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Abstract
Multi-Target Multi-Camera (MTMC) vehicle tracking is an essential task of visual traffic
monitoring, one of the main research fields of Intelligent Transportation Systems. Several
offline approaches have been proposed to address this task; however, they are not compati-
ble with real-world applications due to their high latency and post-processing requirements.
This lack of suitable approaches motivates our proposal: A new low-latency online approach
for MTMC tracking in scenarios with partially overlapping fields of view (FOVs), such as
road intersections. Firstly, the proposed approach detects vehicles at each camera. Then,
the detections are merged between cameras by applying cross-camera clustering based on
appearance and location. Lastly, the clusters containing different detections of the same
vehicle are temporally associated to compute the tracks on a frame-by-frame basis. The
experiments show promising low-latency results while addressing real-world challenges
such as the a priori unknown and time-varying number of targets and the continuous state
estimation of them without performing any post-processing of the trajectories. Our code is
available at http://www-vpu.eps.uam.es/publications/Online-MTMC-Tracking.

Keywords Multi-camera tracking · Multi-target tracking · Online tracking

1 Introduction

Intelligent Transportation Systems (ITS) are considered a key part of smart cities. Consis-
tent with the accelerated development of modern sensors, new computing capabilities and

� Elena Luna
elena.luna@uam.es

Juan C. SanMiguel
juancarlos.sanmiguel@uam.es
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communication, ITS technology engages the attention of both academia and industry. ITS
point to offer smarter transportation facilities and vehicles, along with safer transport
services.

One of the main research fields on ITS is visual traffic monitoring using video analytics
with data captured by visual sensors. This data can be used to provide information, such
as traffic flow estimation, or to detect traffic patterns or anomalies. In recent years it has
become an active field within the computer vision community [11, 44, 46], however it is
still remains a challenging task [30], mainly if we consider the case of multiple cameras.

In contrast to mono-camera traffic monitoring, multi-camera setups requires of a more
complex infrastructure, the capability of dealing with more simultaneously data, as well as a
higher processing capability. Multi-Target Multi-Camera (MTMC) tracking algorithms are
fundamental for many ITS technologies.

Different from Multi-Target Single-Camera (MTSC) tracking [3, 5, 22], MTMC track-
ing entails the analysis of visual signals captured by multiple cameras, considering setups
with overlapping fields of view (FOVs), but also scenarios for wide-area monitoring, where
cameras may be separated by large distances. Road intersections are well-known targets for
monitoring due to the high number of reported accidents and collisions [37]. These inter-
sections are known for their intrinsic and complex nature due to a variety of the vehicles’
behaviors. This kind of scenarios are usually monitored with multiple partially overlap-
ping cameras, which introduces new challenges, but also powerful opportunities for video
analysis (e.g. traffic flow optimization and pedestrian behaviour analysis).

The key issue to solve for the multi-camera tracking problem is an efficient data associa-
tion across cameras, and, also, across frames. This is not a simple task since appearance from
different views may vary significantly. A considerable amount of existing MTMC vehicle
tracking algorithms perform an offline batch processing scheme to carry out the association
[1, 4, 15–17, 23, 41, 45]. They consider previous and future frames, and often the whole
video sequences at once, to merge vehicles trajectories across cameras and time. They also
rely on post-processing techniques to refine the resulting trajectories. This offline scheme
provides more robustness, compared to online designs, albeit it is not compatible with online
applications; hence, limiting its applicability in real-time traffic monitoring scenarios.

In this paper, we describe the first, to the best of our knowledge, low-latency online
MTMC vehicle tracking approach for cameras with partially overlapping FOVs captur-
ing intersection scenarios. The proposed approach follows an online and frame-by-frame
processing scheme.

Furthermore, compared to other state-of-the-art systems (see Table 1), our approach does
not perform any post-processing track refinement, it is agnostic to potential motion patterns
(i.e., it works without prior knowledge of vehicles paths within cameras’ FOV) and it does
not require additional manual ad-hoc annotations (e.g. definition of regions and boundaries
on the roads). These two last characteristics avoid the need of configuring each real set-up
where the system is deployed, improving flexibility and generalising its use.

The proposed MTMC tracking approach builds upon detection of multiple vehicles on
every single camera. Afterwards, a combined cross-camera agglomerative clustering, com-
bining spatial locations (using GPS coordinates) and appearance features, is used to merge
vehicles from different cameras. This clustering is evaluated using validation indexes and,
finally, a temporal linkage of the obtained clusters is performed to obtain the trajectories of
each moving vehicle in the scene along time.

This paper is an extended version of our related conference publication [28], with addi-
tional contributions as follows. First, we include and evaluate the impact of additional object
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Table 1 Comparison of available MTMC vehicle tracking approaches

Approach Processing Post-processing Awareness of Ad-hoc Level of

of tracks motion patterns annotations Association

Baidu [41]

Offline

� � �

Tracklets

NCCU-UAlbany [1] – � –

CUNY NPU [4] � � �
BUPT [15] – – –

ANU [16] – – –

UWIPL [17] � � �
DiDi Global [23] � – –

Shanghai Tech. U. [45] – � �
Ours Online – – – Detections

The table shows differences regarding the type of processing, the use of post-processing tracks, the awareness
about the vehicles’ motion patterns, the use of ad-hoc information annotated manually and the level of cross-
camera association. As can be seen, ours is the unique online approach considering detections to perform the
cross-camera association, also, we do not employ any post-processing of the tracks, we are agnostic to the
motion patterns of the vehicles and we do not use any additional manual annotations

detectors. Second, we remove any offline dependency in order to become a genuine online
approach. Third, we design and train a completely new appearance feature extraction, and
also investigate the impact of an additional dataset for training. Fourth, we improve the
cross-camera clustering and temporal association reasoning. Fifth, we design and imple-
ment a new occlusion handling strategy. Last, we perform a wide ablation study to measure
the impact of different parameters and strategies at different stages of the proposal, and we
show results in a detailed comparison with the state-of-the-art.

The paper is organized as follows. Section 2 reviews the state-of-the-art in MTMC vehi-
cle tracking. Section 3 describes the proposed approach. Section 4 presents the evaluation
framework, the implementation details, the ablation study and, finally, a comparison with
the state-of-the-art. Lastly, conclusion remarks are described in Section 5.

2 Related work

For the last recent years, several approaches devoted to track pedestrians in multi-camera
environments have been published [2, 14, 24, 38, 47, 50]. The releases of public benchmarks
such as MARS [49] and DukeMTMC [34] powered the research community to put efforts
into Multi-Target Multi-Camera tracking oriented to people tracking.

Due to the lack of appropriate publicly available datasets, MTMC tracking focused on
vehicles was a nearly unexplored field. To encourage research and development in ITS
problems, the AI City Challenge Workshop1 launched three distinct but closely related
tasks: 1) City-Scale Multi-Camera Vehicle Tracking, 2) City-Scale Multi-Camera Vehi-
cle Re-Identification and 3) Traffic Anomaly Detection. Focusing on MTMC tracking, the
CityFlow benchmark was presented [42]. At the time of publication, it is the only dataset
and benchmark for MTMC vehicle tracking. Figure 1 depicts four sample views from an
intersection in the City-Flowbenchmark.

1https://www.aicitychallenge.org/
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Fig. 1 Sample views from an intersection in CityFlow benchmark

The major challenge of tracking vehicles is the viewpoint variation problem. As can be
seen in Fig. 2, different vehicles may appear quite similar from the same viewpoint, however
the same vehicle captured from different viewpoints may be difficult to recognise. It can be
extremely hard, even for humans, to determine if two vehicles from different points of view
depict the same car (e.g., as shown in Fig. 2, pairs [(a), (d)], [(b), (e)] and [(c), (f)]).

According to the processing scheme, MTMC tracking methods can be categorized in
two groups: 1) offline methods, and 2) online methods. Offline tracking methods per-
form a global optimization to find the optimal association using the entire video sequence.
The vehicles’ detections are temporally grouped into tracklets (short trajectories of detec-
tions) using MTSC tracking techniques, and, afterwards, tracklet-to-tracklet association
is performed, mainly by using re-identification techniques: considering the whole video
sequences at once [15, 17, 23, 41, 45], considering windows of frames [4], or even
combining both approaches [16].

On the other side, online approaches need to perform cross-camera association of target
detections on a frame-by-frame basis, using detectors’ outputs (usually, bounding boxes) as
the smallest unit for matching, instead of tracklets.

As can be seen in Table 1, to the best of our knowledge, all existing approaches chose
to work in an offline way. In order to remove false positive trajectories or ID switches [34],

Fig. 2 Illustration of the viewpoint variation problem. Under the same view different vehicles may appear
very similar a, b and c, while the same car from different viewpoints may be extremely difficult to recognise
[a, d], [b, e] and [c, f]
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the offline approaches sometimes may apply post-processing filtering at the end of some
intermediate stages [4, 23, 41], or at the end of the whole process [17]. Being aware of the
motion patterns that the vehicles can adopt in every camera view, can also help to remove
undesired trajectories and, therefore, increase the Recall evaluation metric [1, 4, 17, 41,
45]. Offline working also allows to apply additional temporal constraints to increase the
performance [4, 17, 41]. Another strategy to improve overall performance consists in incor-
porating some additional manually annotated, scenario specific, information; for example,
additional vehicle’s attributes (colour, type, etc.) for getting a better appearance model [41]
or road boundaries [4].

It is common in the literature of MTMC tracking to treat the tracklet-to-tracklet cross-
camera association task as a clustering problem, grouping them by appearance features
[15, 35, 41], or by combining appearance and other constraints (e.g., time and location)
[4, 17, 43, 48]. Clustering algorithms are often categorized into two broad categories: 1)
partitioning algorithms (center-based, e.g. K-means [29], or density-based, e.g. DBSCAN
[9]); and 2) hierarchical clustering [18] (being agglomerative or divisive). While hierar-
chical algorithms build clusters gradually (as a tree of clusters) and they do not require
pre-specification of the number of clusters, partitioning algorithms learn clusters at once and
they require pre-specification of the number of clusters (K-means) or the minimum number
of points defining a cluster (DBSCAN). Therefore, hierarchical clustering is advantageous
when there is no prior knowledge about the number of clusters, but on the contrary, it outputs
a tree of clusters, commonly represented as a dendrogram. Such structure does not provide
the number of clusters, but gives information about the relations between the data. For this
reason, cluster validation techniques, such as Davies-Bouldin index [6], the Dunn index [8]
or the Silhouette coefficient [20], are used to determine the number of clusters, which may
differ for each technique. In the proposed apprach, as there is no prior knowledge about the
number of vehicles in the scene, we apply agglomerative hierarchical clustering combining
location and appearance information.

Existing MTMC vehicle tracking approaches firstly compute tracklets by temporally
merging detections on every single camera, and then performing cross-camera tracklet-to-
tracklet association. In contrast, we firstly compute clusters by cross-camera association of
vehicle detections and, afterwards, on a frame-by-frame basis, we temporally associate the
clusters to compute the tracks.

3 Proposed approach

In the proposed online Multi Target Multi Camera tracking approach, all cameras’ videos
are processed simultaneously frame by frame, without any post-processing of the trajecto-
ries. The approach is composed of five processing blocks, as shown in Fig. 3. As input,
we consider a network of calibrated and synchronized cameras with partially overlapping
FOVs providing independent video sequences. Given a network of N cameras, the pipeline
includes the following stages: (1) vehicle detection; (2) feature extraction; (3) homogra-
phy projection, which projects single camera vehicles from each camera view to the world
coordinates system (GPS) for providing location information; (4) cross-camera clustering,
that is fed on the output of (2) and (3) blocks; and (5) temporal association of vehicles
trajectories over time to compute the tracks. As result, the system generates tracks consist-
ing on the identity and location of every vehicle along time. The design of the processing
blocks is detailed in the following subsections, whilst the implementation details are given
in Section 4.2.
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Fig. 3 Block diagram of the proposed approach. The inputs are frames from N cameras. The trajectories are
computed for each frame. First, the vehicle detection block computes B, the set of vehicle detections. B feeds
both feature extraction and homography projection blocks. F is the set of appearance feature descriptors
and W the set of GPS world coordinates of every vehicle. The cross-camera clustering block uses F and
W to aggregate different views of the same vehicle and to compute the set of clusters L at each temporal
instant. Lastly, the temporal association block associates clusters in L in a temporal way to compute the set
of tracks T

Table 2 summarizes the notation used in this section. The scope of each variable is
also defined: Scenario refers to the set of cameras; Frames stand for all the simultaneous
images coming from the cameras at each temporal instant; Sequence is comprised of all the
aggregated frames coming simultaneously from the cameras. N , and Hn are intrinsic to the
scenario, while r is a design parameter. D, B, W , F , and L are computed at each temporal
instant, needing the simultaneous frames. Last, T is updated frame-by-frame for the whole
sequence.

3.1 Vehicle detection

As most of the state-of-the-art MTMC tracking methods, we follow the tracking-by-
detection paradigm. Therefore, the first stage of the pipeline is vehicle detection at each
frame. Let b = [x, y, w, h] be a bounding box with [x, y] being the upper-left corner pixel
coordinates, and [w, h] the width and height. Let define B = {bd , d ∈ [1, D]} as the set of
bounding boxes at each frame for all the cameras, with D the total number of detections.

Table 2 Notation used throughout the paper

Symbol Description Scope

N Number of cameras Scenario

Hn Homography matrix of nth camera Scenario

r Association radius Scenario

D Number of total detections Frames

B Set of bounding boxes Frames

W Set of GPS world locations Frames

F Set of feature descriptors Frames

L Set of clusters Frames

T Set of tracks Frames, Sequence
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Note that the proposal can incorporate any single-camera vehicle detection algorithm
whose output is in a bounding box form.

3.2 Feature extraction

In order to describe the appearance of the dth bounding box detection, let fd be its k-
dimensional deep feature descriptor. Let F = {fd , d ∈ [1,D]} be the set of appearance
feature descriptors for each frame and for all the detected vehicles.

Due to the intrinsic geometry of vehicles, their appearance may suffer strong variations
across different camera views. This variance is such that it could be, even for a human
being, very hard to determine if they are the same vehicle. Thus, in order to have highly
discriminating features, we trained a model to improve vehicle classification ability in the
faced scenario. More details on this vehicle specific model will be given in Section 4.2.2.

Class imbalance is a form of the imbalance problem [32], that occurs when there is an
important inequality regarding the number of examples pertaining to each class in the data.
When not addressed, it may have negative effects on the final performance. It is known
that classes with a higher number of observations tend to dominate the learning process,
hindering the learning and generalization of low-represented classes. In order to minimize
the imbalance effects, instead of classical Cross-Entropy (CE) loss [10], we employ the
focal loss (FL) proposed in [25].

3.3 Homography-based projection

This processing block computes the location of each detected vehicle on the common
ground-plane employing GPS coordinates. Let Hn be the homography matrix that trans-
forms coordinates from the image plane of the nth camera to the GPS coordinates of
the common ground plane. Let the inverse matrix H−1

n be the inverse transformation. We
leverage the GPS coordinates to achieve a high-precision clustering based on the location
information by applying camera projection. Given a bounding box b, one can obtain its
associated GPS coordinates, i.e. [φ, λ] (latitude and longitude), by projecting the middle
point of its base with the Hn transformation. W = {[φ, λ]d , d ∈ [1, D]}, the set of GPS
coordinates, is obtained after applying the transformation to the set B. Figure 4 illustrates
an example of the projected detections coming from different cameras.

Note that this block relies on the output of the object detection stage, and, along with the
feature extraction module, it feeds the cross-camera clustering.

3.4 Cross-camera clustering

Given the sets B, W and F , the cross-camera clustering block associates different camera
views of the same vehicle at each frame to compute L = {li , i ∈ [1, L]}, the set of clusters
at a given frame, being L be the number of created clusters. Clusters’ content ranges from
a single detection, if the vehicle is only visible by one camera, to the maximum number of
detections, defined by the maximum number of cameras capturing the scene. To create the
clusters, we compute a frame-by-frame linkage by performing an agglomerative hierarchical
clustering combining location and appearance features.

Hierarchical clustering [18] requires a square connectivity matrix of distances (dissim-
ilarities) or similarities of the input data to merge. We compute the connectivity matrix
Θ as a constrained pairwise features distance between all the vehicles coming from every
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Fig. 4 Vehicle detections from four partially overlapped cameras projected to GPS coordinates at a certain
temporal instant. Detections within a 5 meters radius are more likely to be joined. (Best viewed in color)

camera at each frame. At each frame, we compute the pairwise Euclidean distance between
the appearance feature vectors of all the vehicles under consideration, as follows:

ζd,d ′ = ||fd − fd ′ ||2 (1)

Also at each frame, we compute the Euclidean pairwise distance between all the GPS
coordinates of vehicles:

ψd,d ′ = ||(φd − φd ′)2 − (λd − λd ′)2||2 (2)

The spatial distance and the camera ID are used to apply some constraints. Since two
vehicles’ detections widely separated in GPS coordinates are highly unlikely to come from
the same vehicle, it is reasonable to assume a maximum association distance. This constraint
narrows down the list of vehicles to be matched and improves the ability to distinguish
different identities by focusing on comparing only nearby targets. Hence, the connectivity
matrix Θ is computed as follows:

Θ ′
d,d ′ =

{
ζd,d ′ , ψd,d ′ ≤ r

∞, ψd,d ′ > r
, (3)

being r the maximum association radius. A second condition is applied for preventing vehi-
cles’ detections from the same camera view to be merged together. It is done by constraining
the association matrix as follows:

Θd,d ′ =
{

Θ ′
d,d ′ , cd �= cd ′

∞, cd = cd ′
(4)

Let cd be the camera yielding the dth detection.
As stated above, hierarchical clustering methods departs from a connectivity matrix Θ

to compute a tree of clusters and this cluster structure does not provide the number of clus-
ters, but gives information on the relations between the data. These relationships can be
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represented by a tree diagram called dendrogram. In order to identify the optimal number
of clusters, we use the Dunn index [8] for cluster validation. The aim of this index is to find
clusters that are compact, with a small variance between members of the cluster, and well
separated by comparing the minimal cluster distance to the maximal cluster diameter. The
cluster diameter is defined as the distance between the two farthest elements in the cluster.
This process provides the number of vehicles at every frame in the scene, in the form of
clusters, as well as its location, in the form of the cluster’s centroid (outlined as the mean
point at each coordinate axis of all the components). To sum, at every frame, each cluster
designates an existing vehicle viewed by one or multiple cameras.

3.5 Temporal association

The last stage of the proposed approach links clusters over time to estimate the vehicle
tracks. Let tj = [xsstart

j , ..., xsend

j ] be the j th track defining the trajectory of a moving vehicle
by a succession of states. Each state is described by xs

j = [φ, λ, vφ, vλ], where [φ, λ] is the
target location and [vφ, vλ] is the target velocity, both represented using GPS coordinates.
Let us define T = {

tj , j ∈ [1, J ]} as the set of tracks along the video sequence. In contrast
to previous sets B, W and F , that are initialized at each frame, T is built incrementally,
i.e. it is computed at the first frame and updated along time. In other words, tracks depict
the location of clusters along time. As in the whole system, the temporal association is
performed on-line, that is, frame-by-frame.

Vehicles’ motion is estimated using a constant-velocity Kalman filter [19]. The Kalman
filter makes a prediction of the state of the target as a combination of the target’s previ-
ous state (at the previous frame) and the new measurement (at the current frame) using a
weighted average. It results in a new state estimation lying in between the previous target
state and the measurement. Thus, at each frame, on the one hand, we employ Kalman fil-
ter to get the estimated location of the tracks of the previous frame, and, on the other hand,
we get the current vehicle measurements as the clusters resulting from the cross-camera
association.

In order to associate both, we apply the Hungarian Algorithm [21] to solve the assign-
ment problem, using an association matrix to enumerate all possible assignments. The
association matrix is computed using the pairwise L2-norm, i.e. the euclidean distance,
between the location of the estimated tracks and the clusters’ centroid location (see
Section 3.4).

To provide robustness against occlusions, we designed two strategies: a blind occlusion
handling and a reprojection-based occlusion handling. The first maintains the tracks alive
during a short time when the detections associated to them are lost. Keeping on predict-
ing the position of the track during that period allows to recover it in case the detections
are recovered. This is helpful if the vehicle detector loses a detection, either due to a bad
detection performance or a hard occlusion. The second strategy detects if a track has lost
one or more of its associated detections and looks for the same track in the previous frame
to get the information about the size of its previously associated bounding boxes. The new
location in the current frame is inferred by applying the corresponding inverse homogra-
phy matrix (e.g., H−1

n assuming a detection is missing for the nth camera) to the estimated
track position. Therefore, when this strategy reveals a track whose detection or detections
are lost, mostly due to an occlusion the detector cannot deal with, we can generate an artifi-
cial detection with accurate estimates on the correct position and with the previous detected
size of the occluded vehicle.
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4 Experiments

4.1 Evaluation framework

4.1.1 Datasets

We considered the CityFlow benchmark [42], since there is no other publicly available
dataset devoted to MTMC vehicle tracking with partially overlapping FOVs. The dataset
comprises videos of 40 cameras, 195 total minutes recorded for all cameras, and manu-
ally annotated ground-truth consisting of 229,690 bounding boxes for 666 vehicles. The
dataset is divided into 5 scenarios (S01, S02, S03, S04 and S05) covering intersections and
stretches of roadways. S01 and S02 have overlapping FOVs, while S03, S04 and S05 are
wide-area scenarios. The CityFlow benchmark also provides the camera homography matri-
ces between the 2D image plane and the ground plane defined by GPS coordinates based
on the flat-earth approximation.

We have also used VeRi-776 dataset for improving the feature extraction model by using
it as additional training data. VeRi-776 [36] is one of the largest and most common datasets
for vehicle re-identification in multi-camera scenarios. It comprises about 50,000 bounding
boxes of 776 vehicles captured by 20 cameras.

4.1.2 Evaluation metrics

The MTMC tracking ground-truth provided by the CityFlow benchmark consists of the
bounding boxes of multi-camera vehicles labeled with consistent IDs.

Following the CityFlow benchmark evaluation methodology, Identification Precision
(IDP ), Identification Recall (IDR) and F1 Score (IDF1) measures [34] are adopted:

IDP = IDT P

IDT P + IDFP
, (5)

IDR = IDT P

IDT P + IDFN
, (6)

IDF1 = 2 · IDT P

2 · IDT P + IDFP + IDFN
, (7)

where IDT P , IDFP and IDFN stand for True Positive ID, False Positive ID and False
Negative ID, respectively. IDP (IDR) is the fraction of computed (ground-truth) tracks
that are correctly identified. IDF1 is the ratio of correctly identified tracks over the average
number of ground-truth and computed tracks.

Automatically obtained tracks by the proposed approach are pairwise compared with
the ground-truth tracks. We declare a match, i.e., an IDT P , when two tracks temporarily
coexist and the area of the intersection of the bounding boxes is higher than τIoU (with
0 < τIoU < 1) times the area of the union of the two boxes. Hence, τIoU is the Inter-
section Over Union (IoU) threshold. A high IDF1 score is obtained when the correct
multi-camera vehicles are detected, accurately tracked within each camera view, and labeled
with a consistent ID across all the views in the dataset.
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4.1.3 Hardware and software

The algorithm and model training have been implemented using PyTorch 1.0.1 Deep Learn-
ing framework running on a computer using a 6 Cores CPU and a NVIDIA GeForce GTX
1080 12GB Graphics Processing Unit.

4.2 Implementation details

4.2.1 Vehicle detection

Regarding single-camera vehicle detection we have experimented with public detections,
i.e. vehicle detections provided by the CityFlow Benchmark, and private detections, com-
puted using a state-of-the-art algorithm. The public detections were obtained by using three
popular detectors: Yolo v3 [33], SSD512 [27], and Mask R-CNN [12]. Yolo v3 is a one-stage
object detector that solves detection as a regression problem. SSD512 is also a single-shot
detector which directly predicts category scores and box offsets for a fixed set of default
bounding boxes of different scales at each location. Mask R-CNN, on the contrary, is a two-
stage detector consisting of a region proposal network that feeds region proposals into a
classifier and a regressor.

Moreover, we have complemented the provided detections with those obtained by the
EfficientDet [40] algorithm, a top-performing state-of-the-art object detector. EfficientDet
is also a one-stage detector that uses EfficientNet [39] as the backbone network and a bi-
directional feature pyramid feature network (BiFPN).

All these approaches make use of pre-trained models on the COCO benchmark [26]. For
our purpose, we considered only detections classified as instances of the car, truck and bus
classes.

4.2.2 Feature extraction

For the feature extraction network, we employ ResNet-50 [13] as backbone, but the original
classification layer (fc 1 layer), shaped for image classification on the ImageNet dataset
[7], is replaced by a new classification layer whose size is tailored to the total number of
identities in the training data. In order to leverage the pretained weigths on Imagenet, we
fine-tune the network but freeze it until the conv 5 layer.

To fine-tune the network, we used the CityFlow benchmark training data (S01, S03 and
S04) and we also included the VeRi-776 dataset, bringing a total of 905 vehicle IDs for
training (129 IDs from CityFlow, plus 776 IDs from VeRi-776). Since only training iden-
tities are known, the network learns features to correctly classify the 905 different training
vehicle identities. We perform a validation methodology on pairs of unseen vehicles and
comparing whether predictions are the same or not. Therefore, we check the network ability
to discern different views of the same target. To create these pairs, we randomly select half
of the data from S05 scenario to create a 169 IDs validation set. We forced the validation
batch to contain approximately 50% of positive and 50% of negatives pairs. The pair selec-
tion is randomly done over the set of IDs, instead of the set of images, thus, IDs containing
few samples are not paired. At inference, we adopt, as a 2048-dimensional descriptor, the
output of the average pooling layer, just before the classifier.

Each input image containing a bounding box of a vehicle is adapted to the network
by resizing it to 224x224x3 and pixels’ values are normalized by the mean and standard
deviation of the ImageNet dataset. In order to reduce model overfitting and to improve
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generalization, we perform several random data augmentation techniques such as horizontal
flip, dropout, Gaussian blur and contrast perturbation.

To minimize the loss function and optimize the network parameters, we adopt the
Stochastic Gradient Descend (SGD) solver. Experimentally, the initial learning rate was set
to 0.1 and we follow a step decay schedule dropping it by 0.1 every 25 epochs. Momentum
was set to 0.9 and weight decay to 1e−4.

4.3 Ablation study

This section measures the impact of the strategies defined for the different stages of the
proposed approach. Firstly, the effect of using different vehicle detectors is evaluated. Sec-
ondly, the influence of the association radius parameter is analysed. Subsequently, we gauge
the influence of the appearance model training method as well as the size of the feature
embedding. And, finally, some additional strategies (e.g. occlusions handling) are assesed.
All the experiments are evaluated on the testing scenario of the CityFlow benchmark dataset
with partially overlapping FOVs, i.e. the S02 scenario. It is composed of 4 cameras pointing
to an intersection roadway (see Fig. 1), aggregating, in total, 129 annotated vehicles whose
trajectories are distributed along 8440 frames (2110 per camera) that have been captured at
10 fps.

Influence of the vehicle detector algorithm Table 3 comprises the impact of different
vehicle detectors on the overall performance of the proposed approach. As stated before, we
consider three provided object detections coming from Yolo v3, SSD512 and Mask R-CNN,
i.e. public detections. We also evaluate the performance of EfficientDet, a top-performing
algorithm.

We experimented with three different score thresholds to get the output detections (0.1,
0.2 and 0.3). As stated before, public detections stand for the detections provided by the
CityFlow benchmark, and private detections are obtained with state-of-the-art detectors.

Table 3 MTMC tracking performance of the proposed approach for different vehicle detectors

COCO mAP Vehicle detector Score threshold IDP ↑ IDR ↑ IDF1 ↑

28.8 SSD512 0.1 48.96 63.43 55.27

0.2 48.97 63.43 55.27

0.3 49.05 60.87 54.33

33.0 Yolo v3 0.1 41.16 60.54 49.00

0.2 41.06 60.37 48.88

0.3 39.83 55.25 46.23

40.3 Mask R-CNN 0.1 49.11 64.84 55.89

0.2 49.11 64.84 55.89

0.3 48.27 63.63 54.89

55.1 EfficientDet 0.1 39.93 60.85 48.22

0.2 44.35 65.12 52.76

0.3 47.10 68.21 55.72

We differentiate between the public detectors (SSD512, Yolo v3 and Mask R-CNN) and the private one
(EfficientDet). For each detector, we include the mean Average Precision (mAP) for object detection task in
COCO dataset [26] as a measure of performance. Best of both categories in bold
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Regarding the public detections, one can observe that the compared detectors achieve the
peak performance when a low threshold is applied. The results suggest that filtering the
output detections by scores higher than 0.2 leads to a lower IDR in the MTMC tracking
performance. This finding indicates that detections with low confidence (mostly generated
by remote and partially visible vehicles) are still useful.

On the contrary, EfficientDet, since it is a better performing objecter detector, results
in a higher IDR and IDP being filtered with 0.3 instead of 0.2. It enhances IDR by
3.37, compared with the best results of Mask-RCNN; however, IDP is degraded by 2.01.
The reason for this decline is that EfficientDet is providing more False Positive trajectories
arising from the detection of partially occluded vehicles that Mask-RCNN is not able to
detect.

In the light of these results, we opted for adopting Mask R-CNN output detections filtered
by 0.2 score as public detections, and EfficientDet output filtered out by 0.3, as private
detections for the remainder of the experiments.

Influence of the association radius Table 4 shows how the association radius r , used in
the cross-camera clustering (see Section 3.4), affects the MTMC tracking performance of
the proposed approach in the evaluated scenario. Due to the length of the cars, 5 meters
is a reasonable association radius to consider. We sweep radius values of 5, 6.5, 8 and 9.5
meters. The results on the table indicate that the choice of the radius is quite relevant, having
a significant impact in the performance, and also it is highly-dependant on the detection
algorithm. The Mask-RCNN detector gets performance peak for r = 8, however, when
using the EfficientDet detector a smaller radius, r = 5, is the optimal choice. The reason of
this difference is related with bounding box accuracy (i.e. how the output bounding boxes
fit the vehicles). Since the middle points of the bases of the bounding boxes from different
camera views are projected to the ground-plane, the tighter the boxes are, the closer are the
projections (see Fig. 5).

Due to the common vehicles dimensions, it may be natural to think that a smaller radius
should be enough to successfully associate several detections of the same vehicle. How-
ever, due to errors in the video transmission while capturing the data, some frames are
skipped within some videos, so some cameras suffer from a subtle temporal misalignment
(i.e. they are unsynchronized with respect to the others). Therefore, the optimal r values for
the CityFlow benchmark using the proposed approach are 5 and 8 meters, given the two
evaluated detectors.

Table 4 Impact of the association parameter r over the MTMC tracking performance

Association radius IDP ↑ IDR ↑ IDF1 ↑

Mask R-CNN r = 5 m. 47.04 62.11 53.53

r = 6.5 m. 46.03 60.78 52 39

r = 8 m 49.11 64.84 55.89

r = 9.5 m. 46.56 61.47 52.99

EfficientDet r = 5 m. 47.18 68.37 55.83

r = 6.5 m. 46.41 67.24 54.92

r = 8 m. 47.10 68.21 55.72

r = 9.5 m. 43.24 62.59 61.14

Best in bold
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Fig. 5 a and b depict the bounding boxes detections of the same vehicle under two different views at the
same instant, as well as the middle point of their bases. Green color stands for an object detector providing
a properly adjusted box, while the red one produce a wider box. c shows the projected points and the corre-
sponding distances between them. Note that the tighter the bounding box is to the vehicle shape, the closer
are the projections in the ground plane

Influence of the appearance feature model Table 5 summarizes the effect of the training
schemes on the model used to describe the appearance features of vehicles for the proposed
MTMC tracking approach. The table lists the data that has been used for training the net-
work (described in Section 4.2.2) and how the weights of the network were obtained. As
the baseline, we use the model pretrained on the Imagenet dataset. As training data, we con-
sidered the training set of the CityFlow benchmark (S01, S03 and S04 scenarios) and also
the training set of the CityFlow benchmark jointly with the VeRi-776 dataset. We tried two
classification loss functions: Cross-Entropy loss (CE loss) and Focal Loss (FL).

Table 5 indicates that the tracking performance behaviours in a coordinated manner using
both Mask R-CNN and EfficientDet detectors. In both cases, fine-tuning the network to the
CityFlow benchmark has a slightly, but positive, influence. Including more training data,
the VeRi-776 dataset, appears to improve the quality of the feature embeddings, resulting in
a even better tracking performance.

Figure 6 depicts in red the distribution of the number of images per vehicle ID of the
training set of the CityFlow dataset, illustrating that it is a quite unbalanced set with a very
scattered distribution. The average of the distribution is μcity = 232.90, while the standard
deviation is σcity = 201.19. From Table 5, we observe that training the CityFlow benchmark

Table 5 Impact of appearance feature model over the MTMC tracking performance

Training data Weights IDP ↑ IDR ↑ IDF1 ↑

Mask R-CNN Imagenet Pretrained 49.11 64.84 55.89

CityFlow F + CE 49.16 64.91 55.95

F + FL 49.26 65.04 56.06

CityFlow + VeRi-776 F + CE 50.56 66.75 57.54

F + FL 49.53 65.39 56.37

EfficientDet Imagenet Pretrained 47.18 68.37 55.83

CityFlow F + CE 47.41 68.70 56.11

F + FL 47.43 68.73 56.13

CityFlow + VeRi-776 F + CE 48.33 70.03 57.19

F + FL 47.63 69.01 56.36

F: Finetuned. CE: Cross-Entropy Loss. FL: Focal Loss. Best in bold
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Fig. 6 The distribution of the number of images per vehicle identity in the CityFlow training dataset, the
VeRi-776 datastet and the distribution of both joined. Best viewed in color

with the Focal loss, instead of the Cross-Entropy loss, has a positive influence in our MTMC
tracking approach.

Figure 6 also depicts in blue the distribution of the number of images per vehicle ID
of the VeRi-776 dataset; as one may observe, it is more balanced than the CityFlow set.
Considering both datasets together, the join distribution is now described by μjoin = 89.35
and σcity = 102.25; as σjoin << σcity , one could say that the join dataset is less disperse
than the single CityFlow, which can be an indicator for the subtle increase in performance
obtained when the combined dataset is used. According to these results, we opt for using
the combined dataset and the CE loss for the rest of the experiments.

Influence of size of the feature embedding Table 6 comprises the experiments carried out
to explore the effect of the size of the feature embeddings. As stated in Section 4.2.2, the out-
put of the last average pooling layer of ResNet-50 provides a 2048-dimensional embedding.
We set this embedding size as the baseline. In order to modify the length of the embedding,
an additional fully connected layer of size 512, 1024 or 4096 is added at the end of the net-
work. The additional fully connected layer is preceded by batch normalization and ReLU

Table 6 Impact feature embedding size

Embedding size IDP ↑ IDR ↑ IDF1 ↑

Mask R-CNN Baseline (2048) 50.56 66.75 57.54

512 49.24 65.01 56.04

1024 49.67 65.58 56.53

4096 49.70 65.62 56.56

EfficientDet Baseline (2048) 48.33 70.03 57.19

512 46.72 67.69 55.28

1024 47.06 68.20 55.69

4096 47.50 68.83 56.21

Best in bold
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layers, and the training procedure is the same as described in Section 4.2.2. The results sug-
gests that adding an additional layer, and, therefore, more complexity to the model, either
to reduce or increase the embedding size, may decrease the performance, leading the model
to overfitting.

Influence of additional strategies The additional strategies we have designed are divided
in two branches: removing small detected objects that are not considered in the ground-truth,
and occlusion handling. The blind occlusion handling and the reprojection-based occlusion
handling strategies are detailed in Section 3.5.

To avoid the existing bias in the ground-truth towards distant cars that are not annotated,
we performed a size filtering strategy by removing detections whose area is under 0.10% of
the total frame area.

Table 7 shows the ablation results of these strategies. As expected, we can observe that
the procedure of removing small detections increases the IDP measure, using both object
detectors, by 2.47 (1.87), while maintaining almost the same IDR. Since IDP reacts to
false positives, this seems to indicate that the size filtering removes those small detections
we track, but are not annotated in the ground-truth.

Both occlusion handling strategies improve the baseline tracking IDR significantly, 3.81
(7.02) and 4.21 (5.64) respectively, and also the IDP is being improved by 2.90 (4.85) and
2.43 (3.20). Contrary to expectations, the reprojection-based strategy is not overcoming the
blind one. Another bias existing in the ground-truth could be the reason for explaining this,
since occluded vehicles are not annotated.

When combining both occlusion handling strategies with size filtering, we achieve a
higher precision than applying them separately, while recall is slightly narrowed. As in
the previous comparison, these results suggest that the reprojection-based strategy does not
provide improvements over the blind strategy due to the nature of the ground-truth. We
consider using the baseline approach together with the blind occlusion handling and the size
filtering strategies, a good trade-of between the IDP and IDR.

Table 7 Impact of additional strategies

Approach IDP ↑ IDR ↑ IDF1 ↑

Mask R-CNN Baseline 50.56 66.75 57.54

+ Size filtering 53.03 66.70 59.08

+ Blind Occlusion handling 53.46 70.59 60.84

+ Reprojection-based handling 52.99 70.96 60.67

+ Blind Occlusion handling + Size filtering 54.99 69.17 61.27

+ Reprojection-based handl. + Size filtering 54.06 69.02 60.63

EfficientDet Baseline 48.33 70.03 57.19

+ Size filtering 50.20 70.07 58.49

+ Blind Occlusion handling 53.18 77.05 63.50

+ Reprojection-based handling 51.53 75.67 61.31

+ Blind Occlusion handling + Size filtering 54.73 76.38 63.77

+ Reprojection-based handl. + Size filtering 53.34 75.50 62.52

Best in bold
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4.4 Comparison with the state-of-the-art

This section compares the proposed algorithm is compared with state-of-the-art approaches.
Comparison is performed in the S02 scenario of the CityFlow benchmark, which is the
only validation scenario with partially overlapping FOVs, as our method targets this type of
scenarios.

The proposed approaches in the literature devoted to vehicles MTMC tracking, listed in
Table 1, have been already compared in the The 2019 AI City Challenge [31] jointly over
the testing scenarios S02 and S05. However, as S05 consists of non-overlapping cameras,
to ensure a fair comparison, we perform the evaluation only over S02. For this purpose, we
ran the public available codes and we evaluated them following the CityFlow benchmark
evaluation methodology, detailed in Section 4.1.2.

Table 8 shows the evaluated performances in terms of IDP , IDR, IDF1, latency and
total computational time. The listed approaches can be divided by the processing mode in
two groups: offline and online processing. As described in Section 2, to the best of our
knowledge there is no previous proposal dealing with online MTMC vehicle tracking. For
this reason, all the state-of-the-art methods that we evaluated are offline approaches. It is
important to remark that, in Table 8, the star symbol denotes a partial and downward estima-
tion, only . The codes for the complete systems are not publicly available, and only solutions
based on precomputed intermediate results are accessible; hence, we can only compute the
running time of the available modules. Therefore, the overall latency of the compared offline
approaches is expected to be much higher than the results reported in Table 8. Note that the
duration of the sequence under evaluation is also included in the latency since these offline
approaches require access to results for the whole video to compute tracklets at each cam-
era and then compute multi-camera tracks in a global way. As our proposal yields tracking
results incrementally, from the beginning of the sequence, it can achieve a really low latency,
in comparison with the others methods.

Table 8 Comparison with the state-of-the-art approaches

IDP ↑ IDR ↑ IDF1 ↑ τIoU Processing Latency (s) Total Cost (min)

UWIPL [17] 70.21 92.61 79.87 0.2

Offline

3015* + 211 53.76*
70.02 92.36 79.65 0.5

ANU [16] 67.53 81.99 74.06 0.2
1159* + 211 22.83*

66.42 80.64 72.85 0.5

BUPT [15] 78.23 63.69 70.22 0.2
1389* + 211 26.66*

78.16 63.63 70.15 0.5

NCCU [1] 48.91 43.35 45.97 0.2
2316* + 211 42.11*

24.36 21.59 22.89 0.5

Ours (EfficientDet) 55.15 76.98 64.26 0.2

Online

2.55 13.65
54.73 76.38 63.77 0.5

Ours (Mask-RCNN) 57.23 71.99 63.76 0.2
2.29 12.71

54.99 69.17 61.27 0.5

τIoU is the Intersection Over Union (IoU) evaluation threshold. The star (*) denotes that is an estimation.
The extra 211 seconds are the duration of the video sequence under evaluation
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Regarding the quantitative measures of the tracking performance: IDP , IDR and
IDF1, offline methods using constraining priors tailored to the target scenario clearly
benefit from this extra information (see Table 1). In contrast to the related work, the
proposed approach: is agnostic to the motion patterns of the vehicles (allowing to filter
erroneous tracks), does not perform any track post-processing (permitting to refine and
unify tracks and by this way reducing ID switches) and, finally, does not make use of man-
ual annotations. On this basis, with an online approximation we perform really close to
offline state-of-the-art approaches, outperforming two of them in terms of Identification
Recall.

Overall, our approach does not quite reach top performance in MTMC vehicle tracking,
but its latency is three orders of magnitude smaller and the final computational cost is one
order of magnitude faster, enabling a high performance operation on online mode with low-
latency, that is a common requirement for many video-related applications, and also, in the
generalization of the algorithms, avoiding hand-crafted strategies.

5 Conclusion

Not relying on manual ad-hoc annotations, having no prior knowledge about the number of
targets, and providing the best result in the shortest possible time are crucial requirements
for a convenient and versatile algorithm. This paper presents, to the best of our knowledge,
the first online MTMC vehicle tracking solution. Unlike previous approaches, the proposed
approach continuously computes and updates the targets’ state. We calculate clusters of
detections of the same vehicle from different camera views applying a cross-camera clus-
tering based on appearance and location. We train an appearance model to identify different
views of the same vehicle leveraging homography matrices’ information. Using information
from the previous frame and a temporal estimation, we developed an occlusion handling
strategy able to extrapolate accurate detections even if the target is occluded. Since the
state estimation is continually updated, this strategy is useful even if the target is long-term
occluded.

This approach results in a low-latency MTMC vehicle tracking solution with quite
promising results. Although performance is below its offline counterparts, the proposed one
is a suitable solution for a real-world ITS technology.

The proposed approach is restricted to overlapping scenarios, due to the dependency
on the spatial location of the association stage. Moreover, the proposed approach requires
information of the cameras’ calibration (e.g., homographies), which is not always available
in already deployed systems. Future research may focus on overcoming these constraints by
maintaining the online and low-latency operation.
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