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Abstract 

This paper is concerned with the structural stability of spherical horizons. By this we 
mean stability with respect to variations of the second member of the corresponding 
di�erential equations, corresponding to the inclusion of the contribution of operators 
quadratic in curvature. This we do both in the usual second order approach (in which 
the independent variable is the spacetime metric) and in the frst order one (where the 
independent variables are the spacetime metric and the connection feld). In second 
order, it is claimed that the generic solution in the asymptotic regime (large radius) 
can be matched not only with the usual solutions with horizons (like Schwarzschild-de 
Sitter) but also with a more generic (in the sense that it depends on more arbitrary 
parameters) horizonless family of solutions. It is however remarkable that these hori-
zonless solutions are absent in the restricted (that is, when the background connection 
is the metric one) frst order approach. 
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1 Introduction 

The e�ective Lagrangian framework, whose origin goes back at least to Wilson’s [1] pioneering 
work, dominates much of the research in particle physics in the last decades. It has been 
very successful, although the lack of new physics as yet in the LHC experiment is a clear 
indication that the related naturalness issue is still poorly understood. 

At any rate, when studying the gravitational interaction, and assuming di�eomorphism 
invariance (that is, general coordinate invariance or geometrization of gravity) as a funda-
mental symmetry [2], the relevant operators in the infrared start with 

» 
ˆ ˙

” ı

a 2 
d4 R2 

` .S “ x |g| ´ � ́  γR ´ 2αR2 
` β ` α . . , (1.1)µν 3 

where γ ” 
16

1 
πG 
“ 

2κ 
1 
2 , where G is Newton’s constant. The frst two terms represent the 

Einstein-Hilbert Lagrangian with the cosmological constant. Incidentally, the smallness of 
the dimensionless combination �κ4 is one of the facts that are not understood; we do not 
have anything new to say about it. 

Regarding the quadratic terms, in spacetime dimension n “ 4 (the only one considered 
in the present work), there are only two independent operators; we choose R2 and R2 inµν 

order to agree with most of the existing literature. On the other hand, the appearance of 
terms quadratic (and higher) in curvature is unavoidable whenever the gravitational feld is 
quantized in this geometric way unless a fne-tuning of sorts renormalizes all higher-order 
coeÿcients to zero. 

At this point, we have to decide which ones are our fundamental physical felds. In the 
usual second order approach (SO), the only such feld is the metric tensor, and the connection 
is taken from the very beginning as the Levi-Civita one associated to the spacetime metric. 
Be that as it may, there is also the possibility of considering that both the connection and 
the metric are physical felds, with their own independent dynamics; this is the first order 
approach (FO). Curiously enough, when the Lagrangian is linear in curvature (Einstein-
Hilbert) the equation of motion (EoM) of the connection forces it to be exactly the Levi-
Civita one so that both approaches are equivalent [3], even when quantum corrections are 
considered. This state of a�airs does not hold true however for Lagrangians higher-order 
in curvature. There the connection feld has a rich dynamics and it is not forced to be the 
Levi-Civita one [2, 4–6]. 

This means that we have to treat both approaches in turn in an independent way. 
We want to explore, in particular, the point of view that it is physically unavoidable to 

take all terms of higher-order in curvature seriously and explore their physical consequences 
(cf. [7–14] and references therein). We would like to stress the fact that this is an issue 
independently of whether the ultraviolet (UV) completion of general relativity is to be based 
upon new (even non-geometric) variables, such as strings (cf. [15] and references therein). 

Let us frst explore the second order formalism, in which the connection is already ex-
plicitly taken as the Levi-Civita one associated to the metric tensor so that gravitation is 
fully represented by the said metric tensor. In [7, 8] they found among other things, a whole 
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family of solutions unrelated to Schwarzschild’s solution. In particular, the structural insta-
bility of the horizon under a particular type of quadratic corrections has also been pointed 
out previously by Holdom in [9, 10]. 

This claimed instability is unrelated to the usual Regge-Wheeler stability [16–18] which 
is the ordinary stability keeping fxed the EoM. What we purport to do here is to change 
the EoM by a given amount (the quadratic corrections in the curvature), and analyze the 
structural stability of the solutions. 

Let us elaborate somewhat. Given an ordinary di�erential equation (ODE) 

x9 “ ξpxq, (1.2) 

where x P M , and M is some n-dimensional manifold, it is said that the system is structurally 
stable if it remains equivalent to itself when the vector feld is changed by a small amount. 
All this can be made mathematically rigorous (see e.g. [19]). This concept was originally 
proposed by the soviet mathematicians Andronov and Pontriagin [20]. Let us be more precise. 
Andronov and Pontriagin considered a system 

dx 
“ P px, yq,

dt 
dy 
“ Qpx, yq, (1.3)

dt 

over a domain, D • R2 . Andronov and Pontriagin defned the system as structurally stable if 
for every � ¡ 0 there exists a δ ¡ 0 such that whenever the functions P and Q are perturbed 
by other functions ppx, yq and qpx, yq smaller than δ, then the perturbed system 

dx 
“ P px, yq ` ppx, yq,

dt 
dy 
“ Qpx, yq ` qpx, yq, (1.4)

dt 

has trajectories that are displaced from those of the original system by less than �. They were 
able to prove that this property is true if all singularities and closed orbits are hyperbolic 
and also there are no trajectories connecting saddles. Details can be consulted in [21] and 
references therein. It was later shown by Smale [22] that in four dimensions there is a vector 
feld that cannot be made structurally stable by a small deformation. 

Although these ideas are restricted to ODE (and actually most useful in the original 
two-dimensional setting), the general concept can be applied in a somewhat loose sense to 
partial di�erential equations (PDE) (confer the use of this concept in [23]); it is in this 
generalized way that we are using this concept here, without any pretension of mathematical 
rigor whatsoever. 

Let us briefy review the ideas behind the setup that we will use throughout the paper. 
Once the conditions for spherical symmetry have been used, the spacetime metric has been 
assumed to take the form 

ds2 “ Bprqdt2 ´ Aprqdr2 ´ r 2d 2
2. (1.5) 
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The idea is to change the second member of equations (1.5) with terms implied by a 
generic Lagrangian quadratic in curvature. To begin with, we shall keep the assumption 
of spherical symmetry and staticity. We are well aware that this does not correspond to a 
generic perturbation, but of course, any eventual instability found in this particular case is 
bound to survive in the general situation. 

Let us now summarize the main fndings of [7, 8]. They classify the solutions by the 
behavior of the functions appearing in the metric (1.5) at r „ 0, where they expand them as 

Aprq “ asr 
s 
` as`1r 

s`1 
` . . .

` ˘ 

Bprq “ bt r 
t 
` bt`1r 

t`1 
` . . . , (1.6) 

The behavior of the di�erent solutions is summarized in the following 

• There is a 3-parameter family with the behavior ps, tq “ p0, 0q. Those solutions are not 
singular and correspond to candidates for the vacuum of the theory. 

• There is another 4-parameter singular family with the behavior ps, tq “ p1,´1q. Schwarzschild’s 
space-time falls in this category. In this same reference, it was argued that this family 
cannot be coupled to a normal (codimension 1, shell) source. 

• There is a 6-parameter singular family with the behavior ps, tq “ p2, 2q. These solutions 
have no horizon and are the only ones that can be coupled to normal matter. 

The main purpose of the present work is to examine the possibility that the six-parameter 
family of solutions uncovered by [7,8] (or rather its generalization with cosmological constant) 
can be an alternative approximation to the gravitational feld of a static, spherical source, 
di�erent close to the origin to Schwarzschild’s spacetime itself. Our idea is that all Solar 
system gravitational tests are in fact done in the region of the metric corresponding to 

r
r 
s 
" 1 

(although 
r
r 

Λ 
! 1). Here the Schwarzschild’s radius is given by r

b

s ” 
κ2 

4 
M
π 
d and the length 

scale associated to the cosmological constant is given by rΛ ” 
6γ 
„ 

κ 
1 
3 ; this is in the

Λ 

(intermediate) asymptotic region. We lack any Solar system test of the region r „ rs. It is 
our purpose to check explicitly whether it is possible to analytically match di�erent solutions 
(in particular the horizonless p2, 2q family and the Schwarzschild-de Sitter type p1,´1q one) 
with the asymptotic behavior of the solution. We already know that it is possible to do so 
with the Schwarzschild-de Sitter solution, which is still a solution of the modifed EoM. When 
working with the Einstein-Hilbert Lagrangian, any static spherically symmetric solution is 
isomorphic [24] to (a region of) the Schwarzschild-de Sitter or the related Nariai spacetimes. 
For quadratic theories however, the solution is not unique anymore and some of the arguments 
for the issue of the fnal state after the total collapse are questionable. 

While carrying out this analysis we also hope to clarify a few points regarding the runaway 
type of solutions in [8,10]. We comment in particular in Appendix A on the existence of these 
runaway solutions, which is a generic fact of higher-order equations. Despite many e�orts 
by many authors (mainly in the context of the Lorentz-Dirac equation), there is no accepted 
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and systematic way of eliminating them. They are in some sense the classical counterpart of 
the existence of ghosts in the quantum version of the theory. 

Let us now turn to the FO approach. We have already commented upon the fact that 
both approaches are not equivalent in general once operators of higher-order in curvature 
are included in the Lagrangian. Actually, kinematically, the connection feld embodies one 
spin 3 component, a set of three spin 2 components, fve spin 1 components and three spin 
0 components [5]. Nonetheless, a fully general analysis is too involved to be included here. 

It is remarkable that even when the background connection feld is the Levi-Civita one, 
FO (we shall dub it restricted FO then) and SO are still not totally equivalent. We shall 
prove that every FO solution is also a solution in SO, but the converse is not true. What is 
most remarkable is that this is precisely what happens with those horizonless solutions: they 
are absent in the restricted FO approach. 

The plan of the paper is as follows1 . First, in section 2, we explain the background 
results, which we will use in the rest of the paper. Section 3 is devoted to the generalization 
of the analysis in [8–10] in the presence of a cosmological constant to analyze whether any 
of the newly found (albeit in an incomplete form) solutions are physically acceptable. In 
section 4, we expand the solutions around an arbitrary intermediate point r0. We show that 
the solutions around this arbitrary point have enough parameters to match them with the 
families of solutions p2, 2q or p1,´1q that appear near the origin. 

In the second part of this work, after section 5, we elaborate on the FO approach. After 
some general comments in section 5, it is argued that it would be simpler to consider only the 
restricted FO (that is, assume the connection feld to be Levi-Civita one). We have already 
pointed out that even in this case FO is not strictly equivalent to SO; there are SO solutions 
that are not FO solutions. This will be discussed in some detail. This restricted procedure is 
however not helpful when the background metric is assumed to be Ricci fat or for constant 
curvature spacetimes, because then the EoM for the graviton (the metric perturbations) is 
tautological; it does not give any information. There we can assume that the spacetime 
metric comes from one of the spin 2 felds hidden in the connection feld. In section 5, we 
work out some simple examples for maximally symmetric spaces to illustrate the formalism. 
In section 6, we carry out the same study for the Schwarzschild background solution. When 
the background is not Ricci fat, as in the most important case of Schwarzschild-de Sitter, we 
can restrict the connection to the Levi-Civita form, and work out the graviton EoM, which 
is now not empty. In section 7, we turn again to the study of possible spherically symmetric 
solutions in the restricted FO approach, carrying out the same analysis as in section 2. In 
this case, the restricted FO approach does not admit the horizonless power series solutions 
found in the SO approach. We fnd this fact one of the most important results of our work. 
Finally, we present our conclusions and remarks. Given the length of some of the equations 
involved in the computation, we relegate most of them to the appendices. 

1Throughout this work we follow the Landau-Lifshitz spacelike conventions, in particular our metric has 
the signature ηµν “ p`, ´, ´, ´q and Rµ “ Bρ�µ ´ Bσ�µ ` �µ �λ ´ �µ �λ 

νρσ νσ νρ λρ νσ λσ νρ. 
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2 Preliminaries 

• Let us imagine that the only thing known is Schwarzschild’s solution 

´ ¯ 

ds2 “ 1 ́  
rs 

dt2 ´ ` 
1 
˘dr2 ´ r 2d 2

2, (2.1) 
r 1 ́  rs 

r 

where rs “ 2GM , is the expansion of the metric functions in (1.5) around r “ 0 as 

ˆ ˙ 

rs r 
Bprq| “ ´1 ̀ ` . . . (2.2)r„0 r rs 

We know from the exact solution that this expansion stops there. The expansion of 
the other function behaves as 

ˆ ˙ 

r r 
Aprq|r„0 “ ´ 1 ̀ ` . . . (2.3) 

rs rs 

and the exact expansion here is given by 

8 ˆ ˙n
ÿr r 

Aprq| “ ´ . (2.4)r„0 rs rs n“0 

In the opposite limit, its asymptotic behavior when r Ñ 8, the function reads 

rs
Bprq|r„8 “ 1 ́ ` . . . (2.5) 

r 

and the full expansion also stops here. For the other function we have 

rs
Aprq|r„8 “ 1 ̀  

r 
` . . . (2.6) 

and again, the complete expansion is known to be 

8 
´ ¯

ÿ nrs
Aprq|r„8 “ . (2.7) 

r 
n“0 

It is also possible to expand the metric functions around an arbitrary point r “ r0 

8 ˆ ˙n
ÿrs r0 ´ r 

Bprq “ 1 ́  , 
r0 r0 n“0 

ˆ ˙ 

r0 rs 
8 

r0 ´ r 
n

ÿ

Aprq “ ` . (2.8) 
r0 ´ rs r0 ´ rs n“1 

r0 ´ rs 

However, in a perturbative computation of these functions through some ODE, one 
would not in general have access to the general term of the series. 

5 



In case we knew the full expansion it would allow for immediate access to the radius of
° 

convergence ρ of the power series, anr
n , through e.g. Hadamard ’s criterium 

1 
” lim |an|

ρ nÑ8 

1 

(2.9)n . 

This yields immediately when expanding around the origin, ρ “ rs, for the radius of 
convergence of our series. Nevertheless, even without exact knowledge, knowing just a 
few terms in the expansion gives some estimate of the radius of convergence. 

In the example above we would tentatively estimate the correct radius of convergence 
as 

1 11 
2 3„ ta1, a .u. (2.10)a2 , 3 , . . ρ 

• The matching between two power series can be done when both power series are the 
analytic continuation one of the other. For example, 

8
ÿ 

r n , (2.11) 
n“0 

which converges for r ¤ 1, can be matched with 
ˆ ˙

ÿ1 
8 

r ´ r0 
n 

, (2.12)
1 ́  r0 n“0 1 ́  r0 

which converges whenever |r ´ r0| ¤ |1 ́  r0|. 

Again, it is diÿcult to make precise statements without knowing the general term of 
the series; but an evident necessary condition for it to be possible is that there are 
enough free parameters to do so (in this example, the frst series (2.11) matches with 
the second (2.12) when r0 “ 0). 

• On the other hand, when we are interested, as in the case at hand, in solutions of 
a certain system of ordinary di�erential equations (ODE), there is a useful theorem. 
Given such a set 2 

dyi 
dx 

“ fi px, y1, . . . ynq “ 
ÿ

pC i xp q1...qn 

q, qi¥0 

q1y1 . . . 
qny ,n (2.13) 

where it is assumed that the power series in the second member converges for 

|x|, |yi| ¤ ρs (2.14) 

Denote by M the least upper bound of the functions fipx, yq in the set as above (of 
course, in most cases this is not known until the full solution is found). Then 

Ci 
¤ 

M
. (2.15)p,q 

ρp`q1 `...`qn 
s 

2Please note that every ODE system of arbitrary order can easily be written in this frst order form. 
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A theorem exists [25] ensuring that the solution to the ODE system has a radius of 
convergence such that 

´ ¯ 

1 
pn`1qMρ “ ρs 1 ́  e ´ . (2.16) 

It follows that when the second member of the ODE is not bounded (that is M “ 8) 
then ρ “ 0. 

• In the spherically symmetric case, it is well known that Einstein’s equations are equiv-
alent to the following system of equations in terms of the metric functions 

1 
A “ , (2.17)

B 

dA Ap1 ́  Aq
“ ” fpr, Aq. (2.18)

dr r 
The series expansion of the function on the rhs then reads 

8 ˆ ˙n
ÿ1 r ´ r0

fpr, Aq “ A p1 ́  Aq , (2.19) 
r0 r0 n“0 

so that 
1 1 1
” lim n`1 “ , (2.20)

ρs nÑ8 r r0n 
0 

and 
´ ¯ 

ρ “ r0 1 ́  e ´ 
1 

, (2.21)2M 

where M is defned as 
M ” lim A, (2.22) 

r¤r0 

which as advertised, is not known a priori. 

3 New solutions in the second order approach 

Let us generalize the analysis carried out in [8] in the presence of a cosmological constant. 
The EoM for the action, (1.1), reads 

ˆ ˙ ˆ ˙ ˆ ˙ ˆ ˙ 

1 2α 1 1 
HSO 

` 4αRρσ 
µν “ γ Rµν ´ gµν R ´ 2 β ` R Rµν ´ gµν R Rµρνσ ´ gµν Rρσ ` 

2 3 4 4
ˆ ˙ 

2 1 1
` pα ´ 3βq pgµν 2 ´ rµrνq R ` 2α2̄ Rµν ´ gµν R ´ gµν� “ 0. (3.1)

3 2 2 

Schwarzschild-de Sitter’s metric is given by 
« ˙

ˆ ˙2 
rs r 1 ` ˘ 

ds2 “ 1 ́ ´ dt2 ´ „ ˆdr2 ´ r 2 dθ2 ` sin2 θdφ2 , (3.2)
´ r rΛ 
¯ 2 

1 ́  rs ´ r 
r rΛ 
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where rs “ 2GM is the Schwarzschild radius, and rΛ
2 “ 

6
Λ 
γ , and is a particular and in some 

sense archetypal solution of the EoM. 
Solutions to quadratic gravity of the Petrov types N and III have been recently studied 

by Malek and Pradva [26]. In fact R. Svarc, J. Podolsky, V. Pravda and A. Pravdova [27,28] 
were able to show that Einstein spaces are always solutions of a generic quadratic gravity 
EoM, barring some algebraic connection between the cosmological constant and the coupling 
constants of the lagrangian. 

Tha aim of our paper is to search for more general solutions, assuming only spherical 
symmetry and staticity. 

We want to analyze the possible families of solutions depending on the behavior of the 
functions appearing in the ansatz of the spherically symmetric metric (1.5). Near the origin 
r “ 0 assuming the functions Aprq and Bprq admit a Frobenius-like expansion 

Aprq “ asr 
s 
` as`1r 

s`1 
` . . .

` ˘ 

Bprq “ bt r 
t 
` bt`1r 

t`1 
` . . . , (3.3) 

we recover exactly the same families as when � “ 0 [7, 8], depending on the same number 
of parameters (besides the cosmological constant). In our case, we hereinafter ignore (that 
is, we will not count it as a relevant parameter) the constant bt whose physical meaning is a 
change of the origin of the time coordinate, although it is counted as a parameter in [8]. 

The curvature scalar is given by 

! ” ´ ¯ı) 1 2 

R “ ´ 4A2B2 
´ rBA1 p4B ` rB1q ` A 4B2 

´ r 2B12 ` 2rB 2B1 ` rB (3.4)
2r2AB 

In terms of the formal series expansion this reduces to 

r ´2´s “ ‰ 

sR “ 4 ̀  2t` t2 ´ sp4 ̀  tq ´ 4r as (3.5)
2as 

We continue with a more general case. Let us summarize our results. 
µHSO After using Bianchi’s identities (r µν “ 0) on the EoM (3.1), we fnd that only two of 

them are independent. We chose them as follows 

HSO 
“ HSO 

“ 0. (3.6)00 11 

With the ansatz (1.5) of the metric, we can study di�erent solutions of the EoM as a function 
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of the Aprq and Bprq that will be solutions of 

1 “ ` ˘ 

H00 
SO 
“ ´24A4B4

p12β ` r 2γq ´ 4A5B4 4α ´ 12β ´ 6r 2γ ` 3r 4� ` 
4A5B3 

` 8A3B4
p2α ` 30βq ´ 16r 4A3B3

pα ´ 3βqBp4q ´ 4r 2A2B2 
r3rp4α ´ 30βqA1 ` p5α ´ 12βqAs B12` 

` 16r 3A2B2
pα ´ 3βq r3rA1B ` 3rAB1 ´ 4ABs Bp3q ` 56r 3B3 

r´2pα ` 6βqB ` rpα ´ 3βqB1s A13` 

` 8r 3A2B3 
r´2pα ` 6βqB ` rpα ´ 3βqB1s Ap3q ` 52r 3AB3 

r2pα ` 6βqB ´ rpα ´ 3βqB1s A1A2` 

24r

“ ‰ 

` 8r 2A2B2 
´3r 2pα ´ 3βqB12 ´ 2pα ` 6βqB2 

` 4r 2pα ´ 3βqBB2 ` 3rpα ´ 6βqBB1 A2` 

` 4r 3AB2 
r´19rpα ´ 3βqA1B ´ 27rpα ´ 3βqAB1 ` 2p13α ´ 48βqABs A1B2` 

` 36r 4pα ´ 3βqA3B2B22 ` 4r 3A3B r´29rpα ´ 3βqB1 ` 2p13α ´ 66βqBs B1B2` 

` 4r 2AB4
p7α ` 60βqA12 ` r 3AB2 

r57rpα ´ 3βqB1 ´ 4p13α ´ 84βqBs B1A12` 

` r 3A2 
r58rpα ´ 3βqA1B ` 49rpα ´ 3βqAB1 ´ 4p11α ´ 78βqABs B13` 
“ ‰ ‰ 

`8rA2B4 4pα ` 6βq ` 3r 2γA A1 ` 8r 2A2B3A1B1p´5α ` 6βq “ 0, (3.7) 

1 “ 

HSO 
“ 8r 3A2B2Bp3q rrpα ´ 3βqB1 ´ 2pα ` 6βqBs ´ 4r 4pα ´ 3βqA2B2B22´ 11 4A3B424r 

” 

` 

´ 4r 2ABB2 2rBA1 prpα ´ 3βqB1 ´ 2pα ` 6βqBq ` A 3r 2pα ´ 3βqB12 ´ 12rpα ` 3βqBB1` 

˘

ı

“ ‰ “ ‰ 

` 4A4B4 4�`8pα ` 6βqB2 
` 24A3B3 γr3B1 ` Bpγr2 ´ 12βq 4α ´ 12β ´ 6γr2 ` 3r ` 

” 

“ ‰ 

` 2r 2ABA1B1 3r 2pα ´ 3βqB12 ´ 4rp2α ` 3βqBB1 ` 4pα ` 24βqB2 
` A2 7r 4pα ´ 3βqB14´ 

ı 

´ 4r 3p5α ` 12βqBB13 ´ 4r 2pα ´ 48βqB2B12 ` 32rpα ` 6βqB3B1 ´ 16pα ´ 21βqB4 

“ ‰ “ 

` 7r 2B2A12 r 2pα ´ 3βqB12 ´ 4rpα ` 6βqBB1 ` 4pα ´ 12βqB2 
´ 4r 2AB2A2 r 2pα ´ 3βqB12´ 

‰‰ 

´4rpα ` 6βqBB1 ` 4pα ´ 12βqB2 
“ 0, (3.8) 

where Apnq corresponds to the n-th partial derivative. These equations coincide with the ones 
in [8] when taking � “ 0. 

3.1 Solutions around r “ 0 

We start by analyzing the solutions around the origin r “ 0. Around this point we take the 
expansions (3.3). It is perhaps worth remarking that owing to the fact that the functions A 
and B are dimensionless, each of the independent parameters in the power series defnes a 
length scale given by 

˜ ¸i 
1 6γ 

ai ” a 
, � ” 

2r r
piq Λ 
˜ ¸t ˜ ¸j´t 

1 1 
bt ” b 

, bj ” b 
pj ¡ tq. (3.9) 

r r
ptq pjq 
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We will sometimes denote the scale associated with the frst non-vanishing coeÿcient in the 
power series just by ra or rb with no further subscript. 

Let us classify then the solutions in terms of the values of ps, tq. 

• The p0, 0q family of solutions takes the form 

!�p´4α ` 3βq 1 
Aprq “ 1 ̀  a2r 

2 
` r 4 ` ra2rγp2α ` 3βq ` 18βa2p10α ` 3βqs

1080αβ 180αβ 

` b2r2γp´α ` 3βq ´ 18βb2p2α ` 3βqs ́  36αβa2b2s ` Opr 
5
q 

Bprq !�p2α ` 3βq 1 “ 
“ 1 ̀  b2r 

2 
` r 4 ` a2rγp´α ` 3βq ` 54β2 a2s ` b2rγpα ` 6βq

b0 2160αβ 360αβ 
ˆ 

`54βb2p2α ´ βqs ̀  108αβa2b2
` ` Opr 5q (3.10)

360αβ 

These solutions depend on three parameters pa2, b2,�q, and we recover the result in [7,8] 
when � “ 0 (we do not count the trivial time rescaling parameter b0). 

Our rough estimate for the radius of convergence of the power series is 

ρpAq „ ra, 

ρpBq „ rb. (3.11) 

• The second family of solutions is the p1,´1q for which the functions read 

` ˘

2 3 5 a1 4Aprq “ a1r ´ a1r 
2 
` a1r 

3 
` a4r 

4 
´ r 3a1b2 ` 19a1 ` 35a4 ` 

16 
2 
` ˘

6 a1 4 7
` r 21a1b2 ` 101a ` 141a4 ` Opr q140 

(3.12) 

Bprq 1 1 ` ˘ 3a1 ` ˘

3 4 4 4
“ ` a1 ` b2r 

2 
` r a1b2 ` a1 ` a4 ´ r a1b2 ` a1 ` a4 ` b´1 r 16 40

# 

p2α ` 3βq�a2 1 ” 

5 1 6 8
` r ` ´ 30γpα ´ 3βqa ` 81βp19α ` 15βqa ` 

3888αβ 25920αβa21
1 1 

4 2 3 5
` 162βp7α ` 15βqa1a4 ´ 405βpα ´ 3βqa ` 10γp5α ` 21βqa1b2 ` 54βp161α ´ 15βqa1b2 ` 4 

‰ 

ı

+ 

“ 

` 270βp25α ´ 3βqa1a4b2 ´ 15a 2 2γpα ´ 3βqa4 ` 9βp´53α ` 15βqb2 ` Opr 6q1 2 

(3.13) 

These solutions depend on four parameters pb2, a1, a4,�q and when � “ 0 we recover 
again the family of solutions in [7, 8]. The expansion of the Schwarzschild-de Sitter 
metric around the origin belongs to this family of solutions. Let us note that the 
cosmological constant appears at Opr7q, although it is not written in order to avoid too 
long equations. The radius of convergence is the same as the previous family. 
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• Finally, we have the p2, 2q family of solutions which has the form 

` ˘ 

Aprq “ a2r 
2 
` a2b3r 

3 
´ r 4 

a2 
2a2 ` b3

2 
´ 8b4 ` a5r 

5
` 

6
# 

r6 “ ` ˘ ‰ 

b2` ´ 12α2 a 3 ´ 2a 2 α2 
´ 603αβ ´ 252β2 

` 27α p20βb4 ` γq ` 2 2 31296αβ 
” 

` ˘ ` ˘ 

` a2 b
4
3 ´16α2 

` 1413αβ ´ 72β2 
` 2b4b

2
3 19α2 

´ 2223αβ ` 180β2 
´ 

+

ı

` ˘ 

´ 36b5b3 α
2 
` 45β2 

` 12αb24 pα ` 162βq ` 324a5βb3 p7α ` 3βq ` Opr 7q 

# 

6Bprq r “ ‰ 

“ r 2 ` b3r 
3 
` b4r 

4 
` b5r 

5 
` ´ 12αa3 ` a 2 14b23p2α ` 3βq ´ 24αb4 ` 

b2 216αa2 
2 2 

” ı 

` a2 2b43p67α ´ 3βq ` 2b4b
2
3p15β ´ 227αq ` 45b5b3p7α ´ 3βq ` 180αb2 4 

+ 

` 27a5b3pα ` 3βq ` Opr 7q (3.14) 

These solutions depend on the six parameters pb3, b4, b5, a2, a5,�q and again when � “ 0 
it reduces to the result in [7]. Besides, these solutions are exactly the same as the ones 
in [7,8] up to order Opr10q where the terms containing the cosmological constant appear. 
The radius of convergence is again the one given in (3.11). 

3.2 Asymptotic expansions 

When the cosmological constant is di�erent from zero, we no longer have asympotically fat 
solutions. In this case we obtain a de Sitter (dS) or anti-de Sitter space (AdS) behavior 
asymptotically, given by the expansion of the metric in (3.2). 

Given the two scales that appear in the solution, there are actually two regimes that are 
interesting to study. 

1.- The cosmic regime, where 

r 
" 1, 

rΛ 
r 
" 1. (3.15) 

rs 

The generic expansion should now read 
ˆ ˙ 

a´2 a´3 a´4 a´5 1 
Aprq “ ` ` ` ` O ,

2 3 4 5 6r r r r r
ˆ ˙ 

b´1 1 
Bprq “ b2r 

2 
` b1r ` b0 ` ` O , (3.16)

2r r 
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and with the help of EoM we obtain 

¯ 2 ¯ 4 
ˆ 

1 
˙

´ ´ rΛ rΛ a´5
Aprq “ ´ ´ ` ` O ,

5 6r r r r
ˆ ˙ 

Bprq a´5 1
“ r 2 ´ rΛ

2 
` 

2 
` O 

2 
. (3.17)

b2 rΛr r 

With the explicit form of these solutions and following the notation of the families near 
the origin, we call it the p´2, 2q family. It can be seen that this family of solutions 
contains one independent parameter a´5 plus the cosmological constant (not counting 
the trivial time rescaling b2). Finally the Schwarzschild-de Sitter’s solution corresponds 
to the particular case 

1 
a´5 “ rsrΛ

4 , b2 “ ´ 2 . (3.18) 
rΛ 

2.- The intermediate regime, with 

r 
" 1, 

rs 
r 
! 1. (3.19) 

rΛ 

Given the observational fact that when r „ 1A.U., 

rs 
„ 10 ´8 ” �, (3.20) 

r 

whereas 
r 
„ 10 ´15 „ �2 , (3.21) 

rΛ 
this is clearly the appropiate regime to study Solar system e�ects. 

We shall try then with the expansion 

8
ÿ b´n

Bprq “ , 
rn 

n“0 

8
ÿ a´n

Aprq “ . (3.22) 
rn 

n“0 

The result of such an asymptotic expansion is quite universal (that is, independent of 
the parameters α, β, γ in (1.1)), given by 

Bprq b´1
“ 1 ̀  ,

b0 r 

b2 b3b´1 ´1 ´1Aprq “ 1 ́ ` ´ . (3.23)
2 3r r r 

This fact implies important consequences, which will be discussed in the conclusions. 
The particular case of Schwarzschild’s solution corresponds to b´1 “ ´rs. 
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4 Expansion around an arbitrary point, r0, in the sec-

ond order approach 

Now that we know the behavior of the functions near the origin and at infnity, we want to 
study whether they can be smoothly matched. The only thing we need to check is that the 
solution in the neighborhood of an arbitrary point, r0, has enough parameters to match it 
with the asymptotic expansion of either the p2, 2q or else the p1,´1q solutions. We shall soon 
fnd that this is indeed the case. 

We assume that around the arbitrary point r0, which has nothing to do with the radius 
of a possible horizon, the metric functions Aprq and Bprq are analytical and thus admit the 
following expansion 

Bprq “ b0 ` b1pr ´ r0q ` b2pr ´ r0q
2 
` b3pr ´ r0q

3 
` b4pr ´ r0q

4 
` Oppr ´ r0q

5
q

Aprq “ a0 ` a1pr ´ r0q ` a2pr ´ r0q
2 
` a3pr ´ r0q

3 
` Oppr ´ r0q

4
q. (4.1) 

Given that the EoM (3.7) and (3.8) contain third derivatives of Aprq and fourth derivatives 
of Bprq, we need to expand the functions up to that order to solve for the lowest order. After 
that, an iterative process can be used in order to get the higher-order terms of the solution. 

The lowest order of H00 “ 0 yields 

3b3 3 4b4´ 56a 0r0 r2pα ` 6βqb0 ´ pα ´ 3βqb1r0s ´ 24a 0p12β ` γr2q´
”

1 
“ ‰ 

0 0 

5 4 2
´ 4a0b0

4 4pα ´ 3βq ´ 6γr0
2 
` 3�r0 ` a0a1b0

2 r0 104a2b0r0 r2pα ` 6βqb0 ´ pα ´ 3βqb1r0s ` 

“ ‰

ı 

` a1 4p7α ` 60βqb0
2 
` 57pα ´ 3βqb21r0

2 
´ 4b0r0 pp13α ´ 84βqb1 ` 38pα ´ 3βqb2r0q ` 

” 

3 4 3
` a 49pα ´ 3βqb41r ´ 4b0b

2
1r0pp11α ´ 78βqb1 ` 58pα ´ 3βqb2r0q´0 0 

´ 384pα ´ 3βqb30r0
3
pb3 ` b4r0q ` 8b

4
0p2α ` 30β ` 3γa1r0

3
q´

“ ‰

ı 

´ 4b20r 
2 
p5α ` 12βqb2 ´ 36pα ´ 3βqb22r 

2 
´ 4b1r0pp13α ´ 66βqb2 ` 18pα ´ 3βqb3r0q ´ 0 1 0

” 

´ 2a 20b0r0 8b0r0 r3a3b0r0p2pα ` 6βqb0 ´ pα ´ 3βqb1r0q`
` 

2 
˘‰ 

`a2 2pα ` 6βqb20 ` 3pα ´ 3βqb
2
1r0 ` b0r0p´3pα ´ 6βqb1 ´ 8pα ´ 3βqb2r0q ´ 

“ 

´ a1 16pα ` 6βqb3 ` 29pα ´ 3βqb3 3 
´ 12b0b1r0

2
pp2α ´ 15βqb1 ` 9pα ´ 3βqb2r0q ` 0 1r0 

‰

ı 

`4b20r0pp´5α ` 6βqb1 ` 2r0pp13α ´ 48βqb2 ` 18pα ´ 3βqb3r0qq “ 0, (4.2) 
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and for H11 “ 0 we have 

” ı 

2 2 27a1b
2 4pα ´ 12βqb2 ´ 4pα ` 6βqb0b1r0 ` pα ´ 3βqb

2 
` 0r0 0 1r0 

” ı ” ı 

4 4 3 3b4 b3` 4a 4pα ´ 3βq ´ 6γr2 ` 3�r ` 24a γb1r ` b0p´12β ` γr0
2
q ´ 0 0 0 0 0 0 0

” 

“ ‰ 

´ 2a0b0r0
2 4a2b0 4pα ´ 12βqb0

2 
´ 4pα ` 6βqb0b1r0 ` pα ´ 3βqb

2
1r0

2 
´ 

“ 

´ a1 3pα ´ 3βqb3 2 
´ 4b0b1r0 pp2α ` 3βqb1 ` 2pα ´ 3βqb2r0q` 1r0 

‰

ı ” 

`4b20 ppα ` 24βqb1 ` 4pα ` 6βqb2r0q ´ a 2 16pα ´ 21βqb4 ´ 7pα ´ 3βqb41r 
4
` 0 0 0 

` 4b0b1
2 r0

3 
rp5α ` 12βqb1 ` 6pα ´ 3βqb2r0s ` 32pα ` 6βqb30r0 r´b1 ` r0p2b2 ` 3b3r0qs ̀ 
“ ‰

ı 

` 4b2 2 2 
0r pα ´ 48βqb2 ` 4pα ´ 3βqb22r ´ 12b1r0 r2pα ` 3βqb2 ` pα ´ 3βqb3r0s “ 0. (4.3)0 1 0 

We can easily fnd a solution for this system of equations which is given by 

! ” 1 2b2 2b3 “ 7a 0r 4pα ´ 12βqb2´ 
2 3 1 0 048a0b0

2r0 r2pα ` 6βqb0 ´ pα ´ 3βqb1r0s
ı 

` ˘

2 4 4
´ 4pα ` 6βqb0b1r0 ` pα ´ 3βqb

2 
` 4a b4 4pα ´ 3βq ´ 6γr2 ` 3�r ` 1r0 0 0 0 0 

b3` 24a 3 
` 

γb1r 
3 
` b0p´12β ` γr0

2
q 
˘ 

` 0 0 0
” 

` a0
2 
´ 16pα ´ 21βqb4 ` 7pα ´ 3βqb4 0

4 
` 32pα ` 6βqb0

3 r0pb1 ´ 2b2r0q´0 1r 

´ 4b0b
2
1r0

3 
pp5α ` 12βqb1 ` 6pα ´ 3βqb2r0q´ 
` ˘

ı 

´ 4b20r 
2 
pα ´ 48βqb2 ´ 24pα ` 3βqb1b2r0 ` 4pα ´ 3βqb

3
2r 

2 
´ 0 1 0

” 

´ 2a0b0r 
2 4a2b0 

` 

4pα ´ 12βqb2 ´ 4pα ` 6βqb0b1r0 ` pα ´ 3βqb
2 2
˘ 

´ 0 0 1r0
` 

´ a1 3pα ´ 3βqb31r 
2 
´ 4b0b1r0pp2α ` 3βqb1 ` 2pα ´ 3βqb2r0q`0 

˘ 

ı)

`4b20ppα ` 24βqb1 ` 4pα ` 6βqb2r0 , (4.4) 
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and 

!1 
b4 “ 

384pα ´ 3βqa3b0
3r0

4 r2pα ` 6βqb0 ´ pα ´ 3βqb1r0s
“ 

0 
‰ 

´ 14a1
3b3 0

3 4pα2 
` 93αβ ` 36β2

qb2 ´ 4pα2 
` 3αβ ´ 18β2

qb0b1r0 ` pα ´ 3βq
2b1

2 r 2 ´ 0r 0 0 
5b4 4

´ 4a0 0 r2p5α ´ 6βqb0 ´ 7pα ´ 3βqb1r0s p4pα ´ 3βq ´ 6γr
2 
` 3�r q`0 0

” ´ 

` a0a1b
2 2 8a2b0r0 4p7α2 

` 246αβ ` 252β2
qb2 ´ 28pα2 

` 3αβ ´ 18β2
qb0b1r0 ` 0r0 0

¯ ´ 

2b2 2b3` 7pα ´ 3βq 1r 
2 
` a1 ´ 24p7α2 

´ 174αβ ` 216β2
qb3 ` 21pα ´ 3βq 1r 

3
´ 0 0 0 

´ 2pα ´ 3βqb0b1r0
2
pp77α ` 318βqb1 ´ 28pα ´ 3βqb2r0q ` 4b0

2 r0pp77α2 
´ 237αβ ` 828β2

qb1 ´ 
¯ı 

´ 28pα2 
` 3αβ ´ 18β2

qb2r0q ` 
” 

3 5 4
` a ´ 7pα ´ 3βq2b1

5 r ´ 2pα ´ 3βqb0b
3
1r0pp17α ´ 78βqb1 ´ 44pα ´ 3βqb2r0q`0 0

´ ¯ 

` 4b20b1r0
3 
p17α2 

` 303αβ ´ 252β2
qb2 ` 24pα2 

´ 9αβ ` 18β2
qb1b2r0 ´ 60pα ´ 3βq2b2 0

2 
` 1 2r 

´ ¯ 

` 8b30r 
2 
p23α2 

´ 174αβ ` 72β2
qb2 ´ 4p23α2 

` 24αβ ´ 36β2
qb1b2r0 ` 4p13α2 

` 3αβ ´ 126β2
qb2

2 r 2 ` 0 1 0
´ ¯ 

` 16b50 2p5α2 
´ 75αβ ` 342β2

q ´ 3a1r0p36pα ´ 3βqβ ` p´4αγ ` 3βγqr0
2
q ` 

´ ¯ı 

` 8pα ´ 3βqb40r0 64pα ` 6βqb2r0 ` b1p´46α ` 30β ` 15γa1r0
3
q ` 

” 

4b3 4
` 24a0 6pα ´ 3βqγb21r0 ´ pα ´ 3βqb0b1r0p60β ` γr2q`

“ 

0 0 

‰

ı 

` b20 2p36pα ´ 6βqβ ` p´5αγ ` 6βγqr0
2
q ` pα ´ 3βqa1r0p4pα ´ 3βq ´ 6γr0

2 
` 3�r0

4
q ´ 

” ´ 

´ 4a 2b0r0 a1 8pα2 
´ 96αβ ` 117β2

qb4 ´ 5pα ´ 3βq2b1
4 r 4` 0 0 0 

` pα ´ 3βqb0b
2
1r0

3
pp25α ´ 12βqb1 ` 6pα ´ 3βqb2r0q`

` 4b3 2
p´pα2 

´ 78αβ ` 144β2
qb1 ` 2p7α

2 
` 30αβ ´ 72β2

qb2r0q`0r0 
¯ 

` 4b0
2 r0

2
p´3p2α2 

` 42αβ ´ 63β2
qb1

2 
` 2p´8α2 

` 3αβ ` 63β2
qb1b2r0 ` 6pα ´ 3βq

2b2
2 r0

2
q ` 

´ 

“ 

` 4b20r0 3a3r0p´2pα ` 6βqb0 ` pα ´ 3βqb1r0q
2 
` a2 ´12pα2 

´ 24αβ ` 36β2
qb20 ´ 

´pα ´ 3βqb1r0
2
p7pα ` 6βqb1 ´ 8pα ´ 3βqb2r0q ` 2b0r0pp10α2 

´ 69αβ ` 198β2
qb1 ´ 

‰ 

¯ı)

´8pα2 
` 3αβ ´ 18β2

qb2r0q . (4.5) 

A remarkable property is that if we push the solution one order further in the expansion, 
what we fnd is that the solution depends on a0, a1, a2, a4 and b0, b1, b2. We can see that we 
always get the frst three parameters of each expansion pa0, a1, a2, b0, b1, b2q plus the coeÿcient 
of the highest order of Aprq (in this case a4). This can be seen in the following way. If we 
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5 

take the system of equations for the lowest order they can be symbolically written as 

gpa0, a1, a2, b0, b1, b2, b3q “ 0, 

fpa0, a1, a2, a3, b0, b1, b2, b3, b4q “ 0. (4.6) 

Therefore, we can always write the highest order of Bprq in terms of the rest of the parameters 
using the second equation, and the second highest order of Bprq in terms of the same ones 
using the frst equation. As can be seen in equations (4.4) and (4.5), b3 and b4 can be written 
in terms of the other seven parameters pa0, a1, a2, a3q and pb0, b1, b2q plus the cosmological 
constant. Going to higher-order, it can be easily checked that we still have 7 independent 
parameters. In fact, only 6 of them are relevant as we can always reabsorb b0 in a time 
rescaling. 

We conclude that the general solution around an arbitrary point r0 p" rsq depends on 6 
arbitrary parameters plus the cosmological constant. This means that it can be smoothly 
matched (we have enough independent parameters) with the asymptotic p´2, 2q solution at 
r rÑ 8 as well as with either the p2, 2q solution or else the p1,´1q solution at ! 1. It 
rs rs 
also means that both the horizonless p2, 2q solution as well as the usual Schwarzschild-dS-like 
p1,´1q solution match equally well with the asymptotic universal behavior. 

Generalities of the first order approach 

In the FO approach, both the connection and the metric are independent felds. For La-
grangians linear in curvature (that is, the Einstein-Hilbert one) this viewpoint uncovers 
nothing new [3]. Lagrangians quadratic (or higher) in curvature, are however essentially dif-
ferent in that FO and SO formalisms are not equivalent [29]. When the background metric 
is Ricci fat, for example, Minkowski or Schwarzschild spacetimes, the metric feld obeys an 
algebraic (essentially trivial) EoM so that all the dynamics in encoded in the connection feld. 
The spin content of the said connection feld has been worked out in detail in [2]. Namely, 
one spin 3, three spin 2, fve spin 1, and three spin 0. In those works, a systematic procedure 
for extracting the dominant graviton dynamics out of the connection feld has been outlined. 

We have already mentioned that quadratic theories imply ghosts, which manifest them-
selves classically as runaway solutions, among other inconsistencies. It has been conjectured 
that this is not necessarily true in the FO approach. There the graviton feld in a fat back-
ground obeys an algebraic EoM, (and in particular, there is no kinetic energy term for the 
graviton) and the whole dynamics is encoded in the connection feld, which is akin to a 
three-index gauge feld. Indeed, both the presence of spin 3 and several spin 2, point towards 
inconsistencies in the quantum theory, but more work is needed to clarify this issue. 

The general Lagrangian in the FO approach has many terms, which have been worked 
out in detail in [2]. This is due to the fact that when there is nonmetricity (that is whenever 
the connection is not Levi-Civita) the Riemann tensor has fewer symmetries than in the 
standard case so that there is correspondingly a greater number of independent quadratic 
operators in the Lagrangian. The general analysis becomes somewhat laborious. In this work, 
however, we content ourselves to study a simple Lagrangian, as close as possible to the one 
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we analyzed in the SO approach. In the same vein, we will not look for nonmetric solutions 
of the equations; but rather assume that the background connection is the Levi-Civita one, 
and study nonmetric connections only as perturbations when this is necessary. 

To understand the restricted dynamics of the connection feld, that is, to explore some 

r 

general aspects of the huge space of classical solutions in FO, we return to the old Lagrangian 
» 

ˆ ˙

” ı

a 2 
d4 R2S “ x |g| ´ � ́  γ R ´ 2αR2 

` β ` α , (5.1)µν 3 

r 

and analyze it in the restricted FO formalism. We assume that the metric and the connection 
are independent felds, but after getting the EoM, we fx the background connection to the 
Levi-Civita one. This is reminiscent of the usual 1.5 rule extensively employed in supergravity 
[30]. 

Taking the following background expansion (where the presence of κ assigns the correct 

r 

engineering dimensions to the graviton fuctuations) 

gµν “ ḡ µν ` κhµν 

�λ 
“ �sλ ` Aλ (5.2)µν µν µν , 

the EoM for the graviton reads 
ˆ ˙ ˆ ˙ ˆ ˙ ˆ ˙ 

r

1 2α 1 1 1 
HFO ¯ ¯ ¯ ¯ ¯ s s 

λ R̄2 
µν “ γ Rµν ´ ḡ µνR ´ 2 β ` R Rµν ´ ḡ µν R ` 4α RµλRν ´ ḡ µν ρσ ´ ḡ µν� “ 0,

2 3 4 4 2 
(5.3) 

r 

and the EoM for the connection takes the form 
! ” 1 ` ˘

ı ” 1 ` ˘

ı 

µν 
s δν s s 

ν Rsµν s Rsµτ δν s Rντ δµ s` s λ λ λ λr µ 
` δµ´ γ λ ´ ´ 4α λ ´ `gs τ τ

2 2
ˆ ˙ 

” 

˘ 

ı)

` 

µν 
sr 2 1 

δν λ 
ν Aλ 

µνrrs s 

We can integrate by parts in the equation for the connection and use the metricity condition, 
s 

λḡ µν “ 0, together with the Bianchi identity so that we obtain the following system ofr 

sR µ 
` δµ λ ` 2 β ` λ ´ “ 0.α (5.4)gs

3 2 

rrrrrr 

equations
ˆ ˙ ˆ ˙ ˆ ˙ ˆ ˙ 

1 2α 1 1 1 
HFO ¯ ¯ ¯ ¯ ¯ s s 

λ R̄2 
µν “ γ Rµν ´ ḡ µνR ´ 2 β ` R Rµν ´ ḡ µν R ` 4α RµλRν ´ ḡ µν ρσ ´ ḡ µν� “ 0,

2 3 4 4 2
ˆ ˙

”” 

˘

ı 

˘

ı 

Cµν 
s Rsµν ´ 

1 ` 
δν s µ s s 

ν 
s 

2 µν 
s s 

1 ` 
δν s µ s s 

ν 
sR R R R Rλ λ λ ` δµ ` δµ“ 4α ´ 2 β ` ´ “ 0.α gsλ λλ4 3 λ2 

(5.5) 

Let us note that Minkowski, Schwarzschild-de Sitter and in fact any constant curvature space 
with R “ ´ 

2
Λ 
γ 

are solutions of these equations. 
One can study these two equations order by order in κ. We will see however that in 

this restricted FO approach, the lowest order of the EoM is tautological for several simple 
spacetimes, so that we will need to study perturbatively nonmetric solutions, solving the EoM 
for the perturbation of the connection feld Aλ 

µν . We can then extract the metric perturbation 
from the connection perturbation using a procedure detailed in the following section. 
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5.1 How to derive a spacetime metric from the connection field 

It has been pointed out that in theories treated in the FO formalism all physics is sometimes 
(for example, whenever the background spacetime is Ricci fat) conveyed by the connection 
feld, so we have to be able to recover the physical space-time metric from the said connection 
feld. Nevertheless, not every connection is metric compatible; that is, it is not always possible 
to fnd a metric such that the given connection (even assumed to be torsion-free) is the Levi-
Civita one stemming from the metric itself. 

The condition for that to be true can be clearly stated using the metricity condition for a 
general connection, rλgδβ “ 0, which gives the linear system of partial di�erential equations 

�α
Bλ gδβ “ gαδ �

α 
` gαβ (5.6)βλ λδ. 

The key step in this construction is to use this compatibility condition even for connections 
that are not metric compatible. This is a particular way of choosing a projection of the 
three-index connection onto a spin two part. This is in general a quite complicated system 
for the ten unknown functions gαβ in terms of the �µ but we can solve it order by order inαβ 

κ expanding the metric and the connection 

gαβ “ ḡ αβ ` κhαβ, 

�α 
“ � 

α 
` Aα (5.7)βγ βγ βγ, 

where we are assuming that Aα “ Opκq and we take the Levi-Civita connection as theβγ 

background of the connection feld (namely, we work in the restricted FO formalism). The 
preceding equation up to order κ then reads 

α α α α
Bλḡ δβ ` κBλ hδβ “ ḡ αδ�βλ ` ḡ αβ�λδ βλ ` κhαβ�λδ gαδA

α 
` ḡ αβAλδ

α . (5.8)` κhαδ� ` ̄ βλ 

¯Using the metricity property of the Levi-Civita connection rλḡ δβ “ 0, we have 

κr ¯ 
λhαβ “ Aα|βλ ` Aβ|αλ. (5.9) 

Please note that Aδ|βλ “ Aδ|λβ, but there is no symmetry in general a�ecting the frst index. 
Based on this, we shall define (even when this condition is not satisfed), the metric associated 
to a given connection by 

λ 
` ˘

¯κ2̄hαβ “ r Aα|βλ ` Aβ|αλ , (5.10) 

where we have just taken the derivative of the previous equation. This is nothing else than 
projecting a spin-2 part from a general torsionless connection. 

5.2 Perturbations of constant curvature spacetimes (CCS) 

In order to explore the procedure analyzed in the previous section, let us begin by exploring 
a toy model, namely, a maximally symmetric spacetime. These spacetimes are defned as the 
ones for which their Riemann tensor has the simple form given by 

L
R̄αβγδ “ ´ pḡ αγ ḡ βδ ´ ḡ αδḡ βγ q . (5.11)

3 
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In four dimensions, the EoM (5.3) for the metric just yields the well-known relationship 
between the curvature and the cosmological constant given by 

� 
L “ , (5.12)

2γ 

so that the graviton EoM does not give us more information. In the restricted FO approach 
the EoM for the connection (5.4) takes the form 

” 

˘

ı 

µν 
s 

1 ` 
s srrr δν λ 

ν Aλ 
µν 

µ 
` δµ λλ ´ “ 0. (5.13)gs 

2 

The aim of this section is to analyze perturbatively solutions for more general connections, in 
particular, connections with nonmetricity. Given the tautological character of the graviton 
EoM (5.3) we can then extract the spin 2 part from the connection perturbation. 

In the particular case of maximally symmetric spacetimes, it will prove convenient to 
work with Synge’s [31] world function σpx, yq (see Appendix B to see its defnition and the 
properties that follow). In the Riemannian case, it is equivalent and sometimes simpler to 
use the geodesic distance, spx, x1q. 

In the following, we shall discuss several ansatzes for the connection, which we shall 
classify according to the behavior under the contraction with sλ. For each sector, we also 
obtain the form of the metric perturbations stemming from the connection perturbation using 
the relation (5.10). It adds no diÿculty to perform most calculations for arbitrary elliptic 
spacetime dimension, n. 

5.2.1 Longitudinal connections 

We start with the ansatz Aλ “ fpsqsλsµsν , which can be checked to be a particular solution µν 

of (5.13) for any fpsq3 . Here, sµ stands for the derivatives of the arc distance s, and the 
indices are raised with the arbitrary CCS metric appearing in (5.11). The properties of these 
derivatives can be found in Appendix B, where one can check that they can be written in 
terms of a function of the arc distance itself and the constant curvature scale L. 

Introducing the ansatz in the rhs of the compatibility condition (5.10) we get 

λ 
` ˘

¯ “ 2 pf 1Aµ|νλ ` Aν|µλ psq ` fpsq2̄sq sµsν , (5.14)r 

where prime denotes derivation with respect to s. Let us assume that the perturbation of 
the metric is also a function of the geometric quantities only, that is, a function of the arc 
length. This is obviously not true for any possible perturbation, but we stick to this choice 
in order to get to simpler results. This is equivalent to taking the following ansatz for the 
metric perturbation 

hµν “ h0psqḡ µν ` h1psqsµsν , (5.15) 

µ δµ3Let us note that this ansatz would correspond to a scalar sector in a rest frame defned by s “ 0 , 
so that this solution reduces to A000 and represents a spin 0 scalar mode. We are not getting into more 
detail here as the purpose of the paper is not the analysis of the spin components of the connection feld. 
Nevertheless, a detailed derivation of the di�erent spin projectors and the combination of the components of 
the connection that correspond to each of the spin components can be found in [5]. 
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so that the lhs of (5.10) reads (for arbitrary spacetime dimension, n) 
„ ˆ „ ˆ 

2 1 n´ 1 2 1 n´ 1 
2̄hµν “ h0psq ` h0psq ḡ µν ` h1psq ` h1psq sµsν ` 

L tan s L tan s 

” 

L 
ı 

L 

2 n´ 1
` h1psq pḡ µν ´ sµsν q ´ 2 sµsν . (5.16)s sL2 tan2 

L 
L2 tan2 

L 

With this, the compatibility condition (5.10) establishes the system of ODE 

2 1 n´ 1 2 
h0psq ` h0psq ` h1psq “ 0 s sL tan 

L 
L2 tan2 

L 
” ı 

2 1 n´ 1 2n 2 n´ 1 
h1psq ` h1psq ´ h1psq “ f 1psq ` fpsq . (5.17)s s sL tan L2 tan2 κ L tan

L L L 

We can then obtain a solution to the metric perturbations as a function of the arc length. Let 
us remember that the function fpsq appearing in the ansatz of the connection is arbitrary at 
this point, but we can choose a certain form of this function in order to get a simple solution 
for these equations. 

Let us begin by considering s ! L so that the ODE reduce to 

2 1 n´ 1 2 
h0psq ` h0psq ` h1psq “ 0 

2s s 
” ı 

2 1 n´ 1 2n 2 n´ 1 
h1psq ` h1psq ´ h1psq “ f 1psq ` fpsq . (5.18)

2s s κ s 

Assuming a particular sector where the arbitrary function takes the precise form 

C 
fpsq “ ´ , (5.19) 

s 

we can fnd a solution given by 

C ´n 
` C2s 

2h1psq “ pn´ 2q ` C1s 
κn 
C1 C2 C3 2C 

h0psq “ ´ s ´n ´ s 2 ´ s 2´n ´ log s. (5.20) 
n n n´ 2 nκ 

We can also fnd an exact solution of the original equations performing the change 

s 
x ” cos . (5.21)

L 

We can rewrite the homogeneous part of equations (5.17) as 

2B2h0 Bh0 x 
p1 ́  x 2q ´ nx ` 2 h1 “ 0

Bx2 Bx 1 ́  x2 

B2h1 x 
p1 ́  x 2q ´ nx 

Bh1 
´ 2n 

2 

h1 “ 0,
Bx2 Bx 1 ́  x2 

(5.22) 
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and the solution of the second of those is then given by 

” 

? 
2 

? 
ı2´1` 1`6n`n ´1` 1`6n`n 

4 2 2 
` ˘

2´n 

h1pxq “ x 
2 
´ 1 c1P pxq ` c2Q pxq . (5.23)n`2 n`2 

2 2 

On the other hand, we can combine the equations (5.22) 

B2 

p1 ́  x 2q ph1 ` nh0q ´ nx 
B
ph1 ` nh0q “ 0 (5.24)

Bx2 Bx 

whose solution is 
ˆ ˙

` ˘p2´nq{2 3 ́  n 3 
h1pxq ` nh0pxq “ ´c1x x 2 ´ 1 2F1 1; ; ; x 2 ` c2. (5.25)

2 2 

It remains to correct for the non-homogeneous pieces, but taking into account that fpsq was 
arbitrary, we can choose 

´ ¯ ´pn´1qs 
fpsq “ C sin . (5.26)

L 

In this way, the second member of the inhomogeneous equation vanishes, and the quoted 
previous solution carries on. Finally we get 

ˆ ˙

” ı1 ` ˘p2´nq{2 3 ́  n 3 2h0pxq “ ´ c1x x 2 ´ 1 2F1 1; ; ; x ` c2 ´ h1pxq , 
n 2 2 

2 2” ´1` 
? 

1`6n`n ´1` 
? 

1`6n`n ı 

4 2 2 
` ˘

2´n 

h1pxq “ x 
2 
´ 1 c1P pxq ` c2Q pxq . (5.27)n`2 n`2 

2 2 

5.2.2 Transverse connection 

In the following, we further explore another possible ansatz for the connection feld given by4 

Aλ 
“ gpsqs λ sµν . (5.28)µν 

µAλWe call these connections transverse because of the vanishing contraction s “ 0. Intro-µν 

ducing this ansatz in the EoM of the connection (5.13), we get 

g 
1 

psqs 22̄s` gpsqp2̄sq2 ` gpsqs λ2̄sλ “ 0. (5.29) 

We can use the properties of the arc length in (B.3) to rewrite the ODE for gpsq as 

ˆ ˙2 
1 n´ 1 n´ 1 n´ 1 
g psq ` gpsq ´ gpsq “ 0. (5.30)s s sL tan L tan L2 sin2 

L L L 

4Taking the rest frame as before this would correspond to a spin 2 mode that could be used to obtain 
the metric degree of freedom describing the graviton [5]. But again, we shall not get into the details of the 
derivation of the precise form of the spin components. 
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We can solve it for obtaining 

C1 
gpsq “ . (5.31)

2pn´1q{2 cosps{Lqpsinps{Lqqpn´2q 

We can see that in this case, the function appearing in the ansatz of the connection is 
constrained to have a particular form as a function of the arc length. 

The next step is to substitute the compatibility condition (5.10), 

” ı

` ˘ 2 n´ 1¯ r λ Aµ|νλ ` Aν|µλ “ gpsq pḡ µν ´ sµsνq ´ 2 sµsν , (5.32)s sL2 tan2 
L 

L2 tan2 
L 

yielding the system of ODE 

2 1 n´ 1 2 gpsq 2 
h0psq ` h0psq ` h1psq “ ,s s sL tan L2 tan2 κ L2 tan2 

L L L 

2 1 n´ 1 2n gpsq 2n 
h1psq ` h1psq ´ h1psq “ ´ . (5.33)s s sL tan L2 tan2 κ L2 tan2 

L L L 

We already know the solution of the corresponding homogeneous equations, as the lhs of the 
equations remains unchanged, which was obtained for the scalar sector. Let us now introduce 
the non-homogeneous part. Again, one can consider the regime s ! L so that the particular 
function appearing in the ansatz can be Taylor expanded as 

Cκ 
gpsq “ . (5.34) 

sn´2 

We can fnally solve for the metric functions and get 

C C1 C2
h1psq “ ` ` , 

sn´2 sn 2s 
C1 C2 C3

h0psq “ ´ s ´n ´ s 2 ´ s 2´n ` C4. (5.35) 
n n n´ 2 

Let us mention again that these are very particular solutions to illustrate the procedure of 
obtaining nonmetric connections from where one could extract a spin 2 sector including the 
graviton solution. In the following sections, we move towards more physically interesting 
solutions, focusing on black hole solutions and analyzing them in the FO formalism. 

Structural stability of Schwarzschild’s solution in the 

restricted first order approach 

Let us now analyze the stability of the Schwarzschild metric from our new vantage point. It is 
convenient to do so, to change slightly the action principle by including explicitly a Riemann 
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square term in the Lagrangian and quenching the cosmological constant to zero. We start 
then with the action given by 

» 
ˆ ˙

” ı

a 2 
d4S “ x |g| ´ γ R ´ 2αR2 

` β ` α R2 
` λR2 . (6.1)µν αβρσ 3 

For this action, the EoM reduce to 
„ ˆ 

1 
R̄2 

s 

λρσ hµνḡ µν αβρσ ´ 2RsµλρσRν “ 0 
2
” ı 

s srrµτν ντµ Aλ 
µν 

sR ` Rs “ 0 (6.2)τ τλ λ 

The order zero part of these equations, that is, the background EoM, is tautological when 
taking as the background felds the Levi-Civita connection and the Schwarzschild metric. 
We can then focus on obtaining perturbatively order κ solutions, which lead to a nonmetric 
connection. One can easily realize that the EoM for the metric is exactly the Bach-Lanczos 
identity [32] for Ricci-fat metrics where Weyl’s tensor is exactly the Riemann tensor (a simple 

r 

proof of it was included as an appendix in [2]) 

1 
ḡ µνWαβρσ 

2 
´ 2WµλρσWν 

λρσ 
“ 0. (6.3)

2 

Thus, the order κ piece of the graviton EoM is also tautological. We are here in the situation 
where the EoM for the perturbations of the metric is empty (just because it is a geometric 
identity). We shall then try to get some information on those perturbations through the 
EoM for the connection feld. Even if this is a somewhat ambiguous procedure given the high 
spin content of this feld, physically, we are just selecting a spin 2 projection of the general 
connection feld. 

The EoM for the connection in turn, reads 

s

µτν 
τ A

λ 
µν 

sR “ 0 (6.4) λ 

We will focus on two particular ansatzes for the connection and metric perturbations and use 
the projection (5.9) of the connection onto a spin 2 part given by the metric perturbations. 

• First, we assume a perturbation of the spacetime metric hµν that only a�ects the time-
time component of the perturbation and just depends on one arbitrary function 

h00 “ Bprq. (6.5) 

To determine this perturbation, one can see that with the compatibility condition (5.9) 
we only need three components of the connection feld. Namely, A0 “ A0 and A1 

01 01 00. 
We now take an ansatz for the connection feld inspired by the symmetry and form of 
the components of the Levi-Civita connection for a Schwarzschild metric. In this case, 
we take 

A0 
“ A0 A1

“ fprq, “ gprq. (6.6)01 01 00 

23 



.

With this connection, the EoM (6.4) reads 
! ” 

˘

ı)

` rs 2 2 1
pr ´ 2rsqpr ´ rsq

2fprq ` r r gprq ´ pr ´ rsq pr ´ rsq
2f 1prq ` r g prq “ 0. 

r5pr ´ rsq2 

(6.7) 

Finally, introducing this form of the connection in the compatibility condition (5.9), 
we obtain a system of equations given by 

κrs r ´ rs r
´ Bprq “ fprq ´ gprq,

2pr ´ rsq r r ´ rs
” ı 2pr ´ rsq
κ B1prq ´ 

rs 
Bprq “ fprq. (6.8)

pr ´ rsq r 

Let us note that when fprq “ gprq, the equation of motion and the compatibility 
condition form an incompatible system of equations. Combining both equations of 
(6.8) and using the EoM (6.7), we can solve for the function appearing in the metric 
perturbation 

c c 

”

a 

`? ? ˘

ı rs C2 rs 2Bprq “ C1 1 ́ ` 1 ́ p2r ` 3rsq rpr ´ rsq ` 3rs log r ` r ´ rs . 
r 4 r 

(6.9) 

Going back to the system of equations (6.8) the solution of the connection perturbations 
is given by 

” κ a

` 

2
˘ 

3 
`? ? ˘

ı 

fprq “ ´ ? 4C1rs ` rpr ´ rsq ´8r 2 ` 2r rs ` 3r C2 ` 3C2r log r ` r ´ rs ,
16 rpr ´ rsq3{2 
” κ ? ? ` ˘ 

s 

? 

s 

`? ? ˘

ı 

2 2 3 3 gprq “ 
5{2 

4C1rs r ´ rs ` r 8r 3 ´ 6r rs ` r r ´ 3r C2 ` 3C2r r ´ rs log r ` r ´ rss s s16r 
(6.10) 

The only perturbation of the metric is then encoded in the g00 component which reads 
c 

C2 

c

`? ´ ¯ ! ” 

˘

ı)rs rs rs a ? 
g00 “ 1 ́ ` κ C1 1 ́ ` 1 ́ p2r ` 3rsq rpr ´ rsq ` 3r 

2 log r ` r ´ rs 
r r 4 r s 

(6.11) 

In conclusion, this is a general result of this type of perturbative analysis. We always 
recover a horizon, unperturbed at the initial location, r “ rs. 

• Next, we assume a metric perturbation depending on two arbitrary functions 

h00 “ Bprq, h11 “ ´Aprq. (6.12) 

In order to determine the spacetime metric perturbations, we only need six components 
of the connection. In this case, these are 

A0 
“ A0 

“ fprq, A1 
“ gprq, A1 

“ cprq, A1 
“ eprq, A1 

“ eprq sin2 θ. (6.13)01, 01 00 11 22 33 
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Introducing these functions in the connection EoM (6.4), we have 
! rs 
rpr ´ 2rsqpr ´ rsq

2fprq ` r 4 gprq´
r6pr ´ rsq2 

” 

˘

ı)

` 

´ pr ´ rsq ´ 3pr ´ rsqeprq ` r rpr ´ rsq
2f 1prq ` r 3 g 1prq ` pr ´ rsqe 

1
prq “ 0. 

(6.14) 

Besides, the compatibility condition (5.9) reduces to the following system of equations 

” ı

pr ´ rsqrs rs r ´ rs r 
κ Aprq ´ Bprq “ fprq ´ gprq,

2r3 2rpr ´ rsq r r ´ rs
” ı rs 2pr ´ rsq
κ B1prq ´ Bprq “ fprq, 

rpr ´ rsq r 
” ı rs 2r 
κ A1prq ` Aprq “ cprq, 

rpr ´ rsq r ´ rs 
r 

κpr ´ rsqAprq “ eprq. (6.15) 
r ´ rs 

Of course we recover the previous case when Aprq “ 0 and cprq “ eprq “ 0. Using the 
EoM in (6.14), we can solve for the function determining the metric perturbation h11 
in terms of the function determining the h00 perturbation 

2 ” ı r 
Aprq “ rsBprq ` rpr ´ rsq pC1r ´ 2B

1
prqq . (6.16)

p2r ´ 3rsqpr ´ rsq2 

In this case, we have two components of the Schwarzschild metric that have been 
perturbed, and the total contributions to these components read 

´ ¯ rs 
g00 “ 1 ́ ` κBprq

r 
2 ” ı1 r 

g11 “ ´ ´ κ rsBprq ` rpr ´ rsq pC1r ´ 2B
1
prqq (6.17)

1 ́  rs p2r ´ 3rsqpr ´ rsq2 r 

Finally, one can see that when considering more general perturbations for the con-
nection and the graviton we fnd generically a displaced horizon whose value is given 
by 

r “ rs ` κrsBprsq. (6.18) 

The previous case corresponded to Aprq “ 0 for which we have Bprsq “ 0 and the 
horizon is not perturbed. 

The fate of spherical horizons in the restricted first 

order approach 

In this fnal section, we return to the initial action (1.1) including the cosmological constant 
to carry out the same analysis of section 2 but in the restricted FO formalism. Let us 
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recall that with restricted we mean that we take as the background connection the Levi-
Civita connection. As we will see, even in the restricted case, FO and SO are not strictly 
equivalent. Our purpose here is precisely to contrast both approaches to the problem. We 
already know as a matter of fact that the Schwarzschild-de Sitter metric is an exact solution 
of the graviton EoM, but we want to see whether the other families that were studied in SO 
are also solutions in the restricted FO approach. 

Again with the ansatz (1.5) of the metric in the EoM (5.5), and restricting ourselves to 
the background connection being the Levi-Civita one, we have that the EoM of the metric 
take the following form in terms of Aprq and Bprq

! ´ ¯ 1 ` ˘ 1 

HFO 
“ ´ 4A4B4 4α ´ 12β ´ 6r 2γ ` 3r 4� ` 8A3B3 

p4α ´ 12β ´ 3r 2γqB ` 6rαB ` 00 24r4A4B3 
” 

` ˘ 

` r 2B2A12 ´4pα ´ 12βqB2 
´ 12rαBB1 ` r 2pα ´ 3βqB12 ´ 2rABA1 8pα ` 6βqB3 

´ r 3pα ´ 3βqB13´ 
ı 

´ 12rαB2
pB1 ` rB 

2 

q ` 2r 2BB1 pp8α ´ 6βqB1 ` rpα ´ 3βqB2q ` 
” 

` ˘ 

` A2 8B4 4
´2α ` 6β ` rp2α ` 12β ` 3r 2γqA1 ´ 48rαB3B1 ` r pα ´ 3βqB14´ 

` 

´ 4r 3BB12 pp5α ´ 
˘ 

ı)

6βqB1 ` rpα ´ 3βqB2q ` 4r 2B2 
p7α ´ 12βqB12 ` 2rp5α ´ 6βqB1B2` 

`r 2pα ´ 3βqB22 “ 0, (7.1) 

!1 ` ˘ ` 

HFO 
“ 4A4B4 4α ´ 12β ´ 6r 2γ ` 3r 4� ` 8A3B3 

´p4α ´ 12β ´ 3r 2γqB` 11 24r4A3B4 
˘ ` ˘

2B2A12`rp2α ` 12β ` 3r 2γqB1 ` r p´28α ` 48βqB2 
´ 4rp5α ´ 6βqBB1 ´ r 2pα ´ 3βqB12 ` 

” 

` 2rABA1 ´ 24αB3 
´ r 3pα ´ 3βqB13 ` 4rB2

p´3αB1 ` rp5α ´ 6βqB2q`
ı 

` 2r 2BB1 pp´8α ` 6βqB1 ` rpα ´ 3βqB2q ` 
” 

` A2 16B4 
pα ´ 3β ` 3rαA1q ´ 16rpα ` 6βqB3B1 ´ r 4pα ´ 3βqB14` 

` 

` 4r 3BB12 p´3αB1 ` rpα ´ 3βqB2q ´ 4r 2B2 
´pα ´ 12βqB12 ´ 6rαB1B2` 

˘ 

ı)

`r 2pα ´ 3βqB22 “ 0, (7.2) 

!1 
H22 

FO 
“ 4p´4α ` 12β ` 3r 4�qA4B4 

` r 2B2A12p12αB2 
` 4rpα ´ 3βqBB1` 

4A4B424r
´ 

` r 2pα ´ 3βqB12q ` 2rABA1 8pα ´ 3βqB3 
` r 3pα ´ 3βqB13 ´ 2r 3pα ´ 3βqBB1B2´ 

¯ ´ 

´ 4rB2
p´3αB1 ` rpα ´ 3βqB2q ` 2A3B2 16pα ´ 3βqB2 

´ 3r 4γB12` 
¯ ” 

` Bpp8rpα ´ 3βq ` 6r 3γqB1 ` 6r 4γB2q ` A2 
´ 4B4

p4pα ´ 3βq ` rp4α ´ 12β ` 3r 2γqA1q´ 

´ 2rB3
p8pα ´ 3βq ` 3r 3γA1qB1 ` r 4pα ´ 3βqB14 ´ 4r

ı) 

3
pα ´ 3βqBB12pB1 ` rB2q` 

` 4r 2B2
p3αB12 ` 2rpα ´ 3βqB1B2 ` r 2pα ´ 3βqB22q “ 0, (7.3) 
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and HFO “ HFO sin2 θ, where Apnq corresponds to the n-th partial derivative. On the other33 22 

hand, taking the EoM for the connection given in (5.5), we have fve independent components 

!1 
C1 

“ ´ 8p2α ` 3βqA3B3 
` 2r 2B2A12p´4p2α ` 3βqB ` rpα ´ 3βqB1q`00 3r3A3B2

” ı 

` r 2AB 2rpα ´ 3βqA1B12 ` 4p2α ` 3βqB2A2 ´ pα ´ 3βqBprB1A2 ` A1p4B1 ` 3rB2qq ̀  
” 

` 2A2 4p2α ` 3βqB3 
` r 3pα ´ 3βqB13 ´ 2r 2pα ´ 3βqBB1pB1 ` rB2q`

ı)

` rpα ´ 3βqB2
p´2B1 ` rp2B2 ` rBp3qqq , 

!1 
C0 

“ ´ 8pα ´ 3βqA3B3 
´ 2r 2pα ´ 3βqB2A12p4B ` rB1q`10 3A3B26r

” ´ 

` r 2AB ´ 2rpα ´ 3βqA1B12 ` 4pα ´ 3βqB2A2 ` B rpα ´ 3βqB1A2 ´ A1p4p2α ` 3βqB1´ 
¯ı ” 

´ 3rpα ´ 3βqB2q ` 2A2 4pα ´ 3βqB3 
´ r 3pα ´ 3βqB13` 

ı)

` 2r 2BB1p´p2α ` 3βqB1 ` rpα ´ 3βqB2q ` rpα ´ 3βqB2
p2B1 ´ rp2B2 ` rBp3qqq , 

! ” ı)1 
C1 

“ 4α 2A2B2 
´ rBA1pB ` rB1q ´ Ap2B2 

` r 2B12 ` rBpB1 ´ rB2qq ,11 r3AB2 

! ” 1 
C2 

“ ´ 8p2α ` 3βqA3B3 
` 2r 2pα ´ 3βqB2A12p4B ` rB1q ` rAB 2r 2pα ´ 3βqA1B12` 12 6rA3B3 
´ ¯ı 

` 4B2
p3αA1 ´ rpα ´ 3βqA2q ` rB ´ rpα ´ 3βqB1A2 ` A1p2pα ` 6βqB1 ´ 3rpα ´ 3βqB2q ` 
” 

` 2A2 4p2α ` 3βqB3 
` r 3pα ´ 3βqB13 ` r 2BB1ppα ` 6βqB1 ´ 2rpα ´ 3βqB2q`

ı)

` rB2
pp4α ` 6βqB1 ` rp´2p2α ` 3βqB2 ` rpα ´ 3βqBp3qqq , (7.4) 

!1 2B2A12C1 
“ ´ 8pα ´ 3βqA3B3 

` 2r p2pα ` 6βqB ` rp2α ` 3βqB1q´22 3rA3B3
” 

´ rAB ´ 2r 2p2α ` 3βqA1B12 ` 2B2
p´3αA1 ` rpα ` 6βqA2q`

´ ¯ı 

` rB rp2α ` 3βqB1A2 ` A1p2pα ` 6βqB1 ` 3rp2α ` 3βqB2q ` 
” 

` 2A2 34pα ´ 3βqB3 
` r p2α ` 3βqB13 ´ r 2BB1ppα ` 6βqB1 ` 2rp2α ` 3βqB2q`

ı)

` rB2
p´pα ` 6βqB1 ` rppα ` 6βqB2 ` rp2α ` 3βqBp3qqq . (7.5) 
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7.1 Solutions near the origin 

Let us try and fnd power series solutions as general as possible to the equations of motion 
presented above, mirroring what we did in section 2 in the SO approach. We continue to 
classify the solutions by the behavior of the functions appearing in the metric (1.5) at r „ 0, 
where we expand them as 

Aprq “ asr 
s 
` as`1r 

s`1 
` . . . ,

` ˘ 

Bprq “ bt r 
t 
` bt`1r 

t`1 
` . . . . (7.6) 

Again, we classify the solutions in terms of the values of ps, tq. 

• There is a one 1-parameter, �, family with the behavior ps, tq “ p0, 0q. 

ˆ ˙2 
r 

Aprq “ 1 ̀ ` Opr 4q

ˆ 

rΛ 
˙2

Bprq r
“ 1 ́ ` Opr 4q, (7.7)

b0 rΛ 

These simple solutions do not possess any singularity and correspond to candidates 
for the vacuum of the theory (of course, if � “ 0 this family reduces to Minkowski). 
In this case, we see that these solutions are fully characterized by the cosmological 
constant, that is, they correspond to constant curvature spacetimes whose properties 
will be driven by the sign of �. This family is nothing but the expansion of the de 
Sitter spacetime around the origin. 

• There is another 2-parameter, pa1,�q, singular family with the behavior ps, tq “ p1,´1q. 

˜ ¸

ˆ ˙2 
a12 3 4 5Aprq “ a1r ´ a1r 

2 
` a1r 

3 
` ´a ` r 4 ` Opr q1 rΛ 

ˆ ˙2
Bprq 1 r

“ ` a1 ´ a1 ` Opr 3q (7.8)
b´1 r rΛ 

these solutions matchs exactly the expansion of the Schwarzschild-de Sitter metric for 

1 
a1 “ ´ , b´1 “ ´rs. (7.9) 

rs 

The remarkable result here is that the horizonless p2, 2q family that was present in the 
SO formalism is not a solution in the restricted FO approach. We study this in detail in the 
following section. 
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7.2 Absence of the (2,2) family 

In second order (SO) we found a family of solutions with the behaviour ps, tq “ p2, 2q, where 
the metric functions took the form 

` ˘

4 a2 6Aprq “ a2r 
2 
` a2b3r 

3 
´ r 2a2 ` b

2 
´ 8b4 ` a5r 

5 
` Opr q,36 

Bprq 
“ r 2 ` b3r 

3 
` b4r 

4 
` b5r 

5 
` Opr 6q. (7.10)

b2 

These solutions depended on six parameters pb3, b4, b5, a2, a5,�q. This family is physically 
very interesting as it represents a horizonless family that can o�er an alternative outcome of 
a spherical symmetric collapse in SO quadratic gravity. This family, however, is not present 
anymore in the restricted FO approach. Let us now explore why this happens. Starting with 
a general Lagrangian Lpg,�q, the second order equation of motion is, omitting indices in 
order not to clutter the notation, 

δL δL δ�pgq
` “ 0, (7.11)

δg δ� δg 

where we have used the chain rule as we know that �SO “ �LC “ �pgq. In the FO approach, 
however, we perform independent variations for the connection and the metric feld, although 
in the restricted case studied here we then fx the connection to be the Levi-Civita one. 
Nevertheless, we fnd the system of equations 

δL 
“ 0 

δg 
δL 

“ 0 (7.12)
δ� 

From here one can clearly see that all the solutions of FO formalism will be solutions in the 
SO one. Nevertheless, the converse is not true. It may happen that the two summands in 
(7.11) cancel each other without neither of them vanishing. This is exactly what happens for 
the ps, tq “ p2, 2q SO solution as we can easily see below. 

We begin with the form of the p2, 2q family of solutions, 

Aprq “ a2r 
2 
` Opr 3q, 

Bprq “ b2r 
2 
` Opr 3q. (7.13) 

Introducing this in the EoM of the graviton (5.3), i.e. δ
δg 
L “ 0, we fnd 

HFO 
00 “ ´192αa2

2b2
4 
“ 0 

HFO 
11 “ ´576αa22b2

4 
“ 0 (7.14) 

On the other hand, we can take the EoM for the connection feld (5.4) and contract it with 
the variation of the connection (the Levi-Civita one in the restricted approach) with respect 
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8 

to the metric function to compare it with the second summand of (7.11). We get 

ˆ ˙ 

s s R̄ λ Rµν ´ 
1 rr Rρσ ¯´ 2 ¯ Rµρνσ ´ 2s ̄  2 ¯ gµν sRs` 2RsµλR“ ´2α `Dµν ¯ ν νµ 
2

˙

`

ˆ 

2α 
s s ¯ 

˘ 

` Rrr 2 ¯ gµν sR` 2 ´ ̄ “ 0.β (7.15)νµ
3 

Introducing the ansatz of the p2, 2q family of solutions they read 

D00 “ 192αa22b2
4 
“ 0, 

D11 “ 576αa22b2
4 
“ 0. (7.16) 

“ HFO In the restricted FO we have to solve them the the system of equations HFO “ 0 and 00 11 

D00 “ D11 “ 0, whose solution is a2 “ 0 or b2 “ 0, i.e. there is no p2, 2q family. On the other 
“ HFO hand in SO, the EoM (7.11) is nothing but the sum given by HSO ` Dµν , which oneµν µν 

can trivially see that is fulflled in this case, the p2, 2q family being a solution in SO. 

Conclusions 

Let us begin with the SO approach. First of all, we have generalized the analysis in [7–10] 
to the case where a cosmological constant is present. It can be proven that the di�erent 
families of solutions found in the references above still hold and possess the same behavior. 
In particular, we fnd that near the origin r “ 0, we still have the horizonless p0, 0q and p2, 2q
families and the p1,´1q Schwarzschild-de Sitter-like family. One of the main points of the 
paper is the fact that we can match these families of solutions (with di�erent behavior near 
the origin) with the asymptotic universal behavior in the infnity, the p´2, 2q family. 

From the physical point of view the most interesting question is whether the horizonless 
p2, 2q solution is compatible with Solar system tests of General Relativity; in other words, how 
big is the di�erence between it and the template Schwarzschild solution, or more generally, 
whether it qualifes as a possible candidate for the endpoint of stellar evolution in appropriate 
situations. This point has been recently studied by Holdom [10–12]. Physically, the region 
we can test is almost the asymptotic one, that is, r " rs although recent e�ort has been 
made regarding the possible experimental signatures of the horizon region (see cf. [33, 34]). 
The region in the vicinity of the singularity r „ 0 is out of experimental reach for the time 
being. 

Concerning that, the most important fact is that the asymptotic expansion in the regime 
appropriate for Solar system observations (namely r " 1 but r ! 1) is quite universal, in the 

rs rΛ 

sense that it is not much a�ected by the presence of higher dimension operators. It could even 
be said that it is structurally stable. Thus, it seems that most of the observational evidence 
[35] supporting Schwarzschild’s solution is also valid for the p2, 2q horizonless solutions. An 
important physical problem is then whether it is possible to fnd a way of telling between 
these horizonless solutions and the Schwarzschild one. This has already been attempted with 
some numerical analysis [10–12, 33]. Gravitational wave probes regarding quadratic theories 
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of gravity and the horizonless solutions have also been studied in [36–39]. More work is 
clearly needed before this issue is sorted out. 

Unfortunately, and even if we put our wagers in the SO formalism, no conclusions can 
be drawn from our analysis on the fnal state of celestial bodies, which is itself a dynamical 
process. In this paper, we have only analyzed the structural stability of solutions of Einstein’s 
equations concerning small modifcations of said equations by terms coming from contribu-
tions of the Lagrangian of higher-order in the curvature. In fact, only quadratic terms have 
been considered, but all orders should be taken into account for consistency because all orders 
will appear as counterterms in a perturbative quantum treatment. 

We would like not to be misinterpreted. We are not claiming that the p2, 2q solution is the 
only one that matches correctly with the asymptotic behavior. We are only claiming that it 
matches as well as the p´1, 1q one. Our guess is that which particular solution is the correct 
one depends on the physical situation at hand. There is no unique response; remember that 
Birkho� ’s theorem does not hold anymore. The dynamics of a realistic collapse is an even 
more involved problem now than in the Einstein-Hilbert theory. 

In the second part of the paper, we have tackled the same problem in the FO approach. 
In the particular cases where the background spacetime is Ricci fat, the graviton EoM is 
tautological (proportional to Lanczos’ identity), so that the only spin 2 perturbation is to be 
found in one of the spin 2 components present in the connection feld. We have worked out 
some simple examples in constant curvature spaces to check how this formalism works. 

In the general case, however, when the graviton EoM has got non-trivial dynamical con-
tent (this happens for the families of solutions studied in section 7) we follow the FO approach 
restricted to the Levi-Civita connection. We frst point out that FO and SO are not equiva-
lent in general even in this restricted case. Actually, we fnd that the horizonless p2, 2q power 
series solution of the SO equations is not a solution of the graviton EoM in the FO approach. 
This is a physically relevant manifestation of the non-equivalence of FO and SO approaches 
in the present context. It is quite remarkable that this non-equivalence appears with respect 
to one of the physically most interesting physical solutions. 

At any rate, and even if one were to believe the SO results on the existence of horizonless 
solutions, it is still possible, of course, that some unknown as yet dynamical law of nature 
prevents the disappearance of horizons. It could be, for example, that consistency forces an 
unnatural value for all renormalized coeÿcients of the higher-order operators in the e�ective 
action, namely that all are to be set equal to zero. The only remaining operator will then be 
exactly R so that the Einstein-Hilbert Lagrangian would be stable after renormalization. 

It is of course also possible that the ultraviolet completion of general relativity is only 
possible in terms of other variables, such as strings. Nevertheless, even in this case, we believe 
our arguments to be sound. 

Precisely in that respect, the Cosmic censorship hypothesis [40] has been advanced by 
Roger Penrose, conjecturing that all singularities should be veiled by a corresponding hori-
zon. As a matter of fact, the physical mechanism hiding naked singularities remains largely 
unknown. At any rate, it should be remembered that predictivity is anyway lost at the Big 
Bang, which is in some sense the mother of all singularities. 
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A Runaways and higher derivatives 

The archetypal physical problem in which higher derivatives appear is the back reaction of 
the electromagnetic radiation; id est, the Lorentz-Dirac equation [41]. Equations of motion of 
degree higher than two typically get runaway solutions. This is a purely classical phenomenon, 
which is related to the presence of ghosts when quantizing the system, but one that can be 
analyzed independently. Consider for simplicity a linear equation of third-degree in time 
derivatives 

d3 d2 d 
xptq ` a xptq ` b xptq ` c xptq “ fptq. (A.1)

dt3 dt2 dt 

this equation can be easily solved using Fourier transform. Nevertheless, it is quite easy to 
prove that there is always at least one solution of the form 

xrun “ e 
λt (A.2) 

with real λ (the sign depends on the details of the equation). This follows from a classical 
theorem that asserts that a cubic algebraic equation has got at least one real solution (it can 
have all three roots real, depending on the sign of the discriminant). These are the runaway 
solutions. Depending on the sign of the exponent, they grow in time without bound, or else, 
1{x does it; they are not oscillatory solutions. As has been already indicated, they are the 
classical counterpart of quantum ghosts. 

It is a quite widespread belief that higher derivatives are always a problem [2,42–44] even 
when it naively appears that there are no ghosts or tachyons. Nevertheless, this should be 
qualifed in some cases, as we shall see. A standard argument for the iterated d’Alembertian 
is as follows. Consider the Lagrangian [45] 

L “ φ22φ. (A.3) 

introducing a Lagrange multiplier 

L “ ψ22φ´ 
1 
ψ2 , (A.4)

4 

and making the feld redefnitions 

ψ “ φ` ̀  φ´ 

φ “ φ` ́  φ´, (A.5) 

the Lagrangian takes the form 

1 
L “ φ`2

2φ` ́  φ´2
2φ´ ́ pφ´ ̀  φ´q

2 . (A.6)
4 

We then see that φ´ is a ghost because it has the wrong sign in its kinetic term. This 
argument is not very convincing though, because the felds φ˘ are not independent. 
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In spite of the fact that the delta function with support on the light cone 

δppk2q2q (A.7) 

is not well-defned apriori, in the classical reference [46], it is shown that the equation 

22φ “ 0 (A.8) 

has a well-defned Cauchy problem; that is, there is a unique solution determined by the 
initial conditions. This fact is a consequence of the existence of Riesz’ distribution Gλpxq (to 
be explicitly defned in a moment) such that 

22 lim G ` pxq “ δpxq. (A.9) 
λÑ2 

λ 

This, in turn, stems from the fact that 

2Gλ “ Gλ´1, (A.10) 

as well as 
lim Gλpxq “ δpxq. (A.11) 
λÑ0 

We can write G ` λ as [47] 
G ` λ pxq ” Cn,λ γ

λ´n{2 , (A.12) 

provided x P D ` p0q (the future domain of dependence of the origin) as G ` pxq vanishes λ 

otherwise. The quantity γpxq ” �p0, xq is Synge’s world function from the origin to the point 
x, and the constant reads 

1 
Cn,λ ” n . (A.13)

π ´122λ´1pλ´ 1q!pλ´ n{2q!2 

In [45] it is pointed out that even in those free theories, the Hilbert space of states lacks a 
positive defnite scalar product so that there are indeed zero as well as negative norm states 
in it, that is, ghosts. 

All of this changes, of course, when more derivatives enter into the equation. For example, 
in the particular case 

` ˘ ` 

2 4 2
˘2 

22 
´ 2m 2 ` m � “ 2 ´ m � “ 0, (A.14) 

there are runaway solutions 
� „ e mt . (A.15) 

This is exactly what happens in quadratic gravity. Making the ansatz 

Aprq “ ae Car 

Bprq “ beCbr , (A.16) 
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the trace of the equation of motion (3.1) reads 

Hµ
µ 
“ ´γR ´ 6β2R ´ 2� “ 0, (A.17) 

and substituting the divergent ansantz (A.16) we get 

!1 
Hµ 2

“ ´ 4a r 2p´γ ` r 2�q´
2r aµ 4
” 

2 
ı 

´ e ´rCa a 48β ` 4r 2γ ` 4p´6rβ ` r 3γqCb ` r 
4γC2 

´ Cap´24rβ ` 4r 3γ ` r 4γCbq ´ b 
” 

´2rCa β 3C3 2C2 2C2 2C2
´ 3e 3r p4 ̀  rCbq ` 4p´4 ̀  2rCb ` r b q ´ 4r a p2 ̀  5rCb ` r b q`a 

ı)

2C2 3C3
` rCap´24 ́  4rCb ` 8r ` r b q “ 0. (A.18)b 

This trace happens to be divergent whenever Ca € 0. Demanding cancellation of the more 
divergent terms (those that go as e ´2rCa ) we get the two possibilities 

1 1 
Cb “ or Cb “ . (A.19)

Ca 3Ca 

As has been already mentioned in the main text, it would be important to isolate boundary (or 
initial) conditions that prevent those runaway solutions to appear. As far as we understand, 
this remains an outstanding problem very much worth exploring. 

B Notes about constant curvature spaces (CCS) 

Synge’s [31] world function σpx, yq is defned as the square of the geodesic distance. It 
is appealing to use it in pseudo Riemannian spaces as it is positive semidefnite. In the 
Riemannian case it is simpler to use directly the geodesic length, spx, x1q, defned via the 
equation 

µν 
Bµs 

µḡ Bν s ” s sµ “ 1 (B.1) 

It also simple to check that for the CCS with scale L which are the ones obeying 

1
R̄αβγδ “ ¯ pḡ αγ ḡ βδ ´ ḡ αδḡ βγq , (B.2)

L2 

then in the elliptic case (negative cosmological constant, positive scalar curvature, with our 
conventions) the following formulas are true (the hyperbolic case which corresponds to posi-
tive cosmological constant and negative scalar curvature is quite similar, with circular func-
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tions replaced by hyperbolic ones) 

sµν “ sνµ “ 
1 

L tan s 
L 

pḡµν ´ sµsνq , 

µ µsµν s “ sµν s “ 0, 

n´ 1 
2̄s “ ,sL tan 

L 

1 
sµνρ “ ́  

L2 sin2 s 
L 

sρ ḡµν ´ 
L2 

1 

tan2 s 
L 

pḡµρsν ` sµ ḡνρq ̀  
2 s1 ̀  2 cos

L 
sL2 sin2 
L 

sµsν sρ, 

R̄¯ λ sαβγ ´ sαγβ “ Rγβαλs “ pḡαγsβ ´ ̄gαβsγq , 
npn´ 1q

n´ 1 
2̄psµq “ ́  sµ,sL2 tan2 

L 

λ sαλ s “ β L2 

1 

tan2 s 
L 

pḡαβ ´ sαsβq , 

1λ s sαβλ “ ́  
L2 sin2 s 

L 

pḡαβ ´ sαsβq , 

n´ 1λ s ” p2̄sqµ “ ́  λµ L2 sin2 s 
L 

sµ. (B.3) 

Some of these formulas are used in the main text. 
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