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The baryon acoustic oscillations (BAO) have proven to be an invaluable tool in constraining the
expansion history of the Universe at late times and are characterized by the comoving sound horizon at the
baryon drag epoch rsðzdÞ. The latter quantity can be calculated either numerically using recombination
codes or via fitting functions, such as the one by Eisenstein and Hu, made via grids of parameters of the
recombination history. Here we quantify the accuracy of these expressions and show that they can strongly
bias the derived constraints on the cosmological parameters using BAO data. Then, using a machine
learning approach, called the genetic algorithms, we proceed to derive new analytic expressions for rsðzdÞ,
which are accurate at the ∼0.003% level in a range of 10σ around the Planck 2018 best fit or ∼0.018% in a
much broader range, compared to ∼2–4% for the Eisenstein and Hu expression, thus obtaining an
improvement of two to three orders of magnitude. Moreover, we also provide fits that include the effects of
massive neutrinos and an extension to the concordance cosmological model assuming variations of the fine
structure constant. Finally, we note that our expressions can be used to ease the computational cost required
to compute rsðzdÞ with a Boltzmann code when deriving cosmological constraints using BAO data from
current and upcoming surveys.
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I. INTRODUCTION

Some of the strongest constraints on the expansion of the
Universe at late times come from baryon acoustic oscil-
lations (BAO) data. The BAO were formed in the early
Universe, while it was very homogeneous [as probed today
by the cosmic microwave background (CMB)] except for
tiny fluctuations, and the photons and baryons were tightly
coupled [1]. As the Universe expanded, it became cooler
and less dense, while the fluctuations grew due to gravity.
Acoustic waves were generated as the photon-baryon fluid
was attracted and fell onto the overdensities producing
compressions and rare factions due to the gravitational
collapse and radiation pressure.
These acoustic waves propagated until the Universe

became cool enough for the electrons and protons to
recombine and then the baryons and photons decoupled.
The time when the baryons were released from the drag of
the photons is known as the drag epoch, zd [2]. From then
on, photons expanded freely while the acoustic waves froze
in the baryons in a scale given by the size of the sound
horizon at the drag epoch, dubbed rsðzdÞ. Progressively,
baryons fell into dark matter potential wells, but dark

matter was also attracted to baryon overdensities. Neutrinos
did not interact, so they streamed away while dark matter
responded to gravity and fell onto the overdensity.
The perturbations were dominated by photons and

baryons as they were coupled, resulting in overdensities
and overpressure that tried to equalize with the surrounding
resulting in an expanding sound wave moving at the speed
of sound, approximately c2s ∼ 1=3. The perturbation in
photons and baryons was carried outward and the photons
and baryons continued to expand whereas neutrinos spread
out. Dark matter continued to fall into perturbations, which
kept growing.
As the expanding Universe continued to cool down, it

reached a point when the electrons and protons began to
combine. Since photons did not scatter as efficiently they
started to decouple. The sound speed dropped and the
pressure wave slowed down. The process continued until
the photons were completely decoupled, and then the
perturbations smoothed out.1 In fact, the sound speed of
the baryon perturbation dropped so much that the pressure
wave stalled. Thus, the original dark matter perturbation
was left surrounded by a baryon perturbation in a shell. The
two components attracted each other and the perturbations
started to mix.2
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1http://mwhite.berkeley.edu/BAO.
2https://lweb.cfa.harvard.edu/∼deisenst/acousticpeak/.
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The BAO provides a characteristic scale that is frozen in
the galaxy distribution providing a standard ruler that can
be measured as a function of redshift in either the galaxy
correlation function or the galaxy power spectrum. The
BAO determination of the geometry of the Universe is quite
robust against systematics and has been measured by
several surveys, such as the SDSS [3] and 2dFGRS [4].
The BAO signature provides a standard ruler that can be
used to measure the geometry of the Universe and it can
measure both the angular diameter distance dAðzÞ and the
expansion rate HðzÞ. Measurements of the BAO only
provide the combination of H0 and rsðzdÞ, which means
that the two parameters are fully degenerate. As a result, the
constraints obtained from the analysis of the BAO can be
influenced significantly on the assumption of rsðzdÞ [5].
In order to accurately estimate rsðzdÞ, one may use either

recombination codes, such as RECFAST [6], CosmoRec [7] or
HyRec [8,9], or analytic approximations based on fits of
grids of parameters of the recombination history. A
prominent example of the latter approach is the formula
by Eisenstein and Hu [10], hereafter known as EH, which
provides a fit of rsðzdÞ in terms of the matter and baryon
density parameters. This formula has been extensively used
in the literature in analyses of the BAO data, see for
example Refs. [11–15]. However, as already observed in
Ref. [10], this expression is only accurate to the ∼2% level
and as a result is not appropriate for deriving cosmological
constraints from BAO data in a percent cosmology era with
current and upcoming surveys.
Over the years attempts to improve the EH formula have

appeared. For example, the dependence of rsðzdÞ on various
parameters, including massive and massless neutrinos, was
examined in Ref. [16]. On the other hand, fits of rsðzdÞ
including neutrinos and relativistic species were found in
Refs. [17,18]. Finally, how the fraction of the baryonic
mass in Helium YP and the relativistic degrees of freedom
Neff affects the sound horizon and how both are degenerate,
was studied in Ref. [19].
The main limitation of the aforementioned analyses is

that some ad hoc parametrizations were fitted to grids of
parameters and rsðzdÞ, thus being limited from the start on
how accurate they can be. Hence, in our work we use
machine learning to provide, in a data driven approach,
extremely accurate fits to the comoving sound horizon at
the baryon drag epoch rsðzdÞ. We then compare these
expressions against both the original formula of EH and the
exact numerical estimation of the sound horizon, in order to
quantify the amount of bias this expression introduces in
the constraints.
In our analysis we also consider separately the effect of

massive neutrinos and a varying fine structure constant and
we find that our fits provide an improvement of a factor of
three compared to other simple parametrizations and can be
used in current and upcoming surveys to derive cosmo-
logical constraints so as to ease the computational cost that

would be required when computing rsðzdÞ via a
Boltzmann code.
The structure of our paper is as follows: in Sec. II we

present the theoretical background and main assumptions
in our work, while in Sec. III we present some details on
our machine learning approach used to improve the sound
horizon fits. In Sec. IV we present our main results, while in
Sec. V we summarize our conclusions. Finally, in the
Appendix we present some complementary fits for the
redshift at the drag and recombination epochs.

II. THEORY

The comoving sound horizon at the drag epoch is
given by

rsðzdÞ ¼
1

H0

Z
∞

zd

csðzÞ
HðzÞ=H0

dz; ð1Þ

where zd is the redshift at the drag epoch, see Eq. (4) of
Ref. [10], while csðzÞ is the sound speed in the baryon-
photon fluid given by

cs ¼
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þ RÞp ; ð2Þ

where R ¼ 3ρb
4ργ

¼ 3Ωb;0

4Ωγ;0
a and c is the speed of light in

vacuum. By definition, the sound horizon at the baryon
drag epoch is the comoving distance a wave can travel prior
to zd and it depends on the epoch of recombination, the
expansion of the Universe and the baryon-to-photon ratio.
The sound horizon is well determined by the CMB
measurements of the acoustic peaks.
Regarding the neutrinos, neutrino flavour oscillation

experiments have shown that they are massive [20],
providing a direct evidence for physics beyond the
Standard Model. Cosmology is a very propitious stage
to probe neutrino properties since they leave an imprint in
the CMB and in the distribution of large-scale structure in
the Universe. The energy density of massive neutrinos,
ρν ¼

P
mν;inν;i, corresponds to

Ωνh2 ∼
P

mν;i

94 eV
; ð3Þ

where nν represents number density of neutrinos.
We also consider variations of fundamental constants,

which are usually assumed to be constant over space-time.
These constants are defined operationally, meaning that
nature by itself does not force it to be constant. They have
to be obtained experimentally since they are not given by
the theory, see for instance Ref. [21] for a review on the
variation of fundamental constants. Here we will examine
the interesting case where the fine structure constant,
defined in laboratory scales at late times as α0 ¼ e2

ℏc, is
rescaled and we will express its relative variation over its
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standard model value as α=α0. Thus, we assume that α is
the value at early times of the fine structure constant and is
rescaled with respect to its laboratory (late time) value α0,
with a sharp transition at intermediate redshifts.
If there are eventually signatures of a variation it would

have imprints in different physical mechanisms such as the
CMB anisotropies [22]. Constraints on this variation, both
temporal and spatial, have been performed already [23–29],
and this variation can be produced for example through an
evolving scalar field that is coupled to the electromagnetic
Lagrangian [24,30–32]. This will give rise to variations of
the fine structure constant, a violation of the weak equiv-
alence principle and violations of the standard TCMBðzÞ
law, as the number of photons is no longer conserved.
These kinds of models can in principle be constrained by
future large scale structure surveys using high-resolution
spectroscopic data in combination with local astrophysical
data, see Ref. [33] for updated constraints with current data
and Ref. [34] for recent forecasts with upcoming surveys.
Another class of models where this occurs is the

Bekenstein-Sanvik-Barrow-Magueijo model [35], where
the electric charge is allowed to vary. Although such
theories preserve the local gauge and Lorentz invariance,
the fine structure constant will vary during the matter
dominated era.

III. THE GENETIC ALGORITHMS

In this section we will describe the genetic algorithms
(GAs) that will be used in our analysis to improve the sound

horizon fits. The GA have been successfully used in
cosmology for several reconstructions on a wide range
of data, see for example Refs. [36–47]. Other applica-
tions of the GA cover other areas such as particle physics
[48–50] and astronomy and astrophysics [51–53]. Other
symbolic regression methods implemented in physics and
cosmology can be found at [54–61].
The GA can be regarded as a machine learning technique

constructed to carry out unsupervised regression of data;
i.e., it performs nonparametric reconstructions that find an
analytic function of one or more variables (like in our case
here) that describes the data extremely well. The GA
emulates the concept of biological evolution through the
principle of natural selection, as brought by the genetic
operations of mutation and crossover.
In essence, a set of trial functions evolves as time passes

by through the effect of the stochastic operators of cross-
over, i.e., the joining of two or more candidate functions to
form another one, and mutation, i.e., a random alteration of
a candidate function. This process is then repeated thou-
sands of times with different random seeds to ensure
convergence and explore properly the functional space.
In Fig. 1 we present a flowchart of the steps the GA goes
through when reconstructing a function.
Since the GA is constructed as a stochastic approach, the

probability that a population of functions will bring about
offspring is principally assumed to be proportional to its
fitness to the data, where in our analysis is given by a χ2

statistic and give the information on how good every
individual agrees with the data. For the simulated data in
our analysis we are assuming that the likelihoods are
sufficiently Gaussian that we use the χ2 in our GA
approach. Then, the probability to have offspring and
the fitness of each individual is proportional to the like-
lihood causing an evolutionary pressure that favors the
best-fitting functions in every population, hence directing
the fit towards the minimum in a few generations.
In our analysis we reconstruct the rsðzdÞ function

considering that it depends on the following variables:
fΩmh2;Ωbh2g, fΩmh2;Ωbh2;Ωνh2g and fΩmh2;Ωbh2;
α=α0g, respectively. To calculate the sound horizon we
use the code CLASS by Ref. [62] and the HyRec-2 recombi-
nation module Hy Rec2020 [8,9]. We then make grids of
parameters and rsðzdÞ and fit the values with the genetic
algorithms. For example, when fΩmh2 ¼ 0.13;Ωbh2 ¼
0.0214g we have that rsðzdÞ ¼ 151.365 Mpc. Our
reconstruction procedure is as follows. First, our predefined
grammar was constructed on the following functions: exp,
log, polynomials etc. and a set of operationsþ;−;×;÷, see
Table I for the complete list.
Once the initial population has been constructed, the

fitness of each member, which indicates how accurately
each individual of the population fits the data, is computed
by a χ2 statistic using the rsðzdÞ data points directly as
input, i.e.,

Mutation &
Crossover

Best fit
function for

rs(zd)

Terminate?

Next Generation

Input data
[grid of rs(zd]

values)
Initial population

Fitness
calculation

Selection

Yes

No

FIG. 1. A flowchart of the list of the steps for the GA
reconstruction of rsðzdÞ.
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χ2 ¼
XN
i¼1

½rs;iðzdÞ − rs;GAðzdÞ�2; ð4Þ

where N represents the number of data points, which in our
case was around 4000, and rsðzdÞGA is the fitting function
derived by the GA. Notice that in Eq. (4) we are not
considering uncertainties in each data point since we are
taking directly the output value derived with the
code CLASS.
Then, through a tournament selection process, see

Ref. [36] for more details, the best-fitting functions in
each generation are chosen and the two stochastic oper-
ations of crossover and mutation are used. The final output
of the code is a mathematical function of rsðzdÞ that
describes the sound horizon at the drag epoch in terms
of the various cosmological parameters of interest.

IV. RESULTS

In this section we now present our machine learning fits
to the sound horizon at the baryon drag epoch rsðzdÞ. First,
we will only include the dependence on the matter and
baryon density parameters fΩmh2;Ωbh2g, while later we
will also consider the effect of massive neutrinos and a
varying fine structure constant, i.e., the parameter vectors
will be fΩmh2;Ωbh2;Ωνh2g and fΩmh2;Ωbh2; α=α0g,
respectively.
The computation of the sound horizon is described in

Sec. III and we fit the values with both traditional
minimization approaches and with the genetic algorithms.
To simplify our notation we make the following definitions
that will be used throughout the text: ωb ¼ Ωbh2,
ωm ¼ Ωmh2, and ων ¼ Ωνh2. In what follows, we will
now describe our approach in more detail and present the
results for the various cases.

A. Matter and baryons only

First, we consider the standard case of matter and
baryons, as was also studied in Ref. [10] (hereafter
denoted as EH). This case was obtained by simulating
values for Ωmh2 ∈ ½0.025; 0.5� and Ωbh2 ≥ 0.0125 and is
given by [10]

rsðzdÞ ≃
44.5 lnð9.83ωm

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10ω3=4

b

q Mpc; ð5Þ

which is accurate up to ∼2%. Since now the recombination
codes have more improved physics (for example an
improved post-Saha expansion at early phases of hydrogen
recombination, see Refs. [8,63] for a discussion), we have
considered the same parametrization as in EH but with the
coefficients as free parameters. By fitting the parametriza-
tion to a grid of values for rsðzdÞ for the range Ωmh2 ∈
½0.13; 0.15� and Ωbh2 ∈ ½0.0214; 0.0234�, which is around
10σ from the Planck best fit, we find the following
improved expression

rsðzdÞ ¼
45.5337 lnð7.20376ωm

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9.98592ω0.801347

b

q Mpc; ð6Þ

which is accurate up to ∼0.009%. Using the same grid of
values with the GA we find the following fit that is even
better

rsðzdÞ ¼
1

a1ω
a2
b þ a3ω

a4
m þ a5ω

a6
b ωa7

m
Mpc; ð7Þ

where

a1 ¼ 0.00785436; a2 ¼ 0.177084; a3 ¼ 0.00912388;

a4 ¼ 0.618711; a5 ¼ 11.9611; a6 ¼ 2.81343;

a7 ¼ 0.784719:

In this case, our GA improved expression given by Eq. (7)
is accurate up to ∼0.003%.
Next, we also consider a broader range of values for the

parameter grid in order to allow for the fitting function to be
used in BAO analyses without compromising its accuracy.
In particular, we consider the range Ωmh2 ∈ ½0.05; 0.25�
and Ωbh2 ∈ ½0.016; 0.03� and we find with the GA the
following fit

rsðzdÞ ¼
�

1

a1ω
a2
b þ a3ω

a4
b ωa5

m þ a6ω
a7
m
−

a8
ωa9
m

�
Mpc; ð8Þ

where

a1 ¼ 0.00257366; a2 ¼ 0.05032; a3 ¼ 0.013;

a4 ¼ 0.7720642; a5 ¼ 0.24346362; a6 ¼ 0.00641072;

a7 ¼ 0.5350899; a8 ¼ 32.7525; a9 ¼ 0.315473:

which is accurate up to ∼0.018%, i.e., a two orders of
magnitude improvement from the EH expression of Eq. (5).

TABLE I. The grammars used in the GA analysis. Other
complex forms are automatically produced by the mutation
and crossover operations as described in the text.

Grammar type Functions

Polynomials c, x, 1þ x
Fractions x

1þx
Trigonometric sinðxÞ, cosðxÞ, tanðxÞ
Exponentials ex, xx, ð1þ xÞ1þx

Logarithms lnðxÞ, lnð1þ xÞ
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In order to quantify the bias introduced in deriving
constraints on the cosmological parameters by using the
less accurate expression of Eq. (5), we will now present the
confidence contours and parameter constraints obtained via
a Markov chain Monte Carlo with the code MONTEPYTHON3

of Ref. [64], using the currently available BAO data as
described in Ref. [42] and the aforementioned rsðzdÞ
expressions. As mentioned earlier, rsðzdÞ and h≡
H0=100 are degenerate, we in what follows we will
consider the combination rs;dh ¼ rsðzdÞh.
In particular, in Fig. 2 we show a comparison of the

confidence contours for the EH expression for the sound

horizon given by Eq. (5) (blue contour) against the machine
learning improved expression (GA) given by Eq. (8) (red
contours) and the exact numerical approach (Num.)
calculated via HyRec2020 (green contour). Furthermore, in
Table II we show the best fit, mean, and 95%
limits for (ωm;0; rs;dh) obtained from the Markov chain
Monte Carlo runs.
As can be seen, using the older and less accurate

expression biases strongly the constraints for both ωm;0
and rsðzdÞh by almost half a σ and shifts the best-fit ωm;0 by
∼9.3% from its true value, which is obtained using the full
numerical approach. This implies that any analysis, e.g.,
Refs. [11–15], using the simple EH formula of Eq. (5) will
be biased by about half a σ and should be interpreted with
some care.

B. Matter, baryons, and massive neutrinos

Next, we also include massive neutrinos and this time we
compare with the expression of Ref. [17], where the
following fit was presented

rsðzdÞ ≈
55.154 exp ½−72.3ðων þ 0.0006Þ2�

ω0.25351
m ω0.12807

b

Mpc; ð9Þ

which is accurate up to 0.29% within our range of values
considered. Notice that this expression is accurate up to
0.021% if we limit to the range within 3σ of values derived
by Planck and that ων ¼ 0.0107 ðPmν=1.0 eVÞ.
In our case we consider the parameters in the range

Ωmh2 ∈ ½0.13; 0.15�, Ωbh2 ∈ ½0.0214; 0.0234�, which is
around 10σ from Planck, and for the massive neutrinos
in the range 0 <

P
mν < 0.6 eV. Then, with the GA we

find the improved fit that reads as follows:

rsðzdÞ ¼
a1ea2ða3þωνÞ2

a4ω
a5
b þ a6ω

a7
m þ a8ðωbωmÞa9

Mpc; ð10Þ

where the coefficients take the following values

a1 ¼ 0.0034917; a2 ¼ −19.972694; a3 ¼ 0.000336186;

a4 ¼ 0.0000305; a5 ¼ 0.22752; a6 ¼ 0.00003142567;

a7 ¼ 0.5453798; a8 ¼ 374.14994; a9 ¼ 4.022356899;

which is accurate up to 0.0076%, i.e., roughly a factor of
three improvement over Eq. (9) in the range within 3σ of
Planck and a factor of ∼30 in the broader range.

C. Matter, baryons, and the fine structure constant

Finally, we also consider the effects of a varying fine
structure constant on the sound horizon at the drag redshift.

The fine structure constant α is already included in the
recombination code HyRec2020 [8,9], thus the only modifi-
cation in the code that was needed in this case was passing
an extra parameter to CLASS.
Then, we simulate values of the rsðzdÞ for the

range Ωmh2 ∈ ½0.13; 0.15�, Ωbh2 ∈ ½0.0214; 0.0234�, and
α=α0 ∈ ½0.98; 1.02�. The range for α=α0 might seem

FIG. 2. A comparison of the confidence contours for the
expression by EH for the sound horizon given by Eq. (5) (blue
contour) against the improved expression found by the machine
learning approach (GA) given by Eq. (8) (red contours) and the
exact numerical approach (Num.) calculated via HyRec2020
(green contour), using the current BAO data as described in
Ref. [42].
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restrictive, but in Ref. [65] it was shown that with current
data any variations are constrained to Δα=α0 ∼ 10−3, while
with future large scale structure data and local astrophysical
measurements the constraints can be further reduced to
Δα=α0 ∼ 10−6. Following the same procedure as before we
find the following fitting formula using an EH-like para-
metrization

rsðzdÞ ¼
a1 lnða2ωm

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a3ωa4

b

q ðα=α0Þa5 Mpc; ð11Þ

which is accurate up to ∼0.047% and the parameters are
given by

a1 ¼ 45.417; a2 ¼ 7.15466; a3 ¼ 10.1167;

a4 ¼ 0.811586; a5 ¼ −1.254537:

On the other hand, with the GA we have found an
improved fit which reads as follows

rsðzdÞ ¼
1

a1ω
a2
b ωa3

m ½ðα=α0Þa4 þ ωa5
b ωa6

m � þ a7ω
a8
m

Mpc;

ð12Þ
where the coefficients take the following values

a1 ¼ 0.00730258; a2 ¼ 0.088182; a3 ¼ 0.099958;

a4 ¼ 1.97913; a5 ¼ 0.346626; a6 ¼ 0.0092295;

a7 ¼ 0.0074056; a8 ¼ 0.8659935;

which is accurate up to 0.0077% and is roughly a factor
of six improvement over the EH-like parametrization
of Eq. (11).

V. CONCLUSIONS

In summary, we have presented extremely accurate
machine learning fits to the comoving sound horizon at
the baryon drag epoch rsðzdÞ as a function of cosmological

parameters and we compared our results with other
expressions found in the literature. In particular, we
considered the widely used Eisenstein-Hu fitting formula
given by Eq. (5), which is accurate to the ∼2% level, and
showed how it may strongly bias any constraints on the
matter density parameter obtained by using the current
BAO data as described in Ref. [42].
In particular, we found that the confidence contours are

biased by roughly half a sigma, while the matter density
parameter ωm;0 is shifted at a ∼9.3% level from its
correct value, which is obtained using the full numerical
analysis. On the other hand, our machine learning fits given
by Eq. (7) do not suffer from this issue, as they are accurate
to within ∼0.003%. Furthermore, in our analysis we also
considered the effect of massive neutrinos, see Eq. (10)
and a varying fine structure constant, see Eq. (12),
finding that our fits have an improvement of a factor
of three to four compared to other simple EH-like
parametrizations.
It should be noted though that according to Ref. [9],

HyRec2020 achieves an accuracy of the order of ∼10−4,
which is comparable to the precision of the GA results. On
the other hand, many forthcoming surveys like Euclid, see
Ref. [66], expected to measure the cosmological parameters
to about 1% precision, which is about two orders of
magnitude larger than the precision of the GA results.
As a result, the latter are not expected to bias any analyses
with data products from forthcoming surveys in the near
term, such as Euclid.
To conclude, we presented machine learning improved

expressions for the sound horizon at the drag redshift,
which are more accurate in some cases even by two orders
of magnitude compared to other similar expressions already
found in the literature. The advantage of our approach is
that the new expressions do not bias the parameter con-
straints obtained from BAO data, thus they can be used in
BAO analyses coming from current and upcoming surveys
to derive cosmological constraints and ease the computa-
tional cost that would be required when computing rsðzdÞ
with a full Boltzmann code.

TABLE II. The best fit, mean, and 95% limits for ðωm;0; rs;dhÞ as discussed in the text. As seen, the older EH approach biases the
estimated mean values for the parameters by almost half a σ, even though they share the same value of the χ2 at the minimum
χ2min ¼ 10.95. The contours are shown in Fig. 2.

Method Param Best fit mean� σ 95% lower 95% upper

Numerical ωm;0 0.1968 0.1641þ0.04
−0.051 0.0788 0.251

rs;dh 102.1 101.7þ1.9
−1.8 97.91 105.4

EH ωm;0 0.1816 0.1488þ0.036
−0.044 0.07544 0.2222

rs;dh 100.3 99.9þ2.2
−1.9 95.74 103.9

GA ωm;0 0.1959 0.1645þ0.04
−0.054 0.07738 0.2535

rs;dh 102.3 101.7þ1.9
−1.8 97.94 105.5
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Numerical Analysis Files.—The genetic algorithm code
used by the authors in the analysis of the paper and the
expressions of the fits can be found at [67].
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APPENDIX: FITS FOR THE REDSHIFT OF
THE DRAG EPOCH AND THE

PHOTON-DECOUPLING SURFACE

Here we provide some fits for the redshift at the drag
epoch zd, which can be used in Eq. (1) as a complementary
fit instead of the analytic fit of rsðzdÞ and also a fit to the
redshift at the photon-decoupling surface z�.

1. The drag redshift zd
The fit for the drag redshift from Ref. [10] is given by

zd ¼
1291ðωmÞ0.251

1þ 0.659ðωmÞ0.828
½1þ b1ðωbÞb2�; ðA1Þ

where

b1 ¼ 0.313ðωmÞ−0.419½1þ 0.607ðωmÞ0.674�;
b2 ¼ 0.238ðωmÞ0.223;

and which is accurate up to ∼3.7%.

To improve this fit, we simulate values for zd in the range
Ωmh2 ∈ ½0.13; 0.15� andΩbh2 ∈ ½0.0214; 0.0234�, which is
around 10σ from Planck. Then, with the GA we find

zd ¼
1þ 428.169ω0.256459

b ω0.616388
m þ 925.56ω0.751615

m

ω0.714129
m

;

ðA2Þ

which is accurate up to ∼0.001%.

2. The redshift at recombination z�
The fit for the redshift to the photon-decoupling surface

z� from Ref. [68] is given by

z� ¼ 1048½1þ 0.00124ðΩbh2Þ−0.738�½1þ g1ðΩmh2Þg2 �;
ðA3Þ

where

g1 ¼
0.0783ðΩbh2Þ−0.238
1þ 39.5ðΩbh2Þ0.763

;

g2 ¼
0.560

1þ 21.1ðΩbh2Þ1.81
;

and which is accurate up to ∼0.3%.
To improve this fit, we simulate values for z� for the

range Ωmh2 ∈ ½0.13; 0.15� and Ωbh2 ∈ ½0.0214; 0.0234�,
which is around 10σ from Planck. Then, as before, with
the GA we find

z� ¼
391.672ω−0.372296

m þ 937.422ω−0.97966
b

ω−0.0192951
m ω−0.93681

b

þ ω−0.731631
m ;

ðA4Þ

which is accurate up to ∼0.0005%.
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