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Abstract
Sustainable forest management is concerned with the management of forests accord-
ing to the principles of sustainable development. As a contribution to the field, this 
paper combines the Vehicle Routing Problem (VRP) (in which the vehicles are 
harvesters) with the Multiple Stock Size Cutting Stock Problem under uncertainty 
(in which the stock is logs). We present an Integer Linear Program that dynami-
cally combines the cutting of the uncertain stock with vehicle routing, and uses it to 
address real-life problems. In experiments on real data from the forestry harvesting 
industry, we show that it outperforms a commonly used metaheuristic algorithm.

Keywords Multiple Stock Size Cutting Stock Problem · Uncertain stock · Vehicle 
routing · Sustainable forestry harvesting

1 Introduction

In this paper, we deal with a Multiple Stock Size Cutting Stock Problem (MSSCSP) 
under uncertainty. The original Cutting Stock Problem (CSP) described in Gilmore 
and Gomory (1961) is a well-known NP-hard optimisation problem in Operations 
Research. This problem is of interest in many industries because of the peren-
nial problem of dividing large pieces of stock material into smaller pieces to meet 
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customers’ demand for certain products types, while minimising waste. In the clas-
sic CSP, all stock items have the same known measurements, which makes it easier 
to compute the possible cutting instructions. However, in MSSCSPs (CSP topology 
from Wäscher et al. (2007)), the stock may have different sizes.

The first contribution of this paper consists in the formalisation of the forestry 
harvesting problem as a MSSCSP. Forestry harvesting is a real-life sustainability 
application. These applications aim to avoid the depletion of natural resources, and 
at the same time allow the quality of life of modern societies to increase. In forestry 
harvesting (as with many sustainability real applications), there is an additional 
complication: log sizes are estimated, and these estimates differ (sometimes signifi-
cantly) from real log sizes. This causes two difficulties: (i) cutting instructions for 
stock items with unknown measurements cannot be computed; (ii) even if we could 
use similar patterns to the sampled stock, the amounts obtained from cutting the 
real stock will differ from those expected. Dealing with such difficulties represents 
another contribution of the paper.

In previous work (Climent et  al. 2016a), the forestry harvesting problem was 
classified according to a CSP typology (from Dyckhoff (1990)) as ∗ ∕V∕D∕R where 
∗ means any dimensionality, V means that the total amount of items in stock is suf-
ficient to accommodate all the demanded products (hence, only some of the stock 
will be cut), D means that all large pieces (stock items) are different (in terms of 
shape) and R indicates many products of few different types are demanded. The fea-
ture V (any demand can be fulfilled) requires that the stock items to be cut need to be 
selected.

Other sustainability applications have similar characteristics: a heterogeneous 
assortment of large pieces of possibly unknown measurements. All these applica-
tions can be included in population harvesting [see Getz and Haight (1989)], as it is 
impossible to measure all possible members of the population; moreover, the sizes 
of the members change with time. The forestry harvesting problem is an example 
of such a case due to the extremely large number of trees of varied sizes, combined 
with the continuous growth of the trees. Due to the impossibility of measuring all 
the logs in the forest, only a small sample of them is measured and these are the only 
data available.

The two difficulties mentioned above make the problem much harder to solve. 
Difficulty (i) implies that it is impossible to compute the cutting instructions of all 
the stock items (because not all the stock is known). This requires a more complex 
way of determining the best cutting instructions. This process is explained in detail 
in Sect. 3, but we mention here that the process involves cutting simulations over 
the sampled stock. In the literature, there is a metaheuristic algorithm that performs 
many simulations in a bounded time, and provides a solution to the cutting instruc-
tions used in the best simulation. However, we solve the problem with a different 
approach: via Monte Carlo simulation [see Mooney (1997)] and an Integer Linear 
Program (ILP).

Due to difficulty (ii) (cut amounts differ from expected amounts), we tackle 
the MSSCSP dynamically by re-computing solutions: first computing the differ-
ence between expected and obtained amounts, and second updating the “targeted” 
amounts as the harvesting process progresses. Our second contribution is an ILP that 
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dynamically combines the MSSCSP with the vehicle routing problem to decide not 
only which stock to cut and how to cut it, but also the path that the cutting machines 
should follow for optimising the resources.

The importance of including uncertainty and dynamism to realistically model 
real-life applications was emphasised in Climent et  al. (2014). Real applications 
have a lack of information (uncertainty) and some of the associated data of the 
original specifications evolve with time (dynamism). In the literature, there are ILP 
approaches that are “static”: they only compute a single solution for the MSSCSPs 
and do not consider that the expected and obtained amounts may be different, which 
is unrealistic in real-world applications. Even if the sampled stock is a good repre-
sentation of the whole population (which is not always the case), the cutting results 
will not be the same as those in the simulation phase. This is the motivation for 
developing our technique which re-calculates targeted amounts after cutting each 
real stock subset. The re-calculated amounts are then used to obtain new solutions 
for the remaining stock.

For this reason, we present a novel ILP that combines the VRP with a particu-
larly difficult CSP that dynamically reacts to uncertainty in the data. To the best of 
our knowledge, there are no dynamic approaches in the literature that use ILP for 
addressing this combination of problem features. Only the metaheuristic approach 
previously mentioned addresses the same problem as this paper. For this reason, we 
evaluate our algorithm and we compare it with such an approach using real data 
provided by the industry. We show that, given the same computation time, our tech-
nique leads to greater resource preservation than the metaheuristic approach.

2  Literature review

In this section, we provide the literature review associated with the variant of 
MSSCSP with uncertainty in Sect. 2.1. A literature review of the VRP in sustain-
ability problems, with a focus on agriculture, is provided in Sect. 2.2.

2.1  MSSCSP

There are several approaches in the literature for solving MSSCSPs using either 
exact methods such as those in Belov and Scheithauer (2002) and Alves and de Car-
valho (2008), heuristic methods as in Poldi and Arenales (2009), or a combination 
of the two as in Hemmelmayr et al. (2012). For MSSCSPs related to our problem, 
some methods use ILP but do not address the uncertainty of the MSSCSPs. How-
ever, there are also metaheuristic approaches that deal with uncertainty.

The importance of considering uncertainties regarding the stock measurements, 
and dealing with them dynamically, is evidenced by Hung et al. (2012). The authors 
deal with uncertain amounts of product types. They present an approach that first 
computes the possible patterns for each stock size, then starts the on-line process 
of selecting a pattern for each stock piece to cut (after detecting its size). However, 
in our MSSCSP, the uncertainty comes from the real measurements of the stock, 
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as only a sample of them is available. This fact precludes the use of the technique 
in Hung et  al. (2012) (precomputing patterns and on-line selecting them) because 
we cannot compute the patterns of raw material for which the measurements are 
unknown.

In Dems et  al. (2017), the authors also present an ILP approach for solving a 
similar MSSCSP but without dynamism. They also use a different algorithm, which 
uses a priority list of product types instead of priority vectors, to generate the cut-
ting instructions. This is a disadvantage because most of the cutting machines in 
the industry work with an algorithm that cuts the materials according to the priority 
vector. While the stock items are sometimes cut to maximise the market value of 
the products, at other times the goal is to satisfy the demand for the products (which 
sometimes comes at the expense of their market values). Furthermore, Dems et al. 
(2017) only handle 16 cutting instructions, while we can handle several hundred. 
The other improvement of our technique over Dems et al. (2017) and also Prestwich 
et al. (2015) is that we address the dynamic on-line cutting process: we re-calculate 
targeted amounts and re-compute solutions at the end of each cutting stage. Moreo-
ver, these two previous works do not compare themselves with a previous and popu-
lar metaheuristic approach while we do (see Sect. 6).

Climent et al. (2016c) present a different proactive approach, which is not appli-
cable only to the CSP but to many large-scale combinatorial optimisation problems. 
It takes into account the uncertainty in the amounts of products that are expected to 
be obtained. However, to apply this technique, it is necessary to know the range of 
values for each of the amounts expected. Our experience with industries that work 
in sustainability applications tells us that these data might be unknown, so we have, 
therefore, developed a reactive approach, which does not need to take this informa-
tion into account.

Another way of addressing a CSP (without considering dynamism) is to use some 
form of column generation. In this approach, the CSP is first solved using a subset 
of the cutting instructions for a fixed number of raw material pieces with similar 
measurements. New patterns are then introduced by solving an auxiliary optimisa-
tion problem, and the process is repeated iteratively until completion. The column 
generation approach was originally applied to the standard CSP in Gilmore and 
Gomory (1961, 1963), and was used in the forestry problem by Eng et al. (1986), 
Laroze and Greber (1997) and Mendoza and Bare (1986). However, this technique 
cannot be applied to the real-life application treated in this paper since, as previously 
mentioned, for this problem, it is not possible to pre-compute the patterns of the 
stock that has not been sampled.

Besides the ILP approaches mentioned earlier, a metaheuristic approach was also 
developed earlier for MSSCSPs [see Murphy et al. 2004; Climent et al. 2016b]. The 
metaheuristic approach is a Simulated Annealing Like Algorithm (SALA) called 
Threshold Accepting Algorithm (TA) (Dueck and Scheuer 1990). It iteratively gen-
erates new priority vectors (by making local changes) that are mapped by a Dynamic 
Programming (DP) algorithm (Bellman and Dreyfus 2015; Anderson et  al. 2015) 
into cutting instructions. Its objective is to reduce the difference between the per-
centages of product types obtained by a pattern, and the percentages demanded. In 
Murphy et al. (2006), a dynamic version of the metaheuristic is presented, in which 



1 3

Cutting uncertain stock and vehicle routing in a sustainability…

the targeted demands are re-calculated after cutting each stock subset. However, 
their algorithm randomly selects the next stock subset to be cut, while we select the 
most suitable stock subsets to be cut and their order (by combining the CSP with the 
VRP). We believe that this is one of the key factors for the improved performance of 
our technique.

2.2  VRP in agriculture

The classic VRP is well known, and at its simplest, it consists in finding the optimal 
route (or set of routes) from one or more depots through a set of destination nodes, 
subject to certain constraints (Laporte 1992). A practical example of this is the rout-
ing of delivery vehicles through locations in a city to deliver packages to custom-
ers. There are several variations of the VRP: for example in cases where a return 
to the depot is not required, the VRP is known as an open VRP (MirHassani and 
Abolghasemi 2011). Also, each vehicle may or may not have a limit on its package-
carrying capacity: Capacitated (Cordeau et al. 2007) and Uncapacitated (Eksioglu 
et al. 2009) VRPs respectively. A good reference on the many vehicle routing prob-
lem variants and applications is given in Toth and Vigo (2014). A taxonomic review 
of the VRP, including its variants and methods of solution, is also given in Braekers 
et al. (2016).

The VRP also finds application in agriculture and has been used, for example, in 
scheduling the collection and transportation of livestock (Oppen and Løkketangen 
2008; Sigurd et  al. 2004), in managing the operation of farm machinery in sepa-
rated fields in Bochtis (2008), for the planning of autonomous tractor operations in 
Bochtis et al. (2009, 2008), and for determining the optimal routes for combining the 
harvesters in Ali et al. (2009). A dedicated classification of agricultural field opera-
tions concerning the VRP is given in Bochtis and Sørensen (2009, 2010). In Briot 
et al. (2015), the authors try to minimise the working time (including travel time) of 
grape harvesters, which gives the problem some resemblance to routing problems. 
Basnet et al. (2006), similar to Bochtis (2008), use the VRP for farm-to-farm path 
determination for scheduling crop harvesting in multi-farm operations. We would 
like to highlight that the above-mentioned papers do not combine the VRP with the 
MSSCSP.

In this paper, we combine the VRP and the MSSCSP, which is similar to the rout-
ing problem with stock loading constraints reviewed in Iori and Martello (2010), 
as cutting and packing problems are analogous. In our problem, however, there are 
several differences. First, unlike in the standard routing and loading problems, e.g. 
Doerner et  al. (2007); Fuellerer et  al. (2010); Junqueira et  al. (2013); Miao et  al. 
(2012), we are concerned with the routing of the cutting machines rather than the 
vehicles that transport the cut stock. Our main concern is to select the right priority 
vector to be used by the cutting machines in each block. Next, we make the deci-
sion of which blocks should be cut and in which order, by selecting the best pos-
sible route (the one that minimises the transport costs). Besides, this problem rep-
resents a real-life application and typically in these contexts there is unknown data 
about some of the parameters of the problem Climent et al. (2016c). Specifically, in 
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the problem treated in this paper, there is uncertainty regarding the expected stock 
sizes and the real stock sizes, while the above-mentioned papers do not consider this 
uncertainty.

3  Problem description and formalisation

In this section, we describe and formalise the problem treated in the paper, by for-
malising it as an uncertain Multiple Stock Size Cutting Stock Problem (MSSCSP). 
We introduce its special characteristics and provide a mathematical formulation.

3.1  General problem description

As previously mentioned, MSSCSPs have raw material pieces of different meas-
urements which we can cut at will. Recall that for forestry harvesting the pieces 
of material are the logs of the trees and the cutting machines are the harvesters. In 
Fig. 1, we can observe a log of a tree cut in two different ways. Each cutting instruc-
tion produces different amounts of the log products of types A, B, C and D. To gen-
eralise to other domains (see population harvesting problems in Getz and Haight 
(1989)), we use the term “raw material pieces” (or stock) and cutting machines. In 
the variant of MSSCSP that we are dealing with, we only know a limited number of 
raw material pieces (typically several hundred) each with its measurements. How-
ever, they only represent a sample of the real raw material pieces (typically several 
thousand). The measurements of the whole set of pieces are only known when the 
real cutting of the pieces is performed. We recall the impossibility of measuring all 
the members of the population because of time limits.

Since only a fraction of the stock is known in advance, an approach for decid-
ing how to cut the piece of stock when the machine is performing the real cutting is 
necessary (by which time the machine has access to its measurements). Moreover, 
deciding how to cut each piece must be based on constraints on the total product 

Fig. 1  Two different cutting 
instructions applied to the same 
log
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demands and the overall objective of using the minimum stock possible. Therefore, 
it is necessary to decide the cutting instruction for a single piece based on the previ-
ous cuts of the rest of the pieces (which have already produced certain amounts of 
products). Waste must also be minimised. For these reasons, both the literature and 
industry use a cutting algorithm that decides how to optimally cut each piece of 
stock (here each log) and reduce the waste. This algorithm is described in the next 
subsection.

3.2  Cutting algorithm for individual pieces of stock

The algorithm for cutting an individual piece takes as input a vector of priorities of 
the products demanded by the customers. It is a vector of continuous variables, with 
each component of the vector corresponding to the monetary value of each of the 
products in which the stock is to be cut into. For example in Fig. 1, type A of the 
log-products could have a revenue of 10€∕m3 , while type C of log-product could 
have a revenue 3€∕m3 (note that type A is bigger than type B). The objective of 
this algorithm is to maximise the total value of the cutting of a single piece of stock 
based on the priority vector. Note that since the waste has a monetary value of zero, 
it tends to be minimised.

The cutting algorithm is implemented with DP, which allows us to compute the 
optimal cutting instruction for a given piece of stock. DP is an approach that enables 
the solution of complex problems by dividing them into a collection of simpler sub-
problems. To do this, the sub-problems must be sequential and independent. The 
problem of cutting a raw material piece satisfies these properties since it is a recur-
sive one (i.e. maximise the benefit by cutting the first product and then maximising 
the benefit by cutting the remaining raw material piece).

We denote the implementation of DP for this cutting problem as DP . DP can 
be used as a black box with two inputs: the stock measurements and a priority vec-
tor. The output of the DP black box is the optimal amount of each product cut. The 
higher the value of a product in the priority vector, the higher tends to be the amount 
cut for such a product. Therefore, a simulation of the possible cuttings can be done 
by providing several different priority vectors as an input to the DP black box, since 
different amounts of products will be obtained. Then, the original meaning of the 
priority vector as monetary value is transformed into priorities of the products (even 
if internally, the DP black box implementation treats the priority vector as monetary 
values). See Fig. 2 for a visual representation of an example of use of the DP black 
box.

Fig. 2  DP black box with an 
example of inputs and outputs
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For the simulation phase, the DP black box is applied to each of the sampled 
pieces to find the most convenient priority vector. Recall that for the simulation 
phase, we only know the measurements of a sample of the stock. Besides, the DP 
black box is also used by each cutting machine in the field for performing the real 
cutting of many pieces with the priority vector selected in the simulation phase. 
Recall that the objective is to obtain the global targeted amounts of the products 
demanded by the customers. To achieve this, all the products from the cutting must 
be summed, then the priority vector can be adjusted according to the updated tar-
geted amounts.

The vector should take into account that, for harvesting applications such as for-
estry, the cutting of the product is done on the field by many machines that locally 
use a priority vector in its own DP black box. The global counting of the total 
amounts already obtained at a certain time is done at a centralised point, and every 
cutting machine submits its counts to the central point. Then, total amounts are 
counted and sent to every machine, which can re-adjust their priority vector.

Ideally, the priority vector would be adjusted for each piece of real stock based on 
the counting of previous products cut. However, this is not possible for two reasons: 
firstly, it would be infeasible in real-life applications that have several thousand real 
raw material pieces (there are time limitations); second, it would be infeasible due 
to organisational issues (the system is centralised). Instead the stock is divided into 
subsets, and only a single priority vector can be applied to each stock subset. Either 
a subset is fully cut with a unique priority vector or none of its pieces is cut.

To obtain good solutions (consider that the re-adjustment of the priority vector 
is limited to the number of subsets, which is typically a relatively small number), a 
previous cutting simulation on the sampled stock should be done. The sampled stock 
is also divided into subsets (the sampling is proportional to the sizes of the stock 
subsets). After doing the simulation with several priority vectors generated, the most 
desirable priority vector is selected for every subset and it is used as an input of 
the machines that use the same DP black box to cut the real stock. Note that when 
the real cutting happens, the measures of each piece are known (since the machines 
measure the stock in the real field).

3.3  Problem formalisation

In this subsection, we provide mathematical formulations and definitions for formal-
ising the problem treated in this paper. Below, the reader can find a list of the nota-
tions used through the paper.

– K is the set of subsets of raw material pieces, where each subset k ∈ K has the 
following components:

– R is the set of sampled pieces
– Q is the complete set of pieces Therefore, R ⊂ Q (generally R and Q are dif-

ferent for each subset but to simplify the description, here we assume that 
they are the same)

– �⃗�r contains the measurements of the sampled pieces
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– �⃗�q contains the measurements of the whole set of pieces

– M is the set of product types, and we represent a type of product mj ∈ M as a 
tuple mj = ⟨sj, zj⟩ , where:

– sj ∈ ℝ is the size of a piece of mj . Depending on the number of measure-
ments analysed, sj can represent: lengths for 1-dimension (e.g. m), areas for 
2-dimensions (e.g. m2 ) or volumes for 3-dimensions (e.g. m3).

– zj is a vector of dimensions of mj . For instance, if mj has the shape of a rectan-
gle, zj would be the required length and width for mj.

– 𝜈 ∈ ℚ+
|M| denotes the priority vector, which is a vector of |M| continuous vari-

ables. Each vj represents the value associated to the type of product mj ∈ M per 
unit of sj . For instance, vj could represent cost per unit.

– p⃗ ∈ ℚ+
|M| is a cutting instruction noted as p⃗ = ⟨a1,… , a�M�⟩ , where aj rep-

resents the amount of units of product mj ∈ M cut from certain subset of raw 
material pieces.

As previously mentioned, in the uncertain variant of our MSSCSP, it is only pos-
sible to have indirect control over the patterns via the priority vector. A vector of 
dimensions �⃗� of |R|/|Q| of the raw material pieces and a set of product types M are 
provided to the DP implementation (as a black box) which uses the priority vector 
𝜈 to calculate the corresponding amounts of products of each type p⃗ to be produced. 
This process is illustrated in Fig. 2. DP can be represented as the following mapping 
function:

The DP algorithm simulates the cutting of each raw material piece to maximise its 
total value. This total value is obtained by summing the products of the units of 
each product cut by its associated value. Once this process is finished for all the raw 
material pieces, the sum of products represents a cutting instruction for the subset of 
raw material pieces. Here, we note that the greater the value of vi in a priority vector 
𝜈 where other values are fixed, the greater (or equal) the units of product mi will be 
in its associated cutting instruction p after running algorithm DP . The same occurs 
with the opposite situation: a lower or equal number of pieces are obtained when the 
values of vi are decreased.

To illustrate this, we present Example 1, in which there is an increase of units of 
the fourth type of product (there is also a decrease of units in other products). Even 
so, there is a saturation point at which the units cannot be increased any more. In 
this example, the saturation point of the fourth type of product has been reached. If 
we increase its associated value in the priority vector to more than 11.122, the same 
amount of product will be produced ( 902m3).

Example 1 Examples of priority vectors and their corresponding cutting instructions:

DP(M, �⃗�, ⟨10, 10.177, 8.108, �.���⟩) → ⟨65, 910, 0, ��⟩m3

DP(M, �⃗�, ⟨10, 10.177, 8.108, ��.���⟩) → ⟨51, 734, 0, ���⟩m3

(1)DP(M, ⟨�⃗�1,… , �⃗��R�∕�Q�⟩, 𝜈) → p⃗.
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DP(M, �⃗�, ⟨10, 10.177, 8.108, ��.���⟩) → ⟨34, 64, 0, ���⟩m3

DP(M, �⃗�, ⟨10, 10.177, 8.108, ��.�⟩) → ⟨34, 64, 0, ���⟩m3

3.4  Vehicle routing problem

In our harvesting application, there are substantial costs associated with moving the 
cutting machines from one subset (or “block”) of stock to other blocks. The VRP, 
therefore, lends itself to the application as we need to design an efficient route 
through the forest. For the forestry harvesting the problem the blocks represent sub-
areas of the forest and the cutting machines are harvesters.

Note that in the problem treated in this paper, there are several differences with 
the classical VRP. Here, the vehicles do not deliver to customers. Instead, they cut 
selected blocks of stock, placed them in different locations. In addition, they move 
all together from one block to another. Typically, the costs depend on the distance, 
because of energy resources (such as gasoline) required for such shifts.

For the forestry harvesting problem, the shifts to non-neighbouring blocks are 
allowed because it might be more convenient to harvest certain blocks and leave 
unharvested neighbour blocks due to specific demands (for example, due to the spe-
cific types of products required and the characteristics of the logs of the specific 
block). In this case, because of the extra distance that the harvesters must traverse, 
there is a big extra cost associated with the shifts to non-neighbouring blocks as 
penalisation. For example, Fig.  3 shows the possibilities of routes for the cutting 
machines over contiguous blocks, which imply minimum costs for the shifts. The 
starting point is the dark-grey block. Harvested blocks are shaded, unharvested 
blocks are clear, and possible directions are shown with the red arrows. Note that 
sub-tour elimination constraints are still needed because in most of the cases, the 
solutions represent shifts to neighbouring blocks and, therefore, we have to avoid to 
re-visiting (and in this case, re-harvesting) the same block.

Fig. 3  Possible contiguous 
routes with minimum costs, 
starting in the block 1
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4  ILP models

In this section, we introduce the ILPs for the static problem (ignoring uncertain-
ties in the stock). In the following section (Sect.  5), we will present a reactive 
approach that incorporates such models and deals with the differences between 
the amount of stock expected, and the amount actually obtained. Recall that 
Sect.  3.3 explains the problem formalisation. A list of the additional notation 
used in this section of the paper is given as follows.

– c⃗ is a vector of costs. Each ck is the cost associated to the stock subset k.
– d⃗ is a vector of demands. Each dj is the demand for each type of product j.
– E is a matrix denoting the cost ekl of moving from block k to block l.
– u⃗ik represents the amounts of products cut from the block of stock k with the 

cutting instruction i.
– 𝜈ik is the priority vector associated with the cutting instruction i for the block 

of stock k.
– Variable xik indicates whether stock subset k is cut with the cutting instruction 

i.
– Variable ykl indicates whether the harvester moves from the block k to the block 

l.

We would like to mention that, initially, a finite set of cutting instructions 
( i = 1… n ) must be precomputed for each sampled stock subset using the DP black 
box (see Fig. 2) to be able to solve these ILPs with standard optimisation software. 
It must also adequately cover all possible cutting instructions for each subset of sam-
pled raw material pieces k (note that there are infinitely many possible priority vec-
tors.) In Sect.  6, we use Monte Carlo simulation [see Mooney (1997)]. Thus, we 
generate a certain number of random priority vectors for each subset of raw material 
pieces k ∈ K . Then, using the DP algorithm with such priority vectors [see Eq. 1], 
their corresponding cutting instructions are computed and stored in u⃗ik ( i = 1… n ) 
(n is assumed to be the same for all the subsets to simplify the notation). Therefore,

Then, u⃗ and its associated 𝜈 are provided as an input to Algorithm 1. There are also 
other input parameters: the set of types of products M and their demands d⃗ , the set 
of stock subsets K , their costs c⃗ , and the real measurements of the pieces of each set 
( ⟨�⃗�1,… , �⃗��Q�⟩k∀k ∈ K ). In the following, we describe an ILP that only handles the 
MSSCSP, then, subsequently, we present an ILP that handles the MSSCSP and also 
the VRP.

4.1  ILP for the MSSCSP

In this section, we explain the ILP model from Prestwich et al. (2015) that handles 
the MSSCSP. We denote it as h(d⃗, u⃗, c⃗,K) and it is defined as follows:

(2)u⃗ik ← DP ∶ (M, ⟨�⃗�1,… , �⃗��R�⟩k, 𝜈ik)(∀i, k).
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This ILP model has decision variables xik which indicate whether stock subset k is 
cut with the cutting instruction i. The objective is to minimise the total cost of the 
raw materials subsets used in the cutting process for satisfying the demands (the cost 
of each stock subset is denoted as ck ). Note that if a subset of raw materials pieces 
k is not used for satisfying the demands (and is, therefore, not cut) then all its deci-
sion variables ( xik∀i ∈ nk ) are zero. Note also that the constraint (4) ensures that the 
demands are fulfilled and the constraint (5) prevents the use of more than one cut-
ting instruction in a subset of raw material pieces.

4.2  ILP for the MSSCSP combined with the VRP

In the ILP model explained in Sect.  4.1, the stock subsets are selected randomly, 
without regard for the location of the subsets. However, as mentioned in Sect. 3.4, in 
real-life applications, there are typically some costs associated with shifting the cut-
ting machines between different locations at which the subsets of stock are located. 
To model this characteristic, we modify h(d⃗, u⃗, c⃗,K) to include neighbourhood and 
routing costs, and denote this combined Cutting Uncertain Stock and Vehicle Rout-
ing Problem by s(d⃗, u⃗, c⃗,K,E) where E is a matrix denoting the cost ekl of moving 
from block k to block l. We also include the additional decision variable ykl which 
indicates whether the harvester moves from the block k to the block l.

The first term of the objective function (7) reflects the cost of harvesting a forest 
block, while the second term describes the cost of the route followed by the har-
vester. Typically, contiguous blocks have a minimal cost of traversal, while non-
contiguous blocks have high travel costs between them. We also include a dummy 
subset to the stock subsets (at k = 0 ), which acts as the depot in the classic VRP.

Constraint (8) is the original demand constraint, while the rest of the constraints dif-
fer from the original ILP model. Constraints (9) and (10) are the bridging constraints 
that link the CSP to the VRP. They ensure that if a block is visited, then it must be cut. 
Constraints (11) and (12) state that there are only a single entrance and a single depar-
ture from a block (then, blocks cannot be revisited in the path). The summation in (12) 
begins from l = 1 as the harvester is not allowed to move backwards to the block it has 

(3)
argmin

n∑

i=1

|K|∑

k=1

ckxik,

s.t.

(4)
n∑

i=1

|K|∑

k=1

uikjxik ≥ dj ∀j ∈ M,

(5)
n∑

i=1

xik ≤ 1 ∀k ∈ K,

(6)xik ∈ {0, 1}.
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just visited. Constraint (13) is a flow conservation constraint that ensures the continu-
ity of the path. As we may allow the path to be discontinuous, we use ≤ 1 instead of 
= 0 . Constraint (14) ensures that the harvester only leaves the depot once. Although 
more effective formulations such as those in Laporte (1992) exist, we have used the 
Miller–Tucker–Zemlin sub-tour elimination constraints in (15) for simplicity. Con-
straint (16) eliminates trips from a block to itself. Finally, in the lines (17) and (18), the 
binary decision variables are defined. Our version of the VRP is incapacitated, as there 
is no limit to how much the harvester can cut:

(7)
min

n∑

i=1

|K|∑

k=1

ckxik +

|K|∑

k=0

|K|∑

l=0

eklykl,

s.t.

(8)
n∑

i=1

|K|∑

k=1

uikjxik ≥ dj ∀j ∈ M,

(9)
|K|∑

k=0

ykl =

n∑

i=1

xil ∀l ∈ K ⧵ {0},

(10)
|K|∑

l=0

ykl =

n∑

i=1

xik ∀k ∈ K ⧵ {0},

(11)
|K|∑

k=0

ykl ≤ 1 ∀l ∈ K ⧵ {0},

(12)
|K|∑

l=1

ykl ≤ 1 ∀k ∈ K,

(13)
|K|∑

k=0

ykv −

|K|∑

l=1

yvl ≤ 1 ∀v ∈ |K| ⧵ {0},

(14)
|K|∑

l=1

y0l = 1,

(15)wk − wl + |K| × ykl ≤ |K| − 1 ∀k, l ∈ K ⧵ {0},

(16)ykk = 0 ∀k ∈ K,
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To reduce the computational time, we use a Rolling Horizon approach (Peeta and 
Mahmassani 1995) to solve the problem. A rolling horizon approach divides the 
problem into a series of time-periods. The current time-period is modelled precisely, 
while the rest of the time-periods are aggregated and solved using a relaxed model. 
This approach has been shown to produce close-optimal solutions to challenging, 
real-world logistics problems while significantly reducing their computation times 
(Marquant et al. 2015; Zhan et al. 2016). We implement this approach in the follow-
ing way. For the blocks that are not directly connected to the depot (i.e. they cannot 
be reached by the harvester in this time-period), we relax the restriction that they 
must be harvested using only one cutting instruction. We remove the binary restric-
tion of (17) and allow xik to take continuous values (19), thus speeding up the com-
putation process. To achieve this, we define binary variables bik , so that when there 
is a connection from the depot to a block k (i.e. when e0k = 1 ), we constrain xik to be 
equal to bik . The optimisation problem is, therefore, modified as

where (17) has been replaced by (19), and (20), (21) and (22) have been added. In 
this way, the full ILP is solved only for the very few blocks connected to the depot. 
This approach is applied again and again in subsequent iterations until the harvest-
ing process is complete.

5  Dealing with uncertainties

In the above-mentioned ILPs, the differences between the expected cut products 
and the real cut products are not considered. In this section, we present a reactive 
approach that dynamically re-calculates the amounts targeted after cutting each real 
stock subset, and re-computes new solutions for the rest of the cutting process. This 
approach can work both with the ILP that only solves the MSSCSP, as well as with 
the ILP that also handles the VRP. We would like to reiterate that this algorithm 
is applied on-line, since the measurements of most of the raw material pieces are 
only known once the real cutting process is being performed. In addition, the real 

(17)xik ∈ {0, 1} ∀i, k,

(18)ykl ∈ {0, 1} ∀k, l.

(19)xik ∈ [0, 1] ∀i, k,

(20)bik ∈ {0, 1} ∀i, k,

(21)xik = bik if e0k = 1,

(22)
n∑

i=1

bik = 1 ∀k ∈ K,
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amounts of types of products obtained for each stock subset are only known after a 
stock subset is cut.

In the following, we describe the reactive algorithm presented in this paper, 
Algorithm 1. A list of the additional notation used in this section is given as follows:

– k0 is the depot.
– E is the matrix of transportation costs between blocks.
– VRP is a Boolean variable specifying if the problem is a VRP or not.
– U stores the stock subsets that have already been cut for satisfying the given 

demands.
– tc keeps track of the total cost of the cutting process: the costs of the stock blocks 

selected for cutting combined with the costs of moving the cutting machines.

The input parameters of Algorithm 1 are the parameters described in Sect. 3.3: 
the set of products types ( M ), the set of subsets of raw material pieces ( K ), with 
the associated measurements of the sampled and real stock ( ⟨�⃗�1,… , �⃗��R�⟩k ∀k ∈ K 
and ⟨�⃗�1,… , �⃗��Q�⟩k∀k ∈ K , respectively), the depot ( k0 ), the matrix of transportation 
costs from blocks E, the costs associated to the cutting of each subset c⃗ , the original 
priority vector 𝜈 , the demands d⃗ and a Boolean variable specifying if the problem 
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is a VRP (denoted as VRP). The output parameters of the Algorithm 1 are U (stock 
subsets that have already been cut) and tc (associated total cost of such cutting).

Algorithm  1 first initialises U and tc (see lines 1 and 2). Both variables are 
returned by the algorithm once the demands of all the types of products are fully 
satisfied (stopping condition of the loop, in the line 4). In line 3, before the start of 
the iterations, the algorithm performs Monte Carlo simulation [see Mooney (1997)] 
of all the sampled subsets of stocks, which returns u⃗ik (amounts obtained for all the 
types of products each stock subset k for each cutting instruction i simulated).

In each iteration, the algorithm first solves the ILP model (with/without VRP, 
lines 6 and 11 respectively) which returns the optimal stock subsets to cut with the 
selected general cutting instructions (according to the sampled stock). After this 
simulation process, the algorithm either randomly selects one of those stock subsets 
(without VRP, line 12), or it selects a neighbouring stock subset. The selected neigh-
bour is the best of those that are next to the depot (with VRP, line 7). In the latter 
case (with VRP), line 8 adds the cost of shifting the cutting machines from certain 
block to the next block of stock selected for cutting. In the line 9, the depot for the 
next iteration is fixed to to the current block of stock selected for the cutting in the 
current iteration (because the cutting machines will start their path in such block).

Subsequently, the algorithm performs the real cutting of the real stock subset 
with the vector of values of the cutting instruction (line 13), both selected in the 
simulation phase. The following steps are responsible for updating: (i) the targeted 
demands (by subtracting the amounts obtained from the cutting, in line 14), (ii) the 
status of the selected stock subset from uncut to already cut (lines 15 and 16) and 
(iii) the total cost (by adding the stock subset cost, in line 17). We would like to 
mention that sometimes the customers might change their demands of the differ-
ent products over time or there might be new demands from other customers (likely 
to happen in real applications). Note that our dynamic algorithm can accommo-
date these modifications over the demands of types of products (while static ILP 
approaches cannot). This could be done by updating d⃗ at any step of Algorithm 1.

6  Evaluation

In this section, we compare our reactive algorithm (with and without VRP) with 
another dynamic approach from the literature: the Simulated Annealing Like Algo-
rithm (SALA) metaheuristic from Murphy et  al. (2006). The motivation for the 
selection of this algorithm is provided in Sect. 2. This metaheuristic has been very 
popular in the forestry harvesting industry (which is a clear example of the uncertain 
MSSCSP). This metaheuristic approach makes local changes in the priority vector 
iteratively to obtain better cutting instructions (with less waste of resources). In this 
section, we present experiments performed with real forestry instances (provided by 
our industrial partner). We focus on minimising the waste of natural resources which 
leads to a very attractive aspect for these industries: an increase in revenue.

In the following, we describe some details associated with forestry harvesting. In 
the forestry harvesting problem, the logs of the trees (stock) must be cut into smaller 
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log-pieces (types of product) by harvesting machines to satisfy the demands of the 
customers. The log-pieces have shape specifications (minimum diameter, length and 
so on) and their volumes are measured typically in cubic metres (m3).

The forest is divided into several areas, each with a given specific cost. The meas-
urements of the sampled trees are derived from 3D scans. Note that it would be too 
costly to measure the measurements of all the trees, as there are possibly several 
thousand in a forest. As previously mentioned, the objective function is to mini-
mise the total cost associated with the subsets harvested. This typically implies the 
selection of low-value blocks, as this ensures that the best trees of the forest are left 
intact. As previously mentioned, only some stock subsets are selected for satisfying 
the demands, and therefore, only this selection of the forest is harvested. Note that 
the forest owners want to extract the maximum benefit from a selling, which for a 
given demand is obtained by harvesting the stock subsets with the total minimum 
cost. The rest of the stock subsets can be used in future demands.

Both the original metaheuristic algorithm of Murphy et al. (2006) and the algo-
rithm presented in this paper (Algorithm 1) were implemented in Java. The evalua-
tion was done on a 2.3 GHz Intel Core i7-4850HQ processor with 16 GB of RAM. 
Our industrial partner also provided us with a black box software that carries out 
the dynamic-programming-based ( DP ) simulation that implements DP (see Eq. 1), 
which is used by the two approaches. Since DP is an exact/complete algorithm, other 
DP implementations, such as the one in Pnevmaticos and Mann (1972), could have 
been used for DP with equivalent results. Therefore, these experiments are repro-
ducible. The ILP models of Algorithm 1 were solved with CPLEX 12.3 solver with 
a time cutoff of 90 s and fixing as termination criterion an ILP gap of 0.025 (corre-
sponding to 2.5%).

In this section, we have analysed a real forestry instance that represents a for-
est for which the total volume of logs is 4640.66m3 . However, for solving the 
problem, the measurements of only 25% of trees (rounded to the nearest integer) 
of each subset were known. Then, the total volume of the sampled logs of such 
forest is 1145.15m3 . The forest is composed of 26 subsets whose volumes are in 
the interval [84.3, 293]m3 . The costs of the individual subsets are in the interval 
€[4315.25, 20, 422.16] and the total cost of all them is €306, 295.23. We would like 
to mention that for this instance the costs of the subsets were determined by apply-
ing the dynamic-programming-based ( DP ) simulator to them with an input priority 
vector equal to the prices of the log-pieces in the open market (typically those prices 
increase according to the volume of the log-pieces types).

6.1  Reactive approach without vehicle routing

In this section, we evaluate the MSSCSP without the VRP component. Figure  4 
shows the mean results of 20 runs for each experiment performed with seven types 
of log-pieces ( |M| = 7 ). The demands of each log-piece were randomly selected 
in the interval [200, 600]m3 . We performed 20 runs because both approaches sto-
chastically select the next subset to cut (which affects the quality of the solutions 
obtained). For Algorithm  1, the next subset to cut is randomly selected over the 
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best uncut subsets selected by solving the current ILP model. However, for Murphy 
et al. (2006), the next subset to cut is randomly selected over all the uncut subsets 
(because this algorithm does not select specific subsets to cut, instead it chooses 
them randomly). Furthermore, as explained below, there exists more stochasticity in 
the algorithms. In our technique, the cutting instructions are randomly generated via 
Monte Carlo algorithm. Hence, we have re-computed them in each of the 20 runs.

Figure 4 shows the quality of the solutions obtained in the vertical axis, that is 
the mean relative percentage of the total cost of the harvested stock subsets (the per-
centage of the total cost of the subsets used for the harvesting over all the total cost 
of all the subsets). Note that this total cost is averaged for each of the 20 instances 
with generated random demands. We also would like to point out that the lower this 
percentage is, the greater the solution quality. The mean solving time in minutes is 
represented on the horizontal axis. For our technique, this means the sum of the cut-
ting instructions generation and the time consumed by Algorithm 1. Each specific 
number associated to the points of our technique represents the number of cutting 
instructions generated for each stock subset (e.g 100 cutting instructions for each 
of the 26 subsets, which makes a total of 2600 cutting instructions generated for a 
single run). Each specific number associated to the points of the metaheuristic rep-
resents its cutoff time (in seconds) for each stock subset (e.g. for each subset local 
changes are made during 80 s and the best combination is kept).

Figure 4 also shows the “static” scenario (dashed line with circles), where there 
are no uncertainties about the stock: what would be the harvesting cost if the sam-
pled stock (known data) were the whole population (rather than 25%)? Note that in 
this scenario there would be no need for a dynamic approach. To calculate values, 
the ILP model was run only once with the sampled data. We would like to note 
that this “static” way of solving the problem is very similar to those in Prestwich 
et al. (2015) and Dems et al. (2017). However, real-life applications typically have 
associated uncertainty which it is unrealistic to ignore. We did not include such an 
approach for comparison purposes (because it does not consider the same uncertain 
scenario as the other approaches so the comparison would be unfair) but to show 
how well our dynamic approach (solid line with squares) behaves with the uncertain 

Fig. 4  Quality of the solutions 
obtained by the two reactive 
approaches and the ILP that 
does not consider uncertainty
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scenario. Obviously, the closer the results of an approach are to the results of the 
scenario without uncertainty, it means that the approach deals better with the uncer-
tainty. Note that our approach has less than 5% difference from the scenario without 
uncertainty, while the metaheuristic is quite far from that scenario, especially for 
low computation times.

It can also be observed that the metaheuristic algorithm behaves poorly unless 
the cutoff time is very high. It needs a significant amount of time to find a good 
combination, which increases when the number of product types grows. The ∗ over 
the 30 s and 80 s cutoffs indicates that the metaheuristic could not find a solution 
for some instances (all the forest was harvested but the demands were not satisfied). 
Specifically, for 30 s, no solution was found for any of the runs). Our solutions have 
a lower cost of more than 6.4% than the other solutions obtained by the metaheuris-
tic during 66 min (even than our solutions obtained in 11 min). This represents an 
increase in the benefit of this instance of at least €19, 602.9 and a huge improvement 
in computation time. One reason for this high performance is that we consider the 
stock subsets selection as an optimality criterion, while the metaheuristic does not. 
The other reason is that metaheuristics are incomplete/inexact algorithms which do 
not guarantee to find a globally optimal solution, unlike complete/exact algorithms. 
Metaheuristics sample a subset of solutions from the search space, while complete/
exact algorithms explore completely the search space.

Figure  4 also suggests that the quality of our solutions barely improves when 
the number of generated cutting instructions increases. For this reason, the genera-
tion of a high number of cutting instructions is not recommended in time-sensitive 
applications. Again, we emphasise the economical benefits of our technique over 
the metaheuristic, especially considering that in many real applications of this type 
decisions must be made quickly (on-line cutting processes), such as with the forestry 
harvesting problem.

6.2  Reactive approach with vehicle routing

In this section, we evaluate our reactive technique, which includes the ILP model 
that also considers the VRP, where the vehicles are the cutting machines (in this 
specific case they are harvesters). Note that the metaheuristic algorithm does not 
deal with the VRP; nevertheless, we compare our solutions with VRP with the 
metaheuristic solutions from the previous section (even if it is not a fair evaluation 
because costs of moving over the blocks are not considered for the metaheuristic 
algorithm). The same problem with 26 of blocks is first analysed, then a larger prob-
lem with more blocks is evaluated.

6.2.1  Routing through 26 blocks

The same instance (volume, types of logs, demands, etc.) as in Sect. 6.1 was ana-
lysed. We set the cost of moving the harvesting machines between neighbour-
ing blocks to €0, while the cost between non-neighbouring blocks was set to 
€10, 000. However, the costs could also depend on the distance between blocks 
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or other criteria given by the real application. Figure 5 shows a map of the for-
est with the representation of the neighbourhood of the blocks of stock. It should 
be noted that since the real neighbourhood information was not provided by our 
industrial partners, we randomly assigned neighbours to the blocks. The dark-
coloured blocks indicate which blocks are connected to the road where the har-
vesting machines can access to the forest. Thus, the depot is connected to blocks 
6, 7, 15, 16 and 17.

To evaluate our technique (described in Sect.  4.2), we generated 30 cutting 
instructions for each of two scenarios: with and without uncertainty (Fig. 5). For 
the scenario without uncertainty, we assume that the characteristics of all the 
stock are known a priori. For the scenario with uncertainty, only a sample of the 
real stock is known (as in Sect. 6.1, we use a sample of 25% of trees). Therefore, 
it is expected that this uncertainty will affect the routing of the harvester. In both 
figures, we can observe the route taken by the harvester. The shaded blocks are 
the ones harvested. Each solution was found in less than 2 min. We would like 
to point out the large difference in computation time compared to the approaches 
evaluated in Sect. 6.1. This is mainly due to the relaxation of the model over the 
blocks that are not connected to the current location of the harvesting machines 
(this relaxation is described in Sect. 4.2).

First we analysed the scenario without uncertainty (left panel of Fig. 5), for which 
we obtained a percentage mean relative total harvesting cost of 70.85% . While this 
percentage is more than that obtained by our reactive approach without VRP, it is 
still less than the one obtained by the metaheuristic of Murphy et  al. (2006) (see 
Fig. 4). This increase in the percentage of blocks harvested over our technique with-
out VRP is because routing costs restrict the freedom with which we can select 
blocks (even so, this scenario is the most realistic for many industries, such as for-
estry harvesting). It can be seen that in this case of no uncertainty, the harvester 
mostly follows one path, with a jump to block 24 at the end (which adds €10,000 to 
the total cost). The block 24 is selected because its low cost, plus the extra cost of 
moving the harvesters there, is cheaper than selecting a neighbouring block.

Fig. 5  Path of the harvesters through the forest
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The right panel of Fig.  5 shows the scenario with uncertainty, i.e. the case in 
which the sampled data represent a small portion of the whole real data (which is 
the typical scenario in real-life applications). Here, the percentage mean relative 
total harvesting cost is 86% . Due to the uncertainty, the algorithm has a difficult time 
selecting a single path to follow through the forest, resulting in 3 different paths (A, 
B and C). This results in an increase in the cost due to the non-contiguous blocks 
selected. Even so, our technique performed performed better than the metaheuristic 
algorithm (with a solving time up to 45 min), see Fig. 4. Note that the solving time 
of our technique was less than 2 min.

6.2.2  Routing through 100 blocks

A larger problem instance with 100 blocks was solved by our technique for three dif-
ferent random demand scenarios of seven different types of products (see Table 1). 
For this large instance, to reduce the computation time, we implement a “search 
window” such that we only consider the 30 blocks closest to the depot in each itera-
tion of the algorithm.

In Table 2, there are two columns for each demand evaluated: one with uncer-
tainty and another without uncertainty. We observe that the discrepancy between 
the amounts expected from sampling and the amounts obtained leads to an increase 
in the number of blocks harvested. It also leads to an increase in the total harvesting 
cost, which illustrates the negative effect of having bad samples.

Figures 6, 7 and 8 show the blocks selected for harvesting for each demand sce-
nario. In general, the blocks selected are seen to be contiguous. In certain cases, 
however, there are two or three groups of discontiguous blocks selected (Fig.  8). 
In demand scenario 2, the path produced by the algorithm leads the harvester 
into a group of low-yield blocks. This combined with the uncertainty results in a 
high number of blocks being selected for harvesting. As expected, when there is 

Table 1  Demands (m3) Log type 1 2 3 4 5 6 7

Demand 1 50 34 25 51 24 52 60
Demand 2 353 239 178 360 165 361 419
Demand 3 433 572 369 358 490 332 478

Table 2  Results

Urcentainty Demand 1 Demand 2 Demand 3

With Without With Without With Without

Total cost (€) 58,265 49,361 325,133 110,532 276,491 158,011
Number of blocks harvested 7 6 34 11 20 18
Total solution time (s) 38 3 661 130 728 361
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uncertainty, more blocks are harvested because the samples do not always accurately 
reflect the capacity of the forest.

7  Conclusions

In this paper, we have contributed to the literature by presenting the first reactive 
approach that uses ILP for solving a variant of the MSSCSP with uncertain stock 
and its combination with the VRP. The main extra difficulty of this variant lies in 

Fig. 6  Blocks selected for 
harvesting for 100 blocks for 
demand 1

Fig. 7  Blocks selected for harvesting for 100 blocks for demand 2
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the fact that only the measurements of some samples of the real stock are known. 
This uncertainty ensures that the amounts obtained after harvesting will certainly be 
different from the amounts expected. This type of problem is composed of several 
stock subsets, and it is only possible to compute the amounts of products obtained 
after the cutting of each real stock subset. This fact motivated the development of 
a reactive approach that dynamically re-computes solutions after re-calculating the 
targeted amounts by solving the ILP model. Furthermore, our technique also selects 
the best stock subsets to cut given the current state of the targeted amounts. For 
this matter, we also present a novel ILP model that combines the MSSCSP with the 
VRP, in which the order of the blocks selected is computed based on neighbourhood 
costs.

This variant of MSSCSP will occur in real-life applications in which only some 
samples of the measurements of the stock can be taken by the industry. A very good 
example of such type of problems is population harvesting problems. In this paper, 
we evaluate a forestry harvesting problem with our technique and another dynamic 
approach: the popular metaheuristic of Murphy et al. (2006). This evaluation shows 

Fig. 8  Blocks selected for harvesting for 100 blocks for demand 3
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the greater performance of our techniques over the metaheuristic, especially for low 
and intermediate cutoff times. This fact is of great importance to the industry since 
in many real applications the cutting decisions are made on-line (therefore, they 
must be made quickly). Besides, our solutions typically provide paths for the cut-
ting machines that are contiguous and, therefore, minimise the energy expended in 
the shifts, minimising then the total cost of cutting plus routing. Better solutions not 
only imply minimising resources used (sustainability target) but also an increase in 
the benefits for the industry.

In future work, we will focus on the combination of the MSSCSP with the VRP 
by modifying the travel costs to take into account the real distances between all 
stock subsets (blocks in the case of forestry) and obtaining real location data for 
the blocks. We also intend to investigate means of improving the accuracy of the 
sampled data, which should have a positive effect on the results in cases in which the 
sample data is not representative enough.
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