

 Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

 Esta es la versión de autor del artículo publicado en:
 This is an author produced version of a paper published in:

Cañamares, R., Castells, P. & Moffat, A. Offline evaluation options for recommender
systems. Information Retrieval Journal (2020):23, 387–410

DOI: https://doi.org/10.1007/s10791-020-09371-3

Copyright: © 2020 Springer Nature

 El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
https://doi.org/10.1007/s10791-020-09371-3

Offline Evaluation Options for Recommender Systems

Roćıo Cañamares · Pablo Castells ·
Alistair Moffat

Received: date / Accepted: date

Abstract We undertake a detailed examination of the steps that make up
offline experiments for recommender system evaluation, including the manner
in which the available ratings are filtered and split into training and test;
the selection of a subset of the available users for the evaluation; the choice
of strategy to handle the background effects that arise when the system is
unable to provide scores for some items or users; the use of either full or
condensed output lists for the purposes of scoring; scoring methods themselves,
including alternative top-weighted mechanisms for condensed rankings; and
the application of statistical testing on a weighted-by-user or weighted-by-
volume basis as a mechanism for providing confidence in measured outcomes.
We carry out experiments that illustrate the impact that each of these choice
points can have on the usefulness of an end-to-end system evaluation, and
provide examples of possible pitfalls. In particular, we show that varying the
split between training and test data, or changing the evaluation metric, or how
target items are selected, or how empty recommendations are dealt with, can
give rise to comparisons that are vulnerable to misinterpretation, and may lead
to different or even opposite outcomes, depending on the exact combination
of settings used.

Keywords Recommender systems · evaluation · effectiveness metric ·
experimental design

Roćıo Cañamares
Universidad Autónoma de Madrid, Spain

Pablo Castells
Universidad Autónoma de Madrid, Spain

Alistair Moffat
The University of Melbourne, Australia

2 Cañamares, Castells, Moffat

1 Introduction

Evaluation is a cornerstone of research measurement in areas such as infor-
mation retrieval (IR) and recommender systems (RS), and as a result, con-
siderable effort has been put into developing techniques that provide robust
and scrutable comparisons between alternative systems and alternative tech-
nologies (Gunawardana and Shani, 2015; Herlocker et al., 2004). The goal is
typically to carry out a “system A versus system B” comparison, and identify
whether A or B has the better performance. The two systems involved might
be two quite different algorithms, or two variants of the same algorithm based
on different implementations, or might even be two sets of tuning parameters
being considered in conjunction with a single implementation.

Evaluation can be performed offline, using static data resources and corre-
sponding evaluation metrics to compute numeric effectiveness measures that
can be tuned for and/or compared; or can be carried out online, using a
live system, and tracking user-related behaviors such as dwell-times, click-
through rates, and purchase conversions. To assist with off-line evaluation,
significant re-usable data resources have been developed via community in-
vestment and/or data release via sponsoring companies (Bertin-Mahieux et al.,
2011; Harper and Konstan, 2016; He and McAuley, 2016). Businesses also de-
velop their own in-house evaluation resources for offline evaluation. Here we
undertake a detailed investigation into the methodologies used to carry out
offline evaluation in the area of recommender systems. We consider a range
of factors, summarizing the options that are available for each. In doing so,
we provide explicit discussion of issues that have been either unconsidered or
implicit in previous evaluations, and develop a taxonomy against which future
evaluations can be categorized. Results from different investigations will then
be able to be more accurately compared.

Our enumeration of decision points is supported by experiments that high-
light our concerns. For example, we show that the split between training and
test data, how target items are selected, and how empty recommendations are
dealt with, can all substantially affect experiments, and hence argue that care
needs to be taken so as to ensure that these risks are noted and commented
on when researchers use such experiments to argue for their ideas.

2 Background

The Recommendation Task

A recommender system directly records or otherwise observes the interactions
between a set of users and a set of items , as moderated by the intervening
application (Adomavicius and Tuzhilin, 2005; Ricci et al., 2015). An interac-
tion might consist of a user listening to a song, or giving a “star” rating for a
movie, or clicking on a link, or reviewing a purchased product, or (in a negative
sense) exiting a movie playback. The goal of the recommender system is to

Offline Evaluation Options for Recommender Systems 3

build a predictive model of the tastes and preferences of each user, in order to
be able to successfully recommend new (or replayed) songs, movies, and other
products, and hence increase the engagement level of each individual user with
the service.

The input of a recommender system is usually represented as a user-item
matrix in which each non-empty cell corresponds to an observed interaction
between the corresponding user and item. For simplicity, the different types
of interaction are normally abstracted into a single (usually positive numeric)
rating value, indicating the reaction that the user had as they viewed, con-
sumed, or otherwise interacted with, that item. Low rating values are usually
taken to mean “dislike”, and/or “apathy”, and/or “don’t buy this”; and high
ratings values taken to mean “like”, and/or “would be happy to repeat the
experience”, and/or “would suggest this item to others”.

Given such data, the recommender system seeks, for each of the users, to
assign a score to every item. These scores – intended as a prediction of that
user’s likely rating reaction to that item – can then be decreasing-sorted to
form a ranking , an ordered set of suggestions (Ricci et al., 2015). Out of the
many thousands or millions of items included in the service, a small number of
top-scoring recommendations, perhaps as few as three or five, are then offered
to the user as future choices (Cremonesi et al., 2010). For example, an online
book seller might recommend a list of future purchases to each user, based on
their past purchase history and any reviews that user has lodged.

For maximum effect, the recommendations are usually user-centric, and
tailored to the user’s past history. It is also possible to construct a single user-
agnostic (or system-wide) item ranking, based on global ratings data. The
latter might be employed when insufficient user-oriented data is available – as
a default starting point for newly-subscribed users, for example.

In IR terms, items can be regarded as being documents, and users as
queries; the recommendation list then corresponds to a ranking of documents
(Belloǵın et al., 2013, 2017). In this framework, the ratings can be regarded
as being relevance judgments, and used to score the ranked list. But there is
also a critical distinction between these two activities: in many applications
(such as book selling, for example) the system should avoid recommending
the items that have already been rated, since either the user is unlikely to
purchase the same item twice or, even if repeat purchase may be possible,
a key purpose of the recommendation service is to help users discover items
they would not find easily by themselves. A second distinction is that the
ratings (judgments) originate with the community of users rather than being
externally commissioned from either experts or crowd-workers following a pro-
cess such as pooling over a collection of systems, the latter being the usual
method for creating relevance judgments for an IR evaluation (Bailey et al.,
2008; Harman, 2005; Kazai et al., 2013; Kutlu et al., 2018; Lu et al., 2016).
These differences mean that effectiveness evaluation in recommender systems
has taken a notably different path to evaluation in information retrieval sys-
tems (Belloǵın et al., 2017; Gunawardana and Shani, 2015; Herlocker et al.,
2004).

4 Cañamares, Castells, Moffat

Recommender System Evaluation

In an online RS evaluation a live service is used to generate real-time recom-
mendations for genuine users, and their reaction to those items is measured,
perhaps via explicit pop-up surveys asking for ratings of the items offered,
or perhaps by implicit signals such as selection clicks. In this methodology,
different systems can then be evaluated in A/B-type comparisons, where the
objective is, for example, to obtain the higher click-through or purchase rate
(Hofmann et al., 2016).

In an offline evaluation the only information that can be used is a static
snapshot of supplied ratings (Herlocker et al., 2004). In this type of experiment
the available ratings are typically divided into training and test sets, with the
decision as to whether a rating goes into training or test is an attribute of the
(u, i) combination, not of u or i alone. The ratings in the training set are used
as input to the recommender system so that it can build a model of user-item
interactions. The system must then assign a score either to every item not in
the training set associated with that user, or to every item in the test set for
that user. There are a number of different ways in which the training/test split
can be implemented (Belloǵın et al., 2017; Cremonesi et al., 2010); these are
canvassed in Section 3.

An offline evaluation also requires an effectiveness metric, a function that
assigns a numeric score to a ranking, as an assessment of the quality, or accu-
racy, of a ranking compared to some suitable reference point (Valcarce et al.,
2018). For example, one classic metric shared with IR is precision at depth d,
the number of items in the first d recommendations for which positive ratings
(values greater than or equal to some specified threshold) have been recorded
in the test set. Other metrics and their relative merits are considered in Sec-
tion 3. Note that the emphasis in an offline evaluation is usually accuracy in
respect to the set of test ratings, but other facets, such as novelty or diversity,
might also be taken into account (Castells et al., 2015).

The main drawback of offline evaluation is that the rating matrix is nor-
mally very sparse, with only a small fraction of the available (u, i) pairs known.
That means it is necessary to decide what to do with recommended items that
do not have ratings in the test set – whether they should be regarded as being
“minimal” ratings and hence unhelpful suggestions to the user and of no util-
ity, or whether they should be bypassed completely. This decision – considered
in more detail in Section 3 – is not a simple one, because the observed rat-
ings may not be an unbiased sample of the complete relevance matrix. That
is, the rating matrix is likely to have a “missing not at random” distribution
(Cañamares and Castells, 2018b; Marlin and Zemel, 2009; Steck, 2010).

In particular, if the rating data reflects past user actions, there is likely
to be a strong popularity bias (Belloǵın et al., 2017; Cañamares and Castells,
2018b; Steck, 2011): a relatively small fraction of the items accumulate the
majority of the observed ratings (short head), while the rest have very few
ratings (long tail). In this situation, missing cells are usually considered as
non-relevant ratings, although, as already noted, it is also possible to restrict

Offline Evaluation Options for Recommender Systems 5

Dataset Users Items Ratings Density

Movielens 6040 3706 1,000,209 4.47%
Netflix 480,189 17,770 100,480,507 1.18%

Table 1: Public datasets used in recommender systems evaluations.

recommendations to items with test ratings. The first option can benefit rec-
ommendations of popular items (Belloǵın et al., 2017; Cañamares and Castells,
2018b; Cremonesi et al., 2010), because in a random split there is a correla-
tion between the number of training and test ratings, and knowing which items
have more test ratings reduces the probability of recommending an empty cell.

Typical Datasets

Several public datasets are available for RS evaluation. The MovieLens dataset
includes ratings for movies on a 1 to 5 scale, by users of the MovieLens appli-
cation, and was collected and published for the first time in 1998 (Harper and
Konstan, 2016). The Netflix dataset contains data of a similar nature collected
from Netflix subscribers, and was released to researchers in 2006 as part of the
Netflix Prize contest.1 Typically these datasets consist of one or more files of
ratings, where each rating is either a tuple (u, i, r), with r a rating; or a tuple
(u, i, r, t), where t is additionally a timestamp. Table 1 summarizes these three
datasets.

Figure 1 shows the cumulative distributions of ratings per item and ratings
per user for MovieLens and Netflix, and illustrates the long tail effect for both
items and users. For example, around 50% of the users in MovieLens have each
contributed 100 ratings or less, and about 45% of the items each have 100
ratings or less.

Ranking Items or Predicting Ratings?

An RS might also be regarded as generating a set of rating predictions rather
than a ranking of items (Steck, 2013). Rating prediction evaluation is only ap-
propriate if the recommender system’s score function operates over the same
numeric scale as the ratings themselves, in which case fidelity might be mea-
sured via the root mean square error (RMSE) between the set of predictions
and the set of corresponding ratings. But not all recommendation methods can
be evaluated via this protocol. For instance, user-agnostic recommending by
averaging or taking the median of the ratings of each item could be evaluated
by RMSE, but a scoring regime based on decreasing popularity could not.

Rating prediction-based RS evaluation was common in the past, but it is
now broadly accepted that the ranking-based evaluation approach described
earlier in this section is closer to the real recommendation task, because it

1 http://www.netflixprize.com

6 Cañamares, Castells, Moffat

0%

25%

50%

75%

100%

1 10 100 1000
of ratings

C
um

ul
at

iv
e

di
st

rib
ut

io
n

MovieLens

0%

25%

50%

75%

100%

10 1000 1e+05
of ratings

Netflix

Item distribution User distribution

Fig. 1: Distribution of ratings per user and per item in MovieLens (left) and Netflix (right).

reflects the way in which items are offered to users without any attached score
estimates (Cremonesi et al., 2010; Steck, 2013). In this work we focus solely
on ranking-based RS evaluation.

Related Work

Evaluation was identified as a vital and non-trivial issue as the recommender
systems field emerged towards maturity. Herlocker et al. (2004) provided an
early comprehensive overview of evaluation methodology, covering the recom-
mendation task definition variants, metrics, test data sampling, target item
selection (implicitly considering condensed versus full rankings), online versus
offline evaluation, and dimensions beyond accuracy. A decade and a half after
its publication Herlocker et al.’s overview remains important; and many of
the ideas and analyses it contains have been periodically rediscovered or rein-
vented. Gunawardana and Shani (2015) provide a useful summary covering
similar issues, expanding on additional aspects such as robustness, privacy,
and statistical power, providing a good starting point for initiation into RS
evaluation practice.

These surveys discuss both rating prediction error and ranking metrics,
with the shift from the former to the latter being argued for soon afterwards.
Cremonesi et al. (2010) were particularly influential in this line, including
proposing an intermediate option between ranking all items or only rated items
(the “1 plus n” approach) in which a certain number of unrated items are added
to the pool to be ranked by the evaluated systems. Shortly after, Belloǵın
et al. (2011) report illustrative experiments comparing results when adding
all unrated items to the pool versus just a certain number versus none, along
with some other options. Steck (2013) further analyzed the implications of this
experimental setting and found an example where the comparison between two
algorithms differed depending on whether all unrated items or none were added
to the pool.

Offline Evaluation Options for Recommender Systems 7

Belloǵın et al. (2017) expanded their earlier work into a systematic de-
scription of ranking pool selection, and discussed in depth the issues arising
in the adoption of IR metrics for RS evaluation, most notably the emergence
of popularity biases. The adaptation of IR methodology to recommendation
was reexamined by Valcarce et al. (2018), who both addressed the choice of
metrics and metric depths according to the robustness to test rating sparsity,
and also considered discriminative power. The concern in regard to popularity
bias was specifically addressed by other authors, who sought to verify, measure
and avoid such biases (Jannach et al., 2015; Marlin and Zemel, 2009; Steck,
2010, 2011), or to explain them (Cañamares and Castells, 2018b). Following
up on some of these findings and drawing from related work in machine learn-
ing and statistics, a recent strand of research has addressed the bias in offline
evaluation as an issue of mismatch between the data gathering policy (for ex-
ample, free user interaction with a deployed system) and the item selection by
the recommendation algorithms to be evaluated. Building on this perspective,
techniques such as inverse propensity scoring have been explored to reduce the
biases in evaluation (Gilotte et al., 2018; Gruson et al., 2019; Swaminathan
et al., 2017; Yang et al., 2018) and in the algorithms being evaluated (Schnabel
et al., 2016).

Divergence across experimental design and hence across experimental re-
sults has endured in the literature in spite these various cautions, and prompted
further efforts towards clarification and shared consensus as to how state-of-
the-art algorithms truly compare to each other. Said and Belloǵın (2014), for
example, undertook an extensive cross-comparison of public implementations
of algorithms, datasets and evaluation options for ratings splitting and ranking
pool selection. The main outcome of that study was to confirm the discrep-
ancies between implementations of the – supposedly – same algorithms and
metrics across different toolkits. Other recent activities make it clear that the
community regards evaluation as an open issue in many aspects, with further
effort needed (Ferro et al., 2018).

In a very recent paper, Dacrema et al. (2019) sought to reproduce the re-
sults reported in a suite of new RS system proposals, with rather disappointing
results: some of the software systems were not available for re-testing; some re-
sults could not be reproduced (for example, because parameter settings or data
splits had not been adequately disclosed); and some could be reproduced, but
yielded results that were inferior to additional baseline systems not included
by the proponents of that particular system. Only one of the implementations
that were tested was competitive with well-tuned competitors.

Our work here continues this established thread of investigation and reflec-
tion, providing a global and systematic vision of a set of experiment config-
uration options that have either not been explicitly considered as settings of
concern, or that deserve further analysis and attention, and serves as a com-
plement to that of Dacrema et al. (2019). For instance, while user and item
coverage have been considered as dimensions to watch out for, their poten-
tial to directly distort system comparisons has not been recorded previously
in the literature. Metric aggregation functions other than arithmetic averages

8 Cañamares, Castells, Moffat

are also rarely considered. Other aspects such as the split ratio, target item
selection, and metric depth are dealt with in prior work but in generally differ-
ent directions, and not as options than can change the comparative outcomes
of evaluations in the sense in which we examine them here.

3 Methodological Decisions

As noted, several decisions must be taken when running an offline RS experi-
ment. To provide a structure to those decisions, we now describe in detail the
offline evaluation process and the choices that researchers are faced with at
each stage of their experimental design. We divide the decisions according to
four main phases: (A) data configuration; (B) recommendation; (C) measure-
ment; and (D) system comparison; and note that there are several choices to
be made in connection with each phase. In all our analysis, we assume recom-
mendation is regarded as an item ranking task, the common understanding in
the field through the last few years.

Decision A1: Data Selection

Experimenters must first choose a dataset, often a pragmatic decision based
on availability. The use of public datasets is, of course, beneficial in terms of
reproducibility. But sometimes the dataset is filtered in some way, altering it
to suit the particular experiment. For example, users and/or items with fewer
than some minimum number of ratings might be removed (Steck, 2013); and
it is also not uncommon to remove some highly popular items (Cremonesi
et al., 2010), so as to mitigate against popularity bias. In cases where this is
done, both the thresholds used and the resultant dataset sizes (along the lines
of Table 1) should be reported as part of the experimental description. It is
also helpful if such filtering scripts can be made available, so that others with
access to the same initial dataset can apply identical restrictions.

Decision A2: Train/Test Splitting

Offline evaluation methodologies then divide the selected data into Train and
Test. The first set is used as input while model parameters are being tuned,
the second is “held out” and used for measurement, after the model has been
finalized. There are a many of ways to carry out the required division (Gu-
nawardana and Shani, 2015):

– assigning ratings to Train with a specific random probability, for example
50:50 splitting, or in an 80:20 arrangement multiple times for five-fold
cross-validation;

– assigning ` randomly-selected ratings per user to Test as a leave-`-out split,
assuming that every user has at least ` ratings available, see A1;

Offline Evaluation Options for Recommender Systems 9

– assigning ` ratings per item to Train to mitigate popularity bias (Belloǵın
et al., 2017);

– assigning the oldest ratings to Train and the newest to Test as a temporal
split, based on some nominal time cutoff applied to every rating to represent
“now”; or

– combinations of these four options, for example, splitting the ratings of
each user using a temporal split.

Decision B1: Selecting Users

After selecting and splitting the data, Train is used to build a recommendation
model, and predictions are made for the user-item pairs it does not contain.
Users with no (or too few) training ratings might be suppressed at this stage,
since personalized recommenders would be unlikely to be able to assign scores.
But those users could also be retained and a user-agnostic prediction mech-
anism employed to cover them – as might occur in a commercial service, for
example.

Decision B2: NC Items

The recommendation outcome is a list of tuples (u, i, s), where s is a numeric
score, and i ranges over all of the items not in u’s Train set. Regardless of
the ratings in Train, some algorithms may not be able to compute a score for
all of the remaining items. For example, in the case of “k nearest neighbors”
(kNN) approaches, if an item i has not been rated by any of u’s neighbors,
the pair (u, i) is not scored. We refer to these as non-computable (NC) items,
and the researcher must decide how to handle them. One option is to remove
them from the result set, even if they appear in Test; another is to assign a
score computed via a different mechanism, for example a minimum score or
a global user-agnostic score. Note that this is a different question to the one
discussed in B1 (users not having items in Train), and that in the NC case any
user-agnostic scores that arise must be converted to the same scoring scale as
the organic results (somehow) so that they can be properly integrated into u’s
set of tuples (u, i, s).

An additional problem arises when NC items proliferate and the algorithm
is unable to deliver recommendations for several users. This situation requires
awareness and explicit decisions on the part of the experimenter in order for
the experimental outcome to make proper sense. We discuss this further below,
see Decision C4.

Decision C1: Condensed or Full

When measuring a set of RS rankings, a critical first question is whether to
condense them by removing the items i for which (u, i) is not present in u’s

10 Cañamares, Castells, Moffat

Test set (Steck, 2013). Doing so means that there are no unrated items present
when computing the value of the chosen metric (see Decision C2, below), and
perhaps gives confidence in that regard, but also means that many – perhaps
the great majority – of the (u, i, s) tuples generated are discarded. Significant
distortion to the metric score might be introduced as a result, since the task in
the experiment no longer represents the task the algorithm serves in production
setting – in the latter situation all items are scored and considered for presen-
tation. Condensed rankings are also prone to result in coverage shortfalls, as
we discuss as Decision C4, below. Condensed rankings may nonetheless have
properties that make them useful as an experimental option, chief being that
uncertainty about item relevance is avoided. Condensed rankings have also
been found to have good properties in avoiding experimental bias (Cañamares
and Castells, 2018a).

If the rankings are not condensed and are used in full, a followup decision is
then required, and that is how to treat the (u, i, s) pairs in the ranking that do
not have a Test rating. One option is to assign a minimal (that is, non-relevant)
rating to them, and count them as “zeros” in terms of the metric computation
(Cañamares and Castells, 2017; Steck, 2013). But this is arbitrary, and the
same items could equally well be assigned “full-relevance” labels. A third op-
tion is to employ a metric in which the extent of the measurement uncertainty
can be computed, and report that quantity as part of the evaluation.

Decision C2: Choice of Metric – Full Rankings

The usual approach to evaluating full rankings is to apply an IR effective-
ness metric, and compute a numeric score using the Test ratings as relevance
judgments (Herlocker et al., 2004). In IR evaluations judgments are typically
either binary or graded . Binary judgments of “not-relevant” (zero) or “rele-
vant” (one) are used for metrics such as precision and average precision (AP).
When categorical Test ratings (such as “stars”) are being used as relevance
judgments with these metrics they must be binarized in some manner, another
key decision point. For example, ratings 1 ≤ r ≤ 5 might be binarized via the
criteria r ≥ 4, with the threshold value of 4 another experimental decision
that might affect the outcome.

Ratings might also be used as ordinal relevance categories in a graded
relevance situation, such as when NDCG (Järvelin and Kekäläinen, 2002) or
rank-biased precision (RBP) (Moffat and Zobel, 2008) are being computed. If
so, a gain mapping is required, converting each ordinal category to a numeric
utility. One commonly-used function maps grade 1 ≤ r ≤ rmax to a numeric
gain g(r) via the powers of two, g(r) = (2r−1 − 1)/2rmax−1 (Chapelle et al.,
2009); scaling into the full range 0 . . . 1 is also possible via g(r) = (2r−1 −
1)/(2rmax−1 − 1). Other mappings are also possible, with binarization always
available as a seemingly straightforward option – except, that is, for the need
to choose a threshold, as noted in the previous paragraph.

Offline Evaluation Options for Recommender Systems 11

Top-weighted metrics are usually preferred, so that incorrect estimates
early in the ranking (high estimated scores, but low Test ratings) are penalized
more heavily than errors later in the ranking. It is also usual for evaluation
to be truncated at a relatively shallow depth d, rather than computed over
the full length of the ranking (Cremonesi et al., 2010), to match the typical
use-case of a recommender system, in which a user is presented with a set
of d highly-scored items as suggestions, and is likely to keep their exploration
within that set. It is also desirable for the metric score to reflect the experience
of the user as they peruse the recommendations. Moffat et al. (2017) explore
the implications of user behavior on IR metric design.

In RS evaluations, common metrics include Prec@d (which is not top-
weighted) and NDCG@d (Järvelin and Kekäläinen, 2002) (which is top-weighted,
but requires knowledge of the d highest ratings associated with items not in
Train, so that an “ideal ranking” can be formed), for values of d such as d = 5
or d = 10. Note that NDCG cannot be computed unless user u has at least
one rating r in Test for which the gain value g(r) is greater than zero. This
restriction is sometimes bypassed by defining NDCG to be zero for those users,
and sometimes bypassed by removing those users from the experimental eval-
uation. The two options have different effects on the aggregate metric score.

The clear challenge with evaluation via full rankings is data sparsity (the
final column of Table 1). If all non-Train items are scored and included in
the metric evaluation for user u, then it is entirely possible that many, or
even all, of the top-d recommendations will not have corresponding ratings.
Assigning these as “not relevant”, or “grade 1” (and gain zero) might greatly
underestimate the numeric value of the metric. Indeed, if two systems are
being compared in this way, and the stronger of the two does indeed populate
the head of the ranking with better recommendations, it might in fact be
disproportionately disadvantaged.

Decision C2: Choice of Metric – Condensed Rankings

Condensed rankings have also been used in IR evaluations, with mixed success
(Sakai and Kando, 2008). In IR, unjudged items are usually assumed to be in
the minority near the top of any ranked list, because of the pooling process that
is used to generate the judgments; and to primarily occur at lower positions
in the ranked list, where their weight in the metric score is lower. But in RS
evaluation, the condensing process may remove high-scoring items as well as
low-scoring items. Indeed, computing an IR metric at depth d over an RS
condensed ranking might be quite misleading, since the bias towards positive
ratings may mean that all of the run scores that get computed end up being
very close to one, thereby presenting a rose-tinted view of the user’s actual
experience (Moffat et al., 2017).

Rather than computing an IR metric for condensed rankings, another op-
tion is to ask how dissimilar the ranking of Test items induced by the scoring
function is to the ordering imposed on those same items by the ratings, and

12 Cañamares, Castells, Moffat

compute a correlation coefficient . If RS scores are highly correlated with the
Test ratings, then it can then be inferred that the system is providing an accu-
rate estimation. Traditional correlation approaches such as Kendall’s τ have
the disadvantage of not being top-weighted, and of penalizing all discordant
pairs equally. Top-weighted coefficients can also be computed. For example,
NDCG (Järvelin and Kekäläinen, 2002) compares a given ordered ranking with
an “ideal” ranking of the same items; and hence, when applied to a condensed
list, can be thought of as computing a correlation coefficient. Other IR metrics
have also been adapted to provide top-weighted coefficients, including average
precision (AP) (Yilmaz et al., 2008).

Webber et al. (2010) describe rank-biased overlap (RBO), which computes
the expected overlap between two sequences “A” and “B” assuming that the
user always looks at the first pair of items, one element from each of A and B,
and proceeds from the d th pair of items to the d + 1 st pair with conditional
probability φ, where φ controls the extent of the top-weightedness. When
φ is small, for example, φ = 0.5, the expected depth reached by users is
1/(1 − φ) = 2, and discords near the head of the lists give rise to a high
penalty. On the other hand, when φ is large the expected depth is higher,
and if the two lists have the same first few items, even if in a different order,
RBO will remain relatively high. To employ RBO, sequence “A” is the set of
items in Test, decreasing-sorted by the recommender’s score; and sequence B
is the same set of items, but sorted by decreasing rating as primary key, and
decreasing RS score as secondary key, so that ties on rating are handled in a
deterministic manner. In this regard RBO compares to an “ideal” ordering in
the same way as does NDCG.

Decision C3: Metric Value Aggregation

Once a score has been computed for each user, there is still the question
of representing performance over a set of users. One obvious possibility is to
compute an unweighted arithmetic mean, in which all users are treated as being
equally important. Other central tendencies can also be employed, including
the median and the geometric mean. Alternatively, each user’s score might be
weighted according to the number of Test elements associated with that user
(Steck, 2013), or some other volume-related factor, so that users with many
ratings in Train and Test have more influence on the overall system score than
those with few ratings. A commercial provider might wish, for example, to
have high-volume users exerting more weight than do low-volume users.

Risk aware aggregation mechanisms might also be employed (Dinçer et al.,
2014a,b). These approaches provide different weightings to “wins” than they
do to “losses”, and are intended to ensure that a System A versus System B
transition does not bring with it the possibly high reputational damage that
might arise if even a small minority of the users receive substantially inferior
performance as a result of the change.

Offline Evaluation Options for Recommender Systems 13

Score standardization relative to a larger set of reference systems is another
transformation that might be considered as part of the processing pipeline used
to compare scores when carrying out an A versus B batch evaluation (Webber
et al., 2008).

Decision C4: Coverage Shortfall

Certain recommendation algorithms may fail to deliver any recommendation
at all for some users, typically as a result of lack of sufficient data. For ex-
ample, user-based kNN may fail to find any neighbor of u who has rated any
recommendable target item. That is, there may be users for whom all target
items are NC, as described in B2, above. The situation may be exacerbated if a
strong restriction on the designation of target items is applied in offline evalu-
ation – as is the case when condensed rankings are employed (see Decision C1
above) (Cañamares and Castells, 2018a).

In such cases the experimenter has two options: they can “forgive” the
lack of coverage, by averaging the metrics only over the users who did get
recommendations; or they can average over all users by declaring the uncovered
users to have a metric score of zero. While the full average seems a reasonable
default option, the reduced “forgiven” average might also be appropriate in
some circumstances. An additional alternative, circumventing the problem, is
to handle all NC items via a secondary scoring regime (B2, above), even if that
means the whole ranking for some users is generated that way.

Decisions in regard to user coverage shortage and the difference between
the two averaging options might be regarded by the experimenter as being
relatively inconsequential. But they can greatly distort the results and po-
tentially lead to incorrect experimental conclusions. In particular, forgiveness
likely boosts the apparent effectiveness of a short-coverage algorithm, since it
is permitted to refuse to deal with “difficult” users, and obtains an advantage
over algorithms that produce recommendations for all users.

Assuming metric m is aggregated by arithmetic mean over users, it is easy
to switch between full and reduced averages by mreduced = User-coverage ·
mfull, where mfull and mreduced are the metric values obtained by a full and
reduced average respectively, and User-coverage is the fraction of users covered.
But both approaches have disadvantages: the full average penalizes empty
recommendations as much as it penalizes totally nonsensical recommendations,
even though a void output is not delivered to anyone, and does no actual harm;
a reduced average places no penalty on the failure to bring service to some
users. As a result of these concerns, we recommend that researchers check
for coverage as a complementary dimension to recommendation quality, and
habitually report coverage alongside (and separate from) effectiveness scores.

The lack of coverage might be quite insidious, since the metric scores are
typically computed to some depth d, and there might be fewer than d non-
NC items found for user u. Moreover, most metric computation software deals
with any missing part of the ranking by assuming a necessary quorum of

14 Cañamares, Castells, Moffat

non-relevant items. Truncated rankings may thus result in a degradation of
the perceived effectiveness of the algorithm, an effect which might similarly
be unnoticed by the experimenter. It may thus be appropriate to employ a
finer and more informative coverage metric than the User-coverage ratio above,
defined as:

Coverage@d =
1

d|U|
∑
u∈U

min(d, |Ru|) ,

where U is the set of all users, Ru is the recommendation delivered to user
u, and d is the metric depth for the quality measures under examination. It
is easy to see that the two coverage metrics are related by User-coverage =
Coverage@1. Consideration of this Coverage@d score will highlight measure-
ment quality losses resulting from coverage problems. The residual value as-
sociated with weighted-precision metrics serves a similar role in IR (Lu et al.,
2016; Moffat and Zobel, 2008; Moffat et al., 2017).

Decision D. System Comparison and Statistical Tests

As well as comparing systems according to their mean or median performance
it is common to carry out a statistical test (Gunawardana and Shani, 2015;
Sakai, 2016, 2018). If the reporting is of how many users each approach is best
for, then the sign test should be used. Or, if the quantities being compared
are the two arithmetic means, then the t-test is suitable. Subsampling can
also be used to help establish confidence. For example, the pool of users can
be sampled to create random subsets in a mode akin to bootstrapping, and
a statistical test applied in each subset, with the final reported outcome the
fraction of subsets for which the statistical test rejected the null hypothesis
relative to some threshold α such as 0.05 or 0.01. Researchers and reviewers
alike should agree that not carrying out a suitable statistical test is not a
permitted option; and that reporting of the computed p values is preferable
to binarization of them relative to a threshold such as α = 0.05 (Wasserstein
et al., 2019).

Implications for Reproducibility

As an immediate consequence of the enumeration of factors we have provided
in this section, we suggest that researchers carrying our experimental evalu-
ations of recommender systems take care to fully describe their experimental
procedures, so that others might hope to replicate their results given access to
the same data.

4 Experiments

We now explore the effect of the methodological decisions described in Sec-
tion 3 and show that they can play a decisive role in system-versus-system

Offline Evaluation Options for Recommender Systems 15

comparisons. To accomplish this, we employ two well-known recommenda-
tion methods: a user-based version of the k-nearest-neighbor algorithm (kNN)
(Ning et al., 2015), and matrix factorization (MF) (Hu et al., 2008), making
use of public implementations provided by the Ranksys library (see http:

//ranksys.org). In MovieLens, k = 100 neighbors and cosine similarity are
used for kNN; and for matrix factorization the configuration parameters pro-
posed by Cañamares and Castells (2017) are employed, namely 50 factors,
λ = 1, α = 0.1 and 20 iterations. The same settings are used in Netflix, except
k = 1000 for kNN. Note that choosing the best parameter configuration for
either approach is not an essential point here, since our objective is not to
identify the “best” RS system, but to instead demonstrate in practical terms
the effect that the evaluation design can have on an experimental outcome,
regardless of what the two candidate algorithms might be.

Starting Configuration

The following settings, presented in the categories described in Section 3, are
used as a starting point, and represent a completely typical RS experimental
arrangement. The majority of these settings are then explored in the experi-
ments that follow:

A1 Data selection: the MovieLens and Netflix datasets are used.
A2 Train/test split : the available ratings are separated into Train and Test

using a random split with a split ratio of 0.5.
B1 Selecting users : users are removed if they do not have any ratings in Train

after the splitting process.
B2 NC items : items without a score are not included in the ranking.
C1 Condensed or full : the experiments commence with full-list evaluation,

the option most commonly used in the literature.
C2 Choice of metric, full rankings : Prec@d and NDCG@d are used at d = 10,

with a binarized gain mapping g1(r) = 0 if r < 4, and g1(r) = 1 if r ≥ 4,
where 1 ≤ r ≤ 5 for both datasets. If an item has not been rated its
gain is 0. Rankings containing no ratings, or rankings in which the only
ratings have gains of zero, are defined to have scores of zero. When Prec
and NDCG display similar behavior, we only show NDCG.

C3 Score aggregation: the unweighted arithmetic mean over users is used to
compute aggregate Prec@d and NDCG@d scores.

C4 Coverage shortfall : by default full metric averages over users are com-
puted, including users to whom the system fails to deliver a recommen-
dation and hence have zero scores.

D Statistical tests : In all our experiments a paired two-tailed t-test is used to
assess the statistical significance of metric comparisons between system
pairs – the resulting p values are reported whenever they are material
for the point made in our analysis and/or the corresponding findings. In
these tests, we follow the same approach as is common in the evaluation
of search results (Carterette, 2012), where in our case the users play the

16 Cañamares, Castells, Moffat

Metric
MovieLens Netflix

kNN MF p kNN MF p

Prec@10 0.416 0.423 0.039 0.382 0.409 0
NDCG@10 0.452 0.455 0.897 0.416 0.442 0

Table 2: Performance of kNN and MF using the initial settings. For each dataset and metric,
the better value of each comparison pair is shown in blue, and the third column in the group
lists p values for a paired two-tailed t-test.

MovieLens Netflix

0.2 0.5 0.8 0.2 0.5 0.8

0.3

0.4

0.5

Split ratio

N
D

C
G

@
10

 kNN
 MF

Fig. 2: System scores: NDCG@10 for kNN and MF varying (only) the test/train split ratio
(A2). All other settings are as specified for the starting point. Similar behavior arises with
Prec@10. The p values for a paired two-tailed t-test are essentially 0 for all the comparisons,
except in MovieLens at a 0.5 split ratio where the p value is 0.897.

role of queries: the statistical tests measure the significance of the mean
difference of a metric between two systems based on the series of metric
value differences of the systems over individual users. To simplify the
analysis, each metric value data point is computed over a single data
split into training and test.

Table 2 shows the performance of kNN and MF when a system-versus-
system evaluation is carried out using these typical experimental settings.
Matrix factorization provides slightly better performance than kNN when mea-
sured using both metrics, and hence might be deemed to be the “winner” in
this experiment. The outcome is consistent across the two datasets, with a
slightly higher margin for Netflix. We now systematically explore the effect on
the same experiment if each of the various experimental decisions is varied.

Decision A2: Train/Test Splitting

The split ratio of 0.5 yields Train and Test sets of approximately equal size.
Other values are also sometimes used – in particular, 0.8 is common for a five-
fold cross-validation experiment, and similarly 0.9 for a ten-fold experiment.
Figure 2 shows how the NDCG@10 scores of kNN and MF change for lower
and higher split ratios than the starting value 0.5. At a small split value kNN
outperforms MF on both datasets, but when the split ratio goes over 0.5 the
ordering is reversed.

Offline Evaluation Options for Recommender Systems 17

MovieLens Netflix

0.2 0.5 0.8 0.2 0.5 0.8
0.4

0.5

0.6

0.7

Split ratio

U
nk

no
w

n@
10

 kNN
 MF

Fig. 3: Fraction of unrated items in the top ten positions, averaged across users, varying
(only) the split ratio. The p values for a paired two-tailed t-test are essentially 0 for all the
comparisons, except in MovieLens at a 0.5 split ratio where the p value is 0.006.

The actual value of NDCG@10 also changes (within each algorithm) as
the split ratio is varied – it turns out that the maximum scores tend to be
recorded at around 0.5. This behavior is the result of two factors acting in
tension. On the one hand, the more Train ratings there are for a user, the
more likely it is that the system will assess that user’s tastes correctly, and
make useful suggestions. On the other hand, since full-list evaluation is being
employed, more Train ratings implies fewer rated items in Test, and only the
latter positively contribute to the metric score.

Figure 3 shows the fraction of unrated items in the top-10 rankings for
kNN and MF, and illustrates the problems caused by low rating density. There
is no split point at which the fraction of unrated items in the rankings is less
than 50%, and for both small and large split points, a great majority of the
items being used in a full-ranking evaluation have unknown ratings – yet are
counted as having a gain of zero when depth d = 10 non-condensed metrics
are computed. That is, fixed-depth evaluation using full rankings means that
a majority of the ranked items are assigned artificial gain values (of zero),
risking the integrity of the evaluation.

Decision C1: Condensed or Full

The alternative is to condense the rankings, and work only with rated Test
items. Figure 4 shows the scores that arise. The pattern of Figure 2 is gone,
and now there is a steady improvement in scores as more ratings are made
available for training. Moreover, in Netflix the qualitative comparison between
kNN and MF is no longer sensitive to the split ratio. However, the cross-over
between the two methods remains for MovieLens: kNN gives higher scores than
MF when there are more Test ratings than Train ratings.

To gain a further insight into condensed lists, Figure 5 shows the position
in the full ranking of each of the top ten items that make up the two condensed
rankings, with each position’s value an average across all users. In MovieLens,
only the top three items in the condensed list are, on average, present in the

18 Cañamares, Castells, Moffat

MovieLens Netflix

0.2 0.5 0.8 0.2 0.5 0.8
0.7

0.75

0.8

0.85

Split ratio

N
D

C
G

@
10

 kNN
 MF

Fig. 4: System scores: NDCG@10 for kNN and MF as a function of the test/train split (A2),
now using condensed lists (C1). The p values for a paired two-tailed t-test are essentially 0
for all the comparisons, except in MovieLens at a 0.5 split ratio where the p value is 0.041.
Somewhat similar behavior arises with Prec@10.

MovieLens

0

40

80

120

1 5 10
Condensed position

kNN
MF

Netflix

0

100

200

300

1 5 10
Condensed position

kNN
MF

Fu
ll

po
si

tio
n

Fig. 5: Average position in the full ranking of each of the first ten items in the condensed
ranking, using the “starting point” configuration. This experiment only includes users for
whom ten or more Test ratings were available using both mechanisms (B1), so as to allow
computation of all ten points over the same set of users.

MovieLens

0.4

0.45

0.5

0.55

1 10 20
d

kNN
MF

Netflix

0.4

0.45

0.5

1 10 20
d

kNN
MF

Netflix 0.8 train

0.3

0.32

0.34

0.36

0.38

1 10 20
d

kNN
kNN k=100

N
D

C
G

@
d

Fig. 6: System scores: NDCG@d for kNN and MF as d is varied (C2). All other settings are
as specified for the starting point. The vertical axes are truncated.

top ten full list; and by depth ten in the condensed list, more than fifty items
in the full list have been covered. This then raises a potential concern against
the use of condensed lists: the evaluation considers a very different set of items
to those that would be shown to the user in a real environment.

Offline Evaluation Options for Recommender Systems 19

Metric Gain mapping kNN MF p

Prec@10 g1(r) 0.416 0.423 0.039

NDCG@10 g1(r) 0.452 0.455 0.897
NDCG@10 g2(r) 0.393 0.389 0.002

RBP, φ = 0.8 g1(r) 0.410 0.410 0.390
RBP, φ = 0.8 g2(r) 0.339 0.332 0.011

Table 3: System comparisons: scores for kNN and MF in MovieLens when different gain
mappings are employed with different effectiveness metrics (C2) on top-10 lists, and corre-
sponding p values for paired two-tailed t tests. (The first two rows also appear in Table 2.)
All other settings are as specified for the starting point. The better value in each pair is
shown in blue.

One surprising aspect of Figure 5 is that the depth required to form the
condensed MF list grows much faster than the depth required for kNN. That
is, MF appears to be more willing to provide scores for novel items than is
kNN, which seems to be more closely aligned with the set of items in Test.
This willingness might mean that MF scores more poorly than it should on
full rankings.

Decision C2: Choice of Metric

The metric should be chosen to reflect the likely user interaction with the
generated ranking (Moffat et al., 2017). Then, once the metric has been se-
lected, there is usually a parameter that must be set. In the case of Prec and
NDCG, that parameter is d, the evaluation depth. Figure 6 shows the value
of NDCG@d over different evaluation depths for kNN and MF. In MovieLens
(left), when d is small, kNN provides superior performance, but as d increases,
MF overtakes it. In Netflix (center), the comparison is not sensitive to the
metric depth. However we can easily find a similar crossover in this dataset: a
different configuration of kNN, just taking k = 100 neighbors instead of 1000,
yields a different outcome to the base kNN configuration at a 0.8 split ratio
(Figure 6, right).

The choice of gain mapping also has a notable effect. Table 3 shows average
metric scores in MovieLens with the standard binarized gain mapping g1(r) =
1[4,∞)(r) defined as the “starting point”, and compares those values with the
multi-valued mapping g2(r) = (2r−1 − 1)/(2rmax−1 − 1) that is often used
in IR applications. The relative superiority between kNN and MF is again
reversed by a single change in the experimental methodology. The differences
g1 and g2 indicate that kNN does a better job than MF at ranking high ratings
above moderate ones (as captured by g2), while MF is better (with weaker
significance) at ranking high and moderate ratings above low and missing
ratings (as represented in g1). This effect is confirmed by Kendall’s τ and
RBO scores – not included in our presentation here – which confirm that the
condensed kNN rankings are more similar to the Test rankings than are the
MF rankings.

20 Cañamares, Castells, Moffat

Aggregation
Prec@10 NDCG@10

kNN MF p kNN MF p

AM, unweighted 0.416 0.423 0.039 0.452 0.455 0.897
AM, Test weighted 0.591 0.586 0.123 0.619 0.611 0.001
AM, Test relevant 0.597 0.590 0.013 0.625 0.612 1.826 × 10−4

GM, unweighted 0.294 0.308 – 0.320 0.332 –

Table 4: System comparisons using MovieLens, with kNN and MF scores computed using
different aggregation techniques (C3), where AM indicates the arithmetic mean, and GM
indicates an ε-adjusted geometric mean with ε = 0.01. All other settings are as specified
for the starting point. For each metric and aggregation technique, the better value of each
comparison pair is shown in blue, and the third column in the group lists p values for a
paired two-tailed t-test.

Decision C3: Score Aggregation

Table 4 shows the value of Prec@10 and NDCG@10 when different averaging
methods are employed in MovieLens. Weighting the scores by the number of
ratings associated with each user or weighting them by the number of positive
ratings (≥ 4) associated with each user yield different numeric scores, and,
more importantly, also reverse the system comparison. In the MovieLens data
set there is a strong correlation between the number of ratings a user has
generated, and the number of positive ratings they have lodged (a Pearson’s ρ
of 0.962), and it appears from this experiment that kNN benefits from having
more ratings available. The lift in absolute scores is a result of two factors: first,
more Test ratings implies more rated candidates in the full list, and hence fewer
“presumed zero” ratings; and second, more Train ratings for those same users
implies better quality predictions, since the algorithm has more information to
work with. Note that a commercial service might prefer a weighted comparison,
given that users with more historical ratings are also more likely to return to
the service as future customers.

Table 4 also includes the geometric mean. Taking the arithmetic mean
across users means that small differences between the systems for large scores
have the same importance in the comparison as small differences when the
scores are small. But the latter are relatively more worthwhile, an effect that
has also been noted in IR evaluation Robertson (2006). One issue that arises
with the geometric mean is that if any of the values in the set being aggregated
is zero, so too is the geometric mean. To avoid this problem, we employ the
ε-adjusted geometric mean , computed as exp(

∑n
i=1 ln(xi+ε)/n)−ε. Use of the

t-test is not appropriate in this case, because the statistic being reported is not
the mean; that is why no p values were computed. But if we regard the critical
part of the GM computation as being the transformation into log-space, then
the t-test can be applied to the two sets of ln(xi + ε) values, and if this is done
the two p values are 1.769× 10−6 and 1.653× 10−4 respectively.

Table 4 provides a clear warning – the four score aggregation techniques
give notably different outcomes; worse, each of the four options might be ar-
gued for as being the preferred approach.

Offline Evaluation Options for Recommender Systems 21

 k=1 k=3 k=10 k=30 k=100

0

0.2

0.4

0.6

0.8

1

None Ran−
dom

Pop−
ularity

Average
rating

N
D

C
G

@
10

MovieLens

0

0.2

0.4

0.6

0.8

1

None Ran−
dom

Pop−
ularity

Average
rating

N
D

C
G

@
10

Netflix

NC handling approach

Fig. 7: Scores for NDCG@10 for kNN with k = 1, 3, 10, 30 and 100, with different approaches
to NC items. Recommendation lists are condensed, and half of the ratings are now used in
MovieLens. Blue crosses represent Coverage@10.

Decisions B1, B2: Selecting Users and Handling NC Items

All of the experiments reported so far excluded users with no Train ratings.
When working with the MovieLens dataset, in which all users have more than
20 ratings, and a split ratio of 0.5, this restriction has little influence on the
experimental outcomes. Only for small split ratios was a lack of Train ratings
an issue, and in practice both kNN and MF can compute internal scores for
almost all items. Hence, to observe the effect of the B1 and B2 decisions, we
now make a more complex change to the starting configuration:

A1 Half of the ratings in the MovieLens dataset are randomly selected, and
then split between Train and Test, to increase the number of NC items.
In Netflix many users have very few ratings already, so this operation is
not necessary.

B1 All users are included, even those with no Train data.
B2 NC items. We compare four approaches: removing them from the rec-

ommendation list (None), as was done in the previous experiments; and
adding them at the end of the non-null ratings in random order (Ran-
dom); in decreasing order of Train ratings (Popularity); or in decreasing
order of average rating in Train (Average rating).

C1 To allow the NC items to exert influence on the score, the condensed list
approach is used.

Five different versions of kNN are then compared, using k = 1, 3, 10, 30, and
100 neighbors, with the increasing number of neighbors decreasing the number
of NC items. While not all the resultant configurations can still be regarded
as being “typical”, they nevertheless serve to illustrate the effect of NC items.
Figure 7 shows the value of NDCG@10 (Prec@10 behaves similarly) when the
NC items are handled using the four options.

If the NC items are removed from the recommendation list (None ap-
proach), considering more neighbors results in better performance. This is

22 Cañamares, Castells, Moffat

kNN Prec@10 full
MF Prec@10 full

kNN Prec@10 reduced
MF Prec@10 reduced

kNN User−coverage
MF User−coverage

0

0.1

0.2

0.3

0.4

0.5

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

Pr
ec

@
10

U
ser−coverage

MovieLens

0

0.1

0.2

0.3

0.4

0.5

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

Pr
ec

@
10

U
ser−coverage

Netflix

Minimum rating overlap between neighbors in kNN

Fig. 8: System scores for Prec@10 (left axis) and User-coverage (right axis) as a function of
the kNN requirement for a minimum rating overlap between neighbors. Precision is shown in
two variants: full, and reduced average. The performance of MF is independent of the kNN
parameter, and shows as horizontal lines. All other settings are as specified for the starting
point.

because the overabundance of NC items results in coverage loss, shown in the
figure by blue crosses representing Coverage@10 (see C4 in Section 2). This
in turn hurts NDCG@10, as is apparent in the first block of bars. The same
shift occurs with the Random approach, but to a lesser extent. The difference
exposes the influence of NC items, and confirms that the smaller the number
of neighbors, the greater the number of NC items. But the situation is not as
clear-cut with the other two approaches. Now the change is not monotonic,
and in the Average rating approach, the best performance is obtained when
k = 1, meaning that using a non-personalized algorithm for many of the items
is better than using kNN alone. This data provides another clear warning: NC
items alone might determine the comparative performance of two algorithms.

Decision C4: Coverage Shortfall

Figure 8 shows an example where contradictory conclusions would arise in
the comparison of the kNN algorithm (k = 10) against matrix factorization
because of coverage. The kNN variant employs binarized ratings, with cosine
similarity values accepted as valid only when that user has a minimum num-
ber of overlapping rated items. This is a common adjustment in kNN to avoid
unreliable similarity measurements based on too few ratings, but has the side
effect of users with too few neighbors failing to receive recommendations. Com-
pounding the issue is that the excluded users are the “difficult” ones with few
Test ratings, that is, for whom precision tends to be low (for any algorithm).
The “coverage forgiving” reduced average (C4 in Section 3) for a metric then
gives an unfair advantage to kNN compared to MF, as the latter computes
recommendations for all users, easy and difficult alike.

Offline Evaluation Options for Recommender Systems 23

Figure 8 shows that as the overlap requirement increases (horizontal axis),
kNN surrenders user coverage and, as a consequence, improves in terms of the
“forgiving average”, while dropping in terms of the full average. (The metric
values for MF show as horizontal reference lines in the graphs, since they
are unaffected by the kNN configuration.) If a parameter greater than 10 is
chosen in MovieLens or greater than 20 in Netflix, this particular experiment
“confirms” that kNN is superior to MF. But this comparison would be unfair,
since the two methods are being compared over different sets of users, with a
selection bias evident in the subset used for the kNN measurement.

Indeed, if the importance of comparing systems on the same set of users
is overlooked, a further conclusion from this experiment would be that a high
overlap requirement is desirable for kNN. But in truth no real improvement
is achieved by doing that, with user coverage being degraded without recom-
mendation gain arising.

Decision D: System Comparison and Statistical Tests

When systems are being compared via their mean scores, claims of “improve-
ment” should be backed up by statistical confidence computations, in both
RS evaluation and in IR evaluation (Sakai, 2016, 2018). Most researchers are
aware of this expectation. Moreover, given the large number of data points
involved in typical RS evaluations (Table 1), it is unusual for an experiment
to lack sufficient statistical power, and hence even quite small differences in
system performance can be reliably detected.

Returning to the starting configuration, the first two rows of Table 3 give
p values for a two-tailed paired t-test, comparing the kNN and MF approaches
using Prec@10 and NDCG@10 on full rankings. The remainder of that table
explores other metric/gain functions. Table 4 also reports significance, noting
situations in which p < 0.05 was detected. With the exception of just three
combinations – NDCG@10 applied to full rankings, RBP with the binarized
gain mapping g1(·), and test-weighted aggregation when coupled with Prec@10
– a researcher who carried out any of these evaluations would, in isolation,
conclude that they had attained a significant result.

The problem is, in some of these many experiments it is kNN that is signif-
icantly better, and in others it is MF. Of course, there is no particular reason
to expect that if two different metrics are used in an evaluation, or even if two
different evaluation depths are used, that both should give the same outcome.
But if such deceptively simple changes can give rise to opposing statistically
significant outcomes, it does mean that all aspects of the comparison need
to be carefully considered, because it might be that the improvement that is
being claimed is less a consequence of innate superiority, and more a quirk of
the particular methodology that was followed.

24 Cañamares, Castells, Moffat

5 Summary and Conclusions

We have presented a taxonomy of the methodological decisions that are re-
quired during the design of an RS experiment, and discussed the choices that
are available at each of a total of eight distinct steps. We have also carried out
a range of experimentation using two public RS implementations and two pub-
lic datasets, to show how different experimental choices can affect the outcome
of an experiment.

Some of these outcomes will come as no surprise to researchers. Changing
the evaluation metric, for example, clearly results in a different experiment
being undertaken, and means that a different outcome might result. But some
of the other outcomes should probably be of concern to the community. For
example, choosing a different split ratio when setting up Train and Test can
affect the outcome, even when all other factors are held constant; as can al-
tering the depth of evaluation of the (same) metric; as can the choice of gain
function; as can shifting from user-weighted aggregation to volume-weighted
aggregation.

The critical point that we seek to make with this work is this: if exper-
imental outcomes can be affected by the methodological decisions made in
these regards just as much as they are by the innate quality of the RS systems
being compared, then great care is required when carrying out evaluations.
The very first step should be a detailed statement in regard to experimental
settings. That is, even if the sole benefit of this paper is to enumerate a tax-
onomy against which others can report their experimental design, we feel we
will have made an important contribution.

A fundamental question that we have not sought to answer, and is perhaps
unanswerable, is the choice (C2) between full rankings and condensed rankings.
The benefit of full rankings is that they reflect what it is that is presented to
the user of an operational system; the benefit of condensed rankings is that
they reflect what it is that we can properly measure using the standard batch-
oriented Train/Test methodology. Neither approach seems truly satisfactory,
because the advantage of each is the Achilles’ heel of the other. We urge
experimental researchers to remain keenly aware of these limitations. Perhaps
a third approach will emerge as a result of future developments in the area, or
perhaps it will become commonplace for both results to be presented in future
evaluations. What is clear is that user-based evaluation via a continuous stream
of user interaction data in response to the recommendations flowing from a
live system is preferable to static batch-oriented approaches in this regard.
But not all researchers have access to such systems and their user behavior
data, and it seems likely that batch-oriented evaluation will continue to play
an important role.

The reader might feel that we “got lucky” with this investigation, because
the split ratio of 0.5 that we happened to choose for the starting configuration
highlighted many of the issues we sought to discuss. We do not, however,
believe that our “luck” in this regard detracts from the message that we seek
to convey – if anything, it makes it stronger, since our “good luck” is also “bad

Offline Evaluation Options for Recommender Systems 25

luck” from the opposite point of view. A researcher who (for whatever reason)
worked with the MovieLens dataset and chose a split ratio of 0.4 (perhaps
because they wished to have deeper evaluation of Test) or a split ratio of 0.8
(perhaps because they planned to carry out five-fold cross-validation) might
be misled by their initial findings, and discouraged from pursuing what might
actually be a profitable line of enquiry. Likewise, the existence of a statistically
significant result arising from some particular combination of methodological
decisions might well sway a referee, and support them in making an “accept”
recommendation for a paper without them appreciating that the comparison
that led to the particular p value might be fragile. Armstrong et al. (2009)
make somewhat similar observations in regard to IR evaluation.

We have not presented any new RS techniques in this work; that is not our
objective. Nor have we compared and tested a broad range of, or the most-
recent, RS mechanisms, and nor have we explored a wide range of datasets;
exhaustive coverage of methods or test suites is also not our objective. Rather,
our purpose with this work – via two standard implementations and two stan-
dard datasets – is to advise and request that researchers and practitioners be
alert to the many things that might affect the outcomes of the experiments
that they carry out. In particular, we ask that researchers carefully document
the options they employed, perhaps using our taxonomy or one that is even
more detailed, so that others can hope to reproduce the same experimental set-
up; and that they likewise hesitate before making what might turn out to be
overly-bold claims based on single experimental configurations. Just as we got
“lucky” with the arrangements that we chose to work with to demonstrate the
possible pitfalls, so too might a researcher get “lucky” (or “unlucky”) with the
test arrangements they apply when measuring some proposed new technique.

Our findings are somewhat sobering. The 2019 tabulation and testing of
recent RS techniques by Dacrema et al. (2019) documents one way in which
RS researchers need to be careful (that is, in their choice of baseline systems
against which to compare); our work here adds to those concerns, by exposing
other ways in which experiments must be planned strategically. Neither of
these two different aspects of experimental methodology can be neglected if
the field is to progress.

We close by reiterating our primary observation: methodological choices
can and do affect experimental outcomes, and researchers are encouraged to
fully document all of the decisions they make when carrying out RS exper-
iments, so that others seeking to build on those findings have a firm basis
on which to do so. We also encourage reporting of multiple methodological
combinations, so that any quirks and idiosyncrasies associated with particular
settings can be recognized for what they are. If a new system can be shown
to be better than a suite of good baselines over a range of parameter settings
and experimental configurations, then it probably is a superior system. But if
the new systems turns out to only be better in one configuration, or using one
data set, or with one metric, then claims in regard to its superiority need to
be approached with scepticism and caution.

26 Cañamares, Castells, Moffat

On a more positive note, we are confident that the majority of experienced
RS researchers and practitioners are aware of the need for wide-ranging ex-
perimentation; and the discussion here should not be taken as criticism of the
community, but rather, as a guide to people new to the field that explains
issues that they must, of necessity, be aware of and alert to.

Acknowledgment

The first two authors were funded in part by grant TIN2016-80630-P from the
Spanish Ministry of Science, Innovation and Universities.

References

Adomavicius G, Tuzhilin A (2005) Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions.
IEEE Trans on Knowledge and Data Engineering 17(6):734–749

Armstrong TG, Moffat A, Webber W, Zobel J (2009) Improvements that don’t
add up: Ad-hoc retrieval results since 1998. In: Proc. ACM Int. Conf. on
Information and Knowledge Management (CIKM), pp 601–610

Bailey P, Craswell N, Soboroff I, Thomas P, de Vries AP, Yilmaz E (2008)
Relevance assessment: Are judges exchangeable and does it matter. In: Proc.
ACM Int. Conf. on Research and Development in Information Retrieval
(SIGIR), pp 667–674

Belloǵın A, Castells P, Cantador I (2011) Precision-oriented evaluation of rec-
ommender systems: An algorithmic comparison. In: Proc. ACM Conf. on
Recommender Systems (RecSys), pp 333–336

Belloǵın A, Wang J, Castells P (2013) Bridging memory-based collaborative
filtering and text retrieval. Information Retrieval 16(6):697–724

Belloǵın A, Castells P, Cantador I (2017) Statistical biases in information
retrieval metrics for recommender systems. Information Retrieval 20(6):606–
634

Bertin-Mahieux T, Ellis DPW, Whitman B, Lamere P (2011) The million song
dataset. In: Proc. Int. Soc. for Music Information Retrieval Conf. (ISMIR),
pp 591–596

Cañamares R, Castells P (2017) A probabilistic reformulation of memory-
based collaborative filtering: Implications on popularity biases. In: Proc.
ACM Int. Conf. on Research and Development in Information Retrieval
(SIGIR), pp 215–224

Cañamares R, Castells P (2018a) Characterization of fair experiments for rec-
ommender system evaluation: A formal analysis. In: RecSys Wrkshp. on
Offline Evaluation of Recommender Systems (REVEAL)

Cañamares R, Castells P (2018b) Should I follow the crowd? A probabilistic
analysis of the effectiveness of popularity in recommender systems. In: Proc.
ACM Int. Conf. on Research and Development in Information Retrieval
(SIGIR), pp 415–424

Offline Evaluation Options for Recommender Systems 27

Carterette BA (2012) Multiple testing in statistical analysis of systems-based
information retrieval experiments. ACM Trans on Information Systems
30(1):4:1–4:34

Castells P, Hurley NJ, Vargas S (2015) Novelty and diversity in recommender
systems. In: Recommender Systems Handbook, Springer, pp 881–918

Chapelle O, Metlzer D, Zhang Y, Grinspan P (2009) Expected reciprocal rank
for graded relevance. In: Proc. ACM Int. Conf. on Information and Knowl-
edge Management (CIKM), pp 621–630

Cremonesi P, Koren Y, Turrin R (2010) Performance of recommender algo-
rithms on top-n recommendation tasks. In: Proc. ACM Conf. on Recom-
mender Systems (RecSys), pp 39–46

Dacrema MF, Cremonesi P, Jannach D (2019) Are we really making much
progress? A worrying analysis of recent neural recommendation approaches.
In: Proc. ACM Conf. on Recommender Systems (RecSys), pp 101–109

Dinçer BT, Macdonald C, Ounis I (2014a) Hypothesis testing for the risk-
sensitive evaluation of retrieval systems. In: Proc. ACM Int. Conf. on Re-
search and Development in Information Retrieval (SIGIR), pp 23–32

Dinçer BT, Ounis I, Macdonald C (2014b) Tackling biased baselines in the
risk-sensitive evaluation of retrieval systems. In: Proc. European Conf. on
Information Retrieval (ECIR), pp 26–38

Ferro N, Fuhr N, Grefenstette G, Konstan JA, Castells P, Daly EM, Declerck
T, Ekstrand MD, Geyer W, Gonzalo J, Kuflik T, Lindén K, Magnini B, Nie
JY, Perego R, Shapira B, Soboroff I, Tintarev N, Verspoor K, Willemsen
MC, Zobel J (2018) From evaluating to forecasting performance: How to
turn Information Retrieval, Natural Language Processing and Recommender
Systems into predictive sciences. Dagstuhl Manifestos 7(1):96–139

Gilotte A, Calauzènes C, Nedelec T, Abraham A, Dollé S (2018) Offline A/B
testing for recommender systems. In: Proc. ACM Int. Conf. on Web Search
and Data Mining (WSDM), pp 198–206

Gruson A, Chandar P, Charbuillet C, McInerney J, Hansen S, Tardieu D,
Carterette B (2019) Offline evaluation to make decisions about playlist rec-
ommendation. In: Proc. ACM Int. Conf. on Web Search and Data Mining
(WSDM), pp 420–428

Gunawardana A, Shani G (2015) Evaluating recommendation systems. In:
Recommender Systems Handbook, Springer, pp 265–308

Harman DK (2005) The TREC test collections. In: Voorhees EM, Harman
DK (eds) TREC: Experiment and Evaluation in Information Retrieval, MIT
Press, chap 2, pp 21–52

Harper FM, Konstan JA (2016) The MovieLens datasets: History and context.
ACM Trans on Interactive Intelligent Systems 5(4):19.1–19.19

He R, McAuley J (2016) Ups and downs: Modeling the visual evolution of
fashion trends with one-class collaborative filtering. In: Proc. Int. Conf. on
the World Wide Web (WWW), pp 507–517

Herlocker JL, Konstan JA, Terveen LG, Riedl JT (2004) Evaluating collabo-
rative filtering recommender systems. ACM Trans on Information Systems
22(1):5–53

28 Cañamares, Castells, Moffat

Hofmann K, Li L, Radlinski F (2016) Online evaluation for information re-
trieval. Foundations & Trends in Information Retrieval 10(1):1–117

Hu Y, Koren Y, Volinsky C (2008) Collaborative filtering for implicit feedback
datasets. In: Proc. Int. Conf. on Data Mining (ICDM), pp 15–19

Jannach D, Lerche L, Kamehkhosh I, Jugovac M (2015) What recommenders
recommend: An analysis of recommendation biases and possible counter-
measures. User Modeling and User-Adapted Interaction 25(5):427–491

Järvelin K, Kekäläinen J (2002) Cumulated gain-based evaluation of IR tech-
niques. ACM Trans on Information Systems 20(4):422–446

Kazai G, Kamps J, Milic-Frayling N (2013) An analysis of human factors and
label accuracy in crowdsourcing relevance judgments. Information Retrieval
16(2):138–178

Kutlu M, McDonnell T, Barkallah Y, Elsayed T, Lease M (2018) Crowd vs.
expert: What can relevance judgment rationales teach us about assessor
disagreement? In: Proc. ACM Int. Conf. on Research and Development in
Information Retrieval (SIGIR), pp 805–814

Lu X, Moffat A, Culpepper JS (2016) The effect of pooling and evaluation
depth on IR metrics. Information Retrieval 19(4):416–445

Marlin BM, Zemel RS (2009) Collaborative prediction and ranking with non-
random missing data. In: Proc. ACM Conf. on Recommender Systems (Rec-
Sys), pp 5–12

Moffat A, Zobel J (2008) Rank-biased precision for measurement of retrieval
effectiveness. ACM Trans on Information Systems 27(1):2.1–2.27

Moffat A, Bailey P, Scholer F, Thomas P (2017) Incorporating user expecta-
tions and behavior into the measurement of search effectiveness. ACM Trans
on Information Systems 35(3):24:1–24:38

Ning X, Desrosiers C, Karypis G (2015) A comprehensive survey of
neighborhood-based recommendation methods. In: Recommender Systems
Handbook, Springer, pp 37–76

Ricci F, Rokach L, Shapira B (2015) Recommender systems: Introduction and
challenges. In: Recommender Systems Handbook, Springer, pp 1–34

Robertson S (2006) On GMAP: And other transformations. In: Proc. ACM
Int. Conf. on Information and Knowledge Management (CIKM), pp 78–83

Said A, Belloǵın A (2014) Comparative recommender system evaluation:
Benchmarking recommendation frameworks. In: Proc. ACM Conf. on Rec-
ommender Systems (RecSys), pp 129–136

Sakai T (2016) Statistical significance, power, and sample sizes: A systematic
review of SIGIR and TOIS, 2006-2015. In: Proc. ACM Int. Conf. on Research
and Development in Information Retrieval (SIGIR), pp 5–14

Sakai T (2018) Laboratory Experiments in Information Retrieval: Sample
Sizes, Effect Sizes, and Statistical Power, The Information Retrieval Series,
vol 40. Springer

Sakai T, Kando N (2008) On information retrieval metrics designed for
evaluation with incomplete relevance assessments. Information Retrieval
11(5):447–470

Offline Evaluation Options for Recommender Systems 29

Schnabel T, Swaminathan A, Singh A, Chandak N, Joachims T (2016) Rec-
ommendations as treatments: Debiasing learning and evaluation. In: Proc.
Int. Conf. on Machine Learning (ICML), pp 1670–1679

Steck H (2010) Training and testing of recommender systems on data missing
not at random. In: Proc. Conf. on Knowledge Discovery and Data Mining
(KDD), pp 713–722

Steck H (2011) Item popularity and recommendation accuracy. In: Proc. ACM
Conf. on Recommender Systems (RecSys), pp 125–132

Steck H (2013) Evaluation of recommendations: Rating-prediction and rank-
ing. In: Proc. ACM Conf. on Recommender Systems (RecSys), pp 213–220

Swaminathan A, Krishnamurthy A, Agarwal A, Dud́ık M, Langford J, Jose D,
Zitouni I (2017) Off-policy evaluation for slate recommendation. In: Proc.
Conf. on Neural Information Processing Systems (NIPS), pp 3635–3645

Valcarce D, Belloǵın A, Parapar J, Castells P (2018) On the robustness and
discriminative power of IR metrics for top-n recommendation. In: Proc.
ACM Conf. on Recommender Systems (RecSys), pp 260–268

Wasserstein RL, Schirm AL, Lazar NA (2019) Moving to a world beyond
“p < 0.05”. The American Statistician 73(sup1):1–19

Webber W, Moffat A, Zobel J (2008) Score standardization for inter-collection
comparison of retrieval systems. In: Proc. ACM Int. Conf. on Research and
Development in Information Retrieval (SIGIR), pp 51–58

Webber W, Moffat A, Zobel J (2010) A similarity measure for indefinite rank-
ings. ACM Trans on Information Systems 28(4):20.1–20.38

Yang L, Cui Y, Xuan Y, Wang C, Belongie S, Estrin D (2018) Unbiased offline
recommender evaluation for missing-not-at-random implicit feedback. In:
Proc. ACM Conf. on Recommender Systems (RecSys), pp 279–287

Yilmaz E, Aslam JA, Robertson S (2008) A new rank correlation coefficient
for information retrieval. In: Proc. ACM Int. Conf. on Research and Devel-
opment in Information Retrieval (SIGIR), pp 587–594

	plantilla_actualizada_ps_ARTICULO.pdf
	offline cañamares preprint

