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Abstract—We propose two face representations that are blind
to facial expressions associated to emotional responses. This work
is in part motivated by new international regulations for personal
data protection, which enforce data controllers to protect any
kind of sensitive information involved in automatic processes. The
advances in Affective Computing have contributed to improve
human-machine interfaces but, at the same time, the capacity
to monitorize emotional responses triggers potential risks for
humans, both in terms of fairness and privacy. We propose two
different methods to learn these expression-blinded facial fea-
tures. We show that it is possible to eliminate information related
to emotion recognition tasks, while the performance of subject
verification, gender recognition, and ethnicity classification are
just slightly affected. We also present an application to train
fairer classifiers in a case study of attractiveness classification
with respect to a protected facial expression attribute. The results
demonstrate that it is possible to reduce emotional information in
the face representation while retaining competitive performance
in other face-based artificial intelligence tasks.

I. INTRODUCTION

During the past 15 years there has been a lot of effort in
creating technologies to extract emotional information from
facial expressions [1, 2]. These facial analysis technologies
can contribute to improve human-centric AI applications, like
enhancing the user experience [3] or facilitating the human-
computer interaction [4].

However, with the increase of image-capturing devices and
available software for face image processing, face analysis
technologies can also trigger potential risks for humans, both
in terms of fairness and privacy. First, facial analysis software
inherits human biases [5, 6], making them to perform poorly or
unfairly on groups of population that are not well represented
in the training data [7]. Second, humans might want to keep
their emotions private or to make sure emotion recognition
software is not used without their consent. Notice that privacy
protection is deeply embedded in the normative framework
that underlies various national and international regulations.
For example, in April 2018 the European Parliament adopted
a set of laws aimed to regularize the collection, storage and use
of personal information [8]. In particular, these laws encourage
to integrate privacy preserving methods in the technology
when it is created.

As a possible solution for preserving the users privacy in the
context of automatic face recognition, we propose to extract
face features that are blind to facial expressions. As shown in
Sec. V-A, generic face features learned for the task of subject
recognition preserve information to perform tasks related to

facial expression classification. However, features extracted for
the target task of subject recognition do not need to preserve
this facial expression information. In this paper we show that
we can effectively learn alternative face feature representations
for the task of subject classification that are blind to facial
expression. Notice that our work is in the direction of creating
automatic emotion-suppression systems, i.e., algorithms to au-
tomatically remove emotional information from captured data,
with the goal of preserving privacy. A similar idea was recently
explored in [9], where the goal is to suppress physiological
information from facial videos. Both facial expressions and
physiological signals contain information related to emotional
states.

In Sec. III-A we formally describe the problem of learning
the emotional-blinded face representations. Then, we propose
two different methods to learn these expression-blinded facial
features, which are based on existing generic techniques for
learning agnostic representations. The first one (SensitiveNets)
consists of learning a discriminator for the target task and
at the same time an adversarial regularizer to reduce facial
expression information. The second one (Learning not to
Learn) consists of using a regularized loss function during
learning, which quantifies the amount of information on the
sensitive task (facial expression recognition) by computing the
mutual information between the feature space and a pre-trained
facial expression classifier. The details of these two methods
can be found in Sec. III-B.

To validate the proposed framework and methods we per-
form an extensive set of experiments (Sec. V). First, we
show that face features learned for subject verification contain
significant information to perform facial expression classifica-
tion (sensitive information). Then, we show that both of the
proposed methods can actually eliminate information related
to facial expression. In particular, for the first method, we
show how the facial expression recognition accuracy drops
significantly when our proposed blinded face representations
are applied, while the performance of subject verification,
gender recognition, and ethnicity classification are just slightly
affected. Finally, our last experiment shows how the proposed
methods can be applied in another face analysis problem
(Attractiveness Classification) to protect the emotional infor-
mation.
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Fig. 1. Visual examples of the facial expressions, corresponding to basic
emotions, that are used in our experiments. Images from CFEE database [10].

II. RELATED WORKS

The study of new learned representations to improve the
fairness of learning processes has attracted the attention of
researchers [11–14]. In particular, [12, 13] proposed projection
methods to preserve individual information while obfuscating
membership to specific groups. The main drawback of these
techniques was that discrimination was modelled as statistical
imparity, which is not applicable when the classification task
does not correlate with membership in a specific group.

Bias correction and sensitive information removal are re-
lated to each other but they are not necessarily the same thing.
Bias is traditionally associated with unequal representation of
classes in a dataset [15]. Dataset bias can produce unwanted
results in the decision-making of algorithms, e.g., different
face recognition accuracy depending of your ethnicity [16, 17].
Researchers have explored new learning processes capable
to compensate this dataset bias [18, 19], but the correction
of biased training processes does not necessarily serve to
eliminate sensitive information from the trained representation.
While the correction of biased models seeks to generate
representations that perform similarly for different groups or
classes, the removal of sensitive information seeks to eliminate
this information from that representation. The proposal in [18]
is based on a joint learning and unlearning algorithm inspired
in domain and task adaptation methods [20]. The authors
of [21] propose a new regularization loss based on mutual
information between feature embeddings and bias, training
the networks using adversarial [22] and gradient reversal
[23] techniques. Finally, in [24] a privacy-preserving learning
method is proposed to remove sensitive information in feature
embeddings, without losing performance in the main task.
These works reported encouraging results showing that it is
possible to remove sensitive information (named as spurious
variations in [18]) for age, gender, ancestral origin, and pose
in face processing for different applications [25].

On the other hand, the normalization of face images directly
in the raw image space according to specific face attributes
such as pose [26] or gender [27, 28] is a challenging task.
In [27] researchers proposed de-identification techniques that
obfuscate gender attributes while preserving face verification

accuracy. Similarly, the method was based on Generative
Adversarial Networks trained to generate androgynous images
capable of fooling gender detection systems. The method in
[26] proposed 3D models to normalize the face expressions.
Although these methods showed promising results to generate
realistic images, the main drawback of these techniques is
that sensitive information is not eliminated but distorted. In
[24], researchers demonstrated that sensitive information can
be easily detected in those images when supervised learning
processes are trained in the distorted domain.

A. How Emotions are Expressed in Face Images

Automatic emotion perception from facial expressions is
an active area of research [29]. Some methods are based
on the Facial Action Coding System [30], which encodes
the facial expression using a set of specific localized face
movements, called Action Units (AU). State-of-the-art systems
for AU detection consist of deep learning models trained
with large datasets [31]. These methods show impressive
accuracies, even in uncontrolled environments [32]. However,
while there are systems for AUs detection that are accurate
enough to be used in practical applications, the prediction of
emotions from these face movements is a more challenging
problem. In that case, given a specific configuration of these
face movements (that we call facial expression) the goal is to
recognize the emotion category expressed by the face. There
are several works on face analysis that attempt to recognize
the 6 basic emotions proposed by Ekman and Friesen [33]
[2] or emotional dimensions, such as valence, arousal, and
dominance [29]. In general, all these methods are partially
based on the assumption that each emotion is universally
expressed with a specific face movement or, equivalently, with
a specific combinations of AUs (see Fig. 1).

On the contrary, there are studies showing that there is
no universal correspondence between AUs and emotions and,
therefore, it is not always possible to recognize emotions
just with the information provided by facial expressions [34].
Although this lack of agreement on whether it is possible or
not, in certain circumstances, to recognize emotions just from
facial expressions, the studies on psychology consistently show
that facial movements and expressions communicate a lot of
information, including information related to emotional states
[34, 35]. Thus, learning face features that are blind to facial
expressions, as proposed in this paper, can actually contribute
to preserve emotion privacy.

Additionally, understanding how facial expressions are rep-
resented in feature embeddings of deep neural networks mod-
els is important to gain insights into the learning processes of
these algorithms. Most face recognition algorithms are trained
to be agnostic to this information (i.e. facial expressions may
change and these changes should not affect the recognition
tasks). However, the features used to recognize a face are also
useful in general to recognize face gestures. Face expression
databases traditionally include both AUs and emotion labels
[36]. These databases are usually employed to model face
gestures as well as affective interfaces.
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Fig. 2. General framework including domain adaptation from a pre-trained face representation to multiple tasks (k = 0 to 3) with and without the emotional-
blinded representation ϕ(x). Ck is the number of classes for task k (e.g. C1 = 2 corresponds to classes male and female). fk is the projection to the adapted
domain and pk is a vector with the probabilities of each class for task k.

III. LEARNING EMOTIONAL-BLINDED REPRESENTATIONS

A. Problem Formulation

We employ the privacy-preserving learning framework
showed in Fig. 2 and detailed in [24]. The feature vector x ∈
RN is a face representation (a.k.a face embedding) obtained
as the output of one of the last layers of a face model defined
by parameters w ∈ RM . In our framework, the parameters
of the model w were trained to reveal patterns associated to
the identity of face images Ix (i.e. face verification). This pre-
trained model and the databases employed for training will be
detailed in Sec. V-A.

In this framework, domain adaptation is used to transform
the original representation trained for face verification f0(y)
into a new representation fk(y) (k ≥ 1 in Fig. 2) trained
for different tasks (k = 1: for Gender classification, k = 2:
Ethnicity classification, k = 3: Emotion classification). This
adaptation is performed leaving fixed w = w∗ as obtained
in the pre-trained model. The domain adaptation process for a
task k ≥ 1 results in a new learned model w∗k used to transform
the original representation x for the specific task k. Given a
face image, the final output of the learned model (i.e. pre-
trained plus domain adaptation) is a vector pk(Ix) containing
Ck probabilities associated to each of the classes of task k.

In this work, we evaluate the face embeddings generated
by the pre-trained model according to its performance in the
original task (i.e. face verification) and 3 other different tasks:
1) Gender Classification; 2) Ethnicity Classification; and 3)
Emotion Classification based on five of the six basic emotions
proposed by Ekman plus the neutral expression (Neutral,
Happy, Sad, Disgusted, Angry, Surprised).

The models {w∗,w∗k} are trained for a given task k rep-
resented by its target function Tk. The aim of the learning
process is to minimize the error between the output Ok of the
model and the target function Tk (e.g. T1 = 1 for male and
T1 = 0 for female). The most popular approach for that is
to train w and wk by minimizing a loss function L1 over a

set of Pre-training samples P for which we have groundtruth
targets:

min
w,wk

∑
Ix∈P
L1[Ok( Ix|w,wk) , Tk(Ix|groundtruth) ] (1)

The parameters {w∗,w∗k}, trained using Eq. (1), generate
a representation fk(y) that maximizes the performance of the
model for the task k.

In this framework, the goal of emotional-blinded learning
starting from pre-trained networks is to solve, including or not
the Emotional Suppression module, the following problem:

min
w,wE,wk

∑
Ix∈S
{L1[Ok(Ix|w,wE,wk), Tk(Ix|groundtruth)] +

+ L2[O3(Ix|w,wE,w3), T3(Ix|groundtruth)]} (2)

where L2 represents a loss function intended to minimize
performance in the emotion recognition task T3 while L1

tries to maximize performance in a different task Tk. In
our experiments we use T0 (Face Verification) as a task to
maximize the performance. In the optimization problem (2)
we may use a Suppression training dataset S different to P ,
and the optimization can take advantage of a previous solution
{w∗,w∗k} to (1) in different ways. Let’s denote the solution to
(2) as {w∗∗,w∗∗E ,w∗∗k }.

In our experiments, we begin without Emotion Suppression
(y = x in Fig. 2) generating w∗ in a face recognition
task by pre-training using the VGGFace2 database (3 million
images from more than 9,000 people [37]). We then fix w∗
and train the Emotion classifier w∗3 with the CFEE database
(1,380 images from 230 people, with 6 images per subject,
corresponding each of these 6 images to a different emotion
[10]). Finally, we solve Eq. (2) considering {w∗,w∗k} as a
starting point for obtaining the solution {w∗∗,w∗∗E ,w∗∗k } taking
various optimization shortcuts as detailed in the following.



B. Suppressing Emotions from Face Representations

1) Method 1 - SensitiveNets: The work [24] recently
proposed a general method to generate privacy-preserving
representations starting from pre-trained networks. Here we
adapt that approach to remove emotional information for the
primary task k from 0 to 2 in Fig. 2.

Applying SensitiveNets to the general methodology pre-
sented before leads to: 1) fixing w∗∗ = w∗, 2) activating the
Emotion Suppression block ϕSN(x) (SN for SensitiveNets) in
Fig. 2, and then 3) solving the following version of Eq. (2):

min
wE,w3

∑
triplet∈SP

{L1[Ok(triplet|wE,w3), Tk(triplet|groundtruth)]+

+ ∆A + ∆P + ∆N}
s.t. max Performancek=3

triplet∈SE
(ϕSN(xtriplet|wE),w3) (3)

where triplet = {IA, IP, IN}, IA and IP are face images of the
same person, IN is a face image of a different person, L1

is the triplet loss function proposed for face recognition in
[38][39], and the three ∆ terms are adversarial regularizers
used to measure the amount of emotion information in the
learned model represented by wE:

∆ = log{ 1 + |0.9− P3(Neutral |ϕSN(x|wE),w3 )| } (4)

The probability P3 of observing a Neutral expression in the
face embedding after Emotion Suppression (ϕSN) is initially
obtained with the pre-trained Emotion classifier w∗3, and Sen-
sitiveNets then iterates to solve Eq. (3) in order to obtain w∗∗E
(the Emotional Suppression projection) and w∗∗3 (an adapted
Emotion classifier). In Eq. (4) | · | is the absolute value, and
the ∆ terms will tend to zero for larger P3. Therefore, by
minimizing them in Eq. (3) we force the training to output
Neutral expression in general, in this way eliminating the
capacity to detect expressions other than Neutral from the
face representation ϕSN(x). In other words, we unlearn the
facial features necessary to differentiate between different
expressions.

On the other hand, Eq. (3) includes a constraint that will be
enforced in subsequent iterations of SensitiveNets in a kind of
min-max adversarial formulation [40]. Eq. (3) thus minimizes
the emotion information in ϕSN(x) with the ∆ terms, trying
to classify emotions based on ϕSN(x) in the iterative learning
with the optimization constraint (with decreasing success as
the learning progresses), and maintaining the performance in
the primary task with the tiplet loss term L1.

For solving Eq. (3) we apply the iterative adversarial
learning approach proposed in [24] using the CFEE database
[10] as SE to retrain the emotion detector (i.e., enforcing the
constraint), and the DiveFace database [24] as SP to maintain
the recognition accuracy.

The network wE consists of three dense layers with 1024
units each layer (linear activation). After solving Eq. (3) the
network w∗∗E generates the emotional blinded representation

ϕSN(x), which removes sensitive information (emotions in the
present paper) while maintaining recognition performances.

2) Method 2 - Learning not to Learn: The second approach
studied here to remove emotional features is based on [21].
Similar to SensitiveNets [24], this method uses a regularization
algorithm to train deep neural networks, in order to prevent
them from learning a known factor present in the training
set irrelevant or undesired for a given primary task. Here we
propose to unlearn emotional features for the primary task k
from 0 to 2 in Fig. 2.

In this case the Emotion Suppression switch is off, therefore
there is no wE, and we start from pre-trained {w∗,w∗k,w∗3}.

The training algorithm uses a regularization loss that in-
cludes the mutual information between emotions and feature
embeddings x. These embeddings are then fed into both the
main classification task network (corresponding to k from 0
to 2), and the emotion classification network p3. The function
to optimize for emotion removal is then:

min
w,wk

∑
Ix∈S
{Lc[Ok(Ix|w,wk) , Tk(Ix|groundtruth) ] +

+ λI[ p3(Ix) ; x ] } (5)

where Lc denotes the cross-entropy loss, I represents the
mutual information and λ is an hyper-parameter.

To compute the mutual information in Eq. (5), we used the
emotion classification network to approximate the a posteriori
distribution of the emotional classifier p3(Ix). The training
algorithm can be implemented in practice following an ad-
versarial strategy [22], combined with the use of the gradient
reversal technique [23].

IV. DATA AND EXPERIMENTAL SET UP

To obtain the face representation x we use a learning archi-
tecture with state-of-the-art performance in face recognition
tasks: ResNet50, proposed in [41]. ResNet50 has around 41M
parameters split in 34 residual layers. The pre-trained model
used in this work was trained from scratch with VGGface2
dataset [37]. This ResNet50 model achieved 98.0% accuracy
in face verification with the IJB-A dataset [42].

Using the base representation x generated by the pre-trained
network ResNet50 we trained different classifiers as depicted
in Fig. 2 according to the following labeled databases:
• DiveFace [24]: The DiveFace database contains annota-

tions equitably distributed among 6 demographic classes,
related to gender and 3 ethnic groups (East Asian |
Sub-Saharan and South Indian | Caucasian), with 24K
different identities and a minimum of 3 images per
identity. This database was used to train the emotional-
blinded representation. Additionally, 12K subjects of this
database were used to train and test the gender and
ethnicity classification.

• CFEE [10]: The Compound Facial Expressions of Emo-
tion database includes facial images of 230 different
users. For every user, we selected an image belonging to



each of the 22 categories present in the dataset: 6 basic
emotions, 15 compound emotions (i.e. a combination of
two basic emotion), and neutral expression. All images
represent a fully recognizable expression, being captured
in a controlled environment of illumination and pose. We
used the 6 basic emotion of this database to train the
emotional-blinded representation.

• LFW [43]: Labeled Faces in the Wild is a database for
research on unconstrained face recognition. It contains
more than 13K images of faces collected from the web.
We employ the aligned images [44] from the test set pro-
vided with view 1 and its associated evaluation protocol.

• CelebA [45]: The CelebA dataset has a total of 202K
celebrity images from more than 10K identities. Each
image is annotated with 40 binary attributes, including
appearance features, gender, age, attractiveness and emo-
tional state, and 5 landmark positions. The dataset is
partitioned into 2 splits, with 8K identities retained as
the training set, and the remaining 2K as the test set.

In order to measure how much emotional information
is available in the face representation, we trained different
emotion classifiers using either original embeddings x or
emotional-blinded representations ϕ(x). We measured the
amount of emotional information as the performance achieved
by these classification algorithms. We assume that emotional
information is removed by our blinding transformation ϕ(·)
when a significantly drop of performance in emotion classifica-
tion occurs in comparison to the original emotion classification
accuracy before applying that transformation.

The face recognition accuracy is obtained according to
the evaluation protocol of the popular benchmark of LFW
[43]. For the rest of tasks, we used 80% of the samples
for training and 20% for testing. Implementation details: 150
epochs, Adam optimizer (learning rate = 0.001, β1 = 0.9, and
β2 = 0.999), and batch size of 128 samples.

V. EXPERIMENTS

A. Are Facial Expressions Encoded in Generic Face
Representations?

To better understand how the emotional features are embed-
ded in the deep face representations, we study how identity
and emotional information are represented in x and f3(x).

Fig. 3 shows the two-dimensional t-SNE projection of the
original face representation x and the learned representation
f3(x) for emotion recognition using the CFEE database [10]
(detailed in Sec. IV). This database is interesting for this study
because of its controlled acquisition environment (covariates
such as pose or illumination are not present) and the multiple
face gestures available for 230 subjects. We ran t-SNE over x
and f3(x) without using the emotion labels available, and then
show in Fig. 3 the resulting t-SNE projections with emotion
labels a posteriori for visualization purposes.

As we can see in Fig. 3 (top), the projection in the original
representation ignores the emotional features. The representa-
tion learned for face verification deprecates emotional features

𝐱 original embedding

𝐟3 𝐱 (learned emotional embedding)

Fig. 3. t-SNE plot of the original embedding x (top) and emotion feature
transformation f3(x) (bottom) of the face images from CFEE database.

in order to maximize accuracy in face recognition. Face
expressions can be seen as distortions that should be removed
from the decision-making of the representation. However, if
we freeze the weights of the ResNet model that produced
the representation x and we train the representation f3(x) for
Emotion Classification, we can observe in Fig. 3 (bottom)
how emotional features were available in x and a simple
training procedure with hundreds of samples allows to extract
that information and correctly classify the emotions for more
than 90% of the face images. Note that as mentioned before,
ResNet was trained originally for identity recognition and
these emotional features were not intentionally included in
the learning process. These results illustrate that emotional
information is embedded in x even though that representation
was trained for a different purpose (i.e. face verification).

To gain insight into how the emotional features are em-
bedded in the original representation x, we have evaluated the
performance of an emotion classifier when different amount of
features from x are available to train f3(x). To do this, in each
iteration we randomly suppress a percentage of features of the
representation x and we re-train the emotion representation
f3(x), always freezing the ResNet model. Fig. 4 shows the
performance decay for Emotion Classification related to the
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Fig. 4. Performance of the emotion classifier p3(Ix) vs number of features
from x used to train w3 with fixed w (see Fig. 2).

number of features suppressed from the original representation
x. It is remarkable how well the emotion representation is
capable of classifying with 70% accuracy even if the number
of features available is only 10% of the original size. The
model is able to keep almost the same performance until 90%
of features are suppressed. This demonstrates that emotional
features are latent in almost all features of the original repre-
sentation x.

B. Emotional-Blinded Face Representations

The goal is to keep the recognition capability in other face
classification tasks while removing the emotion information
embedded in the face representation x using the methods
described in Sec. III-B for generating ϕ(x) (see Fig. 2).
To analyze the effectiveness of those blinding methods, we
conducted experiments on 3 datasets (see Sec. IV): DiveFace,
CFEE, and LFW.

a) Objective 1 - Maintaining face representation infor-
mation: the goal is to maintain the performance of the
emotional-blinded face representation for other tasks different
to emotion classification. We calculated the performance of
3 different face-based machine learning tasks using either
original embeddings x or their projections ϕ(x). The tasks
are evaluated according to the classification accuracy obtained
in the test set. Table I shows the classification accuracy of
representations generated by the pre-trained model before and
after the projections ϕSN(x) obtained by the Method 1 and
ϕLnL(x) obtained using the Method 2 (see Sec. III-B). The
results of the projection ϕSN(x) show a very small drop
of performance when the projection is applied in the first
domains (ID, Gender, and Ethnicity), which demonstrates the
success of our method in preserving most of the discrim-
inative information in the face representation. The drop of
performance in the method based on the ϕLnL(x) projection
is higher for the primary tasks (ID, Gender, Ethnicity) and the
emotion classification. This decay may be caused because of
the disentanglement of primary and secondary tasks managed
by the mutual information regularizer in Eq. (5). The method
proposed in [21] was originally evaluated for problems with
limited number of classes and face recognition requires feature
spaces capable of allocating large number of classes (one per
identity).

TABLE I
ACCURACY OF DIFFERENT CLASSIFIERS TRAINED WITH X (BEFORE) OR
ϕ(X) (AFTER). DIFF IS THE ACCURACY DROP RELATIVE TO RANDOM
CHOICE (DIFF=100% REPRESENTS A RANDOM CHOICE CLASSIFIER):

DIFF = (BEFORE − AFTER)/(BEFORE − RANDOM CHOICE)

Information Domain x ϕSN(x) Diff. SN ϕLnL(x) Diff. LnL

ID 96.8 96.3 ↓ 1% 59.4 ↓ 75.0%
Gender 99.2 98.9 ↓ 1% 72.7 ↓ 53.9%
Ethnicity 98.8 98.6 ↓ 1% 67.4 ↓ 47.9%
Emotion (NN) 88.1 59.6 ↓ 40% 41.6 ↓ 65.0%
Emotion (SVM) 88.1 16.7 ↓ 100% 25.0 ↓ 88.2%
Emotion (RF) 77.4 58.3 ↓ 31% 44.7 ↓ 53.8%

b) Objective 2 - Removing emotional information: to an-
alyze the amount of emotional information available in the
face representations we train different emotion classification
algorithms (NN = Neural Networks, SVM = Support Vector
Machines, and RF = Random Forests) either on original
embeddings x or on their projections ϕ(x). Table I shows the
accuracies obtained by each algorithm before and after the
projections. Results show a significant drop of performance in
classification when both blinding representations are applied,
which demonstrates the success in reducing the emotion
information from the embeddings. However, the emotional
information is deeply embedded in the representations, and to
keep the performance of other tasks (first 3 rows of Table I)
not all the emotion information was removed.

There are differences between the performances obtained
by the two blinding methods. While ϕSN(x) maintains higher
performance in the primary tasks (ID, Gender, and Ethnicity),
the emotion suppression is higher in ϕLnL(x). This higher
suppression obtained by ϕLnL(x) may be due to the weaker
representations generated by this method which lead to worse
performance in the primary tasks. However, the accuracy
obtained for emotion classification using both methods (lower
than 60% in all cases) may be low enough to prevent its
unwanted exploitation. Emotion-related privacy is not fully
granted, but clearly improved.

Fig. 5 shows the two-dimensional t-SNE projection similar
to Fig. 3 (bottom) for the emotional blinded representation
f3(ϕSN(x)). The results show how the domain adaptation
training of w3 (see Fig. 2) was not able to find a representation
capable of discriminating emotions in the learned representa-
tion ϕSN(x).

C. Blind Representations: Towards Equality of Opportunity

Inspired in the experiments performed in [7] for analyzing
biases and achieving a specific fairness criterion, here we
study how blind representations can improve the Equality of
Opportunity [46]. For this purpose we introduce task k = 4:
binary Attractiveness classification (Attractive | Not Attractive)
based on an input face image Ix.

In this experiment, the outcome of an Attractiveness clas-
sifier with input x and parameters w4 given its positive class
should be independent to the feature s we want to protect in
terms of fairness. In our experiments, the protected attribute



𝐟3 𝛗(𝐱) (learned emotional embedding)

Fig. 5. t-SNE plot of the emotional embedding f3 trained with the proposed
emotional-blinded representation ϕSN(x) as input (see Fig. 2) over the CFEE
database. See previous Fig. 3 (bottom) for comparison.

TABLE II
RESULTS ON ATTRACTIVENESS CLASSIFICATION (ACC = ACCURACY).

EQUAL OPPORTUNITIES IS CALCULATED AS:
100− (TPR SMILING − TPR NOT SMILING).

TPR = TRUE POSITIVE RATE IN ATTRACTIVENESS CLASSIFICATION

Method (training) Acc. TPR Smil. TPR Not Smil. Eq. Opp.

x (unbiased) 77.26% 84.55% 82.47% 97.93%
x (biased) 76.23% 84.17% 66.70% 82.53%
ϕSN(x) (biased) 74.50% 81.87% 73.58% 91.71%
ϕLnL(x) (biased) 76.62% 86.97% 73.70% 86.73%

is a specific face gesture: smile. Therefore, in our case: s ∈
{Smiling,Not Smiling}. Using the framework presented in
Sec. III-A summarized in Fig. 2, the Equality of Opportunity
results in: p4(Ix|w∗,w∗4, T = 1, s) = p4(Ix|w∗,w∗4, T = 1).
This criterion implies equal True Positive Rates across the
different face gestures defined by s and the Attractiveness
classifier defined by the parameters w∗,w∗4.

We used 40K images from CelebA dataset [45], previously
introduced in Sec. IV, to train the Attractiveness classifier.
Since some studies suggest that face expressions, such as
smile, can affect the perception of attractiveness, we specif-
ically train a biased classifier. In particular, we employed
the smiling annotation available in CelebA as a face gesture
commonly associated to a positive emotion that can therefore
introduce undesired bias. We generated an emotionally biased
training set where the proportion of attractive people smiling
and not smiling was 70% and 30% respectively. We introduced
the opposite bias for the unattractive group with 30% and 70%
of smiling and not smiling respectively. In order to avoid the
appearance of other biases, we balanced the dataset in terms of
attractiveness and gender, compensating the gender bias of the
dataset (i.e. the proportion of attractive females is 67%, while
for males is 27%). We also generated an unbiased dataset with
50% smiling and not smiling samples (randomly chosen and
balanced with respect to gender).

The results in Table II show higher True Positive Rates
(TPR) for the privileged class (Smiling in our experiment) in
comparison with the non-privileged class (Not Smiling). The
face gesture Smiling was irrelevant to classify the attractive-
ness (i.e. there was no correlation between the attributes Smil-
ing and Attractiveness). However, a classifier trained on face
embeddings x generated by pre-trained models like ResNet50,
tends to reproduce the bias introduced in the training datasets.
Table II shows how the blind representations ϕSN(x) and
ϕLnL(x) presented in Sec. III-B significantly reduce the gap
between both classes by improving equality in 9% and 4%
respectively. The blind representations avoid the network to
exploit the latent variable related with the face gesture and
reduce the impact of the biased training dataset.

Implementation details: the classifiers were composed by
one fully connected layer (1024 units and ReLu activation) and
one output unit (sigmoid activation), which we feed with face
embeddings generated with the methods mentioned above. We
repeated the experiment five times, using different training sets
with 36K images from CelebA, and evaluating the resulting
classifiers on validation sets with 4K images, selected from
the CelebA’s evaluation split.

VI. CONCLUSIONS

The growth of emotion recognition technologies has allowed
great advances in fields related to human-machine interaction.
At the same time, having automatic systems capable to read
emotions without explicit consent triggers potential risks for
humans, both in terms of fairness and privacy. In this work
we have proposed two face representations that are blind to
facial expressions associated to emotional responses.

In addition to a general formulation of the problem, we have
adapted two existing methods for this purpose of generating
emotional-blinded face representations: SensitiveNets [24] and
Learning not to Learn [21]. The results show that it is possible
to reduce dramatically the performance of emotion classifiers
(more than 40%) while the performance in other face analysis
tasks (verification, gender, and ethnicity recognition) is only
slightly reduced (less than 2%).

Finally, we included an experiment on facial attractiveness
classification to show how to treat facial expression as pro-
tected information in face classification problems. The results
show how blinded representations can improve a specific
fairness criterion based on the principles and methods studied
in the present paper.
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