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Abstract

The decade from 2010 to 2020 has seen a series of impressive improvements in the
performance of Machine Learning models, especially in problems such as image and
video tagging, automatic translation, optical character recognition, speech-to-text
and others, collectively known as Computer Perception. Those improvements have
been motivated by the greater computational power developed during those years by
several improvements in computing hardware and software and the great amount of
data available in the so called era of Big Data, but those are not the only reasons
for it. The development of Deep Learning, term that refers to modern artificial
neural networks that employ a series of relatively recent techniques (initialization,
activation, regularization, etc.), has been, probably, the most important factor of all.
These connectionist Machine Learning models are not only universal approximators,
but have a flexible architecture that can be adapted to different types of data and loss
functions. Examples of this are convolutional neural networs and recurrent neural
networks, adapted to data with spatial structure and data with temporal structure,
respectively.

This thesis, structured as a compendium of articles, presents three developments
tightly related to Deep Learning that have resulted in the several publications in-
cluded. In the first place, an application of convolutional neural networks to the
problem of prediction in renewable energies is proposed, taking advantage of the
spatial structure present in such data, that results in an improvement over the previ-
ous results while keeping computational costs under control thanks to the efficiency
of artificial neural networks. The related publications were among the first contri-
butions at the time to make use of the new DNN frameworks for renewable energy
prediction.

In the second place, the usefulness of Deep Learning models for feature trans-
formation is shown. The importance of a correct feature transformation can be
paramount when confronting a Machine Learning problem. Such algorithms can
be used as a first step in the modelization pipeline, prior to a classifier or regres-
sor, for example, and split the problem into two more manageable sub-problems:
obtaining a good representation of the data and generating the actual prediction
from it. In this case, the feature transformation technique for classification problems
known as Fisher’s Discriminant Analysis (FDA) will be studied. Once the theoretical
framework is set up, the limitations and drawbacks of such tool can be more deeply
analyzed. Such limitations include its linear nature, which implies a limited expres-
sive power. This is often solved with the use of kernels, with the disadvantage of a
much higher computational cost, that relegates this technique to the world of small
to medium data. To overcome such limitations, a partial equivalence between the
traditional technique and Least-Squares based models is exploited. This equivalence
will allow to train linear trasformers with an iterative algorithm, and, by extension,
to use Artificial Neural Networks as the underlying computational engine, obtain-
ing non-linear trasformations in the process while maintaining reasonable computing
costs even for big datasets. Additionally, the use of neural networks in imbalanced
classification problems, an application closely related to FDA, will be presented.



In the third place, the application of margin loss functions, such as those usually
employed in support vector machines, over artificial neural networks will be studied.
As it will be shown, these loss functions can represent a noticeable improvement in the
model performance in certain cases, even when highly sophisticated neural networks
as LeNet or ResNet are used, and again the efficiency of neural networks in terms of
computational cost can be an important advantage over more classical techniques.
Also, an adaptation of Deep Learning models to the use of several simultaneous loss
functions, margin loss functions among them, which will again produce noticeable
changes in the quality of predictions, will be detailed.



Resumen

La década de 2010 a 2020 ha visto una serie de impresionantes mejoras en el
rendimiento de los modelos de Aprendizaje Automático, especialmente en problemas
como el etiquetado de imágenes y v́ıdeo, la traducción automática, el reconocimiento
óptico de caracteres, el reconocimiento del habla y otros, a los que se ha llamado co-
lectivamente Computer Perception. Estas mejoras han sido en gran parte motivadas
por la mayor capacidad de cálculo desarrollada durante estos años mediante mejoras
en el hardware y software de computación y la gran cantidad de datos de los que se
dispone en esta llamada era del Big Data, pero no han sido estos los únicos motivos.
El desarrollo del llamado Deep Learning, término que se refiere a las redes neurona-
les artificiales modernas con las que se emplean una serie de técnicas relativamente
recientes (de inicialización, activación, regularización, etc.), ha sido probablemente
el factor más importante de todos. Estos modelos conexionistas de Aprendizaje
Automático no sólo son aproximadores universales, sino que tienen una arquitectura
flexible que se puede adaptar a distintos tipos de datos y funciones de pérdida. Ejem-
plos de esto son las redes convolucionales y las redes recurrentes, adaptadas a datos
con estructura espacial y datos con estructura temporal, respectivamente.

En esta tesis, en formato de compendio de art́ıculos, se presentan tres desarrollos
estrechamente relacionados con el Deep Learning y que han resultado en las diversas
publicaciones que se incluyen. En primer lugar se presenta la aplicación de redes
convolucionales a problemas de predicción en enerǵıas renovables, aprovechando la
estructura espacial que estos datos tienen, lo que permite mejorar los resultados
existentes y mantener los costes computacionales bajo control gracias a la eficiencia
de las redes neuronales artificiales. Las publicaciones relacionadas estuvieron entre
las primeras en hacer uso de las nuevas herramientas de desarrollo de redes neuronales
profundas en el campo de la predicción en enerǵıas renovables.

En segundo lugar se muestra la utilidad de los modelos de Deep Learning a la
hora de realizar transformaciones de variables. Una transformación de variables ade-
cuada puede tener una gran importancia al abordar un problema de Aprendizaje
Automático. Este tipo de técnicas se pueden utilizar como un primer paso dentro
del proceso de modelización, previo al clasificador o regresor, por ejemplo, y dividen
el problema en dos subproblemas más manejables: obtener una buena representación
de los datos y generar la predicción a partir de ella. En este caso se estudiará la
transformación de variables para problemas de clasificación conocida como Análisis
Discriminante de Fisher (FDA). Una vez el marco teórico está dispuesto, las limita-
ciones y desventajas presentes en esta técnica pueden ser analizadas en profundidad.
Estas limitaciones incluyen su naturaleza lineal, que implica un poder expresivo li-
mitado. Esto se resuelve habitualmente con el uso de kernels, con el consiguiente
aumento en el coste computacional, lo cual relega a esta técnica al mundo de los
datos de tamaño pequeño y medio. Para solventar estas limitaciones, se explota una
equivalencia parcial entre la técnica tradicional de transformación y los modelos de
mı́nimos cuadrados. Esta equivalencia permite entrenar transformadores lineales
con un algoritmo iterativo y, por extensión, el uso de Redes Neuronales Artificiales
como motor de cálculo subyacente, obteniendo transformaciones no lineales y a la



vez manteniendo los costes computacionales en niveles razonables incluso para gran-
des conjuntos de datos. Adicionalmente se muestra el empleo de redes neuronales a
problemas de clasificación desequilibrada, aplicación estrechamente relacionada con
FDA.

En tercer lugar se estudia la aplicación de funciones de pérdida con margen,
iguales a las empleadas habitualmente con máquinas de vectores de soporte, en redes
neuronales artificiales. Como se podrá comprobar, estas funciones de pérdida pueden
suponer una sensible mejora en el rendimiento del modelo en ciertos casos, incluso
cuando se emplean redes neuronales altamente sofisticadas como las LeNet o ResNet,
y de nuevo la eficiencia en términos de coste computacional de las redes neuronales
puede suponer un importante punto a favor de estas técnicas respecto de otras más
clásicas. También se describe la adaptación de modelos de Deep Learning al uso de
varias funciones de pérdida simultáneas, entre ellas las funciones con margen, lo que
en determinados casos también afectará notablemente a la calidad de los resultados.
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Me gustaŕıa agradecer al profesor José R. Dorronsoro el que haya compartido
conmigo su experto conocimiento y su sabiduŕıa, y el haberme guiado a través de
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en esta aventura nunca habŕıa sido posible sin su comprensión.

Mis amigos y familiares también merecen reconocimiento, ya que, más a menudo
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Chapter 1

Introduction

1.1 Machine Learning Overview

Although basic statistics, mostly descriptive, have been used since the beginning of
Civilization (Thucydides’ History of the Peloponnesian War), and the earliest known
use of Statistical Inference dates from the 9th century (Al-Kindi’s Manuscript on
Deciphering Cryptographic Messages), modern Statistics only has a few centuries,
and its development is closely related to the rise of European sovereing states and
the growing interest in census and other demographic studies.

Machine Learning, also called Statistical Learning, could be considered a subfield
of Statistical Inference, since its methods analyze data to deduce properties of the
underlying probability distribution in order to be able to make prediction over unseen
data drawn from the same population.

But Machine Learning (Figure 1.1.1) is also considered a form of Artificial In-
telligence, and as such, it soughts the development of systems capable of perceiving
the environment and taking actions accordingly to maximize the chance to achieve a
goal. Artificial Intelligence encompasses other subfields, like Symbolic Artificial In-
telligence, that compete with and complement each other and have enjoyed different
levels of success in the last decades.

For instance, it is generally accepted that the dominant branch of Artificial In-
telligence during the 70s and 80s of the 20th century was Symbolic Artificial Intel-
ligence, with the development of Expert Systems that emulate the human hability
of decision making by using knowledge databases usually represented as collections
of if-then rules. This approach to Artificial Intelligence produced successful Expert
Systems like MYCIN [1], designed to diagnose infectious diseases and recommend
personalized treatments based on the patient’s medical data. Expert Systems have,
however, a serious limitation: the process of acquiring knowledge is difficult and
costly, and requires the very intensive involvement of human experts.

In this context, Statistical Learning arises as a more practical alternative by only
requiring data, but no knowledge databases, to operate, with the only significant
drawback being perhaps the great computing power needed. Thus, during the 90s
of the 20th century, the focus on Artificial Intelligence progressively shifted from
knowledge-based techniques to data-based techniques. So, the Statistical Learning
techniques are focused on making the machine learn to solve problems, understanding

1



Figure 1.1.1: Machine Learning at the intersection of Statistical Inference and Artificial
Intelligence

learning as an improvement of the performance with the use of samples of data.
A learning machine is defined by the relation

t : D 7→ m,

where D is the training dataset, m is a predictive model, and t is a training algorithm,
that uses D to adjust m according to some fitness criteria. These three entities, data,
model, and training algorithm, will have a prominent role in what follows.

1.1.1 Data

A dataset D of N samples consists in a matrix X ∈ RN×d, the set of d-dimensional
observed features, and, often but not always, a matrix Y ∈ RN×d′ , the set of d′-
dimensional targets. Each row of X corresponds to a sample and each column
corresponds to a feature, while each row of Y corresponds to a sample and each
column to a dimension of the target. Often, d′ will be exactly 1, and in such cases
Y might be also denoted by y.

Although most predictive models and optimization algorithms are designed to
operate exclusively with purely numerical X, real world data is often categorical.
Fortunately, usually a straightforward encoding of the categorical data, like the well
known one-hot encoding, is often enough to overcome this issue. In some rare cases,
though, resorting to a more elaborated embedding of these features is mandatory to
preserve all the valuable information they contain.

On the other hand Y can adopt many forms, or even be non-existent, and Machine
Learning techniques are usually grouped [2, 3] according to the following taxonomy
based on the properties of the data, and more precisely on the availability and form
of Y :

� Supervised Learning: when the target Y is known. That is, the training dataset
is labelled. Contains several subcategories, like

– Regression: when Y has numerical values

– Classification: when Y is a categorical variable



Table 1.1.1: Iris flower dataset
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target

0 5.1 3.5 1.4 0.2 0
1 4.9 3.0 1.4 0.2 0
2 4.7 3.2 1.3 0.2 0
3 4.6 3.1 1.5 0.2 0
4 5.0 3.6 1.4 0.2 0
· · · · · · · · · · · · · · · · · ·

– Ordinal regression/classification: somewhat in between regression and
classification, when Y is an ordinal variable. That is, discrete but or-
dered.

– Supervised feature selection/transformation: when Y is used to filter or
transform the original features.

� Unsupervised Learning: when the target Y is not known. That is, the train-
ing dataset is not labelled. Also several subcategories are included here, for
example

– Clustering: when the objective is to group the data according to a given
similarity metric.

– Anomaly detection: when the objective is to detect outliers.

– Unsupervised feature selection/transformation: when filtering or trans-
forming the original features is the goal, and no target is used for the
purpose.

� Semi-supervised Learning: a mix of supervised and unsupervised learning [4].
Usually, it arises when only a limited amount of data is labelled, but a large
amount of unlabelled data is available. It is common to use the unlabelled data
to pretrain the predictive model, and the labelled data to fine-tune it.

� Reinforcement Learning: when no labelled training dataset is available, but
the environment provides some kind of positive/negative feedback on the pre-
dictions, and a balance between the exploration of the unknown space and the
exploitation of the known space is sought [5].

� Motivational Learning: when a positive/negative feedback is present but very
scarce, and the learning system has to use some internally defined drive func-
tions to motivate curiosity and learn autonomously [3].

Most of what follows will be focused on supervised learning, specially on tech-
niques applied for classification, regression and feature transformation. As an exam-
ple, lets take into account the celebrated Iris flower dataset, introduced by Ronald
Fisher in [6]. The dataset has 150 samples with 4 independent variables each, sepal
length, sepal width, petal length and petal width (Table 1.1.1), and the target is
available and takes categorical values (setosa -0-, veriscolor -1- or virginica -2-, Fig-
ure 1.1.2); so, this is an example of the supervised learning setup, and, more precisely,
classification.

Another well known example is the Boston Housing dataset. This dataset con-
tains U.S Census Service information on housing in Boston, Massachusetts. The



Figure 1.1.2: The Iris flower dataset, with 4 features and 3 classes represented with colors

target is the median value in thousands of the homes in each Boston area, and the
following 13 independent variables (Table 1.1.2) are provided for the task:

� Per capita crime rate by area (CRIM)

� Proportion of residential land zoned for lots over 25,000 sq.ft. (ZN)

� Proportion of non-retail business acres per area (INDUS)

� Charles River indicator (= 1 if tract bounds river; 0 otherwise) (CHAS)

� Nitrogen oxide concentration (parts per 10 million) (NOX)

� Average number of rooms per dwelling (RM)

� Proportion of owner-occupied units built prior to 1940 (AGE)

� Weighted mean of distances to five Boston employment centres (DIS)

� Index of accessibility to radial highways (RAD)

� Full-value property-tax rate per 10,000$ (TAX)

� Pupil-teacher ratio by area (PTRATIO)

� 1000(Bk − 0.63)2 where Bk is the proportion of blacks by area (B)

� Lower status of the population (percent) (LSTAT)



Table 1.1.2: Boston Housing dataset
CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT target

0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 396.90 4.98 24.0
1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 396.90 9.14 21.6
2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 392.83 4.03 34.7
3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 394.63 2.94 33.4
4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 396.90 5.33 36.2
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Figure 1.1.3: The Boston housing dataset, its 13 features plotted against the target

It has 506 samples and, since the target is numeric (Figure 1.1.3), it is an example
of a regression dataset.

In what follows, let {(xn, yn)}, n = 1 . . . N , be a set of observation–target pairs,
and X ∈ RN×d and Y ∈ RN×d′ the matrices where each row represents an observation
or target, respectively. As mentioned, d′ = 1 usually, but that will not always
be the case and it is not uncommon to find regression problems with d′ > 1. In
classification problems, Y is a 1–dimensional column vector of labels, and might
need to be reencoded (as in one–hot encoding) before been fed to a classifier. Also,
in an unsupervised learning setting, Y will not be available.

In all the cases stated above, it is assumed that both X and, if in a regression
setting, Y have been transformed in a previous step by removing their mean, that
is, by removing

X =
1

N

N∑

n=1

xn , Y =
1

N

N∑

n=1

yn,

from every row–vector of X and Y , respectively.



1.1.2 Model

A predictive model will map input features to predictions:

m : Rd → Rd′ (1.1.1)

where Rd is the d-dimensional feature space and Rd′ the d′-dimensional target space.
Since every predictive model implies some assumptions on the data, many fam-

ilies of them exist, and there is no single one that works best on all problems [7].
Regarding the internal structure derived from the assumptions made, and in partic-
ular the properties of their parameter set, predictive models can be classified in the
following way:

� Parametric models: those that have an internal parameter set θ ∈ Θ, with
Θ the space of feasible parameter sets, whose structure and size is (almost)
independent of the data. This category includes multilayer Artificial Neural
Networks with a fixed architecture, for example, whose internal parametric
structure, first hidden layer and output layer aside, is independent of the data.
Usually, these models have a fixed computational prediction cost, regardless of
the size of the dataset used to train them, which is a great advantage in the
era of Big Data.

� Non-parametric models: those whose structure is determined by the data.
Instance-based models like Nearest Neighbors are non-parametric models.

� Semi-parametric models: which combine characteristics of the two categories
above. Decision Trees and Kernel Methods such as Support Vector Machines
are in this category [8].

Other taxonomies that share some of these categories have been proposed [9].
The k-Nearest Neighbors (k-NN) is perhaps the most intuitive of all Machine

Learning models, and arguably the canonical example of non-parametric model. It
assumes a data sample target will be similar to those of samples located in its neigh-
borhood in the feature space. k-NN can be adapted to both classification (k-NN
classifier) and regression (k-NN regressor), and is closely related to k-Means which
is used for clustering and makes similar assumptions.

The simplest k-NN model has only two hyper-parameters: the metric used to
measure distances between samples, usually the Euclidean distance, and k, the num-
ber of neighbors to consider for inference.

As any other Machine Learning model, it has to be fitted to the data before being
used for prediction, but in this particular case, the training process is essentially as
simple as storing the whole training dataset, including both features and targets.
Once fitted, predicting the target of a new, unseen pattern consists on:

� A majority voting among the k nearest neighbors selected from the stored
training data for classification.

� The mean of the target for the k nearest neighbors selected from the stored
training data for regression.



Figure 1.1.4: k-NN (using only pairs of features) boundaries for Iris flower dataset with
k=5

Thus, if, for example, the chosen metric is Euclidean and k = 5, the kNN model
applied to the Iris dataset will classify unseen data according to the boundaries in
the space of independent variables represented in Figure 1.1.4. When applied to each
feature of the Boston Housing regression dataset independently, the kNN model with
k = 5 produces the results displayed in Figure 1.1.5.

Alternatively, a parametric model could be used, and the simplest of them are
Linear Models, like Linear Regression (for regression) and Logistic Regression (for
classification), although they make more assumptions on the data than the neighbor
models.

If a logistic regression model is trained on the Iris dataset, the classification
boundaries produced will be linear, as can be seen in Figure 1.1.6. Also, the lin-
ear regression model can of course be applied to the Boston dataset producing the
regression lines of Figure 1.1.7.

Another important element to consider is the use of feature selection or trans-
formation as a first component in the model pipeline. Focusing on transformation,
widely known examples are:

� Principal Component Analysis (PCA)

� Fisher Discriminant Analysis (FDA)

� Partial Least Squares (PLS)

� Canonical Correlation Analysis (CCA)

The effectiveness of such methods has been proved with models like Principal
Component Regression (PCR) [10], that combines the PCA transformation with a
Linear Regression and has properties similar to those of Ridge Regression.



Figure 1.1.5: k-NN (using single features) predictions for Boston housing dataset with
k=5. Orange dots represent actual data and the dark blue line represents the predictions.

Figure 1.1.6: Logistic Regression (using only pairs of features) boundaries for Iris flower
dataset



Figure 1.1.7: Linear Regression (using single features) predictions for Boston housing
dataset. Orange dots represent actual data and the straight, dark blue line represents the
predictions.

However, many transformation techniques are linear, which implies a limited
expressive power, and, more importantly, have a direct training algorithm that pro-
duces an exact solution, which results in bad scalability with the size of the dataset
as will be detailed later. The use of kernels to mitigate the first shortcoming is com-
mon, but solutions to the second are not widespread as of today, which limit the use
of such tools. On the other hand, feature transformation has some interesting quali-
ties, like the possibility to decompose a bigger problem into simpler subproblems in
a simple and elegant way.

1.1.3 Training

Usually, the prediction m(x) = ŷ is expected to approximate the target y ∈ Rd′ ,
which is achieved by making the training algorithm t optimize an objective function.

Often, this consists on minimizing a loss function L(Y, Ŷ ) between the predic-
tions Ŷ and the targets Y , possibly taking some restrictions into account, but the
alternative approach of maximizing a fitness function is also quite common.

Thus, a training algorithm, or optimizer, seeks to find the set of parameters θ of
m in the space Θ of valid parameters minimizing a function L:

min
θ

L(Y, Ŷ )

s.t. θ ∈ Θ.

The computational complexity of such an optimization problem is highly depen-
dent on the mathematical properties of the loss function. Smooth and convex func-



tions are, naturally, easier to optimize than non-smooth and non-convex functions,
since the existence of local optima and plateaus often causes difficulties.

In some special occasions a direct method is available and the solution of the
optimization problem is deterministic and can be calculated analytically. This is the
case, for example, of Ordinary Least Squares, a method that fits a Linear Regression
model in order to minimize the residual sum of squares (RSS):

L(Y, Ŷ ) =
N∑

n=1

(yn − ŷn)2

= ‖Y − Ŷ ‖2.

Since Ŷ = mθ(X) is linear in terms of θ, L is quadratic in terms of θ, and hence
smooth and convex with a single global minimum. So, the minimum of L is the only
point that meets the condition

∇θL = 0,

and therefore solving this equation leads to the optimal θ.
This, however, is not the case in general, and most optimization problems don’t

have a known analytic solution. Also, direct methods present a serious drawback:
learning is not incremental, i.e., if new data is incorporated into the training dataset,
the whole training process must be repeated from the ground up.

On the other hand, iterative methods, like Stochastic Gradient Descent (SGD),
yield incremental solutions that can be calculated numerically and are usually less
costly for big size datasets.

To be suitable for an incremental learning setup, a loss function l(y, ŷ) has to
be applicable to single instances of the dataset. Some of the most common of such
functions for regression are outlined in table 1.1.3, while those more commonly used
for binary and multiclass ([11]) classification are listed in tables 1.1.4 and 1.1.5,
respectively. In the case of cross-entropy loss the targets and predictions of the C-
class classification problem are one-hot encoded. Observe that some of the outlined
loss functions are not derivable at all points.

Table 1.1.3: Regression losses
Quadratic (y − ŷ)2

Absolute |y − ŷ|
ε-insensitive max(0, |y − ŷ| − ε)

Table 1.1.4: Binary classification losses
Cross-entropy (logistic) −y log(ŷ)− (1− y) log(1− ŷ)

Hinge max(0, 1− yŷ)

In the case of a linear model minimizing a quadratic loss, an iterative method
will have, if certain conditions on the data are met and the step size (learning rate)



Table 1.1.5: Multiclass classification losses
Cross-entropy −∑C

c=1 yc log(ŷc)
Multiclass hinge max(0, 1 + maxc((1− yc)ŷc)−maxc(ycŷc))

of the algorithm is adequate, little trouble finding the optimal set of parameters:
ensuring that each step of the iterative algorithm goes in the opposite direction of
the gradient ∇W l, guarantees that the optimal point, that is the only minimum of
the function, will be reached eventually.

SGD-based iterative methods can also optimize more complex functions, even
when non-linear predictive models are used, but in such cases some difficulties will
arise due to the non-convex or non-smooth nature of the function itself. Optimization
over such non-convex functions requires a more ellaborated strategy to avoid getting
trapped in local minima or plateaus, but even so, these methods have become the
gold standard when dealing with highly complex non-linear models.

To wrap up, regarding the kind of optimization technique used to find the optimal
configuration of a selected predictive model for a given dataset, training algorithms
can be placed into one of two categories:

� Direct: closed-form analytic methods that yield exact solutions, usually with
the serious drawback of a bad scalability with the size of the data.

� Iterative: incremental, numerical methods that yield approximate solutions,
usually without guaranteed convergence to the optimum but more scalable
than direct methods for big datasets.

1.2 Methodology

1.2.1 The Components of a Loss

Reformulating the ideas of [12, 7, 13], a supervised learning problem is defined by the
space of pairs (x, y) ∈ X ×Y , endowed with a probability distribution P (x, y), where
the sought relationship between X and Y , and the conditional probability P (y|x), is
unknown.

The objective is to find the model m that minimizes a cost function, the expected
error or expected risk,

E(m) =

∫
l(y, ŷ)dP (x, y),

where ŷ = m(x) and the loss l measures discrepancy between the model m predictions
and the targets y. The model sought is

m∗ = argminmE(m).

The quality of the model may, however, be considerably affected by many fac-
tors present outside the ideal mathematical world. The available dataset might have
missing values, measurement errors, or simply be too small to faithfully represent



X × Y . The choice of model hyper-parameters may be poor, or even the model
assumptions might be incorrect. The hyper-parameters related to the training algo-
rithm could also lead it to a sub-optimal solution, the algorithm itself might not be
a wise choice for a particular objective function, or a too tight time constraint could
force the optimizer to stop before convergence.

1.2.1.1 Estimation

In practice, only a finite sample (X, Y ) of N data, defined by the pairs (xn, yn), n =
1 . . . N , is available. The empirical error or empirical risk to be minimized is then

EN(m) =
1

N

N∑

n=1

l(yn, ŷn),

and the best model according to this error is

m∗N = argminmEN(m).

This limitation on the available data not only affects the quality of the empircal
error as an approximation of the expected error, but also leads to what is known as
the curse of dimensionality [13, 14] as the number of available feature increases.

The generalization error, also called test error, of a predictive model is the pre-
diction error over independent test data, while the prediction error over the data
used to train the model is known as training error [13]. The goal of the quality ass-
esment process is to correctly estimate the generalization error of the trained model.
Unfortunately, the training error is not a good estimate of the generalization error
and so, it is a methodological mistake to assess a model on the same data that was
used for training it.

Some datasets specify train and test partitions, in which case it is advisable to
train the predictive model using the train partition and assess its quality with the
test partition, not only to avoid being deceived by the usually optimistic metrics
calculated over the training partition, but also to be able to compare results with
other models on the same dataset. However, most datasets do not specify any kind
of partition. In those cases, probably the most cautious way to proceed is to perform
Cross-Validation (CV). The most common form of non-exhaustive CV, k-fold CV,
starts by randomly partitioning the dataset into k equal sized subsamples. Once the
dataset is partitioned, a single subsample of the k is saved as the validation data,
while the remaining k − 1 subsamples are used as training data. This process is
repeated k times, with each of the k subsamples used exactly once as the validation
data, and the k results are then averaged to produce a single estimation of the
generalization error.

1.2.1.2 Approximation

Not only the data is limited in the real world, but also the time available to train
different predictive models. So, only a family M of models can be explored, and
since the optimal m∗ is unlikely to be part of M, the best model available will be
denoted

m∗N,M = argminm∈MEN(m).



Figure 1.2.1: k-NN cross-validation scores for different values of k for the Iris flower
dataset

Figure 1.2.2: k-NN (using only pairs of features) boundaries for the Iris flower dataset
with k=1



Figure 1.2.3: k-NN (using only pairs of features) boundaries for the Iris flower dataset
with k=25

Moreover, even if just a single model is to be considered, the space defined by its
hyper-parameters is usually too big to be exhaustively explored, with the subsequent
loss of performance induced by a bad choice of hyper-parameter values. As an
example, figure 1.2.1 shows different scores (calculated by cross-validation) of the
k-Nearest Neighbor classifier as a function of k for the Iris dataset. It seems the
best values for this hyper-parameter lie between 5 and 13, forming a sort of ’inverted
U’ curve. This is a visual example of what is known as the bias-variance tradeoff
[13, 15]: if the model is too inflexible (high k, figure 1.2.3), the bias component of
the error will be too high, while if the model is too flexible (low k, figure 1.2.2), the
variance component of the error will rise.

Hyper-parameter search adds another layer of complexity to the cross-validation
methodology explained before, since manually choosing the hyper-parameters that
minimize the error biases the model and yields an overly-optimistic score. The recom-
mended approach in this case is known as nested cross-validation [16]. At its higher
level, the experiment consists again in fitting the model to the data and performing
an assesment; but at its lower level, training is a more involved process where several
hyper-parameter sets are tried and evaluated, and only the best performing one is
then used for the upper level assesment. Each hyper-parameter set is evaluated in an
inner CV loop, while an outer loop (with only one iteration if a train-test partition
is available or k iterations of k-fold CV if it is not) determines the generalization
error of the model and its hyper-parameter search.

Several strategies can be used for the hyper-parameter optimization: from the
brute force grid search and randomized search [17] to the more sophisticated bayesian
search [18], this last one being of special interest when the underlying model whose
hyper-parameters must be optimized is computationally complex and the waste of
time exploring bad hyper-parameter sets is unacceptable.



1.2.1.3 Optimization

Finally, a direct algorithm that provides an analytical solution for the training of a
predictive model is not generally available or is available but impractical due to its
cost for a given training dataset, and iterative algorithms can only provide numerical
solutions that approximate the analytical one. Since only a limited set of training
algorithms and their hyper-parameters, T , can be explored, m∗ will not be found in
general. Then, the best available model considering only training algorithms in T
will be denoted

m∗N,M,T = argminm∈M,t∈TEN(mt).

with subindex t of mt denoting the effect of the training algorithm on the final
performance of the model.

Usually, if a model is expressive enough, that is, it has enough complexity to learn
the data, the training error decreases with each iteration of the training algorithm.
But this often comes with an increase of the test error if too many iterations are
performed. This is known as overfit, and implies that the model is learning not just
the relevant information in the data but also the noise, therefore losing generalization
capability. A good way to avoid this is to partition the training data into train
and validation sets, using the first to fit the model and the second to monitor the
error function at each iteration of the training algorithm. Once the error over the
validation data ceases to decrease for more than just a few iterations, it is advisable
to finish the training since the model is not improving its generalization capability.
This technique is known as early stopping, and is widely used in SGD-based training
algorithms [19].

1.2.1.4 Combining the three components

At this stage, it should be clear that selecting an adequate model and fitting it
successfully to the data is not trivial, given the number of factors to consider.

Also, datasets are usually finite, and so is the time available, which implies that
the number of models to be considered and the number of iterations to fit each one
of them are also limited. Then, the three error components cannot be minimized at
the same time and a compromise between them must be sought.

Summing up what was discussed in the previous section, the excess error of a
fitted model can be decomposed as

E =E(|E(m∗)− E(m∗N)|)+
E(|E(m∗N)− E(m∗N,M)|)+
E(|E(m∗N,M)− E(m∗N,M,T )|)

=Eest + Eapp + Eopt,

where the estimation error, Eest, measures the impact of minimizing the empirical
error instead of the expected error, the approximation error, Eapp, measures how
far the optimal model is from model family M, and the optimization error, Eopt,
measures the influence of the optimization algorithm on the quality of the solution.



1.2.2 Metrics

Moreover, demonstrating that a model has value in the real world generally requires a
metric that is interpretable in business terms, something that the usual loss functions
do not accomplish. Notice that such metrics are only applied a posteriori once the
model training is finished. Therefore they are independent of the training algorithm
and don’t need to be applicable to single instances of the dataset, just to the whole
test partition. Although such metrics are not used during the training of the model,
they can, however, be used to guide a hyper-parameter search, since they can be
applied to a cross-validation fold just in the same way they would be applied to a
test partition.

The choice of a metric might be determined by the properties of the training
dataset or the behavior desired for the model. For example, a particular metric can
be better suited for a dataset that includes a considerable number of outliers, while
other metric might be a better choice for a more uniform dataset, even when the
targets have the same form in both cases. Conversely, a metric might be the best
choice in a classification setup where it is critical not to miss false negatives, while
a different metric could be the best choice if, using the same dataset, it is more
desirable to avoid false positives.

Tables 1.2.1 and 1.2.3 display some of the most commonly used metrics for regres-
sion and classification problems, respectively. The notation used in 1.2.3 is explained
in table 1.2.2.

Table 1.2.1: Regression metrics

Mean Squared Error MSE(Y, Ŷ ) = 1
N

∑N
n=1(yn − ŷn)2

Mean Absolute Error MAE(Y, Ŷ ) = 1
N

∑N
n=1 |yn − ŷn|

R2 Score/Coefficient of Determination R2(Y, Ŷ ) = 1−
∑N

n=1(yn−ŷn)2∑N
n=1(yn−y)2

where y = 1
N

∑N
n=1 yn

Explained Variance EV(Y, Ŷ ) = 1− V ar(Y−Ŷ )
V ar(Y )

Table 1.2.2: Classification notation

Condition positive Condition negative
Predicted positive True positive (tp) False positive (fp) or type I error
Predicted negative False negative (fn) or type II error True negative (tn)

Focusing on regression metrics, the most popular are the Mean Squared Error
(MSE) and the Mean Absolute Error (MAE). Both of them take values from 0
(perfect fit) to ∞. MSE is usually favored for its smoothness. It is very sensible to
outliers, which can be a problem, and not very discriminative if the residuals are too
small. MAE is more stable and resilient to outliers, but is not differentiable in 0,
which may result in more complex training algorithms. Another advantage of MAE



Table 1.2.3: Classification metrics

Accuracy ACC(Y, Ŷ ) = 1
N

∑N
n=1 I(ŷn = yn) = tp+tn

N

where I is the indicator function

Precision (Positive Predictive Value) PPV (Y, Ŷ ) = tp
tp+fp

Recall (True Positive Rate) TPR(Y, Ŷ ) = tp
tp+fn

F1 F1(Y, Ŷ ) = 2 PPV ·TPR
PPV+TPR

Area Under the ROC Curve AUC(Y, Ŷ ) =
∫ 1

x=0
TPR(x)
FPR(x)

dx

where FPR(Y, Ŷ ) = fp
fp+tn

is the False Positive Rate

is its interpretability, since the units of MAE are the same as those of targets and
predictions.

Less used metrics include Explained Variance and the R2, also known as Coef-
ficient of Determination. Explained Variance is rarely used for regressors, but it is
common as a transformer metric, for example in PCA or PLS. R2 is a more elabo-
rated score metric that works like a scale-free version of MSE. It takes values from 1
(perfect fit) to −∞, with 0 being the R2 of a constant model that predicts the mean
target. It can be interpreted, then, as how much better the model is compared to the
constant mean model, regardless of the magnitude of the target or its distribution.
This is the preferred metric for evaluation of trained regression models in libraries
as successful and solid as Scikit-learn [20].

In classification, the choice of a correct metric can be even more influential than
in regression. The most popular metric for classification is Accuracy, defined as
the fraction of correct predictions, probably because of its simple interpretation,
implementation, and the fact that it is applicable for both binary and multiclass
targets. It is the default metric for a posteriori evaluation of classifiers in Scikit-learn
[20]. However, it is a very poor choice in some very common real world problems, as,
for example, imbalanced classification, since it tends to favor classifiers that ignore
the least represented classes. Other metrics like Precision, defined as the fraction
of true positives in the positives predicted by the model in a binary classification
task, and Recall, defined as the fraction of positives tagged as such by the model in
a binary classification task, can overcome this limitation but unfortunately present
other drawbacks.

Another interesting choice is F1, the harmonic mean of Precision and Recall. It
represents an compromise between both metrics, being a good choice even for very
unbalanced datasets, and takes values between 1 for a perfect model and 0 for a
model where Precision or Recall is 0. This metric can be generalized for multiclass
problems in several ways, perhaps the most common being to calculate it for each
label separately and finding their average weighted by support.

AUC, the Area Under the ROC Curve, is a less common score that is, neverthe-
less, a much better choice than Accuracy in general. [21] presents a revealing analysis
of the properties of Accuracy and AUC, and concludes that AUC is consistent with
Accuracy but more discriminative, and so a better metric overall. It has been used as
the reference metric in [22] in a generalized version for multiclass classification. AUC



Figure 1.2.4: CRISP-DM diagram from https://en.wikipedia.org/wiki/

Cross-industry_standard_process_for_data_mining.

is, however, a not very popular metric, probably because it requires the classifier to
yield scores, which is not always possible.

1.2.3 Standard Production Methodologies

Finally, several standards exist related to the process of developing a predictive
model, with Knowledge Discovery in Databases (KDD), Sample, Explore, Modify,
Model and Assess (SEMMA) and Cross-industry Standard Process for Data Mining
(CRISP-DM) [23] being the most widespread. CRISP-DM is possibly the most
popular, and has been extended to produce the new Analytics Solutions Unified
Method for Data Mining/Predictive Analytics (ASUM-DM) [24] standard. These
methodologies focus on the iterative nature of the predictive modeling process, and
cover almost any data-driven application.

While CRISP-DM and ASUM-DM cover the whole predictive modeling cycle,
including steps as business understanding or deployment of the built solution, KDD
and SEMMA are focused on its core, ranging from data preparation to evaluation of
the solution. The rest of this thesis is devoted to just a small part of the process:
the modeling phase, including transformation of the data, training of a predictive
model, and assessment of its performance.

https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining
https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining


1.3 Contributions

Artificial Neural Networks (ANNs) are some of the most powerful tools Machine
Learning can provide nowadays for regression or classification problems. In a sense,
they are just a generalization of linear models like Linear Regression and Logistic
Regression, but their capabilities are much wider. Being universal approximators
and having great flexibility to be adapted to many types of data makes ANNs a very
promising tool for Machine Learning practitioners.

This thesis is structured in three main contributions related to ANNs. The first of
them is an application of ANNs, and more precisely convolutional neural networks,
to the problem of prediction in renewable energies. Data provided by Numerical
Weather Prediction (NWP) [25] systems usually has a spatial structure that can be
exploited by such models, resulting in an improvement of the results while keep-
ing computational costs under control thanks to the efficiency of artificial neural
networks.

In the second place, feature transformation algorithms can be used as a first step
in the modelization pipeline for a Machine Learning problem, decomposing it in sim-
pler subproblems for deeper understanding and a higher control on the costs of the
solution. However, traditional feature transformation techniques are usually linear
or kernel methods with analytical solutions either with limited expressive power or
with a very high computational cost. This is the case of Fisher Discriminant Analysis
(FDA), a feature transformation algorithm for classification problems. The contri-
bution consists in exploiting an iterative alternative to traditional, eigenvalue-based,
FDA training algorithm. This algorithm is based on Least-Squares and the solution
produced is in some sense equivalent to that of traditional FDA, but its computa-
tional cost is much lower when working with big data problems, and, moreover, a
non-linear extension based on ANNs can be applied instead of the usual kernel al-
ternative, resulting in an efficient non-linear feature transformation that maximizes
separability. Also, the performance of such ANNs in imbalanced classification prob-
lems will be studied.

In the third place, margin loss functions employed in support vector machines
(SVMs) make models more stable and could be an interesting improvement for ANNs,
that have traditionally used mean squared error in regression and cross-entropy in
classification. The contribution is a comprehensive study on the performance of
ANNs paired with ε-insensitive and hinge losses, and the effect of combining several
losses in a single neural network architecture taking advantage of the flexibility of
modern computation frameworks.

1.4 Structure

The structure of this thesis, with a brief summary of each of the chapters, is:

� Chapter 1: Introduction, the present chapter, contains a brief introduction
to the field of Machine Learning, assuming the reader has basic knowledge in
linear algebra, probability and optimization. The motivation and contributions
are also detailed here.



� Chapter 2: Machine Learning Core describes linear models with direct
training like Linear Regression, Ridge and Fisher’s Discriminant Analysis, gives
a brief description of Linear Models with iterative training, including Linear
and Logistic Regression and Linear SVM. Also introduces a kernel extension
with direct training for linear models, Kernel Ridge, and Kernel Discriminant
Analysis, gives a brief description of Kernel Models with iterative training,
Kernel SVMs, and concludes with an introduction to Artificial Neural Networks
and Deep Learning.

� Chapter 3: Prediction in Wind and Solar Energy contains the contri-
butions to the problem of prediction in Wind and Solar Energy published in
[26]. The related publication [27] is also included.

� Chapter 4: Deep Fisher Discriminant Analysis contains the contribu-
tions to the generalization of Fisher Discriminant Analysis published in [28].
Related publications [29, 22] are included alongside the main contribution [28].

� Chapter 5: Margin in Artificial Neural Networks contains the contribu-
tions to the use of margin loss functions in Artificial Neural Networks published
in [30]. Additional related publications [31, 32] are also included.

� Chapter 7: Conclusion finishes the main part of the thesis with a summary
and a discussion on the results of the previous chapters and some hints for
further work.

� Appendix A: Publications lists the articles published in journals and con-
ferences during the elaboration of this thesis.

� Appendix B: Software lists the open source software repositories developed
for the realization of the experiments in the associated publications.



Chapter 2

Machine Learning Core

The purpose of this chapter is to briefly introduce some predictive models that will
make up the basis of the contributions and experimental results. The first objective is
to present linear models with closed-form analytical solution. Once this first objective
is achieved, a second goal is to introduce iterative training algorithms for those
linear models that can make use of them. Then kernel methods will be presented
to overcome the limitations of linear models by allowing non-linear transformations
using the kernel trick. The last objective is to present Artificial Neural Networks,
giving a brief summary of their strengths and weaknesses, as an non-linear alternative
for Big Data setups.

The chapter is organized in three sections. The first one is focused on linear
models and consists on three subsections. The first subsection is a brief introduction
to basic linear models for regression problems that have analytic solutions, covering
Linear and Ridge Regression, and Fisher’s Discriminant Analysis, while the second
subsection introduces linear models with iterative training algorithms resulting in
what is known as Generalized Linear Models. The third subsection introduces the
concept of margin, which results in the well known Linear Support Vector Machines.
The second section introduces kernel models and is also structured in two subsec-
tions, the first one dedicated to Kernel Ridge and Kernel Discriminant Analysis and
the second one focused on Kernel Support Vector Machines. The third section is de-
voted to Deep Models, with subsections on approximation (Multilayer Perceptrons,
Convolutional Neural Networks, etc.) and optimization (Backpropagation, overfit,
underfit, etc.).

2.1 Linear Models

Focusing on parametric models, and according to the Occam’s Razor, the model with
the smallest number of parameters should be considered first when facing a Machine
Learning problem. Therefore, linear models are usually a natural starting point.

Linear models produce outputs that are linear combination of the input features.
Therefore, their parametric structure consists simply on a numerical vector w ∈ Rd

and a bias term b ∈ R, also called intercept :

ŷ = m(x) = xtw + b.

21



For convenience, it is usual to prepend a 1s column to the input matrix X,
resulting in a matrix of size N× (d+1), so the bias can be prepended to vector w for
all the model parameters to be handled jointly. Also, this notation can accommodate
multivariate targets. It is usual to denote the parameter matrix as W , and the model
becomes

Ŷ = m(X) = XW.

Some of those models, like Linear Regression for regression tasks, Principal Com-
ponent Analysis for unsupervised feature tranformation and Linear Discriminant
Analysis for feature transformation in classification setups, can be fitted with a di-
rect algorithm that provides a closed-form analytical solution. However, no direct
algorithm is available for most models, that have to be trained with a family of algo-
rithms completely different from the direct ones mentioned previously. In fact, this
kind of iterative algorithms can fit linear models that don’t have an analytic, closed-
form solution. Although an analytic solution might seem the best option at first
sight, the high computational cost usually associated to such solutions can become a
daunting problem when dealing with big datasets. Iterative training algorithms can
only provide numerical solutions that approximate the analytic solution, but on the
other hand their computational cost is usually smaller and can be controlled easily
by limiting the number of iterations.

2.1.1 Linear and Ridge Regression

If the problem at hand is a regression problem, that is, the target Y is available for
the training dataset and it is numerical, Linear Regression is the most basic model
suitable for the task.

There are many acceptable definitions of the straight line that best fits the data,
but it is usual to look for the one that minimizes the sum of the squares of the
residuals, that is, the squares of the differences between targets and predictions
[15, 13]. This objective function to be minimized is the aforementioned RSS

L(Y, Ŷ ) = ‖Y − Ŷ ‖2 (2.1.1)

and, since it is a convex and differentiable function, its optimization is quite simple:

∂L

∂W
= −2X t(Y − Ŷ ) = −2X t(Y −XW ) = 0 (2.1.2)

⇐⇒ X t(Y −XW ) = 0 (2.1.3)

⇐⇒ W ∗ = (X tX)−1X tY = S−1X tY, (2.1.4)

where S = X tX is the empirical covariance matrix.
This method is known as Ordinary Least Squares (OLS), and, as it has been

outlined, it is a direct method that provides an analytical solution to the problem.
Recall N is the number of observations in the dataset, d is the dimension of the

input space and d′ is the dimension of the target space. Then, solving 2.1.4 has a
cost of

1. O (d2N) to compute X tX.



2. O (d3) to compute its inverse.

3. O (d′dN) to compute X tY .

4. O (d′d2) to compute the product of the previous two.

O (d2N) and O (d′dN) are the dominant terms when the size of the dataset is greater
than the number of features or the dimension of the target, while O (d3) or O (d′d2)
dominate otherwise.

Some assumptions have to be made on the data to get a good model:

Linearity : the response variable is a linear combination of the independent variables.

Absence of multicollinearity : no collinearity between the predictor variables exists.

Homoscedasticity : the variance of the residues (errors) is constant for different
values of the predictor variables.

No autocorrelation of the errors : the errors are uncorrelated between observations.

Naturally, if these assumtions are not fulfilled, the model will yield poor results,
or even worse, it will not be applicable. This is the case when the assumption of
absence of multicollinearity is not met, which leads to a non-invertible matrix X tX
that precludes the application of OLS. Also, if the number of features is higher than
the size of the training dataset, the model can easily overfit, yielding poor results.

All this can be mitigated by adding a L2 regularization term to 2.1.1

L(Y, Ŷ ) = ‖Y − Ŷ ‖2 + α||W ||22, (2.1.5)

whose analytical solution is

W = (S + αId)
−1X tY = DαX

tY, (2.1.6)

with
Dα = (S + αId)

−1 .

The Linear Regression model with L2 regularization is known as Ridge Regression.

2.1.2 Fisher’s Linear Discriminant Analysis

While several unsupervised feature transformation techniques exist, like the very
popular Principal Component Analysis (PCA), the application of such tools focused
on describing data is not guaranteed to perform well in a classification setup. Fisher’s
Linear Discriminant Analysis, on the other hand, is a linear feature transformation
technique designed specifically for classification problems. It intends to reduce the
dimensionality of the data while maximizing the separability of the different classes
in the projected features, that are linear combinations of the original ones. This goal
makes possible its application in classification problems. There are several definitions
of separability that can be used, but probably the most commonly used function for
maximization is

g(W ) = trace(s−1T sB) = trace
(
(AtSTA)−1(AtSBA)

)
, (2.1.7)



where A is the d × (c − 1), with c the number of classes, projection matrix, SB =
X tCEΠ−1EtCX and sB denote the between–class covariance matrices of the original
data and the projections z = Ax, respectively, and ST = X tCX and sT denote the
total covariance matrices of the original data and the projections, respectively [33].
Here Π denotes the c × c diagonal matrix with Πnn = Nn the number of sample
patterns in class n, E denotes the N × c one–hot encoding matrix, and C ∈ RN×N

the centering matrix

C = IN −
1

N
1N1tN ,

with 1N the all ones N–dimensional vector.
Solving ∇Ag = 0 leads to

0 = −2STAs
−1
T sBs

−1
T + 2SBAs

−1
T (2.1.8)

and, hence, to
S−1T SBA = As−1T sB, (2.1.9)

that, up to an invertible transformation of A with no effect on the cost function
g(W ), gives the eigenvalue problem

S−1T SBA = AΛ, (2.1.10)

with Λ the non–zero eigenvalues of S−1T SB.
Therefore, maximizing g(A) will be achieved by sorting the eigenvalues of Λ and

selecting the q = min{d, c − 1} eigenvectors associated to the largest ones, with c
being the number of classes. The solution is not unique and it is common to impose
the normalization AtSTA = Iq. Also, in some problems ST may not be invertible
and it is frequent to use the regularized version ST + λI with an appropriate λ > 0
instead.

Solving the eigenvalue problem would require the computation of

1. ST at a cost of O (Nd2).

2. Its inverse at a cost of O (d3).

3. S−1T SB at a cost of O (d3).

4. Its SVD decomposition at a cost of O (d3)

Therefore three steps with a cost O (d3) are needed.

2.1.3 Iterative Linear Model Training

2.1.3.1 Linear and Ridge Regression

OLS will produce an exact, analytical solution for linear regression, and the same is
true for the direct training of ridge regression. However, direct methods present a
series of important drawbacks.

First, consider the possibility that new, labelled data would be made available.
This would potentially lead to a solution of higher quality through a lower estimation



error, the one related to the quality of the data, but it is not simple to update the
parameters of a trained model using the new data with OLS, that consists on a single
step calculation over the full data matrices X and Y . Also, the computational cost
of OLS can be too high since the cost is not linear in terms of d.

Those drawbacks could be prevented with a different kind of algorithm, in partic-
ular an iterative algorithm based on gradient descent. The idea behind such methods
is that the data is processed sequentially in batches, starting in a random initial con-
figuration of the model that is refined with each iteration by using a new data batch
to push the parameters in the direction with the highest decrease of the loss function.

Such algorithms can’t produce a perfect, analytical solution such as the direct
ones, but on the other hand the learning is incremental and the full data matrix
is never used unless the batch size, that is a free hyper-parameter, is equal to the
dataset size. In the case of linear regression, this is done by minimizing the residual
sum of squares

E = ‖Y − Ŷ ‖2
= ‖Y −XW‖2,

for batches of N data. Gradient descent consists on updating the parameters in the
opposite direction of the gradient of the loss with respect to W , whose value is

∇E(W ) = −2X t(Y −XW ),

which points in the direction of steepest ascent of the loss function, and, therefore,
opposite to the desired direction for the parameter updated:

W ← W − η∇E(W ), (2.1.11)

where η ∈ (0,∞) is the learning rate, a hyper-parameter that determines the mag-
nitude of the parameter updates.

Gradient descent has some drawbacks in addition to the lack of a perfect ana-
lytical fit of the model’s parameters, particularly the sensibility to the learning rate
and to the disparity in the scale of the variables. It is usual to standardize variables
prior to the application of the gradient descent algorithm to ease these problems.

2.1.3.2 Logistic Regression

So far, all linear models discussed handle numerical features and responses, but
categorical variables are common in real-world applications, both as input or as
target. Some models, such as those based on decision trees, can work with categorical
data out of the box, but linear models and derivatives need such variables to be
transformed into numerical values. The most common transformation for categorical
features is one-hot encoding, consisting in the substitution of the original categorical
features by dummy one-out-of-K features, but there are many other alternatives. For
categorical targets, that is, the target of a classification problem, one-hot encoding
is always used, with one of the dummy variables generated being dropped when the
problem is binary.



Figure 2.1.1: Logistic function

Considering a classification problem, and assuming all the categorical data has
been properly encoded, nothing prevents linear regression from being used, but per-
formance will often be poor. It is advisable to adapt the model for the kind of task
at hand, and this consists in modulating the output by a logistic function,

P (Ŷ |X) =
1

1 + e−Z
, (2.1.12)

where Z = XW is the output before modulation, represented graphically in 2.1.1,
or a softmax [13] function,

P (Ŷc|X) =
eZc

∑C
i=1 e

Zi

, c = 1 . . . C, (2.1.13)

where Zc = XWc is the output corresponding to class c before modulation and Wc

the set of parameters corresponding to class c, so it resembles the one-hot encoded
target and can be directly interpreted as a conditional probability.

Also, given the particular form of the target, the squared error loss function is
inappropriate [34], and cross-entropy,

E = −
N∑

n=1

−Yn log(Zn)− (1− Yn) log(1− Zn), (2.1.14)

with Zn = XnW , in the case of binary classification, or categorical cross-entropy

E = −
N∑

n=1

C∑

c=1

Yn,c log(Zn,c), (2.1.15)

with Zn,c = XnWc, in the case of multiclass classification, is a more recommendable
choice.

Observing the loss function, it becomes clear that a direct method to get an exact
analytical solution of the logistic or multinomial regression is not available, so in this
case resorting to an iterative algorithm, such as SGD, is a need.



2.1.4 Linear Support Vector Machines

The training of a linear SVM model can be performed with a variety of iterative
algorithms. SGD is sometimes used, taking the appropriate precautions to deal with
the non-differentiability of the loss function, when the number of samples in the
training dataset is bigger than the number of features, while Coordinate Descent
[35] is usually preferred in the opposite case.

2.1.4.1 Linear Support Vector Classifiers

Let’s focus on a binary classification problem. It is said to be linearly separable if
a linear model m such that m(xi) = yi, yi ∈ {+1,−1} ∀i = 1 . . . N can be found.
If a problem is linearly separable, an infinite number of linear solutions will exist,
but it is clear that not all of them have the same generalization capability. Support
Vector Machines have the goal of finding the maximum margin solution of a binary
classification problem, that is, the separating plane that maximizes the distance to
the points of the data sample or margin, so that if a sample is slightly modified, it
will be still correctly classified.

If the training dataset is defined by

{(x1, y1) . . . (xN , yN)}, xn ∈ Rd, yn ∈ {−1, 1},

and assuming the problem is linearly separable, that is, W , b exist such that

yn(W txn + b) > 0, n = 1 . . . N,

then the margin of a separating plane is

ρ = min
xn

1

||W || |W
txn + b|.

The optimal plane is then the W that solves

argmax
W,b

ρ

s.t.
1

||W ||yn(W txn + b) ≥ ρ, n = 1 . . . N,

and, taking ||W || = 1
ρ
, it becomes

argmax
W,b

1

||W ||
s.t. yn(W txn + b) ≥ 1, n = 1 . . . N,

which is equivalent to

argmin
W,b

1

2
||W ||2

s.t. yn(W txn + b) ≥ 1, n = 1 . . . N,



that is more convenient to work with.

The assumption of separability is too strong in general, but some flexibility can
be induced with slack variables ξn

argmin
W,b,ξ

C

N∑

n=1

ξn +
1

2
||W ||2 (2.1.16)

s.t.

{
yn(W txn + b) ≥ 1− ξn, n = 1 . . . N,

ξn ≥ 0, n = 1 . . . N,

or, equivalently,

argmin
W,b,ξ

C
N∑

n=1

ξn +
1

2
||W ||2

s.t.

{
ξn ≥ 1− yn(W txn + b), n = 1 . . . N,

ξn ≥ 0, n = 1 . . . N,

where ξn are the slack variables and C is the hyper-parameter that controls the
slacking allowed on the loss function. A point xn will have an associated slack
variable ξn = 0 if it is correctly classified and further from the separating hyperplane
than the margin, 0 < ξn ≤ 1 if correctly classified but not far enough from the
hyperplane, and ξn > 1 if missclassified.

This constrained optimization problem can be reformulated to incorporate the
constraints as part of the objective function,

argmin
W,b

C
N∑

n=1

max(0, 1− yn(W txn + b)) +
1

2
||W ||2.

This problem is equivalent to that of a linear model with Tikhonov regularization
minimizing the hinge loss,

N∑

n=1

max(0, 1− yn(W txn + b)) + α||W ||2.

Once the Linear Support Vector Classifier has been fitted, predictions can be
obtained with

ŷ = sign(W tx+ b).

As will be shown later, obtaining a formulation of the model in terms of the inner
products of the data can be of interest. To do so, let’s start by writing down the
Lagrangian of (2.1.16) which is

L = C
N∑

n=1

ξn +
1

2
||W ||2 −

N∑

n=1

αn(yn(W txn + b)− (1− ξn))−
N∑

n=1

µnξn, (2.1.17)



where αn, µn ≥ 0 ∀n, that, minimizing w.r.t W , b and ξn, that is, making zero the
respective derivatives, gives

W =
N∑

n=1

αnynxn, (2.1.18)

0 =
N∑

n=1

αnyn,

αn = C − µn,

and substituting (2.1.18) into (2.1.17), the dual formulation of the problem is ob-
tained:

D(α) =
N∑

n=1

αn −
1

2

N∑

n=1

N∑

n′=1

αnαn′ynyn′x
t
nxn′ (2.1.19)

s.t.

{ ∑N
n=1 αnyn = 0,

0 ≤ αn ≤ C, n = 1 . . . N.

After solving the dual (usually with SMO [36, 37]), the Karush-Kuhn-Tucker (KKT)
conditions can be applied on the support vectors SV to get the optimal b and the
predictor is given by

ŷ = sign(
∑

n∈SV
ynαnx

t
nx+ b).

The idea of improving the linear model for classification with the concept of
margin is now easy to implement, just by replacing the traditional cross-entropy
loss by the hinge loss. A k-class problem with k > 1 can be reformulated as k 1-
versus-rest binary classification subproblems, and the binary SVM can be used as
the classifier for each of the resulting subproblems.

2.1.4.2 Linear Support Vector Regressors

The same idea is applicable to regression problems. Consider now the training
dataset as

{(x1, y1) . . . (xN , yN)}, xn ∈ Rd, yn ∈ R.

The idea now is to define a tolerance ε and minimize the error given by





−(ŷ − y)− ε ŷ − y < −ε
0 −ε ≤ ŷ − y ≤ ε

(ŷ − y)− ε ε < ŷ − y,

where it is clear that differences between y and ŷ smaller than ε are not penalized.

The regression plane produced will keep the training data at a distance smaller
than ε, which, again, might be a too strong assumption that can be relaxed using



slack variables ξn to arrive to the optimization problem

argmin
W,b,ξ,ξ̃

C
N∑

n=1

(ξn + ξ̃n) +
1

2
||W ||2 (2.1.20)

s.t.





ξn ≥ −(yn − (W txn + b))− ε, n = 1 . . . N,

ξ̃n ≥ yn − (W txn + b)− ε, n = 1 . . . N,

ξn, ξ̃n ≥ 0, n = 1 . . . N.

This can be reformulated as

argmin
W,b

C
N∑

n=1

max(0, |yn − (W txn + b)| − ε) +
1

2
||W ||2,

which is equivalent to the problem of a linear model with Tikhonov regularization
minimizing the epsilon-insensitive loss,

N∑

n=1

max(0, |yn − (W txn + b)| − ε) + α||W ||2.

Predictions for a fitted Linear Support Vector Regressor can be obtained with

ŷ = W tx+ b.

Again, a dual formulation of the problem can be obtained. The Lagrangian of
(2.1.20) is

L = C
N∑

n=1

(ξn + ξ̃n) +
1

2
||W ||2 −

N∑

n=1

αn(ξn + yn − (W txn + b) + ε)−(2.1.21)

N∑

n=1

α∗n(ξ̃n − yn + (W txn + b) + ε)−
N∑

n=1

µnξn −
N∑

n=1

µ∗nξ̃n,

where αn, α
∗
n, µn, µ

∗
n ≥ 0 ∀n. Minimizing it w.r.t W , b, ξn and ξ̃n, that is, computing

the partials and equating to 0 gives

W =
N∑

n=1

(αn − α∗n)xn, (2.1.22)

0 =
N∑

n=1

(αn − α∗n),

αn = C − µn,
α∗n = C − µ∗n,



Substituting (2.1.22) into (2.1.21) gives the dual problem

D(α, α∗) = −1

2

N∑

n=1

N∑

n′=1

(αn − α∗n)xtnxn′(αn′ − α∗n′) + (2.1.23)

N∑

n=1

(αn − α∗n)yn −
N∑

n=1

(αn + α∗n)ε,

s.t.

{ ∑N
n=1 αnyn = 0,

0 ≤ αn, α
∗
n ≤ C, n = 1 . . . N.

As in the classification case, the dual can be solved with SMO and the KKT
conditions can be applied once again to arrive to

ŷ =
∑

n∈SV
(αn − α∗n)xtnx+ b.

2.2 Kernel Models

So far, all the models covered are linear. Linear models have many desirable proper-
ties such as simplicity, explainability and stability among others, but often lack the
expressive power needed to solve real-world problems with the required accuracy.

Fortunately, many linear models can be altered to overcome some of their limi-
tations with a slight, elegant modification: the kernel trick, sacrificing explainability
to achieve a greater expressiveness in the process.

This technique allows to transform an algorithm expressed in terms of an internal
product of the form xtx and generalize it with a non-linear kernel. In more detail,
consider an expansion of x, x̃ = φ(x), with φ a non-linear transformation from the
original d-dimensional feature space to a new D-dimensional feature space, usually
with D � d. The expanded data matrix will be denoted as X̃.

If the original algorithm in terms of X can be expressed in terms of the dot
product XX t, then this product can be substituted by the kernel matrix K = X̃X̃ t

and the algorithm will benefit from the D-dimensional representations without the
need to explicitly compute them. Thus, a kernel machine is a linear model where
this trick is used, replacing all appearances of XX t by K without needing explicit
knowledge of the transformation φ.

2.2.1 Kernel Ridge

The analytical solution of ridge regression, (2.1.6), can be rewritten as

W = (X tX + αI)−1X tY = X t(XX t + αI)−1Y,

and, applying the kernel,
W̃ = X̃ t(K + αI)−1Y.

Computing W̃ is unfeasible due to the dimension of X̃, but in practice only (K +
αI)−1Y will be needed to fit the model and perform inference, at a cost of



1. O (N2κ), where κ is the cost of a kernel computation k(x, x′), to compute K.

2. O (N3) to compute the inverse.

3. O (d′N2) to compute the final product with Y .

For inference, the predictions are given by

Ŷtest = X̃testW̃ = X̃testX̃
t(K + αI)−1Y = Ktest(K + αI)−1Y,

where Xtest = {x′1 . . . x′M} is the matrix with M unseen, test data, and Ktest =
(k′1 . . . k

′
M)t, with k′m = (k(x′m, x1) . . . k(x′m, xN)). These predictions have a compu-

tational cost of

1. O (NMκ), where κ is the cost of a kernel computation k(x, x′), to compute
Ktest.

2. O (d′MN) to compute the final product.

2.2.2 Kernel Fisher’s Discriminant Analysis

The kernel–based extension of Fisher’s Discriminant Analysis [38, 39] is also quite
popular. Mapping X into a new feature space with a non-linear transformation and
computing Discriminant Analysis there will provide the flexibility needed in many
real world problems. Several formulations of the method, like that of [40], have been
proposed. The one published in [28] will be followed here.

If X̃ is again the projected data, then the optimal kernel discriminant will be
given by the W that maximizes

g(W ) = trace(s−1T sB) = trace
(

(AtS̃TA)−1(AtS̃BA)
)
, (2.2.1)

where the notation is the same as in LDA but for S̃B = X̃ tCEΠ−1EtCX̃ and S̃T =
X̃ tCX̃ that denote the between–class and total covariance matrices of the expansions
X̃.

Again, this leads to the eigenvalue problem

S̃−1T S̃BÃ = ÃΛ, (2.2.2)

with Λ the non–zero eigenvalues of S̃−1T S̃B. But in this case computations cannot be
performed in general in the high–dimensional space, so a reformulation is needed to
apply the kernel trick. We discuss it next.

Since S̃T might not be invertible, a regularized version of the problem like

D̃λS̃BÃ = ÃΛ, (2.2.3)

where D̃λ = (S̃T + λI)−1, might be needed. Let’s set Q̃ = X̃ tCEΠ−1/2 and define
the matrix R as

R = Q̃tD̃λQ̃ = Π−1/2EtCX̃D̃λX̃
tCEΠ−1/2, (2.2.4)



then its SVD decomposition is R = V ΛV t and, since the pair (Ã = D̃λQ̃V,Λ) verifies

D̃λS̃BÃ = D̃λQ̃Q̃
tD̃λQ̃V

= D̃λQ̃RV

= D̃λQ̃V Λ,

the projection matrix Ã = D̃λQ̃V is a valid solution.
Let’s now rewrite D̃λX̃

tC by setting Ψ = CX̃X̃ tC = CKC, and ∆λ = (Ψ+λI)−1.
Then

X̃ tC = X̃ tC(Ψ + λI)∆λ

= (X̃ tCCX̃X̃ tC + λX̃ tC)∆λ

= (X̃ tCCX̃ + λI)X̃ tC∆λ

= D̃−1λ X̃ tC∆λ;

therefore
D̃λX̃

tC = X̃ tC∆λ, (2.2.5)

which implies

R = Π−1/2EtCX̃(D̃λX̃
tCE)Π−1/2

= Π−1/2EtCX̃(X̃ tC∆λ)EΠ−1/2

= Π−1/2Et(CX̃X̃ tC)∆λEΠ−1/2

= Π−1/2EtΨ∆λEΠ−1/2. (2.2.6)

So, only the kernel matrix is needed to calculate matrix R and to compute its
SVD decomposition to get V and Λ. Using (2.2.5), Ã is

Ã = D̃λQ̃V = D̃λX̃
tCEΠ−1/2V

= X̃C∆λEΠ−1/2V. (2.2.7)

Ã seems to require X̃ but this can be avoided when computing the projections x̃ of
a new x, that would be

z = Ãt(x̃− m̃) = V tΠ−1/2Et∆λCX̃
t(x̃− m̃)

= V tΠ−1/2Et∆λC

(
kx −

1

N
K1N

)
, (2.2.8)

where kx is the vector (k(x, x1), . . . , k(x, xN))t and only kernel operations are in-
volved.

The computational cost for the training algorithm is:

� O (N2κ), where κ is the cost of a kernel computation k(x, x′), to compute K.

� O (N3) to compute ∆λ = (Ψ + λI)−1.

� O (cN2) to compute EtΨ and ∆λE.



� O (cN2) to compute R = Π−1/2EtΨ∆λEΠ−1/2.

� O (c3) to compute the SVD decomposition of R to get V .

Since N � c, κ may be expected, the total cost is O (N3).
The computational cost for inference is:

� O (NMκ) to compute C
(
kx − 1

N
K1N

)
, where κ denotes the cost of a kernel

computation k(x, x′).

� O (cN2) to compute V tΠ−1/2Et∆λ.

� O (cNM) to compute z.

Thus, assuming c ≥ κ, the overall test cost is dominated by O (cN2) or O (cNM).

2.2.3 Kernel Support Vector Machines

Finally, the changes needed for kernel SVMs will be discussed here.

2.2.3.1 Kernel SVC

The kernel extension of the SVC, one of the most popular classification models
available for small and medium size datasets, is quite straightforward once the dual
formulation of the problem is available.

The SVC is now expressed in terms of XX t, and the kernel trick can be applied,
transforming the model into a non-linear classifier replacing xtnxn′ with the kernel
function k(xn, xn′):

D(α) =
N∑

n=1

αn −
1

2

N∑

n=1

N∑

n′=1

αnαn′ynyn′k(xn, xn′) (2.2.9)

s.t.

{ ∑N
n=1 αnyn = 0,

0 ≤ αn ≤ C, n = 1 . . . N.

For the usual Gaussian kernel, it can be shown that there is a map φ projecting
the original data into a reproducible kernel Hilbert space (RKHS) [41] such that
k(xn, xn′) = φ(xn) · φ(xn′). The final models will still be linear but no longer in the
original features but on their kernel extensions φ(x). However, the exact knowledge
of φ is not needed and can be implicitly handled.

After solving the dual with SMO, the KKT conditions can be applied again on
the support vectors SV to get the optimal b and the predictor is given by

ŷ = sign(
∑

n∈SV
ynαnk(xn, x) + b).

Notice again that only k is used for inference and no explicit knowledge on the
extension function φ is needed.



2.2.3.2 Kernel SVR

Again, once the model is expressed in terms of XX t, the kernel trick can be applied
to arrive at

D(α, α∗) = −1

2

N∑

n=1

N∑

n′=1

(αn − α∗n)k(xn, xn′)(αn′ − α∗n′) + (2.2.10)

N∑

n=1

(αn − α∗n)yn −
N∑

n=1

(αn + α∗n)ε,

s.t.

{ ∑N
n=1 αnyn = 0,

0 ≤ αn, α
∗
n ≤ C, n = 1 . . . N.

Once again, solve the dual is solved with SMO and the KKT conditions can be
applied on the support vectors SV to get the optimal b. The predictor is given by

ŷ =
∑

n∈SV
(αn − α∗n)k(xn, x) + b

where only the kernel is needed.

2.2.3.3 Complexity and Sparsity of Kernel SVMs

The dual problem has to be solved in a space with dimension N . This involves having
to handle the kernel matrix, with size N ×N , which implies a great computational
cost for large samples. Moreover, the usual algorithm to solve the dual problem
is Standard Sequential Minimization (SMO) which proceeds iteratively, with each
iteration having a cost of O(N).

Since the number of iterations is Ω(NSV ), with NSV the number of support vectors
that is usually Θ(N), training will have a cost of Ω(N2) or higher, often cubic in N .
This will make SVM training infeasible if the dataset is big enough.

Also, the solution of the SVM is sparse, that is, the number of nonzero α∗n values is
less than N ; however, the number of support vectors (patterns xn for which α∗n > 0)
is often Θ(N), and so inference has a cost of Θ(N), making the model unusable in
online settings.

2.3 Deep Models

Artificial Neural Networks (ANNs) are a non-linear generalization of the linear and
logistic regression models described in previous sections. Aside from their non-linear
capabilities, reflected in the fact that a neural network is a universal approximator,
this kind of model, at least in its most common form of Multilayer Perceptron, is
associated to an iterative training algorithm, Backpropagation, whose computational
cost scales linearly with the size of the training dataset.

ANNs have had three key moments in their history. The first one was in the 50’s,
with the introduction of the McCulloch-Pitts artificial neuron [42] and the Rosen-
blatt’s perceptron [43], which was trained in a supervised way with the algorithm of



the delta rule. This first period was followed by a long winter from the mid 60’s to
the mid 80’s. The second started in the early 90s, motivated by the backpropaga-
tion algorithm [44] for the training of Multilayer Perceptrons (MLPs), where ANNs
received a large interest that led to a very good understanding of neural networks
with one or two layers and that established ANNs as the state of the art approach
for classification and regression problems at the time. However, competing proposals
(Kernel Support Vector Machines for small data and decision tree based ensembles
for big data, mostly) and the inability to train deep MLPs, with three or more layers
depending on the data and other factors, led to a declining interest in ANNs around
the year 2000.

The third key moment for ANNs has come with Deep Neural Networks (DNNs)
[45]. While they can be defined as just a simple enlargement of previously studied
architectures, their enormous success shattering records in image, speech or video
recognition, and other perception problems, has made them extremely popular and
induced the development of very powerful software tools that make them accessible
to a much wider audience.

The proposals by G. Hinton and R. Salakhutdinov [46] on the one hand, and by
Y. Bengio and his coworkers [47] on the other, were crucial to overcome problems
such as the vanishing gradient that had previously prevented the effective training
of DNNs.

In more detail, the importance of weight initialization was finally noticed, and
different successful proposals for this purpose were developed. The first proposal,
pre-training MLPs by stacking of Restricted Boltzmann Machine (RBM) [46] or Au-
toencoder [47] layers adjusted in a greedy manner represented a great improvement
on previous ANN models, and allowed the training of truly deep models for the
first time. However, the high computational cost and sophistication of this method
limited its popularity. The simpler initialization proposed in [34] yields comparable
results without the complexity of stacked pre-training, and was soon accepted as the
new standard.

Also, the effect of hidden layer activation functions was studied in depth [34],
reaching the conclusion that functions that approach asymptotes more slowly were
more convenient than classical sigmoid activation functions, the fact that such func-
tions do not saturate so easily being crucial to avoid vanishing gradient.

Finally, new regularization procedures like dropout [48] allowed to control the
high risk of overfitting present in very large neural networks with thousands or even
millions of adjustable parameters.

New input processing schemes were next introduced, such as the rediscovered
convolutional layers, first proposed by Y. LeCun in the late 1990’s, or the Rectified
Linear Unit (ReLU) activations [49], whose 0–1 derivatives lend stability to training.
Training itself has also greatly changed and improved. The sensible (but modest)
minibatch training has been complemented by new and powerful gradient descent
techniques, such as Nesterov’s variant of classical momentum [50], self adjusting
learning rate procedures such as Adagrad [51], Adadelta [52] or Adam [53], or batch
normalization techniques to control covariance shift [54, 55].

Alongside these theoretical contributions, very relevant technical advances were
also made. First, new hardware architectures, more suitable for the era of Big Data,



were developed. In particular, the use of GPUs for scientific computation was a
significant improvement where matrix–vector operations were performed, as was the
case when training ANNs. Alternatives were made available when code vectorization
was not possible, or as an addition to it, with distributed DNN training [56, 57, 58].

Second, the development of numeric and symbolic calculation frameworks [59,
60, 61, 58, 62, 63] that can automatically perform symbolic differentiation and yield
efficient low level code to run in a variety of hardware, including GPUs, made the task
of working with highly complex gradients, like those associated to general feedforward
architectures, much simpler.

These two advances have resulted in a growing number of publicly available soft-
ware platforms for the development of ANNs, either at a relative low level, such
as Caffe [64] developed in C++, or a high level, relying in the numeric and sym-
bolic frameworks mentioned before for the low level operations, like Pylearn2 [65]
(paired with Theano [60]), whose development was later abandoned in favor of alter-
natives such as Keras [66] (running on top of Theano, Tensorflow, CNTK or MXNet
[60, 58, 63, 62]) or Pytorch [67] (using Torch [59] as backend), all of them developed
in Python [68].

The main consequence of all this has been an ongoing, tremendous research effort,
with impressing results in a number of areas, particularly on computer vision, with
extensive use of convolutional architectures inspired in the layer processing that takes
place in the visual cortex [69] as a key factor, and speech recognition and natural
language processing, where convolutional, recurrent and transformer architectures
continue to be developed. In all these cases, the processing results in successively
refined representations of input patterns that at the last hidden layer are powerful
enough to be successfully exploited by simple readouts. In other words, DNN training
can be seen as a particularly effective way to perform feature engineering, to the point
that the field is often identified with representation learning [70].

2.3.1 Approximation

2.3.1.1 The Artificial Neuron

Linear models can be extended in other ways aside from kernels, and a natural
source of inspiration for this is Neurobiology. At the end of the 19th century, Ramón
y Cajal initiated the study of neurons, whose basic structure is shown in figure 2.3.1.
Simplifying, the neuron operates by receiving electrical impulses coming from other
neurons through the dendrites, aggregating and transforming them in the soma, and
transmitting the result of that transformation through the axon.

In the middle of the 20th century, McCulloch and Pitts designed the artificial
neuron trying to reproduce the capabilities of the biological neuron with an electronic
circuit that can be seen in figure 2.3.2. Around 1955, Frank Rosenblatt used the
artificial neuron to build the Perceptron, a first Machine Learning model. In this
model, each input has an associated parameter or weight, and all the weights are
collectively represented by matrix W :

Ŷ = XW.

which makes it equivalent to the linear model. The Heaviside activation function



Figure 2.3.1: Neuron

Figure 2.3.2: Artificial neuron



Figure 2.3.3: One-hidden-layer MLP, from Wikimedia Commons (distributed under a
CC BY-SA 3.0 license)

was applied to the output, since the model was used for classification, thus making
it quite similar to the Logistic Regression with logistic activation function.

So, the Perceptron works as a linear model, but the biological source of inspiration
goes farther than that, because a typical nervous system has a huge number of
neurons interconnected.

2.3.1.2 Representation Learning and Deep Learning: The Multilayer
Perceptron

The usual way to organize neurons, from now on units, in an artificial neural newtork
is in the form of layers, in what is known as a feed-forward architecture, or, more
commonly, a multilayer perceptron (MLP). In this configuration, the input of the
neural network is connected to the first of possibly several layers, called hidden
layers. Each of them is then connected to the next one, and the last one is finally
connected to the output layer which has a number of units equal to the dimension of
the target. Every unit in one of these layers receives as input the linear combination
of the outputs of the previous layer units, but no connections between units of the
same layer or between units of non-consecutive layers exist, as outlined in figure
2.3.3.

By considering a single hidden layer, the mathematical formulation of the model
becomes

Ŷ = f2(f1(XW1)W2),

where W1 are the weights associated to the connections between the input and the
hidden layer, and W2 the ones associated to the connectios between the hidden layer
and the output layer. f1 and f2 are the activation functions corresponding to the



hidden and the output layer, respectively. f2 in particular is determined by the
type of the target. In a regression setting it will usually be the identity, while in
a classification setting it will be a logistic or softmax function, depending on the
number of classes. However, f1 is a free hyper-parameter and can take many forms,
with some caveats. If a linear function is used, since the function composition of
linear functions is also linear, the model will remain linear. Therefore, to build a
model that is more expressive than the linear or logistic regression, a non-linear
activation function is needed. It was quite common to use the sigmoid or tanh
function as hidden layer activation [71] until better options like rectified functions
where explored [34, 72]. More hidden layers can be added to the model, resulting in
the following expression for a two hidden layer network:

Ŷ = f3(f2(f1(XW1)W2)W3),

or a three hidden layer one:

Ŷ = f4(f3(f2(f1(XW1)W2)W3)W4).

MLPs are now considered Representation Learning models. Representation Learn-
ing is a branch of Machine Learning that comprises models that generate internal
representations of the data that are more sophisticated and useful than the origi-
nal one. When not one but several internal representations are generated, and each
representation is built from the previous one increasing its level of abstraction, the
model is said to be a Deep Learning model. Each hidden layer of a MLP gener-
ates one of such representations, and the level of abstraction and complexity grows
with each additional layer until the output layer is reached, where the regression or
classification problem is solved.

Theoretical results by Cybenko [73] and Hornik [74] indicate that MLPs are, in
fact, universal approximators:

Theorem 1 (Universal Approximation Theorem). Let φ be a continuous, non-
constant, bounded and monotonic increasing function. Let A ⊆ Rm be compact,
and C(A) the space of all continuous functions in A. Then, ∀ε > 0 and ∀f ∈ C(A),
∃N ∈ N, vi, bi ∈ R, wi ∈ Rm with i = 1, · · · , N , and a function

F (X) =
∑

i=1,··· ,N
viφ(wtix+ bi)

can be defined such that

|F (X)− f(x)| < ε, ∀x ∈ A.

That is, a single non-linear hidden-layer MLP that can approximate any given
reasonable function exists, although the number of units needed in the hidden layer
remains undetermined.

Adding layers can increase the model expressiveness and performance [75] even
if the number of units per layer decreases.



2.3.1.3 Spatial data and structured features: The Convolutional Neural
Network

Artificial neural networks, and multilayer perceptrons in particular, are quite flexible
models, and can be modified in order to take advantage of the particular properties
of a given dataset, which will usually result in a lower approximation error. For
example, some architectural adaptations have been developed to deal with “per-
ception” data, such as images. This kind of data implies a topology between the
variables, a grid structure present in the columns of each row of X. If such variables
are rearranged by swapping columns in X, for example, then the image will lose its
sense.

A typical image has a number of pixels organized as rows and columns, but also
channels, which can be understood as analogous to features, usually representing
color as grayscale or RGB. So, the number of channels in the data will usually be
either one or three:

� If the input data is a grayscale image, then it will have a single channel.

� If the input data is a color image, then it will usually have three (R, G and B)
channels.

However, if the input data is not an image but another type of grid [27, 26] then the
number of channels might be different.

Classical Machine Learning models, like linear models, decision trees, SVMs or
standard MLPs are not capable of taking advantage of this feature structure without
the help of feature engineering [76, 77, 78]. That is, for one of such models, if a set
of images is transformed by applying a particular random permutation of the pixels
(always the same permutation to every picture on the dataset) the model performance
will be roughly the same as with the original dataset: the model is not aware of the
importance of the grid structure of the variables.

Also, while traditional MLP architectures usually benefit from the use of a high
number of units in the hidden layers, this leads to a high number of weights, M×M ′

if an M unit layer is connected to an M ′ unit one, a number that can become rather
large if, for instance, inputs are images or video. Moreover, feeding such data to a
traditional MLP poses the problem of the complete loss of information on the spatial
relationship between variables.

MLPs are however quite easy to adapt to this particular type of data. Again,
the source of inspiration is the animal nervous system, and in particular the primary
visual cortex [79], which is organized as a series of layers, just like an MLP, but
where connections between neurons are only local. This way, the fan–in of hidden
units is limited to the output of a subset of units in the previous layer and spatial
proximity acquires a key role in the way features are processed. Convolutional and
pooling layers implement this idea in different ways.

Pooling layers perform a quite simple sub-sampling operation, usually taking
the maximum, max-pooling, or mean, mean-pooling, value of each patch and using
disjoint patches over the data [80].

Convolutional layers, on the other hand, use a form of discrete convolution, which



Figure 2.3.4: Discrete convolution (https://github.com/vdumoulin/conv_
arithmetic). The image is represented as a blue grid being processed by a kernel
represented as a dark blue grid, resulting in an output represented as a green grid.

is defined as
(f ∗ g)(t) =

∑

s

f(s)g(t− s),

for one-dimensional data, or as

(F ∗G)(t, t′) =
∑

s

∑

s′

F (s, s′)G(t− s, t′ − s′),

for two dimensional data, in place of the standard matrix product between the
weights and the inputs of a hidden layer, with convolution kernels, also called filters,
taking the place of weights. Patches can be disjoint or partially overlapping, and
there are several different strategies for the margins of the grid defined by the data,
resulting in many different types of convolutional layer being available.

The number of kernels applied is arbitrary just like the number of units in a
regular, also called dense, layer. Figure 2.3.4 illustrates one of the different possible
ways a discrete convolution operates on an image.

Two-dimensional filters are the most common as a consequence of the popular-
ity of image-processing tasks, but depending on the data, one-dimensional, three-
dimensional, or even higher-dimensional filters might be more appropriate.

A two-dimensional convolutional layer of L K×K filters will produce L represen-
tations Zl = f(Wl∗X), where f is the activation function, ∗ the convolution operator,
X the image and Wl the set of weights corresponding to the filter l = 1 . . . L. If X is
an M1×M2 image, this will result in a (M1−K+1)×(M2−K+1) representation for
each of the filters. Filters conceptually correspond to hidden units in a dense layer,
and its number is also a free hyper-parameter. The number of weights in such convo-
lutional layer is L×K2, while the output dimension is L×(M1−K+1)×(M2−K+1),
which can not only exceed that of a dense layer with a fraction of its weights, but
also preserves the grid structure of the data.

If a two-dimensional max or mean pooling layer of P × P patches is applied
immediately after the convolutional layer, the final output has a L× (M1−K−P +

https://github.com/vdumoulin/conv_arithmetic
https://github.com/vdumoulin/conv_arithmetic


Figure 2.3.5: LeNet-5 for image processing, from [81]

2) × (M2 − K − P + 2) dimension. In this case the operation applied is fixed and
no weights need to be learnt, and the obtained effect is translation invariance and
reduced overfitting.

This combined convolution–pooling process allows processing the input using a
moderate number of weights while preventing overfitting and the loss of useful spatial
information.

Notice that, to be effective, convolutional and pooling layers must act on in-
puts that have a spatial structure and are naturally distributed in feature channels.
This is the case for images or video and their decomposition in RGB channels, but
also of weather prediction data where the different meteorological features (pressure,
temperature, wind components, etc.) correspond to different input channels.

An MLP that makes use of convolutional layers is generally called a convolutional
neural network (CNN). Figure 2.3.5 represents LeNet-5, perhaps the most widely
known CNN, that was developed in the 90s of the 20th century to classify hand-
written digits. It is common to insert pooling layers between convolutional layers,
with the goal of reducing the dimension of the internal representations of the data.

2.3.1.4 Temporal data and sequential patterns: The Recurrent Neural
Network

Another source of information that is neglected by traditional models is temporal
information represented as an order between rows of X. Time series like the value
of companies in the stock exchange are usually stored as a table with columns rep-
resenting the companies and rows representing timestamps. There is no internal
structure of datum like in a grid representing an image, but the order of the rows
is of critical importance. The traditional appoach involves feature engineering with
tools like auto-regressive models.

CNNs with one-dimensional kernels can be applied to make use of this temporal
structure without the need of feature engineering, but this presents an important
drawback. If the model needs a long term memory to yield competitive results, the
length of the convolutional kernels might be too big to be practical, or, alternatively,
a large number of convolutional layers with smaller kernels would be required, which
is also a problem. In other words, the persistence of the model memory is related
to the number of parameters of the model, be it through the length of the one-



Figure 2.3.6: LSTM unit, from http://colah.github.io/posts/

2015-08-Understanding-LSTMs/

dimensional kernels or through the number of convolutional layers applied.

In fact, this kind of data is better exploited by an artificial neural network with
recurrent connections in its hidden layers. Such connections are loops that feed each
unit with its own previous output, and allow the unit to have a kind of memory over
the previously processed data.

The most frequent type of recurrent unit is Long-Short Term Memory (LSTM)
that can be seen in figure 2.3.6. These units have several internal logic gates, each of
them with its own parameters, so the total number of parameters in the network is
much higher than in non-recurrent networks. Training recurrent networks is generally
associated to a much higher computational cost than training other types of neural
networks, but even so, they are considered the most powerful models for processing
data with temporal structure, and are widely used in practice for natural language,
voice or video processing [82].

2.3.2 Optimization

The Universal Approximation Theorem combined with results showing that depth
increases expressive power [75] could lead to the idea that any problem would be easy
to solve with an MLP of the correct architecture. However, in practice an MLP with
a high number of hidden layers, typically more than just 3 or 4, will present a series
of problems. To begin with, the training algorithm is more sophisticated than that of
a linear model, since it has to deal with the layers of parameters and their sequential
application to the data. This results in a more difficult hyper-parameterization of
the algorithm, and the danger of underfit that increases with the number of hidden
layers if not enough training iterations are performed. Also, the great expressive
power of MLPs can easily lead to overfit, and several measures need to be taken to
avoid it.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/


2.3.2.1 Back-propagation

The MLP is usually trained with the algorithm known as back-propagation [44, 71],
which is used in conjunction with forward-propagation, the process of inference of
the MLP, during training. For each iteration of the training algorithm, forward-
propagation is used to produce predictions for a set of training data, which can then
be used to compute a cost with respect to the expected targets. Back-propagation
makes the information flow back through the network, layer by layer from the output
to the input, to allow the computation of the gradient used to update the parameters.

In more detail, given a batch of training patterns and targets, the network will
compute all the activations from the input layer to the output layer in the forward
pass. Once the output values are available, an error can be calculated with the
selected loss function, but that error can only be used to compute the gradient
and the new weight values for the output layer units. Backpropagation defines a
kind of generalized error associated to a hidden unit as the weighted average of the
generalized errors of the units in the following layer. Let i, j, k be the indices of units
in three consecutive layers, Wji the weight of the connection from unit i to unit j,
Zi the output of unit i, Sj =

∑
iWjiZi the sum of the weighted inputs of unit j,

δk = Yk − Ŷk the generalized error at unit k, and F the activation function. Then

∂EL
∂Wji

=
∂EL
∂Sj

∂Sj
∂Wji

= δj
∂Sj
∂Wji

,

where

δj =
∂EL
∂Sj

=
∑

k

∂EL
∂Sk

∂Sk
∂Sj

=
∑

k

∂EL
∂Sk

∂Sk
∂Zj

∂Zj
∂Sj

=

(∑

k

∂EL
∂Sk

Wkj

)
F ′(Sj)

and in a regression model
∂Sj
∂Wji

= Zi,

so for the output layer, where the error can be computed directly,

∂EL
∂Wji

= δjZi,

and for the hidden layers

∂EL
∂Wji

=

(∑

k

∂EL
∂Sk

Wkj

)
F ′(Sj)Zi =

(∑

k

δkWkj

)
F ′(Sj)Zi.

So, with backpropagation the error of the output units is computed first, then the
general error of the units of the last hidden layer, and successively all the previous
hidden layers. This is the backward pass of the learning algorithm.



Figure 2.3.7: Local and global optima in a loss function, from Wikimedia Commons
(distributed under a CC BY-SA 3.0 license)

The computational cost of backpropagation for a multilayer perceptron with L
layers, all off them with M units, and a size N training dataset of dimension d is

O
(
(L− 1)×M2 ×N

)
+O (d×M ×N) .

Notice that the derivative of the activation function is needed in the calculations,
so the activation function must be differentiable, or at least differentiable almost
everywhere. As was noted earlier, the activation function of the output layer is usu-
ally determined by the problem at hand, being the identity preferred for regression
problems and a logistic (or softmax) the usual choice for binary (or multiclass) classi-
fication, while the activation of the hidden layers is a free hyper-parameter. However,
not every differentiable function is suitable for the task. In particular, linear func-
tions shouldn’t be used as activations of the hidden layers, since the composition of
linear functions is also a linear function, and a MLP with linear activations in all its
hidden layers is equivalent to a single layer perceptron in terms of expressive power,
as was discussed before, but with the additional disadvantage of having a higher
complexity.

2.3.2.2 Underfit

In the case of linear models and the usual loss functions, the function to minimize on
the model parameters is convex. This means that a unique global minimum exists
and it is relatively easy to find. However, in an MLP, which consists in a composition
of non-linear functions, this convexity is lost, and local minima are present in the
non-convex objective function. This will lead to a number of difficulties when trying
to reach the optimal solution, including getting stuck in sub-optimal local minima
like those represented in figure 2.3.7. A series of particular problems related to
underfit and proposed solutions are outlined in what follows.



Local minima and advanced optimization algorithms

Many advanced optimization algorithms have been developed in order to mitigate
the difficulties derived from the existence of local minima in the loss function.

A way to accelerate convergence is through the use of second order derivatives in
addition to the first order derivative used by SGD. However, the computational cost
of the Hessian is too high and usually some simplifications are used instead [71, 83].

Others use momentum to escape local minima without incurring in too high costs,
or Nesterov’s Accelerated Gradient as an improvement on the classical momentum
enhancement [50].

Finally, other methods [84, 51, 52, 53] dynamically adjust the learning rate during
training, trying to escape from local minima by increasing it, and to approximate the
global minima by reducing it near the end of the training. Also, getting rid of the
learning rates used in SGD and that are often difficult to adjust in order to achieve
effective training eases the costly process of hyper-parameter search. Most of these
techniques can be traced back to work by J. LeCun et. al. [71].

Several variants of this ideas have been developed such as Adaptive Subgradient
(AdaGrad) [51], AdaDelta [52] or Adaptive Moment Estimation (Adam) [53] that
can be seen as an improvement over AdaGrad and AdaDelta and is maybe the most
popular optimization method for ANNs today, as it combines the use of momentum
with a dynamically adjusted learning rate.

Vanishing gradient, weight initialization and activation functions

As noted before, a mandatory condition for an MLP to be more expressive than a
linear model is the non-linearity of the activation functions used in the hidden layers.
It is usual, then, to employ logistic or, even better due to its symmetry with respect
to the origin, hyperbolic tangent as activation functions.

However, such functions are quite costly in computational terms and, more im-
portantly, the gradient of such functions takes values in [0, 1], and saturates very fast
when moving away from the origin. So, if the activation function of each unit is not
kept in the “almost linear” region (the “middle” region of the sigmoid or hyperbolic
tangent) it is easy to make it saturate and shrink the gradient, slowing training.
Also, this fact results in progressively smaller gradients as the chain rule is applied
to adjust the weights of layers from the output to the input. As a consequence, layers
far from the output are trained very slowly.

On the other hand, a poor initialization of the parameters could get the training
algorithm stuck in a local minima or a plateau of the loss function. Quite often, the
random initialization with the traditional probability distributions [71] will lead to
such situations. The combination of a bad choice as activation function and a poor
initialization of the parameters results in the phenomenom known as the Vanishing
Gradient [34].

To aleviate the first problem, the use of functions that do not saturate like softsign
or Exponential Linear Unit (ELU), or even rectified functions like Rectified Linear
Unit (ReLU), is much more popular nowadays. Also, such functions are cheaper to
compute than traditional sigmoid functions, which is another important advantage.



Figure 2.3.8: Layer activations during training
[34], percentiles 98 (markers) and standard deviation (lines with markers) of the

activations in different layers of a MLP for tanh (up) or softsign (bottom) activation
function.

Figures 2.3.8 and 2.3.9 illustrate the different behaviors of an MLP layers depend-
ing on the activation function used. Using a function that saturates slowly (softsign),
such activations take more varied values away from 0.

On the other hand, it is also necessary to mitigate the problem related to the
random initialization of the weights for the training to succeed. Traditionally [71] a
normal distribution with mean 0 and standard deviation of a factor of 1√

m
with m

the number of units of the previous layer was used to keep the activations in their
linear regime during the first iterations of training.

It was shown in [34] that bad initializations resulted in gradients centered at 0
and whose variance decreased as one moved from the output to the input layers.
Thus, the network was stuck at weights that caused this near zero gradient behavior
in the first layers and that were therefore unable of any further learning.

In [34], Glorot and Bengio proposed a layer initialization taking into account
the number of units in both the previous and following layer and the activation
function that mitigated the vanishing gradient problem by keeping the variances
of backpropagated gradients stable. In particular, if Mi and Mi+1 are the fan-in
and fan-out of the i-th layer that has hyperbolic tangent activation, the uniform
distribution suggested for initialization would be

U

[
−

√
6√

Mi +Mi+1

,

√
6√

Mi +Mi+1

]
. (2.3.1)

Figures 2.3.10 and 2.3.11 show how, if the initialization is not optimal, gradients
concentrate in values closer to 0 in the layers far from the output, while the activa-
tions have the opposite behavior, being smaller near the output. Both phenomena
make training much more difficult.



Figure 2.3.9: Layer activations after training
[34], histograms of activations of different layers in a trained MLP with tanh (up) or

softsign (bottom) activation function.

Figure 2.3.10: Distribution of activations
[34], distribution of the activations for each layer with classical initialization (up) and

Xavier initialization (bottom).



Figure 2.3.11: Distribution of gradients
[34], distribution of gradients for each layer with classical initialization (up) and Xavier

initialization (bottom).

Internal Covariate Shift and Batch Normalization

On the other hand, when a linear model is trained with gradient descent, it is of
paramount importance to previously prepare the data by rescaling each feature so
that all of them have the same magnitudes. This is usually achieved by standardizing
the data, and the model can, then, be safely trained so it will be able to produce
useful predictions over new, unseen, standardized data.

Training an MLP in such fashion with backpropagation and gradient descent,
the first hidden layer will receive standardized data, but each of the following layers
receives the activations of the previous layer, which are not standardized. The effect
this has over the model is similar to that observed in a linear model when the input
data is not rescaled, and makes training considerably harder. Also, the probability
distribution of the activations of a layer needs not be normal, and will change as
long as the weights are updated in each training iteration, aggravating the situation.
This problem is known as Internal Covariate Shift [54].

A solution to this problem, the technique known as batch normalization, has been
proposed. It consists in standardizing the activations of each hidden layers for each
batch during training.

2.3.2.3 Overfit

Another recurrent problem with MLPs is how prone they are to overfit, due to their
ability as universal approximators. An overfit model will yield a very low training
error, but will not generalize well and its test or cross-validation error will be poor.
Different sub-problems and proposed solutions are detailed in what follows.



Excessively long training and Early Stopping

If the model is complex enough, i.e., has enough layers of sufficient number of
units, training it for a too large number of epochs will usually result in overfit. During
training, a partition of the data can be saved so it is not used to adjust parameters
but only to measure an error metric. This validation partition is used to estimate the
generalization error of the model. If an increase in the validation error is observed,
then the MLP is overfitting and training can be safely ended [19]. This stopping
mechanism is known as Early Stopping, and is extremely popular, to the point of
being included in most Machine Learning software libraries like Scikit-learn [20] and
Keras [66].

Excessive number of parameters and regularization

A model that is too complex due to an excessively large number of parameters will
be prone to overfit, but knowing in advance the optimal number of parameters and
architecture for a particular problem is not possible. On the other hand, performing
hyper-parameter search over all the hyper-parameters related to the architecture of
a model (number of hidden layers, units per layer, etc.) is a daunting task. However,
a search over a single regularization hyper-parameter can be much simpler and more
convenient, and affect performance of the model in a similar way. An objective
function can be modified to include an additional term that keeps the total sum of
the parameters controlled. This term can be of many forms, but it is usually one of
the following:

L1 (Lasso): of the form λ
∑

ij |wij|.

L2 (Ridge, Tikhonov, weight decay): of the form λ
∑

ij(wij)
2.

where λ is the coefficient that adjusts the intensity of regularization. As an example,
a regression problem where squared error and L2 regularization are used corresponds
to the following objective function:

E =
1

N

N∑

n=1

(yn − ŷn)2 + λ
∑

ij

(wij)
2. (2.3.2)

When performed only in the last layer and with linear outputs, this is equivalent
to the ridge regression fit of the deep features generated by the hidden layers of the
network.

Also, other more sophisticated regularization techniques have been developed.
Adding gaussian noise to the activations of the hidden layers [85] or randomly deac-
tivating selected units inside the MLP during training usually result in models more
robust and resilient to overfitting. The technique known as dropout [48] is specially
effective to avoid overfit. It consists in, for each iteration of the training algorithm,
and both in forward propagation and backward propagation, deactivating each unit
with probability 1 − p. The effect this has over the MLP is similar to that of mak-
ing an ensemble of MLPs, but with a fraction of the cost. Once trained and when



it comes to inference, the model will not deactivate units, but all weights will be
multiplied by p so the model will remain deterministic while maintaining the mean
values of activation it had during training.



Chapter 3

Deep Neural Network Prediction
in Wind and Solar Energy

3.1 Summary

As mentioned, Deep Neural Networks possess very powerful modeling abilities, due to
the fact that they are universal approximators even with a single hidden layer. These
abilities become even more impressive when an input having a multidimensional grid–
like structure is captured and exploited by convolutional layers.

This first series of publications explore the application of Artificial Neural Net-
works to the prediction of wind energy production and daily solar radiation with in-
puts obtained from Numerical Weather Prediction (NWP) [25] systems, that present
the two–dimensional grid structure suitable for Convolutional Neural Networks (CNNs).
At the time, they were among the first contributions to make use of the new DNN
frameworks for renewable energy prediction.

Both classical Multilayer Perceptrons (MLPs) and CNNs are considered in com-
bination with modern techniques like proper weight initializations, dropout regular-
ization or weight decay, and improved with the use of ensembles. As will be proved,
such models can improve on Support Vector Regression, which can be considered the
state of the art for this type of regression problems. Moreover, while the datasets
considered are relatively small and thus the computational costs of training SVRs
are similar to those of training MLPs and CNNs, it is expected that newer and bigger
datasets will be available with time, and thus neural networks will become a more
interesting option than SVRs due to the fact that their training costs grow linearly
with the size of the training dataset.

3.2 Publications

We detail next the publications of this chapter, give their abstracts, and briefly list
their main contributions for the sake of convenience.

Main publication
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� David Dı́az-Vico, Alberto Torres-Barrán, Adil Omari, and José R. Dorronsoro.
Deep neural networks for wind and solar energy prediction. Neural Processing
Letters, page 1–16, 04 2017

Abstract: Deep Learning models are recently receiving a large attention because
of their very powerful modeling abilities, particularly on inputs that have a
intrinsic one- or two-dimensional structure that can be captured and exploited
by convolutional layers. In this work we will apply Deep Neural Networks
(DNNs) in two problems, wind energy and daily solar radiation prediction,
whose inputs, derived from Numerical Weather Prediction systems, have a
clear spatial structure. As we shall see, the predictions of single deep models
and, more so, of DNN ensembles can improve on those of Support Vector
Regression, a Machine Learning method that can be considered the state of
the art for regression.

Contributions: This article was published as an extension of [27]. Going deeper
into the study of the performance of CNNs in regression for renewable energy–
related problems, the main contributions were:

– The use of ensemble techniques to futher improve the single CNN results.
The significant improvements obtained indicate that techniques such as
bagging can also be useful when working with strong learners such as deep
neural networks, possibly due to the randomness induced in these models
by their initialization, minibatch training and dropout regularization.

– The use of very recent at the time optimization methods such as Adadelta
and other techniques like rectified activations and dropout regularization,
that can substantialy improve the results obtained.

– The application to solar radiance prediction in addition to prediction of
wind energy production, with data from Oklahoma’s Mesonet network
available at [86].

– The use of more modern and solid technologies as Keras [66], combined
with Theano [60] and Tensorflow [58], in substitution of the older and less
flexible Pylearn2 [65] used in [27].

Other publications

� David Dı́az, Alberto Torres, and José R. Dorronsoro. Deep neural networks
for wind energy prediction. In Advances in Computational Intelligence - 13th
International Work-Conference on Artificial Neural Networks, IWANN 2015,
Palma de Mallorca, Spain, June 10-12, 2015. Proceedings, Part I, pages 430–
443, 2015

Abstract: In this work we will apply some of the Deep Learning models that are
currently obtaining state of the art results in several machine learning problems
to the prediction of wind energy production. In particular, we will consider
both deep, fully connected multilayer perceptrons with appropriate weight ini-
tialization, and also convolutional neural networks that can take advantage of
the spatial and feature structure of the numerical weather prediction patterns.



We will also explore the effects of regularization techniques such as dropout or
weight decay and consider how to select the final predictive deep models after
analyzing their training evolution.

Contributions: This congress paper detailed the arguably first case of appli-
cation of CNNs to the prediction of wind energy production. Different neural
networks with MLP and CNN architectures where compared against SVRs,
which could be considered the state of the art, for the problem of prediction of
wind energy production with data provided by ECMWF for both the Sotavento
wind farm and peninsular Spain. Results proved that CNNs can exploit the
grid–like structure of NWP data and improve on the results of other classical
models, SVRs in particular, while MLPs, although being universal approxima-
tors, fall below even when their number of parameters is higher. While higher
computational cost of CNNs compared to SVRs for this dataset, being rela-
tively small, seems an important disadvantage of the proposed solution, the
situation will be the opposite when working with big enough datasets due to
the fact that the cost of the training for neural networks grows linearly with
the size of the training dataset. Pylearn2 [65] was extensively used in this
paper experiments, but would be discarded in favor of more flexible high level
libraries in the following publications.
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Abstract Deep Learning models are recently receiving a large attention because of their
very powerful modeling abilities, particularly on inputs that have a intrinsic one- or two-
dimensional structure that can be captured and exploited by convolutional layers. In this
work we will apply Deep Neural Networks (DNNs) in two problems, wind energy and daily
solar radiation prediction,whose inputs, derived fromNumericalWeather Prediction systems,
have a clear spatial structure. As we shall see, the predictions of single deep models and,
more so, of DNN ensembles can improve on those of Support Vector Regression, a Machine
Learning method that can be considered the state of the art for regression.

Keywords Deep learning · Convolutional neural network · Wind energy · Solar energy

1 Introduction

Artificial Neural Networks (ANNs) have had three moments in the limelight. The first one
in the second half of the 50’s, full of a somewhat naïve promise, was followed by a long
winter from the mid 60’s to the mid 80’s. The second started around 1990, where ANNs
received a large interest that led to a very good understanding of neural networks with one or
two layers and that established ANNs as the state of the art approach for classification and
regression problems. However, the appearance of new and competing modeling proposals
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(Support Vector Machines, Boosting, Random Forests) and the inability to train efficiently
MLPs with three or more layers because of vanishing gradients, led to a mild decline in the
research and applications of ANNs around the year 2000.

The third limelight moment for ANNs has come with the by now very famous Deep
Neural Networks (DNNs) [22]. While they can be defined as ANNs with several (at least
three ormore) hidden layers and, thus, seen as just a simple enlargement of previously studied
architectures, their success has been enormous, as they have shattered records in image and
speech recognition competitions, make the core of the famous DeepMind system for playing
Go and are currently held among the most promising building blocks towards the still elusive
goal of achieving Artificial Intelligence.

The first crucial step in this third epoch was the proposals by Hinton and Salakhutdinov
[17] on the one hand, and by Bengio et al. [5] on the other, to overcome the vanishing gradient
obstacle and to make possible the effective training of DNNs for the first time. Subsequent
work has givenDNNs a tremendous impulse inwhich a breakthrough has led to another. First,
better initialization procedures such asGlorot’s [13] greatly simplified the somewhat clumsier
pretrainings in [17] and [5] and made possible to train large networks by backpropagation.
In turn, new regularization procedures, particularly dropout [29] allowed to control the clear
risk of overfitting present in the very large networks that were now possible. New input
processing schemes were next introduced, such as the rediscovered convolutional layers,
first proposed by Y. LeCun in the late 1990’s, or the Rectified Linear Unit (ReLU) activations
[14], whose 0–1 derivatives lend stability to training. Training itself has also greatly changed
and improved. The sensible (but modest) minibatch training has been complemented by new
and powerful gradient descent techniques, such as Nesterov’s variant of classical momentum
[30], self adjusting learning rate procedures such as Adagrad [11], Adadelta [31] or Adam
[20], or batch normalization techniques to control covariance shift [2,18].

In parallel, key advances have beenmade in two crucial areas. The first one is the introduc-
tion and extensive use of GPU libraries to speed up the very costly training of large networks
by vectorializing the huge number of matrix-vector operations needed; in turn, this has been
coupled with new proposals and implementations for distributed DNN training [1,25]. The
second advance, extremely important but sometimes missed, is the development of symbolic
differentiation compilers that can automatically compute and yield very efficient low level
code for the highly complex gradients associated to very general feedforward architectures,
specially suited to concrete problems which are now routinely proposed. These two advances
have resulted in a growing number of publicly available training software platforms, either
at a relative low level, such as Caffe [19], Pylearn2–Theano [3,6] or Google’s TensorFlow
[1], or as high level efficient wrappers such as Keras [9] that runs on top of either Theano or
TensorFlow backends (we will use both Pylearn2 and Keras for our experiments here).

The main consequence of all this has been an ongoing, tremendous research effort, with
very impressing results in a number of areas, particularly on problems from computer vision
and speech recognition. The extensive use of convolutional layers is a key factor here, but
a deeper reason may be the formal similarity between the information processing of ad-hoc
DNN architectures and the layer processing that takes place in the visual cortex [21]. In the
DNNcase, this processing results in successively refined representations of input patterns that
at the last hidden layer are powerful enough to be successfully exploited by simple readouts.
In other words, DNN training can be seen as a particularly effective way to perform feature
engineering, to the point that the field is often identified with representation learning [4].

As just mentioned, DNNs are most often used in image or speech recognition problems
while less attention has been comparatively paid to other problems whose inputs also have
a bidimensional, image-like structure. An example is given by problems with Numerical
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Weather Prediction (NWP) patterns. NWP provides forecasts for a geographical area as a
number of weather variable predictions given at each one of the points of a rectangular
grid. Each such variable can be thus seen as a particular kind of image of the area under
consideration or, in convolutional network language, as a featuremap over a concrete channel.
This image-like structure naturally suggests that DNN architectures similar to those used in
image processing may result in good regression models. We will consider here two kind of
such problems. The first is forecasting wind energy production, whose increasing penetration
in many countries gives a great importance to its accurate prediction. This is an intensely
studied problemwhere standardMLPs and Support Vector Regression (SVR) acting onNWP
forecasts provided by organizations such as the European Center for Medium range Weather
Forecasts (ECMWF, [12]) or the Global Forecasting System (GFS, [27]), are themodels most
often applied. Here we will consider wind energy predictions at the farm level (namely, the
Sotavento farm in Northwestern Spain) and on a wide area (namely wind energy production
of peninsular Spain). The NWP inputs here will be those provided by the ECMWF.

Our second problem will be the prediction of total daily incoming solar radiation where
we will use data from the recent Kaggle AMS 2013–2014 Solar Energy Prediction Contest
[28], whose goal was to predict aggregated incoming radiation on a total of 98 Mesonet
weather stations covering the state of Oklahoma using as inputs NWP forecasts provided by
NOAA/ESRL Global Ensemble Forecast System (GEFS).

It is clear that for both problems convolutional networks arise as natural choices to derive
energy forecasts and they will be used in the deep models considered in this paper. It is also
well known that a good hyper-parameter selection is crucial when applying any Machine
Learning (ML) model, and this is the case too of DNNs, with the extra difficulty of the
potentially very large number of hyper-parameters as well as the large number of process-
ing options that have been proposed in the literature. To simplify on this we will work in
a relatively standard setting, using Glorot–Bengio weight initialization [13], ReLUs [14],
dropout regularization [29] on hidden layers and standard weight decay in the final ones. As
mentioned, several training algorithms can be used; we will settle with Adadelta [31], which
allows for an essentially self-adjusting learning rate. The exploration of the other relevant
hyper-parameters is handled with Hyperopt [7], a recent tool that allows for a principled
random exploration of the hyper-paramater space. We point out that this contribution is a
substantially larger extension of previous work [10] by us. Our contributions here thus further
extend and enlarge those in [10] and can be summarized as follows:

– We extend and update the review in [10] of the most recent proposals in DNNs, in
particular those for DNN training. While known, the techniques we review are scattered
amongmany different papers and our joint presentation of themwill be helpful for readers
that are considering to use DNNs.

– We build on the techniques reviewed to set up a simple and useful methodology for DNN
training and hyper-parameter selection in regression problems.

– We will thoroughly explore the application of convolutional DNNs to the wind energy
and solar radiation problems from the point of view of the ML practitioner.

– We introduce DNN ensembles as a way to enhance single DNN predictions by lowering
variance while retaining a good enough bias and show experimentally how the random
elements of DNN training (random weight initialization, minibatch training and dropout
regularization) result in robust and effective DNN ensembles.

As mentioned before, we will use the Pylearn2 [15]–Theano [3,6] and Keras–Theano [9]
platforms as they include a wide variety of already tested neural networks and allows us to
explore several of the latest and most effective proposals for deep network training. Besides
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its symbolic differentiation capabilities, that make possible the automatic computation of the
cost function gradients of fairly complex networks, another key advantage of having Theano
as the underlying backend is that we can exploit the final low level GPU code it generates to
greatly speed up DNN training with respect what is possible over standard CPUs.

The rest of the paper is organized as follows. In Sect. 2 we review our choices for deep
network configuration and optimization procedures and discuss some of their details. Section
3 contains a succinct discussion of the framework for wind energy prediction over NWP
inputs, a description of our experimental setup and the prediction results for both theSotavento
wind farm and the entire wind energy prediction over peninsular Spain that is overseen by
Red Eléctrica de España (REE). For the Sotavento problem we improve on the results of our
previous work [10] byworkingwith themuchmore flexible Keras DNNwrapper, simplifying
hyper-parameter selection and introducingDNN ensembles that further improve our previous
single DNN prediction errors. We build on the general approach for wind energy to deal in
Sect. 4with the solar radiation problemproposed in theKaggleAMS2013–2014 Solar Energy
Prediction Contest [28], showing that single DNN and ensemble models can also improve on
SVRs on this setting. Finally, in 5 we briefly discuss our results and offer pointers to further
work.

2 Deep Neural Networks

We briefly review here some of the key issues when configuring and training Deep Neural
Networks, closely following in the first four subsections our earlier presentation in [10];
Sect. 2.5 is new.

2.1 Initialization

It can be said that the problem of vanishing gradients that plagued the backpropagation
training of networks with more than 2 layers was in a great measure caused by bad weight
initialization. In fact the breakthroughs of Hinton and Bengio mentioned above were ulti-
mately clever ways to initialize a DNN in such a way that subsequent backpropagation was
successful. This was followed by the work in [13] where it was shown that bad initializations
resulted in gradients centered at 0 and whose variance decreased as one moved from the
output to the input layers. Thus, the network was stuck at weights that caused this near zero
gradient behavior in the first layers and that were therefore unable of any further learning.

Glorot and Bengio proposed in [13] a simpler way to initialize DNN weights so that
vanishing gradients are avoided. Their starting point is LeCun’s work in [24], where it is
suggested to use a properly normalized hyperbolic tangent activations and to draw the initial

weights from a uniform distributionU
[
−

√
3√
M

,
√
3√
M

]
so that the (linear) activations and (non

linear) outputs of a neuron are kept in the [−1, 1] active range of the (normalized) hyperbolic
tangent. Following on this, it is shown in [13] that, provided the initial weights Wi verify

MiVar(Wi ) = 1; Mi+1Var(Wi ) = 1 (1)

whereMi andMi+1 are the fan-in and fan-out of the units in the i-th layer, one can achieve that

Var(zi ) � Var(z j ) across the successive z j layers and also that Var
(

∂ J
∂zi

)
� Var

(
∂ J
∂zk

)
for

the preceding zk layers, where J denotes the MLP cost function. In particular, the variances
of backpropagated gradients remain stable and vanishing gradients will no longer appear.
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Obviously, a reasonable trade-off between both terms in (1) is to take Var(Wi ) = 2
Mi+Mi+1

,
i.e., to initialize the Wi using an uniform distribution

U

[
−

√
6√

Mi + Mi+1
,

√
6√

Mi + Mi+1

]
, (2)

which coincides with the above mentioned initialization proposed in [24] when Mi = Mi+1.
Ultimately all this is related to the Batch Normalization proposals in [18] and Propagation
Normalization in [2] to correct covariance shift.

Here we will use Rectified Linear Unit (ReLU) activations, discussed next, instead of the
hyperbolic tangent ones but, nevertheless, will also apply the Glorot–Bengio initialization
using the suggestion in [16] to dilate the Glorot–Bengio uniform intervals by a factor of 1.5.
In fact, we have observed that in accordance with the analysis in [16], this usually yields
better results.

2.2 Activation Function

Wehaveused linear units in the output layer andReLUunits in the hidden layers. This decision
ismotivated by the fact thatReLUunits don’t face vanishing gradient problem in the sameway
as units with different activation functions like sigmoid or tanh do. The ReLU activation is
defined as r(x) = max(0, x). Briefly speaking, it is a piecewise linear functionwhich switches
to zero negative inputs and preserve the positive ones. The ReLU activation brings several
advantages to our models: accelerated convergence of gradient descent methods, a notable
help to avoid the vanishing gradient problem and induced sparsity in the representations
of the successive layers. On the other hand, ReLUs share some similarities with functions
relating neuronal input currents and firing rates that appear in the leaky integrate and fire
models used in biological neuron models [14].

2.3 Regularization

Adding regularization to Deep Neural Networks is often mandatory due to the extremely
large number of weights. The standard regularization technique, weight decay, consists on
adding the squared norm of the weights to the objective function. When performed only
in the last layer and with linear outputs, this is equivalent to the ridge regression fit of the
deep features generated by the hidden layers of the network. In this work we will use more
modern techniques such as dropout [29], described next. Let ali be the i-th activation of the
l-layer and zli the corresponding output, the standard feedforward processing would yield
zli = f (ali ) = f (wl

i z
l−1 + bli ), where f is the activation function. However, with dropout,

a 0–1 vector rl is first generated applying a Bernoulli distribution componentwise. The
feedforward process then becomes

zli = f (ali ) = f
(
wl
i (z

l−1 � rl) + bli

)
, (3)

where� denotes the componentwise product. Each element in rl has a probability p of being
1, so dropout can be seen as sub-sampling a larger network at each layer. The output errors
are backpropagated as in standard MLPs for gradient computations and the final optimal
weightsw∗ are downscaled asw∗

f = pw∗ to yield the final weights used for testing. Dropout
clearly induces a regularization of the network weights. Besides, it is reminiscent to the well
known bagging technique for ensembles that repeatedly subsamples data to build specific
models and then takes the average. However, in dropout all the “models” (i.e., the particular
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feedforward Bernoulli realizations) share weights and they are “trained” in a single step.
Although we will not use it, in [29] it is also suggested that network performance improves
when dropout is combined with a bound on the L2 norm of the weights, i.e., when they
are constrained as ‖w‖2 ≤ c, with c a second tunable parameter on top of the Bernoulli
probability p.

2.4 Convolutional Layers

While traditional deep MLP architectures usually benefit from the use of a high number of
units in the hidden layers, this leads to a high number of weights, M × M ′ if an M unit layer
is connected to an M ′ unit one, a number that can become rather large if, for instance, inputs
are images or video. Also, feeding such data to a traditional MLP poses the problem of the
complete loss of information on the spatial relationship between variables.

Convolutional and pooling layers arise as a way to avoid both problems by limiting the
fan-in of a given hidden unit to the output of just a subset of units in the previous layer. The
definition of such a restricted fan-in is, in general, problem-dependent, but when data have
an intrinsic spatial structure, a natural approach to limit the connections is to work over small
patches of variables that are local in space.

Let’s assume inputs to be arranged in one channel with a two-dimensional M1 × M2

structure, and consider K × K patches over this data. Patches can be either disjoint or
partially overlapping, but for simplicity we will consider a S = 1 stride, the displacement
applied when we move from one patch to another, in both dimensions. Then there are such
(M1 − K + 1) × (M2 − K + 1) (overlapping) patches x j .

A convolutional layer transform consists in deriving a feature patch p j = f (w ∗ x j + b),
where f is the activation function and ∗ denotes the convolution operator between the K ×K
filterw with bias b and the patch x j . This transforms an M1×M2 input X into an (M1−K +
1) × (M2 − K + 1) output X ′. It is usual to learn a number L of filter pairs (wl , bl), which
conceptually correspond to the hidden units in a classical densely connected layer, since its
number is a free hyper-parameter that needs similar tuning. Thus, the number of weights in a
convolutional layer is L×K 2, while the output dimension is L×(M1−K+1)×(M2−K+1),
which for L > K might exceed the expressive power of a densely connected layer with a
fraction of its weights, and still preserve the spatial information of the data.

A second transform, known as pooling (or subsampling), is usually applied in order to
gain translation invariance and reduce overfitting. In this case, an operation such as averaging
or computing the max is applied on P × P patches of X ′ to derive the final output XC , which
has a L × (M1 − K − P + 2)× (M2 − K − P + 2) dimension. Note that since the operation
applied is fixed, no weights need to be learnt for this layer.

This combined convolution-pooling process allows processing the input using a moderate
number of weights while preventing overfitting and the loss of useful spatial information.
Notice that, to be effective, convolutional and pooling layers must act on inputs that have a
spatial structure and are naturally distributed in feature channels. This is the case for images
or video and their decomposition in RGB channels, but it also happens here, given the spatial
structure of weather prediction and that we can see the different meteorological features
(pressure, temperature, wind components, etc.) as corresponding to different input channels.

2.5 New Minimization Approaches

Deep Networks have also resulted in several new minimizing approaches being proposed
and applied, several of them borrowed from recent advances in convex optimization. Some,
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such as the use of Nesterov’s Accelerated Gradient [30], improve on the classical momentum
enhancement of stochastic gradient descent (SGD). Other procedures essentially aim to get
rid of the learning rates used in SGD and that are often difficult to adjust in order to achieve
effective training. Most of these techniques can be traced back to work by LeCun et al. [24]
and seek to replace standard learning rates by adaptive ones, based ultimately on Newton’s
method for second order optimization.

In order to avoid costlyHessian computations, thesemethods apply several simplifications,
the first one being the consideration of just theHessian diagonal of the network’s cost function
e or its Gauss–Newton approximation, working with rates of the form

ηi j = η

∂2e
∂w2

i j
+ ε

� η(
∂e

∂wi j

)2 + ε

(4)

where ε and η can be kept fixed, and the term
(

∂e
∂wi j

)2
adapts the overall rate to the geometry

of the error function, being large in low curvature dimensions (i.e., when ∂e
∂wi j

is small) and

small in high curvature dimensions (i.e., when ∂e
∂wi j

is large). Variants of this basic ideas have
been derived from convex optimization and play an important role in DNN training, such as
Adagrad [11], which considers weight updates of the form

wt+1
i j = wt

i j − η√∑t
s=1(g

s
i j )

2
gti j (5)

where gi j = ∂e
∂wi j

and the denominator approximates the average E[gi j ]. Zeiler’s Adadelta
[31], which will be the optimizer used in our experiments, improves on this by working with
updates

wt+1
i j = wt

i j − η

1
t

√∑t
1(Δws

i j )
2 + ε

1
t

√∑t
1(g

s
i j )

2 + ε
gti j = wt

i j − η
RMSt (Δws

i j )

RMSt (gsi j )
gti j (6)

that add a momentum-like term to the numerator and where avoiding storing momen-
tum/gradient info is avoided updating RMSt (gsi j )

2 and RMSt (Δws
i j )

2 as

RMSt (g
s
i j )

2 = (1 − ρ)
[
RMSt−1(g

s
i j )

]2 + ρ(gti j )
2; (7)

RMSt (Δws
i j )

2 = (1 − ρ)
[
RMSt−1(Δws

i j )
]2 + ρ(Δwt

i j )
2 (8)

for an appropriate ρ. As mentioned in [31], ε and ρ can be used with fixed values (10−6 and
0.95, respectively, are recommended in [31]) while η is more problem dependent.

3 Wind Energy Experiments

In this section we will apply DNNs to the problem of predicting wind energy production,
first on the Sotavento wind farm and then over peninsular Spain
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3.1 Wind Energy Data

Wewill work with the following eight NWP variable forecasts given by the European Centre
for Medium-Range Weather Forecasts (ECMWF):

– P , the pressure at surface level.
– T , the temperature at 2m.
– Vx , the x wind component at surface level.
– Vy , the y wind component at surface level.
– V , the wind norm at surface level.
– V 100

x , the x wind component at 100m.
– V 100

y , the y wind component at 100m.
– V 100, the wind norm at 100m.

In the Sotavento case they are taken on a 15 × 9 rectangular grid with a 0.25◦ resolution
centered on the Sotavento site (43.34◦N, 7.86◦W); input dimension in this case is thus
15× 9× 8 = 1080. For peninsular Spain we consider a 57× 35 rectangular grid that covers
entirely the Iberian peninsula; input dimension is now a very large 57 × 35 × 8 = 15,960.
Wind energy data for Sotavento are publicly available; those for peninsular Spain were kindly
provided by Red Eléctrica de España (REE). In both cases we normalize them to the [0, 1]
interval by dividing actual wind energy production by the maximum possible value in each
case. We will work with data for the years 2011, 2012 and 2013, that we will use as training,
validation and test subsets respectively. Since NWP forecasts are given every 3h, each subset
will approximately have (24/3) ∗ 365 = 2920 patterns.

3.2 Building Deep Models

Akey issue to achieve a good performance inDNN training is the correct choice of the several
architecture and training hyper-parameters to be considered. However, the extremely large
range of possibilities forces the practitioner to begin with a concrete approximation to the
network structure before embarking on the very costly process of optimal hyper-parameter
selection. In previouswork ([10])we considered for thewind energy problem several different
deep network architectures, among which a convolutional architecture of the LeNet type [23]
proved there to be the best choice. We will use an adaptation of the concrete architecture
used in [10], which has

– Two initial convolutional layers, followed by
– Two fully connected layers and, finally,
– A final linear readout layer.

We will work here with non-symmetric ReLUs as hidden layer activations and apply the
Glorot–Bengio weight initialization heuristic proposed in [13], with a 0-symmetric uniform
weight distribution and an interval width (or, equivalently, uniform distribution variance)
adjusted to the layers’ fan-in. As in [10] we will refer to it as the LeNet-5 architecture.

We will consider each weather variable to define an input feature map which in the wind
energy case implies that there 8 such input channels. This plus our overall DNN architecture
leaves us with the following hyper-parameter ranges to be explored:

– Number of convolutional output channels: integers from 8 to 200.
– Number of fully connected hidden units: integers from 50 to 500, one per layer.
– Weight decay multipliers in fully connected layers: float from 0.0 to 0.5.

123

Author's personal copy



Deep Neural Networks for Wind and Solar Energy Prediction 837

– Dropout fractions in hidden fully connected layers but not for the output weights: float
from 0.1 to 0.9.

– Minibatch training size: integer from 50 to 500.
– Starting learning rate for the training algorithm: float from 1.0 to 0.00001 in a logarithmic

scale.

Convolutional networks also require that strides and filter and pooling sizes are set. This
would add further complexity to the hyper-parameter search and to avoid it here we set
the stride to 1 and the filter size to 2 × 4 in the first convolutional layer and 3 × 5 for the
second; we will not apply any kind of pooling. In any case, it is clear that the number of
hyper-parameters is too large for an exhaustive grid search. To alleviate this we have used
the Tree-structured Parzen Estimator approach available through the Hyperopt ([7]) library,
with a maximum number of evaluations set to 200 that iteratively defines a random path in
hyper-parameter space that progressively focuses on better values. Of the several training
algorithms at our disposal (SGD, SGD–Nesterov, Adagrad and Adadelta), best results were
obtained with Adadelta. We recall that it automatically adjusts its learning rate from an initial
choice.

We selected the best hyper-parameter set by a simplified, time-structured validation pro-
cedure, using as our error measure over a concrete hyper-parameter set P the mean absolute
error (MAE), i.e.,

MAE(P) = 1

N

N∑
n=1

|D(xn; P) − yn | , (9)

where D(x; P) denotes the value on pattern x of the current deep network D built using
the hyper-parameter set P . We use the MAE instead of the more often used squared error
as it is the measure of choice in renewable energy, for it represents energy deviation and,
thus, the energy to be shed or bought from other generation sources to compensate errors in
energy estimates. For the above mentioned time structured validation, the year 2011 is used
for training, 2012 for validation and 2013 for test; this is a quite natural choice when data
have a strong temporal structure.

In Figure 1 we depict the evolution of the train and validation errors for the optimal Keras-
bssed deep network we will describe in Sect. 3.4. While the training MAE present spikes
due to the use of mini-batches, it decreases over the entire training. However, this decrease
in training MAE does not result in the model overfitting; in fact validation MAE also present
spikes but its value stabilizes even while training MAE keeps decreasing. Most likely this is
due to the use of dropout. Because of this, and to shorten training times, our strategy is to set
a maximum number of 1000 training epochs (i.e., passes through the entire training set), keep
track of the best validation MAE after each iteration and to stop training if no improvement
in validation MAE is achieved in the last 100 epochs.

3.3 Ensembles

As it is well known, ensemble learning is an important area of Machine Learning in which
several machines or experts are combined to create a more accurate one. The concepts that
support, in principle, the success of ensemble learning can be resumed in two simple ideas:
the easiness of designing individual experts with good enough outputs (i.e., low bias), and
the independent and random differences between the experts’ output (that lowers variance).
If these two requirements are satisfied, it is clear that with an appropriate aggregation of the
experts’ outcomes, the final output can have a higher quality [26].
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Fig. 1 Training and validation evolution of the optimal LeNet-5 network for Sotavento

Table 1 Mean absolute errors
for the Sotavento and REE
problems as reported in [10]

MAE Sotavento MAE REE

Test Validation Train Test Validation Train

SVR 7.80 6.73 5.62 3.13 3.30 1.01

LeNet-5 7.63 6.25 5.82 3.13 3.01 2.48

There aremany techniques to achieve diversity of learners in regression ensembles, such as
bagging [8] inwhich each learner is trained on a subset of the original training dataset sampled
with replacement, and random initialization in which all experts see all the training dataset
but are initialized using different random seeds. These ideas aim to incorporate randomness
during training, both on the training samples and, also and if possible, on the training pro-
cedure. Notice that Deep Networks exploit both ideas naturally: minibatch training ensures
randomness on the training sample at each epoch, and random weight initialization, mini-
batch training again and dropout enforce randomness during model building. As we shall see
in our experiments, ensembles of these networks are likely to improve on the performance
of single models.

3.4 Wind Energy Results

As a starting point we recall the results in [10] in Table 1. While Pylearn–Theano was
used in [10], here we will use the Theano/TensorFlow Keras wrapper for DNN training.
Because of this we have re-trained DNNs for both Sotaveno and REE. However, for the
REE problem, Keras’ based DNNs have not produced improvements on the results in [10]
as given in Table 1; because of this we will report the new Keras-based results only for
for Sotavento. The previously described hyper-parameter search with Hyperopt yielded the
following optimal hyper-parameters:

– 64 convolutional feature maps (channels) in the first layer and 128 in the second.
– Two fully connected 200 unit layers.
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Table 2 SVR, Keras–LeNet and
ensemble Mean Absolute Error
for the Sotavento problem

MAE Sotavento

Test Validation Train

SVR 7.80 6.73 5.62

Keras–LeNet 7.60 6.03 5.10

Ensemble 7.53 5.96 5.02

Fig. 2 Histogram of test errors over the individual 200 ensemble networks for the Sotavento problem

– A dropout coefficient of 0.2.
– A mini-batch size of 70.
– A learning rate of 0.3.

We point out that the optimalweight decaywas extremely small in all cases (probably because
of the regularizing effect of dropout), so at the end no weight decay was used. Moreover,
recall that we preset strides to 1, convolutional filter sizes to 2 × 4 in the first layer and
3× 5 in the second, and that no pooling will be applied. We will refer to this architecture as
Keras–LeNet.

Table 2 gives training, validation and test errors for the optimal models with our new
approach; we also include SVR for comparison, Notice that the new Keras–LeNet model
slightly improves the results in [10] and that the DNN ensemble yields a noticeably better
error rate. The ensembleMAEvalues have been obtained training 200Keras–LeNet networks
and averaging the predictions of those that yielded the smallest 25% validation errors

Figure 2 shows the histogram of the test error resulting from the 200 trained Keras–LeNet
models; the red line represents the SVR test error. Notice that 94% of Keras–LeNet errors are
belowSVRerror and that the best network (which, of course, cannot be identified beforehand)
would have yielded a MAE of 7.43, rather close to the ensemble MAE. All this suggests that
DNN ensembles are a robust way to improve single DNN performance.
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4 Solar Radiation Experiments

In this section we will apply DNNs to the problem of predicting daily aggregated solar
radiation for Oklahoma’s Mesonet stations. We will also consider here each weather variable
to define an input feature map; there will now be 15 input maps.

4.1 Solar Radiation Data

The NWP variables provided in the Kaggle competition were the following:

– apcps f c, 3-h accumulated precipitation at the surface.
– dlwr fs f c, downward long-wave radiative flux average at the surface.
– dswr fs f c, downward short-wave radiative flux average at the surface.
– presmsl, air pressure at mean sea level.
– pwateatm, precipitable water over the entire depth of the atmosphere.
– sp f h2m, specific humidity at 2m above ground.
– tcdceatm, total cloud cover over the entire depth of the atmosphere.
– tcolceatm, total column-integrated condensate over the entire atmosphere.
– tmax2m, maximum temperature over the past 3h at 2m above the ground.
– tmin2m, mininmum temperature over the past 3h at 2m above the ground.
– tmp2m, current temperature at 2m above the ground.
– tmps f c, temperature of the surface.
– ulwr fs f c, upward long-wave radiation at the surface.
– ulwr ft atm, upward long-wave radiation at the top of the atmosphere.
– uswr fs f c, upward short-wave radiation at the surface.

Here the grid had 9×16 points with 0.5◦ resolution. Recall that the targets were daily aggre-
gated measurements of incoming solar radiation at the 98 stations of Oklahoma’s Mesonet
network. There were 5 forecasts available per day, from 1994 to 2007, corresponding essen-
tially to sunlight hours at 3-h interval. NWP forecasts were available also for 2008 and 2009
but not the radiation measures; these years were thus provided by Kaggle as the test datasets.
While NWP forecasts were given for a 11 member ensemble, we will only work with the
first ensemble. Thus, the input dimension of the problem is 9 × 16 × 15 × 5 = 10,800. In
our experiments we will use 1994 to 2005 as training dataset, 2006 as validation dataset, and
2007 as test dataset. The number of training patterns is thus essentially 365 × 12 = 4380.

4.2 Results for Solar Radiation

In the light of the results for the wind energy problem, we will also consider here only
Keras–LeNet networks. Applying a new hyperopt-based hyper-parameter search over the
same ranges used for wind energy, we have now obtained the following optimal set:

– A first convolutional layer with 150 output channels and a second one with 150 channels.
As before, strides are set to 1, we use 2 × 5 filters in the first layer, 3 × 5 filters in the
second and no pooling.

– Two fully connected 400 unit layers.
– Dropout coefficient of 0.2.
– Mini-batch size of 150.
– Starting learning rate of 0.3.

Again, we didn’t useweight decay here and usedAdadelta as the training algorithm. The solar
energy problem is more demanding in terms of computational resources than the Sotavento
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Fig. 3 Training and validation evolution of the optimal Keras–LeNet network for Solar

Table 3 SVR, Keras–LeNet and
ensemble Mean Absolute Error
for the Solar problem

MAE Solar

Test Validation Train

SVR 2,225,252.24 1,917,895.20 1,417,140.20

Keras–LeNet 2,163,321.97 1,837,780.91 1,772,189.87

Ensemble 2,090,959.30 1,772,383.39 1,739,860.07

problem, so we have to decrease the number of networks per ensemble. We have decided
to train 40 Keras–LeNet nets with the above optimal parameters and to select again those
yielding the top 25%validation errors. For comparison purposes, we also consider a Gaussian
SVR model whose C, γ and ε hyper-parameters have been established by a grid search
over data from the first Mesonet station; their optimal values were C=8,388,608, γ =
6.1035e − 05 and ε = 4096.

We point out that here again validation MAE values stabilize during training even if
training errors keep decreasing. This is illustrated in Fig. 3, which shows the evolution of the
train and validation errors for the optimal Keras–LeNet network; again, the regularizations
used helps to avoid overfitting.

Table 3 displays the training, validation and test errors for the SVR, a Keras–LeNet
single network and the Keras–LeNet ensemble. These have been computed by training one
SVR model for each Mesonet station in the first case, while the DNN-based models have
been trained over the data of all the stations at the same time in a multi-target regression
configuration,workingwith a 98-dimensional target vectormade upwith the daily aggregated
radiation for each station. Here again, we achieve a lower error using an ensemble. Our
procedure makes clear that these models have not been built in order to compete with the
best ones in the Kaggle contest. Among other things, we do not consider the entire set of
NWP predictions available nor seek to build optimal DNN models for each one of the 98
Mesonet stations. At best, our models would be the core of a first submission to be improved
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Fig. 4 Histogram of test errors over the individual 40 ensemble networks for the solar radiation problem

on subsequent ones (the 10 top teamsmade an average of 85 submissions each). Nevertheless,
it is interesting to place our results in the competition’s context and our single deep net model
would have been placed in the 42-th position of the Private Leaderboard, with a MAE of
2,371,143.10. The ensemble brings a slight improvement, with a MAE of 2,365,637.10 and
would occupy the 41-th position. The SVR model would be ranked in the 110-th position,
with a MAE of 2,561,382.58.

We finally point out that ensemble training also seems to be quite robust here. Figure 4
shows the histogram of the test errors derived from the 40 Keras–LeNet models trained
independently with the same hyper-parameter set. Again, the red line represents the SVR test
error, which is even more in the right tail of the ensemble’s MAE distribution that was the
case for wind energy.

5 Conclusions

Deep networks are undeniably very powerful but also very costly to set up and train. However,
this considerable training effort usually pays off as deep nets often produce better results than
other classicalmodels.Aswehave shown, this has been the case for theSotaventowind energy
prediction and the Kaggle data set for solar radiation from Oklahoma’s Mesonet network; on
the other hand, they essentially tied with SVRs for the wind energy prediction over peninsular
Spain. Observe that in all cases the use of grid-based weather forecasts as inputs gives to
both problems a bi-dimensional pattern structure; moreover, each individual variable can be
naturally seen as an input channel to be processed by a convolutional layer.

As in many problems, a natural option to reduce variance is to build an ensemble that com-
bines several deep models. We have pointed out how Deep Networks introduce and exploit
independent randomness in a natural way by using random minibatch training, weight ini-
tialization and dropout regularization and our experiments show that DNN ensemble models
can be quite robust and significantly improve the accuracy of a single network. Therefore,
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deep networks are clear candidates to noticeably benefit from ensemble methods and this is
part of our current research. Other research venue is the exploitation of some of the many
new proposals for network initialization and architectures as well as model training and
regularization that appear almost constantly from the ongoing great research effort in Deep
Networks.

Finally, a weak spot of DNNs is the high cost of their training and, hence, model selection.
The way out of this is to exploit the constant advances to, first, speed up single network
training through the use of GPUs and, second, to shorten ensemble model building through
parallelization. We are also studying some of the new proposals on these directions which
are appearing almost continually, in particular the recent extensions of Google’s TensorFlow
library.
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Abstract. In this work we will apply some of the Deep Learning models
that are currently obtaining state of the art results in several machine
learning problems to the prediction of wind energy production. In partic-
ular, we will consider both deep, fully connected multilayer perceptrons
with appropriate weight initialization, and also convolutional neural net-
works that can take advantage of the spatial and feature structure of the
numerical weather prediction patterns. We will also explore the effects
of regularization techniques such as dropout or weight decay and con-
sider how to select the final predictive deep models after analyzing their
training evolution.

1 Introduction

Having had a big first impact around 1990, Multilayer Perceptrons (MLPs)
started a mild decline after the second half of that decade. A particularly puz-
zling issue was the difficulty to build efficient MLPs with three or more layers,
in spite of the fact that the backpropagation computation of the gradient of the
MLP error function could be carried out in a rather straightforward fashion. The
reason behind this was the vanishing gradient phenomenon [8] which in turn was
in part a consequence of the inadequacy of weight initialization.

However, this changed radically with the seminal paper by G. Hinton and
R. Salakhutdinov [12] that showed how an unsupervised, stacking scheme based
on Boltzmann machines could yield a good initialization (or pretraining) of the
weights of a many-layered MLP, that could be then efficiently fine-tuned by
backpropagation. Shortly afterwards, Y. Bengio and his coworkers proposed a
similar and somewhat simpler pretraining using stacked autoencoders [4]. This
opened the way to the enormous attention that deep MLPs (i.e., MLPs with
three or more layers) or, in general, deep learning, have received in the past
years.

This attention has in turn resulted in a great simplification of the initial
schemes of Hinton and Bengio and has brought many new procedures and ideas
to the MLP field, such as new initializations, or the replacement of some of the
initial MLP recipes, such as sigmoid activations or weight decay regularization,
by new proposals like rectified linear unit (ReLU) activations [9] or dropout
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regularization [18]. Moreover, the very large datasets and deep MLP parame-
ters often rules out batch learning. This has resulted in a large emphasis on
online learning, usually over minibatches of randomly selected patterns, with
much work being devoted to the choice of learning rates (or how to avoid them)
or momentum methods such as Nesterov’s acceleration. This raises the issue of
when to stop training, something rather straightforward in the batch training of
classical MLPs if an adequate regularization and an efficient optimizer were used.
Furthermore, once the previous ingredients are in place, the need to specialized
(and costly) pretraining is less accute and several initialization methods have
been proposed that result in the training of effective deep models. A good exam-
ple of such a global approach is [19]. Another key ingredient in the successful
applications of deep learning is the use of convolutional layers, that concatenate
a purely convolutional sublayer that processes inputs using localized window
filters, and a pooling sublayer that aggregates the outputs of the previous sub-
layer. Starting with the work of Y. LeCun in the late 1990’s, this processing is
particularly natural when inputs have a spatial structure, as it is the case with
images, and it has led convolutional deep nets to achieve state-of-the-art results
in problems such as MNIST [7] or ImageNet [14].

All these advances have made possible the effective training of very large deep
networks with hundreds of thousands of weights which, in turn, makes impera-
tive the use of software that can take advantage of high performance hardware
endowed with parallelization (i.e., multicore machines) and vectorization (i.e.,
GPU units). Besides, the fast pace of change in the field and the fact that there
is still not an accepted multipurpose architecture makes it quite difficult to work
with self developed code; instead, it is well advised to rely on publicly available
libraries and environments such as the Caffe [13] deep learning framework or the
Pylearn2–Theano libraries [5] [3] [10] that we use here.

In any case, it seems that the bulk of deep learning research concentrates on
computer vision, speech recognition and natural language processing problems.
This is partially natural in view of the broad similarity between deep learning
architectures and the processing hierarchies in the visual cortex [15] (although
deep learning algorithms are quite different from the Spike-Timing-Dependent
Plasticity learning rule most accepted in neurobiology). As such, deep learn-
ing algorithms are increasingly seen as representation learning procedures that
yield at each layer increasingly more abstract representations in such a way that
features in the higher layers capture possibly more powerful data features.

However, the successful exploitation of such a processing may also take place
in simpler regression problems that, nevertheless, have input patterns with a spa-
tial structure. The goal of this work is the prediction of wind energy production.
Spain is among the world leaders in wind energy with a very high penetration
that in some special days and hours can meet a very high percentage of Spain’s
electricity demand. Obviously, this high penetration makes it very important
to provide accurate prediction of wind energy, with standard MLPs (usually at
the farm level) and Support Vector Regression (SVR) (for large scale prediction)
being the models of choice. The inputs for such models are the forecasts provided
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by numerical weather prediction (NWP) systems such as the ECMWF [1] or the
GFS [2]. These predictions are forecasts of several weather variables given at the
points of a rectangular grid that covers the areas under study and that reflects
some underlying orographic model. One may thus view an area wide NWP fore-
casts as a set of feature maps (the individual weather variables) having a spatial
structure (that of the underlying geography) in much the same way that the
RGB channels of an image correspond to feature maps with a two dimensional
structure.

Under the previous scheme, the consideration of convolutional networks to
derive wind energy forecast arises as a natural option and they will be one of the
models considered in this paper. Our main purpose is to develop a methodology
to build models that can provide accurate predictions from the original data
with as little pre-processing and expert knowledge as possible. Given the very
wide range of proposals in the literature, this implies we must make beforehand
concrete choices of network initialization, online training procedure, activation
function and regularization scheme. Of course, on top of this, a more or less
general network architecture also has to be selected.

We will develop the choices we make in the next sections. Besides standard
“small” MLPs and SVR models that we use as reference benchmarks, we will
consider deep MLPs with a standard multilayer structure, general deep convolu-
tional networks (CNNs) and also an adaptation of the well-known LeNet [16], one
of the most successful architectures for character recognition. In all those deep
nets we will use Glorot–Bengio weight initialization [8], ReLUs as activation
functions [9], dropout regularization [18] complemented with standard weight
decay in the final fully-connected layers, random mini-batch gradient descent
over batches of moderate size and conjugate gradient as the training algorithm.
This enables us to work with a fixed, fairly general learning rate, that is no
longer a parameter to explore. Summing things up, our main contributions are:

– We review some of the latest proposals in DNNs and propose general guide-
lines to apply deep MLPs in regression problems.

– We thoroughly explore the application of the two main paradigms in DNNs
to the problem of local and large scale wind energy prediction.

– We introduce a variant of the well known LeNet convolutional neural network
adapted to wind energy prediction and show it to be very competitive with
other DNN architectures or state of the art methods such as Support Vector
Regression.

As mentioned before, we will use Pylearn2 [10]–Theano [3] [5] platform as it
includes a wide variety of already tested neural networks and allows us to explore
several of the latest and most effective proposals for deep network training.
An important advantage of having Theano as the underlying numerical library
is that we can exploit its capabilities for code execution on GPUs, something
crucial given the network sizes and input dimensions we work with. We run our
experiments on a machine equipped with a NVidia Tesla K40 GPU which makes
possible reasonable execution times and, hence, the capability of exploring a
fairly large number of deep model configurations.
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The rest of the paper is organized as follows. In Section 2 we review our
choices for deep network configuration and discuss some of its details. Section 3
contains a succinct description of the framework for wind energy prediction over
NWP inputs, a description of our experimental setup and the prediction results
for both the Sotavento wind farm and the entire wind energy prediction over
peninsular Spain that is overseen by Red Eléctrica de España (REE). Finally, in
Section 4 we briefly discuss our results and offer pointers to further work.

2 Deep Neural Networks

We briefly review here some of the key issues when configuring and training
Deep Neural Networks.

2.1 Initialization

There have been several heuristic proposals for weight initialization in “classical”
MLPs. For instance, a common choice is to take them from a uniform distribution

U
[
− 1√

M
, 1√

M

]
, with M the fan-in of the neuron, i.e., the number of weights

feeding into it. However, it was found experimentally in [8] that in a deep MLP
initialized in such a way, back-propagated gradients were progressively smaller
when moving from the output layer towards the input layer and, in addition, their
variances also decrease. In other words, backpropagating such an initialization
may result in vanishing gradients in the first layers following the input and, thus,
in a network which is insensitive to its inputs and unable to “learn” them.

The more detailed analysis in [17], also oriented to “classical” MLPs and
where properly normalized hyperbolic tangents were used, pursued a goal of
keeping the (linear) activations and (non linear) outputs of a neuron in the
[−1, 1] active range of the (normalized) hyperbolic tangent. Assuming inputs
normalized to zero mean and unit variance component-wise, it is suggested in [17]

to use an uniform distribution U
[
−

√
3√
M
,

√
3√
M

]
. This analysis was extended in [8],

where, assuming again the neuron outputs zi of the i-th layer also to be in the
[−1, 1] active range, initialization should ensure first that V ar(zi) � V ar(z′i)

across the successive layers and also that V ar
(

∂J
∂zi

)
� V ar

(
∂J
∂zi

)
, where J

denotes the MLP cost function. This translates into the following equations for
the initial weights Wi

MiV ar(Wi) = 1; Mi+1V ar(Wi) = 1

where Mi and Mi+1 are the fan-in and fan-out of the units in the i-th layer.
An approximation to both is to take V ar(Wi) =

2
Mi+Mi+1

, i.e., to initialize the

Wi using an uniform distribution U

[
−

√
6√

Mi+Mi+1

,
√
6√

Mi+Mi+1

]
. Note that when

Mi = Mi+1, we get back the initialization proposed in [17].
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We will use the initialization in [8] but working with Rectified Linear Unit
(ReLU) activations, discussed next, instead of the hyperbolic tangent ones. While
the rationale in [8] may not apply, the recent analysis in [11] of weight initializa-
tion for ReLU activation suggests to dilate the Glorot–Bengio uniform intervals
by a factor of 1.5, and, in fact, we have observed that this usually yields better
results.

2.2 Activation Function

As mentioned, we have used ReLUs for all hidden layer activations and linear
units in the output layer. The ReLU transfer function is r(x) = max(0, x), that
is, their response to the opposite of a positive excitatory input is just 0; in partic-
ular, ReLUs do not have a sign antisymmetry, as is the case with the hyperbolic
tangent. On the other hand, ReLUs share some similarities with the functions
relating neuronal input currents and firing rates that appear in the leaky inte-
grate and fire models used in biological neuron models [9]. Besides, ReLUs induce
sparsity in the representations of the successive layers; for instance, right after
the uniform weight initialization, the outputs of about half the network neurons
should be zero, as they would correspond to negative (inhibitory) inputs. This
may partially explain the fact that ReLUs seem to be less affected than other
activations by poor initializations. In any case, this point deserves further study.

2.3 Regularization

It is obvious that the extremely large number of weights in a deep MLP makes
regularization mandatory to avoid overfitting. The standard regularization tech-
nique in classical MLPs is weight decay applied across all the layers; i.e., the
square norm weight penalty considered for all layer weights is added to the MLP
cost function. It has an obvious place in a last layer with linear outputs, as it
performs ridge regression on the features induced in that last layer by the deep
processing of the inputs.

However, for the other layers we will use dropout [18], that we briefly describe
next. If ali denotes the i-th activation of the l-layer and zli the corresponding out-
put, the standard feedforward processing would yield zli = f(ali) = f(wl

iz
l−1+bli),

where f is the activation function. However, with dropout, a 0–1 vector rl is
first generated applying a Bernoulli distribution componentwise. The feedfor-
ward process becomes

zli = f(ali) = f
(
wl

i(z
l−1 � rl) + bli

)
,

where � denotes the componentwise product. Each element in rl has a probabil-
ity p of being 1, so dropout can be seen as sub-sampling a larger network at each
layer. The output errors are backpropagated as in standard MLPs for gradient
computations and the final optimal weights w∗ are downscaled as w∗

f = pw∗ to
yield the final weights used for testing.
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Dropout clearly induces a regularization of the network’s weights. Moreover, it
is reminiscent to the well known bagging technique for ensembles that repeatedly
subsamples data to build specific models and then takes the average. However, in
dropout all the “models” (i.e., the particular feedforward Bernoulli realizations)
share weights and they are “trained” in a single step. Although we will not use
it, in [18] it is also suggested that network performance improves when dropout
is combined with a bound on the L2 norm of the weights, i.e., when they are con-
strained as ‖w‖2 ≤ c, with c a second tunable parameter on top of the Bernoulli
probability p.

2.4 Convolutional Layers

Standard deep MLP architectures tend to favor layers with a high number of
hidden units. This also leads to a high number of weights, M ×M ′ if we fully
connect an M unit layer with an M ′ one, a number that can become rather large
if, for instance, inputs have a two dimensional structure, as it is the case with
images. Convolutional layers arise in part as a way to avoid this by limiting the
fan–in of a hidden unit to come from a localized subset of units in the previous
layer. Of course, how to define such a restricted fan–in is, in general, problem–
dependent, but when data have an intrinsic spatial structure a natural approach
to localize the connections is to work over small patches.

More precisely, assume inputs or layer outputs to be one channel structured as
an M1×M2 matrix, and consider in them K×K submatrix patches. They could
be either disjoint or partially overlapping; we can parameterize this considering
a stride value S that gives the displacement applied when we move horizontally
and vertically from one patch to the next one. Assuming for simplicity a S = 1
stride, there are such (M1 −K + 1) × (M2 −K + 1) (overlapping) patches xj .
A first transform is to derive a patch feature pj = f(w ∗ xj + b) where f is
the activation function, ∗ denotes the convolution operator between the K ×K
filter w and the patch xj and b is the bias of the filter. This transforms an
M1 ×M2 input X into an (M1 −K + 1)× (M2 −K + 1) convolutional output
X ′ and usually a number L of filter pairs (wl, bl) (or of feature maps) have
to be learned. Thus, the number of weights in a convolutional sub–layer is a
rather modest L × K2 but, on the other hand, the output dimension would
be L× (M1 −K + 1)× (M2 −K + 1), which for L > K might greatly increase
the number of hidden units in the next layer. To curb this (and avoid a possible
overfitting), a second pooling (or subsampling) sub–layer is applied in which an
operation such as averaging or computing the max is applied on P×P patches of
X ′ to derive the final output XC of the convolution–pooling combined process;
XC has a L× (M1 −K − P + 2)× (M2 −K − P + 2) dimension.

This combined convolution–pooling process is called a convolutional layer; it
allows for a localized processing of the layer’s input using a moderate number of
weights (note that there are no weights in the pooling sub–layer) while arriving at
a number of units in the next layer similar to that of the previous one. Of course,
we stress again that, to be effective, a convolutional layer must act on inputs
that have a spatial structure (such as images) and are naturally distributed in
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feature channels (such as the RGB decomposition). This is also happens in our
case, where weather prediction has an obvious spatial structure in which different
meteorological features (pressure, temperature, wind components, etc.) can be
seen as corresponding to different channels.

3 Experiments

In this section we will apply DNNs to the problem of predicting wind energy
production, first on the Sotavento wind farm and then over peninsular Spain.

3.1 NWP and Production Data

We will work with the following eight meteorological variable forecasts given by
the European Centre for Medium-Range Weather Forecasts (ECMWF) system
for Numerical Weather Prediction (NWP):

– P , the pressure at surface level.
– T , the temperature at 2m.
– Vx, the x wind component at surface level.
– Vy, the y wind component at surface level.
– V , the wind norm at surface level.
– V 100

x , the x wind component at 100m.
– V 100

y , the y wind component at 100m.
– V 100, the wind norm at 100m.

In the Sotavento case they are taken on 15 × 9 rectangular grid centered
on the Sotavento site (43.34◦N, 7.86◦W); input dimension in this case is thus
15× 9× 8 = 1, 080. For peninsular Spain we consider a 57× 35 rectangular grid
that covers entirely the Iberian peninsula; input dimension is now a very large
57× 35× 8 = 15, 960.

Wind energy data for Sotavento are publicly available; those for peninsular
Spain were kindly provided by Red El?ctrica de Espa?a (REE). In both cases we
normalize them to the [0, 1] interval by dividing actual wind energy production
by the maximum possible value in each case. We will work with data for the years
2011, 2012 and 2013, that we will use as training, validation and test subsets
respectively. Since NWP forecasts are given every three hours, each subset will
approximately have (24/3) ∗ 365 = 2, 920 patterns.

3.2 Deep Models

We will consider deep networks with either all their layers being fully connected,
which we call deep MLPs, or with a number of initial convolutional layers fol-
lowed by fully connected ones; we call these models deep convolutional neural
networks, or deep CNNs. As reference models we will work with “standard”
one hidden layer MLPs and also with Support Vector Regression (SVR) models,



Deep Neural Networks for Wind Energy Prediction 437

Algorithm 1 Hyper-parameter search

1: procedure Hyper-parameter search(n,m) � n×m iterations
2: randomly initialize an hyper–parameter vector p
3: p∗ = p � p∗: optimal hyper–parameter vector
4: for i = 1, . . . , n do
5: for j = 1, . . . ,m do
6: k ← random value in {1, . . . ,m}
7: pk ← random value in {vk1 , . . . , vkNk

}
8: evaluate the p–parameterized model and update p∗ if needed
9: end for
10: end for
11: return p∗

12: end procedure

among the most powerful modelling methods in wind energy prediction. The
number of possible architectures and the many choices available for them would
result in an unmanageable number of model hyperparameters to explore when
looking for the best ones. To limit this, we have first fixed some of them to
reasonable values that give good results in a first coarse model exploration.

A first such choice is that of the deep architectures to be considered. For deep
MLPs we will consider two hidden layers with the same number of units. Our first
choice for deep CNNs, which we call standard deep CNN or sdCNN, will have
an initial convolutional layer followed by two fully connected layers again with
the same number of units. Our second CNN choice, which we call LeNet CNN
or lnCNN, will be an adaptation of the well known LeNet–5 architecture [16],
that was specifically designed for the MNIST character recognition problem.

We will use the non–symmetric ReLUs at the hidden layers and, as discussed
before, for network initialization we will apply the Glorot–Bengio heuristic pro-
posed in [8] of using a 0–symmetric uniform distribution with a width adjusted
to the layers’ fan-in, scaling then up these initial weights by a factor of 1.5.

The training algorithm we are going to use for all the experiments is conjugate
gradient descent (CGD) over random mini–batches. In other words, over each
new mini–batch we apply CGD starting at the weights derived over the previous
mini–batch; their size clearly affects the performance of the network and we have
used sizes of either 200 or 250, i.e., about 6% and 9% of the training sample size.
Our error measure is the mean absolute error (MAE)

MAE =
1

N

N∑

n=1

|D(xn;P )− yn| ,

where D(x;P ) denotes the value on pattern x of the current deep network D
built using the hyperparameter set P . We use the MAE instead of the more
often used squared error as it is the measure of choice in renewable energy, for
it represents energy deviation and, thus, the energy to be shed or obtained from
other generation sources to compensate errors in wind energy estimates.
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As we shall see in the next subsection, the overall MAE evolution during
training is decreasing but it often presents spikes due to the use of mini–batches,
and this carries on to validation MAE values. In addition, validation MAE seems
to stabilize even while training MAE keeps decreasing. Because of this, our model
selection strategy is to train a deep NN while there is at least a 1% drop in MAE
in the last 100 epochs, with a a maximum of 1, 000 epochs (i.e., goes throught
the entire training set). For convolutional networks we will consider each weather
variable to define an input feature map; there are thus 8 such features. The above
choices leave us with the following hyperparameters to be selected:

– For deep MLPs (which we denote by MLP2) we have to decide on the number
(one or two) of hidden layers, the number of hidden units per layer, the weight
decay and dropout coefficients, and mini–batch size.

– For the standard deep CNN (which we denote by CNN) we add to the
previous deep MLP parameters the convolutional filter and pooling sizes,
and their strides.

– For the LeNet CNN (which we denote by LeNet) we also have to decide on
the deep MLP parameters but we simplify the other choices by selecting filter
and pooling sizes and strides as adequately scaled versions to our problem
of the choices made for LeNet–5.

In any case, it is clear that even after the previous simplifications, the number
of hyperparameters is too large for an exhaustive grid search. To alleviate this we
have used a greedy approach in which we fix first the number of fully connected
hidden layers as 2 and then apply Algorithm 1, in which models are evaluated
in terms of the MAE over the validation subset. The algorithm performs n = 50
external iterations on each of which a concrete hyper–parameter vector p is
evaluated. The hyper–parameters considered are the number of hidden units in
fully connected layers, the weight decay multipliers used in them, the dropout
fraction and the minibatch size. On each external iteration m random choices
are made of hyper–parameter indices k and for each a possible updating value
pk is randomly selected from the list {vk1 , . . . , vkNk

} of values of the k–th hyper–
parameter to be explored. Both random selections are uniform. Actual tested
values were

– Hidden unit numbers: 50, 100, 150, 200, 250, 300, 350, 400.
– Weight decay multipliers: 0.1, 0.2, 0.3, 0.4, 0.5.
– Dropout fractions: 0.3, 0.4, 0.5, 0.6, 0.7, 0.8.
– Minibatch size: 50, 100, 150, 200, 250, 300.

For the deep CNNs we fixed the stride to 1 and adjusted filter and pooling
sizes by a limited heuristic search; notice that these sizes imply at least four
more parameters and a fully random search over the entire parameter set is
nearly impossible. The same is true for the number of convolutional feature
maps. The just described hyperparameter search results in the following deep
NN definitions:
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Table 1. Mean Absolute Errors for the Sotavento and REE problems

MAE Sotavento MAE REE

Test Validation Train Test Validation Train

SVR 7.80 6.73 5.62 3.13 3.30 1.01
LeNet 7.63 6.25 5.82 3.13 3.01 2.48
CNN 7.76 6.26 5.39 3.31 3.05 1.96
MLP2 7.76 6.33 5.86 3.37 2.96 1.97
MLP1 8.25 6.41 5.51 3.70 3.10 1.81

– Deep MLPs (MLP2) for Sotavento will have two hidden layers of 250 units,
a weight decay coefficient of 0.3 and dropout coefficient of 0.7; mini–batch
size is 200. The REE ones will have the same weight decay and dropout
coefficients, two hidden layers of 300 units and mini–batch size is 250.

– Standard deep CNNs (CNN) for Sotavento will have a first convolutional
layer with 2 × 6 filters and max pooling is performed over 2 × 2 patches.
This layer is followed by two fully connected layers of 200 units, no weight
decay, dropout coefficient of 0.7 and mini–batch size 250. The REE CNN
has the same structure; the first layer has now 3 × 3 filters, max pooling is
done over 3×5 patches. This is followed by two fully connected layers of 400
units, weight decay and dropout coefficients are 0.3 and 0.7 respectively and
mini–batch size is 200. We used 16 convolutional feature maps for Sotavento
and 8 for REE.

– The adapted LeNet–5 (LeNet) network for Sotavento has a first convolutional
layer with 2× 2 filters and max pooling, and a second one with 4× 2 filters
and 2 × 2 max pooling. They are followed by two fully connected 200 unit
layers, no weight decay, dropout coefficient of 0.7 and mini–batch size 250.
For REE, the LeNet network has a first convolutional layer with 6×8 filters,
2×2 max pooling, and a second one with 6×6 filters and 2×2 max pooling.
They are followed by two fully connected 200 unit layers, weight decay and
dropout coefficients of 0.3 and 0.7 respectively, and mini–batch size is 200.
For both problems we used 16 convolutional feature maps in the first layer
and 32 in the second.

3.3 Results

For comparison purposes, we also consider a Gaussian SVR model and a “stan-
dard” one–hidden layer, 10–unit MLP. We have used the very well known LIB-
SVM library [6] and the SVR hyperparameters C, γ and ε have been established
by a grid search; their optimal values were C=128.0, γ = 3.0518 × 10−5 and
ε = 0.0625 for Sotavento and C=128.0, γ = 12.2078 × 10−5 and ε = 0.01 for
REE. For the standard MLPs we used again Pylearn2–Theano and the opti-
mal parameters were 0.001 weight decay coefficient and 200 mini–batch size in
Sotavento and 0.1 weight decay coefficient and 250 mini–batch size for REE.
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Table 2. Training complexity parameters and times in seconds for the Sotavento (top)
and REE (bottom) deep models

Model #Params. #Iters. Time Time/Iter.

LeNet 140808 426 1175 2.76
CNN 105736 500 705 1.41
MLP2 332750 259 276 1.07

LeNet 224776 949 19494 20.54
CNN 548176 717 6880 9.60
MLP2 4878300 258 1208 4.68

Table 1 gives training, validation and test errors for the optimal models
and the two problems. As it can be seen, the SVR and LeNet–5 models have
a similar in performance in the REE problem, followed by the other two deep
models; the standard MLP is in a distant last place. However, in Sotavento the
LeNet–5 model is clearly the best model while the SVR and the two deep models
essentially tie for second place; again, the standard MLP comes in last place.
We point out that although we follow a straightforward train–validation–test
scheme for model evalution, a more accurate comparison should be made using
an appropriate statistical test such as the well known Wilcoxon Rank Sum test,
that takes into account not only MAE values but also standard deviations. This
requires larger training periods and will be considered in further work.

Figure 1 shows the evolution of the train, test and validation errors for the
optimal CNN and LeNet–5 networks for Sotavento (top) and REE (bottom).
The large error variations are caused by mini–batch training; while at first sight
validation and test error evolution appears smoother for Sotavento, this is par-
tially due to a scale effect (about twice as large for Sotavento than for REE). For
Sotavento the smallest errors seem to have essentially reached stable values; this
is also the case for the validation and test errors in REE although training error
would keep on decreasing, probably because the higher dimensionality of this
problem. In both cases the vertical dotted line indicates the epoch with a lowest
validation error and the horizontal dotted lines indicate the training, validation
and test errors in that epoch. These are the values reported in Table 1.

Finally, in Table 2 we give the give the complexity parameters and training
times in seconds for the deep models used in the Sotavento (top) and REE
(bottom) problems. As it can be seen, all models are rather large, and more
so those used for REE (remember that input dimensions are respectively 1,080
and 15,960). Besides, while the convolutional networks have less parameters
than MLP2, their feedforward passes are much costlier due to the convolution
operations and the same is true for the backpropagation of gradients. We observe
that the smaller number of weights in LeNet for REE is due to the larger filters
used.

It follows that deep training is rather costly and must take advantage of
all possible hardware–based improvements available. In our case experiments
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(a) CNN (b) LeNet–5

(c) CNN (d) LeNet–5

Fig. 1. Training, validation and test evolution of the optimal CNN and LeNet–5 net-
works for Sotavento (top) and REE (bottom)

have been run on a machine equipped with a NVidia Tesla K40 GPU and the
Pylearn2–Theano framework. Working with Pylearn2 eases somewhat the devel-
opment process, since most of it is written in Python.

There are other platform alternatives with the already mentioned Caffe being
an interesting one, as its core is written in C++ and CUDA, which should result
in a performance improvement. Another important improvement comes from
the NVidia cuDNN library, that inter–operates perfectly with Pylearn2–Theano
(more than doubling the performance of the previous version) and Caffe.

4 Conclusions

While undeniably very powerful, the optimal architectures and best hyper–
parameters of deep neural networks are also quite hard to set up and select.
However, when properly tuned, they can often produce better results than other
classical models, as we have demonstrated here on two wind energy problems.
The use of weather variables gives to both problems a bi–dimensional input struc-
ture; moreover, these variables can be naturally seen as input channels. This may
suggest a reason why the best deep results were obtained using convolutional
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layers. Deep network training is also very computationally demanding but, on
the other hand, lends itself extremely well to the use of GPUs and the large
speed-ups that they allow.

In any case, the work presented here has to be considered as a first step. A first
line of further work is to consider other convolutional architectures, specially of
the AlexNet type ([14]). Another natural option is to try to reduce variance
by combining several deep models (notice that they have naturally a low bias).
The usual choice in standard MLPs is to repeat training from different random
initializations but given the high validation variability during training, a simpler,
less costly possibility is to select a certain number M of the models with smallest
validation that were obtained in a single training run as the ones followed here.

Furthermore, the tremendous activity in deep learning is producing a large
number of proposals for network initialization and architectures as well as model
training and regularization. We are also pursuing some of these options.
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Chapter 4

Deep Fisher Discriminant Analysis
and Imbalanced Classification

4.1 Summary

Highly imbalanced datasets are common in real world problems, making the topic
of imbalanced classification very interesting for practical applications. On the other
hand, Fisher Discriminant Analysis (FDA), an elegant dimensionality reduction tech-
nique for classification problems, could be a nice tool in such applications, but its
linear nature poses a strong limitation on its performance.

This series of publications explores the partial equivalence between the classical
eigenanalysis-based solution to FDA and an alternative DNN-based solution that,
being iterative and with a computational cost scaling linearly with the sample size,
allows to apply FDA to big data problems. As detailed in [87], FDA for two-class
problems can be reduced to Least Squares. This result was extended by Zhihua
Zhang, Guang Dai, Congfu Xu and Michael I. Jordan in [33, 88] to multiclass prob-
lems. Also, the use of MLPs instead of linear models for such feature transformation
results in a non-linear extension to FDA comparable in principle to Kernel Fisher
Discriminant Analysis (KFDA), without the drawback of the high computational
costs associated to kernel–based methods. Finally, the performance of MLP–based
models combined with the use of state of the art regularization and activation tech-
niques and proper error and score functions is studied in detail and compared with
KFDA.

4.2 Publications

We detail next the publications of this chapter, give their abstracts, and briefly list
their main contributions for the sake of convenience.

Main publication

� David Dı́az-Vico and José R. Dorronsoro. Deep least squares fisher discrimi-
nant analysis. IEEE Transactions on Neural Networks and Learning Systems,
31(8):2752–2763, 2020

89



Abstract: While being one of the first and most elegant tools for dimension-
ality reduction, Fisher linear discriminant analysis (FLDA) is not currently
considered among the top methods for feature extraction or classification. In
this paper, we will review two recent approaches to FLDA, namely, least
squares Fisher discriminant analysis (LSFDA) and regularized kernel FDA
(RKFDA) and propose deep FDA (DFDA), a straightforward nonlinear ex-
tension of LSFDA that takes advantage of the recent advances on deep neural
networks. We will compare the performance of RKFDA and DFDA on a large
number of two-class and multiclass problems, many of them involving class-
imbalanced data sets and some having quite large sample sizes; we will use,
for this, the areas under the receiver operating characteristics (ROCs) curve
of the classifiers considered. As we shall see, the classification performance of
both methods is often very similar and particularly good on imbalanced prob-
lems, but building DFDA models is considerably much faster than doing so for
RKFDA, particularly in problems with quite large sample sizes.

Contributions: This article was published as an substantial extension of [29],
where the first idea of a DNN based alternative to FDA was proposed. Besides
a more thorough description of the proposed Deep Fisher Discriminant Analysis
(DFDA), the main additional contributions are:

– The formulation of Kernel Discriminant Analysis (KDA) in the same
terms as DFDA. Efficient algorithms for training and inference of both
FDA and KFDA were also proposed.

– The proposal of suitable scoring functions for regularized Kernel Fisher
Discriminant Analysis (RKFDA) and deep Fisher Discriminant Analysis
(DFDA) based on the computation of receiver operating characteristic
(ROC) curves and area under the curve (AUC) values.

– An extensive comparison of RKFDA and DFDA over a large number of
two-class and multiclass data sets, many of them involving imbalanced
problems and moderately large sample sizes, which show that both give
essentialy the same classification results but DFDA has a much lower
computational cost.

In particular, the experimental methodology was significantly improved by the
use of more appropriate metrics and the availability of an extended dataset
repository that included balanced and unbalanced, binary and multiclass clas-
sification problems, and featured high- and low-dimensional examples, with
dataset sizes ranging from around 100 to over 500, 000. This resulted in a
more solid hypothesis testing, as in [22]. Also, a Scikit-learn–compatible soft-
ware library with the proposed implementation of KFDA was published as
[89].

Other publications

� David Dı́az-Vico, Adil Omari, Alberto Torres-Barrán, and José Ramón Dor-
ronsoro. Deep fisher discriminant analysis. In Ignacio Rojas, Gonzalo Joya,



and Andreu Catala, editors, Advances in Computational Intelligence, pages
501–512, Cham, 2017. Springer International Publishing

Abstract: Fisher Discriminant Analysis (FDA)’ linear nature and the usual
eigen-analysis approach to its solution have limited the application of its under-
lying elegant idea. In this work we will take advantage of some recent partially
equivalent formulations based on standard least squares regression to develop a
simple Deep Neural Network (DNN) extension of Fisher’s analysis that greatly
improves on its ability to cluster sample projections around their class means
while keeping these apart. This is shown by the much better accuracies and g
scores of class mean classifiers when applied to the features provided by simple
DNN architectures than what can be achieved using Fisher’s linear ones.

Contributions: This congress paper exploits the partial equivalence between
the eigenvalue-based analytical solution of FDA and the solution obtained with
standard Linear Regression with some suitably transformed targets. This iter-
ative method to calculate a solution of FDA does not involve any eigenanalysis,
and its cost scales linearly with the size of the training sample, making it viable
for big data problems. Moreover, the use of MLPs instead of simpler Linear
Regression adds non-linear capabilities to the resulting feature transformation
technique, allowing for a significant improvement on the results for classifica-
tion problems when paired with an appropriate distance–based classifier.

� David Dı́az-Vico, Ańıbal R. Figueiras-Vidal, and José R. Dorronsoro. Deep
mlps for imbalanced classification. In 2018 International Joint Conference on
Neural Networks (IJCNN), pages 1–7, 2018

Abstract: Classification over imbalanced datasets is a highly interesting topic
given that many real-world classification problems present a concrete class with
a much smaller number of patterns than the others. In this work we shall ex-
plore the use of large, fully connected and potentially deep MLPs in such prob-
lems. We will consider simple MLPs, with ReLU activations, softmax outputs
and categorical cross-entropy loss, showing that, when properly regularized,
these relatively straightforward MLP models yield state of the art results in
terms of the areas under the ROC curve for both two-class problems (the usual
focus in imbalanced classification) as well as for multi-class problems.

Contributions: This congress paper briefly reviewed the state of the art in im-
balanced classification problems and explored the use of MLPs with appropriate
regularization and activation techniques in such problems. The importance of
a wisely chosen metric to optimize during hyper-parameter search was a cen-
tral topic in the analysis. The experimental results showed that MLPs paired
with modern regularization, initialization and activation techniques, using an
appropriate metric to evaluate hyper-parameter configurations, can be compet-
itive with the current state of the art. The set of tools used in the experiments
included Scipy [90], Scikit-learn [20], Keras [66], Tensorflow [58] and Sacred
[91], and served as a check of the maturity and reliability of this Python ML
stack to be used in further publications.
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Deep Least Squares Fisher Discriminant Analysis
David Díaz-Vico and José R. Dorronsoro

Abstract— While being one of the first and most elegant
tools for dimensionality reduction, Fisher linear discriminant
analysis (FLDA) is not currently considered among the top
methods for feature extraction or classification. In this paper,
we will review two recent approaches to FLDA, namely, least
squares Fisher discriminant analysis (LSFDA) and regularized
kernel FDA (RKFDA) and propose deep FDA (DFDA), a straight-
forward nonlinear extension of LSFDA that takes advantage of
the recent advances on deep neural networks. We will compare
the performance of RKFDA and DFDA on a large number of
two-class and multiclass problems, many of them involving class-
imbalanced data sets and some having quite large sample sizes;
we will use, for this, the areas under the receiver operating
characteristics (ROCs) curve of the classifiers considered. As we
shall see, the classification performance of both methods is often
very similar and particularly good on imbalanced problems, but
building DFDA models is considerably much faster than doing
so for RKFDA, particularly in problems with quite large sample
sizes.

Index Terms— Deep neural networks (DNNs), Fisher discrim-
inant analysis (FDA), kernel discriminant analysis, nonlinear
classifiers.

NOMENCLATURE

c Number of classes.
d Number of pattern features.
N, N1, . . . , Nc Total and class sample sizes.
I, Id d × d identity matrix.
1N All ones N-dimensional vector.
X N × d sample data matrix.
m Sample mean.
E N × c one hot encoding label matrix.
H N × N centering matrix.
� c × c diagonal matrix with �ii = Ni .
SB , ST Between-class and total sample covariance

matrices.
sB , sT Between-class and total projected

covariance matrices.
λ L2 regularization parameter.
Dλ Inverse of ST + λI .
k(·, ·) Kernel.
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K Kernel matrix.
C H K H matrix.
W Generic weight set of a DNN.
w0, W Linear output components of W .
˜W Components of W excluding w0 and W .
sk(x) Generic scoring for class k acting on x .
πi Prior probability of class i .
P(0|x), P(1|x) Posterior probabilities of classes

0, 1 conditioned on x .
TPR(t), FPR(t) True and false positive rates associated

with a threshold t .

I. INTRODUCTION

IMBALANCED classification is certainly among the most
important problems in machine learning, and as such, it has

received a wide attention [1]. This has been particularly the
case since the mid-2000s, where articles such as [2] and [3]
drew the scientific community to work on a topic that, although
recognized as relevant, up to that, the moment had received
only scattered attention [4]–[7]. Over time, it has been possible
to group [8] the many proposals for handling imbalanced
problems into two general approaches, sample-based
procedures or algorithm-based ones. Sample-based algorithms
usually try to correct the imbalance by undersampling the
largest class (see [9]), oversampling the smaller class (as in
the celebrated Synthetic Minority Over-Sampling Technique
approach [10]), or applying both in combination with an
ensemble classifier [11]. Given the computational cost of
rebalancing and of working with ensembles, simple classifiers
such as decision trees are often used. On the other hand,
algorithm-based methods involve stronger classifiers and
seek to correct their natural bias toward the larger classes.
A natural way to achieve this is to introduce imbalance
correcting classification costs [7], or to modify a classifier’s
loss function so that the influence of the smaller classes is
increased [12]. Neural networks for imbalanced classification
were studied under this second approach. In fact, it was early
recognized [13] that the usual one-hot target encoding often
used in neural classification implicitly and strongly favored
the larger class. To correct this, it was proposed in [13] that
an alternate coding of class patterns which incorporated class
size information into the network’s training.

These observations suggest that classification methods that
are implicitly aware of class information should be of interest
when seeking efficient classifiers in imbalanced problems.
One such method is Fisher linear discriminant analysis
(FLDA [14], [15]). FLDA is based on having competing
spreads for the within-class covariances (small) and the
between-class covariance (large), and it is most often applied
to obtain useful data representations. However, while it can

2162-237X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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also be used to build distance-based classifiers, it is not
frequently applied as such. This is often the case of purely
linear classifiers, but another reason is that its goal of keeping
class means as far as possible while at the same time having
small class variances, can be optimally achieved only when
all classes have Gaussian-distributed features with a common
covariance matrix.

Nevertheless, FLDA is at the core of several successful
methods for important problems. For instance, in face recog-
nition and person reidentification, the well known Fisher face
method [16], which initially relied on models relatively close
to Fisher’s original proposal, has been progressively improved
by adding a nonlinear processing of the images to be identified.
Another well-known extension is kernel Fisher discriminant
analysis (KFDA [17]), which essentially applies linear FDA
over nonlinear extensions of the initial features and takes
advantage of the kernel trick to avoid having to explicitly
build them. KFDA initially addressed binary classification but
has been extended to multiclass problems in [18]. Moreover,
the approach in [18], regularized KFDA (RKFDA) puts on a
clear footing on how to deal with regularization in KFDA.
However, on the other hand, working with kernels requires
N × N matrix computations, with N sample size, which may
make it too expensive, if not unfeasible, on large problems.
Other kernel extensions of FLDA have been proposed, such
as [19] for face recognition, [20] for radial basis function-
based classification, or [21] for general feature extraction and
recognition.

After the huge success of deep neural networks (DNNs),
a clear way for the nonlinear extension of linear methods
is to place them at the last hidden layer of a possibly deep
multilayer perceptron (MLP). In fact, the recent advances in
DNNs have greatly simplified the training of networks with
a very large number of layers and hundreds of thousands of
weights. To this, we can add the widespread availability of
DNN tools such as Theano [22], CNTK [23], Torch [24],
MXNET [25], or TensorFlow [26], endowed with compila-
tion procedures that automatically compute backpropagation
gradients for cost functions much more general than the cross
entropy or square errors that had traditionally been applied
in classification or regression. In a slight abuse of language,
here, we will use the term “deep” with precisely this meaning
of networks defined, initialized, and optimized using these
new advanced techniques, rather than implying a large number
of hidden layers. In fact, a large number of layers and the
correspondingly large number of weights are dependent on
having very large training samples with sizes in the millions
of patterns. Here, we will consider samples sizes up to the
hundreds of thousands and networks with up to five layers;
note that while their training is nowadays almost routine, it was
simply not possible until a few years ago, as the modern
initialization, activation, and optimization techniques were not
yet available.

It is thus natural trying to take advantage of this for
Fisher analysis, but it is not easy to blend eigencalculations
on the covariance matrices of the last hidden layer with
the usual backpropagation training of DNNs; see [27] for
an early attempt in this direction, see [28] where FLDA is

preceded by nonlinear transformations learned by DNNs in a
semisupervised fashion, and see [29] where the direct opti-
mization of FLDA’s eigenvalue-based criterion is proposed.
Other examples are [30] for person reidentification or [31] for
gender detection. A much simpler way for such an extension
is given by the initial results in [32] and [33], and particularly,
the proposals in [34] and [18] show how to relate FLDA
with a least squares regression (LSR) over properly defined
targets (see also [35] for a different least squares approach).
We shall make extensive use of this and also of the isometry
that is shown in [18] and [34] to exist between the FLDA
projections and those induced by the LSR solution. This isom-
etry implies that equivalent FLDA and LSR distance-based
classifiers can be defined in terms of k-nearest neighbors, min-
imum class-mean distances, or as done here, distance-based
scores.

As a consequence, a simple way to nonlinearly extend the
preceding is to replace linear LSR by a DNN counterpart,
where the outputs of a DNN will now approximate appropriate
class-based LSR targets. Of course, regularization is also
mandatory for DNNs, which involves not only a careful choice
of penalties but also an adequate criterion function to be min-
imized during hyperparametrization. This DNN approach to
FDA is our main contribution here (see [36] for a preliminary
version), to which we can add the following.

1) The proposal of suitable scoring functions for RKFDA
and deep FDA (DFDA) based on the computation of
receiver operating characteristic (ROC) curves and area
under the curve (AUC) values.

2) An extensive comparison of RKFDA and DFDA over
a large number of two-class and multiclass data sets,
many of them involving imbalanced problems, which
show that DFDA gives essentially the same classifi-
cation results but with a much lower computational
cost.

This paper is organized as follows. In Section II, we shall
briefly review classical FLDA, and in Section III, we give
a streamlined expositions of the RKFDA approach in [18].
In Section IV, we will review the equivalence in [18] and [34]
between a concrete LSR problem and FLDA. We will propose
in Section V a distance-based scoring function for both DFDA
and RKFDA that facilitates the computation of AUC values
which we will use in order to optimize the regularization
parameter of DFDA and RKFDA. In Section VI, we will exten-
sively compare the performance of DFDA and that of RKFDA
over a number of substantially imbalanced two-class problems,
whereas, in Section VII, we will do so on several large scale
problems that are either imbalanced or multiclass or both; we
also include, here, results for the largest data sets among those
considered in [17]. While, as we shall see, the classification
performance of RKFDA and DFDA is essentially the same,
the computational costs of DFDA are considerably smaller
and make it possible to apply DFDA to large problems for
which the large size of the kernel matrix makes the use of
RKFDA too costly. Finally, a brief discussion will be given as
well as pointers to further work. We also mention that Python
code for building RKFDA and DFDA models and performing
our experiments are available at a GitHub repository.
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II. FISHER’S LINEAR DISCRIMINANT ANALYSIS

A. Generalized Eigenproblem

Recall that FLDA seeks to concentrate its projections around
their class means while, at the same time, keeping apart these
class means. Several target functions have been proposed,
see [14, Sec. 10.2], where many of them are shown to be
equivalent. In this paper, we will maximize the trace criterion

g(A) = trace
(

s−1
T sB

) = trace((At ST A)−1(At SB A)) (1)

where A is the d×q projection matrix, SB and ST are the sam-
ple between-class and total covariance matrices, respectively,
and sB and sT denote the between-class and total covariances
of the projections z = At x , see [18, Sec. 2.2], for more details.
Assuming q to be such that sB has rank q and sT is invertible,
solving ∇Ag = 0 leads to 0 = −2 ST As−1

T sBs−1
T +2 SB As−1

T ,
i.e., to the problem of finding A such that SB A = ST As−1

T sB .
Given that, for any M and an invertible Q,

trace(Q−1 M Q) = trace(QQ−1 M) = trace(M), the solution
of (1) is unique modulo any such a q × q transformation
Q of the A projections, which will not change the cost
function g(A). In particular, if s−1

T sB = U�U t is the SVD
of s−1

T sB , we can replace the previous problem with the
following equivalent eigenproblem:

SB A = ST A� (2)

with � the eigenvalues of s−1
T sB and, hence, the nonzero

eigenvalues of S−1
T SB . If ST is invertible, solving (2) is

equivalent to solving S−1
T SB A = A�, we then have

g(A) = trace
(

s−1
T sB

) = trace � = γ1 + . . . + γq . (3)

We can maximize this simply by selecting the q largest
eigenvalues in � after sorting them in descending order,
together with some convenient normalization of their asso-
ciated eigenvectors. In fact, note that a normalization has to
be introduced given that the maximizer of (1) is not uniquely
defined; the usual choice is to have At ST A = Iq but, here,
we will consider solutions B such that Bt ST B = �. Observe
that we can move from A to B simply by setting B = A�1/2

and vice versa.
Finally, it may be the case that ST does not have full rank.

While often S−1
T is then replaced with the Moore–Penrose

inverse of ST , here, we will consider regularized discriminant
analysis [37], working with the positive definite matrix ST +λI
for some λ > 0 and solving then the eigenvalue problem

(ST + λI )−1 SB A = A�. (4)

B. Solving the Generalized Eigenproblem

At first sight, solving (4) would require the computation of:
1) SB and Dλ = (ST + λI )−1 at a cost O(Nd2) + O(d3);
2) DλSB at a cost O(d3);
3) A and � from the SVD of DλSB at a cost O(d3).

Thus, besides computing ST , three steps with a cost O(d3) are
involved. To improve on this, first, observe that if X denotes
the N × d data matrix, we have

ST = Xt H X, SB = Xt H E�−1Et H X (5)

Algorithm 1 Solving Fisher Linear Discriminant Method

1 Read X , λ, E , (N1, . . . , Nc)
2 Compute � = diag(N1, . . . , Nc)

3 Compute ST = X T H X
4 Compute Dλ = (ST + λId )−1

5 Compute Q = Xt H E�−1/2 and R = Qt Dλ Q
6 Compute the SVD R = V �V t

7 Return �, V , Dλ

where the superscript t indicates the transpose, � denotes the
c × c diagonal matrix with �ii = Ni , the number of sample
patterns in class i , E denotes the N × c one-hot encoding
matrix, and H is the centering matrix

H = IN − 1

N
1N 1t

N (6)

with 1N the all ones N-dimensional vector; in particular, the
pth row of the N × d matrix H X equals xt

p − mt , with x p

the pth sample vector. Moreover

SB = Xt H E�−1/2 �−1/2 Et H X = QQt (7)

where we write Q = Xt H E�−1/2. Defining, now, the c × c
matrix

R = Qt Dλ Q (8)

if R = V �V t is its reduced SVD decomposition (i.e., we only
consider the q ≤ c nonzero eigenvalues in �), then it can be
easily seen that the pair (A = Dλ QV , �) verifies DλSB A =
A�, i.e., it solves (4), for we have

DλSB A = Dλ QQt Dλ QV = Dλ Q RV

= Dλ QV � = A�.

This suggests to solve (4) through the steps in Algorithm 1,
whose computational cost is:

1) O(Nd2) to compute ST at step 3 of the algorithm;
2) O(d3) to compute Dλ in step 4;
3) O(d Nc)+ O(dc2) to compute Q and O(cd2 + c2 d) to

compute R in step 5;
4) O(c3) to compute V , � from the SVD of R in step 6;
5) O(dq2) to compute A = Dλ QV after the return in

step 7.

There is thus only one step with a cost O(d3) and when d >
N > c, this should improve on the first approach.

III. REGULARIZED KERNEL FISHER

DISCRIMINANT ANALYSIS

A. Plain Regularized KFDA Problem

In what follows we loosely follow the discussion in [18]. We
also point out that, as mentioned in [18], the treatment below is
slightly different from that in [17]. We assume starting patterns
x ∈ Rd and their expansions x̃ = �(x) ∈ RD in some (quite)
large dimensional space (i.e., D � d). We will denote the
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expanded data matrix as ˜X and we can define the between
and total covariance matrices of the expansions as

˜SB = ˜Xt H E�−1Et H ˜X, ˜ST = ˜Xt H ˜X (9)

with H again the centering matrix H = IN − (1/N)1N 1t
N

and E the one-hot encoding matrix. The generalized regular-
ized eigenvalue problem now to be solved is

˜SB ˜A = (˜St + λID)˜A ˜� (10)

with ˜A ∈ RD×q . This is [18, eq. (14)], shown also in that paper
to be equivalent to its kernel version problem in [18, eq. (16)].

Given that now D � c is certain, the way to proceed
according to the previous discussion for FLDA would be to set
˜Q = ˜Xt H E�−1/2 and to define again the c × c matrix R as

R = ˜Qt
˜Dλ ˜Q = �−1/2 Et H ˜X ˜Dλ˜Xt H E�−1/2 (11)

where ˜Dλ = (˜ST + λI )−1 and R has rank q ≤ c − 1; we then
get its reduced SVD decomposition R = V �V t and somehow
compute the projection matrix ˜A = ˜Dλ ˜QV . However, this is
not feasible as all the preceding computations would have to
be performed on the expanded ˜X , something we want to avoid.

To do so, we will rewrite ˜Dλ˜Xt H as follows.
Set C = H ˜X ˜Xt H = H K H , where we will call K = ˜X ˜Xt

the kernel matrix as we assume its entries x̃ p · x̃q to be
computed on the initial features x through a suitable kernel
k(x p, xq), and set also �λ = (C + λIN )−1. Then, we have

˜Xt H = ˜Xt H (C + λIN ) �λ

= (˜Xt H H ˜X ˜Xt H + λ˜Xt H ) �λ

= (˜Xt H H ˜X + λID) ˜Xt H �λ

= ˜D−1
λ

˜Xt H �λ

therefore, it follows that

˜Dλ˜Xt H = ˜Xt H �λ (12)

which, in turn, implies

R = �−1/2 Et H ˜X (˜Dλ˜Xt H E) �−1/2

= �−1/2 Et H ˜X (˜Xt H �λ) E�−1/2

= �−1/2 Et (H ˜X ˜Xt H ) �λE�−1/2

= �−1/2 Et C �λ E�−1/2 (13)

where we use parentheses for easier reading.
Therefore, the kernel matrix is just what we need to obtain

the matrix R without having to handle the extended data
matrix ˜X and to compute Rs SVD to get V and �. Using (12)
again, the resulting projecting matrix ˜A would then be

˜A = ˜Dλ ˜QV = ˜Dλ˜Xt H E�−1/2V

= ˜X H�λE�−1/2V . (14)

At first sight, ˜A seems to require ˜X but, again, we can
avoid this when computing the Fisher projections. In fact,
the projection of the expansion x̃ of a new x would be

z = ˜At (̃x − m̃) = V t�−1/2 Et�λ H ˜Xt (̃x − m̃)

= V t�−1/2 Et�λ H

(

kx − 1

N
K 1N

)

(15)

Algorithm 2 Training Phase of the Regularized Kernel
Fisher Discriminant Method

1 Read K , λ, E , (N1, . . . , Nc)
2 Compute � = diag(N1, . . . , Nc)
3 Compute C = H K H
4 Compute �λ = (C + λIN )−1

5 Compute F = Et C and G = �λE
6 Compute P = �−1/2 F , Q = G�−1/2 and R = P Q
7 Compute the condensed SVD R = V �V t

8 Return �, V , �λ

where kx is the vector (k(x, x1), . . . , k(x, xN ))t and which
only involves kernel operations. Note that when k(x, x ′) =
x · x ′ (i.e., x̃ = x), we simply recover the previous solution of
FLDA.

We next make explicit the corresponding training and testing
algorithms for this RKFDA procedure.

B. Train and Test Algorithms for the RKFDA Problem

We describe, here, [18, Algorithm 5] in a more detailed
form, handling separately what would be its training phase
(Algorithm 2) and its testing phase (Algorithm 3) and with
an eye to the detailed computational analysis we given in the
following. In the training phase, we simply compute R in (13)
and perform a SVD on it, getting V and � such that

R = V �V t (16)

where � contains the q ≤ c − 1 nonzero eigenvalues of
R and V is made of orthogonal eigenvectors.

These steps to obtain V and � are put together in Algo-
rithm 2 for the training phase of RKFDA, whose computa-
tional costs run as follows.

1) Since we have C = H K H = K−(1/N)(DK +(DK )t )+
(1/N)V K , with:

a) DK the N × N matrix Dk = (d K , . . . , d K ) with
d K the degree vector dK = (d K

1 , . . . , d K
N )t and

d K
p = ∑

q K p,q

b) V K
pq = vK = ∑

p,q K p,q

computing C in line 3 does not essentially involve
float operations once the kernel matrix K is available;
computing it has a cost of O(N2κ), where κ is the cost
of a kernel computation k(x, x ′).

2) Computing �λ = (C + λIN )−1 in line 4 has a O(N3)
cost.

3) Computing F = Et C and G = �λ E in line 5 has a
cost of O(cN2).

4) Computing P = �−1/2 F , Q = G�−1/2 and R = P Q
in line 6 has a cost of O(c2 N).

5) Computing the condensed SVD R = V �V t in line 7
has also a cost of O(c3).

Since we may expect N � c, the most expensive operation is
computing �λ = (C + λIN )−1.

With regards to the test phase, where we apply the projec-
tions At x̃ to the expansions x̃ of new, unseen x , the required
steps are outlined in Algorithm 3 for getting these projections
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Algorithm 3 Test Phase of the Regularized Kernel Fisher
Discriminant Method

1 Read k(·, ·), S = {x1, . . . , xn}, �λ = (C + λIN )−1, E ,
(N1, . . . , Nc), �q , Vq

2 Read test sample Stest = {x ′
1, . . . , x ′

M }
3 Compute the test kernel matrix KS = (k ′

1, . . . , k′
M ), with

k′
p = (

k
(

x ′
p, x1

)

, . . . , k
(

x ′
p, xN

))t − k ′
p1N (17)

and k ′
p = 1

N

∑

q k(x ′
p, xq)

4 Compute CS = H KS

5 Compute � = diag(N1, . . . , Nc)

6 Compute T = V t�−1/2 Et�λ

7 Return T CS

on a test sample Stest = {x ′
1, . . . , x ′

M } with M new patterns.
Its main computational costs are those of the following.

1) Computing KS in line 3 with a cost of O(N Mκ), where
we recall that κ denotes the cost of a kernel computation
k(x, x ′).

2) Computing CS = H KS = KS − (1/N)1N 1t
N KS in line

4 only involves sums but no further kernel operations.
3) Computing T = (V t�−1/2)(Et�λ) in line 6 with a

O(cN2) cost.
4) Computing T CS in line 7 with a O(cN M) cost.

Thus, assuming N ≥ M ≥ c, the overall test cost is dominated
by the O(cN2) of line 6.

Finally, we observe that we have relied on the assumption of
a finite dimension D for the x̃ for the sake of motivating and
deriving the above-mentioned algorithms. However, we ulti-
mately only need a kernel k(x, x ′) to compute the matrix R
and the projections z in Algorithms 2 and 3. This makes
possible to work, for instance, with projections �(x) in a
countably infinitely dimensional Hilbert space when Gaussian
kernels are used.

IV. DEEP FISHER DISCRIMINANT ANALYSIS

A. Least Squares Regression and FLDA

Let X be the n × d data matrix, 1n the all ones vector, and
in a two-class problem, let y be the target vector defined by
setting yp = n/n1 for patterns in class 1 and yp = −n/n2 for
those in class 2. Then, it is well known [15] that solving

min
w0,w

1

2
‖y − 1nw0 − Xw‖2 (18)

gives a solution to FLDA. In fact, if m1 and m2 are the
class means on the original features, then SB = (m1 − m2)
(m1−m2)

t , and setting w = S−1
T (m1 −m2), it is easy to check

that S−1
T SBw = wγ , with γ = (m1 − m2)

t S−1
T (m1 − m2).

In other words, w solves the eigenproblem (4) and, therefore,
coincides with a dilation of an FLDA’s projection vector.

Many attempts have been made to extend this simple
equivalence to multiclass problems. This has been achieved
by the essentially equivalent proposals of Ye [34] and, partic-
ularly, Zhang et al. [18] (see also the proposals by Park and
Park [33]). We describe it next.

With 1n and X as before, let now W be a d × q matrix,
w0 a q × 1 vector and Y a target matrix to be chosen, and
consider the LSR problem of minimizing

min
w0,W

1

2

∥

∥Y − 1n wt
0 − XW

∥

∥

2
. (19)

Assuming for simplicity, a regular ST (or working with ST +λI
for some λ > 0 if not), the optimal W∗ solving (19) is

W ∗ = S−1
T Xt H Y (20)

with H again the centering matrix. As in Section II, we have
here ST = Xt H X and also

SB = Xt H E�−1/2 �−1/2 Et H X = QQt

with E the N ×c one-hot encoding matrix. Choosing as targets
in (19) the N × c matrix Y = H E�−1/2, the LSR matrix W∗
solution is given by

W ∗ = S−1
T Xt H Y = S−1

T Xt H E�−1/2 = S−1
T Q. (21)

We see now that we can recover from W∗ a solution of (4).
To do so, consider again the reduced SVD decomposition
R = V �V t of the c × c matrix R = Qt S−1

T Q. Setting
B = W∗V , we have

S−1
T SB B = S−1

T SB W∗V

= S−1
T QQt W∗V = S−1

T QQt S−1
T QV

= S−1
T Q RV = S−1

T QV �

= W∗V � = B�.

Moreover

Bt ST B = V t (W∗)t ST W∗V = V t Qt S−1
T ST S−1

T QV

= V t Qt S−1
T QV = V t RV

= �.

In other words, (B, �) is a solution of (4) with the normal-
ization Bt ST B = �.

However, we would like to avoid working with B as it would
require the SVD of R and, instead, derive a suitable projection
from the LSR solution W . To achieve this, let us denote by
z = (W ∗)t x and ω = Bt x the W∗ and B projection,
respectively, of a pattern x . We then have [18]

‖ω − ω′‖2
2 = (x − x ′)t B Bt(x − x ′)

= (x − x ′)t W∗V V t (W∗)t (x − x ′)
= ‖z − z′‖2

2

which implies that

‖z − zk‖2 = ‖ω − ωk‖2, (22)

where zk, ωk denote the kth class means for the z and ω
projections.

Thus, any distance classifier or, more generally, any score
based on distances to class means will give the same results
when computed either over the least squares z projec-
tion or over the linear FDA ones ω. In other words, the LSR
solution can be used to define distance-based scores equivalent
to the ones which could be defined using Fisher’s projection;
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we will discuss them in Section V below. This LSR procedure
opens the way to a nonlinear, DNN-based approach to Fisher’s
analysis which we describe in Section IV-B. Before doing so,
we point out that it can be easily seen that the row in the target
matrix Y = H E�−1/2 for a pattern x p of class k is given by

Ypk = n − nk

n
√

nk
(23)

and Ypk′ = −(
√

nk/n) for the other components k ′ �= k.
(In [34], these Y values are just multiplied by

√
n.)

B. Deep Neural Fisher Discriminant Networks

As just argued, a distance-based classifier for a c class
problem equivalent to the one resulting from Fisher projections
can be obtained through the following steps.

1) For a given training matrix Xtr , class indicator matrix
Etr and targets Ytr = H Etr�

−1/2, obtain the
c-dimensional vector w∗

0 and d × c matrix W∗ which
solve the LSR problem

min
w0,W

1

2

∥

∥Ytr − 1n wt
0 − Xtr W

∥

∥

2
. (24)

2) Use them to compute the projections y = w∗
0 + (W∗)t x

for x ∈ Dtr and their class means yk = w∗
0 + (W∗)t xk .

3) Assign a test pattern x to a class according to scores
defined in terms of the distances between the projection
y = w∗

0 + (W∗)t x and the class means yk .

Now, it is natural to define a nonlinear extension by applying
the previous LSR steps to nonlinear extensions z = �(x) of
the original features x . A simple way is to apply the previous
linear steps to the z features on the last hidden layer of a DNN;
more precisely, we

1) Solve the LSR problem

min
W

1

2
‖Ytr − f (Xtr ,W)‖2 (25)

to get an optimal DNN weight set W∗; here, Xtr is the
training matrix, Ytr is the training target matrix defined
previously and the matrix f (Xtr ,W) has rows of the
form f (Xtr ,W)p = f (x p,W), with f (x,W) the linear
outputs of a deep network with weights W .

2) Compute the DNN projections yp = f (x p,W∗) over
Xtr and their class means yc.

3) Compute for the rows x in a test matrix Xts their DNN
projections y = f (x,W∗) and corresponding scores
according to their distances to the yc means and assign
them to the class with the highest score.

Let us write the optimal weight as W∗ = (w∗
0, W∗, ˜W∗),

where w∗
0 , W∗ are the linear weight vector and matrix that

connect the last hidden layer with the network outputs; let us
also denote as z the last hidden layer features z = �(x, ˜W∗),
with � the partial DNN transformation that computes them.
Then, the previous w∗

0, W∗ also solve the LSR problem (18)
over the z features: if not and there were better choices,
say ŵ0 and ̂W for w0 and W with a smaller square error
over the z features, the DNN weight set (ŵ0, ̂W , ˜W∗) would
yield a smaller error than the one defined by the previously

optimal W∗. As a consequence, any score-based classifier built
on the full DNN projections is equivalent to the same score
classifier acting over the FLDA projections of the last hidden
layer patterns.

We will call this DFDA, as it effectively applies Fisher’s
standard linear discriminant analysis over the features z
learned by training a deep neural model. As mentioned in
Section I, we point out that our use of the term “deep network”
has more to do with the underlying network architectures and
initialization and training techniques that we will use, than
with the networks having a large number of hidden layers
(which will be at most five in our experiments).

To avoid singularities, we can simply add a regularization
term. In its simplest form, we would solve

min
w0,W,˜W

1

2
‖Y − f (X, w0, W, ˜W)‖2

+λ

2
trace(W t W + ˜W t

˜W ) (26)

where ˜W are the components of ˜W when layer biases are
removed. We shall use this cost function in our experiments.
Note that other regularization procedure, such as dropout,
could be used for the ˜W weights; on the other hand,
(λ/2)trace(W t W ) should be the regularizer of the linear output
weights W .

V. SCORING FUNCTIONS AND AUC COMPUTATION

A. Scoring Functions for RKFDA and DFDA

Since we intend to use the AUC as our merit function for
model hyperparametrization and test set evaluation, we will
transform the RKFDA and DFDA outputs into vector scores
with components in a [0, 1] range, where higher values of
the score components should reflect outputs closer to a class
centroid. The desired [0, 1] score range is reminiscent of
that of posterior Probabilities, and in principle, one way of
obtaining such scores could be to try to exploit the fact
that Fisher’s LDA maximizes the posterior class probabilities
assuming all sample class densities are given by Gaussians
with different means but the same covariance. However, this
is most likely not being true of the original features, cannot
be checked on the implicit features of RKFDA, and is not
guaranteed at all for the deep features at the last hidden layer
of a DFDA network. Because of this, we prefer to follow the
simple heuristic we describe next.

Note that, for the RKFDA z projections defined by (15),
class centroids zk are easily computed and so are the distances
to them of new pattern projections. Moreover, for FDA,
we have just observed in (22) that the least squares projections
have the same centroid distances than those of a Fisher
projection. This obviously extends to the outputs of a DFDA
network, as they are the least squares projections of the last
hidden layer representations.

Thus, for both RKFDA and DFDA, we can easily compute
the class-means distances ‖z − zk‖ of their projections z,
distances that we will transform into [0, 1] scores better suited
to our subsequent work. To do so, given a validation or test
Fisher projection z, we first compute its distances dk = dk(z)
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to the centroids zk , 1 ≤ k ≤ c, of the training class projections
and then we define the kth score of z as the following
normalization of the inverses 1/dk , namely,

sk = sk(z) =
1
dk

∑

j
1

d j

= 1
∑

j
dk
d j

= 1

1 + ∑

j �=k
dk
d j

.

Of course, we have to watch out for zero or near-zero
values of dk . Assuming different class centroids, d j = 0 can
only happen at one k; in such a case, the previous expression
would clearly give sk = 1 while we simply take s j = 0 for
other j values as they would involve a fraction 1/dk = ∞ in
the denominator.

B. AUC for Two-Class and Multiclass Problems

Considering first two-class problems, let s(x), 0 ≤ s(x) ≤ 1
be a scoring function which gives higher values to positive
patterns, i.e., those in class 1; an example could be any
estimate P̂(1|x) of the conditional probability of a pattern
being from class 1 given its features x . Let f0, f1 be the
densities of the class conditioned random scores S0(x) =
s(x |0), S1(x) = s(x |1) which we assume to be independent.
Then, for any threshold t , let ct (x) be the classifier such that
ct (x) = 1 iff s(x) > t and let true positive ratios (TPR(t)),
false positive ratios (FPR(t)) be its true and false positive
ratios, that is,

TPR(t) = P({s(x) > t|x ∈ C1}) =
∫ 1

t
f1(s)ds

FPR(t) = P({s(x) > t|x ∈ C0}) =
∫ 1

t
f0(s)ds.

Note that TPR is equivalent to recall or sensitivity and 1−FPR
is equal to specificity. The ROC curve is defined by the points
(FPR(t), TPR(t)) and the area below the ROC is called the
AUC. We define AUC in terms of the 1 class but the same
value is obtained if defined in terms of the 0 class.

The AUC captures in a single number of the performance
of the underlying classifier across all thresholds 0 ≤ t ≤ 1.
Moreover, since TPR(t) and FPR(t) are computed on the rows
and columns on the confusion matrix, the AUC should be more
robust on imbalanced problems, as it uses no prior probability
information. Finally, it can be shown [38] that

AUC = P({s(x) > s(x ′) : x ∈ C1, x ′ ∈ C0})
i.e., the AUC measures the probability that the score of a
random positive pattern is larger than that of negative one.
In particular, this supports the intuition of a given classifier
being preferable to another with smaller AUC.

Contrary to the two-class situation, no clear cut extension of
the AUC to a multiclass setting has been given. Conceptually,
the volume under the surface (VUS) in [39] is possibly
closest to the previous two-class formulation, but it may be
quite difficult to compute, especially for more than three
classes. Simpler approaches can be derived by computing

and combining several two-class AUC values, such as the
total AUC [40]

AUCtotal =
c

∑

i=1

πi AUCi (27)

where, for each i , πi is the class prior and AUCi is computed
as in a two-class problem with Ci as the positive class; the
macroaverage AUCs [41], either on its arithmetic

AUCmacro = 1

c

∑

i

AUCi (28)

or geometric

AUCgeom =
(

c
∏

1

AUCi

) 1
c

(29)

mean variants; the microaverage AUCs of [42, Ch. 13],
or finally, the M-AUC [43]

M = 2

c(c − 1)

∑

i< j

AUC(i, j) (30)

which combines c(c − 1) two class AUC(i, j). See [44] for
more details on the AUC and [38], [41], and [45] for examples
of its use in multiclass problems. As just mentioned, there does
not seem to be a general agreement on which AUC variant
should be used in multiclass problems. Given its simplicity
and relative robustness on imbalanced data sets, we shall use
geometric macro-AUC in our multiclass experiments.

VI. DFDA VERSUS RKFDA ON IMBALANCED

TWO-CLASS PROBLEMS

RKFDA and DFDA over 30 data sets taken from the
Keel repository [46]. They all derive from an original set of
seven problems (some of them multiclass) whose samples are
grouped in various ways to produce 30 different two-class
problems with imbalance ratios that range from a minimum
of 9.22 (when the classes 0 and 4 of the glass problem are
to be classified against the class 5) to a maximum of 129.44
(when class 19 of the abaloneproblem is pitted against all
others). Their sample sizes, dimensions, and imbalance ratios
are given in Table I where the data set names to follow the Keel
naming conventions. For all problems considered, we have
used the five train-test folds provided in the Keel repository.

We will compare the performance of RKFDA models
against DFDA models with a feedforward architecture. The
quite popular ReLU function is our choice for the hidden
layer activations; as usual in a regression setting, we have
linear outputs, and we use Adam over minibatches as the
backpropagation optimizer.

In principle, these choices could imply a substantial hyper-
parameterization cost but we will simplify this as follows.
First, we will use Adam’s default values for the initial
learning rate (0.001) and its beta1 (0.9) and beta2 (0.999)
parameters, as they are quite reliable and robust; similarly,
we leave minibatch size at its scikit-learn default (200).
The second source of hyperparameters could be the number
of hidden layers and of units on each of them in the DFDA
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TABLE I

DIMENSIONS, SAMPLE SIZES, AND IMBALANCE RATIOS FOR
THE TWO-CLASS PROBLEMS

models but here we will simply report our results for networks
with a number of hidden layers ranging from 0 to 5, and
100 units each.

This leaves us with the L2 (or Tikhonov) regularization
penalty λ as our only DFDA hyperparameter, for which we
explore 50 values evenly spaced on a log scale in the interval
[2−30, 210] selecting the optimal one by k-fold cross validation
as described in the following. Prior to this, the DFDA features
have been normalized to 0 mean and 1 standard deviation.

The RKFDA models require two hyperparameters, the L2
regularization penalty λ and the width γ of the Gaussian
kernels exp(−γ ‖x − x ′‖2); both will be also selected here
by cross validation. As before, for λ, we will explore 50
values in the interval [2−30, 210]. In order to select γ , we scale
featurewise the RKFDA inputs to a [0, 1] range; note that after
this we will have ‖x − x ′‖2 ≤ d , with d pattern dimension.
Because of this, we will explore γ values of the form (2k/d),
with k in the [−10, 10] range; in other words, the considered
kernels will essentially be powers of a basic exponential e−z2

.
As just mentioned, for each of the five train partitions

provided for each data set, optimal λ regularization parameters,
and in the RKFDA case, γ values have been obtained by
fivefold stratified cross validation using the AUC of the
positive class as the scoring function (recall that, as mentioned,
AUC1 = AUC0). Once the optimal λ and, for RKFDA, γ
are chosen, we have used them to train individual DFDA and
RKFDA models on the train partition and applied them on
the test partition, computing afterward the test AUC scores.
In Table III, we show, for each problem, the average AUC
values over five test splits of the RKFDA and all the DFDA

TABLE II

DIMENSIONS, TRAIN SAMPLE SIZES, NUMBER OF CLASSES, AND
IMBALANCE RATIOS FOR THE LARGE SIZE DATA SETS

classifiers except the one with a single hidden layer that we
omit for space and formatting reasons. For easier reading of
these values, the table also gives at the bottom the average of
the rankings of the six models considered for each problem.

As it can be seen, these average rankings are quite similar
for all methods except, as it was to expected, the DFDA_0
model which, being linear, it is in fact equivalent to a standard
linear Fisher model (note that, nevertheless, it gives the best
test average AUC in some problems). RKFDA gives the small-
est AUC in five problems, as also does the DFDA_5 model
but, in general, all models except DFDA_0 appear to have a
similar performance. We also observe that the best test AUC
values in Table III are higher in almost all cases than the values
computed for the same data sets using six state-of-the-art
procedures in imbalanced classification and reported in [47].
In any case, note that the methods here are much stronger than
the relatively weak decision tree classifiers used in [47].

The results in Table III are mostly descriptive. In order
to achieve a more precise analysis, observe that considering
all the 30 problems and their five train-test splits, we have
a total of 150 AUC values for each one of the six models
considered. This suggests that a more objective comparison
can be achieved by applying a paired Wilcoxon signed-rank
test for each model pair over these 150 AUC values, using
Bonferroni corrections to compensate for multiple compar-
isons. The resulting p-values under the null hypothesis are
shown in Table IV. As it could be expected from the previous
discussion, the null hypothesis can only be rejected when the
DFDA_0 model is compared against the others; this is not the
case in all other comparisons and we can conclude that the
performance of DFDA models with two or more hidden units
is similar to that of RKFDA models.

We finally point out that in our experiments in this and
Section VII we have used the MLPRegressor class in
scikit-learn [48] for our implementation of DFDA net-
works, which makes its programming and execution very
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TABLE III

TEST AUC FOR RKFDA AND THE 0- AND 2- TO 5-HIDDEN LAYER DFDA MODELS ON THE TWO-CLASS PROBLEMS

TABLE IV

WILCOXON TESTS FOR TWO-CLASS PROBLEMS

easy. We have also used scikit-learn’s routines and
pipelines to implement the data scaling and cross-validation-
based hyperparameterization. As for RKFDA, we have based
our implementation on the numpy and scipy routines for
eigenvalue computations, matrix inversion, and matrix multi-
plication. Thus, while the execution of general Python code
may imply some computational overheads, the numerically
heavier parts of our algorithms rely on a computationally
efficient core. We have run our programs on a Fujitsu Primergy
RX2540 server with 512 GB of RAM memory and Xeon
E5-2640v4 processors at 2.4 GHz. Recall that the code
used to implement RKFDA in our experiments is available
at a https://github.com/daviddiazvico?tab=repositoriesGitHub
repository.

VII. DFDA VERSUS RKFDA ON LARGE

SCALE PROBLEMS

Large scale problems have an obvious importance
in applications, particularly so when imbalanced and/or
multiclass data sets are considered, but they seem not
have been widely discussed in the literature [49]. We
will compare here the performance of RKFDA and
DFDA on two different data subsets with a number of
moderate to large problems, some of them multiclass
and/or imbalanced. The first set is taken from the
https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/data
sets section of the LIBSVM web site. To determine the
optimal values of the hyperparameters λ and γ , we will use
the predefined train, validation, and test splits available for
the dna, ijcnn1, letter, satimage, and shuttle
data sets. The remaining data sets have only train and test
splits and for them, we will hyperparameterize λ and γ
by tenfold stratified cross validation on the train subset.
The second comparison is made of the seven data sets
with at least 1000 patterns among the 13 considered
in the original RKFDA paper by Mika et al. [17],
namely, banana, German, image, ringnorm,
splice, twonorm, and waveform. These data sets
are available in several web sites; we have used those
at http://theoval.cmp.uea.ac.uk/g̃cc/matlab/default.html
#benchmarks.In [17], RKFDA is compared against other
machine learning algorithms using as the performance
measure the accuracy of a threshold-based Fisher classifier
(all problems have only two classes) which is chosen applying
a 1-D linear support vector machine (SVM) classifier on
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TABLE V

TEST AUC FOR RKFDA AND THE 0- AND 2- TO 5-HIDDEN LAYER MLPS ON THE LARGE SIZE PROBLEMS

the RKFDA outputs. In order to have a simpler comparison
with our other results, we have compared the performance
of RKFDA and DFDA using the test AUC values of our
score-based classifiers.

Their dimensions, train sample sizes, number of classes,
and imbalance ratios (defined now as the ratio between
the maximum class size and the minimum one) are given
in Table II. While some data sets are rather small (1000 pat-
terns in german), others are quite large, particularly
cvotype.binary, with 581 012 patterns. The maximum
number of classes is 26 in letter and imbalance ratios go
from near 1 in several data sets to the very large one for
shuttle.

We will again compare here the performance of RKFDA
models against DFDA models comprising 0–5 hidden layers
of width 100, following the procedure of Section VI; recall
that we will scale DFDA inputs to 0 mean and 1 standard
deviation featurewise, while, for RKFDA models, the inputs
will be scaled also featurewise to a [0, 1] range.

Optimal λ and γ values for the LIBSVM data sets are
obtained as those giving a higher geometric macro-AUC in the
validation subsets and these values are used to build the final
models over the train or train plus validation subsets when the
latter exist, and to compute the multiclass geometric macro-
AUC over the test subsets. The data sets used by Mika et al.
have 100 predefined train-test splits; as in [17], we use the
first five splits for hyperparameter tuning and then report
the average and the standard deviation of the test AUCs over
the 100 splits (recall that the LIBSVM data sets only have a
single test set and no standard deviation can be computed).

These final AUC values are given in Table V; we also
omit again the results for the DFDA_1 classifier. For
convenience, it is divided into three parts for the medium size
LIBSVM data sets, the Mika data sets and, finally, the large

LIBSVM data sets. While in several problems, DFDA and
RKFDA models give similar geometric macro-AUC values,
in satimage, w7a, w8a, banana, ringnorm,
and splice, the AUC values of RKFDA are lower, while still
in other problems, namely, combined, covtype.binary,
and skinnonskin, we have not been able to properly
hyperparameterize RKFDA on them. In fact, RKFDA and
DFDA training required about the same times on the rather
small two-class problems but RKFDA training took much
longer times as the data set sizes increased. In particular, given
that we were not able to obtain RKFDA hyperparameters
for the three largest data sets, we do not give RKFDA’s
AUC values for them at the table’s bottom. As before, each
method’s ranking is shown for each problem in the table; note
the rankings of the first two groups run from 1 to 6 but those
at its bottom going from 1 to 5. Here, also, the DFDA_0
model seems to give worse results and the DFDA_2 also
appears to have a worse performance than the models with
three or more hidden layers; note also that the DFDA_3
seems to have a slight edge over the others.

As in the two-class case, the results in Table V and,
particularly, its rankings, also have here a descriptive nature.
The number of observations of the models for which proper
hyperparameters are obtained for RKFDA is now 18, a rel-
atively low number at the edge of what is usually taken as
to justify a more precise Wilcoxon-based comparison between
the DFDA and RKFDA models. Nevertheless, even with these
caveats in mind, we have also applied here a paired Wilcoxon
signed-rank tests for the first two problem sets in Table V.
Its results appear in Table VI and, as it can be seen, if the
Wilcoxon approximation hypotheses hold, the null hypothesis
could be rejected when comparing the DFDA_0 model against
the others. On the other hand, when RKFDA is compared with
the DFDA_3 and DFDA_4, we can reject the null hypothesis
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TABLE VI

WILCOXON TESTS FOR THE LARGE SIZE PROBLEMS

at the 0.05 level and could also do so at the 0.1 level when
it is compared with DFDA_5 (we could also reject it when
comparing the DFDA_3 and DFDA_4 models). Therefore,
while the application of a Wilcoxon test may not be rigorously
justified, the results in Tables V and VI point to a slightly
better performance of some of the DFDA models over the
RKFDA ones on larger sample size problems.

VIII. CONCLUSION

In this paper, we have reviewed the classical (FDA) and
kernel (RKFDA) approaches to Fisher’s discriminant analysis
following the analysis of Zhang et al. [18]. We have empha-
sized the computational complexity of RKFDA, which is cubic
on the sample’s size N and, hence, could become prohibitive
for large data sets. Aiming to overcome this, we have proposed
DFDA networks, a simple yet very powerful DNN alternative
to achieve a nonlinear form of FDA adapting the least squares
formulation of FDA proposed in [34] and [18].

We have compared DFDA and RKFDA on a large number of
highly imbalanced two-class problems of relatively small sizes
as well as in a number of two-class and multiclass problems
with substantially larger sizes and some of them with large
class imbalances. Our experimental results show that while
RKFDA and the deep DFDA models give similar results on
the smaller data sets (excluding, of course, the linear model
DFDA_0), the deeper DFDA models seem to improve the
purely classification performance of RKFDA on the large data
sets: although the application of a Wilcoxon test is not fully
justified, if done, we could reject the null hypothesis at the 0.05
level in two cases and could do so at the 0.1 level in another.
Moreover, when computational complexity considerations are
taken into account, DFDA models seem to clearly beat the
RKFDA ones, whose training times on the larger data sets are
much higher (and even failed to finish in some cases).

We can thus conclude that the new deep DFDA networks
we propose here are a simple yet powerful alternative to the
more established regularized kernel-based RKFDA models in
general classification problems and particularly so in imbal-
anced ones. We have seen both approaches to have a similar
(and quite good) performance on highly imbalanced, relatively
small two-class problems; on larger problems, DFDA networks
appear to perform better than RKFDA models from a pure

classification point of view, while being clearly superior from a
computational perspective. In fact, the need of handling kernel
matrices makes the direct application of RKFDA models quite
costly, putting large but clearly not big data problems out of
their reach (a situation not dissimilar to what other kernel-
based methods such as SVMs face over large data sets).

In any case, there are clear ways to improve the performance
of DFDA models that seem precluded to RKFDA ones,
of which we mention three. First, better results are to be
expected if problem-tailored numbers of hidden layers and
units are chosen instead of the fixed architectures used here.
Second, the fully connected networks we have considered
can be combined or substituted with any other of the many
processing layer proposals that have been made for deep net-
works. A clear example is convolutional layers: they directly fit
in the proposed deep Fisher approach and could certainly lead
to an improved classification performance on problems such
as image classification whose inputs have a spatial structure
upon which convolutional filters act naturally.

Finally, we point out that, even after a nonlinear pre-
processing, the Fisher criterion may not lead to the strongest
classifiers. In fact, in the linear case, the cross-entropy loss
used in logistic regression often produces better models. On
the other hand, the structure induced by the Fisher criterion on
the last hidden layer of a DFDA network yields new features
that a more powerful classifier could take advantage of. This
naturally suggests that one could add the least squares DFDA
loss as a companion to another, problem-specific loss that then
takes advantage of the within-class concentration and between
class separation structure of the Fisher-like representation on
the last hidden layer.

While that might have been rather difficult a few years ago,
the most widely used deep net frameworks (Torch, Tensor-
Flow, Theano, MXNET, or CNTK) provide backpropagation
gradients automatically through their network “compilation”
procedures. This means that more general loss functions than
square error or cross entropy can be considered without having
to program their gradients “by hand,” as it was needed in the
early 2000s. We can thus add the DFDA loss function into
any strong deep model (such as AlexNet or VGG-16 for image
processing) in a way that can enhance its performance. We are
currently pursuing these and other related research goals.
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Abstract. Fisher Discriminant Analysis’ linear nature and the usual
eigen-analysis approach to its solution have limited the application of
its underlying elegant idea. In this work we will take advantage of some
recent partially equivalent formulations based on standard least squares
regression to develop a simple Deep Neural Network (DNN) extension
of Fisher’s analysis that greatly improves on its ability to cluster sample
projections around their class means while keeping these apart. This is
shown by the much better accuracies and g scores of class mean classifiers
when applied to the features provided by simple DNN architectures than
what can be achieved using Fisher’s linear ones.

Keywords: Linear Discriminant Analysis · Deep Neural Networks ·
Non-linear classifiers

1 Introduction

Fisher’ Linear Discriminant Analysis (FLDA from now on) is a very well known
linear dimensionality reduction/feature extraction technique that, while able to
provide useful data representations, does not intend, in principle, to solve a
given classification problem and, thus, it has known only a limited use as a tool
to build classifiers. There may be two main reasons for this. The first one is
its linear nature. In fact, while quite attractive, its main goal of concentrat-
ing the projected features around their class means while keeping those means
apart can, for most problems, only be partially achieved by FLDA’s linear pro-
jections. Moreover, in order to build a powerful classifier, we would most likely
need to apply a non-linear classifier to the FLDA features, but this combina-
tion of a linear projection followed by a non-linear classifier may at best be
only competitive with the direct application of the non-linear classifier over the
initial features.

In any case, FLDA has been successfully applied in a number of problems,
most notably on face recognition where the original Fisher Face method [1] has
been progressively improved to become the state of the art in this area. A natural
idea is thus to somehow extend FLDA to a nonlinear procedure by applying it
after some non-linear pre-processing of the original features. This is the goal of
Kernel Discriminant Analysis (KDA, [12]), which addresses binary problems and
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where the well known reduction for such problems of FLDA to a linear regression
problem [4, Chap. 5], is extended into a kernel setting.

As just said, KDA only is available in principle for binary problems. A dif-
ferent non-linear extension that works for multiclass problems was proposed in
[8,14], where FLDA is applied on the nonlinear features obtained after processing
the original features by the hidden layers of a standard feed-forward multilayer
perceptron (MLP). For this, the non-linear z features are first obtained on the
MLP’s last hidden layer as z = f(x,W ), where W denotes the MLP weights and
biases up to the last hidden layer and f(x,W ) the effect of the MLP forward pass
on the original features x. Then, FLDA’s standard criterion function is used on
these z to get FLDA’s projecting matrix A by minimizing one of the several crite-
rion functions J proposed in FLDA. Thus, we can view the overall cost function
J(A,W ) as depending separately on the FLDA’s projection matrix A and on the
MLP’s weight and bias set W , which suggests to optimize J(A,W ) alternating
the minimization onW and A. More precisely, for a givenWk and zk = f(x,Wk),
we first derive the Ak matrix by minimizing J(A,Wk) by FLDA’s standard eigen-
procedure. Then, the new Wk+1 are derived minimizing J (W ) = J(Ak,W ); as
shown in [8], the gradient ∇WJ can be explicitly computed by backpropaga-
tion. Notice that this ensures J(Ak,Wk+1) < J(Ak,Wk) < J(Ak−1,Wk) and
this alternating two-step process can be iterated towards a minimum (A∗,W ∗)
of J . As in [8,14], we shall refer to this procedure as Non-linear Discriminant
Analysis (NLDA).

While in principle any number of hidden layers could be considered, only
a single hidden layer was used in [8,14], as was customarily done before the
advent of deep neural networks (DNN). These have provided two main insights.
The first one is a better understanding of network initialization plus efficient
minimization and regularization procedures, which have made largely routine
the previously near impossible training of many layered networks. The second
one is the availability of symbolic gradient computation in platforms such as
Theano [2] or TensorFlow [9] that make it possible the consideration of cost
functions much more general than the square error or cross entropy usually
applied in neural network-based regression or classification.

Both could be applied to improve on NLDA, either by keeping the alternating
minimization of J(A,W ) but working with deeper networks or, simply by apply-
ing symbolic differentiation on A, W directly to the joint J(A,W ) cost function.
Here, however, we will follow a much more direct approach by taking advan-
tage of the results in [13,15,16], where a link is established between a concrete
formulation of FLDA and a related Least Squares Regression (LSR) problem
with a particular, class-based target choice. We shall make extensive use of this
approach which we will call Least Squares Discriminant Analysis (LSDA). More
precisely, it is shown in [15,16] that there is an isometry between projections
derived from a specific FLDA formulation and those derived from the solution
of the LSR problem. In turn, this implies that if distance based classifiers such as
k-Nearest Neighbors or (as done here) minimum class-mean distances are used,
either a renormalized FLDA or LSR approaches result in equivalent classifiers.
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Once the previous set up is available, it is straightforward to carry the LSR
problem into a DNN setting, working with the same targets as in the linear
case but which now are to be approximated by the outputs of a suitable DNN.
This is the approach we shall follow here and, besides a short, self-contained
presentation of the LSR and FLDA equivalence in [15,16] our contributions are
the following:

– The proposal of Deep Fisher Discriminant Analysis, DFDA, along the lines
just summarized.

– A comparison of DFDA with classical FLDA over several, large size, binary
and multiclass datasets, that shows a much better performance of DFDA.

The paper is organized as follows. In Sect. 2 we shall review classical FLDA
as well as the distance-based classifier equivalence established in [15,16] between
classical FLDA and a concrete LSR problem. Deep Fisher Discriminant Analysis
is introduced in Sect. 3 and in Sect. 4 we will compare its performance with that
of classical LFDA over several relatively large multiclass and, in some cases,
imbalanced problems. As we shall see, the accuracies and g scores of the DFDA
classifiers are substantially better. Finally the paper closes with a brief discussion
and pointers to further work.

2 Fisher’s Linear Discriminant Analysis and Least
Squares Counterparts

2.1 Fisher’s Linear Discriminant Analysis

We first briefly review classical FLDA. As mentioned, its goal is to linearly
project the original patterns in such a way that these projections are close to
their class means while these class means are kept apart. Several criterion func-
tions can be used for this goal and many of them are in fact equivalent; see [6,
Sect. 10.2]. Here we will seek to maximize the trace criterion

g(W ) = trace(s−1
T sB) = trace

(
(AtSTA)

−1(AtSBA)
)
, (1)

where A is the projection matrix, SB and ST denote the between-class and total
covariance matrices respectively of the sample patterns and sB and sT are their
counterparts for the projections z = Ax; see [16], Subsect. 2.2 for more details.
Solving ∇Ag = 0 leads to

0 = −2STAs
−1
T sBs

−1
T + 2SBAs

−1
T

i.e., S−1
T SBA = As−1

T sB or, up to an invertible transformation of A (which won’t
change the cost function g(W )), to

S−1
T SBA = AΛ, (2)

with Λ the non-zero eigenvalues of S−1
T SB (and of s−1

T sB). Thus, for such an A
we have

g(A) = trace(s−1
T sW ) = trace Λ = λ1 + . . .+ λq,
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which we maximize by sorting the eigenvalues in Λ in descending order and
selecting the q = min{d,C − 1} largest ones and some conveniently normalized
associated eigenvectors; here d is pattern dimension and C the number of classes;
q is then the rank of SB . Notice that the minimizer of (1) is not uniquely
defined, and some normalization has to be introduced; an usual choice is to
impose AtSTA = Iq.

In some problems ST may be ill conditioned and not have full rank. One
possibility in this case is to use the Moore-Penrose inverse of ST ; another, and
the one we follow here, is Regularized Discriminant Analysis [5], where we work
with St + λI for an appropriate λ > 0.

2.2 Least Squares Regression and Fisher’s Linear Discriminant
Analysis

It is a very well known result [4] that for 2-class problems, a solution to FLDA
can be obtained solving a Least Squares Regression (LSR) problem

min
1

2
‖Y − 1nw0 −Xw‖2 (3)

where 1n is the all ones vector,X is the n×d data matrix and Y is an appropriate
target matrix defined by settingbreak Yp = n/n1 if xp belongs to class 1 and
Yp = −n/n2 if xp belongs to class 2. If m1 and m2 denote the class means on
the original features, it can be then checked that w = S−1

T (m1 − m2). Since
now SB = (m1 − m2)(m1 − m2)

t, it follows that S−1
T SBw = wγ, with γ =

(m1−m2)
tS−1

T (m1−m2), i.e., w is an eigen-solution of (2) and, hence, a dilation
of a FLDA’s projection vector computed as in the previous subsection.

There have been several attempts to carry this result to a multiclass setting.
Among the most successful ones are the proposals by Park and Park [13] and
the somewhat simpler one in Zhang et al. [16], which we follow here and briefly
explain next in a much more concise way.

Consider again the LSR problem (3), where the target matrix Y to be ade-
quately chosen. For simplicity we assume that ST is regular; if not, we can simply
replace it with ST + λI for some λ > 0. The optimal LSR solution is then

w = S−1
T XtHY,

where H is the centering matrix

H = In − 1

n
1n1

t
n;

in particular, XtH is the n× d matrix whose p-th row equals xt
p −mt. The key

assumption is now that we can choose a target matrix Y such that we can write
SB as

SB = XtHY Y tHX.

Assuming this, let us write Q = XtHY (and, thus, SB = QQt); we show next
how can we transform the solution w = S−1

T XtHY = S−1
T Q of (3) into an eigen-

solution A of (2). Consider the semidefinite positive matrix R = QtS−1
T Q whose
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SVD decomposition is R = Ṽ Γ̃ Ṽ t. Assuming for simplicity that rank(Q) =
rank(SB) = C−1, at least one of the diagonal elements in Γ̃ will be zero; reorder-
ing Γ̃ if necessary, we assume it to be the element in the (C,C) matrix entry. We
can thus drop the last row and column of Γ̃ (that are 0) to get a (C−1)×(C−1)
diagonal matrix Γ , and the last column of Ṽ to get a C× (C− 1) matrix V that
verifies V tV = IC−1 and for which we can also write R as R = V ΓV t.

Now it is easy to check that the pair (A = wV Γ−1/2, Γ ) is an eigensolution
of (2) with normalization AtSTA = Iq, for we have

S−1
T SBA = S−1

T QQtwV Γ−1/2 = wQtS−1
T QV Γ−1/2 = wRV Γ−1/2

= wV ΓV tV Γ−1/2 = AΓ.

In other words, if we choose Y adequately, from Q = XtHY we can derive the
LSR solution w, the SVD decomposition (V, Γ ) of QtS−1

T Q and the FLDA eigen-
solution A = wV Γ−1/2. This combines Algorithm4 in [16] and the discussion in
its Sect. 6 to derive a FLDA solution A from the LSR solution w.

As mentioned, one thing to consider is the possibility of ST being singular.
This can be easily handled now by working with a Ridge Regression problem,
i.e., solving for an appropriate λ > 0

min
1

2
‖Y − 1nC wt

0 −Xw‖2 + λ

2
trace(wtw),

where 1nC denotes the n×C all ones matrix and w0 is a C-dimensional vector.

2.3 Equivalence of Distance Classifiers

As in [16], let’s consider the projection matrix B = AΓ 1/2 = wV instead of
FLDA’s standard A. It is easy to see that B is also an eigen-solution of (2)
associated to the normalization BtSTB = Γ . Let y = w0 +wtx and ω = Btx be
the LSR and B-eigen-projections of a pattern x, respectively. We then have

‖ω − ω′‖2 = (x− x′)tBBt(x− x′) = (x− x′)twV V twt(x− x′) = ‖y − y′‖2.

Thus, any Euclidean distance-based classifier will give the same results when
applied to the B-eigen-projections ω than when applied to the LSR ones y. This
will be the case for a k-Nearest Neighbor classifier and also for the nearest class
mean classifier

δNCM (x) = arg minc‖wtx− wtxc‖ = arg minc‖y − yc‖,

which we will use here. In other words, we can obtain a FLDA-like nearest
class mean classifier directly from the LSR solution, without having to perform
the eigen-analysis that FLDA requires. We will call this procedure, proposed
in [15,16], Least Squares Discriminant Analysis, LSDA, and take advantage of
this in Sect. 3 to define our deep Fisher classifiers but, before that, we close this
section with two examples of suitable target matrices Y .
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2.4 Two Examples

The well known relationship between the LSR and FLDA solutions for 2 class
problems mentioned above also follows easily from the previous discussion. In
fact, using the target vector Yp = n/n1 if xp is in class 1 and Yp = −n/n2

if xp is in class 2, then we have Q = XtHY = m1 − m2 and, hence, SB =
(m1 − m2)(m1 − m2)

t = QQt. Besides, R = QS−1
T Q = (m1 − m2)

tS−1
T (m1 −

m2) = γ, with a trivial SVD decomposition R = 1γ1 and, thus, we have here
A = w · 1 · γ−1/2 = S−1

T (m1 −m2)γ
−1/2 and B = Aγ1/2 = S−1

T (m1 −m2) = w,
i.e., the ω and y projections now coincide.

For the general multi-class case, it is shown in [16, Eq. (4)], that we can write

SB = XtHEΠ−1EtHX = XtHEΠ−1/2Π−1/2EtHX,

where Π is the diagonal matrix with Πcc = nc and E is the n × C indicator
matrix with rows ep such that if xp is in class c, epc = 1 and epc′ = 0 for c′ �= c.
Thus here we can take Q = XtHEΠ−1/2 and it is also shown in [16, Eq. (25)],
that we can write the LSR solution w = S−1

T XtHY as

w = S−1
T XtHEΠ−1/2 = S−1

T Q

if we use Y = HEΠ−1/2 as the target matrix. It is now easy to see that for such

Y and xp in class c, we have Ypc =
n−nc

n
√
nc
, and Ypc′ = −

√
nc

n otherwise. These are

the targets we shall use in the next section.

3 Deep Fisher Discriminant Analysis

We have just argued how we can obtain for a general C class problem a nearest
class-mean classifier equivalent to one acting on the B-based Fisher projections
by performing the following steps:

1. For a given training set Dtr, solve for a data matrix Xtr, class indicator
matrix Etr and targets Ytr = HEtrΠ

−1/2 the LSR problem

min
1

2
‖Ytr − 1nC wt

0 −Xtrw‖2,

obtaining the optimal d× C matrix w∗ and C-dimensional vector w∗
0 .

2. Compute the projections y = w∗
0 + (w∗)tx for x ∈ Dtr and their class means

yc = w∗
0 + (w∗)txc.

3. Assign an x in a test sample Dts to the class whose mean the projection
y = w∗

0 + (w∗)tx it is closest to; that is, to the class c∗ for which

c∗ = arg minc{‖y − yc‖}.

Now, a natural idea to extend this to a non linear setting is to perform the
LSR computations on features z obtained by a non-linear processing z = Φ(x)
of the original features x. An example of this is Kernel Discriminant Analysis,
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KDA [12,16], where a certain generalized eigenvalue problem involving the kernel
matrix K = ZZt is solved, with the matrix Z being Z = Φ(X); in particular the
projections z are not needed explicitly as they enter the computations through
a kernel k such that z · z′ = Φ(x) · Φ(x′) = k(x, x′). As it is often the case in
kernel methods, handling the n× n matrix K can be too costly in large sample
problems and some suitable low rank approximation would have to be used.

A simpler alternative, better suited in principle for large sample problems, is
to derive the z features using a straightforward DNN extension of the previous
linear setup; more precisely, in a DNN setting we would

1. Solve over a training set Dtr the LSR problem

min
1

2
‖Ytr − f(Xtr,W)‖2

with Ytr the previous training target matrix and the p-th row of the matrix
f(Xtr,W)p is given by f(Xtr,W)p = f(xp,W), where f(x,W) is the transfer
function of a deep network with linear outputs and overall weight set W; we
thus obtain an optimal DNN weight set W∗.

2. Compute the projections yp = f(xp,W∗) over Dtr.
3. Assign a new x ∈ Dts to the class whose mean the projection y = f(x,W∗)

is closest to.

Writing W∗ = (w∗
0 , w

∗,W ∗) with w∗
0 , w

∗ the linear output weights, these opti-
mal w∗

0 , w
∗ solve the LSR problem (3) over the last hidden layer features

z = Φ(x,W ∗), with Φ the DNN transfer function up to the last hidden layer.
Thus, the class mean classifier of the full DNN is equivalent to a class mean
classifier over some FLDA projections of the z patterns in the last hidden layer
which, in turn, are also learned by tuning the W component of the overall weight
W. In other words, the DNN also performs a particular kind of representation
learning, as in this case it learns in its last hidden layer new features that have
been optimized to perform FLDA on them. We will call this Deep Fisher Dis-
criminant Analysis, or DFDA.

As in the linear case, we may avoid singularity issues here by adding a regu-
larization term, i.e., solving for instance

min
w,W

1

2
‖Y − f(X,w0, w,W )‖2 + λ

2
trace(wtw + W̃ tW̃ ),

with W̃ the components of W excluding the biases at each hidden layer. This
is the cost function we will use. Of course, in the deep case one may use other
regularization terms for the W components of the overall weight structure W
(such as, for instance, dropout), but the term λ

2 trace(w
tw) should be kept in

any case for the linear weights w.

4 Numerical Experiments

4.1 Datasets and Quality Measures

We will consider the datasets SensIT Vehicle (combined), dna, ijcnn1,

letter, mnist, pendigits, satimage, shuttle, w7a, w8a and usps. All
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Table 1. Train sample size, dimension, number of classed and ratio between the max-
imum and minimum class sizes for the considered datasets.

Problem N. patterns Dimension N. classes Class ratios

combined 78,823 100 3 2.156

dna 2,000 180 3 2.265

ijcnn1 49,990 22 2 9.301

letter 15,000 16 26 1.128

mnist 60,000 784 10 1.244

pendigits 7,494 16 10 1.085

satimage 4,435 36 6 2.583

shuttle 43,500 9 7 5,684.667

w7a 24,692 300 2 32.368

w8a 49,749 300 2 32.637

usps 7,291 256 10 2.203

of them also have separate, well defined train-test splits and, except mnist,
are available on the Datasets section of the LIBSVM web site; for mnist we
have used Scikit-Learn to fetch it from mldata. We have put an emphasis in
relatively large, multiclass datasets; in Table 1 we give their dimension, total
number of train patterns, number of classes and their maximum class size ratios,
i.e., the ratio of the maximum class size to the minimum one. Data sizes go from
2,000 (dna) to 78,823 (combined) and the number of classes ranges from 2 to
26 (letter); while some of them are quite balanced, others (w7a, w8a and par-
ticularly shuttle) present large class imbalances, having class size ratios �1.
Because of this, the main quality measure we will use for model evaluation will
be the g-score, i.e., the geometric mean of the different class sensitivities:

g =

(
C∏

c=1

Sc

)1/C

=

(
C∏

1

mcc∑
j mcj

)1/C

,

where mcj is the (c, j) entry of the confusion matrix, that is, the number of
class c patterns that are assigned to class j. The g-score measure is often used
in imbalanced classification as it is more robust to markedly different class sizes
than accuracy, easily achieved by assigning small class patterns to the largest
class. Because of this we will also use g as the merit function for hyper-parameter
selection of both linear and deep models. Nevertheless, we shall also report the

accuracies a =
∑

c mcc∑
c,j mcj

.

4.2 Deep Model Universal Approximation Capabilities

The goal when using deep versions of FLDA is to obtain better representations
in the last hidden layer of which the final, Fisher-like, linear transform can
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take advantage. In an extreme perspective, overfitting should concentrate each
class around its mean while keeping these classes far apart. Once vanishing
gradients are avoided and proper training is possible, the simplest way to overfit
a dataset is to work with a deep enough network with rather large hidden layers,
which ensures a large number of weights. We will do so here, building for each
dataset four DFDA models having between 2 and 5 fully connected hidden layers
with 100 units each but controlling overfit with a proper penalty. For most
problems the number of weights approximately varies thus between 20,000 and
50,000; on the other hand, given its pattern dimension, for mnist the first hidden
layer already has 78,400 weights. We stress that our main goal here is not to
obtain top quality models; for instance, for mnist, convolutional networks would
be needed for this and the fully connected layers be much larger than the ones
considered here. Instead, our main goal here is to measure DFDA’s performance
and compare it against that of FLDA.

As a benchmark reference we will build an LSDA model for each dataset
using the class Ridge in scikit-learn; for DFDA models we will use the
MLPRegressor class also in scikit-learn. MLPRegressor only allows for deep
MLPs with fully connected layers and L2 penalization; we will use relu activa-
tions and the adam solver. This solver is a faster, more stable version of gradient
descent but convergence may still be slow. Moreover, the targets Ytr are rather
small to begin with, so the convergence tolerance should also be small. Because
of this we will work with a maximum number of 20,000 iterations and use a tol-
erance of 10−9; other solver parameters are left at their default values. A more
powerful alternative could have been to work with a general DNN framework
such as Keras [3] that has Theano or TensorFlow as backends and offers a much
wider range of network architectures (including for instance convolutional layers)
or penalties (L1 or dropout). However, most of the problems considered do not
lend themselves to, say, using convolutional layers and, on the other hand, the
structural simplicity of MLPRegressor models results in a much faster training.

We will work with mini-batch sizes min(200, num patterns), i.e., the
default for the MLPRegressor class. Therefore, the only hyper-parameter we
have to set is the L2 penalty alpha of the LSDA and DFDA models. For both
cases we will select it using the RandomizedSearchCV model selection framework
in scikit-learn. To select the optimal alpha values, we will perform 100 uni-
form random searches of alpha values in a range (0, αmax), averaging for each
one its g scores over 10 cross validation folds built on the training set and retain-
ing the value giving the largest validation score. The test g-scores are reported
in Table 2 and the accuracies in Table 3. In each case the reported test g and
accuracy values are obtained training 10 DLDA models with different random
initializations, averaging their outputs as well as those of the corresponding test
patterns and computing the class predictions and the test confusion matrix over
these averages. The tables also give the rankings of each model over the different
problems.

As it can be seen, the deep DFDA models clearly improve on the LSDA
ones in terms of g scores and accuracies, with the best results usually obtained
with the largest 5-hidden layer network. This is particularly remarkable on the
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Table 2. Test g scores of the LSDA and of the DFDA models with 2, 3, 4 and 5 100
unit, hidden layers. We write in parenthesis the g score ranking of each model over the
different problems and the corresponding ranking means in the last line.

Problem LSDA DFDA

2 HL 3 HL 4 HL 5 HL

combined 0.780 (5) 0.800 (3) 0.791 (4) 0.817 (2) 0.831 (1)

dna 0.940 (5) 0.952 (3) 0.952 (3) 0.955 (1) 0.953 (2)

ijcnn1 0.772 (5) 0.826 (3) 0.809 (4) 0.946 (2) 0.955 (1)

letter 0.683 (5) 0.924 (4) 0.936 (3) 0.952 (2) 0.957 (1)

mnist 0.870 (5) 0.929 (4) 0.947 (3) 0.952 (2) 0.962 (1)

pendigits 0.805 (5) 0.975 (4) 0.976 (3) 0.978 (2) 0.981 (1)

satimage 0.808 (5) 0.883 (2) 0.887 (1) 0.876 (3) 0.873 (4)

shuttle 0.565 (3) 0.000 (5) 0.414 (4) 0.838 (2) 0.979 (1)

w7a 0.794 (3) 0.694 (5) 0.776 (4) 0.852 (1) 0.849 (2)

w8a 0.781 (5) 0.837 (1) 0.827 (3) 0.827 (3) 0.831 (2)

usps 0.870 (4) 0.943 (2) 0.949 (1) 0.939 (3) 0.939 (3)

rank mean 4.55 3.27 3.00 2.09 1.73

Table 3. Test accuracies of the LSDA and of the DFDA models with 2, 3, 4 and 5 100
unit, hidden layers. Again, we write in parenthesis the accuracy ranking of each model
over the different problems and the corresponding ranking means in the last line.

Problem LSDA DFDA

2 HL 3 HL 4 HL 5 HL

combined 0.770 (5) 0.791 (3) 0.782 (4) 0.808 (2) 0.819 (1)

dna 0.927 (5) 0.957 (3) 0.954 (4) 0.960 (1) 0.958 (2)

ijcnn1 0.855 (5) 0.891 (3) 0.883 (4) 0.977 (2) 0.984 (1)

letter 0.694 (5) 0.925 (4) 0.937 (3) 0.952 (2) 0.957 (1)

mnist 0.873 (5) 0.931 (4) 0.947 (3) 0.952 (2) 0.962 (1)

pendigits 0.825 (5) 0.975 (4) 0.976 (3) 0.978 (2) 0.981 (1)

satimage 0.835 (5) 0.891 (2) 0.897 (1) 0.885 (3) 0.882 (4)

shuttle 0.913 (5) 0.943 (3) 0.934 (4) 0.989 (1) 0.986 (2)

w7a 0.984 (3) 0.843 (5) 0.978 (4) 0.988 (2) 0.989 (1)

w8a 0.984 (5) 0.988 (2) 0.988 (2) 0.987 (4) 0.989 (1)

usps 0.883 (5) 0.949 (2) 0.954 (1) 0.946 (3) 0.944 (4)

rank mean 4.82 3.18 3.00 2.18 1.73

shuttle problem. Notice in Table 2 the g score of the 2-hidden layer network is
0, due to no pattern in the smallest class being correctly classified (this class has
about 50,000 times less patterns than the biggest one).
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5 Discussion and Further Work

While elegant and enticing, classical Fisher Linear Discriminant Analysis
(FLDA) has fallen into some disuse, partly because of its linear nature but also
because of the eigenanalysis it requires, which doesn’t lend itself to be consid-
ered over very large datasets or to be learned in an iterative basis. Most of these
difficulties are greatly alleviated when instead of a “pure” FLDA approach, one
follows the equivalent LSR set-up proposed in [15,16] and discussed above. More-
over, this lends itself into a natural extension to a Deep Neural Network setting,
pairing the LSR target matrix with a highly complex deep pattern processing.

This is our approach here, where we have shown how simple 2-to-5 layer net-
works can noticeably improve the performance of FLDA. We have applied some
of the latest tools in deep networks, such as Glorot initialization [7], RELU acti-
vations [11] or ADAM optimizers [10] but, in any case, the networks considered
are relatively small and rather simple. There are thus several venues we can fol-
low to improve on the results reported here. For instance, we can use other, more
specialized, DNN architectures, easily available through the keras wrapper for
Theano or TensorFlow, which may include convolutional layers for highly struc-
tured inputs such as mnist. These layers could also be helpful in problems such
as person identification, where the current state of the art are the Fisher Face
procedures, that apply a suitable version of Fisher analysis over face images. We
could also consider DFDA networks as representation learners, using the net-
work outputs of the last hidden layer as features upon which classifiers stronger
than nearest neighbors or class mean distances could be applied. This may be
particularly suitable for imbalanced problems. In this line it is also interesting to
compare the performance of Deep Fisher networks with that of other non linear
Fisher extensions, such as KDA. We are currently studying these issues.
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Abstract—Classification over imbalanced datasets is a highly
interesting topic given that many real–world classification prob-
lems present a concrete class with a much smaller number of
patterns than the others. In this work we shall explore the use
of large, fully connected and potentially deep MLPs in such
problems. We will consider simple MLPs, with ReLU activations,
softmax outputs and categorical cross–entropy loss, showing that,
when properly regularized, these relatively straightforward MLP
models yield state of the art results in terms of the areas under
the ROC curve for both two–class problems (the usual focus in
imbalanced classification) as well as for multi–class problems.

I. INTRODUCTION

Imbalanced classification is a very important problem in
Machine Learning which has received enormous attention,
particularly since the mid 2000’s, when there was an explosion
on the published research [1], [2]. Usually two main general
venues are followed for imbalanced classification, sample–
based and algorithm–based [3]. In the first approach one tries
to correct the initial sample imbalance by either oversampling
the smaller class [4], undersampling the largest one [5] or
combining both; often this is done in an ensemble setting
[6] such as building independent ensemble members after
rebalancing the data or within an adaptive boosting set–up
procedure. Because of the computational cost of the rebalanc-
ing involved, it is often the case that simple classifiers such as
decision trees are used. Stronger classifiers are usually applied
in algorithm–based methods, whose general goal is to correct
the bias that they may have towards the larger classes; this may
be done either by introducing classification costs adapted to
the imbalance structure at hand [7], or by modifying the loss
function to give a greater impact to the smaller classes [8].

An underlying assumption here is that the smaller classes
will not be “noticed” by the classifier. A naive way to avoid
this would be to work with overfitting classifiers which, at
least during training, would be able to correctly handle the
minority classes; the danger is, of course, a potentially very
poor generalization. Regularization techniques are used to
correct this but, if not carefully chosen, there is a risk of the
minority classes being lost again. One way out of this could be
to devise specific regularization penalties to counter it; another,
simpler one is to use standard regularizers but to choose their
penalty parameter in such a way that the minority classes still
count.

In general, a desirable characteristic of any classifier is its
ability to provide continuous scores such as, for instance,

posterior probability estimates. Classification decisions are
often made by setting a threshold but its choice is always
tricky and more so in imbalanced problems, where there is
little or none a priori information to do so. In fact in, say, a
two–class imbalanced problem, any score value is bound to be
represented by patterns with a substantial overlap between the
positive and negative classes. Because of this, single valued
0–1 classification performance measures based on confusion
matrix values computed over a fixed score threshold, such as
accuracy, precision or recall, may not be too helpful and a
more nuanced measure which takes into account all possible
thresholds should be considered.

The most obvious such choice is the Area Under the Curve
(AUC) of the Receiver Operating Characteristics (ROC) [9].
For two classes, ROC measures true positive rates (TPR)
against false positive rates (FPR) over all possible thresholds
and, in fact, the AUC estimates the probability of a given
positive pattern receiving a positive score larger than a negative
one (see Section II for details). The AUC may not be only
used to measure a classifier’s performance but also to guide
the selection of its optimal hyper–parameters such as, for
instance, those involved in regularization. In fact, optimal
hyper–parameters chosen as to maximize the AUC on a
validation subset should also be effective when the classifier
is applied to a test set.

In this work we shall try to exploit these two insights,
choosing first Multilayer Perceptrons (MLPs) with soft–max
outputs and cross–entropy loss; their output can be naturally
taken as posterior probability estimates and, hence, as a
suitable score. With some abuse of the language, we will
refer to our MLPs as ”Deep” MLPs; while the maximum
number of layers we will consider will be five (and, hence,
far from the much larger layer numbers in use nowadays), our
networks will certainly have a large number of weights, well
above sample size in many of the problems we will consider.
As they are defined with architectures large enough this will
result in powerful non–linear classifiers, susceptible to produce
overfitting if not properly handled. To prevent this, we will use
our second insight of using the AUC as the criterion function
in hyper–parameterization.

In principle one might consider many different hyper–
parameters when defining a given MLP, such as architectures
or learning rates. However the continuous recent advances in
Deep Neural Networks and the better understanding of MLP



training that they have produced suggest that large MLPs
can be rather robust with respect to choices such as the
number of hidden layers and their number of units. Moreover,
the latest stochastic gradient descent–based optimization tech-
niques such as Adam [10] do automatically provide curvature–
adapted learning rates and yield good results when their
default hyper–parameters are used. This essentially leaves the
regularization parameter as the key value to be adjusted in
order to have good generalization performance. Here we will
use a standard L2 or Tikhonov regularization term α

2 ‖W‖22,
with W the weight set of the MLP and, as pointed out before,
the optimal α will be chosen by cross-validation using the
AUC score.

This is the set up we will follow here and besides a short,
self–contained presentation of some relevant facts on the AUC
and deep network training, our contributions are the following:

• The proposal of an AUC based procedure to select
the optimal L2 regularization parameter α for log–loss,
softmax deep MLP multi–class classifiers.

• An extensive study of the performance of log–loss, soft-
max MLP classifiers on two class imbalanced problems,
showing results that improve in many cases on the current
state of the art methods.

• The application of these MLPs to large scale, imbalanced
multiclass problems, an area where research on imbal-
anced problems has been somewhat less active, and where
we can also obtain quite remarkable results

In summary, we show that modern deep MLP techniques
can easily and naturally be applied to imbalanced multiclass
problems in an almost routine fashion and that these more or
less straightforward MLPs can yield state of the art results.

The paper is organized as follows. In Section II we shall
review the most relevant facts about AUC and its multi–class
extensions and in Section III we will briefly review logloss,
softmax deep MLP training. These MLPSs are compared
in Section IV with state of the art methods for two–class
imbalanced problems and applied in Section V to large scale,
imbalanced multiclass problems. The paper ends with a brief
discussion and pointers to further work.

II. THE AREA UNDER THE ROC CURVE FOR TWO– AND
MULTI–CLASS PROBLEMS

A. Two–class Problems

Assume we have a 2–class discriminant that for each
element x returns a score s(x) which ranks higher elements
of the positive (1) class, such as, for instance, a posterior
probability estimate P̂ (1|x); for simplicity we will assume
s normalized so that 0 ≤ s(x) ≤ 1. Let S0, S1 be the random
variables defined by s on the 0 and 1 classes, that we assume
to be independent with densities f0, f1. For any threshold t
consider the classifier c(x) = ct(x) such that c(x) = 1 iff

s(x) > t. If TPR(t), FPR(t) are its true and false positive
ratios we have

TPR(t) = P ({s(x) > t|x ∈ C1}) =

∫ 1

t

f1(s)ds,

FPR(t) = P ({s(x) > t|x ∈ C0}) =

∫ 1

t

f0(s)ds.

The points (FPR(t), TPR(t)) lie in the Receiver Op-
erating Characteristics (ROC) space. For instance, perfect
classification would result on the (0, 1) point while random
classification would result in a point on the y = x diagonal.
Notice that TPR is equivalent to recall or sensitivity and
FPR is equal to specificity. and sometimes the x and y ROC
axes are labeled as specificity and sensitivity. Letting t vary,
these points define the ROC curve and the AUC (i.e. Area
Under the Curve), is simply the area underlying it.

The AUC has a number of interesting properties. First,
no prior probabilities enter its definition, as TPR(t) and
FPR(t) are computed column–wise on the confusion matrix.
Moreover, the AUC captures in a single metric classifier
performance on a wide range of decision thresholds. Also, it
gives the probability of a random positive pattern being ranked
higher than a random negative one (see for instance [11] ). In
fact, we have

AUC =

∫ 1

0

TPR(t)d(−FPR(t))

=

∫ 1

0

(∫ 1

t

sf1(s)ds

)
f0(t)dt

=

∫ 1

0

∫ 1

0

I(s > t)f0(t)f1(s)dtds

= P ({s(x) > s(x′) : x ∈ C1, x
′ ∈ C0}).

Notice that FPR(t) decreases with t, which requires working
with d(−FPR(t)). We have defined the AUC in terms of
the 1–class (i.e., the AUC1), but we get an equivalent value
using the true and false negative rates TNR(t) and FNR(t).
In fact,

(FNR(t), TNR(t)) = (1− TPR(t), 1− FPR(t)),

i.e., the 0–class ROC curve is symmetric to the 1–class curve
with respect the line y = 1−x, and their corresponding AUCs
thus verify AUC0 = AUC1.

The AUC is also related to the Mann–Whitney U rank test,
as proved in [12]. In fact, let’s sort the sample scores as sn,
label the patterns x accordingly as xn and define

U1 =

N1∑

i=1

r1i −
N1(N1 + 1)

2
=

N∑

n=1

nI1(xn)− N1(N1 + 1)

2
,

where r1i is the rank in the overall sorting of the score s of
the i–th element of class 1 and I1(xn) the 0− 1 indicator of
class 1; we then have AUC1 = 1

N0N1
U1. This can be easily

seen from the fact that

AUC = P
({
s(x0j ) < s(x1i ) : x0j ∈ C0, x

1
i ∈ C1

})
.



In fact, the number of (x0j , x
1
i ) pairs is N0N1 and if we assume

the elements x1i of C1 ordered according to ascending s scores,
the number of elements x for which s(x) < s(x1i ) is ri − 1,
while the number of such elements in C1 is i − 1. We thus
have

AUC =
1

N0N1

N1∑

i=1

#
{
x ∈ C0 : s(x) < s(x1i )

}

=
1

N0N1

N1∑

1

(
r1i − 1− (i− 1)

)

=
1

N0N1

N1∑

1

r1i −
(N1 + 1)

2N0
(1)

thus, AUC can be directly derived from the Mann–Whitney
value U1 or we can simply use (1) to compute it.

B. Multi–class Problems

The extension of the AUC to a multiclass setting is more
complex. Closest to the previous two class is the Volume
Under the Surface (VUS) approach [13] that, however, may
be quite hard to compute for score–based classifiers. Most
simplifications derive multiclass AUC starting from various
two class AUC values and combining them somehow. For
instance, in [14] a two class problem is considered for each
class Ci, with is taken as the positive class, and patterns in the
other classes ∪j 6=iCj as the negative one, the corresponding
AUCi is computed and the total AUC is taken as

AUCtotal =
∑

i

πi AUCi,

with πi the class priors. Notice that this definition may be quite
sensible to class imbalances. An alternative to AUCtotal are
the so–called macro–average AUCs [15], defined as either
the arithmetic mean of the previous one–versus–rest (o–v–r)
AUCi values:

AUCmacro =
1

C

∑

i

AUCi,

or by its geometric variant

AUCgeom =

(
C∏

1

AUCi

) 1
C

.

A single ROC version of macro–averaging can
be found on the ROC Multiclass Settings (scikit-
learn.org/stable/auto examples/model selection/plot roc)
discusion on Scikit–learn’s page. In it, once the TPRi and
FPRi vectors are computed for each class i and the entire
threshold range R, these FPRi are concatenated into a single
vector FPR with C × length(R) values and a mean TPR
vector is obtained by averaging the interpolations of the pairs
FPRi, TPRi over the FPR values. This resulting FPR and
TPR vectors can be used to build a global, macro–averaged
ROC curve and the final AUCmacro is just the area of this
global curve.

Still, another alternative is to micro–average AUCs [16],
Ch. 13, by raveling the target and score matrices to build a
unique pair of (target, score) vectors and compute from this
pair the so–called micro–average ROC and its corresponding
overall AUCmicro. Notice that for any threshold t the total
numbers of true positives and false negatives in the raveled
target and score vectors are

TP (t) =
C∑

1

TPi(t), FN(t) =
C∑

1

FNi(t)

while the total number of positives is
∑C

1 Pi; we can thus
compute this way the micro–averaged TPR(t) and FPR(t)
ratios. Finally, another widely used alternative to computing a
multi–class AUC–like value is the so–called M–AUC [12],
where C(C − 1) pairwise two class AUC(i, j) values are
computed and merged into

M =
2

C(C − 1)

∑

i<j

AUC(ci, cj),

with each AUC(ci, cj) considering the effect of the score s
only on patterns of classes i and j. This definition should be
more robust against class imbalances but, in any case, most of
the probabilistic interpretations of the two class AUC are lost
for both AUCtotal definitions. See Section 9 in [11] for more
details. Examples of the use of micro and macro averaging
can be found for instance in [15], [17]. While there is no
general agreement on which measure to use over unbalanced
datasets, macro–averaging seems to be often used in the multi–
class setting. We shall use geometric macro AUC in our
experiments.

C. Consistency and Discriminancy

As it is outlined in [18], the degrees of consistency and
discriminancy of two measures provide an objective compar-
ison between them. More precisely, in [18] the following two
definitions are introduced.

Definition 2.1: For two measures f and g on a domain Ψ,
let R = {(a, b) | a, b ∈ Ψ, f(a) > f(b), g(a) > g(b)} and
S = {(a, b) | a, b ∈ Ψ, f(a) > f(b), g(a) < g(b)}. The
degree of consistency of f and g is C(0 ≤ C ≤ 1), where
C = |R|

|R|+|S| .
Definition 2.2: For two measures f and g on a domain Ψ,

let P = {(a, b) | a, b ∈ Ψ, f(a) > f(b), g(a) = g(b)}, Q =
{(a, b) | a, b ∈ Ψ, g(a) > g(b), f(a) = f(b)}. The degree of
discriminancy for f over g is D = |P |

|Q| .
Consider now ranked lists of the form L = {sn, `n}, 1 ≤
n ≤ N , with 0 ≤ sn ≤ 1 a binary score and `n = 0, 1 a
binary class label. We can compute the accuracy over L as
simply acc(L) = |{sn>0.5,`n=1}|

N and AUC(L) according to
(1). Then, it is shown in [18], Theorem 1, that, in the above
notation, |R| > |S|, i.e., C > 0.5 or, in the terminology of
[18], that AUC is more consistent than accuracy. Moreover, if
we assume the L to be balanced, i.e., to have the same number
of positive and negative patterns, it is also proved in Theorem
2 of [18] that |P | > |Q|, i.e., D > 1 or, in the terminology



of [18], that AUC is more discriminative than accuracy.
Although the latter result is not proved for imbalanced lists, in
the experiments in [18] on synthetic and real–world datasets,
AUC also turns out to be more discriminative in imbalanced
problems. In light of these facts, only AUC will be used as
the default metric in the experimental section of this study.

III. DEEP MLPS FOR CLASSIFICATION

In our experiments we will work with fairly straightforward
fully connected Multilayer Perceptrons (MLPs) which we
briefly review next. As it is usually done, we will label the
targets by 1–hot encoding, i.e., with ec = (0, . . . , 1︸︷︷︸

c

, . . . , 0)

being the target for class c elements. Then if x ∈ Cc, we can
write P (c|x) =

∏K
k=1 P (k|x)e

c
k . Therefore, for a posterior

probability P (c|x,W ), the probability of getting a sample
S = {xp, yp = ec(p)} is

P (S;W ) =

N∏

1

P (c(p)|xp;W ) =

N∏

1

K∏

k=1

P (k|xp;W )e
c(p)
k

and its log–likelihood becomes

`(W ;S) = logP (S;W )

=
N∑

p=1

K∑

k=1

log
(
P (k|xp;W )e

c(p)
k

)

=

N∑

p=1

K∑

k=1

ypk logP (k|xp;W ).

We will estimate the optimal weights W ∗ by minimizing
−`(W ;S), i.e., the log loss

Llog(W ) = −
N∑

p=1

K∑

k=1

ypk logP (k|xp;W )

to which we will add an L2–Tikhonov regularizer α
2 ‖W‖22.

The general, classic theory of such networks is very well
known (see for instance [19], Chapter 5) but the recent devel-
opments on deep NNs have resulted in a number of important
enhancements, some of which we will apply here. For instance,
we will use ReLUs [20] as the activation functions, Glorot–
Bengio weight initialization [21] and minibatch–based Adam
[10] as the optimization method. All these options are available
in neural network frameworks such as Keras [22] or Scikit–
learn [23]. Here we will use Scikit–learn’s MLPClassifier class.
Notice that in a strict sense, our networks are not very deep, as
we consider at most five hidden layers. In any case, we will
refer to them as ”deep” as we will use the recent advances
on deep networks that have made possible the relatively easy
training of networks with several layers and a very large
number of weights (which in our case can be in the tens of
thousands).

To minimize the computational effort in hyper–parameter
estimation, we have considered fixed MLP architectures with
0 to 5 hidden layers, each with 100 ReLU units and softmax

Table I
CHARACTERISTICS OF THE SMALL DATASETS.

Dataset dimension n. patterns class ratio

abalone9-18 8 731 16.4
abalone19 8 4174 129.4
ecoli4 7 336 15.8
ecoli-0-1-3-7 vs 2-6 7 281 39.14
ecoli-0-1-4-6 vs 5 6 280 13
ecoli-0-1-4-7 vs 2-3-5-6 7 336 10.6
ecoli-0-1-4-7 vs 5-6 6 332 12.3
ecoli-0-1 vs 5 6 240 11.0
ecoli-0-3-4-6 vs 5 7 205 9.3
ecoli-0-3-4-7 vs 5-6 7 257 9.3
ecoli-0-6-7 vs 5 6 220 10
glass2 9 214 11.6
glass4 9 214 15.5
glass5 9 214 22.8
glass-0-1-4-6 vs 2 9 205 11.1
glass-0-1-6 vs 2 9 192 10.3
glass-0-1-6 vs 5 9 184 19.4
glass-0-4 vs 5 9 92 9.2
glass-0-6 vs 5 9 108 11
page-blocks-1-3 vs 4 10 472 15.9
shuttle-c0-vs-c4 9 1829 13.9
shuttle-c2-vs-c4 9 129 20.5
vowel0 13 988 10.0
yeast4 8 1484 28.1
yeast5 8 1484 32.7
yeast6 8 1484 41.4
yeast-0-5-6-7-9 vs 4 8 528 9.4
yeast-1-2-8-9 vs 7 8 947 30.6
yeast-1-4-5-8 vs 7 8 693 22.1
yeast-2 vs 8 8 482 23.1

activations in the output layer (the use of asymmetric final ac-
tivations for imbalanced problems has been recently suggested
in [24]). We have also used the default hyper–parameters for
the Adam solver. This leaves the L2 penalty parameter alpha

as the only one to hyper–parameterize, which we do by 10–
fold cross-validation considering a logarithmic equi–spaced
grid with values α = 2q with −30 ≤ q ≤ 10.

IV. DEEP MLPS IN IMBALANCED TWO–CLASS PROBLEMS

In this section we shall consider the application of deep
MLPs on a series of two–class imbalanced problems obtained
from the Keel repository [25]; we will use their 5–fold train–
test splits (just as it is done in [26]). Their size, dimension
and class imbalance ratio are given in Table I; the numbers
in the dataset names indicate either which class is selected
in a one–versus–rest scenario (as in abalone19) or the several
classes selected in some–versus–others scenario (as in ecoli

-0-1-3-7_vs_2-6).
We shall consider MLPs with 0 to 5 hidden layers with

100 units each, which are regularized using the squared L2

norm of the entire weight set (notice that for 0 layers this
essentially reduces to Logistic Regression). For each problem,
and for each of its 5 folds, we shall perform a hyper–parameter
grid search over the train subset to select the optimal α
regularization parameter by stratified 5–fold cross-validation
(CV). The scoring used is the AUC of the positive class (as
mentioned, AUC1 = AUC0). Once the optimal α is chosen,



an individual MLP is trained on the complete train subset and
the probability scores and AUCs are computed on the test
subset; finally we average these values over the 5 folds.

Table II gives the AUC test results for the MLP classifiers
over the datasets considered (for space reasons we omit those
of MLPClassifier1, which are similar to the others). For easier
analysis the table also contains the rankings of the five MLPs
considered according to their test AUC values. As it can be
seen, the results for all MLPs are quite similar. In fact, the
bottom line of the table gives the average rank for the AUC
values of each classifier and the difference between the average
rank of the 0–layer MLP (which is equivalent to a logistic
regression model) and that of the 5–layer MLP is very small. In
order to provide an objective comparison between the models,
we have applied Wilcoxon paired signed-rank tests over the
AUC columns of the different MLPs. Its results are shown
in table III and the null hypothesis of same means cannot be
rejected in any case. Probably these similar results are due to
the relative simplicity of the datasets involved.

For comparison purposes, Table II also contains the best test
AUC values reported in [26] for the test subsets computed
using six procedures USwitchingNED, EUSB, UBAG, SBAG,
SBO, EASY, representative of the current state of the art. As
it can be seen in the table, the AUC values provided by the
MLPs are higher in almost all cases but it must be pointed
out that this comparison is to be taken in its proper terms
for the goals and, most importantly, the underlying classifiers
(relatively weak decision trees versus quite powerful deep
networks) are quite different here from those in [26].

V. DEEP MLPS IN LARGE SCALE IMBALANCED
MULTI–CLASS PROBLEMS

Although having also a clear importance in applications,
classification over large-scale imbalanced multi-class datasets
seems to have received much less attention in the literature
[27]. We will now consider some moderately bigger, multi-
class datasets available on the datasets section of the LIBSVM
web site. Some of them (namely, dna, ijcnn1, letter, satimage,
shuttle) have separate pre–defined train–validation–test splits
which we will use to determine the optimal value of the
regularization parameter α. For the other (namely, a4a, a8a, cod

-rna, combined, news20, pendigits, usps, w7a, w8a), this parameter
is estimated by 10–fold cross validation on the train subset.
In Table IV we give their dimension, total number of train
patterns, number of classes and their maximum class size
ratios, i.e., the ratio of the maximum class size to the minimum
one. Data sizes go from 2,000 (dna) to 78,823 (combined) and
the number of classes ranges from 2 to 26 (letter); while some
of them are quite balanced, others (w7a, w8a and particularly
shuttle) present large class imbalances.

Again, we consider MLPs with 0 to 5 hidden layers with
100 units each, which are regularized using the L2 of the
entire weight set. In this case, the hyper-parameter search is
performed using the train-validation partition, if it is available,
or with 10–fold over the train subset if it is not. Once the
optimal hyper-parameter is selected, the train (and validation if

exists) subset is again used to train the final model. Finally, the
multiclass geometric AUC is computed over the test subset
with the results displayed in table V, which also gives the
ranking of each MLP for an easier comparison.

While not always true, it seems the deeper the model,
the better the AUC reported, though differences between the
different models are relatively small in most cases. Table VI
shows the results of applying the paired Wilcoxon signed rank
tests to the Table’s columns (we point out that the smaller num-
ber of AUC values on the columns may make problematic the
usual distribution approximations made in Wilcoxon’s test). In
any case, the table suggests that there are three categories, that
of MLPClassifier0, that of MLPClassifier2 and MLPClassi-
fier3 and, finally, that of MLPClassifier4 and MLPClassifier5.
Of these, MLPClassifier0 seems to be worse than all the others
and MLPClassifier2 and MLPClassifier3 also seem to have a
worse performance than MLPClassifier4 and MLPClassifier5.
On the other hand, the MLPClassifier2–MLPClassifier3 and
MLPClassifier4–MLPClassifier5 pairs seem to perform simi-
larly. This can also be seen in the average rank values at the
bottom line of Table VI.

VI. DISCUSSION AND CONCLUSIONS

Imbalanced classification problems are usually studied
through either sample–based methods that somehow try to
rebalance the initial samples or algorithm–based methods
which try to give a bigger relevance to the minority class.
These techniques define the current state–of–the–art but the
sample based methods require subsampling techniques that are
rather delicate to implement and, as they require repeated sub-
sampling and training cycles, often are built on top of relatively
simple base classifiers. On its part, algorithm–based methods
often need classification costs which are quite dependent on
the particular sample being studied and which may not be
adequate for a different problem. On the other hand, the huge
attention that deep neural networks have received in the past
few years has resulted in quite robust training techniques that
ensure convergence even when the number of weights is much
bigger than sample size. Moreover, when coupled with drop–
out regularization, the cross-entropy loss may be particularly
well suited to build deep networks able to achieve near optimal
representations, as described in [28].

Here we have followed a much simpler path, working with
log–loss, softmax MLP classifiers and L2 regularization, using
AUC as the criterion function to direct the selection of the
optimal L2 regularization parameter. Our MLP architectures
are fairly simple, just involving a number of fully connected
feed–forward layers but our experimental results indicate that
the resulting MLPs are competitive with the current state of
the art, even in highly imbalanced problems. Moreover, the
cross–entropy loss easily extends to multiclass setting without
the need to consider multiple one-vs-the rest problems and,
finally, these MLPs can be applied to large scale problems
with a computational cost that scales better than that of other
non-linear classifiers.



Table II
MAXIMUM AUC VALUES IN [26] AND TEST AUC FOR THE 0– AND 2– TO 5–HIDDEN LAYER MLPS CONSIDERED.

U/OS [26] MLPClassifier0 MLPClassifier2 MLPClassifier3 MLPClassifier4 MLPClassifier5

abalone9-18 72.94 95.85 ± 0.98 (4) 96.19 ± 2.43 (2) 96.50 ± 2.52 (1) 95.69 ± 2.84 (5) 95.89 ± 2.75 (3)
abalone19 69.91 81.78 ± 3.39 (2) 81.43 ± 5.12 (4) 81.98 ± 5.20 (1) 80.90 ± 5.27 (5) 81.46 ± 5.03 (3)
ecoli4 92.15 99.68 ± 0.39 (1) 99.45 ± 0.59 (4.5) 99.45 ± 0.59 (4.5) 99.60 ± 0.61 (2) 99.53 ± 0.30 (3)
ecoli-0-1-3-7 vs 2-6 83.54 98.36 ± 2.84 (2) 97.08 ± 4.24 (5) 97.45 ± 4.24 (3) 98.72 ± 1.59 (1) 97.08 ± 4.96 (4)
ecoli-0-1-4-6 vs 5 90.96 93.56 ± 7.89 (2) 93.75 ± 8.44 (1) 93.17 ± 8.19 (3) 93.12 ± 10.04 (4) 92.60 ± 9.17 (5)
ecoli-0-1-4-7 vs 2-3-5-6 88.72 94.42 ± 4.94 (1) 93.54 ± 5.68 (2) 93.01 ± 5.89 (3) 92.64 ± 6.41 (4) 92.29 ± 5.52 (5)
ecoli-0-1-4-7 vs 5-6 90.96 94.96 ± 5.18 (2) 95.35 ± 5.29 (1) 94.45 ± 6.87 (4) 94.77 ± 6.84 (3) 94.29 ± 7.22 (5)
ecoli-0-1 vs 5 91.14 91.59 ± 8.05 (5) 92.95 ± 9.27 (2) 92.95 ± 8.60 (2) 92.84 ± 8.57 (4) 92.95 ± 8.60 (2)
ecoli-0-3-4-6 vs 5 91.33 92.97 ± 6.66 (1) 92.16 ± 8.11 (2.5) 91.62 ± 8.07 (4) 91.22 ± 8.32 (5) 92.16 ± 8.11 (2.5)
ecoli-0-3-4-7 vs 5-6 90.76 94.62 ± 7.95 (3) 94.89 ± 9.79 (1) 94.12 ± 10.69 (5) 94.46 ± 9.64 (4) 94.72 ± 9.70 (2)
ecoli-0-6-7 vs 5 90.25 91.75 ± 8.38 (2) 92.50 ± 8.74 (1) 88.50 ± 9.46 (5) 89.47 ± 9.60 (3) 88.65 ± 9.70 (4)
glass2 74.75 82.48 ± 15.70 (5) 89.97 ± 7.66 (4) 90.28 ± 7.27 (2) 90.11 ± 7.28 (3) 91.18 ± 5.85 (1)
glass4 90.01 95.35 ± 3.71 (3) 94.64 ± 4.71 (5) 94.88 ± 5.45 (4) 96.61 ± 3.07 (2) 97.09 ± 3.27 (1)
glass5 98.78 99.27 ± 1.46 (3) 99.02 ± 1.95 (5) 99.27 ± 1.46 (3) 99.76 ± 0.49 (1) 99.27 ± 1.46 (3)
glass-0-1-4-6 vs 2 78.78 79.17 ± 10.32 (5) 85.76 ± 7.52 (4) 87.36 ± 8.08 (1) 86.11 ± 8.21 (3) 86.96 ± 7.22 (2)
glass-0-1-6 vs 2 70.03 82.00 ± 9.38 (5) 86.29 ± 6.01 (1) 86.24 ± 9.60 (2) 83.82 ± 7.65 (4) 84.19 ± 7.39 (3)
glass-0-1-6 vs 5 97.14 99.71 ± 0.57 (1) 97.14 ± 4.43 (5) 98.86 ± 1.40 (3.5) 98.86 ± 1.07 (3.5) 99.14 ± 1.14 (2)
glass-0-4 vs 5 99.41 97.50 ± 3.06 (5) 98.75 ± 2.50 (4) 100.00 ± 0.00 (2) 100.00 ± 0.00 (2) 100.00 ± 0.00 (2)
glass-0-6 vs 5 99.50 100.00 ± 0.00 (3) 100.00 ± 0.00 (3) 100.00 ± 0.00 (3) 100.00 ± 0.00 (3) 100.00 ± 0.00 (3)
page-blocks-1-3 vs 4 99.78 97.39 ± 1.20 (5) 99.93 ± 0.15 (4) 100.00 ± 0.00 (2) 100.00 ± 0.00 (2) 100.00 ± 0.00 (2)
shuttle-c0-vs-c4 100.0 99.20 ± 1.60 (3) 99.20 ± 1.60 (3) 99.20 ± 1.60 (3) 99.20 ± 1.60 (3) 99.20 ± 1.60 (3)
shuttle-c2-vs-c4 100.0 99.20 ± 1.60 (4.5) 99.20 ± 1.60 (4.5) 100.00 ± 0.00 (2) 100.00 ± 0.00 (2) 100.00 ± 0.00 (2)
vowel0 98.26 99.37 ± 0.48 (5) 100.00 ± 0.00 (2.5) 100.00 ± 0.00 (2.5) 100.00 ± 0.00 (2.5) 100.00 ± 0.00 (2.5)
yeast4 84.49 88.51 ± 4.19 (1) 87.90 ± 5.75 (2) 87.06 ± 6.23 (3) 86.86 ± 5.05 (4) 86.82 ± 4.95 (5)
yeast5 97.05 98.77 ± 0.18 (5) 98.89 ± 0.31 (4) 98.90 ± 0.38 (3) 98.97 ± 0.20 (2) 99.03 ± 0.32 (1)
yeast6 88.08 94.04 ± 6.11 (1) 93.82 ± 6.64 (4) 93.15 ± 6.61 (5) 93.89 ± 6.97 (2) 93.86 ± 6.06 (3)
yeast-0-5-6-7-9 vs 4 80.46 83.65 ± 4.72 (5) 86.99 ± 6.32 (4) 87.13 ± 6.49 (3) 87.82 ± 7.70 (2) 87.93 ± 3.72 (1)
yeast-1-2-8-9 vs 7 70.20 81.76 ± 2.68 (1) 80.29 ± 5.79 (2) 78.14 ± 9.67 (5) 78.69 ± 4.58 (4) 79.18 ± 5.89 (3)
yeast-1-4-5-8 vs 7 59.18 70.22 ± 6.34 (5) 71.39 ± 7.05 (3) 72.60 ± 5.40 (1) 72.59 ± 12.67 (2) 70.47 ± 11.68 (4)
yeast-2 vs 8 78.67 85.30 ± 4.93 (1) 83.94 ± 4.92 (2) 77.16 ± 14.01 (5) 83.87 ± 6.66 (3) 79.62 ± 10.15 (4)
rank mean 3.1 3.1 3.0 3.0 2.9

Table III
RESULTS OF THE WILCOXON TESTS FOR TWO–CLASS PROBLEMS.

p-value Hypothesis

MLPClassifier0 vs MLPClassifier2 0.37 Not rejected
MLPClassifier0 vs MLPClassifier3 0.79 Not rejected
MLPClassifier0 vs MLPClassifier4 0.37 Not rejected
MLPClassifier0 vs MLPClassifier5 0.72 Not rejected
MLPClassifier2 vs MLPClassifier3 0.80 Not rejected
MLPClassifier2 vs MLPClassifier4 0.96 Not rejected
MLPClassifier2 vs MLPClassifier5 0.74 Not rejected
MLPClassifier3 vs MLPClassifier4 0.50 Not rejected
MLPClassifier3 vs MLPClassifier5 0.61 Not rejected
MLPClassifier4 vs MLPClassifier5 0.93 Not rejected

In a broad sense, classification methods will be more suc-
cessful if they may produce new representations of the input
data that increase class separation while preserving interclass
distances. Recent studies [29] point out how deep networks
may help in that direction; if so, they would certainly be rather
effective in imbalanced problems. These observations and the
use of better tailored regularizers such as the just mentioned
dropout or other related to the information bottleneck loss [28]
offer venues for further research.
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Table IV
TRAIN SAMPLE SIZE, DIMENSION, NUMBER OF CLASSES AND MAXIMUM
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w8a 49,749 300 2 32.6
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Chapter 5

Deep Support Vector Machines
and Companion Losses

5.1 Summary

As mentioned, Support Vector Machines (SVM) are a very popular family of models
that can achieve great performance in many supervised problems, specially when
combined with kernels that give them non-linear capabilities. However, the use of
kernels implies a much higher computational complexity both in training and infer-
ence, which results in SVMs not being appropriate in big data setups. The benefits
of the margin–based loss functions employed in SVMs can, however, be transferred
to MLP–based models. This idea is explored in this set of publications, obtaining
more solid MLP models with non-linear capabilities that have a much better scala-
bility with respect to the size of the dataset. Finally, a multi-loss MLP architecture
featuring multiple outputs, one per loss function, that allows for combinations of
traditional, margin-based and other problem-tailored losses, trained with standard
back-propagation, is presented. Again, the flexibility of DNN development frame-
works like Tensorflow [58] and the convenience of high-level libraries on top of them
like Keras [66], compatible with general ML libraries like Scikit-learn [20], greatly
simplified the experimental work.

5.2 Publications

We detail next the publications of this chapter, give their abstracts, and briefly list
their main contributions for the sake of convenience.

Main publication

� David Dı́az-Vico, Jesús Prada, Adil Omari, and José R. Dorronsoro. Deep
support vector neural networks. Integrated Computer-Aided Engineering, pages
389–402, Jan 2020

Abstract: Kernel based Support Vector Machines, SVM, one of the most pop-
ular machine learning models, usually achieve top performances in two-class
classification and regression problems. However, their training cost is at least
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quadratic on sample size, making them thus unsuitable for large sample prob-
lems. However, Deep Neural Networks (DNNs), with a cost linear on sample
size, are able to solve big data problems relatively easily. In this work we
propose to combine the advanced representations that DNNs can achieve in
their last hidden layers with the hinge and ε insensitive losses that are used
in two-class SVM classification and regression. We can thus have much better
scalability while achieving performances comparable to those of SVMs. More-
over, we will also show that the resulting Deep SVM models are competitive
with standard DNNs in two-class classification problems but have an edge in
regression ones.

Contributions: This article was published as an extension of [31]. The main
improvements over the related congress paper were:

– A deeper analysis of the proposed model of a margin loss applied to DNN
architectures

– A more thorough experimental study, incorporating several additional
computer image datasets

– The conclusion that the use of the ε-insensitive loss function can help
deep models achieve better results, specially when the objective metric is
MAE.

Also, the conclusions obtained in [31] where consolidated. That is, the DSVM
model is a valid tool to induce a margin while performing a non-linear trans-
formation over the data and still be usable with quite large sample sizes, while
Kernel SVMs can only operate when the sample size is relatively small.

Other publications

� David Dı́az-Vico, Jesús Prada, Adil Omari, and José R. Dorronsoro. Deep
support vector classification and regression. In José Manuel Ferrández Vicente,
José Ramón Álvarez-Sánchez, Félix de la Paz López, Javier Toledo Moreo, and
Hojjat Adeli, editors, From Bioinspired Systems and Biomedical Applications to
Machine Learning, pages 33–43, Cham, 2019. Springer International Publishing

Abstract: Support Vector Machines, SVM, are one of the most popular ma-
chine learning models for supervised problems and have proved to achieve great
performance in a wide broad of predicting tasks. However, they can suffer from
scalability issues when working with large sample sizes, a common situation in
the big data era. On the other hand, Deep Neural Networks (DNNs) can han-
dle large datasets with greater ease and in this paper we propose Deep SVM
models that combine the highly non-linear feature processing of DNNs with
SVM loss functions. As we will show, these models can achieve performances
similar to those of standard SVM while having a greater sample scalability.

Contributions: This congress paper introduced the Deep SVM (DSVM) models
both for regression and classification, as the result of the use of margin–based
losses from traditional SVMs being applied to MLP–based models. The imple-
mentation of such losses was possible thanks to the availability of computation



frameworks like Tensorflow [58], mainly oriented to the development of Deep
Learning models, that incorporate automatic differentiation and other very
useful functionalities. The results obtained in a selection of both regression
and classification problems were competitive with those of Kernel SVMs, while
the computational cost of the training algorithms scaled linearly with the size
of the training dataset, indicating that the models proposed could also handle
big data problems.

� David Dı́az-Vico, Ángela Fernández, and José R. Dorronsoro. Companion losses
for deep neural networks. In Hybrid Artificial Intelligent Systems, pages 538–
549, Cham, 07 2021. Springer International Publishing

Abstract: Modern Deep Neuronal Network backends allow a great flexibility
to define network architectures. This allows for multiple outputs with their
specific losses which can make them more suitable for particular goals. In
this work we shall explore this possibility for classification networks which
will combine the categorical cross-entropy loss, typical of softmax probabilistic
outputs, the categorical hinge loss, which extends the hinge loss standard on
SVMs, and a novel Fisher loss which seeks to concentrate class members near
their centroids while keeping these apart.

Contributions: This congress paper proposed a multi-loss MLP architecture
taking advantage of the great flexibility of modern Deep Neural Network li-
braries like [66, 58, 59]. The use of multiple losses in classification represents
yet another way to further adapt the model to the data, obtaining better pre-
dictions as a result. This was the case, in particular, of the combination of
the traditional cross-entropy loss with the Fisher loss proposed in [29], which
produced the best results.
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Abstract. Kernel based Support Vector Machines, SVM, one of the most popular machine learning models, usually achieve top
performances in two-class classification and regression problems. However, their training cost is at least quadratic on sample size,
making them thus unsuitable for large sample problems. However, Deep Neural Networks (DNNs), with a cost linear on sample
size, are able to solve big data problems relatively easily. In this work we propose to combine the advanced representations that
DNNs can achieve in their last hidden layers with the hinge and ε insensitive losses that are used in two-class SVM classification
and regression. We can thus have much better scalability while achieving performances comparable to those of SVMs. Moreover,
we will also show that the resulting Deep SVM models are competitive with standard DNNs in two-class classification problems
but have an edge in regression ones.

Keywords: Support vector machines, deep learning

1. Introduction

Kernel Support Vector Machines (SVM; [1]) were
very popular in the 1990s and early 2000’s because of
the powerful models they provided. However they are
somewhat out of fashion in the current big data era.
The main reason for this is their cost, at least quadratic
(and often worse) with respect to sample size, in a sharp
contrast with the linear cost in sample size of Deep
Neural Networks (DNNs) that currently dominate big
data machine learning (ML).

This cost is hard to avoid in the usual kernel formu-
lation of SVMs. In fact, while at the end, SVMs are
linear models on extended representations Φ(x) of the
original patterns x, when working with effective ker-
nels such as the Gaussian one, the representation lies
in a Reproducible Kernel Hilbert Space (RKHS) and
can only be handled implicitly through the dot products
Φ(x) · Φ(x′) = kΦ(x, x′; Θ) where kΦ is a suitable
explicit kernel and Θ denotes possible kernel parame-
ters. This implies that the SVM dual problem must be

∗Corresponding author: David Díaz-Vico, Instituto de Ingeniería
del Conocimiento, Universidad Autónoma de Madrid, C. Tomás y
Valiente 11, Madrid, 28049, Spain. E-mail: david.diaz@iic.uam.es.

solved. But its dimension is N , the sample size, one
must work with an N × N kernel matrix and have to
apply the SMO algorithm with a cost that very often
will be at least quadratic in N (see Section 2 below).
All this means that standard SVM training and, even
more so, hyperparametrization will simply be too costly
in a big data setting.

Many proposals have appeared in the literature to ap-
ply SVMs on large datasets, usually focused on Support
Vector classification (SVC) problems. Among them we
can mention incremental learning [2], ensemble learn-
ing [3] or the cutting planes method [4]. Nevertheless, it
can be said that, unless substantial hardware resources
are committed, current kernel SVM training methods
are not time competitive for datasets with more than
about 100,000 patterns. Recently, GPU compliant im-
plementations of SVM training have been proposed [5]
but, while greatly accelerating SVM training, the mem-
ory limitations of large sample SVMs still remain.

Larger datasets can be handled by working with lin-
ear SVMs using the LIBLINEAR library [6] over either
the primal or dual problems, often using coordinate de-
scent [7] to solve the minimization problems. However,
efficient linear SVM models can only be expected when
the original features have very large dimensions so that
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feature projections are no longer needed. When sam-
ple dimension is just moderate, linear SVM models are
usually much less powerful that their Gaussian counter-
parts. Pegasos [8] can be used on a kernel setting but,
as with LIBLINEAR, it must work with homogeneous
modelsw·x orw·Φ(x) without a bias term; this restricts
the models to be homogeneous and while sometimes
classification performance is comparable with that of
full fledged SVMs [9], in other cases falls behind. Given
the above difficulties in large problems, the possibility
of bringing SVM training into a neural network setting
has already been considered in [10], where it is com-
pared with standard softmax DNNs on classification
problems, and by [11] in speech recognition.

However, and in a different vein from these works,
we first observe that the non differentiability of the
SVM primals is rather mild; in fact, Pegasos exploits
subgradient descent essentially by skipping the sin-
gle non differentiability at 0 of the hinge loss, or at ±
ε of the ε-insensitive one. This is precisely the same
approach followed on DNNs when having to handle
the non differentiability of the ReLU activations while
computing gradients by backpropagation. As a matter
of fact, the hinge loss is already available in Keras [12],
and the ε-insensitive loss can be written using, say,
TensorFlow primitives; in turn, this makes possible to
perform backpropagation on that loss.

This opens the way to try to solve the primal problem
directly working with an explicit kernel transforma-
tion Φ(x;W) parameterized by a certain weight setW
which, in turn, can be obtained through some training
process. Of course, an appropriate Φ has to be found
and a natural choice is the transformation performed
by a DNN between its inputs and its last hidden layer;
we will call the resulting models Deep SVMs and our
proposal in this work is to build Deep SVM models
in much the same way that DNNs are now routinely
trained.

Notice that, at the end, this point of view also leads
to a linear model acting on a hidden representation.
However, and although seemingly close, the final mod-
els will be quite different. Following the terminol-
ogy in [13], DNNs belong to the category of itera-
tive summarization methods; on the other hand, Gaus-
sian SVMs, the most popular way to derive non linear
SVMs, are placed in [13] within the case-based reason-
ing methods, jointly for instance with k-NN methods.
In fact, Gaussian SVMs can be seen as covering the
sample space with generalized balls centered on the
learned support vectors and, similarly to k-NN meth-
ods, they cannot handle very large samples. However,

and as pointed out in [13] and often observed in the
literature (see for instance [14]), when properly hy-
perparameterized, different ML methods have similar
performances in problems with features that have clear
predictive meanings. This suggests to compare first the
performance of Gaussian and Deep SVMs, which we
did in our previous work [15] and which we summarize
below for the reader’s convenience.

In any case, Gaussian SVM comparisons are only
possible for datasets up to a given size. In fact, as of
today, they have substantial train and, more so, hyperpa-
rameterization costs with sample sizes above 105 and,
thus, they are no match for Deep SVMs on problems
of such sizes. But this is far from implying that Deep
SVMs are then to be the preferred model in that setting
for then another obvious adversary arises, namely stan-
dard DNNs with cross entropy loss for classification
and squared error loss for regression. First, though, it
must be observed that, contrary with what happened
with Gaussian SVMs, Deep SVMs and standard DNNs
work at first sight in a very similar fashion. In fact, two
learning processes take place simultaneously. First, a
non linear representation z = Φ(x,W∗) between the
original inputs and their last hidden layer (LHL) rep-
resentation is learned. On the other hand, the network
also learns a linear model y = w∗ · z + w∗0 between
these LHL representations and the network outputs y.

The difference lies, however, in their respective train-
ing goals. On standard DNNs the goal is the estimation
of posterior class distributions in classification or to
mean squared error minimization in regression. On the
other hand, hinge loss minimization in our proposed
Deep SVM classifier training means that a maximum
margin model is learned on the last hidden layer; sim-
ilarly, the ε insensitive loss achieved in the training of
our proposed Deep SVM regressors implies that an op-
timal ε tube is fitted around the model built in the last
hidden layer. Those are quite different training objec-
tives with possible advantages of their own, as large
margins should result in good generalization and the
ε parameter gives extra flexibility to the deep support
vector regressors.

We will focus here our attention in the two-class
classification and regression performance of fully non
linear DNNs versus that of Deep SVMs. We will first
work with feed-forward fully connected architectures
for classification and regression but we will also con-
sider image classification datasets where we will use
problem specific architectures already proposed in the
literature and whose results are close to the state of the
art. In summary, our main contributions are:
– The proposal of Deep SVMs with the same ar-

AU
TH

O
R 

CO
PY



D. Díaz-Vico et al. / Deep support vector neural networks 391

chitectures and training procedures of either stan-
dard or advanced DNNs but using the hinge and
ε-insensitive losses typical of SVMs for two-class
classification and regression respectively.

– A statistical comparison of the performance of
DNNs and deep SVMs with standard, fully con-
nected feedforward architectures in mid size clas-
sification and regression problems.

– A statistical comparison of the performance of
DNNs and Deep SVMs over large image datasets,
using problem specific advanced deep architec-
tures that are representative of the current state of
the art.

In other to streamline the presentation, we will use
the acronyms DNNC and DNNR (Deep Neural Net-
work Classification and/or Regression) to refer to mod-
els with a DNN architecture and the cross entropy or
mean squared error losses in classification and regres-
sion respectively. Similarly, we will use the acronyms
DSVC and DSVR (Deep Support Vector Classification
and/or Regression) to refer to models with a DNN ar-
chitecture but using now the hinge loss for two-class
classification and the ε-insensitive loss for regression.
Finally we will refer to Gaussian SVM models for two
class classification as GSVC and to Gaussian SVM
models for regression as GSVR.

Putting together our results here and those in [15],
a first conclusion is that GSVCs, DNNCs and our pro-
posed DSVCs have similar performances in two-class
classification problems. However, the situation for re-
gression problems is different as we will numerically
show that DSVRs have an hedge over DNNRs, not only
when mean absolute error (MAE) is the cross validation
(CV) score used for model hyperparametrization but
also when using mean squared error (MSE) as the CV
score.

The rest of the paper is organized as follows. We
give a short unified exposition to standard SVMs in
Subsection 2, where we also address training and test
complexity and model sparsity. We present our deep
SVM proposal in Section 3, where we also briefly dis-
cuss training complexity. For the sake of the reader, we
briefly recover our results in [15] and Sections 5 and 6
contain our comparison of standard DNNs versus Deep
SVMs. More precisely, in Section 5 we will compare,
using the same datasets of Section 4, standard fully
connected DNNCs and DSVCs first and then DNNRs
and DSVRs. In both cases we will also address the sta-
tistical significance of our results. On the other hand, in
Section 6 we shall work with three large image datasets,
the MNIST, MNIST Fashion and CIFAR 10 problems.

For the first two we will use the well known LeNet-
5 architecture [16] to compare the cross entropy and
hinge losses (i.e., the corresponding DNNC and DSVC
models) on the ten 2-class problems of distinguishing
on MNIST each of the 0 to 9 digits from the others,
and similarly for MNIST Fashion. We will follow the
same approach with the ten class CIFAR 10 problems
but here the cross entropy and hinge losses will act on
top of a ResNet32 V1 model [17], a substantially more
complex deep residual network. The comparisons will
also include LIBLINEAR models and we will address
their statistical significance. Finally, the paper ends with
a discussion, conclusions and pointers to further work.

2. A SVM review

2.1. Primal and dual SVC and SVR

We will briefly review here primal and dual SVC
and SVR in a unified view following [18]. Assume a
sample given as a set of triplets S = {(xi, yi, pi) : i =
1, . . . , N} with yi = ± 1 and pi some scalar values,
and consider the minimization problem:

min
w,b,ξ
P(w, b, ξ) =

1

2
‖w‖2 + C

∑

i

ξi

(1)
s.t.

{
yi(w · xi + b) > pi − ξi ∀i,
ξi > 0 ∀i.

Now if we take pi = 1 for i = 1, . . . , N , Eq. (1)
reduces to the standard two-class Support Vector Clas-
sification (SVC) problem

min
w,b,ξ
PC(w, b, ξ) =

1

2
‖w‖2 + C

N∑

i=1

ξi

(2)
s.t.

{
yi(w · xi + b) > 1− ξi, ∀i,
ξi > 0, ∀i.

On the other hand, given an initial sampleR = {(xi,
ti) : i = 1, . . . , N} and enlarging it as S = {(xi, yi,
pi) : i = 1, . . . , 2N} by taking, for 1 6 i 6 N , yi = 1,
pi = ti − ε and yN+i = −1, pN+i = −ti − ε, and
xN+i = xi, Eq. (1) reduces now to

min
w,b,ξ,ξ′

PR(w, b, ξ) =
1

2
‖w‖2 (3)

+C
N∑

i=1

(ξi + ξ′i) (4)

s.t.





w · xi + b− ti 6 ε+ ξi, ∀i,
ti − w · xi − b 6 ε+ ξ′i ∀i,
ξi > 0 ∀i,
ξ′i > 0 ∀i,
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which is just the standard formulation of the ε-
insensitive SV regression (SVR).

While its loss is not differentiable, Eq. (1) it is, nev-
ertheless, a convex minimization problem. Because of
this, one does not attempt to solve it directly; instead,
standard Lagrangian optimization is applied to reduce
Eq. (1) to the equivalent problem of minimizing the
general dual function

min
α
D(α) =

1

2

∑

i

∑

j

αiαjQij

−
∑

i

αipi (5)

s.t.

{
0 6 αi 6 C ∀i,∑
i αiyi = 0,

where Q is the matrix with entries Qij = yiyjxi · xj .
In any case, a clear drawback of trying to solve

Eq. (1) directly is that it would result in plain linear
models, possibly not powerful enough to deal with the
problems at hand. The dual formulation overcomes
this as it can be stated in a kernel setting by replacing
the inner products xi · xj in Q with a kernel function
k(xi, xj). More precisely, for a general kernel, such
as the usual Gaussian one, it can be shown that there
is a map Φ projecting the initial patterns into an ab-
stract reproducible kernel Hilbert space (RKHS) [19]
such that we have k(xi, xj) = Φ(xi) ·Φ(xj). The final
models will be still linear but no longer in the original
features but on their kernel defined extensions Φ(x).
However, the exact knowledge of Φ is not needed and
can be implicitly handled.

2.2. Complexity and sparsity of kernel SVMs

Notice that the dual problem has to be solved in a
space with dimension N , i.e., sample size. It involves
having to handle the kernel matrix, with size N ×N ,
which is bound to be problematic for large samples.
Moreover, the standard algorithm to solve Eq. (5) is
Standard Sequential Minimization, SMO, which pro-
ceeds iteratively, with each iteration having an O(N)
cost. In turn, the number of iterations is Ω(NSV ), with
NSV the number of support vectors, which in most
problems is Θ(N). Thus, SMO training will require at
least Θ(N) iterations and has, hence, a minimum cost
Ω(N2) which is quite higher in practice, sometimes
being estimated to be cubic in N . It is thus clear that
for large samples (such as those with more than 105

samples), SVM training may prove too costly.
Moreover, an often cited property of SVMs is that

their solution is sparse, i.e., the number of nonzero

optimal α∗i values (and of the corresponding support
vectors) is less than N ; however, it is also often the
case that the number of support vectors (i.e., patterns
xi for which α∗i > 0) is still Θ(N) which hinders, for
instance, the use of SVMs in near on line settings, as
its application of a kernel SVM model on new patterns
has then a Θ(N) cost, as all support vectors enter the
model.

3. Deep SVC and SVR

It is well known that large margins usually imply
better generalization. For linearly separable problems
and a C large enough, it is also well known that linear
SVC models achieve a maximum margin. But this is
not necessarily so when the cross entropy loss of Lo-
gistic Regression is used; an example can be seen in
Fig. 1. It shows the SVC (red) and Logistic Regres-
sion (blue) separating hyperplanes built over linearly
separable samples given by two Gaussians centered at
(0, 1) (top) and (0, −1) (bottom); class sizes are 100
for the top class and 500 for the bottom one. Gaussian
standard deviation is 0.25 in the left figure and 0.33 in
the right one. As it can be seen, the SVC hyperplane
(red) achieves a maximum margin while the cross en-
tropy hyperplane (blue) is much closer to the minority
top class. (The points of each class closest to the SVC
hyperplane are shown as red dots.)

Of course, the usefulness of linear classifiers is rather
small and, as we have just discussed, the standard way
to introduce non linearity into SVMs is to use the kernel
trick. However, the price to pay for this is the need
to solve the dual problem, with a cost usually at least
quadratic with respect to sample size. But, in any case,
we point out that the loss in Eq. (1) can be written as

max{0, p− y(w · x+ b)}.
For classification this is just the hinge loss

h(y, f(x)) = max{0, 1− yf(x)}
with f(x) = w · x + b, while for regression we have
the ε-insensitive loss

`ε(y, f(x)) = max{0, |y − f(x)| − ε}.
Observe that in both cases the non differentiability

of the primal loss is rather mild and in fact very similar
to that of the ReLU activations routinely handled in
Deep Neural Network (DNN) packages. Moreover, if
Wh is the set of weights between the input and the last
hidden layer in a DNN, the input to last hidden layer
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Fig. 1. SVC (red) and Logistic Regression (blue) classifiers for two class linearly separable problems. The SVC hyperplane has a maximum margin
while the Logistic Regresion one is closer to the minority class.

transformation Φ(x) = F (x,Wh) that such a DNN
performs usually results in much enhanced pattern rep-
resentations over which linear models may yield power-
ful classifiers and regressors. In particular, using a flex-
ible enough DNN would results in a linearly separable
problem in the last layer and, as illustrated in Fig. 1, a
maximum margin classifier when the hinge loss is used,
something that would not happen with the cross entropy
loss usually applied in two class DNN classification.
All this suggests to exploit this explicit kernel to avoid
dealing with the SVM dual problem.

More precisely, consider a DNN with linear outputs,
a weight setWh between the input and the last hidden
layer, and linear weights and bias (w, b) from the last
layer to the network outputs. We denote the input-output
transformation of such a network as

f(x,w, b,Wh) = w · F (x,Wh) + b

= w · Φ(x) + b

where F (x,Wh) = Φ(x) is the last hidden layer repre-
sentation of x. The network’s cost function will be

J(w, b,Wh)

=
1

N

N∑

i=1

` (yi, w · F (xi,Wh) + b) (6)

+ αS‖w‖2 + αHR(Wh),

where `(y, ŷ) is the loss that we want to use, and we
split weight regularization in two parts, the squared
norm ‖w‖2 of the linear output weight vectors and the

sum R(Wh) of the Frobenius norms for the weight
matrices between hidden layers. We shall consider the
hinge loss for two-class classification problems and the
ε-insensitive loss for regression ones. Now, the weight
gradients of such a network can be computed by stan-
dard backpropagation and then the network trained by
plain gradient descent, as in Algorithm 1, or, as we will
do later on, using the Adam solver [20].

Algorithm 1: Deep SVM backpropagation
Input: Random initial weights W = (W`), 1 6 ` 6 L, dataset
(X,Y ), learning rate sequence ρt
1 For epoch t in 1 . . . T :
2 While (X,Y ) is not empty:
3 Select a batch (X′, Y ′) from (X,Y ) without

replacement
4 # Forward Pass
5 Z0 = X′

6 For layer ` in 1, . . . , L:
7 Z` = f`(Z`−1Wl) # f`: activation at layer `
8 # Backward Pass
9 EL = L(Y ′, ZL) # L either hinge or ε-insensitive loss

10 For layer ` in L− 1, . . . , 1:
11 S` = Z`−1W`

12 E` =
∂E`+1

∂S`

13 ∇W`
L = E` � Z`−1

14 W` =W` − ρt∇W`
L

Output: Fitted weights W = (W`)

Assume that such a network has been trained, let
(w∗, b∗,W∗) be the optimal weights and denote as
z∗ = F (x,W∗) the network’s last hidden layer outputs.
Then (w∗, b∗) solve the problem of minimizing
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1

N

N∑

i=1

`(yi, w · (z∗)i + b) + αS‖w‖2 (7)

over w, b: if not and w′, b′ were a better weight-bias
pair, the overall weight set (w′, b′,W∗) would improve
on (w∗, b∗,W∗). We can rewrite Eq. (7) as

argminw,b
1

2
‖w‖2

(8)

+
1

2αSN

N∑

i=1

`(yi, w · (z∗)i),

which is just the problem solved in SVC when ` is the
hinge loss and the problem solved in SVR when ` is the
ε-insensitive loss. Thus, after a DNN has been trained
to solve Eq. (7), the optimal output weights w∗ and
bias b∗ solve either the SVC or SVR problems over the
network outputs at the last hidden layer. In summary,
we can couple DNN architectures with linear outputs
and either the hinge or ε-insensitive losses to bring SVC
or SVR into a DNN set up; we will call DSVC or DSVR
the resulting deep SVM models.

The cost of training them is just that of training a
standard DNN, which depends on three inputs. The first
is the architecture or, more precisely, the number nW
of network weights, the second is the number nI of
iterations to be performed by the solver and the third
is sample size N . Obviously, nW is independent of
N and, contrary to what happens in SMO, so is nI ,
which basically depends on the precision to which the
DNN cost function is to be minimized. Putting all this
together, DSVC or DSVR training has a

O(nW × nI ×N)

cost, which now grows linearly with N but not quadrat-
ically, as is the case with SVMs. Moreover, the cost of
applying the model on a single pattern is now O(nW ),
independent of sample size and, hence, much faster in
principle than that of a SVM model.

In any case, the classification and regression per-
formance of such networks, which we will call Deep
SVMs, has to be compared with that of standard Gaus-
sian SVC and SVR. This was done in [15] and we will
briefly recall it in Section 4. However, and as men-
tioned before, even if training Gaussian SVMs on large
datasets is, as of today, too costly and deep SVM models
can be an alternative, it is clear that in the large sample
setting there is an obvious counterpart to Deep SVMs,
precisely standard cross entropy or mean squared er-
ror DNNs. We will compare them with Deep SVMs in
Sections 5 and 6.

Table 1
Number of train and (when available) test patterns and dimensions in
the two-class (top) and regression (bottom) problems

n. patterns train n. patterns test dimension
a4a 4781 27780 123
a8a 22696 9865 123
australian 690 14
cod-rna 59535 271617 8
diabetes 768 8
german.numer 1000 24
ijcnn1 49990 91701 22
w7a 24692 25057 300
w8a 49749 14951 300
abalone 4177 8
bodyfat 252 14
cadata 20640 8
cpusmall 8192 12
housing 506 13
mg 1385 6
mpg 392 7
space_ga 3107 6

4. Gaussian versus deep SVMs

In this section we will briefly summarize for the con-
venience of the reader the comparisons between Gaus-
sian two class classification (GSVC) and regression
(GSVR) models and their deep counterparts DSVC and
DSVR given in [15], where we used for comparison
the classification datasets a4a, a8a, australian, cod-rna,
diabetes, german.numer, ijcnn1, w7a and w8a, and the
regression datasets abalone, bodyfat, cadata, cpusmall,
housing, mg, mpg and space_ga. All are taken from the
LibSVM repository [21] (which includes references to
papers where they have been used) and their training
and, when available, test sample sizes and dimensions
are given in Table 1.

We compared GSVC and GSVR models against
DSVC and DSVR networks with 1, 3 and 5 hidden
layers to be trained using the adam optimizer over 200
pattern minibatches; more details are given in [15]. For
GSVCs we must choose optimal values of two hyper-
parameters, the regularization constant C and the Gaus-
sian kernel width γ; we must add an extra hyperpa-
rameter ε for GSVR. In both cases we considered 5
logarithmically equi-spaced C values in the interval
[10−3, 106] and γ values of the form 2k

d , with d pattern
dimension and −3 6 k 6 6. Before this we scaled in-
puts feature-wise to a [0, 1] range. For ε, we considered
for GSVR 5 equi-distributed log values in the interval
[2−10 × std (y), 2−1 × std (y)]. For DSVC and DSVR
models we chose optimal values of the hyperparameters
αS and αH by exploring now 5 evenly log spaced val-
ues in the interval [2−30, 210]; the ε DSVR parameter
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Table 2
Accuracies in the two-class problems (taken from [15])

SVC DSVC1 DSVC3 DSVC5 DSVC
a4a 84.32 84.19 84.19 84.27 84.27
a8a 84.92 85.18 85.14 85.14 85.18
australian 85.50 85.51 86.82 85.21 86.82
cod-rna 96.58 96.66 96.61 96.45 96.66
diabetes 77.60 76.95 76.43 77.21 77.47
german.numer 76.10 75.80 75.10 75.80 75.80
ijcnn1 97.93 98.88 99.07 98.99 99.07
w7a 98.87 98.82 98.83 98.83 98.83
w8a 99.04 98.99 99.16 99.03 99.16

was chosen again within 5 equi-distributed log values
in the interval [2−10 × std (y), 2−1 × std (y)].

In the classification problems having a separate test
set available, GSVC and DSVC model hyperparameters
were found by 4-fold stratified cross validation (CV)
over the train set using accuracy as the CV score; we
then computed test accuracies over the test set. When
no test set is available (i.e., in three classification and all
regression datasets), model performance was measured
by a nested, two loop, 4-fold CV approach, in which
each one of the four outer folds is kept for testing and
the other three folds are passed to the inner loop, where
best hyperparameters are obtained again by 4-fold CV
and tested on the outer test folds. The regression score
was the mean absolute error (MAE).

We report in Table 2 the GSVC accuracies and those
of DSVC models with with 1 (DSVC1), 3 (DSVC3)
and 5 (DSVC5) layers. Similarly, we report now in
Table 3 the GSVR mean absolute errors (MAEs) and
those of DSVR models with 1 (DSVR1), 3 (DSVR3)
and 5 (DSVR5) layers. For a better reading, in both
tables we give in the last column the accuracy or MAE
of the best performing DSVC or DSVR model. As
it can be seen, GSVCs give the largest accuracies on
the four datasets, a4a, cod-rna, german.numer and w7a
while for the other five datasets the highest accuracy is
achieved by a DSVC model. In regression, GSVRs give
the smallest MAE on the four datasets, bodyfat, cpus-
mall, housing and mpg and a DSVR model gave the
smallest MAE for the other four datasets. As concluded
in [15], the performance of GSVC and GSVR models,
on the one hand, and DSVC and DSVR models is fairly
balanced.

To finish this Section we will briefly discuss time
comparisons between Gaussian and Deep SVM mod-
els. We have performed execution time experiments for
both, but we observe first that measuring times is not
as straightforward as it may look, for we are using two
quite different implementations. For standard SVMs
we use the scikit-learn implementation that has at its

Table 3
MAEs in the regression problems (taken from [15])

SVR DSVR1 DSVR3 DSVR5 DSVR
abalone 1.48 1.49 1.50 1.51 1.49
bodyfat (× 100) 0.05 0.42 0.51 0.28 0.28
cadata (/ 10000) 4.96 4.81 3.26 3.26 3.26
cpusmall 2.13 2.21 2.19 2.40 2.19
housing 2.28 2.58 2.34 2.57 2.34
mg (× 100) 9.26 9.68 9.13 9.58 9.13
mpg 1.91 2.39 2.49 2.36 2.36
space_ga (× 100) 9.67 9.14 8.63 8.86 8.63

Table 4
Train and test times in minutes for the larger regression (top) and
classification (bottom) datasets

tr_svm tr_dnn tr_mlp ts_svm ts_dnn ts_mlp
abalone 0.0016 0.2117 0.0380 0.0006 0.0016 0.0001
cadata 0.2840 0.5840 0.2481 0.0206 0.0051 0.0007
cpusmall 0.0462 0.3995 0.0599 0.0051 0.0023 0.0003
space_ga 0.0094 0.1652 0.0126 0.0005 0.0014 0.0001
a4a 0.0241 0.3059 0.1053 0.1035 0.0142 0.0024
a8a 0.5986 0.4780 0.4452 0.1819 0.0055 0.0007
w7a 0.2687 0.7161 0.1755 0.1759 0.0134 0.0020
w8a 11.9484 2.4366 0.3211 0.7897 0.0081 0.0013
ijcnn1 0.2278 2.4964 0.5845 0.2615 0.0387 0.0076
cod-rna 0.4152 3.2763 0.7782 0.6527 0.1082 0.0194

core the extremely efficient C++ implementation of the
LIBSVM library. On the other hand, for deep SVMs we
rely on the Keras framework with the Adam solver [20],
which, in turn, relies on TensorFlow library. While quite
efficient, notice that TensorFlow is a general purpose
deep network library and, thus, not specialized in any
particular kind of deep architecture. In fact, the loss
gradients are derived through automatic differentiation
procedures which work with very general architectures
and losses. However, while this is very convenient, it
must also necessarily hamper execution times; to all
this, Keras adds its own overhead. To have an intermedi-
ate yardstick we have also measured train and test times
of our fully connected models when using the MLP-
Classifier and MLPRegressor classes in the scikit-learn
library. They are implemented in Python and Cython
and while being thus less efficient than the compiled
LBSVM library, they are more compactly programmed
than the Keras models (although much less general),
which results in shorter training times.

With all those caveats, we give in Table 4 for the
largest regression (top) and classification (bottom)
datasets, timings for train (tr_svm/dnn/mlp columns)
and test (ts_svm/dnn/mlp columns), which correspond
to LIBSVM, Keras and scikit-learn MLPs, respectively.
Model hyperparameters for each dataset are those cor-
responding to the best cross validation estimators just
described. As it can be seen, SVM training times are
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Table 5
Accuracy comparisons of one, three and five hidden layer models when hyperpa-
rameterized with hinge (DSVC) and binary cross-entropy (DNNC) scores. Larger
accuracies in bold face

1 hid. layer 3 hid. layers 5 hid. layers

DSVC DNNC DSVC DNNC DSVC DNNC

a4a 84.46 84.59 83.95 84.48 84.39 84.42
a8a 85.08 85.38 85.43 84.96 84.81 80.38
australian 85.64 87.96 85.36 85.94 85.50 86.66
cod-rna 96.56 96.30 96.56 96.70 96.23 94.59
diabetes 77.34 76.30 77.47 76.82 77.73 76.17
german.numer 75.10 74.80 73.10 75.90 74.50 75.80
ijcnn1 98.59 98.61 98.53 99.03 98.70 96.07
w7a 98.90 98.83 98.89 98.68 98.73 98.84
w8a 99.35 99.30 99.24 99.38 99.20 99.33

of the order of magnitude of those of MLPClassifier
or MLPRegressor. The exceptions are a4a (a rather
small dataset) and w8a (where SVMs take too long).
As expected, Keras times are longest but they catch up
as sample size increases. But notice also that for all
datasets but the relatively small abalone and space_ga,
LIBSVM test times are about 10 times longer than
Keras’ test times, and near or above 50 times those of
MLPClassifier or MLPRegressor. Therefore, and tech-
nology and implementation issues aside, these perfor-
mances essentially confirm what is to be expected on
theoretical grounds, as discussed at the end of Sec-
tions 2 and 3.

5. Standard DNNs versus deep SVMs

Recall that for large datasets the counterpart to our
DSVC and DSVR proposals are standard deep net-
works for either two-class classification with binary
cross entropy as the training loss and sigmoid outputs
(i.e., DNNC in our notation) or for regression with the
squared loss for training and linear outputs (i.e., DNNR
in our notation). In both cases we will use Keras im-
plementations of networks with one, three and five hid-
den layers, and linear outputs. As in [15], these have
100 units on the intermediate ones and 0.1 × |S| units
in the last hidden layer, with |S| denoting sample size
and a lower bound in layer size of 100 and an upper
bound of 1000. In other words,the size of the last hid-
den layer is min{1000,max{100, 0.1 × |S|}}. Simi-
larly, the DSVC and DSVR losses will be hinge and
ε-insensitive, respectively.

Also, and as before, Tikhonov regularization will be
applied in all layers, with two different parameters, αS
for the output weights and αR in all others; for DSVR
models we will also hyperparametrize the ε loss param-

eter. We will change slightly the αS , αR and ε ranges
of the previous section. The αS and αR values will be
of the form 10k, −5 6 k 6 2, while the ε values will
be 2−k ×

√
0.5, −4 6 k 6 0. Inputs will be scaled

feature-wise to zero mean and one standard deviation.
For regression problems we will also use a scikit-learn
pipeline that incorporates a TransformedTargetRegres-
sor component so that targets are normalized to zero
mean and one standard deviation before training and
de-normalized afterwards.

We will work with the same CV based hyper-
parametrization scheme of the previous section but for
classification we will use here the f1 score for hyper-
parameter selection, as it involves both recall and pre-
cision and gives a more balanced performance mea-
sure. We report accuracy values in Table 5, where for
easier reading we put in boldface the largest value for
each architecture. This has only a descriptive value and
a more relevant comparison could be made applying
statistical significance results. To try to obtain such a
slightly more precise comparison this way, we will pair
for each problem and DNN architecture the DSVC and
DSVR test accuracies. Since there are 9 dataset and
3 DNN architectures, this gives in principle a paired
sample with 27 values; after this grouping, the accuracy
averages are 88.75 ± 9.02 for DNNCs and 88.86 ±
9.13 for DSVCs, very similar. We can apply a Wilcoxon
signed rank test on these 27 test accuracies, but with the
clear caveat that these accuracies are probably not inde-
pendent, as the three models for each problem share the
same test set. Thus the following results must be seen
in this light. It turns out that the resulting value is p =
0.99; if the test accuracies were independent, this would
imply that we cannot reject the null hypothesis of the
two paired samples come from the same distribution.
Therefore, we could conclude that the performance of
DNNC and DSVC models is very similar. However, as
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Table 6
Mean absolute errors and p values for DSVR and DNNR models with one, three and five hidden layers. Smaller
values in bold face when absolute error distributions are statistically different

1 hid. layer 3 hid. layers 5 hid. layers

DSVR DNNR p DSVR DNNR p DSVR DNNR p

abalone 1.46 1.47 0.04 1.46 1.45 0.82 1.46 1.47 0.00
bodyfat (× 102) 0.13 0.16 0.00 0.17 0.14 0.09 0.13 0.13 0.58
cadata (/ 104) 3.54 3.76 0.00 3.33 3.48 0.00 3.29 3.55 0.00
cpusmall 2.13 2.16 0.24 2.06 2.08 0.36 2.04 2.20 0.00
housing 2.25 2.66 0.00 2.04 2.18 0.02 2.07 2.10 0.44
mg (× 102) 9.08 9.25 0.09 9.60 9.18 0.00 9.23 9.38 0.16
mpg 1.90 1.95 0.04 2.01 2.04 0.66 2.04 2.04 0.93
space_ga (× 102) 0.08 0.08 0.64 0.07 0.07 0.31 0.07 0.07 0.32

Table 7
Mean squared errors and p values for DSVR and DNNR models with one, three and five hidden layers. Smaller
values in bold face when squared error distributions are statistically different

1 hid. layer 3 hid. layers 5 hid. layers

DSVR DNNR p DSVR DNNR p DSVR DNNR p

abalone 4.51 4.39 0.35 4.53 4.35 0.88 4.57 4.46 0.00
bodyfat (× 104) 0.11 0.13 0.00 0.13 0.13 0.14 0.13 0.14 0.54
cadata (/ 108) 28.88 30.14 0.00 27.49 27.24 0.00 26.37 26.95 0.00
cpusmall 8.79 8.86 0.32 8.12 8.18 0.52 8.24 8.62 0.00
housing 13.35 17.05 0.00 10.50 11.41 0.03 10.14 10.27 0.40
mg (× 104) 147.58 144.26 0.15 164.54 144.89 0.00 158.91 146.88 0.90
mpg 7.19 7.41 0.01 7.96 8.08 0.64 8.35 8.11 0.91
space_ga (× 104) 107.82 105.24 0.82 103.49 101.61 0.53 101.57 93.32 0.62

said before, accuracy independence is not guaranteed,
and the preceding can only be taken as a hint of similar
performance.

The situation in regression will be slightly different.
Notice that if we retain MAE as the validation score, as
done in [15], this would help the DSVR models in detri-
ment of DNNR models that aim to minimize the squared
error. And inversely, if mean squared error (MSE) is
used as the validation score, DNNRs would have then
the advantage over DSVRs. Because of this we will
compare DNNRs and DSVRs hyperparametrized using
both MAE and MSE for CV scoring. Of course, this
will result in possibly different hyperparameters but
also on a fairer model comparison.

MAE scores are given in Table 6 and MSE ones in
Table 7. Both tables also give p values which have been
derived as follows. While, in classification, network
outputs are only indirectly related with, say, accuracies,
in regression the MAE and MSE values are just the
averages of the absolute and square error per pattern.
This suggest to perform model comparison by testing
the distributions of the absolute and squared errors for
each dataset and model. The p values of both tables
correspond to the aplication of Wilcoxon signed ranked
test on the error distributions of model outputs over the
test sub-folds; recall that we apply here the previously
described nested 4-fold CV scheme.

Both tables show in bold face the smallest MAE or
MSE values when the null hypothesis of the error distri-
butions being the same can be rejected at the p = 0.05
level. As it can be seen in Table 6, DSVRs with 1 hidden
layer give a smaller MAE in 5 datasets, in 2 datasets
when they have 3 hidden layers and in 3 datasets when
having 5 layers; on the other hand, DNNRs give a
smaller MAE in just one problem using three hidden
layers. We also put in italics the smallest values over the
three architectures considered when it is significant at
the 0.05 level; this is achieved in 5 problems by a DSVR
models and in none by a DNNR one. Thus, DSVR have
a small advantage here.

The situation is more balanced with respect to MSE
values. As it can be seen in Table 7, DSVRs with 1 hid-
den layer give a smaller MSE in 4 datasets, in 1 dataset
when they have 3 hidden layers and in 2 datasets when
having 5 layers; in contrast, DNNRs gives a smaller
MSE in two problems using three hidden layers and in
one using five. We put also here in italics the smallest
values over the three architectures considered when it
is significant at the 0.05 level; this is achieved by a
DSVR model in 3 problems and in one by a DNNR
one. While DSVR also seem to the advantage here, is
clearly smaller than in the case of MAEs.

Summing things up, we can say that the classifica-
tion performance of DNNC and DSVC models is fairly
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Table 8
Number of train and test patterns and dimension in one versus rest
MNIST, MNIST fashion and CIFAR 10 problems

n. patterns train n. patterns test Dimension
MNIST 60,000 10,000 1,024
MNIST fashion 60,000 10,000 1,024
CIFAR 10 50,000 10,000 3,072

similar but, on the other hand, DSVR models seem to
perform clearly better for regression, when MAE is
the preferred metric and also slightly so when MSE is
considered. As a possible reason for this is that DSVR
models can tune an extra parameter, the ε insensitivity
used in their losses, having thus more flexibility.

6. Advanced architectures

In this Section we will compare the hinge and cross
entropy losses on three large image datasets using more
advanced DNN architectures. More precisely, we will
first apply two class versions of the well known LeNet-5
convolutional neural network [16] on both the MNIST
and MNIST Fashion problems. While quite simple for
today’s deep proposals, LeNet-5 has still a fairly com-
plex structure, depicted for instance in Fig. 2 of [16].
Next, we will consider a more advanced Residual Net-
work architecture, ResNet32 V1, on the CIFAR 10 im-
age classification problem. The ResNet structure is still
more complicated, as it can be seen, for instance, in
Fig. 3 of [17].

Basic dataset information is given in Table 8. GSVC
models are very costly to hyperparametrize now, but for
illustration purposes we will also give results for LIB-
LINEAR, the ad-hoc implementation for linear SVMs.
While in general not competitive with GSVCs, this is
less so for high dimensional problems, as the ones un-
der consideration here. While all of them are 10 class
problems, we will consider for each datasets ten 2-
class problems where each single class has to be distin-
guished from the remaining nine classes.

6.1. The MNIST problem

MNIST is by now a classical character recognition
problem that has been widely used as a DNN bench-
mark, with many architectures being proposed over the
years. According to Rodrigo Benenson’s web page [22],
the state of the art networks as of 2016 achieve a test
error of 0.21% [23]. The error rate when we apply the
LeNet-5 implementation on the full MNIST 10 class
problem is of 1.11%; a 0.95% error rate is reported in

Table 9
Accuracy comparisons of DNNC, DSVC and LibLinear for LeNet5
nets on MNIST (left: train vs test, right: test vs train; larger accuracies
in bold face)

Train vs test Test vs train

DNNC DSVC LIBLIN DNNC DSVC LIBLIN
0 99.88 99.88 99.09 99.76 99.70 98.59
1 99.91 99.87 99.44 99.67 99.70 98.37
2 99.82 99.79 98.12 99.50 99.40 97.27
3 99.87 99.79 97.91 99.48 99.57 96.78
4 99.87 99.77 98.22 99.52 99.55 97.52
5 99.77 99.71 97.93 99.55 99.48 96.60
6 99.72 99.82 98.69 99.67 99.51 98.14
7 99.62 99.63 98.28 99.45 99.45 97.81
8 99.82 99.77 96.23 99.16 99.38 95.14
9 99.63 99.56 96.57 99.47 99.29 95.47
Ave 99.79 99.76 98.05 99.52 99.50 97.17

Y. LeCun web page [24] for LeNet-5. (Notice that here
and the following experiments different executions may
result in slight random changes in accuracy values). In
our experiments we will use the MNIST dataset avail-
able in [24], which has 60,000 training and 10,000 test
patterns given as 28 × 28 gray scale images. We will
pad them on their boundaries with zeros to work with
32 × 32 images for better working with convolutional
layers.

Our LeNet-5 implementation is fairly standard, with
two convolutional layers with 3 × 3 filters and 6 and
16 output channels respectively, each followed by two
dimensional averaging pooling. These are followed by
a first dense layer with 120 units and a second one with
84 units, both with ReLU activations. For our two class
problems we will replace the 10 unit, softmax outputs of
LeNet-5 for the standard 10 class MNIST problem with
single unit sigmoidal and linear outputs for the binary
cross entropy and hinge losses, respectively. We will use
Tikhonov regularization in the dense and output layers,
with different penalties αS and αR for the output and
dense weights respectively. The corresponding values
are {0, 10−8, 10−6, 10−4, 10−3} for both the αR and
αS .

We report test accuracies under two different scenar-
ios, a first one were we hyperparametrize and train the
networks on the training set and evaluate them on the
test subset, and a more difficult one, where we switch
the datasets, hyperparametrizing and training now on
the 10,000 pattern test set and testing the resulting mod-
els on the 50,000 patterns of the train datasets. We also
use here f1 score for CV hyperparametrization; notice
that now the 2-class problem are fairly unbalanced, with
the positive classes having 9 times less patterns than the
negative ones. Test results are given in Table 9 for the
first scenario (left) and for the second one (right); the
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table also shows mean accuracies. For easier reading
we put in bold face largest accuracies for each problem.
This has only an illustrative value but clearly show that
LIBLINEAR models fall behind. To have a more mean-
ingful comparison we have performed a Wilcoxon test
over the DNNC and DSVC accuracies along the lines
detailed for the classification problems in Section 5;
sample size is now 20 (10 train vs test and 10 test vs
train problems). The resulting p value is 0.14, slightly
above the rejection value for the same distribution hy-
pothesis at the 0.1 level and, hence, we cannot guaran-
tee that the DNNC and DSVC accuracy distributions
are different.

6.2. The MNIST fashion problem

We will use the same LeNet-5 network on the MNIST
Fashion dataset [25]. It also contains 60,000 training
and 10,000 test patterns in 10 classes of clothing prod-
ucts (trousers, pullovers, . . . ) given as 28 × 28 gray
scale images, which we pad again to size 32 × 32.
We have downloaded the dataset from the Zalando Re-
search github page [26]. According to that page, the
state of the art accuracy is 96.7%, achieved using wide
residual networks; the test accuracy for the entire 10
class problem of our LeNet-5 network without any hy-
perparameterization is 90.92%.

We have performed over the MNIST Fashion dataset
the same two-class experiments done for standard
MNIST, hyperparameterizing again separately the
Tikhonov regularization penalties of the dense hidden
layer weights and of the output weights; we have used
the same αS and αR than for MNIST. The 2-class prob-
lems considered are again fairly imbalanced and, thus,
we also use the f1 score for validation. Accuracy test
results are given now in Table 10 for the train vs test
problem (left) and for the test vs train one (right); the ta-
ble also shows mean accuracies. Again, for easier read-
ing we put in bold face largest accuracies for each prob-
lem; clearly the table shows that LIBLINEAR models
also fall behind. For a more meaningful comparison
we have performed a Wilcoxon test along the previous
lines over the DNNC and DSVC accuracies; sample
size is again 20. The resulting p value is 0.48, which
implies we cannot reject the same accuracy distribution
hypothesis.

6.3. The CIFAR 10 problem

Our last experiment with advanced deep architectures
will deal with the CIFAR-10 dataset. It contains 60,000

Table 10
Accuracy comparisons of DNNC, DSVC and LibLinear for LeNet5
nets on MNIST fashion (left: train vs test, right: test vs train; larger
accuracies in bold face)

Train vs test Test vs train

DNNC DSVC LIBLIN DNNC DSVC LIBLIN
0 97.14 97.04 95.89 96.02 95.99 95.58
1 99.69 99.73 99.36 99.60 99.51 99.39
2 96.86 97.26 94.22 96.09 95.71 94.21
3 98.31 98.19 96.47 97.43 97.62 96.66
4 97.34 97.18 94.80 95.84 95.93 94.61
5 99.74 99.72 98.46 99.31 99.24 97.44
6 94.62 95.25 92.63 93.92 93.50 92.51
7 99.33 99.31 98.15 98.72 98.92 97.59
8 99.75 99.69 98.59 99.52 99.33 98.38
9 99.44 99.38 98.67 99.12 99.12 98.23
Ave 98.22 98.28 96.72 97.56 97.49 96.46

32 × 32 RGB color images distributed in 10 classes
(airplane, automobile, bird, . . . ), of which 50,000 are
for training and the remaining 10,000 for test; each class
has 6000 images per class, While the training subset is
further divided into five training batches, we won’t use
them.

We shall use the ResNet32 V1 implementation
in [27] of the deep residual networks proposed in Sub-
section 4.2 of [17]. The network has three stacks of
five residual blocks, each with two convolution layers
plus a residual connection. The convolutional layers
at each stack result in 16, 32 and 64 output channels
respectively. Originally batch normalization is applied
but no regularization takes place; moreover, the outputs
of the last convolutional layer are flattened and fed into
ten softmax model outputs. This results in a total of
about 468,000 trainable weights. In our case we just
feed these flattened outputs into either a sigmoid output
for the DNNC model or a linear one for the DSVC one.
We point out that training here is quite costly, with a
single epoch taking about 3 minutes. Because of this
we have performed a limited hyperparametrization in
our CIFAR 10 experiments, considering only αS values
in {0, 10−12, 10−10, 10−8}.

The test accuracy reported in [17] is 92.49% using
data augmentation; the best accuracy in [22] is 96.53%.
With our implementation we have achieved a 85.33%
accuracy after 200 epochs without data augmentation
and 92.04% with it. Test results are given now in Ta-
ble 11 for the train vs test problem (left) and for the
test vs train one (right); the table also shows mean ac-
curacies. Again, for easier reading we put in bold face
largest accuracies for each problem. LIBLINEAR re-
sults are quite bad, as it seems to assign all patterns to
the majority class. Applying a Wilcoxon signed rank
test along the previous lines yields a p value of 0.41;
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Table 11
Accuracy comparisons of DNNC, DSVC and LibLinear for ResNet32
V1 nets on CIFAR 10 (left: train vs test, right: test vs train; larger
accuracies in bold face)

Train vs test Test vs train

DNNC DSVC LIBLIN DNNC DSVC LIBLIN
0 96.46 96.00 90.11 93.52 93.41 90.50
1 98.42 98.43 90.92 96.70 96.76 90.68
2 94.36 94.04 90.00 90.49 91.15 90.00
3 92.48 90.00 90.00 90.10 90.10 90.00
4 96.03 96.10 90.00 89.93 91.23 90.00
5 94.19 94.94 90.00 90.78 92.19 90.00
6 96.66 96.48 90.01 93.92 93.61 90.00
7 97.20 96.92 90.64 93.71 94.34 90.58
8 97.75 97.53 90.56 95.76 96.08 90.00
9 97.55 97.76 90.37 95.12 95.73 90.00
Ave 96.11 95.82 90.26 93.00 93.46 90.18

Table 12
Summary of Wilcoxon’s signed ranked test results for the accuracies
in the MNIST, MNIST Fashion and CIFAR 10 problems, as well as
for all these problems

Mnist Fashion Cifar All
Sample size 20 20 20 60
Wilcox. test statistic 51.50 77.50 74.50 735.00
p_value 0.14 0.48 0.41 0.61

again, this implies we cannot reject the same distribu-
tion hypothesis for accuracies.

Finally, and as a summary of the previous results,
we give in Table 12 the sample sizes, the values of the
Wilcoxon test statistics (i.e., the values returned by the
Wilcoxon test algorithm) and the p values correspond-
ing to these statistics, for the MNIST, MNIST Fash-
ion and CIFAR 10 problems; we also give these values
when considering together the DNNC and DSVC accu-
racies for the 60 problems considered in this Section.
Contrary to what was discussed for classification prob-
lems in Section 5, now all the train and test datasets are
different. As it can be seen, all the p values are above
the 0.05 level, which implies that in no case we can
reject the null hypothesis of the accuracy distributions
being the same; this justifies the conclusion of DNNC
and DSVC models perform similarly in these two-class
classification problems.

7. Conclusions and further work

We have proposed deep DSVC and DSVR models
which jointly learn an optimal last hidden layer rep-
resentation and a maximum margin hyperplane acting
upon it. Our first motivation is that Gaussian SVMs
are not time competitive over large datasets. A second
motivation is that the mild non differentiability of the

hinge and ε-insensitive losses used in SVM models can
be automatically handled by modern DNN packages.

After reviewing the results in [15], we have compared
our proposals against standard DNN cross entropy clas-
sifiers or squared error regressors. We do so because the
counterparts in large problems of our deep SVM pro-
posals are precisely standard DNNs. Our experiments
tentatively show that DNNC and DSVC models per-
form similarly in classification problems, as we cannot
statistically reject the null hypothesis of equal DNNC
and DSVC accuracies over two-class problems (with
the caveats mentioned in Section 5). The situation is
different, however, in regression problems. In principle,
results should be now influenced by the scoring func-
tion used to hyperparametrize regularization penalties.
Indeed, when using the mean absolute error (MAE) for
this, we can reject in favor of our DSVR models the null
hypothesis of the DSVR and DNNR error distribution
being the same. On the other hand, one would expect a
better DNNR performance when using mean squared
error (MSE) CV scoring; however, this turns out not to
be so and DSVR models have also a light advantage
here. We point to the extra ε DSVR hyperparameter as
a possible reason for this.

As lines for further work,we first mention that large
margins for DNNs have been studied in [28–31], in
some cases using sigmoid/softmax outputs and binary
or categorical cross entropies. On the other hand, and
as mentioned, Deep SVMs naturally maximize the mar-
gins achieved in the last hidden layer. It is thus nat-
ural to compare both margins for classification prob-
lems. A second research line has to do with the ker-
nels induced by Deep SVMs on the last hidden layer,
as there has recently been a flurry of activity on possi-
ble kernel structures on the last hidden layer of highly
overparametrized DNNs [32–35]). It is thus natural to
study the possible relationship between these kernels
and those induced by Deep SVMs on the rather wide
last hidden layers considered here. Finally, one of the
main advantages of the current DNN paradigms is the
great flexibility they allow to define neural architec-
tures (see for instance [36–41]), which results in their
wide application [42–47]; thus, a natural question is
how to take advantage of losses such as the hinge or
ε-insensitive used here, to enhance the performance of
other neural models. We are currently considering these
and other related questions.
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Abstract. Modern Deep Neuronal Network backends allow a great flex-
ibility to define network architectures. This allows for multiple outputs
with their specific losses which can make them more suitable for partic-
ular goals. In this work we shall explore this possibility for classification
networks which will combine the categorical cross-entropy loss, typical of
softmax probabilistic outputs, the categorical hinge loss, which extends
the hinge loss standard on SVMs, and a novel Fisher loss which seeks to
concentrate class members near their centroids while keeping these apart.

1 Introduction

After the seminal work of G. Hinton [8] and J. Bengio [11] and starting
about 2010, Deep Neural Networks (DNNs) have exploded in terms of scientific
advances, technological improvements and great successes on many applications.
There are many reasons for this, but paramount among them is the great flex-
ibility that modern DNN environments such as TensorFlow [1] or PyTorch [9]
allow to define, train and exploit DNN models. Key for this are the modern
tools for automatic differentiation that make possible the definition of very gen-
eral network architectures and losses. For instance, this has made possible to
incorporate under a DNN framework cost functions such as the hinge and ε-
insensitive losses, with models and results that are very competitive with those
of the standard Gaussian SVMs [5].

Once that more general losses are available, a natural next step is to try to
combine some of them in principle independent losses within the same network,
so that they can take advantage of their different goals to jointly improve on their
individual achieved results. For instance, consider for two-class problems the com-
peting cross-entropy loss, customarily used for DNN classification, with the SVM
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hinge loss. The goal of the former is to assume a certain posterior probability and
estimate a model that maximizes its sample based likelihood, while that of the
latter is essentially to find a separating hyperplane with a margin as large as pos-
sible given the sample. A similar situation arises in multiclass problems, where the
categorical cross-entropy with softmax outputs is used for DNN classifiers while
the categorical hinge loss [3] is used for multiclass SVM-like classifiers. In these
problems one or several of the losses act as the main one, while the others act
as companions in the sense that they accompany the main loss towards a better
model. This idea of combining losses has been applied in other areas of knowledge,
specially in computer vision [10,14], although following a different rationale.

Although we will not deal with them here, competing losses for regression
problems would be the squared error of regression DNNs and the ε-insensitive
loss used in support vector regression. Again, the underlying problem is basically
the same, but the latter establishes an ε-wide tube around the fitted model and
only penalizes errors outside the tube. This results on models more robust with
respect to outliers but with the drawback of ignoring small errors, which may
be important in some settings and that the squared error does not ignore. Given
these different but not necessarily competing goals, it is in principle conceivable
that both losses could work together towards building a model that improves on
those built separately with each loss.

The goal of this work is precisely to explore these possibilities for classification
problems. More precisely, we will compare the combination of the cross-entropy
and hinge losses for two-class problems, and that of the categorical cross-entropy
and hinge losses in multiclass ones. To these we will add a squared loss-based
cost function which enforces for its inputs on each class to be concentrated near
the class centroids while trying to keep these centroids apart. This approach
has been proved [13] to yield linear models whose outputs can theoretically be
seen to be equivalent with those provided by the classical Fisher Discriminant
Analysis and that has been extended to a DNN setting in [4]. While trying to
yield a classifier directly, such a loss can produce a pattern representation on the
last hidden layer of a DNN which can make easier the job of a classifier acting
on these representations and, hence, result in a better model.

We will work with a substantial number of classification problems and our
results point out that this approach can indeed give such results. In fact, and as
we will experimentally show, combining the Fisher loss with the cross-entropy
or hinge ones improves on the models obtained when only single losses are used.
On the other hand, the cross-entropy plus hinge combination ties at best with a
single cross-entropy loss. This has to be further studied but a possible reason may
be that, at least in our experiments, cross-entropy DNNs yield better results that
hinge-base ones (we address reasons for this later in this paper). In summary,
our contributions here are:

– The proposal of DNNs with combined losses for two- and multi-classification,
which we implement as Keras [2] functional models.

– A substantial experimental work showing positive results that deserve further
study.



Companion Losses for Deep Neural Networks 3

The rest of the paper is organized as follows. We review the losses used in
Sect. 2, discuss how to combine them and give some implementation details.
Section 3 contains details on the datasets used, the experimental methodology
and results, and a discussion and a final section offers some conclusions as well
as pointers to further work. We point out that, throughout the paper, by deep
networks we mean artificial neural networks that use modern techniques such as
automatic differentiation, Glorot-Bengio initializations [6], ReLU activations or
Adam optimizers [7], rather than they having actually deep (i.e. many layered)
architectures; in fact, in our experiments we will apply all these techniques but
on a single layer network with 100 units.

2 Classification Losses

Throughout this section we will work with DNN architectures that yield models
acting on a pattern x with outputs F (x,W), where W denotes the set of weight
matrices and bias vectors associated with the network’s architecture. We will
denote targets as y, which can be either {−1, 1} for two-class problems or one-
hot encoded vectors for multiclass ones. We denote the network outputs at the
last hidden layer as z = Φ(x, W̃), with W̃ the weight and bias set of all layers
up to the last one. Such a z is then transformed as Wz + B, where W,B are
either the transpose of an nH dimensional vector w, with nH the number of
hidden units in the last hidden layer, and a scalar b, or a K × nH matrix and
a K dimensional vector in a K-class problem. These Wz + B will be the final
network outputs in the case of the deep SVM (or deep Fisher networks, as we
describe them below); for the more standard DNN classifiers, the network output
is obtained applying to them either a sigmoid or a softmax function.

In more detail, and starting with two-class problems, the usual DNN loss is
the binary cross-entropy, given by

�bc(W; S) = �(w, b, W̃) = −
∑

p

yp (w · zp + b) +
∑

p

log(1 + ew·zp+b) (1)

where S denotes an i.i.d. sample S = {(xp, yp)} with N patterns, z represent
the last hidden layer outputs, w represent the weights which connects the last
hidden layer with the network’s output and b is the vector bias of the output. We
recall that this expression is just the sample’s minus log-likelihood associated to
the assumption

P (y|x) = P (y|x;w, b, W̃) =
1

1 + e−y(w·z+b)
(2)

for the posterior probability of the y class, and we assume a sigmoid network out-
put. For general multiclass problems, the network output function is the softmax

Fj(x;W) =
ewj ·z+bj

∑K−1
k=0 ewk·z+bk

. (3)

Obviously then
∑

j Fj(x;W) = 1 and we assume P (j|x) � Fj(x;W). For two-
class problems this reduces to the previous output if we take w = w0 − w1. For
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the loss to be used here, we assume one-hot encoded targets, i.e., the target of the
k-th class is ek = (0, . . . , 1︸︷︷︸

k

, . . . , 0); then, the probability of getting patterns

xp in class kp (i.e., ypkp
= 1) within an i.i.d. sample S = (X,Y ) is

P (Y |X;W) =
N∏

p=1

P (kp|xp;W) =

N∏

p=1

K−1∏

m=0

P (m|xp;W)y
p
m �

N∏

p=1

K−1∏

m=0

Fc(x;W)y
p
m ,

(4)
and we estimate the DNN’s weights W by minimizing the minus log of the
approximate sample’s likelihood

P̃ (Y |X;W) =

N∏

p=1

K−1∏

m=0

Fm(xp;W)y
p
m . (5)

That is, we will minimize the categorical cross-entropy loss

�cce(W) = − log P̃ (Y |X;W) = −
N∑

p=1

K−1∑

m=0

ypm logFm(xp;W). (6)

Once an optimal weight set W∗ has been obtained, the decision function on a
new x is given by argmaxm Fm(x;W∗), i.e. the class with the maximum posterior
probability.

Turning our attention to two-class SVMs, the local loss is now the hinge
loss h(x, y) = max{0, 1 − yF (x,W)}; here the network has linear outputs, i.e.,

F (x;W) = F (x;w, b, W̃) = w · Φ(x, W̃) + b. The global loss is now

�h(W;S) =
∑

p

max{0, 1− ypF (xp,W)}. (7)

There are several options to extend SVMs for multiclass problems. The usual app-
roach in a kernel setting is to use either a one-vs-one (ovo) or a one-vs-rest (ovr)
approach so that just binary kernel classifiers have to be built. Unfortunately, this
cannot be directly translated to a DNN setting but there are two other ways to
definemulticlass local losses. The first one is due toWeston andWatkins [12] which
for a pattern x in class kx (i.e., ykx

= 1) propose the local loss

�(x, y) = max

⎧
⎨
⎩0,

∑

m�=kx

(1 + Fm(x)− Fkx
(x))

⎫
⎬
⎭ (8)

where we denote as F0(x), . . . FK−1(x) the network’s lineal outputs. The alter-
native to this is the local loss proposed by Crammer and Singer [3], namely

�(x, y) = max

{
0,max

m�=y
(1 + Fm(x)− Fkx

(x))

}
. (9)

Notice that both coincide for two-class problems and, moreover, if in this case
we require w0 = w1 = 1

2w and b0 = b1 = 1
2b, they coincide with the local hinge

loss. We will use the second one, that results in the categorical hinge global loss
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�ch(W) =

N∑

p=1

max

{
0, 1− Fkxp (x

p) + max
m�=kxp

Fm(x)

}
; (10)

here Fm(x) denotes the m-th component of the network’s K dimensional lin-

ear output, i.e., Fm(x) = wm · Φ(x; W̃) + bm. Now, once an optimal weight
set W∗ has been obtained, the decision function on a new x is given again by
argmaxm Fm(x;W∗), although now no posterior probabilities are involved.

We will finally consider what we call the Fisher loss. The goal in standard
Fisher Discriminant Analysis is to linearly project patterns so that they concen-
trate near the projected class means while these are kept apart. To achieve this,
one seeks to maximize the trace criterion

g(A) = trace(s−1
T sB) = trace

(
(AtSTA)

−1(AtSBA)
)
, (11)

where A is the projection matrix, SB and ST denote the between-class and total
covariance matrices, respectively, of the sample patterns and sB and sT are their
counterparts for the projections z = Ax. Solving ∇Ag = 0 leads to the system
S−1
T SBA = AΛ, with Λ the non-zero eigenvalues of S−1

T SB . For such anA we have

g(A) = trace(s−1
T sW ) = trace Λ = λ1 + . . .+ λq, (12)

where sW represents the within-class matrix. This expression is maximized by
sorting the eigenvalues {λ1, λ2, . . . } in Λ in descending order and selecting the
K − 1 largest ones and some conveniently normalized associated eigenvectors.
Since the minimizer of (11) is not uniquely defined, it is usually normalized as
AtSTA = IK−1, being IN the identity matrix of sizeN . It turns out that an equiv-
alent solution can be obtained by solving the least squares problem min 1

2‖Y f −
XW − 1NB‖2, where W is a d×K matrix, B a 1×K vector, 1N is the all ones
vector and for a pattern xp in the p-th row of the data matrix X which is in class

m, we have Y f
pm = N−Nm

N
√
Nm

when xp and as Y f
pj = −

√
Nj

N for j �= m, with Nj

the number of patterns in class j. Then, it can be shown that the optimal W ∗ is
equivalent, up to a rotation, to a solution Ṽ of (11) subject to the normalization

Ṽ tST Ṽ = Λ; see [4,13] for more details. As a consequence, any classifier defined
in terms of distances to class means will give the same results with the Fisher’s
projections using Ṽ than with the least squares ones using W ∗.

This can be extended to a DNN setting by solving

min
W,B,W̃

1

2
‖Y f − F (X,W)‖2 =

1

2
‖Y f − Φ(X; W̃)W − 1NB)‖2. (13)

As discussed in [4], this could be exploited to define a Fisher-like distance clas-
sifier on the network outputs F (x,W); however, those classifiers are in general
worse than those based on the categorical entropy or hinge losses. On the other
hand, such a loss is likely to enforce the last hidden layer projections z to be
concentrated around their class means while keeping these apart and, hence help
entropy or hinge based classifiers to perform better.

In this line, the above suggests that instead of using just one of the previous
losses, we can try to combine them, something that can be done by defining a
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Table 1. Sample sizes, number of features and number of classes.

Size Size test Features Classes

a4a 4781 27780 123 2

a8a 22696 9865 123 2

australian 690 – 14 2

breast-cancer 569 – 30 2

diabetes 768 – 8 2

digits 1797 – 64 10

dna 2000 – 180 3

german 1000 – 24 2

letter 10500 5000 16 26

pendigits 7494 3498 16 10

protein 14895 6621 357 3

satimage 4435 – 36 6

segment 2310 – 19 7

usps 7291 – 256 10

w7a 24692 25057 300 2

w8a 49749 14951 300 2

DNN with two or even three output sets upon which one of these losses acts. In
the most general setting, we may have outputs ŷce, ŷch and ŷf , one-hot encoded
targets y and the yf Fisher-like targets just defined for the loss (13), and we
define the combined loss

�(y, yf , ŷce, ŷch, ŷf ) = �ce(y, ŷce) + λ�ch(y, ŷch) + μ�f (yf , ŷf ), (14)

with {λ, μ} appropriately chosen hyperparameters. In our experiments next, we
will consider the (ce, fisher), (hinge, fisher), (ce, hinge) and (ce, hinge, fisher) loss
combinations; for simplicity we will just take λ = μ = 1.

Table 2. Test accuracies of the models considered.

ce ce-fisher hinge hinge-fisher ce-hinge ce-hinge-fisher max min

a4a 84.38 84.36 84.39 84.40 84.43 84.45 84.45 84.36

a8a 85.10 85.51 84.96 84.93 85.20 85.09 85.51 84.93

australian 86.52 85.65 85.22 85.07 85.36 85.07 86.52 85.07

breast-cancer 97.72 98.07 96.84 97.19 96.49 96.31 98.07 96.31

diabetes 77.60 77.60 76.82 76.95 77.08 76.95 77.60 76.82

digits 98.22 98.44 98.39 98.27 98.50 98.22 98.50 98.22

dna 95.70 95.85 94.65 94.85 95.55 95.60 95.85 94.65

german 77.90 77.50 75.30 76.40 74.00 74.80 77.90 74.00

letter 95.38 95.28 95.42 95.66 94.98 95.42 95.66 94.98

pendigits 99.52 99.45 99.47 99.52 99.49 99.44 99.52 99.44

protein 69.78 69.76 66.49 66.71 67.62 67.07 69.78 66.49

satimage 91.09 90.55 91.54 91.25 91.75 91.25 91.75 90.55

segment 97.66 97.79 97.01 97.36 97.88 97.79 97.88 97.01

usps 97.79 97.93 97.82 97.53 97.65 97.68 97.93 97.53

w7a 98.79 98.84 98.83 98.81 98.83 98.84 98.84 98.79

w8a 98.97 98.99 98.84 98.88 99.00 99.00 99.00 98.84
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3 Experimental Results

In this section we will describe the considered models, describe the datasets
we will use, present our experimental methodology and results, and finish the
section with a brief discussion.

3.1 Models Considered

We will consider six basic model configurations, involving different network out-
puts, losses and ways to make predictions, namely

– ce: the model uses softmax outputs and the categorical cross-entropy loss.
Class labels are predicted as the index of the output with the largest a pos-
teriori probability.

– hinge: the model uses linear outputs and the categorical hinge loss. Class labels
are predicted as the index of the largest output.

– ce_hinge: the model uses two different outputs, one with softmax activations
and the other with linear ones; the losses are the categorical cross-entropy and
the categorical hinge, respectively. To get predictions, the softmax function is
applied to the second output set, so that we can see the entire output vector
as made of estimates of posterior probabilities (although this is not true for
the second set, as no probability model is assumed for the hinge loss); class
labels are predicted as the index of the output with the largest value.

– ce_fisher: the model uses two different output sets, one with softmax activa-
tions and the other with linear ones. The categorical cross-entropy is min-
imized on the first and the Fisher loss introduced in Sect. 2 on the second.
Label predictions are computed on the first set, as the one with the largest a
posteriori probability.

– hinge_fisher: the model uses two linear outputs, the first one to minimize the
categorical hinge loss and the second one the Fisher loss. Class labels are
predicted as the index of the largest output of the first set.

– ce_hinge_fisher: the model uses now three different outputs, a first one with
softmax activations and the other two with linear outputs; the categorical
cross-entropy, categorical hinge and Fisher losses are minimized, respectively,
on each output set. Here the softmax function is also applied to the hinge
loss linear outputs and class labels are predicted as the index of the first two
outputs with the largest value.

3.2 Datasets

We will work with sixteen datasets, namely a4a, a8a, australian, breast_cancer, diabetes,
digits, dna, german, letter, pendigits, protein, satimage, segment, usps, w7a and w8a; eight of
them are multiclass and the rest binary. All are taken from the LIBSVM data
repository, except when pointed out otherwise. Table 1 shows their train and test
(when available) sample sizes, dimensions and the number of classes. We give
more details about them below.
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Table 3. Model rankings for each problem in ascending accuracies.

ce ce-fisher hinge hinge-fisher ce-hinge ce-hinge-fisher

a4a 5 6 4 3 2 1

a8a 3 1 5 6 2 4

australian 1 2 4 5 3 5

breast-cancer 2 1 4 3 5 6

diabetes 1 1 6 4 3 4

digits 5 2 3 4 1 5

dna 2 1 6 5 4 3

german 1 2 4 3 6 5

letter 4 5 2 1 6 2

pendigits 1 5 4 1 3 6

protein 1 2 6 5 3 4

satimage 5 6 2 3 1 3

segment 4 2 6 5 1 2

usps 3 1 2 6 5 4

w7a 6 1 3 5 3 2

w8a 4 3 6 5 1 1

ave 3 2.6 4.2 4 3.1 3.6

– a4a and a8a. Variations of the adult of predicting whether income exceeds
$50,000 per year based on census data.

– australian. The goal is to decide whether or not an application is credit-
worthy.

– breast cancer. The goal is here to predict whether a patient is to be diag-
nosed with cancer.

– diabetes. The objective here is to diagnose the presence of hepatitis on a
sample of Pima Indian women.

– digits. We want to classify pixel rasters as one of the digits from 0 to 9; the
subset is pre-loaded in the scikit-learn library.

– dna. The goal is to classify splice-junction gene sequences into three different
classes.

– german. This is another problem where patterns are to be classified as either
good or bad credits.

– letter. Pixel displays are to be identified as one of the 26 English capital
letters.

– pendigits. Images of handwritten digits between 0 and 9 are to be classified.
– satimage. The goal is to classify the central pixel in a satellite image; we
will work only with the 4,435 training subsample.

– segment. We want to classify satellite images into one of seven categories.
– usps. We want to classify image rasters as a digit between 0 and 9.
– w7a and w8a. Variants of a classification problem of web pages.

3.3 Experimental Methodology and Results

Recall that all model losses include a L2 regularization term, which requires the
selection of a hyperparameter α so we will proceed first to estimate the optimal
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Table 4. Model rankings for each problem in ascending accuracies after putting
together models with closer rankings.

ce ce-fisher ce-hinge ce-hinge-fisher hinge hinge-fisher

a4a 2.0 3.0 1.0 1.0 3.0 2.0

a8a 3.0 1.0 2.0 1.0 2.0 3.0

australian 1.0 2.0 3.0 2.0 1.0 2.0

breast-cancer 2.0 1.0 3.0 3.0 2.0 1.0

diabetes 1.0 1.0 3.0 1.0 3.0 1.0

digits 3.0 2.0 1.0 3.0 1.0 2.0

dna 2.0 1.0 3.0 1.0 3.0 2.0

german 1.0 2.0 3.0 3.0 2.0 1.0

letter 1.0 2.0 3.0 2.0 2.0 1.0

pendigits 1.0 3.0 2.0 3.0 2.0 1.0

protein 1.0 2.0 3.0 1.0 3.0 2.0

satimage 2.0 3.0 1.0 2.0 1.0 2.0

segment 3.0 2.0 1.0 1.0 3.0 2.0

usps 2.0 1.0 3.0 2.0 1.0 3.0

w7a 3.0 1.0 2.0 1.0 2.0 3.0

w8a 3.0 2.0 1.0 1.0 3.0 2.0

ave 1.9 1.8 2.2 1.8 2.1 1.9

Table 5. Accuracy spreads across all models as percentages of the difference between
the maximum and minimum accuracies over the minimum one.

a4a a8a austr breast diab digits dna german

Spread 0.11 0.69 1.7 1.82 1.02 0.28 1.27 5.27

letter pendig protein satimage segment usps w7a w8a

Spread 0.72 0.08 4.95 1.32 0.89 0.41 0.05 0.16

α and then evaluate model performance. Eight datasets considered have train-
test splits and we will find the optimal α by searching on a one-dimensional
logarithmically equally-spaced grid using 5-fold cross validation (CV) on the
training set. Then we will evaluate the performance of optimal α∗ model by
computing its accuracy on the test set. On the other datasets we will apply 5-
fold nested cross validation (CV), defining first a 5-fold outer split and applying
again 5-fold CV to estimate the optimal α∗

i over the i-th outer train split. Once
this α∗

i is obtained, the associated model is trained over the i-th outer train
fold and applied on the patterns remaining on the i-th test fold; these class
predictions ŷ are then compared with the true target labels y to compute now
the accuracy of the model under consideration.

The resulting accuracies are given in Table 2 while Table 3 shows for each
problem the model ranking by decreasing accuracies; when two or more give the
same accuracy, they receive the same rank. We remark that these rankings are
given only for illustration purposes and they do not imply statistically significant
differences. This table also shows the mean ranking of each model across all the
datasets considered. As it can be seen, the model with the best mean ranking
is ce-fisher, followed by ce and ce-hinge. The following one is ce-hinge-fisher while
hinge and hinge-fisher perform similarly but behind all others.
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These similar performances can also be seen in Table 4, where model rankings
are shown after we group together ce-fisher, ce and ce-hinge on a first model group,
and ce-hinge-fisher, hinge and hinge-fisher on another. Here ce-fisher still performs
best on the first group, while in the second ce-hinge-fisher and hinge-fisher perform
similarly and better than hinge. In any case, the test accuracies of all models
shown in Table 2 are quite similar. This can also be seen in Table 5, which shows
for each problem the difference between the highest accuracy (i.e., the best one)
and the smallest one (i.e., the worst) as a percentage of the latter. As it can be
seen, and except for the german and protein problems, in all other this percentage
is below 2%, and even below 1% in nine problems.

Finally, in Table 6 we give the statistic values returned by the Wilcoxon
signed rank test when applied to the columns of the test accuracies in Table 2,
and their associated p-values. To obtain them, we have sorted the different losses
in increasing order of their rank averages given in the last row of Table 3; this
means that in the rows of Table 6 the first model is better ranked than the second
one and, hence, expected to perform better. Recall that the test’s null hypothesis
is that the two paired samples come from the same distribution.

As it can be seen, this null hypothesis can be rejected at the p = 0.05 level
when comparing the ce-fisher loss with the ce-hinge-fisher, hinge-fisher and hinge,
and at the p = 0.1 level when doing so with the ce-hinge loss; on the other hand,
the p-value when comparing it with the ce is quite high. This suggests that the
ce-fisher loss performs similarly to the ce loss, but better than the others. In the
same vein, the ce loss appears to perform better than the hinge and hinge-fisher

ones; all the other loss pairings give similar performances.

Table 6. Model rankings for each problem in ascending accuracies after putting
together models with closer rankings.

stat p-val

ce-fisher vs ce 62.0 0.776

ce-fisher vs ce-hinge 32.0 0.065

ce-fisher vs ce-hinge-fisher 27.0 0.036

ce-fisher vs hinge-fisher 23.0 0.018

ce-fisher vs hinge 22.0 0.016

ce vs ce-hinge 43.0 0.211

ce vs ce-hinge-fisher 39.0 0.14

ce vs hinge-fisher 24.0 0.024

ce vs hinge 27.0 0.034

ce-hinge vs ce-hinge-fisher 43.0 0.205

ce-hinge vs hinge-fisher 44.0 0.231

ce-hinge vs hinge 46.0 0.266

ce-hinge-fisher vs hinge-fisher 55.0 0.603

ce-hinge-fisher vs hinge 64.0 0.856

hinge-fisher vs hinge 44.0 0.231
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3.4 Discussion

The preceding results indicate that the companion losses proposed here can
improve on the accuracies of models based on the single ce and hinge losses. More
precisely, adding the Fisher loss results in larger accuracies than those achieved
by using just the ce and hinge ones, although this does not extend to the ce-hinge

combination (which basically ties with the single ce loss), or when combining the
ce-hinge with the Fisher loss, worsens the ce-hinge performance.

It is also to be pointed out that the performance of the hinge-based models is
worse than that of the ce-based ones. A possible reason for this is the relatively
small number of units in the single hidden layer architecture of all models. In
fact, it is well known that for SVMs to achieve good results, the dimension of the
projected input space (upon which an SVM acts linearly) must be quite large.
For instance, in the case of the commonly used Gaussian kernel, this dimension
essentially coincides with the sample’s size. Here we are using the last hidden
layer activations as a proxy of the projection space but its dimension is 100, much
below sample size for all problems. In fact, in [5] deep networks with at least
1,000 units in the last layer were needed to match or improve the performance
of a standard Gaussian SVM. Also, better performance should also be possible
with more hidden layers, although this will also help ce models. Finally, it is
also clear that adding the Fisher loss helps; in fact, it seeks a last hidden layer
representation which concentrates each class samples near their centroids while
keeping these apart. This should help any classifier acting on that layer while,
on the other hand, it doesn’t compete directly with ce and hinge.

4 Conclusions and Futher Work

In this paper we have proposed how to combine different classification losses in
a single DNN so that each one acts on specific network outputs. The underlying
goal is that these competing but, at the same time, complementary objectives
result in models with a performance better than that of those built on each
individual loss. We give experimental results on sixteen classification problems
combining the categorical cross-entropy and hinge losses as well as a least squares
one inspired in Fisher’s Discriminant Analysis, and they show that, indeed, such
combinations yield better accuracies. In fact, using the Fisher based loss as a
companion of the cross-entropy or hinge ones improved on the performance of
DNN models using individually those losses; the same happens with the combi-
nation of the entropy and hinge losses.

These results suggest that further study is warranted. Beside the obvious
extension to more complex network architectures than the simple one here, the
choice of the hyperparameters used to define the combined loss (14) should be
explored. Moreover, the same strategy of adding companion losses to a base
one can be applied to regression problems, where natural choices are the mean
square, ε-insensitive or Huber losses. We are currently pursuing these and related
venues.
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Chapter 6

Conclusions and further work

6.1 Conclusions

The conclusions for each of the previous chapters are:

� Deep Neural Networks Prediction in Wind and Solar Energy: While
Deep Neural Networks are undeniably powerful when properly tuned and de-
signed, especially if the topology of the data is taken into account, they are
very computationally demanding and finding the correct combination of hyper-
parameter values can be a daunting task. In the particular case of prediction
in renewable energy, Deep Neural Networks can take great advantage from the
grid-like structure of the data with the use of convolutional layers, and the
results can be further improved by the use of ensemble techniques. However,
the use of specialized hardware to train them such as GPUs is a need due to
the very high cost of their training.

� Deep Fisher Discriminant Analysis and Imbalanced Classification:
Fisher Linear Discriminant Analysis is limited by its linear nature and the cost
of the eigenanalysis it requires, making it unfeasable for large datasets. Its
kernel extension, Kernel Discriminant Analysis, has much more powerful mod-
eling capabilities, but has an even higher computational cost, which is cubic on
the sample’s size. These difficulties are alleviated if a different approach based
on Least Squares Regression is followed. With this setup, a partially equivalent
solution can be obtained by using an appropriate target matrix, and the cost
is linear on the sample’s size. Moreover, when a properly designed Artificial
Neural Network is used instead of a linear regressor, the results are compa-
rable to those of the kernel model, while the cost remains linear on the size
of the dataset. Also, this approach enables the use of special layers in the
underlying neural network that can be tailored to the dataset, like convolu-
tional or recurrent layers, and therefore an improvement on the results might
be expected in those cases where the dataset allows it. Although Fisher–based
classifiers might not yield better results than cross-entropy–based ones, the
representations they yield can be used to feed more powerful classifiers that
can take advantage of them. Finally, imbalanced classification problems have
been tackled with a variety of tailored methods, but Artificial Neural Networks
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can also yield state of the art results when properly configured. In particular,
this means using an appropriate error function to guide the hyper-parameter
search, rectified activation functions or modern regularization techniques.

� Deep Support Vector Machines and Companion Losses: Margin–based
loss functions have demonstrated their usefulness in Support Vector Machines.
Unfortunately, the computational cost of training or inference in kernel SVMs
is too high for big size datasets. However, Artificial Neural Networks can also
take advantage of margin–based loss functions thanks to the great flexibility of
modern Deep Learning frameworks, that can even perform automatic differen-
tiation of piecewise differentiable functions. Therefore, if properly configured
and tuned, an Artificial Neural Network could yield comparable or even su-
perior results to those of Linear and Kernel Support Vector Machines at a
fraction of the cost, both in classification and regression problems. Further-
more, the flexibility of neural networks can again be of advantage when dealing
with spatial or temporal structured data, combining the powerful capabilities
of convolutional or recurrent layers with margin–based loss functions. At last,
and again taking advantage of the modern Deep Learning frameworks, the pos-
sibility of combining several loss functions on the same neural network can also
be considered. If the losses combined complement each other, the performance
of the model can improve significantly. In particular, the least squares loss
inspired in Fisher’s Discriminant Analysis discussed before can improve the
results of classifiers when combined with other losses such as cross-entropy or
hinge.

6.2 Further work

The powerful modeling abilities of ANNs and their great flexibility are out of doubt,
but there are still many open lines of research and unexplored applications.

Of particular interest are feature transformation techniques which allow the de-
composition of a complex Machine Learning model into simpler sub-models by split-
ting it into a feature transformer, that builds a good latent representation of the data,
and a predictor, that produces a numerical, categorical or ordinal value. Besides the
benefits derived from this possibility, which include an increased interpretability of
the model, higher degree of control over it, or easier debugging, feature transfor-
mations are also useful by themselves, with direct applications such as lossy data
compression.

However, the most widely used feature transformation models, such as Principal
Component Analysis, Fisher’s Linear Discriminant Analysis or Canonical Correla-
tion Analysis have linear nature, and their training algorithms are often based on
eigenanalysis and associated to a very poor scalability with the size of the data.
Well known non-linear extensions make use of kernels, which greatly improve the
expressive power of the models, but at the cost of an even higher computational
complexity, resulting in techniques only useful for relatively small datasets.

The results obtained for Fisher’s Discriminant Analysis suggest the interest of
extending them to the just mentioned transformation methods. The ultimate goal



would be, as it is the case with Fisher analysis, to achieve an alternative charac-
terization of an equivalent method that can be built in the linear case through an
appropriate least-squares loss. A possible path for this starts with the observation
that the solutions of the above problems can be achieved through the formulation of
a particular generalized eigenvalue problem involving concrete sample-derived ma-
trices.

As it was the case of Fisher analysis, a first step would then be to derive a
related least squares problem with a solution equivalent in some sense to the one
obtained solving directly the generalized eigenvalue problem corresponding to each
transformation method.

Such a least squares problem could be then cast in a Deep Learning framework
and result in richer, non linear representations of the original data which can be used
to yield better results than those achieved by the initial linear models.

The resulting model performance will have to be compared with that achieved by
the kernel versions of the initial linear models, but is is clear that their computational
costs would be much better than those of the kernel models; hence, they could be
applied to sample sizes outside the reach of kernel based methods.

Moreover, such an approach would also result in new companion losses that could
be coupled, as done in this thesis, with more standard ones yielding possibly stronger
and more robust classification or regression models.

We are starting to address these questions.



Chapter 7

Conclusiones y trabajo futuro

7.1 Conclusiones

Las conclusiones para cada uno de los caṕıtulos previos son:

� Deep Neural Networks Prediction in Wind and Solar Energy: Aun-
que las Redes Neuronales Profundas son innegablemente potentes cuando están
diseñadas y entrenadas correctamente, especialmente si la topoloǵıa de los da-
tos es tenida en cuenta, son muy costosas computacionalmente y encontrar la
combinación correcta de valores de meta-parámetros puede ser una tarea ar-
dua. En el caso particular de la predicción en enerǵıas renovables, las Redes
Neuronales Profundas pueden beneficiarse de la estructura en forma de rejilla
de los datos con el uso de capas convolucionales, y los resultados pueden ser
mejorados más aún mediante el uso de ensembles. Sin embargo, el uso de hard-
ware especializado para entrenarlas, como las GPUs, es una necesidad debido
al alto coste de su entrenamiento.

� Deep Fisher Discriminant Analysis and Imbalanced Classification: El
Análisis Discriminante Lineal de Fisher está limitado por su naturaleza lineal
y el coste del cálculo de autovectores y autovalores que requiere, haciéndolo
impracticable para conjuntos de datos grandes. Su extensión kernel, Kernel
Discriminant Analysis, tiene unas capacidades de modelización mucho mayo-
res, pero con un coste computacional incluso mayor, que es cúbico en el tamaño
de la muestra. Estas dificultades se pueden evitar si se sigue un enfoque di-
ferente basado en ”Least Squares Regression”. Con este enfoque se puede
obtener una solucion parcialmente equivalente mediante el uso de la matriz de
targets apropiada, con un coste lineal en el tamaño de la muestra. Además, si
se utiliza una Red Neuronal Artificial en lugar de un regresor lineal, los resul-
tados son comparables con los de modelos Kernel, pero con un coste que sigue
siendo lineal respecto del tamaño del conjunto de datos. Esta técnica también
permite el uso de capas especiales en la red neuronal subyacente que pueden ser
ajustadas a medida de los datos, como capas convolucionales o recurrentes, y
por tanto se puede esperar mejoras en los resultados en los casos en los que los
datos lo permitan. Aunque los clasificadores de tipo Fisher no suelen dar resul-
tados mejores que aquellos basados en la entroṕıa cruzada, las representaciones
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que producen pueden ser utilizadas por clasificadores más potentes que se be-
neficien de ellas. Finalmente, los problemas de clasificación desequilibrada han
sido abordados con una variedad de métodos espećıficos, pero las Redes Neu-
ronales Artificiales también pueden obtener resultados comparables al estado
del arte si son configuradas correctamente. En particular, esto implica usar
una función de error apropiada para guiar la búsqueda de meta-parámetros,
activaciones rectificadas o técnicas de regularización modernas.

� Deep Support Vector Machines and Companion Losses: Las funciones
de pérdida con margen han demostrado su utilidad en las Máquinas de Vec-
tores de Soporte. Desafortunadamente, el coste computacional de entrenar o
predecir con Máquinas de Vectores de Soporte con Kernel es demasiado alto
para conjuntos de datos grandes. Sin embargo, las Redes Neuronales Artificia-
les también pueden beneficiarse de las funciones de pérdida con margen gracias
a la gran flexibilidad de las herramientas modernas para Deep Learning, que
pueden incluso hacer diferenciación automática de funciones diferenciables a
trozos. Por tanto, si se configura y ajusta adecuadamente, una Red Neuronal
Artificial puede dar resultados comparables o incluso superiores a los de las
Máquinas de Vectores de Soporte lineales o con kernel con una fracción de su
coste, tanto en problemas de clasificación como de regresión. Es más, la flexi-
bilidad de las redes neuronales puede ser de nuevo una ventaja cuando se trata
con datos de estructura espacial o temporal, combinando las capacidades de las
capas convolucionales o recurrentes con funciones de pérdida con margen. Por
último, y de nuevo aprovechando las herramientas modernas para Deep Lear-
ning, también se ha considerado la posibilidad de combinar varias funciones
de pérdida simultáneas en la misma red neuronal. Si las pérdidas combinadas
se complementan, el rendimiento del modelo puede mejorar significativamente.
En particular, la pérdida de mı́nimos cuadrados inspirada en el Análisis Dis-
criminante Lineal presentada previamente puede mejorar los resultados de los
clasificadores cuando se combina con otras pérdidas como la entroṕıa cruzada
o hinge.

7.2 Trabajo futuro

La gran capacidad para modelizar de las Redes Neuronales Artificiales y su gran
flexibilidad están fuera de duda, pero aún hay muchas ĺıneas de investigación abiertas
sobre ellas y aplicaciones no estudiadas.

Son de especial interés las técnicas de transformación de variables que permiten la
descomposición de un modelo de Aprendizaje Automático complejo en sub-modelos
más simples, como un transformador de variables que genere una buena represen-
tación latente de los datos, y un predictor que arroje los valores finales numéricos,
categóricos u ordinales. Más allá de los beneficios derivados de esta posibilidad, que
incluyen una mayor interpretabilidad del modelo, mayor control sobre él, o un man-
tenimiento más fácil, las transformaciones de variables son útiles en śı mismas, con
aplicaciones directas como la compresión de datos con pérdida.

Sin embargo, los modelos de transformación de variables más extendidos, como el



Análsis de Componentes Principales, el Análisis Discriminante de Fisher o el Canoni-
cal Correlation Analysis, tienen naturaleza linea, y sus algoritmos de entrenamiento
están a menudo basados en un análisis de autovalores y autovectores que se asocian a
una muy mala escalabilidad con el tamaño de los datos. Hay extensiones no lineales
populares basadas en kernels, que mejoran notablemente la capacidad expresiva de
los modelos, pero con un coste computacional aún mayor, resultando en técnicas sólo
útiles cuando se trabaja con conjuntos de datos relativamente pequeños.

Los resultados obtenidos para el Análisis Discriminante de Fisher sugieren que
puede ser interesante una extensión para los métodos de transformación mencio-
nados. El objetivo final seŕıa, como en el caso del análisis de Fisher, conseguir
una formulación alternativa de un método equivalente en el caso lineal mediante la
función de pérdida de mı́nimos cuadrados. Una posible v́ıa para conseguirlo parte de
la observación de que las soluciones a los problemas mencionados arriba se pueden
obtener con una formulación particular del problema generalizado de autovalores con
unas matrices concretas obtenidas a partir de los datos de entrenamiento.

Como en el caso del análisis de Fisher, un primer paso seŕıa obtener del pro-
blema de mı́nimos cuadrados relacionado una solución parcialmente equivalente a la
obtenida a través del problema de autovalores particular de cada método de trans-
formación.

Este problema de mı́nimos cuadrados podŕıa entonces resolverse mediante herra-
mientas modernas de Deep Learning y producir unas representaciones no lineales
más ricas de los datos originales, que por tanto produciŕıan mejores resultados que
aquellas dadas por los modelos lineales iniciales.

El rendimiento resultante deberá ser comparado con el obtenido con las versiones
kernel de los métodos lineales iniciales, pero en cualquier caso sus costes compu-
tacionales serán mucho mejores que los de los métodos kernel y, por tanto, se podrán
aplicar a muestras de datos de tamaño inasumible para estos.

Además, este enfoque también puede dar lugar a nuevas ”companion losses”
que, combinadas con funciones de pérdida estándar como se ha hecho en esta tesis,
produzcan modelos de clasificación y regresión más robustos y potentes.

Estamos empezando a trabajar en estas ĺıneas de investigación.
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[28] David Dı́az-Vico and José R. Dorronsoro. Deep least squares fisher discrimi-
nant analysis. IEEE Transactions on Neural Networks and Learning Systems,
31(8):2752–2763, 2020.

[29] David Dı́az-Vico, Adil Omari, Alberto Torres-Barrán, and José Ramón Dor-
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Appendix A

Publications

This is a list of the articles pubished during the realization of this thesis, including
their abstracts:

� Alberto Torres-Barrán, David Dı́az-Vico, and José R. Dorronsoro. Sparse one
hidden layer mlps. In ESANN, 02 2014 – We discuss how to build sparse one
hidden layer MLP replacing the standard l2 weight decay penalty on all weights
by an l1 penalty on the linear output weights. We will propose an iterative
two step training procedure where the output weights are found using FISTA
proximal optimization algorithm to solve a Lasso-like problem and the hidden
weights are computed by unconstrained minimization. As we shall discuss, the
procedure has a complexity equivalent to that of standard MLP training, yields
MLPs with similar performance and, as a by product, automatically selects the
number of hidden units.

� David Dı́az, Alberto Torres, and José R. Dorronsoro. Deep neural networks
for wind energy prediction. In Advances in Computational Intelligence - 13th
International Work-Conference on Artificial Neural Networks, IWANN 2015,
Palma de Mallorca, Spain, June 10-12, 2015. Proceedings, Part I, pages 430–
443, 2015 – In this work we will apply some of the Deep Learning models
that are currently obtaining state of the art results in several machine learning
problems to the prediction of wind energy production. In particular, we will
consider both deep, fully connected multilayer perceptrons with appropriate
weight initialization, and also convolutional neural networks that can take ad-
vantage of the spatial and feature structure of the numerical weather prediction
patterns. We will also explore the effects of regularization techniques such as
dropout or weight decay and consider how to select the final predictive deep
models after analyzing their training evolution.

� David Dı́az-Vico, Alberto Torres-Barrán, Adil Omari, and José R. Dorronsoro.
Deep neural networks for wind and solar energy prediction. Neural Processing
Letters, page 1–16, 04 2017 – Deep Learning models are recently receiving a
large attention because of their very powerful modeling abilities, particularly
on inputs that have a intrinsic one- or two-dimensional structure that can be
captured and exploited by convolutional layers. In this work we will apply
Deep Neural Networks (DNNs) in two problems, wind energy and daily solar
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radiation prediction, whose inputs, derived from Numerical Weather Prediction
systems, have a clear spatial structure. As we shall see, the predictions of single
deep models and, more so, of DNN ensembles can improve on those of Support
Vector Regression, a Machine Learning method that can be considered the
state of the art for regression.

� David Dı́az-Vico, Adil Omari, Alberto Torres-Barrán, and José Ramón Dor-
ronsoro. Deep fisher discriminant analysis. In Ignacio Rojas, Gonzalo Joya,
and Andreu Catala, editors, Advances in Computational Intelligence, pages
501–512, Cham, 2017. Springer International Publishing – Fisher Discriminant
Analysis’ linear nature and the usual eigen-analysis approach to its solution
have limited the application of its underlying elegant idea. In this work we will
take advantage of some recent partially equivalent formulations based on stan-
dard least squares regression to develop a simple Deep Neural Network (DNN)
extension of Fisher’s analysis that greatly improves on its ability to cluster
sample projections around their class means while keeping these apart. This
is shown by the much better accuracies and g scores of class mean classifiers
when applied to the features provided by simple DNN architectures than what
can be achieved using Fisher’s linear ones.

� David Dı́az-Vico, Ańıbal R. Figueiras-Vidal, and José R. Dorronsoro. Deep
mlps for imbalanced classification. In 2018 International Joint Conference on
Neural Networks (IJCNN), pages 1–7, 2018 – Classification over imbalanced
datasets is a highly interesting topic given that many real-world classification
problems present a concrete class with a much smaller number of patterns than
the others. In this work we shall explore the use of large, fully connected and
potentially deep MLPs in such problems. We will consider simple MLPs, with
ReLU activations, softmax outputs and categorical cross-entropy loss, showing
that, when properly regularized, these relatively straightforward MLP models
yield state of the art results in terms of the areas under the ROC curve for
both two-class problems (the usual focus in imbalanced classification) as well
as for multi-class problems.

� David Dı́az-Vico and José R. Dorronsoro. Deep least squares fisher discrimi-
nant analysis. IEEE Transactions on Neural Networks and Learning Systems,
31(8):2752–2763, 2020 – While being one of the first and most elegant tools
for dimensionality reduction, Fisher linear discriminant analysis (FLDA) is not
currently considered among the top methods for feature extraction or classifi-
cation. In this paper, we will review two recent approaches to FLDA, namely,
least squares Fisher discriminant analysis (LSFDA) and regularized kernel FDA
(RKFDA) and propose deep FDA (DFDA), a straightforward nonlinear exten-
sion of LSFDA that takes advantage of the recent advances on deep neural
networks. We will compare the performance of RKFDA and DFDA on a large
number of two-class and multiclass problems, many of them involving class-
imbalanced data sets and some having quite large sample sizes; we will use,
for this, the areas under the receiver operating characteristics (ROCs) curve
of the classifiers considered. As we shall see, the classification performance of



both methods is often very similar and particularly good on imbalanced prob-
lems, but building DFDA models is considerably much faster than doing so for
RKFDA, particularly in problems with quite large sample sizes.

� David Dı́az-Vico, Jesús Prada, Adil Omari, and José R. Dorronsoro. Deep
support vector classification and regression. In José Manuel Ferrández Vicente,
José Ramón Álvarez-Sánchez, Félix de la Paz López, Javier Toledo Moreo, and
Hojjat Adeli, editors, From Bioinspired Systems and Biomedical Applications to
Machine Learning, pages 33–43, Cham, 2019. Springer International Publishing
– Support Vector Machines, SVM, are one of the most popular machine learning
models for supervised problems and have proved to achieve great performance
in a wide broad of predicting tasks. However, they can suffer from scalability
issues when working with large sample sizes, a common situation in the big
data era. On the other hand, Deep Neural Networks (DNNs) can handle large
datasets with greater ease and in this paper we propose Deep SVM models
that combine the highly non-linear feature processing of DNNs with SVM loss
functions. As we will show, these models can achieve performances similar to
those of standard SVM while having a greater sample scalability.

� David Dı́az-Vico, Jesús Prada, Adil Omari, and José R. Dorronsoro. Deep
support vector neural networks. Integrated Computer-Aided Engineering, pages
389–402, Jan 2020 – Kernel based Support Vector Machines, SVM, one of the
most popular machine learning models, usually achieve top performances in
two-class classification and regression problems. However, their training cost
is at least quadratic on sample size, making them thus unsuitable for large
sample problems. However, Deep Neural Networks (DNNs), with a cost linear
on sample size, are able to solve big data problems relatively easily. In this
work we propose to combine the advanced representations that DNNs can
achieve in their last hidden layers with the hinge and ε insensitive losses that
are used in two-class SVM classification and regression. We can thus have
much better scalability while achieving performances comparable to those of
SVMs. Moreover, we will also show that the resulting Deep SVM models are
competitive with standard DNNs in two-class classification problems but have
an edge in regression ones.

� David Dı́az-Vico, Ángela Fernández, and José R. Dorronsoro. Companion losses
for deep neural networks. In Hybrid Artificial Intelligent Systems, pages 538–
549, Cham, 07 2021. Springer International Publishing – Modern Deep Neu-
ronal Network backends allow a great flexibility to define network architectures.
This allows for multiple outputs with their specific losses which can make them
more suitable for particular goals. In this work we shall explore this possibil-
ity for classification networks which will combine the categorical cross-entropy
loss, typical of softmax probabilistic outputs, the categorical hinge loss, which
extends the hinge loss standard on SVMs, and a novel Fisher loss which seeks
to concentrate class members near their centroids while keeping these apart.



Appendix B

Software

This thesis and the publications detailed before included experiments that required
the development of the following open source libraries. All of them are compatible
with the Scikit-learn library [20], which serves as the core tool of all the experiments:

� scikit-datasets [93] https://github.com/daviddiazvico/scikit-datasets

– A collection of datasets from a variety of sources.

� scikit-sacred [94] https://github.com/daviddiazvico/scikit-sacred – Util-
ity to perform Sacred [91] experiments.

� scikit-keras [95] https://github.com/daviddiazvico/scikit-keras – Scikit-
learn compatible wrapper for Keras [66] artificial neural networks.

� scikit-kda [89] https://github.com/daviddiazvico/scikit-kda – Implemen-
tation of Kernel Discriminant Analysis.

� scikit-dda [96] https://github.com/daviddiazvico/scikit-dda – Implemen-
tation of Deep Discriminant Analysis.

Alongside Scikit-learn, several Python open source libraries have been used in
this thesis:

� Scikit-learn [20] https://scikit-learn.org/stable/index.html – A Ma-
chine Learning library.

� Numpy [97] https://numpy.org/ – The Python package for scientific comput-
ing.

� Scipy [90] https://scipy.org/scipylib/ – A scientific and technical com-
puting library.

� StatsModels [98] https://www.statsmodels.org/stable/index.html – A pack-
age for data exploration, estimation of statistical models, and performing sta-
tistical tests.

� Keras [66] https://keras.io/ – A high-level Deep Learning framework.
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� TensorFlow [58] https://www.tensorflow.org/ – A low-level Machine Learn-
ing library used as the computing engine for Keras.

� Pandas [99, 100] https://pandas.pydata.org/ – A library for data manipu-
lation and analysis through tables and other data structures.

� Matplotlib [101] https://matplotlib.org/ – A plotting library.

� Seaborn [102] https://seaborn.pydata.org/ – A statistical data visualiza-
tion library based on Matplotlib.

� Sacred [91] https://github.com/IDSIA/sacred – A library to help configure,
organize, log and reproduce experiments.

https://www.tensorflow.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://seaborn.pydata.org/
https://github.com/IDSIA/sacred
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