m 

i =1 � v ∗ik x i : ( X, Y ) ∈ T } . Given that 

 X l , Y l ) ∈ T , we have that �T ( � V ∗
k 
, � U 

∗
k 
) ≥ ∑ s 

r=1 � u ∗
rk 

y rl −
∑ m 

i =1 � v ∗ik x il . 
onsequently, �T ( � V ∗

k 
, � U 

∗
k 
) − ∑ s 

r=1 � u ∗
rk 

y rl −
∑ m 

i =1 � v ∗ik x il ≥ 0 . 

The next proposition allows us to understand (23) in more de- 

ail under variable returns to scale. 

roposition 3. Let ( � V ∗
k 
, � U 

∗
k 
, � α∗

k 
) be an optimal solution of model (22). 

hen � α∗
k 

= �v ( � V ∗
k 
, � U 

∗
k 
) . 

roof. See Appendix A.6. 

The above result implies that � α∗
k 

can be interpreted as shadow 

rofit and, consequently, the Nerlovian cross-inefficiency for unit l 

ith respect to unit k under VRS may be rewritten as 

C I v 
(
X l , Y l ; G 

x 
l , G 

y 

l 
, G 

x 
k , G 

y 

k 
| k ) = 

�
 α∗
k 

−
(

s ∑ 

r=1 

�
 u 

∗
rk 

y rl −
m ∑ 

i =1 

�
 v ∗
ik 

x il 

)
s ∑ 

r=1 

�
 u 

∗
rk 

g y 
rl 

+ 

m ∑ 

i =1 

�
 v ∗
ik 

g x 
il 

. (24) 

The arithmetic mean of (23) over all observed units yields the 

nal score for firm l : 

C I T 

(
X l , Y l ;

{
G 

x 
k , G 

y 

k 

}n 

k =1 

)
= 

1 

n 

n ∑ 

k =1 

NC I T 
(
X l , Y l ; G 

x 
l , G 

y 

l 
, G 

x 
k , G 

y 

k 
| k )

= 

1 

n 

n ∑ 

k =1 

�T 

(
�
 V ∗
k 
, � U 

∗
k 

)
−

(
s ∑ 

r=1 

�
 u ∗
rk 

y rl −
m ∑ 

i =1 

�
 v ∗
ik 

x il 

)
s ∑ 

r=1 

�
 u ∗
rk 

g y 
rl 

+ 

m ∑ 

i =1 

�
 v ∗
ik 

g x 
il 

. 

(25) 

Invoking (19), we get that the Nerlovian cross-inefficiency of 

rm l is a ‘correction’ of the original directional distance func- 

ion value for this unit, where the modification factor can be in- 

erpreted as (shadow) allocative inefficiency: 

C I T 

(
X l , Y l ;

{
G 

x 
k , G 

y 

k 

}n 

k =1 

)
= 

�
 D T 

(
X 0 , Y 0 ; G 

x 
l , G 

y 

l 

)

+ 

1 

n 

n ∑ 

k =1 

AI N T 

(
X l , Y l ; �

 V 

∗
k , 

�
 U 

∗
k ;

{
G 

x 
k , G 

y 

k 

}n 

k =1 

)
. (26) 

In Fig. 2 , we illustrate graphically the notion of Nerlovian cross- 

nefficiency. Let us assume that we evaluate unit E by the direc- 

ional vector g. From a conceptual viewpoint, our approach tech- 

ically projects unit E onto A, which is a producible point in the 

echnology, through the directional distance function. Then, a cor- 

ection term that measures allocative or price inefficiency is calcu- 

ated. The sum of these two terms leads to the value of the Nerlo- 

ian cross-inefficiency of unit E with respect to unit C. In partic- 

lar, the allocative term in our approach measures, for technically 

fficient units (unit A in the graphical example), the loss due to be- 

ng sub-optimal under given shadow input and output prices (the 

eights associated with unit C in the example). 

Regarding the properties that the Nerlovian cross-inefficiency 

atisfies, we next list the most relevant ones (which can be proved 

long the lines of those for the Farrell cross-efficiency in the ap- 

endix). 

[P1] NC I T ( X l , Y l ; G 

x 
l 
, G 

y 

l 
, G 

x 
l 
, G 

y 

l 
| l ) = 

�
 D T ( X l , Y l ; G 

x 
l 
, G 

y 

l 
) ; 

[P2] The less NC I T ( X l , Y l ; { G 

x 
k 
, G 

y 

k 
} n 

k =1 
) , the better (meaning of in- 

fficiency); 

[P3] NC I T ( X l , Y l ; { G 

x 
k 
, G 

y 

k 
} n 

k =1 
) ≥ 0 ; 

[P4] If ( � V ∗
k 
, � U 

∗
k 
) = ( � V ∗

l 
, � U 

∗
l 
) , ∀ k = 1 , ..., n , then

C I T ( X l , Y l ; { G 

x 
k 
, G 

y 

k 
} n 

k =1 
) = 

�
 D T ( X l , Y l ; G 

x 
l 
, G 

y 

l 
) ;

[P5] If ( G 

x 
k 
, G 

y 

k 
) , k = 1 , ..., n , depends on data, then

C I T ( X l , Y l ; { G 

x 
k 
, G 

y 

k 
} n 

k =1 
) is units invariant; 

[P6] If ( G 

x 
k 
, G 

y 

k 
) , k = 1 , ..., n , depends on data, then

C I T ( X l , Y l ; { G 

x 
k 
, G 

y 

k 
} n 

k =1 
) is price invariant. 
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Table 1 

A numerical example. 

DMU x 1 x 2 y BCC score v ∗1 v ∗2 u ∗ α∗

A 2 2 2 1 0.2778 0.2222 0.0833 -0.8333 

B 1 4 4 1 0.4000 0.1500 0.3750 0.5000 

C 4 1 6 1 0.2286 0.0857 0.2143 0.2857 

D 3 2 1 0.8571343 0.1429 0.2857 0.0000 -0.8571 

E 4 6 8 1 0.1600 0.0600 0.1500 0.2000 

Source: Own calculations using Wu et al.’s [39] data. 
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Table 2 

Cross-efficiencies calculated by different alternative methods: CIT E v ( X l , Y l ) 

DMU Wu et al. [39] Lim & Zhu [26] Farrell approach 

A 0.5450 0.4813 0.9455 

B 0.6967 0.8000 0.9333 

C 1.0000 0.8000 1.0000 

D 0.3429 0.1500 0.7280 

E 0.5785 0.6828 1.0000 

Source: Own calculations. 
As we are aware, there is only an attempt to extend the no- 

ion of the traditional cross-efficiency CIT E c ( X l , Y l ) to the world 

f non-oriented measures, i.e., which account for the inefficiency 

oth in inputs and in outputs simultaneously. In particular, Ruiz 

32] extended the cross-efficiency evaluation theory for use with 

he directional distance function. Specifically, this author consid- 

red the directional vector equal to the assessed observation, i.e., 

 G 

x 
k 
, G 

y 

k 
) = ( X k , Y k ) for all k = 1 , ..., n in (20), and, as usual in cross-

fficiency evaluation, he also assumed constant returns to scale,. 

Ruiz [32] , assuming CRS and ( G 

x , G 

y ) = ( X k , Y k ) , defined the

ross DDF inefficiency of firm l with respect to firm k as ( [32] ,

efinition 1 , p. 183): 

DD F c ( X l , Y l | k ) = 

m ∑ 

i =1 

�
 v ∗
ik 

x il −
s ∑ 

r=1 

�
 u 

∗
rk 

y rl 

m ∑ 

i =1 

�
 v ∗
ik 

x il + 

s ∑ 

r=1 

�
 u 

∗
rk 

y rl 

. (27) 

As in the radial case, Ruiz [32] suggested averaging the n values 

f the CDD F c ( X l , Y l | k ) , k = 1 , ..., n , in order to define the DDF cross-

fficiency of firm l : 

 DD F c ( X l , Y l ) = 

1 

n 

n ∑ 

k =1 

C DD F c ( X l , Y l | k ) = 

1 

n 

m ∑ 

i =1 

�
 v ∗
ik 

x il −
s ∑ 

r=1 

�
 u 

∗
rk 

y rl 

m ∑ 

i =1 

�
 v ∗
ik 

x il + 

s ∑ 

r=1 

�
 u 

∗
rk 

y rl 

. 

(28) 

Next, we show that the cross-efficiency based on the DDF under 

RS, is a particular case of a more general approach based upon 

he Nerlovian inefficiency measure; notion related, by duality, to 

he DDF. 

It is possible to define a Nerlovian cross-inefficiency measure 

nder constant returns to scale resorting to expression (24). To do 

hat, it is enough to substitute � α∗
k 

by zero in (24) since this is the

alue of the shadow profit under CRS (see Lemma 2 ). If, addition- 

lly, we fix ( G 

x 
k 
, G 

y 

k 
) = ( X k , Y k ) for all k = 1 , ..., n , then we get: 

C I c ( X l , Y l ; X l , Y l , X k , Y k | k ) = 

−
(

s ∑ 

r=1 

�
 u 

∗
rk 

y rl −
m ∑ 

i =1 

�
 v ∗
ik 

x il 

)
s ∑ 

r=1 

�
 u 

∗
rk 

y rl + 

m ∑ 

i =1 

�
 v ∗
ik 

x il 

= 

m ∑ 

i =1 

�
 v ∗
ik 

x il −
s ∑ 

r=1 

�
 u 

∗
rk 

y rl 

m ∑ 

i =1 

�
 v ∗
ik 

x il + 

s ∑ 

r=1 

�
 u 

∗
rk 

y rl 

=CDD F c ( X l , Y l | k ) .

(29)

And, finally, taking the mean over all the units in the sample, 

e obtain that the Nerlovian approach coincides with the cross- 

nefficiency defined by Ruiz [32] based on the directional distance 

unction under CRS. Moreover, it can be decomposed likewise into 

he (directional) technical inefficiency and a correction factor de- 

ned as the arithmetic mean of n shadow allocative efficiency 

erms, as in expression (26). I.e., 

C I c 
(
X l , Y l ; { X k , Y k } n k =1 

)
= 

�
 D c ( X l , Y l ; X l , Y l ) 

+ 

1 

n 

n ∑ 

k =1 

AI N c 

(
X l , Y l ; �

 V 

∗
k , 

�
 U 

∗
k ; { X k , Y k } n k =1 

)
. (30) 

. Empirical implementation of economic cross-efficiency 

.1. A comparison of methods dealing with negative cross-efficiency 

nder VRS 

In this subsection, we compare previous contributions dealing 

ith cross-efficiency under VRS in Data Envelopment Analysis to 
9 
ur proposal. Given that the approach introduced in this paper is 

rounded on technical efficiency measures not based upon slacks, 

.e., it focuses on radial and directional efficiency measures, the 

ontributions selected for the comparison exercise will be those 

y Wu et al. [39] and Lim and Zhu [26] , which resorted to the

nput-oriented BCC model in DEA [6] . Another related contribution, 

amely that by Kao and Liu [23] , which is built from a slacks-based

easure, is not considered at this time, as the corresponding com- 

arison requires the extension of our current approach to this fam- 

ly of measures. 

To carry out the comparison, we resort to a numerical example 

ith two inputs and one output and only five DMUs taken from 

u et al. [39] , where the problem of negative cross-efficiencies 

as illustrated. Table 1 shows the data for this example as well 

s the corresponding input-oriented BCC score and an optimal so- 

ution for each DMU. 

Let us focus our attention on DMU D. Some traditional bilateral 

ross-efficiencies are negative for this unit, lacking a sensible inter- 

retation. In particular, if ( V ∗
k 
, U 

∗
k 
, α∗

k 
) is an optimal solution of the 

nput-oriented BCC model when DMU k is assessed, the traditional 

ormula for (bilateral) cross-efficiency for evaluating unit ( X l , Y l ) 

ould be CIT E v ( X l , Y l | k ) = 

∑ s 
r=1 u 

∗
rk 

y rl −α∗
k ∑ m 

i =1 v 
∗
ik 

x il 
(see, for example, [39] ). In 

he case of D, CIT E v ( X D , Y D | k ) = −0 . 083 for units k = B, C, E. 

Before showing the cross-efficiencies calculated from the 

ethodologies proposed by Wu et al. [39] , Lim and Zhu [26] , and

he Farrell cross-efficiency introduced in this paper, let us men- 

ion in passing the main theoretical idea which is behind each 

pproach. The proposal by Wu et al. [39] is based on solving 

he optimization program corresponding to the input-oriented BCC 

odel but incorporating non-negative constraints for the numera- 

or: 
∑ s 

r=1 u 
∗
rk 

y rl − α∗
k 

≥ 0 , for all l = 1 , ..., n . These constraints guar-

ntee that CIT E v ( X l , Y l | k ) is always greater or equal to zero. In 

ontrast, Lim and Zhu [26] propose a Cartesian coordinate system 

ranslation and then applying the traditional input-oriented BCC 

odel. Finally, the new approach is based on an economic rein- 

erpretation of the classical cross-efficiency, resorting to the well- 

nown Farrell’s cost efficiency measure using ( V ∗
k 
, U 

∗
k 
) as shadow 

rices, which is always between zero and one regardless of the as- 

umed returns to scale—as shown in [P3] above. 

Next, we show in Table 2 the results associated with the three 

onsidered approaches for comparison purposes. 

In particular, the ‘bilateral’ cross efficiency of unit D is zero for 

he Wu et al. [39] method when the weights of units B, C and E are

sed for the assessment. It equals 0.1875 in the case of the Lim and 
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Table 3 

Descriptive statistics for inputs and outputs, warehouse data, 2017. 

Inputs Outputs 

Floor space FTEs SKUs Order lines Error free Order flexibility Special processes 

Minimum 500 50 100 54 1 12 2 

Median 9,250 30 4,600 1,200 7 22 6 

Average 18,244 59 21,088 4,931 6 21 6 

Maximum 275,000 350 400,000 55,000 9 30 10 

Stand. Dev. 32,414 74 57,393 9,815 2 4 2 

Source: Kaps and de Koster [24] . 
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hu [26] approach and 0.667 if we resort to the Farrell approach 

ntroduced in this paper, correcting in this way the negative value 

bserved with the traditional approach. 

Although the results are very different among the alterna- 

ives, some high correlations are observed among them. In partic- 

lar, the correlation between the new approach and that by Wu 

t al. [39] equals 0.88, while the correlation with Lim and Zhu 

26] equals 0.73. Obviously, we do not have any objective criterion 

o opt for one or another alternative in practice. However, in this 

xample, the solution determined by the new approach is closer 

o the original input-oriented BCC efficiency score (see Table 2 ) in 

omparison with the other existing alternatives. Indeed, the corre- 

ation between the Farrell approach and the BCC efficiency score is 

.96, in contrast to the correlations with respect to the Wu et al. 

39] and Lim and Zhu [26] methodologies, which present values of 

.67 and 0.88, respectively. In this example, the new methodology 

rovides cross-efficiency values more similar to the BCC efficiency 

cores while, at the same time, guarantees the non-negativity of 

he cross-evaluation results. Nevertheless, we are aware that this 

ssue merits further research considering alternative real or sim- 

lated datasets in diverse scenarios and comparing the different 

olutions under VRS. 

.2. Empirical application to warehousing data 

To illustrate the new concept of economic cross-(in)efficiency 

nd its empirical implementation, we rely on a database on 102 

arehouses operating in the Benelux area in 2017. Following John- 

on and McGinnis [21] and Balk et al [5] , we characterize the pro-

uction technology in terms of the following three inputs and four 

utputs. 5 Inputs are: I.1) Warehouse size in m2 (Floor space); I.2) 

umber of full time equivalent employees (FTEs); and I.3) Number 

f stock keeping units (SKUs). On the output side the following 

ariables are considered: O.1) Number of order lines (Order lines 

hipped per day); O.2) Error-free order line percentage (Error free 

); O.3) Order flexibility (per day); and O.4) Number of special pro- 

esses (handled per day). Table 3 shows the descriptive statistics 

or all selected variables. 

.2.1. Farrell economic (cost) cross-efficiency 

Table 4 reports the results for the original Farrell input ori- 

nted model that radially measures technical efficiency for ware- 

ouse l as in (1), IT E c ( X l , Y l ) , its standard technical cross-efficiency 

easure (5), CIT E c ( X l , Y l ) , and the new Farrell cost cross-efficiency 

easure (17), F C E c ( X l , Y l ) . Also, following the proposed decom- 

osition, we also report the allocative efficiency associated to 

he new cross-efficiency measure, calculated as the ratio between 

 C E c ( X l , Y l ) . and IT E c ( X l , Y l ) ; i.e., expression (18). The first set of

esults corresponds to the existing setting in the literature corre- 
5 The data set has been recently updated by Kaps and de Koster [24] . We are 

rateful to these authors for sharing them. c

10 
ponding to constant returns to scale (CRS). These are grouped un- 

er that heading on the left hand side of Table 4. 6 

The results for the five best and worst performing warehouses 

re ranked using the values of the new Farrell economic cross- 

fficiency measure, F C E c ( X l , Y l ) . First we focus on the compari- 

on between this latter measure and the standard cross-efficiency 

easure CIT E c ( X l , Y l ) . The individual values show that both cross- 

fficiency measures have the capability of discriminating be- 

ween radially efficient observations with IT E c ( X l , Y l )= 1. How- 

ver, the ranking exhibits some variability. For example, ware- 

ouse #33, ranking first according to the cost cross-efficiency mea- 

ure: F C E c ( X l , Y l )= 0.960, ranks below the fifth position accord- 

ng to CIT E c ( X l , Y l ) = 0.667. On the lower tail of the distribution

here seems to be larger compatibility as the worst five perform- 

ng warehouses exhibit the same ordering. 

Throughout this empirical section we discuss the (dis)similarity 

etween alternative cross-efficiency measures by studying their 

anking compatibility by means of the Spearman correlation and, 

elying on kernel density estimations, by determining whether 

heir distributions are equal or not according to the Li tests. When 

lotting the kernel density functions we follow the procedure pro- 

osed by Simar and Zelenyuk [36] , which in short: (i) uses Gaus- 

ian kernels, (ii) employs the reflection method to overcome the 

ssue of (radial) unitary or (directional) zero bounded supports for 

he cross-(in)efficiency scores [35] , and (iii) determines the band- 

idths using Sheather and Jones [34] method. Subsequently, once 

he kernel density functions are calculated we apply the nonpara- 

etric test developed by Li [25] to determine if they are statisti- 

ally different. Here we again follow Simar and Zelenyuk [36] and 

se algorithm II with 1,0 0 0 replications, which computes the Li 

tatistic on the bootstrapped estimates of the DEA scores, and 

here the unitary or null values of the efficient observations are 

moothed by adding a small noise. These different dimensions will 

llow us to establish statistically to what extend the alternative 

ross-efficiency measures lead to equal or different results regard- 

ng warehouse performance. 

We may now establish the similarity between the new Farrell 

ost cross-efficiency measure and its standard counterpart start- 

ng with their ranking compatibility. Their Spearman correlation is 

( CIT E c ( X l , Y l ) , F C E c ( X l , Y l ) ) = 0.988, which is significant at the 1% 

evel. This result implies that beyond individual disparities, both 

eries yield a very similar picture of the warehouse industry stand- 

ng. This can be clearly visualized in Fig. 3 by comparing their 

ernel density functions, whose patterns closely follow each other, 

nd is further corroborated by the Li-test comparing CIT E c ( X l , Y l ) 

s. F C E c ( X l , Y l ) (i.e., −0.735), whose result does not allow to reject 

he null hypothesis of the equality of distributions, as reported in 

able 5 . 

The similarity of results confirmed in all three dimensions 

Spearman correlation, density distributions and Li tests) is a 
6 For input-oriented radial measures, the greater the score the higher the effi- 

iency. 
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Fig. 3. Estimated kernel density distributions of the standard, CIT E c ( X l , Y l ) − (5), 

and new Farrell economic cross-efficiencies: F C E c ( X l , Y l ) − (17) (under CRS), and 

F C E v ( X l , Y l ) − (17) (under VRS). 

Table 5 

Results of Simar and Zelenyuk [36] adapted Li test (test statistic and significance 

level). 

CIT E c ( X l , Y l ) 

vs F C E c ( X l , Y l ) 

CIT E c ( X l , Y l ) vs 

F C E v ( X l , Y l ) 

F C E c ( X l , Y l ) vs 

F C E v ( X l , Y l ) 

NC I v ( X l , Y l ; { X k , Y k } n k =1 
) 

vs CDD F c ( X l , Y l ) 

Statistic -0.735 6.257 ∗ 2.056 ∗ 15.245 ∗

p value (0.220) (0.000) (0.000) (0.000) 

Source: Own calculations. 

Notes: CIT E c ( X l , Y l ) , (5); F C E c ( X l , Y l ) , (17) −under CRS; F C E v ( X l , Y l ) , (17) −under VRS. 

NC I v ( X l , Y l ; { X k , Y k } n k =1 
) , (25); CDD F c ( X l , Y l ) , (28). 

∗Denotes statistically significant differences between models at the critical 1 per- 

cent level. 
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11 
emarkable result that confirms the reliability of the new Farrell 

ost cross-efficiency measure when ranking performance (when 

ompared to its traditional constant returns to scale counter- 

art), and endorses its use under variable returns to scale 

VRS), for which a well-defined standard analogue does not 

xist. 

However, before we comment on this additional set of results 

nder VRS, we stress that for the warehouse industry, overall cost 

in)efficiency can be almost equally blamed on faulty technical 

nd allocative performance, with the latter having a marginally 

igher weight. While average technical efficiency is 0.484, al- 

ocative efficiency is 0.582. The median values being 0.411 and 

.605, respectively. We remark once again that this interpreta- 

ion of cross-efficiency in economic terms, and its decomposi- 

ion into both sources, as presented in (18), were unavailable un- 

il now. Finally, focusing still on the results under constant re- 

urns to scale, a second conclusion emerges. Despite the high sim- 

larly, the existence of large numerical differences at the indi- 

idual level between the economic and standard cross-efficiency 

easures (in favor of the former as stated in Proposition 2 , 

IT E c ( X l , Y l ) ≤ F C E c ( X l , Y l ) ) suggests that the warehouse production 

echnology is non-homothetic. Indeed, according to Theorem 1 , 

 IT E c ( X l , Y l ) = F C E c ( X l , Y l ) under input homotheticity, and there-

ore these disparities rule out its existence. 

We comment now on the new economic cross-efficiency mea- 

ure under variable returns to scale, F C E v ( X l , Y l ) , presented on the 

ight hand side of Table 4 . An immediate critic that can be raised

gainst it is that it does not solve the lack of discriminatory power 

f the standard Farrell input measure when observations are ef- 

cient: i.e., IT E c ( X , Y ) = 1. We can qualify this drawback of the 
l l 
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ew measure by remarking that as many as 37 warehouses are ef- 

cient under VRS (36.3% of the sample), while only 10 warehouses 

xhibit F C E v ( X l , Y l )= 1 (9.8%)—we also stress the fact that it is a

ell-defined measure not prone to negative values as the stan- 

ard technical cross-efficiency under VRS. Hence, while full cost 

ross-efficiency under VRS is a feasible result likely to be observed 

as opposed to its CRS counterpart F C E c ( X l , Y l ) ), its calculation is

till quite useful from a managerial perspective, as it substan- 

ially increases discrimination among observation that are VRS ef- 

cient. As for the sources of cost (in)efficiency when decompos- 

ng F C E v ( X l , Y l ) according to (18), we note that the characteriza- 

ion of the reference technology by VRS does not change the rel- 

tive weights of technical and allocative efficiencies, although the 

igher weight of the latter is now reversed. The average and me- 

ian values of the technical efficiency are now 0.662 and 0.622, on 

 par with allocative efficiency whose values are 0.631 and 0.606, 

espectively. 

One can compare the new Farrell cost cross-efficiencies cal- 

ulated under both constant and variable returns to scale, i.e., 

 C E c ( X l , Y l ) vs. F C E v ( X l , Y l ) , but the exercise requires further as-

umptions about the market structure. Generally only the technical 

ide of the economic performance would have a valid interpreta- 

ion as the usual measure of scale efficiency, defined as IT E c ( X l , Y l ) 

 IT E v ( X l , Y l ) . The notion of a cost function defined under the re-

trictive case of constant returns to scale does not have any justifi- 

ation if the technology exhibits variable returns to scale or, from a 

eaker perspective, is non-homothetic. This is indeed the case for 

he usual DEA characterization of the production technologies, as 

n the current warehouse application–recalling Aparicio et al. [ [2] , 

87; Proposition 3 ], these authors show that only in the restrictive 

ase of a single output and CRS, the DEA technology is homothetic. 

ince virtually in all empirical applications the technology is char- 

cterized by VRS, our newly proposed Farrell cost cross-efficiency 

xhibits its full potential in its VRS definition (on top of its abil- 

ty to provide an analytical framework that excludes negative val- 

es). Hence, the CRS definition of the Farrell cost cross-efficiency, 

 C E c ( X l , Y l ) (equal to its traditional counterpart CIT E c ( X l , Y l ) un- 

er input homotheticity), from which our paper starts out the- 

retically, is only relevant for pedagogical purposes, presented 

o as to reinterpret the existing CRS (technical) cross efficiency 

easures in economic terms and, later on, move on to intro- 

uce the (empirically) relevant VRS definitions (17) and (18), i.e., 

 C E v ( X l , Y l ) . 

The only exception that would grant the assumption of CRS 

n studies where a distinct market structure can be considered, 

s the theoretical consideration of the perfectly competitive long 

un equilibrium, where the technology exhibits CRS, industry prof- 

ts are zero and average cost is minimum, by definition. In this 

ase, the difference between F C E v ( X l , Y l | k ) and F C E c ( X l , Y l | k ) , com-

ares the performance corresponding to the current short run situ- 

tion (normally associated with a suboptimal scale size if scale in- 

fficiency exists), and the hypothetical long run equilibrium–both 

easures evaluated at their respective optimal prices, ( V ∗
k 
, U 

∗
k 
) . Ar- 

uably, the warehouse industry departs from the perfectly compet- 

tive framework in many ways, but if one were willing to assume 

t, then the comparison between the average values corresponding 

o F C E v ( X l , Y l ) and F C E c ( X l , Y l ) shows that the difference between

oth measures is noticeable, i.e., 0.443 and 0.233 (with a similar 

ap at the median). As for the ranking compatibility, it is relatively 

igh: ρ( F C E c ( X l , Y l ) , F C E v ( X l , Y l ) ) = 0.720, also significant at the 

% level. However, in Fig. 2 the kernel density functions between 

he two follow different patterns with lower and higher density 

alues for F C E v ( X l , Y l ) in the lower and upper tails, respectively. As

een in Table 5 , this translates in a Li test result (2.056) that rejects

he null hypothesis that both distributions are the same. Therefore, 

s expected, scale efficiency would play a big part in the assess- 
12 
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ent of performance through the new economic efficiency mea- 

ures, under alternative assumptions of market structures. 7 

.2.2. Nerlovian economic (profit) cross-inefficiency 

Table 6 presents our second set of results on the new Nerlo- 

ian profit cross-inefficiency measure based on the profit function 

nd its duality with the directional distance function; i.e., expres- 

ion (26). As normally assumed in the empirical literature we con- 

ider that the directional vector corresponds to the observed input 

nd output quantities: ( G 

x 
k 
, G 

y 

k 
) = ( X k , Y k ) , k = 1 , ..., n . Following the

resentation in the theoretical section, we start our discussion con- 

idering the results obtained under the assumption of variable re- 

urns to scale. The first conclusion worth highlighting is that the 

bility to discriminate among VRS efficient observations is com- 

lete. Although once again a large set of warehouses are deemed 

fficient, with 

�
 D v ( X l , Y l ; X l , Y l ) = 0 (43, representing 42.2% of the 

ample), none of them are cross-efficient from an economic per- 

pective: i.e., NC I v ( X l , Y l ; { X k , Y k } n k =1 
) > 0. 8 Consequently, the above 

riticism against the Farrell economic cross-efficiency measure can- 

ot be raised on this occasion. This result also suggests that Nerlo- 

ian profit inefficiency, once the input and output dimensions are 

aken into consideration, is larger than in the Farrell case where 

nefficiency refers only to the input (cost) dimension. 

Ultimately, the obtained Nerlovian cross-inefficiency values bear 

roof of the fact that, again for the first time, our model can ef- 

ectively rank observations by appraising their profit performance 

gainst all remaining peers under VRS. Moreover, it is possible 

o decompose this relative economic performance following ex- 

ression (26). The descriptive statistics show that the sources of 

erlovian profit cross-inefficiency substantially change with re- 

pect to those of the Farrell’s cost approach. The average profit 

ross-inefficiency amounts 0.6 6 6, but now average technical inef- 

ciency is a meager 0.102, while allocative inefficiency is 0.562; 

epresenting 15.3% and 84.7% of the overall profit inefficiency, re- 

pectively. 

As recalled on expression (29), if constant returns to scale 

ere assumed, the new Nerlovian profit cross-inefficiency coin- 

ides with the technical cross-inefficiency measure proposed by 

uiz [32] : NC I c ( X l , Y l ; { X k , Y k } n k =1 
) = CDD F c ( X l , Y l ) . However, as pre-

iously discussed, the economic re-interpretation of the (tech- 

ical) directional cross-efficiency under CRS would not be ad- 

quate unless its assumption is granted by the existence of 

 perfectly competitive market structure framed in the long 

un. In that case, although the average levels of profit cross- 

nefficiency are very similar, NC I v ( X l , Y l ; { X k , Y k } n k =1 
) = 0.6 6 6 vs. 

C I c ( X l , Y l ; { X k , Y k } n k =1 
)= 0.671, its sources greatly differ since 

ow technical and allocative inefficiencies represent 59.4% and 

0.7% of the overall inefficiency. Despite the similar average 

alues, the rank correlation between both series is relatively 

ow at ρ( NC I v ( X l , Y l ; { X k , Y k } n k =1 
) , NC I c ( X l , Y l ; { X k , Y k } n k =1 

) ) = 0.285–

ignificant at the 1% level, and implying that the choice of returns 

o scale is even more relevant when assessing industry perfor- 

ance than in the Farrell case. The disparity between both sets 

f results can be seen in Fig. 4 , where the density of the CRS re-

ults peaks around one (rather than 0.5 under VRS), followed by 

ts sudden fall and disappearance because no values beyond this 
7 We conclude this subsection commenting on the disparity between F C E v ( X l , Y l ) 

nd the standard technical cross-efficiency measure CIT E c ( X l , Y l ) , rather than 

 C E c ( X l , Y l ) . The Li test, with a statistic equal to 6.257, also returns that both distri- 

utions are statistically different, as can be confirmed by visually inspecting them in 

ig. 3 . This result simply reinforces the previous one, i.e., between F C E v ( X l , Y l ) and 

 C E c ( X l , Y l ) , as CIT E c ( X l , Y l ) would be equal to the latter under input-homotheticity. 

ence the numerical difference between both tests (columns 3 and 4 in Table 4 ), 

an be associated to the existence of a non-homothetic technology. 
8 For additive measures, the greater the score the higher the in efficiency; hence 

he change in denomination. 
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13 
hreshold are observed. It comes, then, as no surprise that the as- 

ociated Li test comparing NC I v ( X l , Y l ; { X k , Y k } n k =1 
) and CDD F c ( X l , Y l ) 

with a Li statistic equal to 15.245) rejects the null hypothesis of 

quality of distributions. 

. Summary and Conclusions 

Despite the capability of cross-efficiency to yield a suitable 

anking of observations based on the (shadow) prices associated 

ith all the sample units when evaluating each observation, these 

echniques have developed without establishing any connection 

ith the literature devoted to measuring economic efficiency when 

rices are present; i.e., relying on microeconomic theory. This pa- 

er makes the connection between the concepts of economic effi- 

iency and cross-efficiency. Economic cross-(in)efficiency measures 

he performance of observations in terms of a set of reference 

rices that could correspond to either market prices, shadow prices 

r any other imputed prices. Hence, this economic cross-efficiency 

easure can be interpreted as the capability of firms to behave op- 

imally by reaching minimum cost or maximum profit for a wide 

ange of prices. The new methodology is particularly relevant in 

tudies where market prices are not readily available because of 

he institutional framework (e.g., public services such as education, 

ealth, safety, etc.), but yet a robust ranking of observations based 

n their performance is demanded by decision makers and stake- 

olders. 

Within the DEA framework we show that, under input homo- 

heticity, the traditional bilateral notion of input cross-efficiency 

or unit l , when the weights of unit k are used in the evaluation,

oincides with the well-known Farrell notion of cost efficiency for 

nit l when precisely unit k weights are taken as market prices. 

owever, this result does not hold if the technology is not input 

omothetic. This motivates the introduction of the concept of 

ilateral Farrell cost cross-efficiency (FCE), corresponding to his 

otion of cost efficiency under either constant or variable returns 

o scale. We also extend this proposal based on the classic Farrell 

ramework restricted to the input dimension to more recent 

evelopments corresponding to a complete representation of 

he economic objective of the firms through the profit function, 

nd its dual characterization by way of the flexible directional 

istance function. This results in the introduction of the parallel 

oncept of Nerlovian (profit) cross-inefficiency (NCI). In both cases, 

ither à la Farrell or à la Nerlove , the new analytical framework 

llows us to further exploit the duality properties of the economic 
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easures and decompose economic cross-(in)efficiency according 

o technological and allocative criteria. 

We emphasize that a key advantage of the Farrell and Nerlovian 

ross-(in)efficiency measures is that they are well defined under 

ariable returns to scale (VRS) by yielding scores that always lay 

etween zero and one for the former and are always greater than 

ero for the latter. This solves a well-known weakness of the stan- 

ard cross-efficiency methods, which may result in negative scores 

hen the technology is characterized by VRS. As shown by solving 

 numerical example, the economic cross-(in)efficiency methodol- 

gy solves this problem in a natural way, complementing ad-hoc 

ethods such as those based on constraining the numerator of the 

CC problem to be non-negative [39] or translating the data before 

olving it (e.g., [26] ). 

We illustrate the feasibility of the new models and associated 

easures using a recently compiled data set of European ware- 

ouses. We show that the economic cross-efficiency measures FCE 

nd NCI are well defined under constant and variable returns to 

cale, and how they can be decomposed according to technical and 

llocative criteria. Moreover, the large rank correlation between 

he standard cross-efficiency values and the new Farrell cost cross- 

fficiency under constant returns to scale, suggests that these lat- 

er model can be extended to variable returns to scale with con- 

dence. We compare the constant and variable returns to scale 

easures, and conclude through the visual inspection of their ker- 

el density functions and associated Li tests that assuming alter- 

ative returns to scale does make a difference in the evaluation of 

conomic performance, since results are statistically different. This 

s a remarkable conclusion because the numerical differences be- 

ween the constant and variable returns to scale measures signal 

hat warehouse operations are characterized by non-homothetic 

echnologies (i.e., Theorem 1 does not hold), which further justi- 

es the introduction of the new economic cross-efficiency models 

nder variable returns and reinforces their use in empirical appli- 

ations. How to interpret the difference between both sets of re- 

ults in economic terms is harder than in the technological case 

ssociated to scale (in)efficiency, because different assum ptions re- 

arding the market structure need to be brought into the analysis 

e.g., perfectly or imperfectly competitive markets, and long and 

hort-run equilibria). 

Next we identify some avenues for further follow-up research. 

irst, we resorted in this paper to two specific approaches for mea- 

uring economic efficiency, and transpose them to the realm of 

hat we term economic cross-efficiency evaluation. However, it 

eems natural to apply other alternative approaches like, for ex- 

mple, those related to the hyperbolic measure ( [16] , and [40] ) or

he weighted additive model ( [12] , and [3] ). Second, there are con-

ributions in the literature that study the measurement and de- 

omposition of economic efficiency change over time when panel 

ata are available (see, for example, [29] , and [22] ). A natural ex- 

ension of the current paper would result in a model measuring 

ow economic cross-efficiency rankings change over time. Third, 

here does not exist a notion of cross-efficiency in the parametric 

pproach to efficiency analysis, where cost functions, for example, 

re estimated once a functional form has been specified, and de- 

ending on a set of parameters that must be estimated. In this re- 

pect, the introduced Farrell cost cross-efficiency measure could be 

etermined parametrically, constituting a first application of cross- 

fficiency in the parametric framework for efficiency measurement. 

ourth, one difficulty with traditional cross-efficiency evaluation 

s the possible existence of alternative optima in the DEA mod- 

ls providing the weights (first stage), resulting in different cross- 

fficiency scores (second stage). The approach that has been tradi- 

ionally followed to address this issue is based on the use of sec- 

ndary goals as criteria to choose a given set of weights among the 

lternative optimal solutions. The well-known benevolent and ag- 
14 
ressive approaches proposed in Sexton et al. [37] and Doyle and 

reen [13] are among the most popular ones. All these proposals 

re relevant qualifications and natural extensions that would result 

n the consolidation and improvement of the new concept of eco- 

omic cross-efficiency. 
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ppendix A 

.1. Proof of Lemma 1 

roof. We first prove that ( V ∗
k 
, E ∗) is a feasible solution of 

11). Constraints (11.2) and (11.3) trivially hold. Regarding (11.1), 
 s 
r=1 e 

∗
r y r j 

− ∑ m 

i =1 v ∗ik x i j 
≤ ∑ s 

r=1 e 
∗
r y r j 

− ∑ m 

i =1 f 
∗
i 

x 
i j 

≤ 0 since ( F ∗, E ∗) 
atisfies (11.2) and (11.1). This implies that ( V ∗

k 
, E ∗) is a feasible so- 

ution of (11). As for the value of the objective function of (11), 

valuated at ( V ∗
k 
, E ∗) , 

∑ s 
r=1 e 

∗
r , it coincides with the optimal value 

f (11). Therefore, ( V ∗
k 
, E ∗) is an optimal solution of (11). �

.2. Proof of Theorem 1 

roof. In particular, we need to prove that 
∑ s 

r=1 u 
∗
rk 

y rl = 

 c ( Y l , V 
∗
k 
) . By (7), we have that L (Y ) = H(Y ) L ( 1 s ) . Addition-

lly, under Constant Returns to Scale, Färe and Primont 

15] show that L ( δY ) = δL (Y ) , for all δ > 0 . Therefore, un-

er both hypothesis, L (Y ) = L ( H(Y ) 1 s ) . In this way, we have

hat IT E c ( X k , Y ) 
−1 = D c ( X k , Y )= sup { δ > 0 : X k /δ ∈ L ( Y ) } = 

up { δ > 0 : X k /δ ∈ L ( H( Y ) 1 s ) } = IT E c ( X k , H(Y ) 1 s ) −1 for any Y ∈ R s + . 
his result also implies that when we evaluate the input vector 

 k by means of the Shephard input distance function with respect 

o L ( Y ), we get the same shadow prices than when we assess the

nput vector X k by means of the Shephard input distance function 

ith respect to L ( H( Y ) 1 s ) . Then, since we know that ( V ∗
k 
, U 

∗
k 
) are

hadow prices for unit k , i.e, it is an optimal solution of model (2),

e have that ( V ∗
k 
, U 

∗
k 
) is also an optimal solution of the following 

rogram: 

T E c ( X k , Y k ) = Max 
U,V 

H ( Y k ) 
s ∑ 

r=1 

u r 

s.t. 
m ∑ 

i =1 

v i x ik = 1 , 

s ∑ 

r=1 

u r y r j −
m ∑ 

i =1 

v i x i j ≤ 0 , j = 1 , ..., n 

u r ≥ 0 , r = 1 , ..., s 
v i ≥ 0 , i = 1 , ..., m 

(A.1) 

https://www.wcss.wroc.pl


J. Aparicio and J.L. Zofío Omega 100 (2021) 102374 

l

I

I

t  

t  

t

o

I

∑

∑

A

P  ∑
s

t

v  

F

i

I

(  

b

w

t

o

w

i

l

b

w∑
(

a

T

w

c

o

t  

c

W  

i

∀  

F

b

[

i  

t

 

i

A

P

f

i

t

�  

{
w

x  

p∑

w

A

P

C∑
h

t  
By the same reasoning, the following two programs are equiva- 

ent with respect to optimal solutions and the optimal value: 

T E c ( X k , H ( Y l ) 1 s ) = Max 
U,V 

H ( Y l ) 
s ∑ 

r=1 

u r 

s.t. 
m ∑ 

i =1 

v i x ik = 1 , 

s ∑ 

r=1 

u r y r j −
m ∑ 

i =1 

v i x i j ≤ 0 , j = 1 , ..., n 

u r ≥ 0 , r = 1 , ..., s 

v i ≥ 0 , i = 1 , ..., m 

(A.2) 

T E c ( X k , Y l ) = Max 
U,V 

s ∑ 

r=1 

u r y rl 

s.t. 
m ∑ 

i =1 

v i x ik = 1 , 

s ∑ 

r=1 

u r y r j −
m ∑ 

i =1 

v i x i j ≤ 0 , j = 1 , ..., n 

u r ≥ 0 , r = 1 , ..., s 

v i ≥ 0 , i = 1 , ..., m 

(A.3) 

Note that (A.1) and (A.2) are very similar. The difference is 

hat H( Y k ) has been substituted by H( Y l ) . Then, since the func-

ion H(·) does not depend on the decision variables U, V , we have

hat ( V ∗
k 
, U 

∗
k 
) is an optimal solution of (A.2) and, consequently, 

ptimal solution of (A.3). This implies that IT E c ( X k , H( Y l ) 1 s ) = 

T E c ( X k , Y l ) = 

∑ s 
r=1 u 

∗
rk 

y rl . 

Finally, since ( V ∗
k 
, U 

∗
k 
) is an optimal solution of (A.2) and 

 m 

i =1 v ∗ik x ik = 1 by (2.1), we may compute (A.2) through (A.4). 

Max 
U 

H ( Y l ) 
s ∑ 

r=1 

u r 

s.t. 
s ∑ 

r=1 

u r y r j −
m ∑ 

i =1 

v ∗
ik 

x i j ≤ 0 , j = 1 , ..., n 

u r ≥ 0 , r = 1 , ..., s 

(A.4) 

Program (A.4) coincides with (12). Hence, C c ( Y l , V 
∗
k 
) = 

 s 
r=1 u 

∗
rk 

y rl . �

.3. Proof of Theorem 1 

roof. [P1] First, we are going to prove that if V ∗
k 

is V ∗
l 

, then
 m 

i =1 v ∗il ( x il / D L ( X l , Y l ) ) = C L ( Y l , V 
∗
l 
) . Seeking simplicity, we will as- 

ume Constant Returns to Scale but the proof for Variable Returns 

o Scale is analogous. Let θl = 1 / D L ( X l , Y l ) , which is the optimal 

alue of model (2) when ( X l , Y l ) is assessed, i.e. θl = IT E c ( X l , Y l ) .

rom (2), we can formulate the corresponding model for evaluat- 

ng the point ( θl X l , Y l ) : 

T E c ( θl X k , Y k ) = Max 
U,V 

s ∑ 

r=1 

u r y rk 

s.t. 
m ∑ 

i =1 

v i θl x ik = 1 , (23 . 1) 

s ∑ 

r=1 

u r y r j −
m ∑ 

i =1 

v i x i j ≤ 0 , j = 1 , ..., n (23 . 2) 

u r ≥ 0 , r = 1 , ..., s (23 . 3) 

v i ≥ 0 , i = 1 , ..., m (23 . 4) 

(A.5) 
15 
Let ( V ∗
l 
, U 

∗
l 
) be an optimal solution of model (2) when DMU 

 X l , Y l ) is assessed. Then, it is easy to check that ( 
V ∗

l 
θl 

, 
U ∗

l 
θl 

) is a feasi-

le solution of model (A.5). Regarding the objective function value, 

e have 
∑ s 

r=1 ( u 
∗
r / θl ) y rk = ( 

∑ s 
r=1 u 

∗
r y rk ) / θl = θl / θl = 1 , which is 

he maximum value that the program can take. Thus, ( 
V ∗

l 
θl 

, 
U ∗

l 
θl 

) is an 

ptimal solution of (A.5) and ( θl X l , Y l ) is a point located onto the 

eakly efficient frontier. Consequently, ( 
V ∗

l 
θl 

, 
U ∗

l 
θl 

) are its correspond- 

ng shadow prices and 

∑ m 

i =1 ( v ∗il / θl )( θl x il ) = C L ( Y l , 
V ∗

l 
θl 

) holds. The 

ast expression is equivalent to 
∑ m 

i =1 v ∗il x il = C L ( Y l , 
V ∗

l 
θl 

) = 

1 
θl 

C L ( Y l , V 
∗
l 
) 

ecause the cost function is homogeneous of degree + 1. Finally, 

e have that 
∑ m 

i =1 v ∗il θl x il = C L ( Y l , V 
∗
l 
) , which is the same that 

 m 

i =1 v ∗il ( x il / D L ( X l , Y l ) ) = C L ( Y l , V 
∗
l 
) , as we wanted to prove. By 

6), F C E L ( X l , Y l | k ) = 

C L ( Y l ,V 
∗
k 
) ∑ m 

i =1 v 
∗
ik 

x il 
= 

1 
D L ( X l , Y l ) 

· AE F 
L 
( X l , Y l ;V ∗

k 
) . By Färe 

nd Primont [ [15] , p. 61], AE F 
L 
( X l , Y l ;V ∗

k 
) = 

C L ( Y l ,V 
∗
k 
) ∑ m 

i =1 v 
∗
ik 

( x il / D L ( X l , Y l ) ) 
. 

herefore, AE F L ( X l , Y l ;V ∗
l 
) = 

C L ( Y l ,V 
∗
l 
) ∑ m 

i =1 v 
∗
il 
( x il / D L ( X l , Y l ) ) 

= 1 . And, finally, 

e have that F C E L ( X l , Y l | l ) = 

C L ( Y l ,V 
∗
l 
) ∑ m 

i =1 v 
∗
il 

x il 
= 

1 
D L ( X l , Y l ) 

. [P2] is a 

onsequence of defining a cross-efficiency index by anal- 

gy with the Farrell cost efficiency index. [P3] F C E L ( X l , Y l ) = 

1 
n 

∑ n 
k =1 F C E L ( X l , Y l | k ) = 

1 
n 

∑ n 
k =1 

C L ( Y l ,V 
∗
k 
) ∑ m 

i =1 v 
∗
ik 

x il 
. It is enough to prove 

hat C L ( Y l , V 
∗
k 
) ≤ ∑ m 

i =1 v ∗ik x il for all k = 1 , ..., n . By the definition of

ost function, we have that C L ( Y l , V 
∗
k 
) = min { ∑ m 

i =1 v ∗ik x i : X ∈ L ( Y l ) } . 
e also have that X l ∈ L ( Y l ) since ( X l , Y l ) has been observed

n the data sample. Consequently, C L ( Y l , V 
∗
k 
) ≤ ∑ m 

i =1 v ∗ik x il , 
 k = 1 , ..., n . [P4] If ( V ∗

k 
, U 

∗
k 
) = ( V ∗

l 
, U 

∗
l 
) , ∀ k = 1 , ..., n , then

 C E L ( X l , Y l | k ) = 

C L ( Y l ,V 
∗
k 
) ∑ m 

i =1 v 
∗
ik 

x il 
= 

C L ( Y l ,V 
∗
l 
) ∑ m 

i =1 v 
∗
il 

x il 
= F C E L ( X l , Y l | l ) = 

1 
D L ( X l , Y l ) 

y [P1]. Hence, F C E L ( X l , Y l ) = 

1 
n 

∑ n 
k =1 F C E L ( X l , Y l | l ) = 

1 
D L ( X l , Y l ) 

. 

P5] is true because the original Farrell cost efficiency index 

s also units invariant. [P6] If ( V ∗
k 
, U 

∗
k 
) = ( W, P ) , ∀ k = 1 , ..., n ,

hen F C E L ( X l , Y l ) = 

1 
n 

∑ n 
k =1 F C E L ( X l , Y l | k ) = 

1 
n 

∑ n 
k =1 

C L ( Y l ,W ) ∑ m 
i =1 w i x il 

= 

1 
n 

∑ n 
k =1 C E L ( X l , Y l ) = C E L ( X l , Y l ) , ∀ l = 1 , ..., n , where the third equal-

ty is true by (6). �

.4. Proof of Lemma 2 

roof. Under constant returns to scale, ( 0 m 

, 0 s ) ∈ T c . There- 

ore, �c ( V 
∗
k 
, U 

∗
k 
) must be greater or equal than zero by 

ts definition. Let us assume that �c ( V ∗k , U 

∗
k 
) > 0 . Then, 

here exists ( ̂  X , ̂  Y ) ∈ T c such that 
∑ s 

r=1 u 
∗
rk ̂

 y r −
∑ m 

i =1 v ∗ik ̂  x i = 

c ( V ∗k , U 

∗
k 
) > 0 . Regarding ( ̂  X , ̂  Y ) , by the definition of T c =

 ( X, Y ) ∈ R m + s 
+ : 

∑ n 
j=1 λ j x i j ≤ x i , ∀ i, 

∑ n 
j=1 λ j y r j ≥ y r , ∀ r, λ j ≥ 0 , ∀ j } , 

e know that there are ˆ λ1 , ..., ̂
 λn ≥ 0 such that 

∑ n 
j=1 

ˆ λ j x i j ≤
ˆ  i , i = 1 , ..., m , and 

∑ n 
j=1 

ˆ λ j y r j ≥ ˆ y r , r = 1 , ..., s . This im-

lies that 
∑ s 

r=1 u 
∗
rk ̂

 y r −
∑ m 

i =1 v ∗ik ̂  x i ≤
∑ s 

r=1 u 
∗
rk 

( 
∑ n 

j=1 
ˆ λ j y r j ) −

 m 

i =1 v ∗ik ( 
∑ n 

j=1 
ˆ λ j x i j ) = 

∑ n 
j=1 

ˆ λ j ( 
∑ s 

r=1 
u ∗rk y r j −

∑ m 

i =1 
v ∗ik x i j ) ︸ ︷︷ ︸ 

≤0 by(2 . 2) 

≤ 0 , 

hich is a contradiction. Hence, �c ( V ∗k , U 

∗
k 
) = 0 . �

.5. Proof of Lemma 3 

roof. By the definitions of CIT E c ( X l , Y l | k ) and F C E c ( X l , Y l | k ) , 
IT E c ( X l , Y l | k ) ≤ F C E c ( X l , Y l | k ) is equivalent to C c ( Y l , V 

∗
k 
) ≥

 s 
r=1 u 

∗
rk 

y rl . So, we are going to prove that this second inequality 

olds. In this respect, Färe and Primont [ [15] , p. 136] showed 

hat �T ( W, P ) + C L ( Y, W ) ≥ ∑ s 
r=1 p r y r , for all ( W, P ) ∈ R m + s 

+ and
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 ∈ R s + . Let us assume CRS, ( W, P ) = ( V ∗
k 
, U 

∗
k 
) , where ( V ∗

k 
, U 

∗
k 
)

s an optimal solution of model (2), and Y = Y l . Then, we have

hat �c ( V ∗k , U 

∗
k 
) + C c ( Y l , V 

∗
k 
) ≥ ∑ s 

r=1 u 
∗
rk 

y rl . Finally, by Lemma 2 , 

 c ( Y l , V 
∗
k 
) ≥ ∑ s 

r=1 u 
∗
rk 

y rl . �

.6. Proof of Proposition 6 

roof. (i) Let us first assume that �
 α∗
k 

> �v ( � V ∗
k 
, � U 

∗
k 
) . Then, 

v ( � V ∗
k 
, � U 

∗
k 
) = max 

x,y 
{ ∑ s 

r=1 � u ∗
rk 

y r −
∑ m 

i =1 � v ∗ik x i : ( X, Y ) ∈ T v } ≥
 s 
r=1 � u ∗

rk 
y r j −

∑ m 

i =1 � v ∗ik x i j for all j = 1 , ..., n , since ( X j , Y j ) ∈ T .

herefore, ( � V ∗
k 
, � U 

∗
k 
, �v ( � V ∗

k 
, � U 

∗
k 
) ) is a feasible solution for (22). Re- 

arding the objective function in (22), we have that − ∑ s 
r=1 � u ∗r y rk + 

 m 

i =1 � v ∗i x ik + �( � V ∗
k 
, � U 

∗
k 
) < −∑ s 

r=1 � u ∗r y rk + 

∑ m 

i =1 � v ∗i x ik + 

�
 α∗
k 

, which 

s a contradiction with the fact that ( � V ∗
k 
, � U 

∗
k 
, � α∗

k 
) is an optimal 

olution of (22). (ii) Let us now assume that � α∗
k 

< �v ( � V ∗
k 
, � U 

∗
k 
) . 

hen, 
∑ s 

r=1 � u ∗r y r j −
∑ m 

i =1 � v ∗i x i j ≤ �
 α∗
k 

, ∀ j = 1 , ..., n , by the first set of

onstraints in (22) . By the definition of the technology T V , for all 

 X, Y ) ∈ T V there exists a vector ( λ1 , ..., λn ) ∈ R n + with 

∑ n 
j=1 λ j = 1

uch that 
∑ s 

r=1 � u ∗r y r −
∑ m 

i =1 � v ∗i x i ≤
∑ s 

r=1 � u ∗r ( 
∑ n 

j=1 λ j y r j ) −
 m 

i =1 � v ∗i ( 
∑ n 

j=1 λ j x i j ) = 

∑ n 
j=1 λ j ( 

∑ s 
r=1 � u ∗r y r j −

∑ m 

i =1 � v ∗i x i j ) ≤ �
 α∗
k 

< 

v ( � V ∗
k 
, � U 

∗
k 
) . Consequently, the maximum profit at prices ( � V ∗

k 
, � U 

∗
k 
) , 

v ( � V ∗
k 
, � U 

∗
k 
) , is not achieved by any point in T V , which is a

ontradiction with polyhedral DEA technologies as is the case. �
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