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It was a question, she remembered, how to connect this mass on the right hand with that on the left. She

might do it by bringing the line of the branch across so; or break the vacancy in the foreground by an

object. But the danger was that by doing that the unity of the whole might me broken.

Virginia Woolf
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Para Natalia, que la va a leer pero no la va a entender

Para Enrique, que la hubiera entendido
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Abstract

In generic curved spacetimes, the absence of a natural vacuum state introduces an ambiguity

that can undermine the physical relevance of predictions from any field quantization. In the context

of inhomogeneous fields propagating in homogeneous, isotropic, but otherwise general cosmological

spacetimes, this problem obstructs the extraction of robust predictions. This obstruction is aggra-

vated in applications to cosmology of candidates to a quantum theory of gravity, where even the

cosmological background where the fields propagate is treated as a quantum entity, or at most as

an effective spacetime. One example is provided by the hybrid approach to quantum cosmology, in

which a quantum mechanical description of the cosmological degrees of freedom, usually within Loop

Quantum Cosmology (LQC), is combined with a more conventional Fock quantization of the infinite

number of degrees of freedom that account for the inhomogeneities. In this context, we investigate

in this thesis physical criteria to successfully remove the ambiguity of choice of vacuum state for

two different types of fields in hybrid LQC: fermionic fields treated as perturbations, and primordial

scalar and tensor perturbations leading to non-oscillating (NO) power spectra. For fermions, we first

restrict ourselves to a family of vacua which leads to a unitarily implementable quantum Heisenberg

evolution. Then, we manage to further restrict this choice by considering the asymptotic limit of

large Fourier wavenumbers in the mode decomposition of the Dirac field and demanding there a con-

vergent quantum backreaction. Further restrictions in this limit also guarantee that the fermionic

contribution to the Hamiltonian be a well defined quantum operator on the dense subset of the

fermionic Fock space which is spanned by the n-particle/antiparticle states. Finally, we use the en-

tire available asymptotic freedom in what respects the definition of a vacuum state to eliminate from

the fermionic Hamiltonian any term which creates or annihilates pairs of particles, at any given order

in the asymptotic limit. We compare the vacuum selected by these physical criteria with fermionic

adiabatic states, which had previously been proposed as potential vacua in cosmology. Actually, we

prove that all adiabatic states allow a unitarily implementable quantum evolution. Furthermore, all

of them but the zeroth order adiabatic state give rise to a finite backreaction. To finish our study of

the fermionic vacuum, we apply the suggested asymptotic diagonalization procedure in a de Sitter

Universe, showing that it picks out a unique vacuum state, which in fact coincides with the well-

known Bunch-davies vacuum. In addition to the problem of fermions in cosmology, we also discuss

the possible choice of a vacuum state for scalar and tensor cosmological perturbations in LQC by

demanding an NO power spectrum. This type of NO vacuum was originally introduced by numeric

means to avoid the rapid oscillations in the spectrum found in the literature for other states of the

perturbations, oscillations that could result in an amplification of power when averaged over bins of

Fourier wavenumbers. We provide some analytic insights into why these oscillations may in fact be

an artifact of the choice of vacuum state and how they can blur the actual quantum geometry effects

in observational predictions if they are not avoided. We also give some analytical conditions that are

necessary on a vacuum state if it is of NO type, and prove that in the ultraviolet asymptotic limit this

class of vacua satisfy the asymptotic diagonalization proposal. Finally, we compare these necessary

NO conditions with a construction for the vacuum put forward recently by Ashtekar and Gupt. This

construction should select the state which is maximally classic at the end of inflation from a ball of
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states that is picked out by the so-called Quantum Homogeneity and Isotropy Hypothesis (QHIH).

However, we find a loose step in the proposed construction which allows that the Ashtekar-Gupt

vacuum to exist outside of the QHIH ball. In fact, we prove numerically that, in a kinetically domi-

nated short-lived inflationary scenario typically considered in LQC, the Ashtekar-Gupt vacuum lies

outside of the QHIH ball. Nonetheless, we show that the NO necessary conditions and the QHIH

are mutually non-exclusive in this scenario.
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Resumen

En espaciostiempos curvos genéricos, la ausencia de un estado de vaćıo natural introduce una

ambigüedad que puede minar la relevancia f́ısica de las predicciones de cualquier cuantización de

campos. En el contexto de campos inhomogéneos que se propagan en espaciostiempos cosmológi-

cos homogéneos e isótropos, pero por lo demás generales, este problema obstruye la extracción de

predicciones robustas. Esta obstrucción se agrava en las aplicaciones a cosmoloǵıa de los candidatos

a una teoŕıa cuántica de la gravedad, donde incluso el fondo cosmológico sobre el que se propagan

los campos se trata como una entidad cuántica, o como mucho como un espaciotiempo efectivo. Un

ejemplo de esto se da en el enfoque h́ıbrido a la cosmoloǵıa cuántica, en el que se combina cier-

ta descripción cuántica de los grados de libertad cosmológicos, normalmente aquella dada por la

Cosmoloǵıa Cuántica de Lazos (CCL), con una cuantización de Fock más convencional del número

infinito de grados de libertad que describen las inhomogeneidades. En este contexto, en esta tesis

investigamos criterios f́ısicos para eliminar con éxito la ambigüedad en la elección del estado del

vaćıo para dos tipos diferentes de campos en CCL h́ıbrida: campos fermiónicos tratados como per-

turbaciones, y fluctuaciones primordiales de tipo escalar y tensorial que conducen a espectros de

potencia no oscilantes (NO). Para tratar los fermiones, primero nos restringimos a una familia de

vaćıos que conduce a una evolución cuántica en imagen de Heisenberg que es unitariamente im-

plementable. A partir de ah́ı, restringimos aún más esta elección considerando el ĺımite asintótico

de números de onda de Fourier infinitamente grandes en la descomposición de modos del campo

de Dirac y exigiendo alĺı una backreaction cuántica convergente. Otras restricciones en este ĺımite

también garantizan que la contribución fermiónica al hamiltoniano sea un operador cuántico bien

definido en el subespacio denso del espacio de Fock fermiónico generado por los estados de n part́ıcu-

las/antipart́ıculas. Por último, utilizamos toda la libertad asintótica disponible en lo que respecta

a la definición del estado de vaćıo para eliminar del hamiltoniano fermiónico cualquier término que

cree o aniquile pares de part́ıculas, para cualquier orden dado en el ĺımite asintótico. Comparamos el

vaćıo seleccionado por estos criterios f́ısicos con los estados adiabáticos fermiónicos, que hab́ıan sido

propuestos previamente como posibles vaćıos en cosmoloǵıa. De hecho, demostramos que todos los

estados adiabáticos permiten una evolución cuántica unitariamente implementable. Además, todos

ellos, excepto el estado adiabático de orden cero, dan lugar a una backreaction finita. Para termi-

nar nuestro estudio del vaćıo fermiónico, aplicamos el procedimiento de diagonalización asintótica

sugerido en un universo de tipo de Sitter, mostrando que permite seleccionar un único estado de

vaćıo que coincide con el bien conocido vaćıo de Bunch-Davies. Además del estudio de fermiones en

la cosmoloǵıa, también discutimos la posible elección de un estado de vaćıo para las perturbaciones

cosmológicas de tipo escalar y tensorial en CCL, exigiendo un espectro de potencia NO. Este tipo de

vaćıo NO fue introducido originalmente por medios numéricos para evitar las rápidas oscilaciones en

el espectro encontradas en la literatura para otros estados de las perturbaciones. Dichas oscilaciones

podŕıan resultar en una amplificación de la potencia cuando se promedian sobre ciertos rangos de

números de onda de Fourier. En esta tesis proporcionamos algunas ideas anaĺıticas sobre por qué

estas oscilaciones pueden estar causadas por la elección del estado de vaćıo y, de esta forma, pueden

difuminar los efectos genuinos de la geometŕıa cuántica en las predicciones observacionales si no se
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evitan. También damos algunas condiciones, formuladas de forma anaĺıtica, que son necesarias en

un estado de vaćıo para que sea del tipo NO, y demostramos que en el ĺımite asintótico ultravioleta

esta clase de vaćıos satisface la propuesta de diagonalización asintótica. Finalmente, comparamos

estas condiciones necesarias de comportamiento NO con una construcción de vaćıo propuesta recien-

temente por Ashtekar y Gupt. Esta construcción debeŕıa seleccionar el estado que es máximamente

clásico al final de la inflación cosmológica, partiendo de una bola de estados que es elegida por la

llamada Hipótesis de Homogeneidad e Isotroṕıa Cuánticas (HHIC). Sin embargo, encontramos un

paso en la construcción propuesta que no queda bien fijado y permite que el vaćıo de Ashtekar-Gupt

exista fuera de la bola seleccionada por la HHIC. De hecho, demostramos numéricamente que, en

un escenario inflacionario de corta duración cinéticamente dominado, considerado habitualmente en

CCL, el vaćıo de Ashtekar-Gupt se encuentra fuera de la bola HHIC. No obstante, mostramos que

las condiciones necesarias de tipo NO y la HHIC son mutuamente no excluyentes en este escenario.
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I. Introducción

La pregunta sobre el origen del Universo ha permanecido elusiva e inescrutable a lo largo de la historia

humana. Hasta tiempos recientes, esta pregunta teńıa hipótesis y respuestas que no pod́ıan ser desmen-

tidas a través de las observaciones. La aparición de la cosmoloǵıa f́ısica ha cambiado este panorama de

forma drástica y nos ha permitido estudiar ese tema de manera cient́ıfica [1, 2]. La cosmoloǵıa f́ısica

descansa sobre los cimientos de la Teoŕıa de la Relatividad General de Einstein y ha servido como uno de

sus mayores triunfos [3,4]. Es posible describir el Universo en sus escalas más grandes teniendo en cuenta

la homogeneidad e isotroṕıa (aproximadas) que se observan, particularizando las ecuaciones de Einstein

a esta situación. Sin embargo, este procedimiento predice la existencia de un suceso, al que llamamos

Big Bang, en el que aparecen algunas singularidades en cantidades f́ısicas. De hecho, el estudio de la

f́ısica no es ajeno a las singularidades, que pueden entenderse como la forma en que la naturaleza pone

en evidencia que una teoŕıa es incompleta de alguna forma. Por lo tanto, podemos tomar la motivación

de otros ejemplos previos en la ciencia (por ejemplo, el modelo del átomo de Bohr) y buscar la resolución

de la singularidad del Big Bang a través de una descripción cuántica de la Relatividad General.

Hay una serie de requisitos que una explicación cuántica satisfactoria del Big Bang debe satisfacer.

En primer lugar, se debe resolver la singularidad. La geometrodinámica, por ejemplo, a pesar de su

éxito parcial en proporcionar una descripción cuántica de la geometŕıa, no consigue evitar el Big Bang

en su aplicación a la cosmoloǵıa [5–7]. En segundo lugar, la contrapartida cuántica del Big Bang debe

recuperar la cosmoloǵıa relativista cuando la densidad de la materia en el Universo sea lo suficientemente

pequeña. Esto se debe a que, para estos reǵımenes, la teoŕıa de Einstein ha sido comprobada con un

grado considerable de precisión [8, 9]. En tercer lugar, la teoŕıa debe ser matemáticamente consistente

y conducir a predicciones que finalmente pudieran ser contrastadas. Finalmente, la consideración del

caso cosmológico, altamente simétrico, podŕıa servir para arrojar luz en la búsqueda de una teoŕıa de

gravedad cuántica completa.

Un candidato de tal teoŕıa de gravedad cuántica es la Gravedad Cuántica de Lazos (GCL). La GCL

es una cuantización canónica, independiente del fondo (background) y no perturbativa de la Relatividad

General [10, 11]. Entre los resultados más importantes de la GCL está la demostración de que los

operadores geométricos que miden longitud, área y volumen tienen espectros discretos [12–15]. Esto

significa que la GCL predice que la propia geometŕıa es discreta. Sin embargo, una formulación completa

de la teoŕıa que sea satisfactoria sigue siendo dif́ıcil de alcanzar.

Para comprobar si las técnicas de la GCL pueden predecir el Universo que observamos, podemos

introducir simetŕıas en la teoŕıa general antes de su cuantización, truncando aśı los grados de libertad

considerados. En estos escenarios simplificados, algunas de las dificultades de la teoŕıa completa desa-

parecen, por ejemplo aquellas que afectan más severamente la representación cuántica de la ligadura

hamiltoniana y la determinación de su núcleo (kernel). El formalismo cuántico resultante se conoce

generalmente como Cosmoloǵıa Cuántica de Lazos (CCL) [16–20]. Uno de los resultados más impor-

9



tantes de la CCL es que proporciona un mecanismo robusto para evitar la singularidad del Big Bang,

que es reemplazada por un Big Bounce en estados cuánticos con un comportamiento adecuado [21–23].

De hecho, que la geometŕıa espaciotemporal sea discreta es lo que en última instancia explica por qué

las cantidades f́ısicas, tales como la densidad del Universo, permanecen acotadas en toda la evolución

cosmológica.

Para extraer predicciones de teoŕıas cosmológicas como la CCL, es especialmente importante estu-

diar las fluctuaciones cuánticas primordiales en el Universo temprano. Se cree ampliamente que estas

fluctuaciones fueron las semillas de las inhomogeneidades observadas del Universo, y que han pasado por

un periodo de inflación después de haberse originado en épocas de alta curvatura [1,24]. En condiciones

tan extremas, es razonable esperar que los efectos de la gravedad cuántica puedan haberlas afectado.

Además, las huellas dejadas por estos efectos pueden haber sobrevivido al periodo inflacionario si el

Universo observado era del tamaño de Planck cuando los fenómenos de gravedad cuántica eran rele-

vantes. El estudio de las fluctuaciones primordiales puede servir entonces como banco de prueba de

nuestra teoŕıa cuántica, ya que esta debeŕıa ser capaz de explicar las anisotroṕıas e inhomogeneidades

presentes y a la vez dar cabida a algunas discrepancias con respecto a los resultados de la Relatividad

General. Ha habido muchos intentos de lidiar con campos no homogéneos en la cosmoloǵıa cuántica

(ver, por ejemplo, [25–34]). Sin embargo, en esta tesis nos vamos a centrar principalmente en la llamada

propuesta de cuantización h́ıbrida, diseñada originariamente para CCL [35–41]. En el enfoque h́ıbrido,

el espacio de representación cinemático del sistema es un producto tensorial del espacio de Hilbert del

fondo simétrico (normalmente elegido como el estándar de CCL) y un espacio de Fock para los campos

cuánticos (bosónicos o fermiónicos [42,43]) inhomogéneos [35,44–46].

Hay una importante ambigüedad inherente a la selección de ese espacio de Fock, y con ella a la

elección de un estado de vaćıo. La existencia de esta ambigüedad puede parecer extraña desde el punto

de vista de la teoŕıa cuántica de campos en el espaciotiempo de Minkowski, donde las simetŕıas del fondo

seleccionan el estado de Poincaré como el vaćıo preferido [47,48]. Desafortunadamente, cuando se trabaja

en espaciotiempos curvos (incluso en los cosmológicos, considerablemente simétricos), los argumentos de

simetŕıa no son generalmente suficientes para señalar un vaćıo único [49–51]. Es precisamente en la

introducción de criterios f́ısicos que gúıen esta elección de estado de vaćıo en lo que se centra esta tesis,

centrando la atención en el caso de fluctuaciones primordiales en CCL h́ıbrida.

Más espećıficamente, la primera parte de esta tesis está principalmente dedicada a la determinación

de un estado de vaćıo f́ısicamente viable para las perturbaciones fermiónicas en CCL h́ıbrida. Este estu-

dio se realiza después de truncar la acción del sistema a orden cuadrático en las perturbaciones. Si bien

la mayor parte de la literatura sobre cosmoloǵıa cuántica se centra en las perturbaciones cosmológicas

escalares y tensoriales, las part́ıculas de esṕın semientero no se han discutido con el mismo nivel de

detalle [52]. Estas part́ıculas fermiónicas pueden describir contenidos materiales realistas, y su estudio

gana relevancia si se consideran órdenes superiores en la teoŕıa de perturbaciones, ya que entonces se

acoplan con las perturbaciones escalares y tensoriales. La elección del estado de vaćıo para un campo de
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Dirac en el enfoque de cuantización h́ıbrida generalmente se realiza mediante la definición de ciertas vari-

ables espećıficas de aniquilación y creación para cada uno de los modos en la descomposición de Fourier

del campo [53]. En CCL h́ıbrida, esta definición se introduce de forma bastante sencilla tras realizar

unas transformaciones canónicas adecuadas que nos permiten mezclar los grados de libertad homogéneos

y inhomogéneos y que conducen a un hamiltoniano fermiónico con buenas propiedades f́ısicas. En la

literatura previa sobre los campos de Dirac en cosmoloǵıa de Friedmann-Lemâıtre-Robertson-Walker

(FLRW) plana, se demostró que existe una familia única de vaćıos que son invariantes bajo las trans-

formaciones de simetŕıa del fondo cosmológico y que tienen una evolución de Heisenberg unitariamente

implementable. Sin embargo, todav́ıa hay mucha libertad disponible en la definición del vaćıo [54]. Aqúı

eliminamos esta libertad imponiendo requisitos f́ısicos adicionales.

La segunda parte de la tesis proporciona información anaĺıtica para definir el vaćıo de las perturba-

ciones escalares y tensoriales más allá del paradigma inflacionario (p.ej. en CCL), de forma tal que sus

espectros de potencias no sean funciones con una oscilación rápida en el número de onda (de Fourier).

Para comenzar esta discusión, hacemos notar primero que todos los modos de Fourier de las perturba-

ciones invariantes de gauge (por ejemplo, el llamado campo de Mukhanov-Sasaki) satisfacen ecuaciones

de tipo oscilador armónico con una masa dependiente del fondo cuando se trunca la acción del sistema a

orden perturbativo cuadrático [1,55–59]. De esta manera, una elección de condiciones iniciales para dichas

ecuaciones determina una solución para las perturbaciones, y con ella una elección de vaćıo que, a su vez,

fija el espacio de Fock para estas perturbaciones. Cuando las perturbaciones se introdujeron por primera

vez en CCL, los estados de vaćıo propuestos para ellas eran los llamados estados adiabáticos [32, 60].

Los estados adiabáticos se construyen a partir de cierto estado adiabático de orden cero a través de

un proceso iterativo y, a un orden lo suficientemente alto, conducen a un tensor de enerǵıa-momento

renormalizable [61–63]. En última instancia, a un orden adiabático infinito, uno alcanzaŕıa lo que se

conoce como un estado de tipo Hadamard [62,64–67]. Pronto quedó claro que los espectros de potencias

de los estados adiabáticos de órdenes finitos eran altamente oscilatorios en CCL. No obstante, estas

oscilaciones no tienen por qué ser una consecuencia intŕınseca de la CCL y pueden estar enmascarando

artificialmente efectos genuinos de la geometŕıa cuántica. Para resolver estos problemas, Mart́ın de Blas

y Olmedo presentaron una propuesta para seleccionar un estado de vaćıo con propiedades no oscilantes

(NO) [68]. Sin embargo, esta propuesta fue originalmente concebida para estudios numéricos. Antes de

nuestro trabajo, no hab́ıa disponible ninguna descripción anaĺıtica de vaćıos NO que pudiera permitir

un estudio más detallado de estos estados.
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1. Introduction

the origin of the Universe has remained elusive and inescrutable along the human history. Until recent

times, this question only had hypotheses and answers that could not be falsified through observations.

The advent of physical cosmology has drastically changed this panorama and allowed us to study this issue

in a scientific way [1, 2]. Physical cosmology rests upon the foundation of Einstein’s Theory of General

Relativity and has served as one of its greatest triumphs [3,4]. One can describe the Universe at its largest

scales by taking into account its observed (approximated) homogeneity and isotropy, particularizing

Einstein’s equations to this situation. However, this procedure predicts the existence of an event, which

we call the Big Bang, in which some singularities appear in physical quantities. In fact, the study of

Physics is no stranger to singularities, which can be understood as a way of Nature telling us that a theory

is somehow incomplete. Thus, one may take motivation from other previous examples in Science (e.g.

Bohr model of the atom) and seek the resolution of the Big Bang singularity in a quantum mechanical

description of General Relativity.

There are a number of requirements that a successful quantum explanation of the Big Bang should

satisfy. First of all, the singularity should be resolved. Geometrodynamics, for example, in spite of

its partial success to provide a quantum description of the geometry, fails to avoid the Big Bang in its

application to cosmology [5–7]. Second, the quantum counterpart to the Big Bang must be such that

relativistic cosmology is recovered when the matter density in the Universe is sufficiently small. This is

because, for these regimes, Einstein theory has been tested to a considerable degree of accuracy [8, 9].

Third, the theory should be mathematically consistent and lead to predictions that can be eventually

falsified. Finally, the consideration of the highly symmetric cosmological case would ideally enlighten

the search for a full quantum theory of gravity.

A candidate of such a theory of quantum gravity is Loop Quantum Gravity (LQG). LQG is a non-

perturbative and background-independent canonical quantization of General Relativity [10,11]. Among

the most important results in LQG is the proof that the geometric operators that measure length, area,

and volume have discrete spectra [12–15]. This means that LQG predicts geometry itself to be discrete.

However, a complete and fully satisfactory formulation of the theory remains elusive.

In order to check if LQG techniques can predict the Universe that we observe, we can introduce

symmetries in the general theory before its quantization, truncating in this way the considered degrees

of freedom. In these simplified scenarios, some of the difficulties of the full theory disappear, e.g. those

more severely affecting the quantum representation of the Hamiltonian constraint and the determination

of its kernel. The resulting quantum formalism is generally known as Loop Quantum Cosmology (LQC)

[16–20]. One of the most important results of LQC is that it provides a robust mechanism to avoid the

Big Bang singularity, which is replaced by a big bounce in quantum states of suitable behavior [21–23].

In fact, it is the discreteness of the spacetime geometry that ultimately explains why physical quantities,

such as e.g. the density of the Universe, remain bounded in the whole cosmological evolution.
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To extract predictions from cosmological theories such as LQC, it is especially important to study

primordial quantum fluctuations in the Early Universe. It is widely believed that these fluctuations

were the seeds of the observed inhomogeneities of the Universe, and that they have undergone a period

of inflation after being originated in epochs of high curvature [1, 24]. In such extreme conditions, it is

reasonable to expect that quantum gravity effects may have affected them. Moreover, the imprint left

by these effects can survive the inflationary period if the observed Universe was of Planck size when

quantum gravity phenomena were relevant. The study of primordial fluctuations can then serve as a test

of our quantum theory, as it should be able to explain the present anisotropies and inhomogeneities while

ideally predicting some discrepancies with respect to the results of General Relativity. There have been

many attempts to deal with inhomogenous fields in quantum cosmology (see e.g. [25–34]). However, in

this thesis we are mostly going to focus on the so-called hybrid quantization proposal, originally designed

for LQC [35–41]. In the hybrid approach, the kinematical representation space of the system is a tensor

product of the Hilbert space of the symmetric background (usually chosen as the standard one of LQC)

and a Fock space for the quantum (bosonic or fermionic [42,43]) inhomogeneous fields [35,44–46].

A serious ambiguity is inherent to the selection of that Fock space, and within it the choice of a

vacuum state. The existence of this ambiguity may seem odd from the viewpoint of quantum field

theory in Minkowski spacetime, where the symmetries of the background pick out the Poincaré state

as the preferred vacuum [47, 48]. Unfortunately, when one works in curved spacetimes (even in the

considerably symmetric cosmological ones), symmetry arguments are generically not enough to single

out a unique vacuum state [49–51]. The aim of this thesis is precisely to introduce physical criteria to

select the vacuum state, focusing on the important case of primordial fluctuations in hybrid LQC.

More specifically, the first part of this thesis is mostly focused on the determination of a preferred

physical vacuum state for fermionic perturbations in hybrid LQC. This study is developed after trun-

cating the action of the system at quadratic order in the perturbations. While most of the quantum

cosmology literature centers on scalar and tensor cosmological perturbations, half-spin particles have not

been discussed at the same level of detail [52]. These fermionic particles can describe realistic matter

contents, and their study gains relevance when one considers higher orders in perturbation theory, since

they then couple with the scalar and tensor perturbations. The choice of vacuum state for a Dirac

field is usually done through the definition of some concrete annihilation and creation variables for each

of the modes of the Fourier decomposition of the field [53]. In hybrid LQC, this definition is intro-

duced in a rather straightforward way after performing some suitable canonical transformations which

allow us to mix the homogeneous and inhomogenous degrees of freedom and which lead to a fermionic

Hamiltonian with good physical properties. In the previous literature regarding Dirac fields in flat Fried-

mann–Lemâıtre–Robertson–Walker (FLRW) cosmology, it was proven that there exists a unique family

of vacua that are invariant under the symmetry transformations of the cosmological background and

have a unitarily implementable Heisenberg evolution. However, much freedom is still available in the

definition of the vacuum [54]. We eliminate this freedom by imposing additional physical requirements.
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The second part of the thesis provides analytic insights to define vacua for the scalar and tensor

perturbations beyond the inflationary paradigm (e.g. in LQC), such that their power spectra are not

rapidly oscillating functions of the (Fourier) wavenumber. To start this discussion, we first notice that

all Fourier modes of the gauge invariant perturbations (e.g. the so-called Mukhanov-Sasaki field) follow

harmonic oscillator equations with a background-dependent mass when one truncates the action of the

system at quadratic perturbative order [1, 55–59]. In this manner, a choice of initial conditions for

these equations determines a solution for the perturbations, and with it a choice of vacuum which, in

turn, fixes the Fock space for these perturbations. When perturbations were first introduced in LQC,

the vacuum states proposed for them were the so-called adiabatic states [32, 60]. Adiabatic states are

constructed from certain zeroth order state through an iterative process and, at high enough order,

they lead to a renormalizable energy-momentum tensor [61–63]. Ultimately, at infinite adiabatic order,

one would reach what is known as a Hadamard state [62, 64–67]. It soon became clear that the power

spectra of adiabatic states of finite order were highly oscillatory in LQC. Nonetheless, these oscillations

need not be an intrinsic consequence of LQC itself, and they may be artificially blurring the genuine

effects of the quantum geometry. To solve these problems, a proposal to select a vacuum state with non-

oscillating (NO) properties was introduced by Mart́ın de Blas and Olmedo [68]. However, this proposal

was originally conceived for numerical studies. Analytical descriptions of NO vacua, which allow for a

more detailed study of this type of states, were not available before our work.
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2. Objectives and results of the thesis

When fermions were first introduced in hybrid LQC, it was noticed that, for suitably motivated

physical states, one ended up with a Schrödinger-type equation for the fermionic degrees of freedom [53].

This equation includes a quantity that accounts for the difference between the evolution of the perturbed

geometry and the unperturbed one, and that can be consequently interpreted as a fermionic backreaction.

This quantity is possibly divergent, as it has been was-well known from the pioneering work of D’Eath

and Halliwell [52], who considered fermions in quantum geometrodynamics. In the first analyses carried

out in LQC, it was suggested that the these divergences could be cured through a “substraction of

infinities” regularization scheme [53]. Nevertheless, one usually expects that a true quantum theory

of gravity would be able to avoid these divergences without the need of employing such schemes. The

objective of the first article in this thesis is to investigate if one can eliminate the aforementioned

divergence by adopting a more suitable choice of Fock quantization of the fermionic field and its vacuum

state. Indeed, we prove that the backreaction term can be made finite by performing a convenient

canonical transformation to new annihilation and creation variables. The asymptotic ultraviolet behavior

of these variables is restricted in this way. In fact, this restriction also lowers the asymptotic order of

the interaction part of the fermionic Hamiltonian, which creates and annihilates pairs of particles and

antiparticles. Further restrictions on this asymptotic behavior then guarantee that the resulting fermionic

Hamiltonian is represented by a well-defined quantum operator in the Fock subspace spanned by the set

of n particle/antiparticle states. [69]1

As a continuation of this goal, the second objective of the thesis is to find a unique asymptotic

expansion for the definition of the annihilation and creation variables that removes all the nondiagonal

(or interactive) terms of the fermionic Hamiltonian in the ultraviolet regime. This leads to an optimal

quantum evolution for the fermionic operators, at least in the asymptotic limit, because they only change

in a phase. Such an asymptotic diagonalization is attained by means of a totally deterministic recursive

relation which fixes the definition of the annihilation and creation variables in the considered limit. This

procedure defines the most suitable vacuum, dynamically stationary in the asymptotic regime, because

the annihilation operators would have a completely diagonal evolution in this regime according to our

previous comments. In addition, we find that the backreaction for this state is not only finite, but of an

arbitrarily small asymptotic order. Finally, the associated fermionic Hamiltonian is clearly a well-defined

operator in the Fock subspace spanned by the set of n particle/antiparticle states.

Our next objective is to compare the vacuum state selected by these physical requirements with other

vacua proposed in the literature, the most common of which are the adiabatic states [70–72]. Adiabatic

states are obtained by an iterative process, the ultimate (infinite) step of which would ideally produce a

Hadammard state. A construction of this kind of states, leading to well-defined Fock spaces, exists for

fermionic fields [70]. However, it was formulated in a different representation of the Clifford algebra than

1This article was published previous to my enrollment in the PhD programme and, as such, it is referenced and not
attached. However it is included as part of the thesis so that the overall line of reasoning is complete.
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the one used so far in our previous works. We adapt this construction in our representation and show

that all adiabatic states allow for a unitarily implementable Heisenberg evolution. Besides, for higher

than/equal to the first adiabatic order, they lead to a generally convergent backreaction.

The final objective pursued in our study of fermions is to apply in full detail the asymptotic diago-

nalization scheme for the particular cosmological solution of a de Sitter Universe [73], and discuss the

result. For this model, a general diagonalization of the fermionic Hamiltonian leads to coefficients in

the desired canonical transformation that depend on some integration constants. However, the recursive

relation that defines the asymptotic diagonalization can now be solved exactly and, in fact, it can be

used to fix the aforementioned integration constants completely (except for an irrelevant phase). This

means that the asymptotic diagonalization procedure serves to fix the vacuum uniquely. We study the

corresponding positive-frequency decomposition of the fermionic field and conclude that it coincides with

the one corresponding to the fermionic Bunch-Davies vacuum [1,74–78].

Placing next the attention on the consideration of NO vacua for scalar and tensor primordial per-

turbations, our first objective is to derive some analytic conditions that characterize the definition of

these states. To achieve this goal, we reparametrize the equation that describes the evolution of the

Mukhanov-Sasaki field in a way inspired by the procedure of asymptotic diagonalization of the Hamil-

tonian, commented above for fermions and developed for scalar and tensor perturbations in Ref. [79].

Then, we show that the squared norm of any solution actually follows the well known Ermakov-Pinney

equation [80,81]. This equation allows to isolate the possibly oscillatory part of this norm, and to identify

some necessary conditions on the initial conditions in order to define NO vacua. Moreover, we argue that

NO vacua are in fact the most natural states to choose in LQC, because the mode oscillations present

in the primordial power spectrum for other vacua can erase the information on the physical effects of

the quantum geometry. Finally, we show that all these vacua must asymptotically behave as the one

selected by the aforementioned procedure of Hamiltonian diagonalization.

As a natural continuation of the above study, the final objective is to investigate other vacua proposed

in the LQC literature in the light of the derived conditions on NO vacua. In particular, we revisit a

construction put forward by Asthekar and Gupt [82,83]. Their proposal is meant to select the maximally

classical state at the end of inflation (where quantum effects should be negligible) within a ball of states

that is singled out by the Quantum Homogeneity and Isotropy Hyptohesis (QHIH). The QHIH is a

quantum generalization of Penrose’s hypothesis that the initial state of the Universe should have vanishing

Weyl curvature [84, 85]. We find that the necessary conditions on NO vacua are not incompatible with

the restriction to this QHIH ball, for a kinetically dominated early universe with short-lived inflation

in hybrid LQC. Since the Ashtekar-Gupt vacuum is known to lead to a oscillatory power spectrum, its

existence may put into question the possible classicality of any NO vacuum. However, we find a loose

step in the Ashtekar-Gupt construction, which explains that the ball from which they select the vacuum

differs in general from the QHIH ball. In fact, we numerically show that the Ashtekar-Gupt vacuum is

out of this ball for the considered scenario in hybrid LQC.
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2.1. Notation and structure of the thesis

In this thesis we use natural units such that ℏ = c = G = 1, where ℏ is Planck reduced constant, c is

the speed of light in a vacuum and G is Newton gravitational constant. We use the first letters of the

Greek alphabet for spatial-temporal indices, µ, ν... = 0, 1, 2, 3, the first letters of the Latin alphabet for

spatial indices, a, b, c, ... = 1, 2, 3, and the middle letters of the Latin alphabet for indices of the internal

gauge group, i, j, k, .... They go from one to three for triads, which have internal group SU(2), and from

one to four for tetrads, with internal group SO(3, 1). Finally, hats over phase space functions denote

their operator counterpart in the corresponding quantum representation.

The structure of the thesis is as follows:

Section 3 introduces preliminary concepts, convenient to understand the results of the thesis.

• Subsection 3.1 summarizes the reformulation of General Relativity as a canonical theory of

connections. This classical reformulation is the starting point for LQG.

• Subsection 3.2 is an introduction to LQC. Specifically, we review the construction of the

quantum Hilbert space that describes the background geometry in the hybrid approach. This

is done in the context of an inflationary flat FLRW cosmology.

• Subsection 3.3 explains the introduction of inhomogeneous perturbations to the homogeneous

sector of cosmological systems, so that they form a canonical set that describes the pertur-

bative gauge-invariant degrees of freedom. In this thesis, we truncate the action at quadratic

perturbative order.

• In subsection 3.4, a Dirac field is minimally coupled to the cosmological spacetime and treated

as a perturbation.

• Subsection 3.5 summarizes the key features of a hybrid quantization for the previously de-

scribed system. Namely, one chooses a Hilbert space for the homogeneous sector adopting

LQC techniques and suitable Fock spaces for the inhomogenous sectors.

• In the context of the hybrid approach, one needs physical criteria to choose the Fock spaces

for the inhomogeneous sector. Subsection 3.6 summarizes the known result that there is a

unique (unitarily equivalent) family of vacua for fermionic fields that leads to a unitarily

implementable quantum (Heisenberg) evolution.

• Subsection 3.7 reviews the framework in which an NO vacuum was originally formulated.

Namely, in hybrid LQC the evolution of the Fourier modes of the gauge-invariant scalar

and tensor perturbations can be seen as that of a harmonic oscillator with a background-

dependent mass. In this context, the choice of vacuum state is equivalent to the choice of a

set of positive-frequency solutions to this equation, or alternatively of their initial conditions

because their evolution is a well-posed Cauchy problem. One can then choose initial conditions
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that minimize time-dependent (generally also mode-dependent) oscillations in the norm of

their solutions that can blur the quantum gravity effects in the primordial power spectrum.

Section 4 is a summary of the techniques and results used in the articles in order to obtain the

goals that we have detailed.

• Subsection 4.1 describes our investigations to define suitable vacuum states for fermionic

perturbations around a flat FLRW cosmology. First, in the context of hybrid LQC we require

that they avoid divergences in the backreaction terms without renormalization schemes based

on a “subtraction of infinities” [69]2 . Second, we impose that they lead to an optimal quantum

fermionic dynamics in the asymptotic limit of large Fourier wavenumbers. The next step is

to compare the vacuum selected by these criteria with adiabatic states, which are commonly

used in the literature. Finally, we apply these techniques to the tractable case of a de Sitter

Universe, showing that our criteria indeed select a unique vacuum which, in fact, corresponds

to the Bunch-Davies one.

• Subsection 4.2 presents our analytic insights for the determination of NO vacua. On the one

hand, we derive some necessary conditions on these vacua, and explain why the oscillatory

nature of other vacua should not be directly assigned to quantum geometry effects. On the

other hand, these necessary conditions are compared with the restrictions that underlie the

Ashtekar-Gupt construction of a vacuum state.

It should be noted that while Section 3 on preliminary concepts is conceived to facilitate a somewhat

straight line of reasoning, there are many concepts that are not necessary if one is interested only in one

of the two main topics investigated in this thesis. A reader that is only interested in fermions may want

to skip Subsection 3.7, while one who is only interested in NO vacua for scalar and tensor perturbations

can skip Subsections 3.4 and 3.6.

2See footnote 1.
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3. Preliminary concepts

3.1. General Relativity in terms of Asthekar-Barbero Variables

The work contained in this thesis is related to applications of Loop Quantum Gravity, whose starting

point is a canonical reformulation of General Relativity [10, 86]. So, we first quickly review the Hamil-

tonian formulation of General Relativity [3, 87, 88]. Let us consider a globally hyperbolic spacetime.

This spacetime admits a global function of time, and hence a 3+1 decomposition in terms of spatial

hypersurfaces. The spacetime metric can be expressed using the lapse function N , the shift vector Na,

and the induced 3-metric on the spatial hypersurfaces hab. The lapse function and the shift vector do

not describe true physical degrees of freedom, but they are rather Lagrange multipliers that encode

information about the particular foliation adopted. The dynamical behavior of the system can then be

captured in Hamiltonian equations for the metric hab and its canonically conjugated momentum, which is

determined by the extrinsic curvature Kab = 1/2£nhab, where £n is the Lie derivative along the normal

n to the spatial hypersurface. However, to correctly describe General Relativity, one needs to take into

account in addition its symmetries, given by time reparametrizations and spatial diffeomorphisms. This

is done by imposing, respectively, the Hamiltonian and diffeomorphisms constraints on the system.

Motivated in part by other theories that have been successfully quantized in a non-perturbative way

(e.g Yang-Mill theories [89]), we search for a reformulation of the Hamiltonian description of General

Relativity in terms of gauge connections [90,91]. We start by defining inertial reference frames (or triads)

eai , and their inverse, the co-triads eia, which are related to the spatial metric by

hab = δije
i
ae

j
b, (3.1)

where i, j = 1, 2, 3 and δij is the Kronecker delta. One can see that (3.1) introduces physically spurious

degrees of freedom, since one can locally redefine the triads by an SO(3) rotation and obtain the same

3-metric. To take this into account, one includes an additional set of gauge constraints on the theory,

called Gauss constraints, that generate the commented internal rotations. Actually, we can take as gauge

group the universal cover of SO(3), i.e. SU(2), which is a compact group. We denote its Lie algebra as

su(2). This procedure is necessary when one introduces fermions, which couple directly to the internal

group and distinguish between the two leaves in the universal cover.

In practice, one does not take as (part of the) canonical variables the triads themselves, but rather

adopts the densitized triads Ea
i =

√
heai , where h is the determinant of the 3-metric. One may choose as

canonically conjugated variables the components of the Ashtekar-Barbero connection Ai
a = Γi

a + γKi
a,

where Ki
a = Kabe

b
jδ

ij and Γi
a is an su(2) connection, called the spin connection, which defined in such

a way that the triads are annihilated by the covariant derivative (that acts on both spatial and internal

gauge indices). The parameter γ is a non-zero real number known as the Immirzi parameter [92–94] (and

its value is usually fixed by arguments related to black hole entropy).
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In terms of these canonical variables, one constructs the basic variables of the system which, in order

to extract directly the gauge-invariant information, are instead given by the holonomy-flux algebra,

formed by holonomies along (piecewise analytic) edges e,

he(A) = P exp

∫

e

Ai
aτidx

a,

and smeared fluxes through surfaces,

E(S, f) =

∫

S

f iεabcE
a
i dx

bdxc,

where P denotes path ordering, εabc is the totally antisymmetric symbol, τi are −i/2 times the Pauli

matrices and f i are su(2)-valued smearing functions [11]. The elementary Poisson brackets are obtained

from

{Ea
i (x⃗), Eb

j (x⃗′)} = {Ai
a(x⃗), Aj

b(x⃗
′)} = 0,

{Ea
i (x⃗), Aj

b(x⃗
′)} = −8πγδab δ

j
i δ

3(x⃗− x⃗′), (3.2)

where δ3(x⃗− x⃗′) is the Dirac delta on the spatial hypersurfaces. Apart from the Gauss constraints that

have a trivial action on the holonomies and fluxes,

Gi = ∂aE
a
i + δklϵijkA

j
aE

a
l = 0, (3.3)

the system is subject to the spatial diffeomorphisms and Hamiltonian constraints Ha and H, that modulo

the Gauss contraints can be expressed in the form

8πγHa = F i
abE

b
i = 0, (3.4)

16πH =
Ea

i E
b
j√

| detE|
[
δklϵ

ijkF l
ab − 2(1 + γ2)Ki

[aK
j
b]

]
= 0. (3.5)

Here, F i
ab is the curvature of the connection Ai

a, i.e. F i
ab = 2∂[aA

i
b] + δilϵljkA

j
aA

k
b , we have used squared

brackets as a notation for the standard antisymmetrization of indices and detE is the determinant of

the densitized triad (whose absolute value equals h).

3.2. LQC for Friedmann–Lemâıtre–Robertson–Walker spacetimes

Let us consider the case of a FLRW spacetime with flat spatial hypersurfaces [95–98]. For convenience,

we take these hypersurfaces to be compact, isotropic to a three-torus with compactification period

denoted by ℓ0. In addition, we use coordinates adapted to the spatial homogeneity. In such a cosmological

spacetime, our configuration variables Ea
i and Ai

a possess each only one independent component, and we
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can express them as [17,18,20]:

Ai
a = c ℓ−1

0
0eia, Ea

i = p ℓ−2
0

√
0h 0eai . (3.6)

Here, 0eai is a fiducial flat diagonal triad with no physical content, and 0h is its determinant. We have

that p is related to the usual scale factor by a = ℓ−1
0

√
|p|, whereas |c| = γℓ0|ȧ/N | in the classical theory,

where ȧ is the time derivative of a. The fundamental Poisson bracket, obtained from (3.2), is

{c, p} =
8πγ

3
. (3.7)

In this thesis we are mainly concerned with inflationary universes [99]. To introduce inflation into

this system, we minimally couple a homogeneous scalar field ϕ with a potential, typically a quadratic

term m2ϕ2/2 with real mass m. Together with its canonical momentum πϕ, the field provides a new pair

of canonical variables:

{ϕ, πϕ} = 1. (3.8)

The spacetime symmetries and our conventions lead to spatial diffeomorphisms contstraints (and Gauss

constraints) that are trivially satisfied. Only the Hamiltonian constraint needs to be taken into account.

This constraint can be rewritten as

H|0 = − 3

8πγ2
c2|p|1/2 +

π2
ϕ

2|p|3/2 +
1

2
m2ϕ2|p|3/2. (3.9)

To define the quantum kinematics of the system, we must determine a set of elementary variables and

provide an operator representation of them. Following LQG techniques, we introduce the holonomy-flux

algebra given by holonomies he, defined by the connection Ai
a along edges e, and fluxes of Ea

i accross

two-dimensional surfaces S. Given the assumed homogeneity and isotropy, it actually suffices to consider

straight edges in the fiducial directions and square surfaces with edges parallel to those directions. It

is important to notice that it is at the step of quantizing this algebra where LQC departs from the

Wheeler-DeWitt formalism in cosmology, because the latter employs a continuous representation of

the elementary variables which are directly (i.e. linearly) related to c and p [6, 7], while LQC uses

a discrete representation of the holonomies of c. In our canonical formalism, we use Dirac’s proposal

for the quantization of constrained systems. Thus, physical states ultimately belong to a dynamical

Hilbert space constructed from the intersection of the kernels of the quantum operators that represent

the constraints on the kinematical Hilbert space that we use as starting point [100].

As we have commented, in our cosmological system we only have to consider holonomies along

straight edges oriented in the fiducial directions, with length µℓ0, where µ is an arbitrary real number.
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The holonomy along an edge in the i-th direction is

hµi (c) = eµcτi = cos
(µc

2

)
I2 + 2 sin

(µc
2

)
τi, (3.10)

where I2 is the identity matrix in two dimensions. Since the matrix elements of these holonomies are

linear combinations of complex exponentials, we can take as our elementary configuration variables the

exponentials Nµ(c) = eiµc/2, which for µ ∈ R form the algebra of quasi-periodic functions of c [101].

On the other hand, the fluxes are simply linear functions of p, with coefficients that depend only on the

smearing functions and the surface. In total, the phase space of LQC for our considered geometries can

then coordinatized by the variables Nµ(c) and p. Their Poisson bracket is

{Nµ(c), p} = i
4πγ

3
µNµ(c). (3.11)

The Hilbert space naturally chosen in LQC for these variables is Hgrav
kin = L2(RBohr, dµBohr), where

RBohr is the Bohr compactification of the real line and dµBohr is its Haar measure [101, 102]. This

representation mimics that found in full LQG, which is non-continuous in the connection, so that there

is no operator corresponding (unambiguously) to c [11,17,20]. This Hilbert space for LQC is isomorphic

to the space of square-summable functions in R with respect to the discrete measure, which is usually

called the polymeric Hilbert space. This space can be regarded, in turn, as the completion of the linear

span generated by the functions Nµ (which may be identified as kets |µ⟩), span that sometimes is denoted

as CilS , and which is dense in RBohr with the internal product

⟨µ|µ′⟩ = δµµ′ . (3.12)

The delta appearing in this product is the Kronecker one, a fact that makes manifest the discreteness of

the corresponding measure. The action of N̂µ on these ket states is a translation on their label:

N̂µ|µ′⟩ = |µ+ µ′⟩. (3.13)

Now, using (3.11) and Dirac’s rule for the correspondence between basic Poisson bracekts and commu-

tators, {·, ·} ↔ −i [ ·̂ , ·̂ ], we define the action of p̂ as

p̂|µ⟩ =
4πγµ

3
|µ⟩. (3.14)

Since the measure is discrete in this representation, so is the spectrum of p̂.

One may wonder whether this polymeric representation is equivalent to that of geometrodynamics,

given the Stone-von Neumann uniqueness theorem [103,104]. However, a key hypothesis in this theorem

is that of continuity, which the LQC representation fails to satisfy. This means that the LQC quantiza-

tion may be (and indeed is) inequivalent to the conventional quanitzation used in the Wheeler-DeWitt
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formalism [6, 7]. To complete our quantum description, we choose L2(R, dϕ) as the Hilbert space Hmatt
kin

for the homogeneous scalar field, where dϕ is just the Lebesgue measure on R. This is the space of squared

integrable functions with ϕ̂ acting by multiplication and π̂ϕ = −i∂ϕ. The total kinematic Hilbert space

is the tensor product of those for LQC and the scalar field.

To describe the quantum dynamics, we first notice that the part of H|0 that depends on the space-

time geometry is just the particularization of the (spatial integration of the) general expression of the

Hamiltonian constraint (3.5) to this homogeneous system,

16πγ2ℓ−3
0 H|0 = −

Ea
i E

b
jδklϵ

ijkF l
ab√

| detE|
, (3.15)

where we have used that the second term in (3.5) coincides for flat cosmologies with the first one except

for a numerical factor. As in the full LQG theory, we cannot express the Hamiltonian constraint as an

operator in a straightforward manner because it contains powers of the connection. To overpass these

complications, we can start with the holonomy along a square □jk in the jk-plane,

hµ□jk = hµj h
µ
k(hµj )−1(hµk)−1. (3.16)

Using it, the curvature can be written as follows:

F i
ab = −2 lim

A□→0
tr

(
hµ□jk − δjk

A□
τlδ

il

)
0eja

0ekb , (3.17)

where tr denotes the trace and A□ = ℓ20µ
2 is the fiducial area of the square. Whereas this expression is

well defined in the classical theory, the limit would diverge if we consider its operator version in LQC. It

is the discreteness of the spacetime geometry, as described in the full LQG theory, what permits us to

define a meaningful counterpart of this limit. For this, we use the fact that the quantum area operator

has a smallest non-zero eigenvalue ∆g in LQG [105], and then replace the limit with an evaluation in

the auxiliary square whose physical area is equal to ∆g, so that

F i
ab = −2tr

(
hµ̃□jk − δjk

ℓ20µ̃
2

τlδ
il

)
0eja

0ekb , (3.18)

where µ̃ =
√

∆g/|p|.
We still have to define the specific operators N̂±µ̃ that are necessary for the representation of (3.18).

Since c cannot be expressed as a well-defined operator and µ̃ is a function p, then N̂±µ̃ cannot be

unambiguously expressed in terms of our elementary operators N̂µ and p̂. To introduce a definition,

one appeals to geometric considerations. We can introduce a suitable parameter v so that N̂±µ̃ would

produce constant translations in it. Taking into account the canonical algebra, v is the affine parameter
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associated with a vector field proportional to ∂v = µ̃(p)∂p. In this manner, we conclude that

v(p) =
sgn(p)|p|3/2
2πγ

√
∆g

. (3.19)

Its canonically conjugate variable is indeed b = µ̃c, with {b, v} = 2. In these variables, the Hamiltonian

becomes

H|0 =
1

4πγ
√

∆g|v|
(
π2
ϕ − 3πv2b2 + 4π2γ2∆gv

2m2ϕ2
)
. (3.20)

The magnitude of v has a geometric meaning, because it is proportional to the physical volume of the

spatial sections3 V = 2πγ
√

∆g|v|. Since the variable v is well adapted to the implementation of N̂±µ̃,

we reindex the label of the states |µ⟩ so that this holonomy operator becomes indeed a unit translation,

N̂±µ̃|v⟩ = |v ± 1⟩, and v̂ acts by multiplication, v̂|v⟩ = v|v⟩.
Finally, we need a strategy to define the inverse of the scale factor (or rather, of the volume), present

in the Hamiltonian constraint. Since zero is in the discrete spectrum of v̂ (given the discrete measure

of LQC), we cannot use the spectral theorem to define the inverse of the volume (i.e., we cannot simply

divide by v). Once again, we adopt LQG techniques and make use of the classical identity [10,106]

(
1

V

)1/3

=
1

|p|1/2 =
sgn(p)

2πγµ̃
tr

(∑

i

τih
µ̃
i {(hµ̃i )−1, |p|1/2}

)
. (3.21)

Using this, 1̂/V can be defined as the cube of 1̂/
√
|p|, this operator being

1̂√
|p|

=
3

4πγ
√

∆g

ŝgn(p)
√̂
|p|
(
N̂−µ̃

√̂
|p| N̂µ̃ − N̂µ̃

√̂
|p| N̂−µ̃

)
. (3.22)

The final step for quantization is a procedure to replace the positive powers of p̂ and 1̂/p (or, equiv-

alently V̂ and 1̂/V ), and select the factor ordering of all operators. For this, we will use the prescription

given in Ref. [23], which avoids problems with the state |v = 0⟩ and treats carefully the quantum coun-

terpart of the sign sgn(p). In particular, it involves a symmetric algebraic ordering of the powers of the

volume operator. This decouples the null volume state, so that it can be eliminated in practice from

the geometric part of the kinematical Hilbert space. Furthermore, one can prove that the action of the

resulting Hamiltonian constraint operator does not mix the subspaces H±
ε spanned by states |v⟩ with

v supported on the semilattices L±
ε = {±(ε + 4n)|n ∈ N} with ε ∈ (0, 4] [21–23]. These subspaces H±

ε

are frequently called superselection spaces. We notice that the variable v related to the volume has an

strictly positive minimum ε, or an strictly negative maximum −ε, on each superselection sector. Finally,

taking into account the symmetry of the system under parity, we can restrict the discussion of physical

states in LQC, for example, to H+
ε , with strictly positive values for v, namely v ∈ L+

ε .

We may further restrict the discussion to certain physical states with a pronounced semiclassical

3The physical volume is related to the scale factor, that we will employ in many classical formulas, by V = ℓ30a
3.
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behavior for large volumes and that stay highly peaked during the entire quantum evolution [107]. The

evolution of these states is governed by the Hamiltonian constraint. It has been shown that their peak

follows a trajectory that is dictated by Einstein’s equations when the matter density is small enough (less

than one percent of Planck density). However, when this density grows, the Universe stops following the

dynamics of General Relativity. If it was contracting, the density grows until it reaches a critical value

(around 41 percent of Planck density) and the scale factor a minimum, and then starts expanding. The

instant the Universe ceases to collapse is called the Big Bounce. This resolves the Big Bang singularity,

because all relevant physical quantities remain bounded in the commented process [21–23,108].

3.3. Scalar and tensor perturbations

While the FLRW cosmology we considered so far is an acceptable first order approximation, we

can clearly observe that the Universe is actually inhomogeneous. It is thought that these small inho-

mogeneities were seeded by quantum fluctuations of small inhomogeneities in the Early Universe. We

may introduce such perturbations both in the geometry (gµν = 0gµν + ∆gµν) and in the inflaton field

(Φ = ϕ + ∆Φ), in a manner described e.g. in Refs. [39, 41, 53]. To exploit the spatial symmetry of the

background system, we can expand our fields in eigenmodes of the Laplace-Beltrami operator on the

homogeneous spatial slices. These modes provide a basis to decompose the perturbations. In particular,

in absence of matter vector fields, the physically relevant, gauge-invariant part of the perturbations can

be expressed in our cosmological system in terms of scalar and tensor harmonics. The Hamiltonian H

of the complete system truncated at quadratic order in the action adopts the form

H = N0


H|0 +

∑

k⃗

H̃ k⃗
(s) +

∑

k⃗,ϵ

H̃ k⃗,ϵ
(t)


+

∑

k⃗

Nk⃗H|1,⃗k +
∑

k⃗

Ñk⃗H−1,⃗k, (3.23)

where N0 is the zero mode4 of the lapse function, k⃗ is the wavevector label of the Fourier modes (taken

different from zero in order not to include zero modes), and ϵ = +,× represents the two admissible

polarizations of the tensor modes. The terms H̃ k⃗
(s,t) are quadrative in the perturbations and contain

only scalar or tensor contributions, depending on the label (s) or (t), respectively. Furthermore, Nk⃗

and Ñk⃗ describe the (scalar) perturbations of the lapse and shift . Actually, their canonical momenta

are not present in the total Hamiltonian, indicating that they do not represent true degrees of freedom.

They must be handled as Lagrange multipliers, associated to the terms H|1,⃗k and H−1,⃗k, which are

linear in the perturbations. We call them the linear (Hamiltonian and diffeomorphisms) perturbative

constraints. They reflect the freedom to perform perturbative time reparametrizations and perturbative

spatial diffeomorphisms, respectively.

One must take into account that geometries that are related by any of these perturbative transfor-

mations correspond in fact to the same physical perturbed spacetime. So, we want to consider only that

4In this expansion, the zero mode of the lapse function and the contribution H|0 to the Hamiltonian constraint are
formally the same as those of the unperturbed system.
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part of the phase space of the perturbations that contains gauge-invariant information [1], which is not

affected by the aforementioned transformations. A perturbative variable is gauge-invariant if and only

if its Poisson bracket with the linear perturbative constraints is null, taking the background variables

as fixed [109]. This is automatically the case for the tensor perturbations, since the linear perturbative

constraints do not depend on them. But it is not the situation found generically for the scalar per-

turbations. Nonetheless, we can perform a suitable background-dependent canonical transformation of

the variables that describe the scalar perturbations and arrive to a new canonical set that contains a

complete set of gauge invariants. For instance, the new gauge-invariant variables can be chosen as the

so-called Mukhanov-Sasaki variables (together with their canonical, gauge-invariant momenta). In this

way, we can construct a phase space for the perturbations that is coordinatized by the MS variables, the

tensor perturbations and the linear perturbative constraints, together with their respective momenta.

In order to do this, an obstruction is found in the fact that the linear perturbative constraints do not

commute. This problem is solved by replacing H̃ k⃗
|1 with an Abelianized version of it that is still linear in

the scalar perturbations. This replacement can be compensated in the total Hamiltonian with a change

in the Lagrange multiplier that corresponds to the zero mode of the lapse function, change that consists

in the addition of a term that is quadratic in perturbations [39].

Since the employed canonical transformation is background-dependent, the new perturbative variables

no longer commute with the homogenous variables when the background is not regarded as fixed anymore.

So, to obtain a set that is canonical in both the homogeneous and inhomogeneous sectors, we must modify

the zero modes of the geometry and of the scalar field. The simplest way to obtain new variables for

the homogeneous sector forming a canonical set for the whole system, at the order of our perturbative

truncation in the action, is to rewrite the Legendre part of this action (that contains the information

about the symplectic structure) in a canonical way, i.e., as a sum of products of the time derivative of

configuration variables multiplied by their momenta, modulo surface contributions at the initial and final

times. This is done in detail in Ref. [39] using that the relation between the old and new perturbative

variables is linear and does not mix modes5. After a series of integrations by parts, and truncating the

result at quadratic order in the perturbations, the general form of the Hamiltonian constraint is formally

the same as in (3.23), but the perturbative terms appearing in it have now a different dependence on the

new canonical variables and the geometric interpretation of the Lagrange multipliers is changed slightly.

3.4. Fermionic perturbations

We now introduce fermionic content in our cosmological system. This serves as a test of our formalism

and extends our treatment to realistic matter fields. Let us summarize how to couple a Dirac field Ψ

with mass M to the system [53]. We treat this Dirac field as a perturbation, including its possible zero

5Unless specified otherwise, in the following we will not make an explicit distinction in our notation between old and
new zero modes.
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modes. The field dynamics is determined by the fermionic part of the Einstein-Dirac action,

SD = −i
∫
d4x

√
− 0g

[
1

2
(Ψ†γ0 0eνi γ

i∇s
νΨ −H.c.) −MΨ†γ0Ψ

]
, (3.24)

where 0eiν is the frame field, or tetrad, of the homogeneous metric (defined in a similar way as the triads

but with respect to the 4-metric instead), and 0g = det 0gµν is the determinant of this metric. In

addition, we have in this case i = 0, 1, 2, 3 as an internal gauge index, γi are the constant Dirac matrices

in the Weyl representation of the Clifford algebra, and the dagger denotes the Hermitian conjugate,

whereas H.c. corresponds to the Hermitian conjugate of the previous term displayed. Finally, we define

∇s
µ = ∂µ + 1

4e
i
ν(eνj);µγiγj , where the semicolon denotes the covariant derivative corresponding to the

homogeneous metric. Note that (3.24) is quadratic in the fermionic contributions. This means that

we can couple the Dirac field directly to the homogeneous metric either before or after correcting the

homogeneous variables to maintain the canonical structure in the total system. Any difference from this

change of variables will be a contribution of a higher perturbative order than those kept by our truncation.

A useful consequence of this fact is that the fermionic degrees of freedom are actually gauge-invariant

perturbations at this order of truncation.

We adopt the so-called temporal gauge so that ej0 = 0, for convenience in the treatment of the

Hamiltonian [52]. This choice of gauge plays an irrelevant role for the non-fermionic part of the system.

Its effect on the spin structure of the homogeneous manifold is a restriction that can be reinterpreted

as an assigment of a spin structure on each of the spatial sections. In this manner we can describe the

Dirac field with two bi-component spinors on T 3, φA and χ̄A′ , of defined chirality and parametrized

by the time t. In our notation, A,B, ... = 1, 2 are left-handed components, and A′, B′, ... = 1′, 2′ are

right-handed. In addition, we denote complex conjugation by an overhead bar. Explicitly, we have then

Ψ =


φ

A

χ̄A′


 .

The components of these spinors are treated as Grassmann variables, to incorporate the anticommuting

behavior of fermions. Spinorial indices are raised and lowered with the antisymmetric matrices ε, defined

so that ε12 = ε1
′2′ = ε12 = ε1′2′ = 1, and εAB = −εBA, εA

′B′
= −εB′A′

, etc. After eliminating the

second-class constraints that relate the Dirac field with its momentum (owing to the fact that the action

is of first order in the derivative of the field), we obtain, at fixed time, the anticommutative Dirac brackets

{a3/2Ψ†(x⃗), a3/2Ψ(x⃗′)}D = −iδ3(x⃗− x⃗′)I4, (3.25)

where I4 is the 4-dimensional identity matrix.

Each of the chiral components of the Dirac field can be expanded in an eigenspinor basis of the

Dirac operator on T 3. The spectrum of this operator is discrete and characterized by eigenvalues ±ωk =
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±2π|⃗k + τ⃗ |/ℓ0, with k⃗ ∈ Z3, and 2τ⃗ =
∑

I τI v⃗
I characterizes the spin structure, where I = 1, 2, 3, v⃗I

can be any of the constant vectors that form the orthonormal basis of Z3, and τI ∈ {0, 1}, giving a total

of eight possible spin structures on T 3 [110]. In an effort to avoid technicalities, we will not discuss in

this summary the potential zero-modes in the expansion of the Dirac field, only present for the trivial

spin structure on T 3 (the reader can find their contribution in Ref. [53]). On the other hand, since ωk

grows like |⃗k| when the latter tends to infinity, we notice that the density of states with eigenvalues in

an interval (ωk, ωk + ∆ωk] grows asymptotically as ω2
k∆ωk. Extracting a global factor a3/2 from our

expansions for convencience and taking into account (3.25), we obtain

φA =
1

ℓ03/2a3/2

∑

k⃗

(
mk⃗w

+

k⃗,A
+ r̄k⃗w

−
k⃗,A

)
(3.26)

χ̄′
A =

1

ℓ03/2a3/2

∑

k⃗

(
s̄k⃗w̄

+

k⃗,A′ + tk⃗w̄
−
k⃗,A′

)
(3.27)

The time-dependent coefficients mk⃗, sk⃗, rk⃗ and tk⃗, are Grassmann variables. In fact, the pairs formed

by each of these variables and their complex conjugate are canonical. For the specific form of the Dirac

eigenspinors w±
k⃗,A

and w̄±
k⃗,A′ (with eigenvalue ±ωk according to the sign ±) we refer the reader to Ref. [53].

The zero mode of the total Hamiltonian constraint on the complete cosmological system is then

H|0 +
∑

k⃗

H̃ k⃗
(s) +

∑

k⃗,ϵ

H̃ k⃗,ϵ
(t) +

∑

k⃗

Hk⃗, (3.28)

where (for all non-zero modes)

Hk⃗ = M(s−k⃗−2τ⃗mk⃗ + m̄k⃗s̄−k⃗−2τ⃗ + r−k⃗−2τ⃗ tk⃗ + t̄k⃗r̄−k⃗−2τ⃗ )

− ωk

a
(m̄k⃗mk⃗ + t̄k⃗tk⃗ − rk⃗r̄k⃗ − sk⃗s̄k⃗). (3.29)

We call HD =
∑

k⃗Hk⃗ to shorten the notation. With the change of variables introduced in the previous

subsection, the system is symplectic at the considered truncation order. Finally, the only constraints

remaining on it are the zero mode of the Hamiltonian constraint and the linear perturbative constraints.

3.5. Hybrid quantization in Loop Quantum Cosmology

In the hybrid approach, one adopts a conveniently chosen quantum representation for each of the

sectors of the cosmological system, each of them with its own Hilbert or Fock space. The constraints of the

system are given by operators that are well defined in the tensor product of these representation spaces.

These constraints are imposed following the Dirac approach, which means that we expect physical states

to be annihilated by them [100]. This is non-trivial, since the zero mode of the Hamiltonian constraint

mixes the homogeneous sector, for which we choose an LQC quantization, with the inhomogeneous

sectors that are quantized with Fock techniques.
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Starting from the homogeneous geometry, we define Hgrav
kin as its representation space in LQC, along

the lines explained in Section 3.2. For the zero mode of the scalar field, we call its kinematical space

Hmatt
kin , given again by the Hilbert space L2(R, dϕ) of squared integrable functions over the real numbers,

with ϕ̂ acting by multiplication and π̂ϕ = −i∂ϕ. For the perturbations, we adopt symmetric Fock spaces

for the scalar and tensor perturbations, that we call Fs and Ft respectively, and an antisymmetric

Fock space for the fermionic perturbations, called FD. Bases of these Fock spaces are given by the

n-particle(/antiparticle) states |Ns⟩, |Nt⟩ and |ND⟩, where N denotes occupation numbers in each of the

considered Fock representations.

Let us consider the linear perturbative constraints. In fact, it makes sense to treat these linear

constraints as the generalized momenta of their canonical pairs. In this manner, one can use a rep-

resentation where these perturbations act as generalized derivatives. As such, their imposition simply

implies that physical states only depend on gauge-invariant perturbative degrees of freedom and on the

homogeneous sector. The only constraint that remains to be imposed on the system is the zero mode

of the Hamiltonian constraint. Using the representation space H = Hmatt
kin ⊗ Hgrav

kin ⊗ FS ⊗ Ft ⊗ FD,

the construction of the operator for this constraint is then carried out according to the prescriptions

explained in Refs. [23,39,41,53].

Finally, one would have to determine the kernel of the (adjoint) of the zero mode of Hamiltonian

constraint. A convenient strategy is based on the fact that, for physically interesting states, we rarely

expect quantum transitions of the background to be mediated by the perturbations (as well as on the fact

that the modes of different types of perturbations are mutually decoupled at this order of truncation).

This motivates ansatz of separation of variables, in which only the homogeneous scalar field ϕ is contained

in all the factors and, in certain regimes, it may act as an internal time [23, 39, 41, 53]. Explicitly, we

search for states with wave functions Ξ such that:

Ξ(V, ϕ,Ns,NT ,ND) = Γ(V, ϕ)ψs(Ns, ϕ)ψT (NT , ϕ)ψD(ND, ϕ). (3.30)

Additionally, we restrict our considerations to normalized states Γ in Hgrav
kin with unitary evolution in ϕ.

With this ansatz, the imposition of the Hamiltonian constraint6 leads to a collection of Scrödinger-like

equations with respect to ϕ for the perturbations, in which all the terms related to the unperturbed

geometry are given by expectation values of the operators that describe it. In particular, we obtain the

fermionic Schrödinger equation

i∂ϕψD(ND, ϕ) =
⟨V̂ HD⟩Γ − C

(Γ)
D (ϕ)

⟨ ˆ̃H0⟩Γ
ψD(ND, ϕ). (3.31)

Here, ˆ̃H0 is the self-adjoint and positive operator that generates the unitary evolution in ϕ of the quantum

6Some other well motivated approximations are needed but we refer the reader to the Refs. [23, 39, 41, 53] for the
detailed calculations.
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state Γ of the homogeneous geometry. The term C
(Γ)
D , on the other hand, appears in the equation

C
(Γ)
D + C(Γ)

s + C
(Γ)
t +

⟨Ĥ(2)
0 + i[∂ϕ̃,

ˆ̃H0] − ( ˆ̃H0)2⟩Γ
2⟨ ˆ̃H0⟩Γ

= 0, (3.32)

where C
(Γ)
t and C

(Γ)
s are similar terms arising from the scalar and tensor perturbations, and Ĥ(2)

0 is

the operator whose square root would generate the evolution on the unperturbed quantum geometry.

Consequently, C
(Γ)
D measures in average (i.e. after taking expectation values) how much the partial

FLRW state Γ can differ from being an exact solution of the unperturbed system as a result of the

fermionic perturbations. In this sense, it can be understood as a quantum backreaction term of the

fermionic sector on the homogeneous background.

3.6. Unitarily implementable evolution for fermionic perturbations

The last step in the quantization would be to find the physical states of the system and endow them

with a Hilbert structure. To do so, we must first specify the kinematical Fock space for the fermionic

part of these states. A usual way to characterize this Fock space is by defining a set of annihilation and

creation variables that are straightforwardly promoted to operators. These variables can be introduced

by means of canonical transformations which, in general, mix the homogeneous and inhomogeneous

sectors of the system:

aλ
k⃗

= f k⃗,λ1 (a, ϕ)xk⃗ + f k⃗,λ2 (a, ϕ)ȳ−k⃗−2τ⃗ ,

b̄λ
k⃗

= gk⃗,λ1 (a, ϕ)xk⃗ + gk⃗,λ2 (a, ϕ)ȳ−k⃗−2τ⃗ , (3.33)

together with their complex conjugate expressions, where (xk⃗, yk⃗) is any of the ordered pairs (mk⃗, sk⃗) or

(tk⃗, rk⃗), that have well-defined and opposite helicity λ = ±1. It is understood that the coefficients hk⃗,λl ,

with h = f, g and l = 1, 2, may depend also on the momenta of the homogeneous variables. In order to

satisfy the standard anticommutation canonical relations, it is necessary that [53]

gk⃗,λ1 = eiJ
λ

k⃗ f̄ k⃗,λ2 , gk⃗,λ2 = −eiJλ

k⃗ f̄ k⃗,λ1 , (3.34)

f k⃗,λ2 = eiF
k⃗,λ
2

√
1 −

∣∣∣f k⃗,λ1

∣∣∣
2

, (3.35)

where Jλ
k⃗
, F k⃗,λ

2 ∈ R are two (possibly) background-dependent phases.

We see that Eqs. (3.33) allow for an infinite number of choices of vacua. This ambiguity may be

alleviated by considering only vacua that are invariant under the spatial symmetries of the background

and/or the symmetries of the dynamical equations. In particular, we restrict our considerations to

coefficients that only depend on the eigenvalue ωk, as opposed to a dependence on k⃗. On the other hand,

since the spacetime is non-stationary, requiring that the vacuum be invariant under the evolution is not a
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suitable strategy, at least in principle. Instead, we can ask for vacua that lead to a Heisenberg dynamics

for the annihilation and creation variables that can be implemented as unitary transformations in the

Fock space (when the Dirac field is treated as a test field propagating on a fixed FLRW cosmology). It

was proven in Ref. [54] that this condition univocally fixes the asymptotic behavior of the annihilation

and creation variables in the limit of infinitely large ωk, so that they must satisfy [54]

fk,λ1 ∼ Ma

2ωk
eiF

k,λ
2 + θk,λ, with

∑

k⃗∈Z3

∣∣θk,λ
∣∣2 <∞, (3.36)

where the ∼ symbol denotes the same asymptotic order in the limit ωk → ∞. Note that, even after

imposing this restriction coming from unitarity, there is still much freedom left (even in the asymptotic

limit) in our choice of annihilation and creation variables. Nevertheless, it has been proven that all Fock

representations corresponding to these possible choices of vacua are at least unitarily equivalent, so that

they allow for the same physics [54].

3.7. Effective LQC and non-oscillating vacua

As explained in section 3.2, one can evolve certain families of semiclassical states with the LQC

Hamiltonian constraint until one reaches in the past an epoch in which the matter density of the Universe

was large, of the Plack order. These states avoid the Big Bang singularity while remaining highly peaked.

Moreover, the trajectory of the peak follows an effective dynamics generated by an effective Hamiltonian

constraint [107]. This effective constraint Heff
|0 can be obtained by replacing the classical variable b in

the expression (3.20) of H|0 by sin b, namely

Heff
|0 =

1

4πγ
√

∆g|v|
(
π2
ϕ − 3πv2 sin2 b+ 4π2γ2∆gv

2m2ϕ2
)
. (3.37)

This replacement comes from the fact that the connection variable b is not well defined as a local operator

in LQC, and is then represented in terms of holonomies which contain imaginary exponentials of b. If

we now consider cosmological perturbations with a background state Γ that follows this effective LQC

dynamics with negligible backreaction, the expectation values on the homogeneous geometry that appear

in the dynamical equations of the perturbations can be approximated by their evaluation on the effective

trajectory of the peak of Γ. From this perspective, to specify the effect of Γ on these equations we only

need to provide initial conditions on the four canonical variables of the homogeneous sector, since these

will fix the effective LQC solution that describes the peak of the state. These homogeneous variables are,

however, not independent, because they must satisfy the effective Hamiltonian constraint Heff
|0 . This

can be employed to find the initial value of e.g. the inflaton momentum in terms of the initial conditions

for the other three homogeneous variables. On the other hand, a convenient choice is to set the initial

time at the bounce. There, the time derivative of the scale factor (and consequently of the volume)

vanishes, a fact that serves to specify part of the initial data on the geometry. Additionaly, since we
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have the freedom to set a reference scale of distances, we can simply set the initial scale factor equal

to one at this initial time. This means that a rescaling will be necessary if we are ever to compare our

results with (observational) cosmological data, for which the scale factor is commonly set to one at the

present time. In conclusion, we see that we only have to give the initial value of the inflaton at the

bounce to fix the effective trajectory of the homogeneous sector. If we are considering a mass term as

the inflaton potential, we can also add the value of this mass as a piece of data that must be determined.

Usually, the initial value of the inflaton and its mass are chosen so that one obtains power spectra for the

perturbations that can reproduce the observed CMB spectrum, while still allowing for the pressence of

quantum effects in it. In this thesis, we study the scenario that is phenomenologically more interesting,

namely, a kinetically dominated regime followed by a short-lived inflation. This situation is found for

initial values of the inflaton at the bounce, ϕB , slightly smaller than one, and for a mass of the order of

10−6, both of them in Planck units. For concreteness, we are going to run all of our numerical simulations

for the values m = 1.2×10−6 and ϕB = 0.97, as done in Refs. [111,112]. In addition, we take the Immirzi

parameter equal to 0.2375, a standard choice based on the Bekenstein-Hawking formula [113–115].

In hybrid LQC, one obtains effective equations of the Mukhanov-Sasaki and tensor perturbations

that describe the dynamics of harmonic oscillators with a time-dependent mass that is a function of the

homogeneous cosmology [39]. Calling vk⃗ any of the perturbative mode variables (and k⃗ its labels for

simplicity), we get

v′′
k⃗

+ (k2 + s)vk⃗ = 0, (3.38)

where the prime denotes the derivative with respect to the conformal time and, within the considered

effective regime, the time dependent mass s for the scalar (s) and tensor (t) perturbations is given by

s(s) = s(t) + Ums, (3.39)

s(t) =
(

2πγ
√

∆gv
)2/3( sin2 b

γ2∆g
− 4πm2ϕ2

)
, (3.40)

Ums =
(

2πγ
√

∆gv
)2/3(

m2 +
4πϕ sin(2b)m2ϕ

v sin2 b
+ 24πm2ϕ2 − 32π2γ2∆gm

4ϕ4

sin2 b

)
. (3.41)

For calculations of the power spectrum of the perturbations, in practice, one takes the eigenvalue k of the

Fourier modes as a continuous quantity. This continuum limit can be defined rigorously in the system,

as proven in Ref. [116].

The same type of mode equations is also found in other approaches to quantum cosmology, including

LQC, such as the so-called dressed metric approach introduced by Ashtekar, Agullo and Nelson [30,

32, 33, 117]. The key difference between this approach and hybrid LQC is the expression of the time-

dependent mass that appears in these equations. Nonetheless, this difference between the masses is only

non-negligible in epochs with large matter density [118], because both approaches reproduce the results

of General Relativity at low densities.

On the other hand, let us consider a set {µk} of complex solutions to (3.38), for all k ∈ R, that becomes
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a basis together with their complex conjugates. It is well known [49] that any such set univocally defines

a quantum Fock representation of the considered field if it is normalized as

µkµ̄
′
k − µ′

kµ̄k = i. (3.42)

It is important to note that, because of this normalization, and the reality and linearity of (3.38), any

two choices of basis elements in which the modes are not mixed, µ̃k and µk, must be related to each

other by a linear Bogoliubov transformation of the form

µ̃k = αk (µ̃k, µk)µk + βk (µ̃k, µk) µ̄k. (3.43)

The normalization condition (3.42) holds provided that the constant Bogoliubov coefficients satisfy

|αk (µ̃k, µk) |2 − |βk (µ̃k, µk) |2 = 1. (3.44)

We may refer to the vacuum state selected by a specific set {µk} as |0µ⟩. The power spectrum corre-

sponding to this vacuum can be obtained from the quantity

PV(k, η) =
k3

2π2
|µk(η)|2, (3.45)

evaluated at the value for the conformal time η corresponding to the end of inflation, ηend.

Some widely studied vacua in LQC have been the adiabatic states which, much like in the case of

the fermionic perturbations, are built by and iterative procedure that should eventually determine a

Hadammard state. From a certain adiabatic order on, these vacua lead to a renormalizable energy-

momentum tensor. However, they have been seen to provide oscillatoy power spectra, a behavior that,

after its averaging, usually amplifies the power and may blur the genuine quantum gravity effects that

ocurred in the pre-inflationary epoch. To find a possible solution to this problem, a criterion for the

choice of a vacuum has been proposed [68] in which one requires numerically a non-oscillating behavior

by minimizing the quantity ∫ ηf

ηi

dη
∣∣∂η
(
|µk|2

)∣∣ , (3.46)

where the integration limits ηi and ηf are usually chosen to be the bounce and the time for which ϕ′

vanishes for the first time. This minimization takes into account the fact that the oscillations in the

wavenumbers are often related to the time oscillations that the norm of the solutions µk may have

experienced in the period before inflation.
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4. Article summary

4.1. Fermionic perturbations

4.1.1. Backreaction of fermionic perturbations in the Hamiltonian of Hybrid LQC

When one considers quantum matter fields coupled to curved spacetimes, treated as classical entities,

divergences frequently appear [64,119–125]. In fact, it is not straightforward to get rid of these divergences

by simple renormalization techniques and it is commonly believed that these pathologies are due to the

classical treatment adopted for the geometry. We have already motivated the search for a quantum theory

of gravity as a way to remove or at least alleviate the singularities that exist in General Relativity. From

this perspective, we find in the divergences of quantum field theory in curved spacetimes a good arena

to put into test the possible consequences of a quantum theory of gravity, specially if this line of attack

can remove the divergences without using any “substraction of infinities” scheme. A possibly divergent

quantity is present in (3.31), describing a quantum backreaction from the fermionic perturbations on the

geometry. To study it further, we start with any set of annihilation and creation variables that satisfies

(3.36), written in the convenient form (inspired by Refs. [52,53])

fk,λ1 ∼
√
ξk − ωk

2ξk
+
Ma

2ωk

[
eiF

k,λ
2 − 1

]
+ θλk with

∑

k⃗

∣∣θλk
∣∣2 <∞, (4.1)

where we have defined7

ξk =
√
ω2
k +M2a2, (4.2)

and we keep generic phases for the moment. We consider that F k,λ
2 and θλk do not depend on the inflaton

or its momentum and restrict ourselves to transformations such that

∂nah
k,λ
l = O(hk,λl ), ∂nπa

hk,λl = O(hk,λl ), (4.3)

for h = f, g and l = 1, 2, integers n at least up to three, and where the considered derivatives act order by

order in the asymptotic expansions for large ωk (at least for the relevant orders in our discussion). Here,

a contribution is O(.) when it is of the asymptotic order of the corresponding argument (or smaller).

Our restriction excludes, in particular, the possibility of absorbing in the phases of hk,λ1 and hk,λ2 any of

the dominant oscillations in conformal time that the Dirac field displays in the limit of large ωk, when

it is treated as a test field obeying the Dirac equation in a classical FLRW cosmology.

Since the coefficient (4.1) is allowed to depend on homogeneous variables, the annihilation and creation

variables cannot form a full canonical set together with the homogeneous cosmological ones. Then, by a

procedure similar to that explained in Subsection 3.3, we must change our set of homogeneous variables.

7In the original publication we actually let the coefficients depend on the Fourier label k⃗, while in subsequent articles
we restricted the study to a dependence on the eigenvalue ωk, owing to symmetry considerations. In this summary, we
adopt this last viewpoint to avoid lengthier calculations that would obscure the results.
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At our order of truncation, and denoting with the new variables with a tilde, the change is

ã− a = ∆a =
i

2

∑

k⃗,λ

[(∂πaxk⃗)x̄k⃗ + (∂πa x̄k⃗)xk⃗ + (∂πayk⃗)ȳk⃗ + (∂πa ȳk⃗)yk⃗], (4.4)

πã − πa = ∆πa = − i

2

∑

k⃗,λ

[(∂axk⃗)x̄k⃗ + (∂ax̄k⃗)xk⃗ + (∂ayk⃗)ȳk⃗ + (∂aȳk⃗)yk⃗]. (4.5)

We will ignore the tilde in the new variables after these redefinitions, in order to simplify the notation.

This change of variables naturally gives rise then to a modification of the terms corresponding to pertur-

bative contributions in the zero mode of the Hamiltonian constraint. At our truncation order, the final

result is the new fermionic Hamiltonian

∑

k⃗,λ

[(
1

2a
ξk + hk,λD

)(
āλ
k⃗
aλ
k⃗
− aλ

k⃗
āλ
k⃗

+ b̄λ
k⃗
bλ
k⃗
− bλ

k⃗
b̄λ
k⃗

)
+ hk,λJ

(
b̄λ
k⃗
bλ
k⃗
− bλ

k⃗
b̄λ
k⃗

)

+ ei(J
λ
k −Fk,λ

2 )a−1

(
2ωkθ̄

λ
k + h̄k,λI

)
aλ
k⃗
bλ
k⃗
− e−i(Jλ

k −Fk,λ
2 )a−1

(
2ωkθ

λ
k + hk,λI

)
āλ
k⃗
b̄λ
k⃗

]
, (4.6)

where hk,λD and hk,λJ are real functions that depend on the coefficients appearing in (3.33). In the

asymptotic regime of large ωk, hk,λI is given by

hk,λI = i
2πM

3ℓ30ωk
πae

iFk
2 + O[Max(θλk , ω

−2
k )], (4.7)

where Max(., .) denotes the maximum of its two arguments. Notice that θλk must be (at least) asymp-

totically negligible compared to ω
−3/2
k in order to satisfy (4.1)8. Then hk,λI , in the interactive part of

the Hamiltonian, has asymptotic order O[Max(ωkθ
λ
k , ω

−1
k )], a fact that implies that its square is not

absolutely convergent. This means that, as long as θλk does not depend on the cosmological variables,

the operator version of the Hamiltonian constraint is not well-defined in the dense subset spanned by

n-particle/antiparticle states of the Fock space.

Let us then proceed to quantize the system in the manner described in the previous sections. We

introduce a state dependent conformal time ηΓ given by

dηΓ =
ℓ0⟨V̂ 2/3⟩Γ
⟨ ˆ̃H0⟩Γ

dϕ, (4.8)

which is well-defined thanks to the the positivity of ˆ̃H0 and the lower positive bound on the volume

in each superselection sector of LQC. Then, for asymptotically infinitely large ωk, (3.31) defines the

8Recall that we are summing over all wavenumbers k⃗ and that, for asymptotically large ωk, the density of states

grows proportional to ω2
k. Therefore, sequences of asymptotic order O(ω

−3/2
k ) or bigger are not generally square

summable.
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following Heisenberg equations on our annihilation and creation variables, evaluated at ηΓ = η:

dηΓ â
λ
k⃗
(η, η0) = −iF (Γ)

k âλ
k⃗
(η, η0) +G

(Γ)
k b̂λ†

k⃗
(η, η0),

dηΓ
b̂λ†
k⃗

(η, η0) = i
(
F

(Γ)
k + J̃

(Γ)
k

)
b̂λ†
k⃗

(η, η0) − Ḡ
(Γ)
k âλ

k⃗
(η, η0), (4.9)

where

G
(Γ)
k =

2iωk⟨ ̂
ei(F

k,λ
2 −Jλ

k )V 2/3θλk ⟩Γ + i⟨ ̂
ei(F

k,λ
2 −Jλ

k )V 2/3hk,λI ⟩Γ
⟨V̂ 2/3⟩Γ

. (4.10)

The expressions of F
(Γ)
k and J̃

(Γ)
k will not be needed here.

Equations (4.9) can be integrated to obtain the Bogoliubov transformation corresponding to the

dynamical evolution:

âλ
k⃗
(η, η0) = αk(η, η0)âλ

k⃗
(η0) + βk(η, η0)b̂λ†

k⃗
(η0),

b̂λ†
k⃗

(η, η0) = −ei
∫ η
η0

dηΓ J̃
(Γ)
k β̄k(η, η0)âλ

k⃗
(η0) + e

i
∫ η
η0

dηΓ J̃
(Γ)
k ᾱk(η, η0)b̂λ†

k⃗
(η0). (4.11)

This Bogoliubov transformation can be used to find solutions to the Schrödinger equation (3.31) as long

as it is implementable as a unitary operator on the Fock space FD. This is indeed the case for all

coefficients of the form (4.1)9. In particular, we can define rigorously the evolution of the vacuum state.

The fact that the evolved vacuum must be a solution to the (3.31) implies that, in the asymptotic

limit of inifinitely large wavenumbers, the fermionic backreaction term behaves as [53]

C
(Γ)
D (ϕ) ∼ l0⟨V̂ 2/3⟩Γ

∑

k⃗,λ

[
|G(Γ)

k |2
2ωk

− dηΓ
cλ
k⃗

]
. (4.12)

where cλ
k⃗
∈ R is an undetermined phase. Clearly, one can easily make this backreaction finite by a

“subtraction of infinities”, adjusting the phase cλ
k⃗

so that the contribution of each mode vanishes. This is

possible even for a divergent sum in the first term of C
(Γ)
D . We will not consider this possibility here, but

rather investigate whether the hybrid approach can avoid these problems by a suitable choice of vacuum

for the fermions, as we motivated previously and in the spirit of Dirac’s ideas about what one should

expect when gravity is quantized. Actually, this goal can be accomplished by noting that the quantity

G
(Γ)
k ω

−1/2
k can be made square summable by further restricting the asymptotic freedom in (4.1) so that

θλk = −i πM
3ℓ30ω

2
k

πae
iFk

2 + ϑλk , with
∑

k⃗

ωk|ϑλk |2 <∞. (4.13)

Hence, ϑλ
k⃗

is subdominant with respect to ω−2
k . In fact, one can prove that this restriction on the choice

of annihilation and creation variables makes the interactive part of the fermionic Hamiltonian decay

9This is so because the beta coefficients are square summable [54,126].
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asymptotically as ωkϑ
λ
k , which can be chosen as a square summable sequence by further restricting

the dominant order of ϑk. The new choice of vacuum would then succeed in both achieving a finite

backreaction term and ensuring that the fermionic part of the Hamiltonian constraint is well defined as

an operator in the dense subset spanned by n-particle/antiparticle states. 10

4.1.2. Asymptotic diagonalization of the fermionic Hamiltonian in Hybrid LQC

In the previous subsection, we showed that imposing good mathematical and physical conditions

on the quantum theory actually restricts the freedom in the choice of vacuum state. We achieved

this by restricting the choice of annihilation and creation variables in the limit of asymptotically large

wavenumbers. One can go a step further and ask whether, among the still available choices of vacua,

there is one preferred by the quantum dynamics. Our previous procedure actually lowered the asymptotic

order of the interactive part of the fermionic contribution to the Hamiltonian. It is thus natural to look

now for a procedure that removes this term completely, at least asymptotically. For a general definition of

annihilation and creation variables, the fermionic contribution H̆D to the zero-mode of the Hamiltonian

constraint has the form

H̆D =
∑

k⃗,λ

[
hk,λD

(
āλ
k⃗
aλ
k⃗
− aλ

k⃗
āλ
k⃗

+ b̄λ
k⃗
bλ
k⃗
− bλ

k⃗
b̄λ
k⃗

)

+ hk,λJ

(
b̄λ
k⃗
bλ
k⃗
− bλ

k⃗
b̄λ
k⃗

)
+ h̄k,λI

(
aλ
k⃗
bλ
k⃗

)
− hk,λI

(
āλ
k⃗
b̄λ
k⃗

)]
. (4.14)

In the calculation of H̆D, one has to take into account the redefinition of the homogeneous cosmological

variables that is needed to keep the system canonical. The non-diagonal part of the Hamiltonian, which

is the part that we are interested in, is given by

hk,λI = e−iJλ
k

[
ifk,λ1 {fk,λ2 , H|0} − ifk,λ2 {fk,λ1 , H|0} +

2ωk

a
fk,λ1 fk,λ2 +M

(
fk,λ1

)2
−M

(
fk,λ2

)2 ]
, (4.15)

where {·, ·} are the Poisson brackets of our (truncated) system.

In order to explore this system in the asymptotic limit of large wavenumbers, we write fk,λ1 as the

following asymptotic series expansion in inverse powers of ωk:

fk,λ1 = eiF
k,λ
2

∞∑

n=1

(−i)n+1γn
ωn
k

, (4.16)

with γn ∈ R. The normalization condition in (3.35) implies then that the asymptotic form of fk,λ2 must

be

fk,λ2 = eiF
k,λ
2

∞∑

n=0

(−i)nγ̃n
ωn
k

, (4.17)

10See footnote 1.
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with γ̃n ∈ R again, and where the coefficients γ̃n are defined as γ̃0 = 1, γ̃2n−1 = 0, and

γ̃2n = (−1)n+1


1

2
Γ2n +

∞∑

m=2

(2m− 3)!!

(2m)m!

n∑

im−1=1

...

i2∑

i1=1

Γ2n−2im−1
...Γ2i1


 , ∀n ≥ 1 (4.18)

with

Γ0 = 0, Γ2n =
2n∑

i=1

(−1)n+iγiγ2n−i, ∀n ≥ 1. (4.19)

Note that γ̃n is completely determined via (4.18) by γm with m ≤ n.

The interactive part of the Hamiltonian vanishes when

ifk,λ1 {fk,λ2 , H|0} − ifk,λ2 {fk,λ1 , H|0} +
2ωk

a
fk,λ1 fk,λ2 +M

(
fk,λ1

)2
−M

(
fk,λ2

)2
= 0. (4.20)

If we plug our asymptotic expansions into this expression, we get the recursive relation

γn+1 = −Ma

2
γ̃n +

a

2

n∑

l=1

[
γ̃n−l{H|0, γl} − γl{H|0, γ̃n−l} −

2

a
γ̃lγn+1−l −M(γlγn−l + γ̃lγ̃n−l)

]
, (4.21)

for all n ≥ 0. Since γ̃0 = 1 from the normalization condition, we can get the first term of the series (4.16)

from this equation, namely γ1 = − 1
2Ma. We can then univocally obtain the rest of unknown coefficients

with our formulas, because the terms in the right hand side of (4.21) only involve contributions of γ̃m

with m ≤ n. A simple calculation shows that γ2 = − πM
3ℓ30ω

2
k
πa. In this manner, we recover the results of

unitarily implementable evolution and finite backreaction11.

With this choice of annihilation and creation variables, we get (in the asymptotic sector) the Heisen-

berg equations

dηΓ
âλ
k⃗
(η, η0) = −iF (Γ)

k âλ
k⃗
(η, η0), dηΓ

b̂λ†
k⃗

(η, η0) = i
(
F

(Γ)
k + J̃

(Γ)

k⃗

)
b̂†λ
k⃗

(η, η0), (4.22)

where we have called

F
(Γ)
k =

2⟨ ̂
V 2/3ahk,λD ⟩Γ
⟨V̂ 2/3⟩Γ

, J̃
(Γ)
k =

2⟨ ̂
V 2/3ahk,λJ ⟩Γ
⟨V̂ 2/3⟩Γ

. (4.23)

These Heisenberg equations can be easily integrated as the following Bogoliubov transformation:

âλ
k⃗
(η, η0) = e−iF

(Γ)
η,k âλ

k⃗
(η0) b̂λ†

k⃗
(η, η0) = e

i
(
F

(Γ)
η,k+J̃

(Γ)
η,k

)
b̂λ†
k⃗

(η0), (4.24)

where we have defined

F
(Γ)
η,k =

∫ η

η0

dηΓ F
(Γ)
k , J̃

(Γ)
η,k =

∫ η

η0

dηΓ J̃
(Γ)
k . (4.25)

11For the sake of simplicity, the recursive equation has not been written exactly as it appears in the article.
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Some features of this quantization in the asymptotic region are:

This Bogoliubov transformation is clearly unitary [126], since the antilinear part of the transfor-

mation vanishes asymptotically.

The vacuum is stationary under the evolution dictated by the evolution operator.

The backreaction is not only finite, but can be made to have an arbitrarily low asymptotic order.

The fermionic Hamiltonian is properly defined in the dense subset of FD spanned by the n-

particle/antiparticle states.

4.1.3. Fock quantization of the Dirac field in hybrid quantum cosmology: Relation with

adiabatic states

In the previous subsections we discussed how one can impose good physical properties to restrict the

choice of vacuum of fermionic perturbations in the context of hybrid LQC. It is a good idea, then, to

see how these criteria relate to other vacua in the literature. In quantum field theory in cosmological

spacetimes, on the other hand, a well-studied family of vacua are the adiabatic states. The consideration

of such states is very common in the case of scalar and tensor fields, but there are less works on this topic

in the case of Dirac fields. One construction of fermionic adiabatic states in cosmology is provided in

Ref. [70]12. However, it was carried out in the Dirac representation of the Clifford algebra, instead of the

Weyl representation that we are employing. So, we first contruct these states in the Weyl representation

following the same line of reasoning of Ref. [70].

At a given initial time η0, any set of annihilation and creation variables selects a decomposition of

the Dirac field of the form

Ψ(η, x⃗) =
∑

k⃗∈Z3

∑

λ=±1

[
uk⃗,λ(η, x⃗)Ak⃗,λ + vk⃗,λ(η, x⃗)B̄k⃗,λ

]
, (4.26)

where λ is the helicity, we have introduced the (annihilation and creation-like) constant coefficients

Ak⃗,λ = aλ
k⃗
(η0), B̄k⃗,λ = b̄λ−k⃗

(η0), (4.27)

and, for trivial spin structure on T 3 and setting for simplicity Jλ
k = 0,

uk⃗,λ(η, x⃗) =
ei2πλk⃗x⃗/ℓ0√

ℓ30a
3


 hIk,λ(η)ξλ(k⃗)

λhIIk,λ(η)ξλ(k⃗)


 , vk⃗,λ(η, x⃗) = λγ2ūk⃗,λ(η, x⃗), (4.28)

where γ2 is the second Dirac matrix. The bispinor ξλ(k⃗) is normalized so that ξ†λξλ = 1. In addition,

the functions (hIk,λ, h
II
k,λ) provide a basis of mode solutions of the Dirac equation, normalized such that

12A different construction of adiabatic states for fermions in FLRW cosmology has been proposed in Ref. [71].
Nonetheless, we proved that one cannot build a Fock representation based on the states determined by this construction.
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|hIk,λ|2 + |hIIk,λ|2 = 1. They are related to the coefficients of our annihilation and creation variables by

h(η) =


h

I
k,λ

hIIk,λ


 =

[
I − 1 − λ

2
(I − iσ2)

]
f̄

k,λ
1 (η)αk,λ(η, η0) − fk,λ2 (η)β̄k,λ(η, η0)

f̄k,λ2 (η)αk,λ(η, η0) + fk,λ1 (η)β̄k,λ(η, η0)


 . (4.29)

In order for the Dirac field to be a solution of the Dirac equation, the variables (hIk,λ, h
II
k,λ) need to

satisfy the Schrödinger-like equation [54]

i∂ηh = H(η)h, H = λ


−ωk Ma

Ma ωk


 . (4.30)

The adiabatic construction begins by diagonalizing the time-dependent Schrödinger Hamiltonian H(η),

performing an explicitly time-dependent change of variables by means of a unitary matrix. These new

variables satisfy a similar equation, but with a lower dominant asymptotic order in the non-diagonal

part. This process is applied repeatedly. At the n-th step, the solution can be approximated as

h|n(η) =

(
n∏

i=0

U i(η)

)
Ũn(η, η0)


1

0


 , Ũn = diag

(
exp

(
−i
∫ η

η0

Ωn

)
, exp

(
i

∫ η

η0

Ωn

))
. (4.31)

The matrices Ui are defined as the unitary matrices necessary to diagonalize the Hamiltonian at the i-th

adiabatic step, and Ωn are the diagonal elements of the Hamiltonian at the nth step. The approximation

h|n(η) is different from the solution only by terms of asymptotic order O(ω−n
k ). It is worth noting that

the frequency Ωn is manifestly positive in the asymptotic regime of infinitely large ωk. This adiabatic

approximation was motivated in Ref. [70] in order to select positive frequencies. It can be checked that,

as expected, this construction is indeed equivalent to that carried out in the Dirac representation.

Let us now analyze the properties of the resulting adiabatic quantization and its associated anni-

hilation and creation operators. With respect to the asymptotic expansion in the limit ωk → ∞, the

adiabatic construction is such that fk,λ1|n mantains, for each adiabatic order n ≥ 1, the same dominant

terms that appear in fk,λ1|n−1 up to order O(ω−n−1
k ). Computing just the two first adiabatic orders in

classical cosmology, one gets

fk,λ1|0 (η) =
Ma(η)

2ωk
+ O(ω−2

k ), (4.32)

fk,λ1|1 (η) =
Ma(η)

2ωk
+
iMa′(η)

4ω2
k

+ O(ω−3
k ) =

Ma(η)

2ωk
− i

πMπa(η)

3l30ω
2
k

+ O(ω−3
k ). (4.33)

The choice of initial time η0 does not affect the construction of the adiabatic states, except for a phase

that is irrelevant in the choice of Fock space. Comparing these asymptotic terms and those that are

characteristic of the family of Fock quantizations admissible in hybrid quantum cosmology according to

our physical criteria, we can prove that all adiabatic vacua belong indeed to this family. Furthermore, for

adiabatic orders other than zero, those adiabatic vacua can be associated with annihilation and creation
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operators that lead to a well defined quantum fermionic Hamiltonian and backreaction term in the only

non-trivial constraint of the system.

4.1.4. Unique fermionic vacuum in de Sitter spacetime from hybrid quantum cosmology

At this point, we have physical criteria to select a preferred vacuum in the case of fermionic cosmo-

logical perturbations for a generic FLRW cosmology. Insight about the properties of this vacuum can

be gained by studying a particularly interesting cosmological solution and applying to it our procedures,

namely, a de Sitter spacetime. This is a perfect arena to check whether the asymptotic diagonalization

procedure is consistent and whether it can indeed fix a unique vacuum. A de Sitter spacetime can

actually provide a good approximation to the inflationary epoch of the Universe.

The differential equation (4.20) can be written as an equation on the function φk,λ = fk,λ1 /fk,λ2 for

any fk,λ2 ̸= 0:

a{φk,λ, H|0} + 2iωkφk,λ + iaMφ2
k,λ − iaM = 0. (4.34)

In fact, if one introduces the asymptotic expansion

φk,λ ∼ 1

2ωk

∞∑

n=0

(
− i

2ωk

)n

Zn, (4.35)

the recursive relations previously shown in Subsection 4.1.2 become

Z0 = Ma, Zn+1 = a{H|0, Zn} +Ma
n−1∑

m=0

ZmZn−(m+1), ∀n ≥ 0. (4.36)

We may particularize this asymptotic expansion to the expanding chart of de Sitter spacetime, de-

scribed by a constant potential for the inflaton ϕ and a scale factor that behaves as

a = −(ηHΛ)−1, −∞ < η < 0, (4.37)

where HΛ is the Hubble constant and η the conformal time. In this de Sitter background, the general

condition (4.34) that cancels the interaction terms in the fermionic Hamiltonian becomes the following

Riccati equation:

φ′
k,λ + 2iωkφk,λ − iM(ηHΛ)−1φ2

k,λ + iM(ηHΛ)−1 = 0, (4.38)

where the prime denotes the derivative with respect to η. To solve this equation, we use the change of

variable

φk,λ = iηM−1HΛ[ln(eiMtwk,λ)]′, (4.39)
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where t is the cosmic time, and then define the mode-dependent complex time Tk = −2iωkη. In this

manner, we find that the general solution is given by the following linear combination of convergent

hypergeometric functions:

wk,λ = A 1F1

(
−iMH−1

Λ ; 1 − 2iMH−1
Λ ;Tk

)
+B T

2iMH−1
Λ

k 1F1

(
iMH−1

Λ ; 1 + 2iMH−1
Λ ;Tk

)
, (4.40)

where A and B are arbitrary complex integration constants.

Let us now prove that the asymptotic diagonalization process picks out a unique vacuum by deter-

mining the constants A and B, at least up to a global multiplicative factor that is irrelevant for our

definition of creation and annihilation variables. We begin by expanding wk,λ as an asymptotic series

wk,λ ∼ T
iMH−1

Λ

k

∞∑

n=0

(−Tk)−nwn, with w1 =
(
MH−1

Λ

)2
w0. (4.41)

The imaginary power of Tk that appears in the above expression is needed to eliminate the term of

order 1 in φk,λ, so that the function Tkφk,λ behaves like iMH−1
Λ at dominant order in the asymptotic

limit. Introducing this expansion for wk,λ in the confluent hypergeometric equation that it must fulfill,

we obtain a recursion relation for the constant coefficients wn,

wn+1 =

(
n+ iMH−1

Λ

) (
n− iMH−1

Λ

)

n+ 1
wn. (4.42)

The solution is

wn =
w0

n!

(
iMH−1

Λ

)
n

(
−iMH−1

Λ

)
n

(4.43)

where w0 is an arbitrary constant and we have employed the notation

(b)n =





1 if n = 0,

b(b+ 1)...(b+ n− 1) if n > 0,

(4.44)

for any number b. Using some identities satisfied by special functions [127, 128], our formulas allow us

to fix the integration constants:

A = w0

Γ
(
2iMH−1

Λ

)

Γ
(
iMH−1

Λ

) , B = w0

Γ
(
−2iMH−1

Λ

)

Γ
(
−iMH−1

Λ

) . (4.45)

where Γ is the usual gamma function.

The solution (4.40) with integration constants (4.45) can be shown to lead in (4.28) to the positive
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frequency solution

uk⃗,λ(η, x⃗) =
ei2πλk⃗x⃗/l0√

ℓ30a
3

[
I − 1 − λ

2
(I + iγ0)

]√
πωkη

8
eiΘ+πMH−1

Λ /2


[H

(2)
µ−1(ωkη) + iH

(2)
µ (ωkη)]ξλ(k⃗)

[H
(2)
µ−1(ωkη) − iH

(2)
µ (ωkη)]ξλ(k⃗)


 ,

(4.46)

where µ = iMH−1
Λ + 1/2 and Θ is a constant global phase, irrelevant for the definition of the vacuum.

On the other hand, the solutions that describe antiparticles are given by the charge conjugate of these

ones, namely via the second equation in (4.28).

We end this subsection by noting that the constant phase Θ includes all the dependence of the basis

of solutions on the choice of initial time η0, and hence the definition of the annihilation and creation

constant coefficients that results from our procedure, and thus the associated vacuum, are independent

of that choice. Let us finally point out that the leading time dependence of our basis of solutions follows

the behavior uk⃗,λ ∼ a−3/2 exp (−iωkη), vk⃗,λ ∼ a−3/2 exp (iωkη), something that is often demanded on

physical grounds as a necessary feature of the corresponding Fock representation of fields in conformally

flat spacetimes [65, 67]. In particular, the Bunch-Davies Hadamard vacuum for scalar fields in de Sitter

spacetime has this dominant plane wave behavior [1, 75–78]. In fact, we can show that the asymptotic

diagonalization procedure singles out the usual Bunch-Davies vacuum in de Sitter.

4.2. Properties of NO vacua

4.2.1. NO power spectra in LQC

As we discussed in the Introduction, there are many different ways to fix a vacuum for the scalar and

tensor perturbations of a homogenous inflationary cosmology with a relevant pre-inflationary period.

One of the most studied proposals is the choice of adiabatic states, that leads to vacua with certain

desirable physical properties, such as a renormalizable energy-momentum tensor, but that in typical

scenarios arising in LQC have some phenomenologically undesirable attributes, like a highly oscillatory

power spectrum. Another recent proposal is the NO vacuum. This proposal directly adresses the problem

of the superimposed oscillations in the power spectrum, which often produce power amplification in the

average and may blur or hide the quantum gravity effects [68]. This choice of vacuum was originally

characterized by means of a numerical procedure, a fact that makes difficult the comparison with other

vacua and even the discussion of its physical properties. Our goal now is to overcome these complications

and gain analytic insights into the qualitative behavior of the NO vacuum states. Let us start with the

following generic expression of a positive-frequency mode solution µk:

µk =
1√

−2Im(hk)
ei

∫
dη Im(hk), (4.47)
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where Im(hk) must be strictly negative and, for (3.38) to be satisfied, hk must be a complex solution to

the Ricatti equation

h′k = k2 + s+ h2k. (4.48)

This last equation is in fact equivalent to the set of coupled equations

Re(hk)′ = k2 + s+ Re(hk)2 − Im(hk)2, (4.49)

Im(hk)′ = 2Re(hk)Im(hk). (4.50)

Let us call pk = |µk|2 the part of the solution on which the power spectra truly depends. From (4.50),

we have

p′k =
Re(hk)

Im(hk)
. (4.51)

One can see that, in the case of a (background-dependent) mass s (like e.g. in hybrid LQC) and given

(4.49) and (4.50), pk can only have one minimum (if any), and therefore cannot oscillate, at time intervals

and wavenumbers where k2 + s ≤ 0.

We can write this quantity as pk = ρ2k/2, where ρk is a real non-zero function that, in virtue of (4.48),

must satisfy the equation

ρ′′k + (k2 + s)ρk =
1

ρ3k
. (4.52)

This is the so-called Ermakov-Pinney equation [80, 81] which has been widely employed in the context

of FLRW cosmology and its perturbations (see e.g. [129–132]). Thus, the advantage of our procedure

is that we can obtain all possible solutions to (3.38) in terms of one particular real solution ψk of the

Ermakov-Pinney equation. In fact, the resulting formula manifestly displays the possible oscillatory

behavior of pk. This is because the general real solution of any Ermakov-Pinney equation of the form

(4.52) can be expressed as [81]

ρ2k = ψ2
k

[
A cos2(ϕk) +B sin2(ϕk) + C sin(2ϕk)

]
, C2 = AB − 1, (4.53)

where A, B, and C are constants that must be real and such that ρ2k be positive, and

ϕ′k = ψ−2
k . (4.54)
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The function pk is then given by

pk =
1

4
ψ2
k [A+B + (A−B) cos(2ϕk) + 2C sin(2ϕk)] . (4.55)

It is clear from (4.54) that ϕk grows monotonically in time, so that the sine and cosine functions appearing

in this formula oscillate in time, generally in a k-dependent way13. It then follows that we can characterize

the NO spectra by restricting our considerations to real solutions of the Ermakov-Pinney equation such

that |ψ′
kψk| is small when k2 + s > 0 and the constants A and B take values in a small neighbourhood

of 1. The condition that |ψ′
kψk| be small ensures that the relative variation of the global factor ψ2

k is

slower than the frequency of the sinusoidal part of the solution.

In terms of hk this last condition requires in particular that, at any initial time where s ≥ 0,

|Re(hk)(η0)| = ϵk|Im(hk)(η0)|, (4.56)

where ϵk is a positive real number smaller than one (or much smaller than one, if preferred). To satisfy

this condition in a small neighbourhood of η0, it is necessary that the derivative of Re(hk)Im(hk)−1 is

also small initially. Using Eqs. (4.49) and (4.50), we obtain the requirement

∣∣∣∣
k2 + s(η0)

Im(hk)(η0)
− (1 + ϵ2k)Im(hk)(η0)

∣∣∣∣ < 1. (4.57)

In general, ϵ2k provides a subdominant contribution to the second summand. Thus, at times η0 for which

the time dependent mass is such that k2 + s(η0) ≥ 1, (4.57) requires that

Im(hk)(η0) = −
√
k2 + s(η0) + δk,

|δk|√
k2 + s(η0)

< 1. (4.58)

This situation always happens e.g. in hybrid LQC near the bounce for phenomenologically interesting

situations, where s is roughly of Planck order.

The power spectra of the perturbations at the end of the kinetically dominated period should ide-

ally include information about features originated at the epoch after the bounce where effective LQC

corrections are important. A highly oscillatory behavior (even more when averaged over wavenumber

bins) can easily blur most of this information. Furthermore, these (averaged) oscillations can result in

an enhancement of power that is not due to any quantum cosmology effect nor it is intrinsic to the

classical behavior of spacetime shortly after the loop quantum bounce. Rather, it may correspond to

details of the specific set of normalized solutions chosen for the perturbations. So, it makes sense that

power spectra with few to no oscillations provide the most natural candidates to capture genuine LQC

corrections on the evolution of the perturbations, without introducing artificial modifications in the part

of the pre-inflationary era that is essentially Einsteinian.

13We recall that this may only happen for intervals of time and wavenumbers k such that k2 + s > 0.
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To investigate the ultraviolet properties of NO power spectra, we can use the proposal of an asymptotic

diagonalization of the Hamiltonian of the perturbations. We thus focus on the asymptotic regime of

unboundedly large wavenumbers k, and adopt an expansion of the form [79]

kh−1
k ∼ i

[
1 − 1

2k2

∞∑

n=0

(−i
2k

)n

hn

]
. (4.59)

The coefficients hn are real, only depend on time, and, taking into account the Riccati equation that

the complex function hk must satisfy, turn out to be given by the following iterative relation, that is

deterministic together with the data h0 = s:

hn+1 = −h′n + 4s

[
hn−1 +

n−3∑

m=0

hmhn−(m+3)

]
−

n−1∑

m=0

hlhn−(m+1). (4.60)

We define h−n = 0 for all n > 0. This leads to a unique asymptotic expansion of, at least, one solution

hk to (4.48), with imaginary part that is strictly negative [79]. Therefore, it provides in turn a precise

asymptotic expansion of, at least, one normalized solution to (3.38), via (4.47). We call (any) such

solution µ̃k. Its associated square norm p̃k = |µ̃k|2 is of the form

p̃k =
1

2k
(1 − Γk) , (4.61)

where Γk has the following asymptotic behavior:

Γk ∼ 1

2k2

[
1 − 1

2k2

∞∑

n=0

(
i

2k

)2n

h2n

]−1 ∞∑

n=0

(
i

2k

)2n
[
h2n − 1

2k2

2n∑

m=0

(−1)mhmh2n−m

]
. (4.62)

Each summand of the series depends on the wavenumber k only through an even inverse power. Since we

know that p̃k = ψ̃2
k/2 where ψ̃k is a real solution to the Ermakov-Pinney equation (4.52), our ultraviolet

diagonalization fixes as well (up to sign) a specific asymptotic expansion of, at least, one solution ψ̃k to

that equation, for unboundedly large k. We can identify it (or one of them, if there are more than one)

as the particular solution appearing in the general formula (4.55) for any other power spectrum. Then,

for any function pk that is given by the square norm of a normalized solution to (3.38), we have

pk =
1

4k
(1 − Γk) [A+B + (A−B) cos(2kη + 2θk) + 2C sin(2kη + 2θk)] . (4.63)

The function Γk admits the asymptotic expansion (4.62) and θk is a phase that has a dominant contri-

bution in the ultraviolet of order k−1. In this asymptotic regime, since Γk is of order k−2, pk has the

dominant term

1

4k
[A+B + (A−B) cos(2kη + 2θk) + 2C sin(2kη + 2θk)] . (4.64)
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This is a highly oscillatory function for large k unless we strictly impose that the constants A and B are

equal to one, in which case pk reduces to p̃k (recall that C2 = AB − 1). In fact, this choice of constants

is the only one that eliminates, order by order in the expansion of pk in inverse powers of k, all the

scale dependent oscillations in the studied asymptotic regime. We then conclude that all NO vacua must

possess the asymptotic behavior of µ̃k for sufficiently large k.

4.2.2. NO vacuum states and the quantum homogeneity and isotropy hypothesis in LQC

Given the analytic conditions we now have to study the NO vacua, it is natural to compare them

to other vacua proposed in the LQC literature. One such vacuum has been put forward by Ashtekar

and Gupt [82, 83]. Its construction is motivated by Penrose’s hypothesis that the initial conditions on

the Universe should guarantee that its Weyl curvature vanish [84, 85]. The hypothesis is extended by

Ashtekar and Gupt to the quantum realm. This quantum counterpart is called the quantum homogeneity

and isotropy hypothesis (QHIH). However, in a quantum gravity approach, the quantum operators

corresponding to that Weyl curvature of a perturbed homogeneous cosmology cannot vanish all at once.

This happens because its components are canonically conjugated variables and so their commutator

cannot be zero in the quantum theory. As such, Penrose’s hypothesis must be modified to ask for a Weyl

curvature (and an associated quantum uncertainty) that is as small as possible. The Weyl curvature

is constructed using the tensor perturbations. The above requirements are satisfied on it at an instant

η0 if the quantum state of these perturbations is the zeroth order adiabatic state |0µη0 ⟩ defined by

positive-frequency solutions µη0

k with initial conditions

µη0

k (η0) =
1√
2k
, µη0

k
′(η0) = −i

√
k

2
. (4.65)

Since the cosmological background is not stationary, the evolution of the considered adiabatic states

is not trivial. As a consequence, there may be many more quantum states that are in the same footing

as |0µη0 ⟩ as far as the QHIH is concerned. Therefore, the family of states allowed in the analysis carried

out by Ashtekar and Gupt is larger than simply |0µη0 ⟩. This family is given by

B =

{
|0µ̃⟩

∣∣∣∣∣ |βk(µ̃k, µ
η
k)|2 ≤ sup

η0,η1∈I
|βk(µη0

k , µ
η1

k )|2 ∀k ∈ R+, ∀η ∈ I

}
, (4.66)

where I is a compact interval outside which quantum gravity effects are expected to be negligible, and

βk(., .) is the beta coefficient of the Bogoliubov transformation between the states defined by its two

arguments. For concreteness, we take the interval I as the period in which the matter density of the

Universe is smaller than 10−4 in Planck units.

To extract predictions from this proposal, a single vacuum state must be chosen within this Weyl

uncertainty ball. The choice made by Ashtekar and Gupt is the maximally classical state at the end

of inflation, which minimizes the quantity |µk(ηend)|2 within this ball. This minimization problem is
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complicated, even numerically. So, Ashtekar and Gupt proceeded to look instead at states in the union

over I of instantaneous Weyl uncertainty balls Bη0 defined as follows:

Bη0
=

{
|0µ̃⟩

∣∣∣∣∣ |βk(µ̃k, µ
η0

k )|2 ≤ sup
η∈I

|βk(µη
k, µ

η0

k )|2 ∀k ∈ R+

}
. (4.67)

The maximally classical states in Bη0 for all η0 ∈ I form a 1-parameter family of states |0νη0 ⟩ defined by

the Bogoliubov transformation [82,83]

νη0

k (η) =

√
1 + (rη0

k )
2
µη0

k (η) + rη0

k e
−iθ

η0
k µ̄η0

k (η), (4.68)

where

rη0

k = sup
η∈I

|βk(µη
k, µ

η0

k )|, θη0

k = π − 2 arg [µη0

k (ηend)] , (4.69)

and arg denotes the argument of the complex quantity. The unique state corresponding to the global

minimum is the Ashtekar-Gupt vacuum. Let us comment that, owing to the similarities between the

dynamics of the tensor and scalar perturbations, the QHIH has also been proposed to select a preferred

quantum state for the Mukhanov-Sasaki field.

A problem arises with the definition of the Ashtekar-Gupt vacuum, because one was originally looking

for it in the total Weyl uncertainty ball of states B, rather than in the union of instantaneous balls
⋃

η0∈I Bη0
, and we have shown that these two sets do not coincide. We prove this by means of a

counterexample. Assuming smooth beta coefficients, and given a compact interval I, there must exist

times ηk− and ηk+ in I such that

∣∣∣∣βk
(
µ
ηk
−

k , µ
ηk
+

k

)∣∣∣∣
2

= sup
η0,η1∈I

|βk (µη0

k , µ
η1

k )|2. (4.70)

Fixing any positive k̃, let us now consider the state |0µS ⟩ defined by the Bogoliubov transformation

µS
k (η) = ᾱk

(
µ
ηk̃
+

k , µ
ηk̃
−

k

)
µ
ηk̃
+

k (η) + βk

(
µ
ηk̃
+

k , µ
ηk̃
−

k

)
µ̄
ηk̃
+

k (η) . (4.71)

It is clear that |0µS ⟩ is in the instantaneous ball B
ηk̃
+

, and therefore it is an element of
⋃

η0∈I Bη0
.

However, one can check that

∣∣∣∣βk̃
(
µS
k̃
, µ

ηk̃
−

k̃

)∣∣∣∣
2

≥ 4 sup
η0,η1∈I

∣∣∣βk̃
(
µη0

k̃
, µη1

k̃

)∣∣∣
2

, (4.72)

This inequality implies that |0µS ⟩ does not belong to B, and hence we conclude that B ̸= ⋃η0∈I Bη0
.

Given this difference, we restrict our attention to the ball B motivated by the QHIH and investigate

whether there may exist NO vacua in it. By considering the Bogoliubov transformation between a

48



possible NO-vacuum and a zeroth order adiabatic state |0µη ⟩, we obtain

∣∣µNO
k (η)

∣∣ =
1√
2k

∣∣αk

(
µNO
k , µη

k

)
+ βk

(
µNO
k , µη

k

)∣∣,

∣∣µNO
k

′ (η)
∣∣ =

√
k

2

∣∣αk

(
µNO
k , µη

k

)
− βk

(
µNO
k , µη

k

)∣∣. (4.73)

Let us call hk any function that defines an NO-vacuum via (4.47). The above identities then imply that a

state satisfying the first necessary NO-vacuum condition (4.56) can belong to the total Weyl uncertainty

ball B only if, for all times η (at least) at the end of I,

[1 + ϵ2k(η)]|Im(hk)(η)| ∈
[
kzk − k

√
z2k − [1 + ϵ2k(η)], kzk + k

√
z2k − [1 + ϵ2k(η)]

]
, (4.74)

where zk = 1 + 2 supη0,η1∈I |βk(µη0

k , µ
η1

k )|2. On the other hand, the second necessary condition (4.57) for

an NO-vacuum at those times is satisfied if and only if

[1 + ϵ2k(η)]|Im(hk)(η)| ∈
(

1

2

√
1 + 4[k2 + s(η)][1 + ϵ2k(η)] − 1

2
,

1

2

√
1 + 4[k2 + s(η)][1 + ϵ2k(η)] +

1

2

)
.

(4.75)

Since ϵk is expected to be much smaller than the unity for an NO vacuum, at leading order we can ignore

the contribution of this parameter in our expressions. With this approximation, the two necessary

conditions for the NO vacuum can be compatible with the QHIH (formulated in terms of the ball B)

only if, (at least) for all instants of time η near the end of I,

[
kzk − k

√
z2k − 1, kzk + k

√
z2k − 1

]⋂(
1

2

√
1 + 4[k2 + s(η)] − 1

2
,

1

2

√
1 + 4[k2 + s(η)] +

1

2

)
̸= ∅.

(4.76)

Finally, we can discuss the consequences of our results in the case of background cosmologies derived

from effective LQC. As it was explained in Section 3.7, we consider situations in which the Universe

experiences a short-lived inflation with a kinematicaly dominated pre-inflationary period. One can

numerically integrate the cosmological background solution and, with it, determine the time-dependent

mass of the perturbations and the corresponding bound zk. Remarkably, for hybrid LQC, Fig. 1 shows

that none of the states |0νη0 ⟩ belongs to the physically motivated ball B. This implies that the Ashtekar-

Gupt vacuum is outside of the QHIH ball. In addition, Fig. 2 shows that the intersection (4.76) is

actually non-empty for all relevant values of k. This means that the NO conditions and the QHIH are

non-exclusive in the case of hybrid LQC.
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Figure 1: The quantity Ck(η0) = (zk)−1 maxη∈I

(
1 + 2|β(νη0

k , µη
k)|2

)
compared with 1 for k = 10−6 and

k = 10−0.5, with I = [−4.2, 4.2] in conformal time (η = 0 corresponds to the bounce). There exists

no value of η0 such that the two curves remain below or equal to 1, a fact that implies that no state

|0νη0 ⟩ belongs to B.

Figure 2: The bounds imposed by the Weyl uncertainty ball, k
(
zk −

√
z2k − 1

)
and k

(
zk +

√
z2k − 1

)
,

in red dashed and solid lines respectively, compared with the bounds imposed by the NO-condition,

1
2

√
1 + 4[k2 + s(η)] − 1

2 and 1
2

√
1 + 4[k2 + s(η)] + 1

2 , in blue dashed and solid lines respectively, for dif-

ferent modes k. These are evaluated for the mass s(η) obtained in the hybrid approach to LQC, where

I = [−4.2, 4.2] and η = 4.2, time near which the mass varies slowly. The intersection given by these

bounds is not empty for any k.
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5. Conclusions

We have investigated and successfully restricted the freedom inherent to the choice of a vacuum state

for cosmological perturbations, paying a special attention to cosmological models found in hybrid Loop

Quantum Cosmology (LQC) or, more generally, in hybrid approaches to quantum cosmology in which the

perturbations are described using Fock representations. The determination of a vacuum state for the cos-

mological perturbations is essential to be able to extract robust physical predictions from any formalism

in cosmology in which one expects relevant phenomena in epochs without a quasi-de Sitter dynamics. Our

proposals for the choice of vacuum states are based on requiring certain physically desirable conditions.

We have considered in detail two interesting scenarios with perturbations around Friedmann-Lemâıtre-

Robertson-Walker (FLRW) spacetimes, either classical or motivated by LQC: fermionic perturbations,

on the one hand, and scalar and tensor perturbations with a non-oscillating (NO) primordial power

spectrum, on the other hand.

5.1. Specific results

For fermionic fields treated as perturbations about inflationary cosmologies, we have managed to

restrict the choice of a vacuum state so that the associated quantum backreaction that appears on

the geometry in the Hamiltonian constraint be finite.

This choice can be refined so that the Hamiltonian constraint can be represented by a well-defined

operator on the dense subset of the fermionic Fock space spanned by n-particle/antiparticle states.

We have put forward a choice of vacuum with all the above properties that in addition diagonalizes

asymptotically the fermionic contribution to the Hamiltonian constraint, so that, in the limit of

large Fourier wavenumbers, the Hamiltonian terms that create and annihilate pairs of particles

have an arbitrarily low asymptotic order.

We have analyzed the hybrid quantization of a FLRW cosmology with a perturbative Dirac field

when the fermionic Fock space is determined by this asymptotic diagonalization, obtaining all the

desired good physical properties: a diagonal evolution of the fermionic part, a backreaction of

arbitrarily low asymptotic order, and a fermionic contribution to the Hamiltonian constraint that

is rigorously well-defined as a quantum operator.

We have described the construction of adiabatic fermionic states in FLRW cosmology, using the

Weyl representation of the Clifford algebra.

We have compared these adiabatic states with the vacuum selected by the physical criteria ex-

plained above. All adiabatic states evolve unitarily, and from the first adiabatic order on, their

backreaction contribution to the Hamiltonian constraint is finite and allows for a well-defined

fermionic Hamiltonian on the basis of n-particle/antiparticle states.
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We have demonstrated that the asymptotic diagonalization procedure fixes a unique vacuum in

the case of a classical de Sitter cosmology.

This unique vacuum has a plane wave behavior in the asymptotic limit of large wavenumbers and

we can identify it with the usual Bunch-davies state, which is generally considered a preferred

vacuum for de Sitter.

For scalar and tensor perturbations about inflationary cosmologies, we have related their choice

of vacuum with the solutions of the Ermakov-Pinney equation, and used the properties of those

solutions to single out states with NO power spectra (if they exist). Oscillations in the spectra

arising from other choices of vacuum state can blur the effects that genuinely come from quantum

gravity phenomena.

Taking into account that the choice of a vacuum state is equivalent to a choice of initial conditions

for the perturbations, we have derived a necessary condition on these initial data to avoid highly

oscillatory spectra.

We have studied the stability of this necessary condition, and derived from that a second condition

that is always applicable in situations in which the time-dependent mass of the gauge-invariant

perturbations is of Planck order or higher, as it happens in interesting scenarios of hybrid LQC.

We have revisited the Ashtekar-Gupt construction, proposed to determine a specific vacuum state

in the framework of LQC, and noticed that, in general, this construction is not consistent with the

so-called quantum homogeneity and isotropy hypothesis (QHIH) originally introduced to motivate

physically this choice.

We have found some analytic conditions that are necessary so that NO vacua belong to the family

of states satisfying the QHIH.

We have proved that these conditions are met for effective backgrounds with a short-lived inflation

in hybrid LQC. therefore, the QHIH and the restriction to NO vacua are mutually non-exclusive

in principle.

Finally, we have shown that the vacuum selected with the Ashtekar-Gupt construction in these

effective backgrounds of hybrid LQC is a state that does not belong to the family picked out by

the QHIH.

In summary, we have investigated the search for a vacuum state in relevant scenarios in cosmology by

focusing on physical criteria. On the one hand, we have carried out a rigorous study of fermionic fields

in quantum cosmology that clarifies a field that has not been explored in depth and sometimes even

in discordant ways. On the other hand, we have carried out a study of NO vacua that sheds light on

which initial conditions are physically suitable for the equations that govern the evolution of primordial
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cosmological perturbations. These two studies allow advances in LQC and its hybrid approach that

facilitate the extraction of falsifiable predictions.
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V. Conclusiones

Hemos estudiado y restringido con éxito la libertad inherente a la elección de un estado de vaćıo

para las perturbaciones cosmológicas, prestando especial atención a modelos cosmológicos descritos me-

diante Cosmoloǵıa Cuántica de Lazos (CCL) h́ıbrida o, más generalmente, mediante enfoques h́ıbridos de

cosmoloǵıa cuántica en los que las perturbaciones se describen utilizando representaciones de Fock. La

determinación de un estado de vaćıo para las perturbaciones cosmológicas es esencial para poder extraer

predicciones f́ısicas robustas a partir de cualquier formalismo en cosmoloǵıa en el que se espera que existan

fenómenos relevantes en épocas sin una dinámica cuasi-de Sitter. Nuestras propuestas para la elección

de estados de vaćıo se basan en requerir ciertas condiciones f́ısicamente deseables. Hemos considerado

en detalle dos escenarios interesantes con perturbaciones sobre espaciotiempos de Friedmann-Lemâıtre-

Robertson-Walker (FLRW), ya sean clásicos o motivados por CCL: perturbaciones fermiónicas, por un

lado, y perturbaciones escalares y tensoriales con un espectro de potencias primordial no oscilante (NO),

por otro lado.

V.1. Resultados concretos

Para campos fermiónicos tratados como perturbaciones sobre cosmoloǵıas inflacionarias, hemos

logrado restringir la elección del estado de vaćıo para que la backreaction cuántica asociada que

aparece sobre la geometŕıa en la ligadura hamiltoniana sea finita.

Esta elección puede refinarse de tal forma que la ligadura hamiltoniana puede representarse medi-

ante un operador bien definido en el subconjunto denso del espacio de Fock generado por estados

de n-part́ıculas/antipart́ıculas.

Hemos propuesto una elección de vaćıo con todas las propiedades anteriores que además diagonaliza

asintóticamente la contribución fermiónica a la ligadura hamiltoniana, de modo que, en el ĺımite

de números de onda de Fourier grandes, los términos hamiltonianos que crean y aniquilan pares de

part́ıculas tienen un orden asintótico arbitrariamente bajo.

Hemos analizado la cuantización h́ıbrida de una cosmoloǵıa FLRW con un campo de Dirac pertur-

bativo cuando el espacio de Fock fermiónico está determinado por esta diagonalización asintótica,

obteniendo todas las buenas propiedades f́ısicas deseadas: una evolución diagonal de la parte

fermiónica, una backreaction de la parte fermiónica de orden asintótico arbitrariamente bajo y

una contribución fermiónica a la ligadura hamiltoniana que está rigurosamente bien definida como

operador cuántico.

Hemos descrito la construcción de estados fermiónicos adiabáticos en cosmoloǵıas de FLRW, usando

la representación de Weyl del álgebra de Clifford.
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Hemos comparado estos estados adiabáticos con el vaćıo seleccionado por los criterios f́ısicos expli-

cados anteriormente. Todos los estados adiabáticos evolucionan unitariamente y, a partir del primer

orden adiabático, su contribución de backreaction a la ligadura hamiltoniana es finita y permiten

un hamiltoniano fermiónico bien definido sobre la base de estados de n-part́ıculas/antipart́ıculas.

Hemos demostrado que el procedimiento de diagonalización asintótica fija un vaćıo único en el caso

de una cosmoloǵıa clásica de de Sitter.

Este vaćıo único tiene un comportamiento de onda plana en el ĺımite asintótico de números de

onda grandes y podemos identificarlo con el estado habitual de Bunch-Davies, que generalmente

se considera un vaćıo preferente para de Sitter.

Para perturbaciones escalares y tensoriales sobre cosmoloǵıas inflacionarias, hemos relacionado

la elección de vaćıo con las soluciones de la ecuación de Ermakov-Pinney, y hemos usado las

propiedades de esas soluciones para seleccionar estados con espectros NO (si existen). Las oscila-

ciones en los espectros que surgen de otras elecciones de estado de vaćıo pueden enmascarar los

efectos que realmente provienen de fenómenos de gravedad cuántica.

Teniendo en cuenta que la elección de un estado de vaćıo es equivalente a la elección de condiciones

iniciales para las perturbaciones, hemos deducido una condición necesaria sobre estos datos iniciales

para evitar espectros altamente oscilatorios.

Hemos estudiado la estabilidad dinámica de esta condición necesaria, y de ah́ı hemos deducido

una segunda condición que siempre es aplicable en situaciones en las que la masa dependiente del

tiempo de las perturbaciones invariantes de gauge es de orden uno en unidades de Planck, como

sucede en escenarios interesantes de CCL h́ıbrida.

Hemos revisado la construcción de Ashtekar-Gupt, propuesta para determinar un estado de vaćıo

espećıfico en el marco de la CCL, y aśı hemos hecho notar que, en general, esta construcción no

es consistente con la llamada hipótesis de homogeneidad e isotroṕıa cuántica (HHIC), introducida

originariamente para motivar f́ısicamente esta elección.

Hemos encontrado ciertas condiciones que son necesarias para que el vaćıo NO pueda pertenecer a

la familia de estados que satisfacen la HHIC.

Hemos demostrado que estas condiciones se cumplen para fondos (backgrounds) efectivos con in-

flación de corta vida en CCL h́ıbrida. Por lo tanto, la HHIC y la restricción a vaćıos NO, en

principio, no se excluyen mutuamente.

Finalmente, hemos demostrado que el vaćıo seleccionado con la construcción de Ashtekar-Gupt en

estos fondos efectivos para CCL h́ıbrida es un estado que no pertenece a la familia seleccionada

por la HHIC.

55



En resumen, hemos investigado la búsqueda de un estado de vaćıo para escenarios relevantes en

cosmoloǵıa centrándonos en criterios f́ısicos. Por una parte, hemos llevado a cabo un estudio riguroso

de campos fermiónicos en cosmoloǵıa cuántica que esclarece un campo poco explorado y de maneras

a veces discordantes. Por otro lado, hemos realizado un estudio de vaćıos NO que arroja luz sobre

qué condiciones iniciales son f́ısicamente adecuadas para las ecuaciones que gobiernan la evolución de

perturbaciones cosmológicas primordiales. Estos dos estudios permiten el avance de la CCL y su enfoque

h́ıbrido hacia la obtención de predicciones falsificables.
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We use the freedom available in hybrid loop quantum cosmology to split the degrees of freedom between
the geometry and the matter fields so as to build a quantum field theory for the matter content with good
quantum properties. We investigate this issue in an inflationary, flat cosmology with inhomogeneous
perturbations, and focus the discussion on a Dirac field, minimally coupled to the cosmological background
and treated as a perturbation. After truncating the action at the lowest nontrivial order in perturbations, one
must define canonical variables for the matter content, for which one generally employs canonical
transformations that mix the homogeneous background and the perturbations. Each of these possible
definitions comes associated with a different matter contribution to the Hamiltonian of the complete
system, that may, in general, contain terms that are quadratic in creationlike variables, and in
annihilationlike variables, with the subsequent production and destruction of pairs of fermionic particles
and antiparticles. We determine a choice of the fermionic canonical variables for which the interaction part
of the Hamiltonian can be made as negligible as desired in the asymptotic regime of large particle/
antiparticle wave numbers. Finally, we study the quantum dynamics for this choice, imposing the total
Hamiltonian constraint on the quantum states and assuming that their gravitational part is not affected
significantly by the presence of fermions. In this way, we obtain a Schrödinger equation for the fermionic
degrees of freedom in terms of quantum expectation values of the geometry that leads to asymptotically
diagonal Heisenberg relations and Bogoliubov evolution transformations, with no divergences in the
associated normal-ordered Hamiltonian.

DOI: 10.1103/PhysRevD.99.063535

I. INTRODUCTION

Choosing a Fock representation for the quantization of
matter fields in curved spacetimes, and with it a vacuum
state, is a nontrivial task even in the case of linear fields. In
quantum mechanics, when one is considering systems with
finite degrees of freedom, one can make use of results like
the Stone-von Neumann theorem that guarantees that there
exists only one representation of the Weyl relations, up to
unitary equivalence, with the desired properties, namely a
strongly continuous, irreducible, and unitary representation
[1,2]. Nevertheless, when one has to deal with fields that
are systems with infinite degrees of freedom, there is no
such theorem at our disposal and, in the best of cases, one
has to appeal to symmetries or other kinds of physical
arguments in order to select a vacuum. In Minkowski

spacetime, for instance, the most natural thing to ask for is
Poincaré invariance, which in fact picks out a unique
representation, up to unitary transformations [3,4]. For
stationary spacetimes, the so-called energy criterion can be
used to select a preferred complex structure (which
essentially fixes the Fock representation) out of the infinite
many that are possible [5,6]. In spite of all this, no general
uniqueness result has been found for systems with fieldlike
degrees of freedom in nonstationary spacetimes, such as
cosmologies [7,8]. Actually, in nonstationary spacetimes,
and after imposing invariance under the spatial isometries
that the system possesses, one could expect that the
ambiguity that affects the choice of representation could
be solved, not by demanding invariance under time
evolution, since the dynamics is not a symmetry anymore,
but by requiring that, at least, the quantum evolution of the
creation and annihilation operators can be implemented in a
unitary way. For a variety of cosmological systems, it has
been recently proven that this criterion of unitarity (together
with the invariance under spatial symmetries) indeed
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determines a preferred family of vacua, which are all
unitarily related [9–19].
The system that we study in this work is a flat

Friedmann-Lemaître-Robertson-Walker (FLRW) cosmol-
ogy with a Dirac field that will be regarded as a perturba-
tion, including its zero mode if it is not identically
vanishing. Since we are not concerned here about infrared
divergences, in order to simplify the discussion and keep all
definitions rigorous we restrict our considerations to
compact FLRW spatial sections. More specifically, we
analyze the case of sections with the topology of a three-
torus. In this system, it has been proven that there is a
unique family of Fock representations of the Dirac field, all
related among them by unitary transformations, for which
the vacuum is invariant under the isometries of the spatial
sections and the Heisenberg dynamics of the creation and
annihilation operators is unitarily implementable (once one
adopts a standard convention for particles and antipar-
ticles), provided that one treats the FLRW spacetime as a
classical or effective background [20].
Furthermore, the system was further studied within the

hybrid approach for the quantization of gravitational
models, in which the (matter) fields are quantized with
suitable Fock representations and the homogeneous geom-
etry is quantized with techniques inspired by nonperturba-
tive quantum gravity, typically with methods of the
canonical formalism known as loop quantum gravity
(LQG) [21]. This hybrid approach has been successfully
used in cosmological scenarios with perturbations [22–24].
In our particular system, we treat the degrees of freedom of
the homogeneous cosmology exactly and truncate the
action at quadratic order in the perturbations, that is the
lowest order with a nonvanishing contribution. With this
truncation, the zero mode of the Hamiltonian constraint is
formally equal to the constraint of the homogeneous
cosmology plus a contribution that is quadratic in the
perturbations. Nevertheless, it is worth pointing out that
there is an inherent freedom in the way in which one
decides to separate the degrees of freedom of the homo-
geneous cosmology from the inhomogeneous perturba-
tions, since they can always be remixed using
transformations that preserve the canonical symplectic
structure at the level of the perturbative truncation of the
system. Actually, instead of considering this freedom a
nuisance, the idea that was put forward in Ref. [25] was to
exploit the freedom to define canonical variables for which
the Hamiltonian of the perturbative Dirac variables had
certain nice properties. In fact, when fermions were first
studied within the hybrid approach in Ref. [26], the choice
of fermionic variables was based only on the requirements
of invariance of the resulting Fock vacuum under the spatial
symmetries, a unitarily implementable Heisenberg evolu-
tion in the regime of quantum field theory in curved
spacetimes, and a standard convention for particles and
antiparticles. But it was already shown there that ultraviolet

divergences appeared in the resulting Schrödinger equation
for the fermionic degrees of freedom (after a convenient
sort of Born-Oppenheimer approximation in the imposition
of the full quantum constraint). These divergences could
only be solved by either a regularization scheme with
substraction of infinities or by introducing a further
restriction on the choice of perturbative variables that
define the vacuum [25]. In practice, this new restriction
lowered the asymptotic order of the interaction part of the
fermionic Hamiltonian at large wave numbers (identified as
the eigenvalues of the Dirac operator on the spatial
sections), diminishing the production of pairs of particles
and antiparticles in this asymptotic regime.
In the present work, we go one step beyond in the same

direction and, by further taking advantage of the freedom to
split the degrees of freedom between the geometry and the
perturbations, prove that one can absorb the interaction
terms of the fermionic Hamiltonian so as to make them as
negligible as desired in the asymptotic regime of large
eigenvalues (in absolute value) of the modes of the Dirac
field. Moreover, in this way we not only improve the
quantum behavior of the fermionic contribution to the
Hamiltonian of our gravitational model, but we also reduce
the ambiguity in our choice of Fock representation and the
vacuum for the Dirac field, leaving only some remaining
asymptotic freedom in certain phases. In addition, we also
notice that, since the resulting fermionic Hamiltonian
contribution is diagonal, at least asymptotically, the dynam-
ics that it generates is very simple for the vacuum of the
representation, essentially a rotating phase. In this sense,
one can think of this vacuum and our splitting of degrees of
freedom in the hybrid quantization as those that are best
adapted to the dynamics of the entire cosmological system.
The rest of the paper is organized as follows, in Sec. II,

and following the procedure detailed in Ref. [26], we
introduce the Dirac field as a perturbation around the flat
FLRW cosmology, truncating the action at quadratic
perturbative order. In Sec. III we consider a generic choice
of creation and annihilationlike variables for the Dirac field,
allowing definitions that depend on the homogeneous
geometry. This dependence is captured in the coefficients
of the linear transformations that relate our fermionic
variables with the coefficients of the fermionic mode
expansions. We also calculate the form of the fermionic
contribution to the total Hamiltonian constraint for each of
the possible choices of variables, paying special attention to
the nondiagonal part of this contribution that provides the
fermionic interaction terms. Then, in Sec. IV we adopt an
ansatz for the creation and annihilationlike variables
inspired in the analysis of Refs. [25,26], and we investigate
the specific expression that these variables must take so that
they asymptotically diagonalize the fermionic Hamiltonian.
We also give the form of the remaining, diagonal part of the
Hamiltonian. Finally, in Sec. V we briefly revisit the hybrid
quantization of Ref. [26] to adapt it to our new variables.
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In particular, we give the new Schrödinger equation,
Heisenberg relations, Bogoliubov evolution transforma-
tion, and evolution operator for the new choice of vacuum.
We conclude in Sec. VI, summarizing our results, and
commenting on some lines for further research.

II. CLASSICAL MODEL

Let us start by briefly presenting the model that we study.
The homogeneous sector consists of a flat FLRW space-
time with compact spatial sections that are isomorphic to
the three-torus, T3, and of a massive scalar field, ϕ, subject
to a potential VðϕÞ. This field plays the role of the inflaton.
We use spacetime coordinates that exploit the symmetry of
this cosmological background. The inhomogeneous sector
is given by a Dirac field with massM, which is treated as a
perturbation. For all practical purposes, we include in this
sector also the zero mode of the Dirac field if it does not
vanish, regarding it as a perturbative degree of freedom. We
then truncate the action at quadratic order in the perturba-
tions [27,28], and use the canonical structure and the
Hamiltonian of this truncated action to construct our
description of the entire system.
In principle, we can also add perturbative inhomogeneities

to the metric and the inflaton, as in Refs. [29,30], perturba-
tions that we consider again as part of the inhomogeneous
sector. These additional perturbations originate new quad-
ratic contributions to the purely homogeneous part of the
Hamiltonian constraint, and they furthermore introduce a
whole family of linear perturbative constraints. The only
perturbative quantities that are physically meaningful are
those that commute with this family of constraints, and they
are generally called gauge-invariant perturbations [31,32].
Invariant perturbations of this kind, for the case with flat
spatial topology that we are discussing, are the tensor
perturbations of the metric and the Mukhanov-Sasaki scalar
[33–35], which mixes scalar perturbations of the metric and
the inflaton. A phase space for the perturbations can then be
constructed with these gauge invariants and with an
Abelianized version of the perturbative linear constraints,
together with suitable canonical momenta of all of them.
Nonetheless, since the definitions of thesevariablesmake use
of the homogeneous FLRW ones, they do not form a
canonical set with the variables of the homogeneous sector,
and these latter variables have to be modified with quadratic
terms in the perturbations in order to render the whole set
canonical again. On the other hand, since the Einstein-Dirac
action is quadratic in the Dirac field, the fermionic perturba-
tions, at our order of truncation, couple directly to the
homogeneous tetrad and hence turn out to be gauge invar-
iants (namely, they commute under Poisson bracketswith the
linear perturbative constraints arising from the perturbation
of the tetrad).
It is convenient to rescale theDirac field by a factor e3α̃=2 in

order to get canonical Dirac brackets that are constant in the
evolution, after imposing an internal time gauge on the

homogeneous tetrad [36].Here, α̃ is the logarithmof the scale
factor of the FLRW geometry up to an additive constant
ln½4π=ð3l0Þ3�=2, where l0 is the compactification length of
the tori, and, in general, the tilde over a homogeneous
variable indicates that it has been corrected with quadratic
perturbative terms, as we have mentioned above. In the
adopted internal time gauge, we can expand the two chiral
components of the rescaled field in modes of the Dirac
operator on the spatial sections. This expansion is especially
suitable because the Dirac operator is invariant under the
spatial isometries of the FLRW cosmology, a property that at
the end of the day guarantees that the dynamical equations do
not mix its eigenmodes. Since we are dealing with compact
spatial sections, the spectrum of this operator is discrete. The

eigenvalues for T3 are �ωk ¼ �2πj  kþ  τj=l0,  k ∈ Z3, and
where  τ ¼ P

θI  vI=2 characterizes the spin structure on the
spatial sections (θI ¼ 0 or 1 depending on the spin structure,
and  vI is the standardZ3 basis). Then, the rescaledDirac field
can be described in terms of a set of time-dependent
Grassmann variables fm  k:r̄  k; s̄  k; t  kg, where the bar denotes
complex conjugation. The ordered pairs ðm  k; r̄  kÞ and ðs  k; t̄  kÞ
are simply the coefficients of the Dirac eigenspinors of the
left-handed and (the complex conjugate of the) right-handed
components of the rescaled Dirac field, respectively, up to a
multiplicative constant ½4π=ð3l0Þ�−3=4. The first variable of
each of these pairs is associated with the eigenspinors
that have positive eigenvalues, while the second variable
corresponds to negative eigenvalues. Each of these mode
coefficients is canonically conjugate to its complex con-
jugate, inasmuch as their Dirac bracket equals −i, whereas
the rest of theDirac brackets between our fermionic variables
vanish [36].

III. FERMIONIC CONTRIBUTION
TO THE HAMILTONIAN

Let us introduce the following family of annihilationlike
variables of particles and creationlike variables of anti-
particles for the Dirac field, respectively, defined by these
linear combinations of the Grassman variables that deter-
mine the field,

aðx;yÞ k
¼ f

 k;ðx;yÞ
1 x  k þ f

 k;ðx;yÞ
2 ȳ−  k−2  τ;

b̄ðx;yÞ k
¼ g

 k;ðx;yÞ
1 x  k þ g

 k;ðx;yÞ
2 ȳ−  k−2  τ: ð3:1Þ

Here, ðx  k; ȳ  kÞ is any of the ordered pairs ðm  k:s̄  kÞ and
ðt  k; r̄  kÞ, and the superindex ðx; yÞ means that the coeffi-
cients may be different for each of the pairs. Notice that, in
the linear combinations that provide our creation and
annihilationlike variables, we have imposed that they do
not mix contributions from different modes of the spatial

Dirac operator, labeled by the value of  k, so that our
definitions respect the spatial symmetries of the fermionic
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dynamics (and hence the resulting complex structure is
invariant under those symmetries) [20]. Since the variables
given in Eq. (3.1) have to satisfy standard anticommutation
relations, the coefficients of the linear combinations that
define them must fulfil the relations [18]

f
 k;ðx;yÞ
2 ¼ eiF

 k;ðx;yÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

���f  k;ðx;yÞ
1

���2r
;

g
 k;ðx;yÞ
1 ¼ eiJ

ðx;yÞ
 k f̄

 k;ðx;yÞ
2 ;

g
 k;ðx;yÞ
2 ¼ −eiJ

ðx;yÞ
 k f̄

 k;ðx;yÞ
1 ; ð3:2Þ

where F
 k;ðx;yÞ
2 and Jðx;yÞ k

are real phases.

In general, we allow linear combinations that depend on

the variables of the homogeneous sector, namely f
 k;ðx;yÞ
L ≡

f
 k;ðx;yÞ
L ðα̃; πα̃; ϕ̃; πϕ̃Þ and g

 k;ðx;yÞ
L ≡ g

 k;ðx;yÞ
L ðα̃; πα̃; ϕ̃; πϕ̃Þ,

where L ¼ 1, 2 and πz̃ is the canonical momentum of the
variable z̃ ¼ α̃; ϕ̃. As a result, the new fermionic variables do
not constitute a canonical set with ðα̃; πα̃; ϕ̃; πϕ̃Þ, a fact that
calls for a suitable redefinition of the homogeneous variables,
which must be corrected with quadratic perturbative terms
along the lines that we have already explained in order to
arrive at a new canonical set ðα; πα;ϕ; πϕÞ. At our order of
truncation, the desired corrections are [26]

z − z̃≡ Δz ¼ i
2

X
 k;ðx;yÞ

½ð∂πz̃ x  kÞx̄  k þ ð∂πz̃ x̄  kÞx  k

þ ð∂πz̃ y  kÞȳ  k þ ð∂πz̃ ȳ  kÞy  k�; ð3:3Þ

πz − πz̃ ≡ Δπz ¼ −
i
2

X
 k;ðx;yÞ

½ð∂ z̃x  kÞx̄  k þ ð∂ z̃x̄  kÞx  k

þ ð∂ z̃y  kÞȳ  k þ ð∂ z̃ȳ  kÞy  k�; ð3:4Þ

where z ¼ α;ϕ and the subindex ðx; yÞ indicates that we are
summing over both existing pairs. This change of variables
gives rise then to alterations in the homogeneous part of the
Hamiltonian constraint, producing new perturbative contri-
butions from it. Truncating those contributions at the relevant
perturbative order, one can see that the final result is a new
fermionic contribution H̆D to the zero mode of the
Hamiltonian constraint, given by the expression [26]

H̆D ¼ HD − ∂αHj0Δα − ∂παHj0Δπα
− ∂ϕHj0Δϕ − ∂πϕHj0Δπϕ; ð3:5Þ

where HD is the old fermionic contribution and Hj0 is the
Hamiltonian of the unperturbed model, with their depend-
ence on the old homogeneous variables identified with the
new ones.

Following calculations similar to those of Ref. [25],1 we
then obtain the fermionic contribution

H̆D ¼
X
 k;ðx;yÞ

h
h
 k;ðx;yÞ
D ðāðx;yÞ k

aðx;yÞ k
− aðx;yÞ k

āðx;yÞ k

þ b̄ðx;yÞ k
bðx;yÞ k

− bðx;yÞ k
b̄ðx;yÞ k

Þ

þ h
 k;ðx;yÞ
J ðb̄ðx;yÞ k

bðx;yÞ k
− bðx;yÞ k

b̄ðx;yÞ k
Þ

þ h̄
 k;ðx;yÞ
I ðaðx;yÞ k

bðx;yÞ k
Þ − h

 k;ðx;yÞ
I ðāðx;yÞ k

b̄ðx;yÞ k
Þ
i
; ð3:6Þ

where

h
 k;ðx;yÞ
D ¼ ωk

2eα
ðjf  k;ðx;yÞ

2 j2 − jf  k;ðx;yÞ
1 j2Þ þ M̃ℜðf  k;ðx;yÞ

1 f̄
 k;ðx;yÞ
2 Þ

−
i
2
ðf̄  k;ðx;yÞ

1 ∂f  k;ðx;yÞ
1 þ f̄

 k;ðx;yÞ
2 ∂f  k;ðx;yÞ

2 Þ; ð3:7Þ

h
 k;ðx;yÞ
J ¼ −

1

2
∂Jðx;yÞ k

; ð3:8Þ

h
 k;ðx;yÞ
I ¼ e−iJ

ðx;yÞ
 k ½if  k;ðx;yÞ

2 ∂f  k;ðx;yÞ
1 − if

 k;ðx;yÞ
1 ∂f  k;ðx;yÞ

2

þ 2ωk

eα
f
 k;ðx;yÞ
1 f

 k;ðx;yÞ
2 þ M̃ðf  k;ðx;yÞ

1 Þ2

− M̃ðf  k;ðx;yÞ
2 Þ2�: ð3:9Þ

Here, we have introduced the rescaled mass M̃ ¼
2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð3l30Þ

q
, we have used ℜ to denote the real part of

a complex number, and we have defined ∂ as the linear
differential operator ∂ ≡ fHj0; ·g, where f·; ·g are the
Poisson brackets of our truncated system.

IV. DIAGONALIZATION OF THE
FERMIONIC CONTRIBUTION

We know from Refs. [25,26] that, on the sector of large

ωk, one can lower the asymptotic order of h
 k;ðx;yÞ
I with a

suitable definition of creation and annihilationlike varia-
bles, restricting also in this way the freedom available in
their choice. If one were to continue with this procedure,
lowering more and more the asymptotic order, one would
restrict more and more the choice of fermionic variables,
with the hope that one would arrive at a unique choice,
perhaps up to certain phases, in the limit of a complete
asymptotic diagonalization of H̆D. Inspired by the analysis

of Refs. [25,26], we adopt for f
 k;ðx;yÞ
1 the following

asymptotic series expansion in inverse powers of ωk:

1As in that reference, we now ignore the possible zero mode of
the Dirac field, assuming that we can find a suitable representa-
tion for it. This is not important in our discussion, because we
focus it on the ultraviolet sector of the field.
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f
 k;ðx;yÞ
1 ¼ eiF

 k;ðx;yÞ
2

X∞
n¼1

ð−iÞnþ1γn
ωn
k

; ð4:1Þ

with γn ∈ R. From the first relation in Eq. (3.2), it then
follows that, asymptotically,

f
 k;ðx;yÞ
2 ¼ eiF

 k;ðx;yÞ
2

X∞
n¼0

ð−iÞnγ̃n
ωn
k

; ð4:2Þ

with γ̃n ∈ R again, and where the coefficients γ̃n are
defined as

γ̃0 ¼ 1; γ̃2n−1 ¼ 0;

γ̃2n ¼ ð−1Þnþ1

�
1

2
Γ2n þ

X∞
m¼2

ð2m − 3Þ!!
ð2mÞm!

×
Xn
im−1¼1

…
Xi2
i1¼1

Γ2n−2im−1
…Γ2i1

�
; ∀n ≥ 1; ð4:3Þ

with

Γ0¼ 0; Γ2n ¼
X2n
i¼1

ð−1Þnþiγiγ2n−i; ∀ n≥ 1; ð4:4Þ

and we set γ0 ¼ 0.
Substituting these series in the formula for the interaction

coefficient h
 k;ðx;yÞ
I of H̆D, one finds that

h
 k;ðx;yÞ
I ¼ e−iðJ

ðx;yÞ
 k

−2F
 k;ðx;yÞ
2

ÞX∞
n¼0

�
−i
ωk

�
n
An;0; ð4:5Þ

where

An;m ¼
Xn
l¼m

½γ̃n−l∂γl − γl∂ γ̃n−l − 2e−αγ̃lγnþ1−l

− M̃ðγlγn−l þ γ̃lγ̃n−lÞ�; n ≥ m; ð4:6Þ

An;m ¼ 0; n < m: ð4:7Þ

It follows that an asymptotic diagonalization of the fer-
mionic contribution to the zero mode of the Hamiltonian
constraint is achieved if and only if An;0 ¼ 0 for all n ≥ 0.
On the other hand, notice that, if we keep n ≥ 0 in the
formula that gives the coefficients An;m, namely Eq. (4.6),
γnþ1 only appears in the case with m ¼ 0, when one
evaluates the contribution corresponding to vanishing label
l. In addition, the sum that determines An;0 in Eq. (4.6) can
be rewritten as the mentioned contribution with label l ¼ 0
plus An;1. With these indications, one can easily deduce that
An;0 ¼ 0 implies the recursive relation

γnþ1 ¼ −
M̃eα

2
γ̃n þ

eα

2
An;1: ð4:8Þ

Since γ̃0 ¼ 1, the above relation gives us, in particular,
the first term of the series (4.1), γ1 ¼ − 1

2
M̃eα, from which

we can univocally obtain the rest of the unknown
terms. This is possible because γ̃n is completely determined
via Eq. (4.3) by γm with m ≤ n, and the nonvanishing
coefficients An;1 only involve contributions of γ̃m with
m ≤ n. For instance, a straightforward calculation shows
that γ2 ¼ − 1

4
e−αM̃πα. Thus

f
 k;ðx;yÞ
1 ¼ eiF

 k;ðx;yÞ
2

M̃eα

2ωk
− ieiF

 k;ðx;yÞ
2

M̃e−α

4ω2
k

πα þOðω−3
k Þ;

ð4:9Þ

an equation that of course is consistent with the previous
results of Refs. [20,25].
The asymptotic form of f

 k;ðx;yÞ
1 severely restricts our

choice of creation and annihilationlike variables, leaving all

the asymptotic freedom just in the phases F
 k;ðx;yÞ
2 and Jðx;yÞ k

.

With this choice, or rather with this iterative family of

choices, we can make the interaction terms h
 k;ðx;yÞ
I vanish in

the fermionic Hamiltonian at any desired asymptotic order
in inverse powers of ωk.
Let us consider now the rest of fermionic contributions to

the zero mode of the Hamiltonian constraint, namely the
diagonal fermionic terms. It is convenient to define

f̃
 k;ðx;yÞ
1 ¼ e−iF

 k;ðx;yÞ
2 f

 k;ðx;yÞ
1 ;

f̃
 k;ðx;yÞ
2 ¼ e−iF

 k;ðx;yÞ
2 f

 k;ðx;yÞ
2 ; ð4:10Þ

so that

h
 k;ðx;yÞ
D ¼ ℜ

�
e−αωk

2

����f̃  k;ðx;yÞ
2

���2 − ���f̃  k;ðx;yÞ
1

���2	þ M̃f̃
 k;ðx;yÞ
1

¯̃f2

−
i
2

�
¯̃f1∂f̃  k;ðx;yÞ

1 þ ¯̃f2∂f̃  k;ðx;yÞ
2

	i
þ 1

2
∂F  k;ðx;yÞ

2 :

ð4:11Þ

Here, we have used that the functions h
 k;ðx;yÞ
D are always

real.2 In what follows, we restrict the complex phase F
 k;ðx;yÞ
2

so that these functions (which provide diagonal fermionic
contributions to the Hamiltonian constraint) do not depend
on the momentum πϕ of the homogeneous inflaton. Notice
that the only part in this constraint that contains the
coefficients γn and γ̃n is given by

2The only term for which this is not obvious is −iðf  k;ðx;yÞ
1 ×

∂f̄  k;ðx;yÞ
1 þf

 k;ðx;yÞ
2 ∂f̄  k;ðx;yÞ

2 Þ. But since jf  k;ðx;yÞ
1 j2þjf  k;ðx;yÞ

2 j2¼1, the
term in parenthesis is indeed imaginary.
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h̆
 k;ðx;yÞ
D ¼ h

 k;ðx;yÞ
D −

1

2
∂F  k;ðx;yÞ

2 ; ð4:12Þ

which, with our asymptotic expansions, takes the specific
form

h̆
 k;ðx;yÞ
D ¼

X∞
n¼−1

γ̆n
ωn
k
: ð4:13Þ

Finally, a direct calculation shows that the coefficients γ̆n
turn out to be

γ̆−1 ¼
e−α

2
; ð4:14Þ

γ̆n ¼ ℜðinþ1Þ
Xn
l¼0

�ð−1Þl
2

ð2M̃γ̃lγn−l − 2e−αγnþ1−lγl

þ γl∂γn−l þ γ̃l∂ γ̃n−lÞ
i
; ∀n ≥ 0: ð4:15Þ

V. HYBRID QUANTIZATION

The results of the previous sections restrict in a
physically appealing way the choice of canonical variables
for the homogeneous and fermionic parts of the phase
space of our truncated cosmology. These canonical
variables are the homogeneous pairs ðα; παÞ and ðϕ; πϕÞ,
and the fermionic annihilation and creationlike variables

for particles, fðaðx;yÞ k
;āðx;yÞ k

Þg  k≠0, and for antiparticles

fðbðx;yÞ k
;b̄ðx;yÞ k

Þg  k≠0, all of them determined by relations

(3.1)–(3.4). In particular, the homogeneous variables have
been defined so that they commute under Poisson brackets
with the fermionic variables at our order of perturbative
truncation.We have seen that, with asymptotic expansions of
the form (4.1) and (4.2), the interaction terms in the fermionic
contribution to the zero mode of the Hamiltonian constraint
can be rendered as negligible as desired in the ultraviolet
sector of largewave numbers. Then, if one decides to restrict
all considerations to the context of a fermionic field in
linearized cosmology, namely if one ignores the quadratic
fermionic backreaction on the classical dynamics of the
homogeneous variables, the evolution of the introduced
annihilation and creationlike variables becomes asymptoti-
cally diagonal. In this respect, the important result is that this
diagonalization serves as a valid criterion to select canonical
variables for the fermionic degrees of freedom, characteriz-
ing them on the entire phase space of our cosmological
system. Remarkably, nonetheless, the benefits of using this
type of fermionic annihilation and creationlike variables lie
beyond the linearized context that we have just commented
on. Indeed, their definition is compatible with that of the
homogeneous variables in our search for a canonical set, and
the resulting expression for theHamiltonian constraint (at the
considered truncation order) asymptotically displays only

quadratic combinations of these fermionic variables in a way
that is proportional to the number operator, once one adopts a
Fock representation with normal ordering. This fact sim-
plifies enormously the task of finding a quantum represen-
tation of the constraint operator not just for the fermions, but
for the combined system that includes the homogenous
variables within the framework of hybrid quantum cosmol-
ogy. Moreover, as it was argued in Refs. [25,26] and we
discuss in this section, there exist quantum states of the entire
cosmology such that the resolution of the quantum constraint
in a sort ofBorn-Oppenheimer approximation amounts to the
condition that the fermionic part of their wave functions
solves a Schrödinger equation. This is similar to the situation
found in linearized cosmology, with the very important
difference that in our treatment the homogeneous back-
ground does not need to correspond to a classical solution or
even to an effective trajectory. Rather, the dependence of the
linear fermionic equations on this background is given by
expectation values of geometric operators in the part of the
wave function that describes the homogeneous geometry
and, as we have pointed out, in principle it is not necessary
that these expectationvalues evolve as in general relativity or
according to any effective dynamics.
In order to proceed to the hybrid quantization of the

system, with its phase space already split into different
sectors in the way that we have explained, we choose
suitable representations for each of those sectors and
represent the total system on the tensor product of the
partial representation spaces. For the FLRW geometry,
corrected with quadratic perturbative contributions accord-
ing to our comments, we pick out a representation inspired
in LQG and specified in Ref. [37] (see also Refs. [38,39]).
Therefore, instead of using the canonical variables fα; παg
we employ the alternative variable v, proportional to the
physical volume of the spatial sections of our cosmological
model, together with its canonical momentum b=2, which
is proportional to the Hubble parameter [40]. More spe-
cifically, we have that jvj ¼ ½16π=ð27l30γ2ΔgÞ�3=2e3α, where
γ is called the Immirzi parameter [41] andΔg is the area gap
(the minimum allowed nonzero eigenvalue of the area
operator in LQG [39]). The sign of v depends on the triad
orientation. In addition, the physical spatial volume is
V ¼ 2πγΔ1=2

g jvj. The new variables v and b contain all the
relevant information about the triad and the holonomies of
the Asthekar-Barbero connection of the flat FLRW cos-
mology, within the improved dynamics scheme put forward
in Ref. [39]. While fluxes of the triad are functions of the
volume v, the interesting holonomies have elements that
are complex exponentials of �b=2. The corresponding
Hilbert space Hgrav

kin where the FLRW geometry is repre-
sented admits a basis of eigenstates of the volume, provided
with the discrete inner product. For each of the states of
this basis, the basic holonomy elements simply shift by one
the eigenvalue of v. On the other hand, for the homo-
geneous scalar field we choose the much simpler space of
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square-integrable functions over the real line,L2ðR; dϕÞ, as
the Hilbert space for a standard Schrödinger representation,
with canonical variables fϕ; πϕg.
For the quantum representation of the gauge-invariant

scalar and tensor perturbations, including their contri-
bution to the zero mode of the Hamiltonian constraint,
we adopt suitable Fock representations (for more details,
see Refs. [29,30,42]). As for the quantum implementation
of the linear perturbative constraints, essentially what
they imply is that the physical states do not depend on
perturbative gauge degrees of freedom. Finally, for the
fermionic degrees of freedom, we choose a Fock repre-
sentation FD associated with creation and annihilationlike
variables that have an asymptotic behavior in the sector of
large ωk determined by our previous considerations, and
hence given by Eqs. (3.2), (4.1), (4.2), and (4.8). These
annihilationlike variables are promoted to the annihilation

operators âðx;yÞ k
and b̂ðx;yÞ k

for particle and antiparticle

excitations, respectively, while the creationlike variables
are represented by the adjoints of these operators. In the
following, we denote this adjoint operation with a dagger.
The complete system formed by all the sectors is subject

to the zero mode of the Hamiltonian constraint, which we
represent quantum mechanically with some extra prescrip-
tions, additional to the ones fixed by the representation of
the elementary variables. In particular, we adopt normal
ordering for the products of creation and annihilation
operators. The rest of the prescriptions refer to the
representations of the functions of the FLRW geometry
that appear as coefficients of the quadratic perturbative
contributions to the constraint. Since we do not need them
explicitly in the rest of our discussion, we refer the reader to
Refs. [26,42] for details about these prescriptions.
We impose the zero mode of the Hamiltonian constraint

à la Dirac [43], with physical states annihilated by its
(adjoint) action. Following the strategy of Refs. [26,29,42],
we choose an ansatz with separation of variables: The wave
functions of the physical states of interest factorize into
partial wave functions that depend each on a different
sector of the system, namely the FLRW geometry, the
gauge-invariant scalar and tensor perturbations, and the
fermionic perturbations. We allow that all these partial
wave functions depend on the inflaton, which in this way
will play the role of a relational time. Additionally, we ask
that the part of the wave function that contains the geo-
metric degrees of freedom, which we call ΓðV;ϕÞ, is
normalized (in the discrete inner product for the volume)
and has a unitary evolution in ϕ generated by a positive

operator ˆ̃H0, so that

−i∂ϕΓðV;ϕÞ ¼ ˆ̃H0ΓðV;ϕÞ: ð5:1Þ

Finally, we restrict our attention to generators for which the

action of ∂2
ϕ þ ˆ̃H

2

0 on Γ differs from the corresponding

action of the constraint of the unperturbed FLRW cosmol-
ogy at most in a quadratic contribution of the perturbations.
In this way, we contemplate the possibility that there exists
some kind of quantum backreaction between the perturba-
tions and the homogeneous background.
Furthermore, if we can ignore the transition between

states of the FLRW geometry that are mediated by the
action of our Hamiltonian constraint, all relevant informa-
tion about this constraint can be captured by replacing its
operator dependence on the homogeneous geometry with
expectation values h·iΓ on the considered state Γ in Hgrav

kin ,
computed with the discrete inner product. With this
approximatiaon and a kind of Born-Oppenheimer one,
the imposition of the entire Hamiltonian constraint leads in
fact to a set of Schrödinger equations, one for each of the
different perturbative sectors of the system [26,29]. For the
partial wave function that depends on the fermionic degrees
of freedom, which we call ψðN D;ϕÞ,3 we arrive at the
equation

−i∂ϕψDðN D;ϕÞ ¼
l0h dV2=3eαH̆DiΓ − CðΓÞ

D

h ˆ̃H0iΓ
ψDðN D;ϕÞ

≡HðΓÞ
D ðϕÞψDðN D;ϕÞ: ð5:2Þ

Here, the hat above a function of the FLRW geometry
stands for its representation as a quantum operator. Besides,

we have definedHðΓÞ
D ðϕÞ, which can be regarded as a time-

dependent (i.e., ϕ-dependent) effective fermionic
Hamiltonian operator that acts on FD and generates the

Schrödinger evolution. On the other hand, the term CðΓÞ
D ,

plus some similar terms in the Schrödinger equations of the
gauge-invariant scalar and tensor perturbations, equals the
expectation value in Γ of the difference between the action

of ∂2
ϕ þ ˆ̃H

2

0 and the action of the Hamiltonian constraint of
the unperturbed model. It is in this sense that we can

call CðΓÞ
D the fermionic backreaction, as it measures, in

average, how much the homogeneous part Γ of
the solutions of the perturbed model departs from an
unperturbed solution [25,26].
Let us now introduce a change to the time,

dηΓ ¼ l0hV̂2=3iΓ
h ˆ̃H0iΓ

dϕ; ð5:3Þ

which is well defined because H̃0 is positive and V̂ has a
strictly positive lower bound (at least in the adopted
representation: see Ref. [37]). It should be noted that, if
we further restrict ΓðV;ϕÞ to be highly peaked on classical

3We use N D as an abstract notation for the occupation
numbers of the fermionic particles and antiparticles in the chosen
Fock representation.
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or effective trajectories, this time coincides (up to correc-
tions that are quadratic in perturbations) with the standard
conformal time in cosmology as far as we circumscribe it
within an interval where the inflaton is monotonic.
Nonetheless, our definition of ηΓ is perfectly consistent
in the quantum theory beyond such a classical or effective
regime, provided that the involved expectation values
remain strictly positive and finite. In this sense, ηΓ may
be regarded as a relational time for the different parts of the
wave function, and one should only attempt to find a
correspondence with a standard conformal time within
regimes and intervals of the type that we have commented.
Using then Eq. (5.2) and the definition of our creation

and annihilationlike variables, we obtain the following
Heisenberg relations (in the considered asymptotic regime
of large ωk), evaluated at ηΓ ¼ η,

dηΓ â
ðx;yÞ
 k

ðη; η0Þ ¼ −iFðΓÞ
 k
âðx;yÞ k

ðη; η0Þ;
dηΓ b̂

†ðx;yÞ
 k

ðη; η0Þ ¼ iðFðΓÞ
 k

þ JðΓÞ k
Þb̂†ðx;yÞ k

ðη; η0Þ; ð5:4Þ

where we have called

FðΓÞ
 k

¼ 2h d
V2=3eαh

 k;ðx;yÞ
D iΓ

hV̂2=3iΓ
;

JðΓÞ k
¼ 2h d

V2=3eαh
 k;ðx;yÞ
J iΓ

hV̂2=3iΓ
: ð5:5Þ

We can integrate these Heisenberg equations to obtain,
asymptotically, the following Bogoliubov transformation,

âðx;yÞ k
ðη; η0Þ ¼ e

−iFðΓÞ
η;  k âðx;yÞ;

b̂†ðx;yÞ k
ðη; η0Þ ¼ e

i

�
FðΓÞ
η;  k

þJðΓÞ
η;  k

	
b̂†ðx;yÞ; ð5:6Þ

where we have defined âðx;yÞ k
ðη0Þ ¼ âðx;yÞ k

, b̂†ðx;yÞ k
ðη0Þ ¼

b̂†ðx;yÞ k
and

FðΓÞ
η;  k

¼
Z

η

η0

FðΓÞ
 k
dηΓ; JðΓÞ

η;  k
¼

Z
η

η0

JðΓÞ k
dηΓ: ð5:7Þ

This Bogoliubov transformation is clearly unitary [44],
because it does not mix creation and annihilation operators
in the considered asymptotic region, so that the antilinear
part of the transformation vanishes asymptotically (or, more
precisely, can be made of an asymptotic order as negligible
as desired).

Finally, we can construct an operator T̂ defined as

T̂ ¼
X
 k;ðx;yÞ

T̂ðx;yÞ
 k

;

T̂ðx;yÞ
 k

¼ iFðΓÞ
η;  k
ðâ†ðx;yÞ k

âðx;yÞ k
þ b̂†ðx;yÞ k

b̂ðx;yÞ k
Þ

þ iJðΓÞ
η;  k
ðb̂†ðx;yÞ k

b̂ðx;yÞ k
Þ; ð5:8Þ

such that in the regime of large ωk,

eT̂âðx;yÞ k
e−T̂ ¼ âðx;yÞ k

ðη; η0Þ; ð5:9Þ

eT̂b̂†ðx;yÞ k
e−T̂ ¼ b̂†ðx;yÞ k

ðη; η0Þ; ð5:10Þ

as can be checked using Hadamard’s lemma [45]. Hence,
e−T̂ can be taken as the unitary operator that implements the
dynamical Bogoliubov transformation (5.6).
This confirms that, asymptotically, the vacuum (namely

the normalized state in the kernel of all the annihilation
operators) is stationary under the evolution dictated by this
operator. In turn, this implies that the vacuum is annihilated
by the left-hand side of Eq. (5.2), up to possibly the
contribution of a complex phase. And, since we adopted
normal ordering for the representation of the zeromode of the
Hamiltonian constraint, the first termof the right-hand side of
Eq. (5.2) annihilates the vacuum as well. Hence, with our
choice of Fock representation, the fermionic backreaction

CðΓÞ
D for the vacuum (which was only convergent in Ref. [26]

after a subtraction of infinities scheme) is not only finite now,
but indeed can straightforwardly be set to vanish, at least
asymptotically. In this way, the vacuum remains invariant in
the evolution. Then, it is clear that its image under the action
of the fermionic Hamiltonian is a normalizable state in FD.
As a consequence, we conclude that the fermionic
Hamiltonian is properly defined in the dense subset of FD
spanned by the n-particle/antiparticle states with a finite
number of fermionic excitations.

VI. CONCLUSIONS

We have investigated the choice of a vacuum for the
Dirac field in an inflationary flat FLRW spacetime by
suplementing with extra physical requirements the criterion
of invariance under spatial symmetries and unitary
Heisenberg evolution that has been explored in the liter-
ature recently. More specifically, the additional requirement
that we have considered is the diagonalization of the
fermionic contribution to the Hamiltonian constraint of
the gravitational system when the fermions are treated as
perturbative fields on an average (possibly quantum
mechanically dressed) background, in the asymptotic
regime of large wave numbers, that we identify with the
eigenvalues of the Dirac operator on the spatial sections of
the cosmology. While the original criterion of spatial
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symmetry invariance and dynamical unitarity leads to a
family of Fock representations that are unitarily equivalent
among them, but still leaving an infinite freedom in the
choice of a vacuum, the inclusion of the diagonalization
requirement has been shown to restrict the available free-
dom to the choice of two complex phases and terms that are
negligible at any desired order in an expansion in inverse
powers of the wave number.
In our analysis, we have truncated the Einstein-Dirac

action, also in the presence of a scalar field that plays the
role of an inflaton, at quadratic order in perturbations,
treating as such the nonzero Fourier modes of the metric
and the scalar field and all the contributions of the Dirac
field. The zero modes of the inflaton and the metric have
been treated exactly. Because of this, the action does not get
contributions that are linear in our perturbations, including
those of the lapse and the shift (actually, this statement
holds beyond our quadratic truncation, in higher-order
perturbative schemes). Apart from linear perturbative con-
straints, the system is subject to the zero mode of the
Hamiltonian constraint, which contains a term that is
formally identical to the global Hamiltonian constraint of
the unperturbed model, but in addition includes other
contributions that are quadratic in the perturbations, in
particular a fermionic term. These perturbations can be
described by (an Abelianized version of) the linear pertur-
bative constraints, gauge variables that are momenta of
those constraints, and gauge invariants that commute with
all the former quantities. For the metric and the inflaton,
one can choose as gauge invariants the Mukhanov-Sasaki
field and the tensor perturbations, together with their
canonical momenta. The fermionic perturbations, on the
other hand, are immediately gauge invariants, because the
Einstein-Dirac action is quadratic in the Dirac field, so that
the latter couples directly to the unperturbed tetrad when
we truncate the action in our scheme. The above set of
perturbative variables can be completed into a canonical set
for the whole system, at the considered truncation order, by
including zero modes that are suitably corrected with
quadratic perturbative terms [29].
Focusing our discussion on the fermionic sector of the

inhomogeneities, one still has considerable liberty in the
way in which one can separate the fermionic degrees of
freedom from those of the homogeneous background
through canonical transformations, with a splitting that
maintains the gauge-invariant character of the fermionic
variables. Different splittings of the fermionic and the zero-
mode sectors of phase space result in different quantum
behaviors for the combined system and different quantum
dynamics for the fermionic variables, since the separation
amounts to a background-dependent (and hence dynami-
cal) redefinition of the basic, creation, and annihilationlike
fermionic variables. Instead of regarding this ambiguity as
a complication, we have taken advantage of it and looked
for a choice of those creation and annihilationlike variables

such that the part of the Hamiltonian constraint that rules
their evolution has good physical properties. In order to do
this, we have considered all possible linear combinations of
the fermionic mode coefficients that define creation and
annihilationlike variables, allowing these combinations to
depend on zero modes. Among all the viable combinations
that do not mix fermionic modes, and therefore respect the
spatial symmetries of the model, we have then sought
for choices that lead to a especially simple fermionic
Hamiltonian, without interaction terms that would create
and destroy pairs of particles and antiparticles (at least in
the ultraviolet sector of large wave numbers). The absence
of these interactions amounts to the (asymptotic) diago-
nalization of the fermionic contribution to the zero mode of
the Hamiltonian constraint. We have shown that it is
possible to attain this diagonalization at any asymptotic
order in inverse powers of the wave number, and that the
resulting characterization of fermionic variables is unique
up to certain phases at that order and up to terms that are
negligible in the asymptotic series of the coefficients that
define the creation and annihilationlike variables.
Combining then this Fock representation for the Dirac

field, suitable Fock representations for the rest of gauge
invariants, and an LQG-inspired quantization for the
homogeneous sector, we have considered the hybrid
quantization of the system. Given our choice of fermionic
creation and annihilation variables, the Fock representation
determined by them has a considerably simple quantum
dynamics. We have shown this in detail by adopting an
ansatz with separation of variables for the physical wave
functions and introducing a kind of Born-Oppenheimer
approximation in which we neglected changes in the
FLRW geometry mediated by the zero mode of the
Hamiltonian constraint. The relevant information about
this constraint is then captured in its expectation value on
the partial wave function that describes the background
FLRW cosmology. In this manner, one obtains a
Schrödinger equation for the fermionic degrees of freedom
that, with our (asymptotic) choice of vacuum, leads to
Heisenberg equations that do not mix the creation and
annihilation operators of the particles and antiparticles.
Thus, the dynamical Bogoliubov transformation of these
operators can be implemented trivially as a quantum
unitary transformation in the discussed asymptotic regime,
because its antilinear part can be made equal to 0 at any
desired asymptotic order. We also have constructed an
evolution operator that implements this Bogoliubov trans-
formation, and checked that it leaves the vacuum stationary.
This property and the fact that the fermionic contribution to
the zero mode of the Hamiltonian constraint annihilates the
vacuum guarantee that the backreaction term in the
Schrödinger equation not only does not diverge, but can
be made negligible at any asymptotic order in inverse
powers of the wave number, without the need of any
regularization scheme.
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Let us emphasize that our choice of annihilation and
creationlike variables, which leads to an asymptotically
diagonal fermionic Hamiltonian, is carried out within a
canonical framework that is valid for the entire, truncated,
cosmology, with a phase space that describes not only the
fermionic perturbations, but also the background variables.
In particular, the choice provides a specific splitting between
the two sectors of the cosmological system: the homo-
geneous one and the perturbations. Besides, since the zero
mode of theHamiltonian constraint for this entire cosmology
contains a term quadratic in all of the perturbations, the
classical dynamics of the selected fermionic variables is only
linear if one ignores their backreaction on the homogeneous
sector. Nevertheless, the resulting Hamiltonian constraint
applies to the entire cosmology even beyond this linearized
context, keeping its nice properties for quantization even in
that extended scenario. Furthermore, we have seen that it is
possible to reach a regime in the quantum dynamics of
the entire cosmology where the fermionic wave function
effectively obeys a Schrödinger equation. The effective
Hamiltonian operator that drives this evolution actually
corresponds to the Fock representation of the fermionic
contribution to the constraint, but with its background
dependence replaced with expectation values in the partial

wave function that describes the homogeneous geometry. In
this sense, the hybrid quantum theory allows for a general-
ized linearized regime of a fermionic field that propagates
over a mean quantum background, which need not follow
any classical or effective trajectory and might even allow for
some backreaction effects.
Our conclusions support some aspects of a similar study

under development for the case of cosmological scalar
perturbations in flat FLRW cosmologies, where the require-
ment of Hamiltonian diagonalization appears to supplement
satisfactorily the criterion of spatial symmetry invariance and
unitarity of the Heisenberg evolution [46]. It would be
interesting to discuss other aspects explored in that work
about the properties of the selected vacuum and its relation
with adiabatic states, taking into account the results that are
known about such states for fermionic fields [47] and
extending them with further investigations.
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We study the relation between the Fock representations for a Dirac field given by the adiabatic scheme
and the unique family of vacua with a unitarily implementable quantum evolution that is employed in
hybrid quantum cosmology. This is done in the context of a perturbed flat cosmology that, in addition, is
minimally coupled to fermionic perturbations. In our description, we use a canonical formulation for the
entire system, formed by the underlying cosmological spacetime and all its perturbations. After introducing
an adiabatic scheme that was originally developed in the context of quantum field theory in fixed
cosmological backgrounds, we find that all adiabatic states belong to the family of Fock representations
that allow a unitarily implementable quantum evolution (although the converse is not generally true).
In particular, this unitarity of the dynamics ensures that the vacua defined with adiabatic initial conditions at
different times are unitarily equivalent. We also find that, for all adiabatic orders other than 0, these initial
conditions allow the definition of annihilation and creation operators for the Dirac field that lead to some
finite backreaction in the quantum Hamiltonian constraint and to a fermionic Hamiltonian operator that is
properly defined in the span of the n-particle/antiparticle states, in the context of hybrid quantum
cosmology.

DOI: 10.1103/PhysRevD.100.125003

I. INTRODUCTION

There exists an inherent difficulty to selecting a vacuum
state with acceptable physical properties for fields that
propagate in generic curved spacetimes, even when one
uses well-known Fock representations in their quantiza-
tion [1]. This ambiguity is closely related to the fact that
the notion of particle, as one defines it in quantum field
theory (QFT), is nebulous even in the presence of a large
number of symmetries. This problem is often overlooked
in standard QFT in Minkowski spacetime because the
Poincaré vacuum plays then a privileged role, directly tied
up in the observation that flat spacetime is maximally
symmetric [2]. In this sense, a central question in any
scheme pursuing the Fock quantization of matter fields in
a generic spacetime background is the specification of the
physical properties that the corresponding vacuum must
possess. This issue has been studied at great length for free
scalar linear fields [1,3], but much less for fermionic
fields, such as the Dirac field [4].

For cosmological spacetimes, a traditional line of attack to
the problem of the choice of vacuum is the adiabatic
proposal [5–7], which in recent times has found formal
support in the algebraic approach to QFT [8]. In this
approach, one chooses a series of observables and specifies
the relations among them, something that includes the
dynamics and the standard commutation (or anticommuta-
tion for fermionic fields) relations, in such a way that
one constructs an *-algebra. A state is then a normalized
positive linear functional from this *-algebra to the complex
numbers, which can be interpreted as the result of taking the
expectation value of the observables on a physical state. In
many cases, a specific Fock representation can be recovered
from each algebraic state bymeans of the so-called Gelfand-
Naimark-Segal (GNS) construction [9,10]. A set of states
that is traditionally favored in this approach is formed by the
Hadamard states, which are characterized by a very specific
singularity structure of their two-point function [11,12]. In
particular, their associated energy-momentum tensor has
good renormalizability properties. The adiabatic scheme
aims to provide a strategy to approximateHadamard states in
cosmology by solving the differential equations ofmotion of
the field in an iterativeway,with the hope that, if the iteration
converges, one would obtain in the end a true Hadamard

*beatriz.b.elizaga@gravity.fau.de
†mena@iem.cfmac.csic.es
‡santiago.prado@iem.cfmac.csic.es

PHYSICAL REVIEW D 100, 125003 (2019)

2470-0010=2019=100(12)=125003(10) 125003-1 © 2019 American Physical Society



state. Actually, for scalar fields propagating in standard
Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmolo-
gies it turns out that all adiabatic states are locally quasie-
quivalent to a Hadamard state [13,14]. The complications
that arise in this scheme are well known in the case of scalar
fields in cosmological backgrounds, as the iterative relations
may not converge for general cosmological evolutions. For
Dirac fields in cosmological spacetimes, a similar level of
consensus on the definition of adiabatic states and their
properties has not been reached [15–18].
Over the last decade, an alternative strategy has been put

forward in order to reduce the ambiguities in the choice of a
vacuum for fields in cosmological spacetimes [19,20]. In
addition to symmetry considerations, this strategy rests
primarily on the criterion that the annihilation and creation
operators of the Fock quantization display an evolution that
is unitarily implementable. This criterion has been shown to
select a unique family of vacua, related to each other by
unitary transformations, on a multitude of cosmological
scenarios [21–24], including the case of Dirac fields in a flat
FLRW cosmology [25]. Actually, this criterion is, in turn,
motivated in the context of quantum cosmology by the so-
called hybrid approach to the quantization of inhomo-
geneous systems [26,27], which is based on a splitting of
the phase space into a homogeneous sector and an inho-
mogeneous sector, in a way that is specially suitable to
obtain a well-behaved dynamics for the complete cosmol-
ogy. Then, one quantizes the inhomogeneous degrees of
freedom (d.o.f.) employing a Fock representation with nice
ultraviolet properties, and the homogeneous geometry with
techniques inspired by a certain canonical approach to
quantum cosmology (for instance, the formalism known
as loop quantum cosmology [28], inspired by loop quantum
gravity [29]). In this context, one can actually restrict the
choice of the Fock vacuum even more, exploiting the
freedom allowed by the hybrid approach in a way to split
the d.o.f. into the homogeneous and inhomogenous sectors
that are to be quantized. Indeed, this was first done for
fermionic perturbations in inflationary cosmologies [30] in
an attempt to find a representation such that some kind of
quantum backreaction on the homogeneous cosmological
sector remains finite without the need of a regularization
scheme, and that one gets a Hamiltonian constraint that is
properly defined on the dense set of the Fock space spanned
by the n-particle/antiparticle states [31]. Additionally, it is
possible to further refine the description of the inflationary
cosmology and arrive at a recurrence relation by which the
dynamics of the annihilation and creation operators that
describe the fermionic, scalar, and tensor perturbations
become diagonal in the asymptotic limit of infinitely large
particle/antiparticle wave numbers [32,33].
This paper aims to bridge the gap between the two

schemes commented above for the choice of a Fock
vacuum in the case of a Dirac field minimally coupled
to a flat FLRW cosmology with compact hypersurfaces.

For that, we adapt the adiabatic scheme for the fermionic
field presented in the Dirac representation in Ref. [17],
inspired in turn by Ref. [18], to the Weyl representation
employed so far in hybrid quantum cosmology. We
compare these adiabatic vacua with those of the family
of unitarily equivalent Fock representations that arise from
the annihilation and creation operators defined in hybrid
quantum cosmology, restricted to the context of QFT in
curved spacetimes. The fundamental result that we obtain is
that all adiabatic states belong in fact to this equivalence
family, and that, for adiabatic orders greater than 0, they
allow the definition of annihilation and creation operators
in hybrid quantum cosmology that produce finite back-
reaction terms in the Hamiltonian constraint and give rise to
a properly defined Hamiltonian operator. Furthermore, in
the context of QFT, the unitary implementability of the
dynamics in such Fock quantizations guarantees that the
states constructed with adiabatic initial conditions at differ-
ent times of the cosmological evolution are all unitarily
related. Finally, in the appendix, we briefly analyze the
adiabatic approach proposed by Hollands in Ref. [16] from
an algebraic perspective, and argue that there generally
exist obstructions for its implementation to define Fock
vacua.
The structure of this paper is organized as follows.

In Sec. II we introduce the physical model, which consists
of a Dirac field treated as a perturbation around a flat,
inflationary FLRW cosmology, and then we summarize the
main properties of the choices of annihilation and creation
operators for the quantization of this fermionic field in
the hybrid approach. In Sec. III we apply the adiabatic
scheme to fermions in the Weyl representation. Section IV
is devoted to the comparison of these adiabatic states with
those associated with the choices of annihilation and
creation operators selected in hybrid quantum cosmology.
We show that all the adiabatic states determine Fock
representations that are unitarily equivalent to those of
the hybrid quantization. We summarize our conclusions
in Sec. V. The obstructions found in the adiabatic scheme of
Ref. [16] are discussed in the appendix. Throughout the
paper, we employ units such that ℏ ¼ c ¼ G ¼ 1.

II. PHYSICAL SYSTEM AND PROPERTIES
OF THE QUANTIZATION

Let us start by describing the spatially homogeneous part
of our system. We consider a flat FLRW spacetime
geometry specified by a scale factor ã. The spatial sections
that foliate this cosmology are compact and isomorphic to
the three-dimensional torus T3. As the matter content that
fuels the dynamics of this cosmological geometry, we
minimally couple a homogeneous scalar field (inflaton) ϕ̃
subject to a potential Vðϕ̃Þ.
In this cosmological model, we include a Dirac field with

mass M that is treated entirely as a perturbation (including
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its homogeneous component, if there is one). In order to
obtain a satisfactory Hamiltonian formulation of the entire
system, and contemplate the possibility of making canoni-
cal transformations that mix the homogeneous and fer-
mionic sectors, we truncate the action at quadratic order in
these perturbations [30,34]. One may also include pertur-
bations (of the same magnitude) of the spacetime metric
and the inflaton field, describing small anisotropies and
inhomogeneities. Nonetheless, we obviate them in our
analysis because, at the considered order of truncation,
they do not couple to the fermionic contribution that we
want to study. The truncated perturbative action supplies
the canonical structure and the constraints needed to
construct a Hamiltonian description of the whole system.
To work with the Dirac field, we use the Weyl repre-

sentation of the constant generators γb, b ¼ 0;…; 3, of the
Clifford algebra associated with the four-dimensional
Minkowski metric, namely,

γ0 ¼ i

�
0 I

I 0

�
;  γ ¼ i

�
0  σ

−  σ 0

�
; ð2:1Þ

where I is the two-dimensional identity matrix,  γ ¼
ðγ1; γ2; γ3Þ, and  σ ¼ ðσ1; σ2; σ3Þ is the tuple formed by
the three Pauli matrices. After imposing the time gauge on
the tetrad of the homogeneous cosmology (so that the
corresponding triad has no internal time components [30]),
we rescale the Dirac field by ã3=2 in order to get constant
Dirac brackets between this field and its complex con-
jugate. In addition, we exploit the symmetries of the
homogeneous spatial sections of the cosmological space-
time by expanding each of the two chiral components of
the fermionic field in a complete set of eigenespinors of the

Dirac operator −i  σ  ∇ on T3. These eigenspinors can be
divided into two subsets according to their helicity, with
label λ ¼ �1. Since the torus is compact, the spectrum of
the Dirac operator is discrete, with eigenvalues λωk, where
ωk ¼ 2πj  kþ  τj=l0,  k ∈ Z3, 2  τ can be any of the vertices
of the unit cube and characterizes the spin structure, and l0
is the compactification length of the torus. The eigenspinor
associated with λωk has the form (adopting a diagonal
fiducial coordinate system)

ξλð  kÞ exp ½i2πð  kþ  τÞ  x=l0�;

where  x are the spatial coordinates on the torus. The bispinor
ξλð  kÞ is normalized so that ξ†λξλ ¼ 1. The rescaledDirac field
can then be described by its left-handed and right-handed
time-dependent coefficients with helicity λ in an eigenspinor
expansion.These coefficients can behandled as orderedpairs
of Grasmann variables, respectively describing the left-
handed and right-handed components of the field and, up
to a constant factor l−3=20 , we call them ðx  k;λ; y  k;λÞ. Each of
these mode coefficients displays a nonvanishing Dirac

bracket only with its complex conjugate, in that case being
equal to −i.
We can then introduce annihilationlike variables a  k;λ for

particles and creationlike variables b̄  k;λ for antiparticles by
means of a canonical transformation of the form [25]

�a  k;λ

b̄  k;λ

�
¼
�
fk;λ1 fk;λ2

gk;λ1 gk;λ2

��
I −

1 − λ

2
ðI − σ1Þ

�� x  k;λ
y  k;λ

�
:

ð2:2Þ

We do not mix different modes of the Dirac operator and
only allow mode dependence of the coefficients of the
transformation through ωk, in order to respect the spatial
symmetries of the dynamics [25,32]. Besides, we ask that

fk;λ2 ¼ eiF
k;λ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jfk;λ1 j2

q
;

gk;λ1 ¼ eiJk;λ f̄k;λ2 ;

gk;λ2 ¼ −eiJk;λ f̄k;λ1 ; ð2:3Þ

where Jk;λ; F
k;λ
2 ∈ R, so that each annihilation and creation-

like variable only displays a nonvanishing Dirac bracket
equal to −i with its complex conjugate variable, giving rise
in this way to standard canonical anticommutation relations
for annihilation and creation operators. In our notation,
the overbar indicates complex conjugation. In general, we
allow for linear combinations (2.2) that depend on the
homogeneous sector, so that fk;λl ¼ fk;λl ðã; πã; ϕ̃; πϕ̃Þ, with
l ¼ 1, 2 and the symbol π (labeled with a subindex)
denoting canonical momenta. Following Ref. [30] (see
also Ref. [35]), we can complete the above transformation
of fermionic variables into a canonical transformation for
the whole system, including the FLRW cosmology. For
this, we must correct the homogeneous variables in order to
arrive at a set ða; πa;ϕ; πϕÞ that is canonical with the
annihilation and creationlike variables defined in Eq. (2.2).
Each of these definitions of fermionic variables can then be
understood as the selection of a particular dynamical
splitting of the homogeneous and fermionic d.o.f. in phase
space. In fact, each splitting results in a different identi-
fication of the fermionic contribution to the zero mode of
the Hamiltonian constraint [31], the only nontrivial con-
straint to which the system is subject. This contribution is,
in general, not diagonal, by which we mean that it contains
interacting terms of the sort of a  k;λb  k;λ. This is especially
relevant upon quantization, because a multitude of impor-
tant features depend on the behavior of the nondiagonal
part of the fermionic contribution to the Hamiltonian
constraint in the asymptotic limit of infinitely large ωk.
Indeed, choices of canonical annihilation and creationlike
variables that result in a decrease of asymptotic order for
the coefficients of these interacting terms turn out to display
much better physical properties.
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The conclusions about of the consequences of the
selection of variables for the fermionic perturbations proven
in previous works [25,31,32] can be summarized as follows:

(i) After one chooses a standard convention for particles
and antiparticles, the annihilation and creationlike
variables undergo an evolution that is unitarily im-
plementable in the context of QFT in a fixed FLRW
cosmology if and only if, in the asymptotic limit of
large ωk [25],

fk;λ1 ¼ Ma
2ωk

eiF
k;λ
2 þ θk;λ;

X
 k∈Z3

jθk;λj2 < ∞: ð2:4Þ

This condition ensures that the interacting fermionic
part of the Hamiltonian has asymptotic orderOðω−1

k Þ
[30]. Furthermore, all possible families of annihilation
and creation operators defined by means of coeffi-
cients of the form (2.4) define unitarily equivalent
Fock representations [25].

(ii) With a hybrid quantization of the entire system, it is
possible to identify a quantity, interpretable as a
backreaction, which appears in the quantum dynami-
cal equation of the fermionic states and that measures
the average difference between the quantum evolution
of the perturbed and unperturbed cosmology. Un-
fortunately, this quantity generally fails to be finite. In
this case, rather than regularize by performing a
“substraction of infinities,” one can further restrict
the choice of fermionic variables (and therefore the
way to split the d.o.f. in phase space) so that,
asymptotically [31],

θk;λ ¼ −i
πMπa
3l30ω

2
k

eiF
k;λ
2 þ ϑk;λ;

X
 k∈Z3

ωkjϑk;λj2 < ∞:

ð2:5Þ

(iii) One can go one step beyond and demand that the
interacting fermionic part of the Hamiltonian be
square summable. This happens to be the necessary
and sufficient condition for the Hamiltonian con-
straint to be properly defined in the dense set
spanned by the n-particle/antiparticle states within
Fock space, and amounts to requiring that the
following sequence be summable as well [31]:

fω2
kjϑk;λj2g  k∈Z3 : ð2:6Þ

(iv) The last step in this improvement of the properties of
the fermionic Hamiltonian upon quantization is a
recursive procedure to diminish, as much as desired,
the asymptotic order of its interacting part [32]. This
method of “asymptotic diagonalization” restricts
almost completely the choice of fermionic canonical
variables in the ultraviolet regime, leaving all the

possible remaining freedom in the determination of
the phases Jk;λ and Fk;λ

2 . More specifically, let us
start with the ansatz

fk;λ1 ¼ eiF
k;λ
2

X∞
n¼1

ð−iÞnþ1Γn

ωn
k

;

fk;λ2 ¼ eiF
k;λ
2

X∞
n¼0

ð−iÞnΓ̃n

ωn
k

;

Γn; Γ̃n ∈ R; ð2:7Þ

where Γ̃0 ¼ 1 and the coefficients Γ̃n ¼ Γ̃nðΓ1;…;
Γn−1Þ are fixed by the first condition in Eq. (2.3).
Then, for any n ≥ 0, the nondiagonal part of the
Hamiltonian is of order Oðω−n−1

k Þ if [32]

Γnþ1 ¼ −
Ma
2

Γ̃n þ
a
2

Xn
l¼1

�
ΓlfΓ̃n−l; Hj0g

− Γ̃n−lfΓl; Hj0g −
2

a
Γ̃lΓnþ1−l

−MðΓlΓn−l þ Γ̃lΓ̃n−lÞ
�
: ð2:8Þ

In all of these results, f·; ·g are the Poisson brackets of our
truncated systemandHj0 is theHamiltonian constraint of the
unpertubed FLRWcosmology. Recall also thatM is the bare
mass of the Dirac field.

III. ADIABATIC FERMIONIC STATES IN THE
WEYL REPRESENTATION

In order to introduce the adiabatic scheme, we first limit
our attention to situations in which the background vari-
ables are treated as classical functions of time that follow
the Hamilton trajectories dictated by Hj0 (namely, by the
Einstein equations in the linearized theory). In this way, we
can express all of our fermionic variables in terms of a
conformal time η, and work in the framework of QFT in a
fixed FLRW cosmology. In addition, we restrict all con-
siderations from now on to the trivial spin structure  τ ¼ 0,
as this is the choice that can be naturally extended to the
case of noncompact spatial sections, which is precisely the
scenario contemplated in Ref. [17] for the construction of
adiabatic states in the Dirac representation that we parallel
here, although now adopting the Weyl representation. Then,
given a choice of initial time η0, any set of annihilation and
creationlikevariables defined byEqs. (2.2) and (2.3) selects a
decomposition of the Dirac field of the form

ψðη;  xÞ ¼
X
 k∈Z3

X
λ¼�1

½u  k;λðη;  xÞA  k;λ þ v  k;λðη;  xÞB̄  k;λ�; ð3:1Þ

where we have defined the annihilation and creationlike
constant coefficients
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A  k;λ ¼ a  k;λðη0Þ; B̄  k;λ ¼ b̄−  k;λðη0Þ; ð3:2Þ

and

u  k;λðη;  xÞ ¼
ei2π  k  x =l0ffiffiffiffiffiffiffiffi

l30a
3

q
 

hIk;λðηÞξλð  kÞ
λhIIk;λðηÞξλð  kÞ

!
;

v  k;λðη;  xÞ ¼ −e−iJk;λðη0Þλγ2ū  k;λðη;  xÞ: ð3:3Þ
The functions ðhIk;λ; hIIk;λÞ are a basis of mode solutions of the
Dirac equation, and they are normalized so that jhIk;λj2 þ
jhIIk;λj2 ¼ 1 (this normalization is just a consequence of the
canonical anticommutation relations). Their explicit form in
terms of the time-dependent coefficients that define the
annihilation and creationlike variables in Eqs. (2.2) and
(2.3) is not needed yet, and hence we postpone specifying it
until the next section. We note that the spinors v  k;λ, that
contain the information about antiparticles in the decom-
position of the Dirac field are the charge conjugate of those
that describe the particles, u  k;λ, only if we fix Jk;λðη0Þ so that
v  k;λ ¼ −γ2ū  k;λ. Although this is not necessary in principle,
we choose to do so in order to maintain this charge
conjugation symmetry in the selected Fock representation.
The identification of adiabatic states proposed in

Ref. [17] for cosmological spacetimes was implemented
in the Dirac representation of the Clifford algebra. Here we
instead obtain these states in the Weyl representation
following the same line of reasoning that we summarize
below. Since the field ψ is a solution to the Dirac equation,
the variables ðhIk;λ; hIIk;λÞ in the decomposition (3.1)–(3.3)
satisfy the Schrödinger-like equation [25]

i∂ηh ¼ HðηÞh; h ¼
�hIk;λ
hIIk;λ

�
;

H ¼ λ

�−ωk Ma

Ma ωk

�
: ð3:4Þ

The construction of adiabatic states starts by diagonalizing
the time-dependent Schrödinger Hamiltonian HðηÞ. For
this, one performs an explicitly time-dependent change of
variables by means of a unitary matrix U0, such that the
new variables h0 ¼ U†

0h satisfy a similar equation, but with
a lower dominant asymptotic order in (inverse) powers of
ωk in the nondiagonal part. A valid choice is the unitary
matrix that brings H into its diagonal form D0. In this way,
one obtains

i∂ηh0 ¼ H0h0; H0 ¼ D0 − iU†
0∂ηU0: ð3:5Þ

This process can be repeated iteratively. At each step one
gets the following new variables and Hamiltonian:

hjþ1 ¼ U†
jþ1hj; Hjþ1 ¼ Djþ1 − iU†

jþ1∂ηUjþ1: ð3:6Þ

The diagonal matrix Djþ1 and the unitary matrix Ujþ1 are
found diagonalizing Hj, and then i∂ηhjþ1 ¼ Hjþ1hjþ1.
The important point for the adiabatic scheme is that the
dominant asymptotic order in the nondiagonal part of
Hj decreases at each iterative step, in the limit ωk → ∞.
Therefore, the approximation of hn by a solution h̃n to the
diagonal dynamics dictated by Dn gets more and more
accurate for large ωk as we increase the order n of our
adiabatic iteration. A straightforward integration of the
diagonal evolution gives

h̃nðηÞ ¼ Ũnðη; η̃0Þhðη̃0Þ;

Ũn ¼ diag

�
exp

�
−i
Z

η

η̃0

Ωn

�
; exp

�
i
Z

η

η̃0

Ωn

��
;

hðη̃0Þ ¼
�
1

0

�
; ð3:7Þ

where Ũn is a diagonal matrix and �Ωn are the diagonal
elements of Dn. This frequency Ωn is manifestly positive in
the asymptotic regime of infinitely large ωk. Besides, the
initial condition hðη̃0Þwas motivated in Ref. [17] in order to
select positive frequencies. With this choice, an adiabatic
Fock representation of order n is characterized as follows
by a specific basis of solutions hjnðηÞ of Eq. (3.4), which
we define in a similar way as for scalar fields [13]. They are
determined precisely by the initial conditions at time η0
obtained from the approximate solution at order n after
undoing all the changes of variables involved in the iterative
process,

hjnðη0Þ ¼
�Yn

i¼0

Uiðη0Þ
�
Ũnðη0; η̃0Þhðη̃0Þ: ð3:8Þ

Given the specific form of hðη̃0Þ, different choices of initial
time for the integration of the diagonal dynamics only yield
different constant global phases in the expansion of the Dirac
field ψ in terms of annihilation and creation operators.
Actually, these phases carry no relevant information about
the quantum properties of the field, and so we can choose
them freely and set η0 ¼ η̃0 for simplicity.
In the above discussion, we have applied the adiabatic

procedure directly to the decomposition (3.1)–(3.3) of the
fermionic field in the Weyl representation of the Clifford
algebra. Let us now show that the result coincides indeed
with that obtained in Ref. [17] employing the same type of
decomposition in the Dirac representation (and, therefore,
starting with a different Schrödinger Hamiltonian). The
change to the unitarily related Weyl representation can be
carried out as follows:

TγbDT
† ¼ γbW; T ¼ 1ffiffiffi

2
p
�
I −I
I I

�
: ð3:9Þ
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In the rest of this section, the sub/superscripts D and W
indicate spinors in the Dirac or the Weyl representation,
respectively. Thus, for the fermionic field, we have ψW ¼
TψD or, in terms of the basis of mode solutions associated
with a certain vacuum,

hW ¼ T̃hD; T̃ ¼ 1ffiffiffi
2

p
�
1 −λ
λ 1

�
; ð3:10Þ

where T̃ is clearly unitary, because λ2 ¼ 1. The Schrödinger
Hamiltonians in both representations are then unitarily
related by HW ¼ T̃HDT̃†, and therefore they have the same
diagonal form D0. It follows that the zeroth-order step in the
adiabatic iterative procedure is the samewhen applied to both
representations, except for the unitary matrix that diagonal-
izes the Hamiltonian, which changes as UW

0 ¼ T̃UD
0 . Since

this transformation is unitary and constant, the Schrödinger
Hamiltonian H0 needed for the next adiabatic step is
already the same at zeroth order, regardless of whether
one applies the procedure in the Dirac or the Weyl
representation. Hence, the same quantities must appear
as well in both representations for all the higher-order
steps up to the desired order n, including the conditions
(3.7) on hðη̃0Þ. It is then straightforward to conclude
what we wanted to check, namely, that, for an adiabatic
state of order n, one obtains the same set of solutions
independently of whether one first performs the adiabatic
construction in the Dirac representation and then trans-
forms to the Weyl representation, or alternatively one
applies the construction directly in the latter of these
representations, with the change between them given by
the transformation hWjn ¼ T̃hDjn.

IV. UNITARY EQUIVALENCE AND CHOICE
OF INITIAL TIME

The family of Fock representations for the Dirac field
presented in Sec. II is completely characterized by certain
background-dependent (or time-dependent, in the context
of QFT in the linearized theory) functions fk;λ1 ; fk;λ2 ,
and Jk;λ, subject to the conditions (2.3). In terms of them,
the basis of mode solutions for the field decomposition
(3.1)–(3.3) adopts the expression

hðηÞ ¼
�
I−

1− λ

2
ðI− iσ2Þ

�

×

 
f̄k;λ1 ðηÞαk;λðη;η0Þ−fk;λ2 ðηÞe−iJk;λðη0Þβ̄k;λðη;η0Þ
f̄k;λ2 ðηÞαk;λðη;η0Þþ fk;λ1 ðηÞe−iJk;λðη0Þβ̄k;λðη;η0Þ

!
;

ð4:1Þ

where we have taken into account that, for QFT in curved
spacetimes, the evolution of the variables defined in
Eqs. (2.2) and (2.3) comes from the dynamics dictated

by the Dirac equation, and is given by a Bogoliubov
transformation of the form [24,25]

a  k;λðηÞ ¼ αk;λðη; η0Þa  k;λðη0Þ þ βk;λðη; η0Þb̄  k;λðη0Þ;
b̄  k;λðηÞ ¼ ei½Jk;λðηÞ−Jk;λðη0Þ�ᾱk;λðη; η0Þb̄  k;λðη0Þ

− ei½Jk;λðηÞ−Jk;λðη0Þ�β̄k;λðη; η0Þa  k;λðη0Þ; ð4:2Þ

with jαk;λj2 þ jβk;λj2 ¼ 1. From these relations, it is then
clear that any adiabatic state defined by the initial con-
ditions (3.8) for hjnðηÞ at time η0 (equal to η̃0, for

simplicity) is associated to a choice of functions fk;λ
1jn and

fk;λ
2jn such that

0
B@ f̄k;λ

1jnðη0Þ
f̄k;λ
2jnðη0Þ

1
CA ¼

�
I −

1 − λ

2
ðI þ iσ2Þ

��Yn
i¼0

Uiðη0Þ
�
hðη0Þ:

ð4:3Þ
Here, we have used that αk;λðη0; η0Þ ¼ 1 and βk;λðη0;η0Þ¼0.
The quantities fk;λ

1jnðη0Þ and fk;λ
2jnðη0Þ depend, in general, on

the scale factor of the homogeneous cosmological back-
ground and its derivatives, evaluated at time η0. Extending
the dependence of these homogeneous variables on the
initial time η0 to the whole time domain indeed defines a
set of annihilation and creationlike variables in the same
way as in Eqs. (2.2) and (2.3), up to the choice of the
time-dependent phases Jk;λ and Fk;λ

2 . Actually, it is worth
noting that the initial value of these phases at time η0 is
already fixed, respectively, by imposing charge conjugation
symmetry and by relation (4.3).
Let us now analyze the properties of the resulting

adiabatic quantization and its associated annihilation and
creation operators. With respect to the asymptotic expan-
sion in the limit ωk → ∞, the adiabatic construction is such
that fk;λ

1jn maintains, for each n ≥ 1, the same dominant

terms that appear in fk;λ
1jn−1 up to order Oðω−n−1

k Þ.
Computing just the two first adiabatic orders, one observes
that

fk;λ
1j0ðηÞ ¼

MaðηÞ
2ωk

þOðω−2
k Þ; ð4:4Þ

fk;λ
1j1ðηÞ ¼

MaðηÞ
2ωk

þ iMa0ðηÞ
4ω2

k

þOðω−3
k Þ

¼ MaðηÞ
2ωk

− i
πMπaðηÞ
3l30ω

2
k

þOðω−3
k Þ: ð4:5Þ

In the last line we have denoted with a prime the total
derivative with respect to the conformal time, and used
Hamilton equations for the homogeneous cosmology in the
linearized theory in order to express the result in terms of
canonical variables. The dominant terms in these expressions
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(that are written explicitly) remain in higher-order adiabatic
states, according to our comments. Recalling then the results
listed in Sec. II, and, in particular, condition (2.4), we can see
just from the zeroth-order shown in Eq. (4.4) that all the
adiabatic states live in the family of unitarily equivalent vacua
that are determined by the annihilation and creationlike
variables (2.2) and (2.3), for which the quantum Heisenberg
evolution is unitarily implementable. Furthermore, for adia-
baticity order greater than 0, the Fock quantization of these
annihilation and creationlike variables leads to a finite mean
backreaction in hybrid quantum cosmology (in the sense
explained in Sec. II) and their contribution to the total
Hamiltonian constraint of the system is well defined on
the dense set of Fock space spanned by the states with a
definite number of particles/antiparticles.
Finally, let us comment on the relevance of the choice

of initial time η0 in the discussed construction of
fermionic adiabatic states. Indeed, each of these adiabatic
representations of the Dirac field depends on the time at
which one sets initial conditions of the form (3.8) for
the basis of mode solutions. Let us specifically call hη0jn the
basis of adiabatic solutions obtained with initial conditions
at time η0. Imagine that, rather than at η0, we imposed
adiabatic initial conditions at another time η1, getting in that
way a new basis of mode solutions hη1jn . According to our
discussion above [and, in particular, to formula (4.1)], the
two sets of solutions, evaluated at the same time η0, are
related by

hη1jnðη0Þ ¼
�
I −

1 − λ

2
ðI − iσ2Þ

�
½αk;λðη0; η1Þhη0jnðη0Þ

− iλσ2β̄k;λðη0; η1Þh̄η0jnðη0Þ�; ð4:6Þ
where we have fixed Jk;λðη1Þ ¼ ð3þ λÞπ=2 by requiring
charge conjugation symmetry. This relation between the
two sets of data at η0 is a Bogoliubov transformation, and
its unitary implementability in the quantum theory depends
exclusively on the square summability of the beta coef-
ficients, over all  k ∈ Z3. But we note that, in norm, these
coefficients are precisely the same that characterize the
dynamical transformations of the annihilation and creation-
like variables, whose evolution that we have seen is indeed
unitarily implementable. Hence, we conclude that any
two adiabatic representations that differ on the value of
the initial time at which one imposes the conditions (3.8)
are unitarily equivalent. Furthermore, this equivalence is
directly related to the fact that the representations allow the
definition of families of annihilation and creation operators
that can evolve unitarily.

V. CONCLUSIONS

In this work, we have investigated the relation between
the adiabatic construction and the criterion employed in
hybrid quantum cosmology to select Fock states that can

play the role of vacua for the Dirac field, treated as a
fermionic perturbation of an inflationary flat FLRW uni-
verse. Specifically, we have found that all adiabatic states
belong to the family of unitarily equivalent Fock vacua
employed in hybrid quantum cosmology, characterized by
the invariance under the isometries of the spatial sections
and by a unitarily implementable Heisenberg evolution of
the corresponding annihilation and creation operators when
the FLRW cosmology is regarded as a curved background.
Moreover, for adiabatic orders other than 0, they allow
quantizations with other desirable ultraviolet properties,
such as a finite backreaction term in the only nontrivial
constraint of the system and a properly defined fermionic
Hamiltonian operator.
Given a mode decomposition of a solution to the Dirac

equation, its coefficients determine a set of annihilation and
creation constant operators. The adiabatic scheme that we
have discussed makes use of this fact, selecting a particular
set of mode solutions. More specifically, any decomposition
is characterized by functions that satisfy a Schrödinger-like
equationwith a time-dependentHamiltonianmatrix.One can
introduce a series of time-dependent transformations on
these functions that decrease the asymptotic order of the
nondiagonal part of their Hamiltonian in the ultraviolet
regime of large wave numbers. If one neglects this non-
diagonal part once a certain asymptotic order is reached, it is
straightforward to construct a set of approximate solutions
and, in this way, specify amode decomposition. In this work,
we have adapted this procedure to the Weyl representation
of the Clifford algebra. The implementation in the Dirac
representation had been studied in Ref. [17]. We have
provided the transformation between these two representa-
tions and shown that the conclusions obtained in both cases
are consistent.
We have computed explicitly the approximate mode

solutions at the two lowest adiabatic orders and, with them,
we have identified the dominant and first subdominant
asymptotic terms for large ωk in the functions that define
the corresponding dynamical sets of annihilation and
creationlike variables. Comparing these asymptotic terms
with those that are characteristic of the family of Fock
quantizations admissible in hybrid quantum cosmology, we
have proven that all adiabatic vacua belong indeed to this
family and, furthermore, that for adiabatic orders other than
0, those vacua can be associated with annihilation and
creation operators that lead to well-defined mean back-
reaction contribution and fermionic quantum Hamiltonian
in the only nontrivial constraint of the system. These results
also ensure that the alternative adiabatic vacua constructed
with different choices of initial time for the integration of
the approximate mode solutions are all unitarily related.
In spite of the proven unitary equivalence between the

two considered quantization schemes, it is worth comment-
ing that the approach followed in hybrid quantum cosmol-
ogy possesses a useful feature that, in principle, is missing
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in the adiabatic proposal. Indeed, in the former approach
one starts by characterizing the set of admissible annihi-
lation and creationlike variables, including their dynamical
behavior, and therefore the genuine quantum fermionic
excitations that have desirable physical properties. On the
other hand, the adiabatic approach only defines a Fock
representation of the Dirac field in terms of constant
annihilation and creation operators. Without further infor-
mation, there is no unambiguous way of isolating, from the
evolution of the field, a Heisenberg dynamics with nice
quantum behavior that dictates exclusively the dynamical
transformations of those fermionic operators, separating
them from the background dependence. Clearly, after one
has introduced a dynamical family of annihilation and
creationlike variables in the hybrid approach, one can also
make the corresponding identification of adiabatic states.
This advantage of the hybrid strategy in specifying quan-
tum excitations of the field that are dynamically well
behaved can be a potential help to understand the origin
of the plausibly good ultraviolet properties of adiabatic
states. In fact, we have already seen here that the unitarity
of the Heisenberg dynamics of the fermionic operators in
the hybrid approach is capable of explaining the equiv-
alence (up to unitary transformations) of all the adiabatic
states, irrespectively of the time selected to set their initial
conditions. Finally, the splitting of the phase space into
a homogeneous and an inhomogeneous sector, which is
induced by the choice of variables in hybrid quantum
cosmology, is crucial for the later quantization of the
entire truncated cosmological system. In fact, this choice
may potentially be useful at higher orders of perturbative
truncation in the action, where the selected fermionic
variables could constitute a starting point in the search for
a new refined splitting of this kind that takes into account
the nonlinearities present in the higher-order system.
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APPENDIX: SOME COMMENTS ABOUT THE
ADIABATIC SCHEME PROPOSED BY

HOLLANDS

An alternative construction of adiabatic states has been
proposed by Hollands in Ref. [16]. The first step in this
procedure is to find a pseudodifferential operator (see e.g.,
Refs. [36,37]) T that factorizes the spinorial Klein-Gordon
operator, namely,

− ðinμ∇μ þ iK þHÞðinμ∇μ −HÞ
¼ −ðinμ∇μ þ iK þ TÞðinμ∇μ − TÞ; ðA1Þ

modulo an operator with smooth kernel. In this relation, H
is the one-particle Dirac Hamiltonian, K ¼ ∇νnν is the

extrinsic curvature of the spatial sections, and the operator

T has principal symbol σ1ðTÞð  x;  ξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hijð  xÞξiξj

q
, where

hij is the metric of the spatial sections. Although finding T
is a hard problem in general, one can construct approximate
solutions by means of an iterative method. We call Tn the
resulting operator after n steps. One then defines Ln;� ¼
Tn �H and looks for a positive Hermitic operator Qn
such that

Ln;þQnL�
n;þ þ L�

n;−QnLn;− ¼ 1: ðA2Þ

With this, one can define the following operators:

Bn ¼ Ln;þQnL�
n;þ; Bn;− ¼ L�

n;−QnLn;−; ðA3Þ

which must be symmetric and positive. These operators
determine the algebraic state desired for the quantization of
the Dirac field [16]. In fact, such a state corresponds to a
Fock representation if and only if Bn is a projector [38]. In
practice, to find these operators, it is convenient to
introduce their mode decomposition. This was done in
Ref. [16] by using the Dirac representation of the Clifford
algebra and a basis of spinors for which the one-particle
Hamiltonian is instantaneously diagonal,

uþ k;λ ¼
Uk;λffiffiffiffiffiffiffiffi
l30a

3
q �

ξλð  kÞ
0

�
ei2πð  kþ  τÞ  x=l0 ;

u−k;λ ¼
Uk;λffiffiffiffiffiffiffiffi
l30a

3
q �

0

ξλð  kÞ

�
ei2πð  kþ  τÞ  x=l0 ; ðA4Þ

where, defining ΔkðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
k þM2a2

q
, we have called

Uk;s ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ΔkðaÞ
p

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔkðaÞ þMa

p
−λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔkðaÞ−Ma

p
λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔkðaÞ−Ma

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔkðaÞ þMa

p
!
:

ðA5Þ

With this basis one may define the mode decomposition of
any differential operator B on the spatial sections by the
formulas

a3
Z
T3

d3  xf†1Bf2 ¼
X
 k;s;pq

bpq k;s
¯̃fp
1;  k;λ

f̃q
2;  k;λ

;

f̃p k;λ ¼ a3
Z
T3

d3  xðup k;λÞ†f; ðA6Þ

for any two spinors f1 and f2, with p; q ¼ �. In essence,
this decomposition maps operators (and pseudodifferential
operators) into 2 × 2 complex matrices while respecting
products and the adjoint operation.
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In the following, to simplify our notation, we drop from
it the dependence on  k and λ unless explicitly stated. In
addition, we use lowercase letters to refer to the mode
decomposition of the operators, with the correspondence
Tn → τn, H → h, Qn → qn, Ln → ln, and Bn → bn.
Besides, we recall that the prime symbol denotes the total
derivative with respect to the conformal time. The decom-
position (A1), as given by Eq. (A6), can then be reex-
pressed as

iτ0 þ 3ia0

2a
τ þ ½τ; d� þ aτ2 ¼ ih0 þ 3ia0

2a
hþ ½h; d� þ ah2;

ðA7Þ
where

d ¼ iU�ð∂ηUÞ ¼
λωkMa0

2ðω2
k þM2a2Þ σ2: ðA8Þ

The procedure to determine τn goes as follows. Starting
from the ansatz τn ¼

P
n
j¼0 ϑj, with ϑj ¼ Oðω1−j

k Þ, and
setting τ0 ¼ diag½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a−2ω2

k þM2
q

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a−2ω2

k þM2
q

�, one sol-
ves (A7) iteratively, obtaining

ϑnþ1 ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
k þM2a2

q ½FðhÞ − FðτnÞ�; ðA9Þ

where we have defined FðoÞ¼io0þ3iðlnaÞ0o=2þ½o;d� þ
ao2. The mode versions of Eqs. (A2) and (A3) are then
used to construct bn. In order for the algebraic state
resulting from the operator Bn to correspond to a Fock
representation, that operator must be a nontrivial projector,
something that requires that bn be singular. Unfortunately
this turns out not to be the case in the system that we are
considering, as can be checked by noticing that, for all
n ≥ 1,

ln;þ ¼ diag

�
2ωk

a
;−

ia0

2a

�
þOðω−1

k Þ;

qn ¼ diag

�
a2

4ω2
k

;
a2

4ω2
k

�
þOðω−3

k Þ: ðA10Þ

This result implies that, except for the trivial case of a
constant scale factor, detðbnÞ is always of asymptotic order
ω−2
k , and thus dominant over Oðω−n

k Þ for all n ≥ 3.
Therefore, at each order n ≥ 3, the operator Bn fails to
be singular (even if one truncates it at asymptotic order
ω1−n
k ), and so it cannot be a projector. The corresponding

algebraic states are thus not suitable to be employed in
hybrid quantum cosmology, inasmuch as they do not define
Fock representations, and hence they cannot be compared
with our family of unitarily equivalent Fock vacua.
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In this work we show how the criterion of asymptotic Hamiltonian diagonalization originated in hybrid
quantum cosmology serves to pick out a unique vacuum for the Dirac field in de Sitter, in the context of
quantum field theory in curved spacetimes. This criterion is based on the dynamical definition of
annihilation and creationlike variables for the fermionic field, which obey the linearized dynamics of a
Hamiltonian that has been diagonalized in a way that is adapted to its local spatial structure. This leads to
fermionic variables that possess a precise asymptotic expansion in the ultraviolet limit of large wave
numbers. We explicitly show that, when the cosmological background is fixed as a de Sitter solution, this
expansion uniquely selects the choice of fermionic annihilation and creationlike variables for all spatial
scales, and thus picks out a unique privileged Fock representation and vacuum state for the Dirac field in de
Sitter. The explicit form of the basis of solutions to the Dirac equation associated with this vacuum is then
computed.

DOI: 10.1103/PhysRevD.101.123530

I. INTRODUCTION

One of the solutions of general relativity (GR) that
deserves special attention in modern cosmology is de Sitter
spacetime. This is because, in the context of primordial
cosmology, this solution approximates quite well the
expected behaviour of an inflationary period in the evolu-
tion of the Universe. The practical benefits of this approxi-
mation are numerous, among which it is remarkable the
application to the quantum field theory (QFT) description
of cosmological perturbations. Indeed, for cosmological
inflationary models driven by a spin-0 matter field (the
inflaton), the standard theoretical guideline for the choice
of an initial quantum state of the inhomogeneous pertur-
bations in the metric and the inflaton at the onset of
inflation is to select an analogue of the Bunch-Davies (BD)
vacuum [1,2]. This is, in turn, the preferred Fock vacuum of
a quantum scalar field propagating in de Sitter, that is
picked out as the unique Hadamard state among those that
are invariant under the isometry group of de Sitter space-
time, that is maximally symmetric [3–5]. Interestingly, the
power spectra of cosmological perturbations that is pre-
dicted in GR with such a choice of BD vacuum agrees, to a

high degree of accuracy, with the current experimental
observations of the cosmic microwave background [6–9].

The physical and mathematical properties of the BD
vacuum (and its associated Fock representation) for scalar
fields have been thoroughly studied in the literature (see,
e.g., Refs. [10–17]). For higher spin fields, and in particular
for the case of the spin-1=2Dirac field, generalizations of the
notion and features of the BD vacuumhave also beenwidely
discussed in the literature [18–21], even though the unique-
ness of the resulting statemight not be as broadly established
as for scalar fields. The aim of this paper is to justify a
physically natural choice of Fock vacuum state in de Sitter
spacetime, for a minimally coupledDirac field, that displays
BD-like properties and that finds its motivation in the
context of quantum cosmology. More specifically, we will
explicitly derive the unique Fock representation that turns
out to be selected by the criterion of asymptotic Hamiltonian
diagonalization, recently introduced for the so-called hybrid
approach to canonical quantum cosmology [22].
Hybrid quantum cosmology [23,24] is an strategy for the

canonical quantization of spacetimes that contain inhomo-
geneities, but also possess some notion of symmetry. Such
is the case, for instance, of the system formed by matter and
metric perturbations over an otherwise homogeneous and
isotropic inflationary cosmology of the Friedmann-
Lemaître-Robertson-Walker (FLRW) type [25–30]. In par-
ticular, the quantization strategy is based on the use of
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different representation techniques for the canonical alge-
bra that describes the homogeneous degrees of freedom, on
the one hand, and for the algebra that contains the
inhomogeneous fields, on the other hand. The homo-
geneous algebra is represented with techniques imported
from a theory of quantum gravity or quantum cosmology,
e.g., loop quantum gravity [31], while the inhomogeneous
fields are given a more conventional Fock representation.
From a theoretical point of view, the first important
condition that one should require from this approach is
that the combination of the two different quantum repre-
sentations consistently leads to nicely defined operator
versions of the constraints of the gravitational system. To
that end, it becomes necessary to carry out a sensible choice
of canonical splitting between the homogeneous and
inhomogeneous sectors of phase space, in view of their
posterior quantization, taking into account the qualitatively
different quantum descriptions that are going to be adopted
for them.
Declaring which part of the phase space should corre-

spond to the inhomogeneous fields in hybrid quantum
cosmology has been the central point of several inves-
tigations. Actually, this ambiguity can be codified alto-
gether with the freedom in the choice of a Fock
representation for them, by means of families of variables
that are the classical counterpart of the annihilation and
creation operators, obtained through canonical transforma-
tions in the entire phase space that respect the basic
symmetries of the homogeneous sector. The first physical
criterion for any admissible Fock representation in hybrid
quantum cosmology should then be that, in the context of
QFT in curved spacetimes (and hence regarding the
homogeneous sector as classical), the annihilation and
creation operators undergo an evolution that can be im-
plemented by a quantum unitary transformation [32–40].
This criterion of choice has been further restricted in the
context of fermionic perturbations in hybrid quantum
cosmology, in such a way that certain effective back-
reaction to the Hamiltonian constraint does not develop
divergences, without the need of introducing any regulari-
zation procedure [41]. Finally, and motivated by these
previous conditions, the most recent works on the theo-
retical formulation of the hybrid quantization of both
fermionic and scalar cosmological perturbations have
proposed an approach that aims to remove all the ambi-
guities (up to irrelevant phases) in the choice of the
canonical algebra associated with the perturbations, that
is going to be quantized à la Fock [22,42]. The approach
tries and constructs a quantum description of the inhomo-
geneities such that the local structure of the Hamiltonian
contains no self-interaction contributions in terms of the
annihilation and creation operators, and thus it is asymp-
totically diagonalized in the ultraviolet regime of short
scales. Such a criterion turns out to completely fix, in an
asymptotic expansion, the dynamical definition of those

operators, expansion from which one may hope to uniquely
determine them globally. In the restricted context of QFT in
a de Sitter background cosmology, this hope was actually
realized for the scalar perturbations, resulting in the
specification of the well-known BD vacuum [42]. In this
paper, we show in detail how the criterion of asymptotic
diagonalization also serves to uniquely fix the choice of
vacuum in de Sitter for fermionic perturbations of the Dirac
type. The result provides a privileged Fock representation
of the Dirac field in de Sitter spacetime for which the
selection criterion is univocally characterized and well
understood.
The structure of this paper is as follows. In Sec. II we

introduce the fermionic perturbations for a general FLRW
cosmological background, and the fermionic variables that
are going to be promoted to annihilation and creation
operators that display a dynamical evolution that is dictated
by a diagonal Hamiltonian. We summarize the procedure to
construct these variables, that is based on an asymptotic
diagonalization. In Sec. III we explicitly solve the problem
of finding the most general family of annihilation and
creation operators that evolve without self-interaction in a
fixed de Sitter background. We then show how the method
of asymptotic diagonalization of the Hamiltonian, adapted
to its local structure, serves to fix a unique set of
annihilation and creation operators, and give the specific
form of the corresponding privileged Fock representation.
Finally, in Sec. IV we summarize our results.
Throughout the text, we employ natural units, so

that G ¼ c ¼ ℏ ¼ 1.

II. FERMIONIC VACUUM IN HYBRID
QUANTUM COSMOLOGY

In this paper we focus our attention on a system that has
been extensively studied in hybrid quantum cosmology: a
spatially flat homogeneous FLRW spacetime which is
minimally coupled to a homogeneous scalar field with a
certain potential, as well as to an inhomogeneous Dirac
field. The spatial hypersurfaces of this cosmology are taken
to be compact, isomorphic to the three torus T3. The FLRW
metric can be described in terms of a scale factor ã. On the
other hand, we treat the Dirac field entirely as a perturba-
tion of the system. Moreover, whenever we consider
canonical transformations that mix the fermionic degrees
of freedom with the homogeneous background, we adopt a
truncation scheme in which we only preserve contributions
to the Einstein-Dirac action that are at most quadratic in
the perturbations. The transformations are viewed as
canonical within the framework of this perturbative trun-
cation, including the symplectic structure of the system.
Potentially, one may also introduce perturbations of the
metric and the scalar field, and work consistently within our
truncation scheme and a canonical framework for the entire
cosmological system [28–30].
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For the description of the Dirac field ψ , we use the Weyl
representation of the constant Clifford algebra associated
with the four-dimensional flat metric,

γ0 ¼ i

�
0 I

I 0

�
;  γ ¼ i

�
0  σ

−  σ 0

�
; ð2:1Þ

where I denotes the identity matrix (here, in two dimen-
sions),  γ ¼ ðγ1; γ2; γ3Þ, and  σ ¼ ðσ1; σ2; σ3Þ is the triple
formed by the three Pauli matrices. In addition, we fix the
gauge time direction of the tetrads so that it coincides with
the (future-directed) normal vector to the homogeneous
spatial hypersurfaces, in order to simplify the Dirac
brackets of the field [43] and so that, with respect to its
local Lorentz transformation properties, we can regard it as
two representation spaces of SUð2Þ, rather than SLð2;CÞ
[39]. Then, we exploit the high symmetry and compactness
of the flat homogeneous spatial hypersurfaces in order to
decompose the Dirac field in terms of a complete set of
modes [30,39,40],

ψðt;  xÞ ¼
X
 k∈Z3

X
λ¼�1

ei2π  k  x =l0ffiffiffiffiffiffiffiffi
l30ã

3
q

� x  k;λðtÞξλð  kÞ
y  k;λðtÞξλð  kÞ

�
;

−i  σ  ∇½ξλð  kÞei2π  k  x =l0 � ¼ λωkξλð  kÞei2π  k  x =l0 : ð2:2Þ

Here, l0 is the compactification length of the torus, λωk are

the eigenvalues of the Dirac operator −i  σ  ∇ on T3, where
λ ¼ �1 represents the helicity, the two-component objects
ξλð  kÞ expði2π  k  x =l0Þ are its eigenspinors, and ωk ¼
2πj  kj=l0 with  k ∈ Z3. In addition, we are imposing
spatially periodic boundary conditions to the Dirac field,
restricting ourselves in this way to the trivial choice of spin
structure in T3 [44]. The time-dependent coefficients
ðx  k;λ; y  k;λÞ are Grassmann variables that only display non-
vanishing Dirac brackets with their complex conjugates,
each of these nontrivial brackets being equal to −i.
In the truncation scheme that we have adopted, these

fermionic variables contribute to the total Hamiltonian of
the system only through the zero-mode of the Hamiltonian
constraint. Explicitly, this fermionic contribution to the
Hamiltonian is given by [30]

H̃D ¼ N0

X
 k;λ

½Mðȳ  k;λx  k;λ þ x̄  k;λy  k;λÞ

− ã−1λωkðx̄  k;λx  k;λ − ȳ  k;λy  k;λÞ�; ð2:3Þ

whereM is the bare mass of the Dirac field, N0 is the lapse
function of the homogeneous FLRW background, and an
overbar indicates complex conjugation. We exclude from
all of our considerations and sums the terms with  k ¼ 0,
namely the fermionic zero-modes, since they contribute to
the Hamiltonian in a slightly different manner and can be

isolated and quantized separately. For instance, one could
directly adopt a standard holomorphic representation for
the (finitely many) anticommuting variables that describe
these zero-modes (for details on this type of quantization,
see, e.g., Ref. [45]). On the other hand, let us notice that
modes corresponding to different values of  k and λ
completely decouple in H̃D, and that the coefficients of
the fermionic variables only depend on λωk, but not on the
degeneracy of these eigenvalues of the Dirac operator (i.e.,
they only depend on the helicity and on the norm of  k). This
is mostly a manifestation of the spatial symmetries of the
spatial sections, together with the conservation of the
helicity of the field in FLRW cosmologies [40].
The freedom that exists in hybrid quantum cosmology in

the way to split the phase space into a homogeneous sector
and an inhomogeneous sector can be captured in the choice
of a background-dependent family of variables of annihi-
lation and creation type for the description of the dynamical
Dirac field, respecting the symmetries of the Hamiltonian
that we have commented in the above paragraph. These
families of variables are of the general form

� a  k;λ

b̄−  k;λ

�
¼

�
fk;λ1 fk;λ2

gk;λ1 gk;λ2

��
I −

1 − λ

2
ðI − σ1Þ

�� x  k;λ
y  k;λ

�
:

ð2:4Þ

As we have indicated, the coefficients fk;λl and gk;λl , with
l ¼ 1, 2, are in principle allowed to depend on the
canonical variables that determine the homogeneous cos-
mological background: the scale factor ã, the homogeneous
scalar field, and their canonical momenta. These coeffi-
cients are subject to the following relations:

fk;λ2 ¼ eiF
k;λ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jfk;λ1 j2

q
; gk;λ1 ¼ eiJk;λ f̄k;λ2 ;

gk;λ2 ¼ −eiJk;λ f̄k;λ1 ; ð2:5Þ

that ensure that the transformation of the pair ðx  k;λ; y  k;λÞ to
ða  k;λ; b̄−  k;λÞ is canonical with respect to the symplectic
structure restricted to the fermionic sector of phase space.
Here, Fk;λ

2 and Jk;λ are unspecified phases. The standard
convention is then to regard a  k;λ as the prequantum version

of annihilation operators of particles, and b̄  k;λ as the
variables that are going to be promoted to creation
operators of antiparticles. Every single specification of
such variables for all wave vectors  k defines a different
Fock quantization of the fermionic field.
We notice that, since the coefficients fk;λl and gk;λl that

define them depend generally on the homogeneous cos-
mological background or, from a classical perspective, on
time, the Hamiltonian that dictates the linearized classical
dynamics of these annihilation and creationlike variables is
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different from H̃D in Eq. (2.3). In the linearized classical
scenario, where the homogeneous background is fixed as a
cosmological FLRW solution in GR, the difference
between both Hamiltonian functions is just the time
derivative of the generating function of the canonical
transformation given by Eqs. (2.4) and (2.5). This change
in the Hamiltonian can be realized within the canonical
framework of the entire system, that is employed in hybrid
quantum cosmology, by completing our change of fer-
mionic variables into a canonical transformation for the full
cosmology, that also includes the homogeneous back-
ground. This is achieved, at the considered order of
perturbative truncation, by correcting the variables of the
homogeneous sector with the addition of very specific
terms that are quadratic in the fermionic perturbations. In
particular, we denote by a the resulting new scale
factor. We refer the reader to Refs. [22,28,30,41] for the
specific details of this procedure. Expressing the total
Hamiltonian in terms of the new canonical set of variables
for the complete system gives rise to the following
contribution [22]:

HD ¼ N0

X
 k;λ

½2hk;λD ðā  k;λa  k;λ þ b̄  k;λb  k;λÞ þ fJk;λ; Hj0gb̄  k;λb  k;λ

þ h̄k;λI a  k;λb−  k;λ − h
 k;ðx;yÞ
I ā  k;λb̄−  k;λ�; ð2:6Þ

where we have imposed normal ordering of the Grassmann
variables, and

hk;λD ¼ ωk

2a
ðjfk;λ2 j2 − jfk;λ1 j2Þ þMReðfk;λ1 f̄k;λ2 Þ

þ i
2
ðf̄k;λ1 ffk;λ1 ; Hj0g þ f̄k;λ2 ffk;λ2 ; Hj0gÞ; ð2:7Þ

hk;λI ¼ e−iJk;λ ½ifk;λ1 ffk;λ2 ; Hj0g − ifk;λ2 ffk;λ1 ; Hj0g
þ 2ωka−1f

k;λ
1 fk;λ2 þMðfk;λ1 Þ2 −Mðfk;λ2 Þ2�: ð2:8Þ

In all of these expressions, f:; Hj0g denotes the Poisson
bracket with the Hamiltonian constraint Hj0 of the homo-
geneous FLRW inflationary cosmology, evaluated at the
new background variables. For concreteness, let us note
that this is the cosmological model that can be obtained
from ours by ignoring or eliminating the perturbations. Its
Hamiltonian is given by N0Hj0. Hence, the considered
Poisson bracket is just the derivative with respect to the
proper time in the context of linearized classical cosmol-
ogy. In addition, all the functions of the background in
Eq. (2.6) are functionally evaluated on the new canonical
variables for the description of this homogeneous sector.
The symbol Reð·Þ stands for the real part. Finally, in what
follows we will restrict Jk;λ to be constant, in order not to
introduce any artificial asymmetry in the dynamics of the
annihilation and creationlike variables for particles and
antiparticles [see Eq. (2.6)].

A. Asymptotic diagonalization

A look at the Hamiltonian (2.6) immediately shows that,
dynamically, the creation and annihilation of pairs of
particles and antiparticles is ruled by the function hk;λI of
the homogeneous background. Importantly, it is this self-
interactive part of the fermionic Hamiltonian what can
produce the most severe QFT-type of divergences in the
quantum theory [30,41]. The issue is directly related to the
asymptotic behavior of this function, in the ultraviolet limit
of large wave numbers ωk. Remarkably, this ultraviolet
behavior is greatly tamed by the criteria put forward in
hybrid quantum cosmology of (i) requiring that the
fermionic annihilation and creation operators can evolve
unitarily in the context of QFT in curved spacetimes
[30,40]; and (ii) asking that the Fock representation of
the fermionic contribution to the Hamiltonian constraint
(2.6) is well defined on the vacuum, something that actually
guarantees that certain backreaction effects in the hybrid
quantum theory are nondivergent without the need of any
regularization [41]. Technically, these criteria succeed in
eliminating the first few dominant asymptotic contributions
of hk;λI (in powers of the scale ωk). Furthermore, by
imposing these criteria one derives the additional benefit
of restricting the asymptotic form of the annihilation and
creationlike variables (2.4), and thus the choice of their
Fock representation.
Motivated by these results, a more restrictive criterion,

intended for the complete determination of the Fock
quantization of the fermionic perturbations, has been
recently proposed [22]. It aims to diminish as much as
possible the interaction terms in their Hamiltonian, in the
ultraviolet regime of large ωk. For that, one starts with
annihilation and creationlike variables that admit a unitarily
implementable dynamics in QFT, within the unique family
of unitarily equivalent representations that possess such
property, adhering to a standard convention for particles
and antiparticles [40]. Then, an iterative procedure (that we
call asymptotic diagonalization), applied order by order in
inverse powers of the Fourier scale ωk, univocally leads to a
complete asymptotic elimination of the interaction terms
hk;λI , requiring that [22]

fk;λ1 ¼ fk;λ2 φk;λ; φk;λ ∼
1

2ωk

X∞
n¼0

�
−

i
2ωk

�
n
γn; ð2:9Þ

where

γ0 ¼ Ma; γnþ1 ¼ afHj0; γng þMa
Xn−1
m¼0

γmγn−ðmþ1Þ;

∀ n ≥ 0: ð2:10Þ

We note that, up to the phases Fk;λ
2 and Jk;λ, relations (2.5),

(2.9), and (2.10) uniquely provide asymptotic expansions
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of the coefficients that define the annihilation and creation-
like variables for the fermionic perturbations. Specifically,
relations (2.5) directly imply that

jfk;λ2 j2 ¼ 1

1þ jφk;λj2
; ð2:11Þ

so, as an asymptotic expansion, fk;λ2 ≠ 0 in our
characterization.
The actual hope in hybrid quantum cosmology is that,

even if in the form of as an asymptotic expansion, the
diagonalization explained above can be used to select (up to
the mentioned phases) a complete set of fermionic anni-
hilation and creation operators for all wave vectors  k ≠ 0,
and hence a specific Fock quantization of the fermionic
excitations. In fact, assuming that fk;λ2 ≠ 0, as it is required
by the standard convention of particles and antiparticles
[40], the elimination of interaction terms hk;λI in the
fermionic Hamiltonian for all ωk ≠ 0 is attained if and
only if

afφk;λ; Hj0g þ 2iωkφk;λ þ iaMφ2
k;λ − iaM ¼ 0: ð2:12Þ

This is a semilinear partial differential equation for φk;λ, and
the current concern regarding the asymptotic diagonaliza-
tion criterion in hybrid quantum cosmology is whether the
asymptotic expansion (2.9) uniquely characterizes a sol-
ution. In the upcoming section, we argue that this is indeed
the case when the homogeneous background describes a de
Sitter spacetime, and the fermionic perturbations are
considered within the linearized context of QFT in curved
spacetimes.

III. UNIQUE VACUUM IN DE SITTER

We now restrict all our attention to the scenario of
cosmological models with negligible backreaction of the
perturbations on the homogeneous background, situation in
which this background follows the classical dynamics of an
FLRW spacetime fuelled with a homogeneous scalar field.
In practice, this means that the old and new variables that
describe the homogeneous cosmology can be identified (in
particular, we have a ¼ ã), and that the Poisson bracket
af:; Hj0g is the derivative with respect to conformal time, η.
The metric that describes the de Sitter spacetime is a
particular solution of the considered, classical flat FLRW
cosmologies, expressed in coordinates that correspond to
its flat slicing [2]. Specifically, this solution can be reached
with a constant potential for the scalar field. In conformal
time, the scale factor then behaves as

a ¼ −ðηHΛÞ−1; −∞ < η < 0; ð3:1Þ

where HΛ is the Hubble constant. In this de Sitter back-
ground, the general condition (2.12) that cancels the

interaction terms in the fermionic Hamiltonian becomes
the following Riccati equation

φ0
k;λ þ 2iωkφk;λ − iMðηHΛÞ−1φ2

k;λ þ iMðηHΛÞ−1 ¼ 0;

ð3:2Þ

where the prime denotes the derivative with respect to η. In
order to eventually find the general solution to this
equation, we introduce the standard change of variable

φk;λ ¼ iηM−1HΛðlog uk;λÞ0; ð3:3Þ

which leads to the second-order linear equation

u00k;λ þ ð2iωk þ η−1Þu0k;λ þ ðM−1HΛηÞ−2uk;λ ¼ 0: ð3:4Þ

We can bring this equation to a well-known ordinary
differential equation if we redefine uk;λ ¼ eiMtvk;λ, where
t is the comoving cosmological time, in terms of which the
scale factor is a ¼ exp ðHΛtÞ. In this way, and introducing
the mode-dependent complex time Tk ¼ −2iωkη, we
finally arrive at

Tk
d2vk;λ
dT2

k

þ ð1 − 2iMH−1
Λ − TkÞ

dvk;λ
dTk

þ iMH−1
Λ vk;λ ¼ 0:

ð3:5Þ

This is a confluent hypergeometric equation in the complex
variable Tk [46]. Its general solution is given by the
following linear combination of convergent hypergeomet-
ric functions:

vk;λ ¼ A1F1ð−iMH−1
Λ ; 1 − 2iMH−1

Λ ;TkÞ
þ BT

2iMH−1
Λ

k 1F1ðiMH−1
Λ ; 1þ 2iMH−1

Λ ;TkÞ; ð3:6Þ

where A and B are arbitrary complex integration constants
that may in general depend on ωk and λ, even if we have not
indicated explicitly this possibility. For concreteness, we
recall the definition of the hypergeometric function of type
ðp; qÞ, as a formal power series,

pFqðb1;…; bp; c1;…; cq; zÞ ¼
X∞
n¼0

ðb1Þn…ðbpÞn
ðc1Þn…ðcqÞn

zn

n!
;

ðbÞn ¼
�
1 if n ¼ 0;

bðbþ 1Þ…ðbþ n − 1Þ if n > 0;
ð3:7Þ

for b equal to any of the complex numbers
b1;…; bp; c1;…; cq. Let us point out that this series
converges absolutely for all z if p ≤ q, while it has a
vanishing radius of convergence if p > qþ 1 [46].
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A. Uniqueness from asymptotic diagonalization

In the de Sitter background, formula (3.6) can be used to
obtain the form of the general solution φk;λ ¼ fk;λ1 ðfk;λ2 Þ−1
to Eq. (3.2) and, by means of relation (2.11), the coef-
ficients for the definition of fermionic annihilation and
creationlike variables that display no dynamical self-inter-
action. In what follows, we show that the criterion of
asymptotic diagonalization, that leads to the asymptotic
expansion given in Eqs. (2.9) and (2.10), uniquely deter-
mines a pair of integration constants A and B in Eq. (3.6)
(up to a global multiplicative factor), and hence a unique
solution φk;λ.
Let us start by studying the iterative relation (2.10) for

the coefficients γn that appear in the asymptotic diagonal-
ization expansion, for the classical de Sitter cosmological
background. In the considered linearized context, it reads

γ0 ¼ −MðHΛηÞ−1;

γnþ1 ¼ −γ0n −MðHΛηÞ−1
Xn−1
m¼0

γmγn−ðmþ1Þ; ∀ n ≥ 0:

ð3:8Þ

It is not hard to check that its solution leads to an
asymptotic expansion for φk;λ of the form

φk;λ ∼ iT−1
k

X∞
n¼0

ð−TkÞ−nCn;

C0 ¼ MH−1
Λ ;

Cnþ1 ¼ ðnþ 1ÞCn þMH−1
Λ

Xn−1
m¼0

CmCn−ðmþ1Þ; ∀ n ≥ 0:

ð3:9Þ

We do not need to solve the complicated iterative equation
for these coefficients, as all the relevant information is
contained in the associated expansion of vk;λ, that we
explicitly determine below. In fact, the deduced expression
greatly constrains the asymptotic behavior of the corre-
sponding, particular solution vk;λ of the confluent hyper-
geometric equation (3.5). Indeed, since

φk;λ ¼ 1þ iM−1HΛTk
d

dTk
ðlog vk;λÞ; ð3:10Þ

the asymptotic expansion in inverse powers of Tk that we
have obtained for φk;λ implies that, necessarily,

vk;λ ∼ T
iMH−1

Λ
k

X∞
n¼0

ð−TkÞ−nvn; with v1 ¼ ðMH−1
Λ Þ2v0:

ð3:11Þ

The imaginary power of Tk that appears in the above
expression in fact is needed to eliminate the term of order 1
in φk;λ, so that the function Tkφk;λ dominantly behaves like
iMH−1

Λ when ωk → ∞, as it is required by Eq. (3.9). If we
introduce this asymptotic expansion for vk;λ in the con-
fluent hypergeometric equation that it must satisfy, we find
a recursion relation for its constant coefficients vn,

vnþ1 ¼
ðnþ iMH−1

Λ Þðn − iMH−1
Λ Þ

nþ 1
vn: ð3:12Þ

The solution is clearly

vn ¼
v0
n!

ðiMH−1
Λ Þnð−iMH−1

Λ Þn ð3:13Þ

for an arbitrary constant v0, and where we have used the
notation introduced in Eq. (3.7). So, the asymptotic
expansion selected for vk;λ by our Hamiltonian diagonal-
ization corresponds to the hypergeometric function

vk;λ ∼ v0T
iMH−1

Λ
k 2F0ðiMH−1

Λ ;−iMH−1
Λ ;−;−T−1

k Þ; ð3:14Þ

that has a vanishing radius of convergence. Here, the
hyphen between semicolons in the argument of the hyper-
geometric function just indicates the case q ¼ 0 of its
definition, case for which the denominator in Eq. (3.7)
becomes the factorial of n. Even though it is formally
divergent, this is precisely the asymptotic expansion (up to
the global factor v0) of a very particular recessive solution
of the confluent equation, known as the Tricomi solution
[46,47]. We now explicitly prove that this solution is
actually the only one that admits such an asymptotic
behavior. To do so, we first need the asymptotic expansion
of the general solution (3.6) for arbitrary constants A and B.
Actually, for −π=2 < argðzÞ < 3π=2, it holds that [47]

1F1ðb; c; zÞ ∼
ΓðcÞ

Γðc − bÞ z
−beiπb2F0ðb; 1þ b − c;−;−z−1Þ þ ΓðcÞ

ΓðbÞ z
b−cez2F0ðc − b; 1 − b;−; z−1Þ; ð3:15Þ

so the general solution (3.6) of our confluent equation has the following asymptotic expansion with respect to Tk:
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vk;λ ∼ T
iMH−1

Λ
k 2F0ðiMH−1

Λ ;−iMH−1
Λ ;−;−T−1

k Þ
�
A
Γð1 − 2iMH−1

Λ Þ
Γð1 − iMH−1

Λ Þ eπMH−1
Λ þ B

Γð1þ 2iMH−1
Λ Þ

Γð1þ iMH−1
Λ Þ e−πMH−1

Λ

�

þ eTkT
−1þiMH−1

Λ
k 2F0ð1 − iMH−1

Λ ; 1þ iMH−1
Λ ;−;T−1

k Þ
�
A
Γð1 − 2iMH−1

Λ Þ
Γð−iMH−1

Λ Þ þ B
Γð1þ 2iMH−1

Λ Þ
ΓðiMH−1

Λ Þ
�
: ð3:16Þ

The two terms on the right-hand side of this expression
clearly represent (even if only formally) two linearly
independent functions of Tk, whereas just one of them
appears in the expansion (3.14) that is selected by the
asymptotic diagonalization criterion. Therefore, a neces-
sary condition imposed by this criterion is that

B ¼ −
ΓðiMH−1

Λ ÞΓð1 − 2iMH−1
Λ Þ

Γð1þ 2iMH−1
Λ ÞΓð−iMH−1

Λ ÞA: ð3:17Þ

Introducing this value of B in the general formula (3.16),
and using the general property of the Gamma function
Γð1þ zÞ ¼ zΓðzÞ, with z ∈ C [47], we obtain

vk;λ ∼ AT
iMH−1

Λ
k 4 coshðπMH−1

Λ Þ

×
Γð−2iMH−1

Λ Þ
Γð−iMH−1

Λ Þ 2F0ðiMH−1
Λ ;−iMH−1

Λ ;−;−T−1
k Þ:

ð3:18Þ

Comparing once again with the asymptotic expansion
(3.14) of our desired solution, we can determine the value
of A. In this way, we are univocally led to conclude that

A ¼ v0
Γð2iMH−1

Λ Þ
ΓðiMH−1

Λ Þ ; B ¼ v0
Γð−2iMH−1

Λ Þ
Γð−iMH−1

Λ Þ ; ð3:19Þ

where we have employed the general identity [47]

1

4 cosh ðπyÞ ¼
Γð2iyÞΓð−2iyÞ
ΓðiyÞΓð−iyÞ ; y ∈ R:

We have henceforth proven that, in a de Sitter back-
ground, our asymptotic characterization inspired by hybrid
quantum cosmology uniquely picks out a particular sol-
ution of the confluent hypergeometric equation (3.5) (up to
the irrelevant factor v0), and therefore a particular function
φk;λ [cf. Eq. (3.10)] that eliminates the self-interaction in

the fermionic Hamiltonian for all  k ≠ 0. The specification
of φk;λ, in turn, corresponds to a precise choice of the
fermionic annihilation and creationlike variables (2.4), up
to the two phases Fk;λ

2 and Jk;λ, and thus to a unique Fock
representation (with its associated vacuum state) of the
Dirac field. In particular, the selected solution vk;λ is given
by Eq. (3.6) after substituting the constant coefficients A
and B by the values given in Eq. (3.19). Up to the constant

factor v0, the result is then the recessive solution of the
confluent hypergeometric equation commonly known as
the Tricomi function, usually expressed asUð−iMH−1

Λ ; 1 −
2iMH−1

Λ ; TkÞ [46,47].

B. Field decomposition

In this final subsection we explicitly compute the basis of
solutions of the Dirac equation in de Sitter cosmology that
is associated with the choice of Fock representation
selected by the asymptotic diagonalization criterion. It is
in terms of this basis that the quantum representation of the
Dirac field, viewed as an operator valued distribution, can
be decomposed, and the coefficients in such decomposition
are the annihilation and creation operators for particles and
antiparticles. The fermionic vacuum state in the resulting
Fock space is then uniquely specified (up to a phase) as the
state that vanishes upon the action of all of the annihilation
operators.
In order to obtain this field decomposition, let us first

notice that, combining Eqs. (2.2), (2.4), and (2.5), one can
express the Dirac field in terms of any canonical set of
annihilation and creationlike variables. In the context of
QFT in classical cosmological spacetimes, these variables
obey the dynamics dictated by the Hamiltonian (2.6)–(2.8)
(where the Poisson brackets must be replaced with the
corresponding time derivatives). Then, for variables that
display no dynamical self-interaction, namely for coeffi-
cients fk;λ1 and fk;λ2 such that Eq. (2.12) holds, we can write
the Dirac field as

ψðη;  xÞ ¼
X
 k;λ

½u  k;λðη;  xÞA  k;λ þ w  k;λðη;  xÞB̄  k;λ�; ð3:20Þ

where A  k;λ ¼ a  k;λðη0Þ and B  k;λ ¼ b  k;λðη0Þ are the constant
annihilation coefficients for particles and antiparticles (to
be promoted to the corresponding operators in the
Schrödinger picture) and η0 is an arbitrary choice of initial
time employed for their definition. In addition, the basis
elements are

u  k;λðη;  xÞ ¼
ei2π  k  x =l0ffiffiffiffiffiffiffiffi

l30a
3

q
�
I −

1 − λ

2
ðI þ iγ0Þ

�
f̄k;λ2 e−iΩkðη;η0Þ

×

�
φ̄k;λðηÞξλð  kÞ

ξλð  kÞ

�
; ð3:21Þ
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w  k;λðη;  xÞ ¼ −e−iJk;λðη0Þλγ2ū  k;λðη;  xÞ; ð3:22Þ

where the integrated time-dependent “frequency” of the
diagonal evolution of the annihilationlike variables is

Ωkðη; η0Þ ¼ 2

Z
η

η0

dη̃aðη̃Þhk;λD ðη̃Þ: ð3:23Þ

After using the partial differential equation (2.12) and the
relation (2.11), the canonical expression for this frequency
is found to be given by

2hk;λD ¼ a−1ωk þMReðφk;λÞ − fFk;λ
2 ; Hj0g: ð3:24Þ

It is worth noticing that this formula would hold as well in
the full context of hybrid quantum cosmology, employing
the perturbatively corrected variables for the homogeneous
cosmological sector, once a solution of equation (2.12) had
been constructed (ideally by following the criterion of
asymptotic diagonalization).
In the de Sitter cosmology under analysis, we recall that

the function φk;λ is obtained from the solution vk;λ of the
confluent equation by means of Eq. (3.10), that involves the
logarithmic derivative of this solution with respect to the
imaginary time Tk ¼ −2iωkη. We have proven that
the condition of asymptotic diagonalization, inspired by
hybrid quantum cosmology, serves to select a unique vk;λ,
given by the Tricomi functionUð−iMH−1

Λ ;1−2iMH−1
Λ ;TkÞ

multiplied by a constant factor v0. The derivatives of this
function have been studied in detail [47], and in our case we
have

dvk;λ
dTk

¼ iv0MH−1
Λ Uð1− iMH−1

Λ ;2−2iMH−1
Λ ;TkÞ: ð3:25Þ

This is a Tricomi function of the form Uðμ̄þ 1=2; 2μ̄þ 1;
−2izÞ, with μ ¼ iMH−1

Λ þ 1=2 and z ¼ ωkη. Tricomi
functions of this special type satisfy the identity [47]

U
�
νþ 1

2
; 2νþ 1;−2iz

�
¼

ffiffiffi
π

p
2

ieiðπν−zÞð2zÞ−νHð1Þ
ν ðzÞ;

ð3:26Þ

that relates them to the Hankel function of the first kind

Hð1Þ
ν . Applying this property to our solution, we get

dvk;λ
dTk

¼ −iv0
ffiffiffi
π

p
2

MH−1
Λ eMH−1

Λ e−iωkηð2ωkηÞμ−1Hð1Þ
1−μðωkηÞ:

ð3:27Þ

On the other hand, the Tricomi function that appears as the
denominator of the logarithmic derivative of vk;λ can also
be expressed in terms of Hankel functions by using the
recursive relation [47]

Uð−iMH−1
Λ ; 1 − 2iMH−1

Λ ; TkÞ

¼ 1

2
Uð−iMH−1

Λ ;−2iMH−1
Λ ; TkÞ

þ Tk

2
Uð1 − iMH−1

Λ ; 2 − 2iMH−1
Λ ; TkÞ: ð3:28Þ

The two functions on the right-hand side are of the special
form (3.26), and hence we can write

vk;λðηÞ
v0

¼
ffiffiffi
π

p
4
eMH−1

Λ e−iωkηð2ωkηÞμ½Hð1Þ
−μðωkηÞþiHð1Þ

1−μðωkηÞ�:

ð3:29Þ

Introducing expressions (3.27) and (3.29) in the relation
(3.10) between vk;λ and φk;λ, we find the explicit form of
this function selected by the asymptotic diagonalization
criterion in de Sitter,

φk;λðηÞ ¼
Hð1Þ

−μðωkηÞ − iHð1Þ
1−μðωkηÞ

Hð1Þ
−μðωkηÞ þ iHð1Þ

1−μðωkηÞ
: ð3:30Þ

Its complex conjugate, that directly appears in the basis
decomposition (3.20)–(3.22), is then simply

φ̄k;λðηÞ ¼
Hð2Þ

μ−1ðωkηÞ þ iHð2Þ
μ ðωkηÞ

Hð2Þ
μ−1ðωkηÞ − iHð2Þ

μ ðωkηÞ
; ð3:31Þ

where Hð2Þ
ν is the Hankel function of the second kind and

we have used that Hð1Þ
ν ðzÞ ¼ Hð2Þ

ν̄ ðz̄Þ [47]. This function
φk;λ, in turn, contains all the information about the norm of
fk;λ2 as displayed in relation (2.11), that encodes the
canonical anticommutation algebra of the annihilation
and creationlike variables. Explicitly, we obtain the result

jfk;λ2 j2 ¼ πωkη

8
eπMH−1

Λ jHð2Þ
μ−1ðωkηÞ − iHð2Þ

μ ðωkηÞj2; ð3:32Þ

after some algebraic manipulations and using the following
identity for the Wronskian of Hankel functions [47]:

Hð1Þ
1−νðzÞHð2Þ

ν ðzÞ þHð1Þ
−ν ðzÞHð2Þ

ν−1ðzÞ ¼ −
4i
πz

eiπν:

The only quantity that remains to be determined in order
to reach the final form of the decomposition (3.20)–(3.22)
of the Dirac field selected by our criterion is the time
dependent frequency Ωkðη; η0Þ. If we particularize the
formula for the coefficients 2hk;λD of the diagonal fermionic
Hamiltonian, given in Eq. (3.24), to the considered case of a
homogeneous de Sitter background with no backreaction,
and the function φk;λ is identified as the specific one singled
out by our criterion, we get that, up to an additive constant,
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Ωk ¼ θk −Fk;λ
2 ; θkðηÞ ¼ arg ½Hð1Þ

−μðωkηÞ þ iHð1Þ
1−μðωkηÞ�;

ð3:33Þ

where arg½:� denotes the phase of its complex argument.
Combining all our results [cf. Eqs. (3.31), (3.32), and
(3.33)], the basis of solutions that describes the particles
associated with the Fock representation of the Dirac field in
de Sitter, uniquely picked out by the asymptotic diagonal-
ization criterion, reads

u  k;λðη;  xÞ¼
ei2π  k  x=l0ffiffiffiffiffiffiffiffi

l30a
3

q
�
I−

1−λ

2
ðIþ iγ0Þ

�

×

ffiffiffiffiffiffiffiffiffiffi
πωkη

8

r
eiΘþπMH−1

Λ =2

×

�½Hð2Þ
μ−1ðωkηÞþ iHð2Þ

μ ðωkηÞ�ξλð  kÞ
½Hð2Þ

μ−1ðωkηÞ− iHð2Þ
μ ðωkηÞ�ξλð  kÞ

�
; ð3:34Þ

where Θ is a constant global phase, that is irrelevant for the
definition of the vacuum. On the other hand, the solutions
that describe antiparticles are given by the charge conjugate
of these ones, namely via Eq. (3.22). It is worth noticing
that the constant phase Θ includes all possible dependence
of the basis of solutions on the choice of initial time η0 for
the definition of the annihilation and creationlike constant
coefficients, and thus the vacuum that results from our
approach is independent of that choice. We also note that,
in the asymptotic regime of large k, the leading time
dependence of our basis of solutions determined by u  k;λ

follows the behavior exp ð−iωkηÞ, up to multiplication by
a−3=2 and a constant, something that is often required as a
necessary physical feature of the corresponding Fock
representation of fields in conformally flat spacetimes
[19,48,49]. In particular, the BD Hadamard vacuum for
scalar fields in de Sitter displays such a dominant plane
wave behavior [2].
In order to establish more precisely the connection

between our result and the statements available in the
literature about the choice of vacuum state for Dirac fields
in de Sitter, we end this subsection by discussing the
relation between the mode decomposition of our solutions
and the one assigned in Ref. [19] as corresponding to the
BD state. First of all, for such a comparison we need to
change from the Weyl representation of the constant
Clifford algebra (employed here) to the Dirac representa-
tion (used in Ref. [19]). They are related by a unitary
change of the spinorial basis for the Dirac field, namely

ψW ¼ TψD; T ¼ 1ffiffiffi
2

p
�
I −I
I I

�
; ð3:35Þ

where the superscripts W and D indicate objects in the
Weyl and Dirac representations, respectively. For our mode

decomposition, this change leads to a basis in the Dirac
representation given (up to a global constant phase) by

uD k;λðη;  xÞ¼
ei2π  k  x=l0ffiffiffiffiffiffiffiffi

l30a
3

q
ffiffiffiffiffiffiffiffiffiffi
πωkη

p
2

eπMH−1
Λ =2

�
iλHð2Þ

μ−1ðωkηÞξλð  kÞ
Hð2Þ

μ ðωkηÞξλð  kÞ

�
;

ð3:36Þ

together with Eq. (3.22) for the charge conjugate counter-
part. The resulting basis of solutions is exactly the same as
that corresponding to the BD state in Ref. [19], after one
interchanges the two (bidimensional) components of the
spinor on the right-hand side. Actually, this difference can
be attributed just to a change in the global sign of the tetrads
that are employed in the two compared works, as we now
briefly explain. With our ð−þþþÞ convention for the
Minkowski metric, the Dirac equation is

eνbγ
bDνψ −Mψ ¼ 0; ð3:37Þ

where γb are the generators of the constant Clifford algebra
in any representation, and Dν is the spin covariant deriva-
tive [50]. Here, ν denotes a spacetime tensor index, whereas
b ¼ 0;…3 is an internal Lorentz index. The spin covariant
derivative contains a connection one-form which depends
on the tetrads eνb and their derivatives only through
quadratic and quartic products. It then follows that inter-
changing two choices of tetrad that differ only in a global
multiplicative sign has exclusively the net effect of an
apparent flip of sign in the mass term of the Dirac equation,
in what concerns the choice of gauge for the Dirac field as a
solution to this equation. According to our comments in
Sec. II, in the expanding flat chart of de Sitter (in conformal
time) we have selected the tetrad as eνb ¼ a−1δνb, where the
scale factor a is given in Eq. (3.1). The choice employed in
Ref. [19] is precisely the opposite in sign, i.e., it is given by
minus this tetrad. For both choices, if one then works, e.g.,
in the Dirac representation of the Clifford algebra, the Dirac
equation can be recast as a second order Bessel differential
equation in x ¼ ωkη for the time-dependent factor of the
first (bidimensional) component of η−2uD k;λ. The second

component is completely fixed in terms of the first one by
means of the Dirac equation. The difference between the
two considered conventions in the choice of tetrad (ours
and that of Ref. [19]) is reflected in the order of the Bessel
equation, that becomes, respectively, μ − 1 and μ. The
solutions that have an asymptotic behavior with a dominant
time-dependence proportional to x−1=2 exp ð−ixÞ are

uniquely given, respectively, by Hð2Þ
μ−1ðxÞ and Hð2Þ

μ ðxÞ
[47]. The second component of η−2uD k;λ then results propor-

tional to Hð2Þ
μ ðxÞ and Hð2Þ

μ−1ðxÞ, respectively. The remaining
factors of the spinor (3.36) are determined by the normali-
zation of the solutions [19]. We recall that the above Hankel
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functions are precisely the two parts that must be inter-
changed in Eq. (3.36) in order to identify the bases of
solutions constructed in the two considered works, up to a
global phase. Therefore, we conclude that the vacuum state
for the Dirac field resulting from our analysis corresponds
indeed to the BD state defined in Ref. [19], once the same
choice of local Lorentz gauge is made.

IV. CONCLUSIONS

In this paper we have shown how the criterion of
asymptotic diagonalization, originated in the framework
of hybrid quantum cosmology, can serve to single out a
privileged Fock representation of the Dirac field in de Sitter
spacetime, within the context of QFT in curved spacetimes.
The explicit basis of solutions to the Dirac equation
associated with that choice of representation has also
been computed, in terms of Hankel functions of the
first and second kind, and in coordinates associated with
the conformal flat slicing of de Sitter. Furthermore, the
canonical expression for the resulting diagonal
Hamiltonian that dictates the linearized dynamics of the
annihilation and creationlike variables selected by our
criterion has been found, exclusively in terms of them
and functions of the homogeneous variables that describe
the cosmological background. In particular, the derived
formula (3.24) could be of potential use in hybrid quantum
cosmology, if the asymptotic diagonalization problem is
solved for more general cosmological backgrounds than de
Sitter.
The hybrid approach to quantum FLRW cosmology with

perturbations contemplates the natural freedom of making a
dynamical splitting between the spatially homogeneous,
global, degrees of freedom of the system and the inhomo-
geneous perturbations. When these perturbations consist of
a Dirac field, such freedom can be encoded in choices of
annihilation and creationlike variables, given by linear
transformations of the field mode coefficients that depend
explicitly on the homogeneous background. These trans-
formations can be completed so that they become canonical
for the entire cosmological system, truncated at quadratic
perturbative order in the action, a procedure that leads to a
fermionic contribution to the total Hamiltonian that dictates
the linearized dynamics of the annihilation and creationlike
variables. The criterion of asymptotic diagonalization
consists in restricting almost all the freedom in the selection
of these variables, and with it the aforementioned dynami-
cal splitting, together with the Fock quantization of the
fermionic degrees of freedom, so that the fermionic
Hamiltonian gets diagonalized in a way that is adapted
to its local structure. This strategy provides a very precise
asymptotic expansion of the functions of the background
that define the annihilation and creationlike variables. In

turn, this determines the expansion of at least one solution
of the partial differential equation (2.12), that arises from
the general demand that the Hamiltonian become diagonal.
If one disregards all backreaction effects of the pertur-

bations on the homogeneous background, and considers
that this cosmological background is just a solution of the
classical FLRW spacetime, the possible definitions of
annihilation and creationlike variables compatible with
the requirements of hybrid quantum cosmology can
directly be understood as different choices of Fock repre-
sentations of the Dirac field in the context of QFT in curved
spacetimes. We have restricted our attention to this sit-
uation and, furthermore, we have particularized the FLRW
background, identifying it with a de Sitter solution. Then,
we have shown that the asymptotic expansion selected by
the criterion of asymptotic diagonalization indeed picks out
a unique function among those that define annihilation and
creationlike variables that follow a diagonal evolution for
all spatial scales. The basis of solutions to the Dirac
equation associated with the resulting Fock representation
of the field can be specified completely and in an
analytical way.
Our result is potentially relevant within QFT, as well as

in the context of quantum cosmology. On the one hand, we
have explicitly provided a unique fermionic vacuum in de
Sitter spacetime selected by a very well characterized
criterion, that has its original motivation in hybrid quantum
cosmology. This sheds further light on the question of
which is the natural analog of the BD vacuum for a Dirac
field. In this context, our analysis precisely leads to the
basis of solutions for the field that has been assigned to
correspond to such a fermionic BD state in the literature
[19]. In particular, it displays the ultraviolet behavior
expected to guarantee Hadamard-like properties. This
result supports the potential robustness of our criterion
to select a privileged fermionic vacuum state in FLRW
cosmologies, specially considering that the very same
criterion of asymptotic diagonalization has succeeded in
predicting the BD vacuum for the well-known cases of
scalar and tensor perturbations [42]. On the other hand, our
work shows that, at least in certain cases, the criterion
employed in hybrid quantum cosmology to (i) determine a
dynamical splitting between the homogeneous and inho-
mogeneous sectors in phase space, and (ii) select a Fock
representation for the inhomogeneities, can indeed result
into a complete removal of both types of ambiguities, even
when this criterion was initially based solely on ultraviolet
considerations.
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ELIZAGA NAVASCUÉS, MENA MARUGÁN, and PRADO PHYS. REV. D 101, 123530 (2020)

123530-10



[1] T. S. Bunch and P. Davies, Quantum field theory in de Sitter
space: Renormalization by point splitting, Proc. R. Soc. A
360, 117 (1978).

[2] V. Mukhanov, Physical Foundations of Cosmology
(Cambridge University Press, Cambridge, England, 2005).

[3] B. Allen, Vacuum states in de Sitter space, Phys. Rev. D 32,
3136 (1985).

[4] N. D. Birrell and P. C. W. Davies, Quantum Fields in
Curved Space (Cambridge University Press, Cambridge,
England, 1982).

[5] B. S. Kay and R. M. Wald, Theorems on the uniqueness and
thermal properties of stationary, nonsingular, quasifree
states on spacetimes with a bifurcate Killing horizon, Phys.
Rep. 207, 49 (1991).

[6] P. A. R. Ade et al. (Planck Collaboration), Planck 2015
results. XIII. Cosmological parameters, Astron. Astrophys.
594, A13 (2016).

[7] P. A. R. Ade et al. (Planck Collaboration), Planck 2015
results. XX. Constraints on inflation, Astron. Astrophys.
594, A20 (2016).

[8] N. Aghanim et al. (Planck Collaboration), Planck 2018
results. VI. Cosmological parameters, arXiv:1807.06209.

[9] Y. Akrami et al. (Planck Collaboration), Planck 2018
results. X. Constraints on inflation, arXiv:1807.06211.

[10] N. A. Chernikov and E. A. Tagirov, Quantum theory of
scalar fields in de Sitter space-time, Ann. l’ I.H.P. A 9, 109
(1968).

[11] E. A. Tagirov, Consequences of field quantization in de Sitter
type cosmological models, Ann. Phys. (N.Y.) 76, 561 (1973).

[12] G.W. Gibbons and S. W. Hawking, Cosmological event
horizons, thermodynamics and particle creation, Phys. Rev.
D 15, 2738 (1977).

[13] E. Mottola, Particle creation in de Sitter space, Phys. Rev. D
31, 754 (1985).

[14] L. H. Ford and A. Vilenkin, Global symmetry breaking in
two-dimensional flat spacetime and in de Sitter spacetime,
Phys. Rev. D 33, 2833 (1986).

[15] B. Allen and A. Folacci, Massless minimally coupled scalar
field in de Sitter space, Phys. Rev. D 35, 3771 (1987).

[16] M. Sasaki, T. Tanaka, and K. Yamamoto, Euclidean vacuum
mode functions for a scalar field on open de Sitter space,
Phys. Rev. D 51, 2979 (1995).

[17] J. Cortez, D. Martín-de Blas, G. A. Mena Marugán, and J.
Velhinho, Massless scalar field in de Sitter spacetime:
Unitary quantum time evolution, Classical Quantum Grav-
ity 30, 075015 (2013).

[18] B. Allen and C. A. Lütken, Spinor two-point functions in
maximally symmetric spaces, Commun. Math. Phys. 106,
201 (1986).

[19] H. Collins, Fermionic α-vacua, Phys. Rev. D 71, 024002
(2005).

[20] S. Kano, M. Sasaki, and T. Tanaka, Vacuum state of the
Dirac field in de Sitter space and entanglement entropy, J.
High Energy Phys. 03 (2017) 068.

[21] I. I. Cotaescu, Canonical quantization of the covariant fields
on de Sitter space-times, Int. J. Mod. Phys. A 33, 1830007
(2018).

[22] B. Elizaga Navascués, G. A. Mena Marugán, and S. Prado,
Asymptotic diagonalization of the fermionic Hamiltonian in

hybrid loop quantum cosmology, Phys. Rev. D 99, 063535
(2019).

[23] M. Martín-Benito, L. J. Garay, and G. A. Mena Marugán,
Hybrid quantum Gowdy cosmology: Combining loop and
Fock quantizations, Phys. Rev. D 78, 083516 (2008).

[24] G. A. Mena Marugán and M. Martín-Benito, Hybrid quan-
tum cosmology: Combining loop and Fock quantizations,
Int. J. Mod. Phys. A 24, 2820 (2009).

[25] M. Fernández-Méndez, G. A. Mena Marugán, and J.
Olmedo, Hybrid quantization of an inflationary universe,
Phys. Rev. D 86, 024003 (2012).

[26] M. Fernández-Méndez, G. A. Mena Marugán, and J.
Olmedo, Hybrid quantization of an inflationary model:
The flat case, Phys. Rev. D 88, 044013 (2013).

[27] L. Castelló Gomar, M. Fernández-Méndez, G. A. Mena
Marugán, and J. Olmedo, Cosmological perturbations in
hybrid loop quantum cosmology: Mukhanov–Sasaki
variables, Phys. Rev. D 90, 064015 (2014).

[28] L. Castelló Gomar, M. Martín-Benito, and G. A. Mena
Marugán, Gauge-invariant perturbations in hybrid quantum
cosmology, J. Cosmol. Astropart. Phys. 06 (2015) 045.

[29] F. Benítez Martínez and J. Olmedo, Primordial tensor modes
of the early universe, Phys. Rev. D 93, 124008 (2016).

[30] B. Elizaga Navascués, M. Martín-Benito, and G. A. Mena
Marugán, Fermions in hybrid loop quantum cosmology,
Phys. Rev. D 96, 044023 (2017).

[31] T. Thiemann, Modern Canonical Quantum General Rela-
tivity (Cambridge University Press, Cambridge, England,
2007).

[32] A. Corichi, J. Cortez, G. A. Mena Marugán, and J. M.
Velhinho, Quantum Gowdy T3 model: A uniqueness result,
Classical Quantum Gravity 23, 6301 (2006).

[33] J. Cortez, G. A. Mena Marugán, and J. M. Velhinho,
Uniqueness of the Fock quantization of the Gowdy T3

model, Phys. Rev. D 75, 084027 (2007).
[34] J. Cortez, G. A. Mena Marugán, J. Olmedo, and J. M.

Velhinho, A uniqueness criterion for the Fock quantization
of scalar fields with time-dependent mass, Classical Quan-
tum Gravity 28, 172001 (2011).

[35] J. Cortez, G. A. Mena Marugán, J. Olmedo, and J. M.
Velhinho, Criteria for the determination of time dependent
scalings in the Fock quantization of scalar fields with a time
dependent mass in ultrastatic spacetimes, Phys. Rev. D 86,
104003 (2012).

[36] L. Castelló Gomar, J. Cortez, D. Martín-de Blas, G. A.
Mena Marugán, and J. M. Velhinho, Uniqueness of the Fock
quantization of scalar fields in spatially flat cosmological
spacetimes, J. Cosmol. Astropart. Phys. 11 (2012) 001.

[37] M. Fernández-Méndez, G. A. Mena Marugán, J. Olmedo,
and J. M. Velhinho, Unique Fock quantization of scalar
cosmological perturbations, Phys. Rev. D 85, 103525
(2012).

[38] J. Cortez, G. A. Mena Marugán, and J. M. Velhinho,
Quantum unitary dynamics in cosmological spacetimes,
Ann. Phys. (N.Y.) 363, 36 (2015).

[39] J. Cortez, B. Elizaga Navascués, M. Martín-Benito, G. A.
Mena Marugán, and J. M. Velhinho, Unique Fock quanti-
zation of a massive fermion field in a cosmological scenario,
Phys. Rev. D 93, 084053 (2016).

UNIQUE FERMIONIC VACUUM IN DE SITTER SPACETIME … PHYS. REV. D 101, 123530 (2020)

123530-11



[40] J. Cortez, B. Elizaga Navascués, M. Martín-Benito, G. A.
Mena Marugán, and J. M. Velhinho, Dirac fields in flat
FLRW cosmology: Uniqueness of the Fock quantization,
Ann. Phys. (N.Y.) 376, 76 (2017).

[41] B. Elizaga Navascués, G. A. Mena Marugán, and S. Prado
Loy, Backreaction of fermionic perturbations in the
Hamiltonian of hybrid loop quantum cosmology, Phys.
Rev. D 98, 063535 (2018).

[42] B. Elizaga Navascués, G. A. Mena Marugán, and T. Thie-
mann, Hamiltonian diagonalization in hybrid quantum
cosmology, Classical Quantum Gravity 36, 185010 (2019).

[43] J. E. Nelson and C. Teitelboim, Hamiltonian formulation of
the theory of interacting gravitational and electron fields,
Ann. Phys. (N.Y.) 116, 86 (1978).

[44] Th. Friedrich, Zur Abhängigkeit des Dirac-operators von
der Spin-Struktur, Colloquia Mathematica 48, 57 (1984).

[45] P. D. D’Eath and J. J. Halliwell, Fermions in quantum
cosmology, Phys. Rev. D 35, 1100 (1987).

[46] G. E. Andrews, R. Askey, and R. Roy, Special Functions
(Cambridge University Press, Cambridge, England, 1999).

[47] M. Abramovitz and I. A. Stegun, Handbook of Mathemati-
cal Functions with Formulas, Graphs, and Mathematical
Tables, Natl. Bur. Stand. Appl. Math. Ser. No. 55, revised
9th ed. (U.S. Govt. Print. Off., Washington DC, 1970).

[48] M. J. Radzikowski, Micro-local approach to the Hadamard
condition in quantum field theory on curved space-time,
Commun. Math. Phys. 179, 529 (1996).

[49] H. Sahlmann and R. Verch, Microlocal spectrum condition
and Hadamard form for vector-valued quantum fields in
curved spacetime, Rev. Math. Phys. 13, 1203 (2001).

[50] H. B. Lawson and M. L. Michelson, Spin Geometry
(Princeton University Press, Princeton, NJ, 1989).
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Abstract
We characterize in an analytical way the general conditions that a choice of
vacuum state for the cosmological perturbations must satisfy to lead to a power
spectrum with no scale-dependent oscillations over time. In particular, we pay
special attention to the case of cosmological backgrounds governed by effec-
tive loop quantum cosmology and in which the Einsteinian branch after the
bounce suffers a pre-inflationary period of decelerated expansion. This is the
case more often studied in the literature because of the physical interest of the
resulting predictions. In this context, we argue that non-oscillating power spec-
tra are optimal to gain observational access to those regimes near the bounce
where loop quantumcosmologyeffects are non-negligible. In addition,we show
that non-oscillatory spectra can indeed be consistently obtained when the evo-
lution of the perturbations is ruled by the hyperbolic equations derived in the
hybrid loop quantization approach. Moreover, in the ultraviolet regime of short
wavelength scales we prove that there exists a unique asymptotic expansion
of the power spectrum that displays no scale-dependent oscillations over time.
This expansion would pick out the natural Poincaré and Bunch–Davies vacua
in Minkowski and de Sitter spacetimes, respectively, and provides an appeal-
ing candidate for the choice of a vacuum for the perturbations in loop quantum
cosmology based on physical motivations.

Keywords: loop quantumcosmology, cosmological perturbations, vacuumstate,
power spectrum

(Some figures may appear in colour only in the online journal)

∗Author to whom any correspondence should be addressed.

1361-6382/20/035001+24$33.00 © 2020 IOP Publishing Ltd Printed in the UK 1



Class. Quantum Grav. 38 (2021) 035001 B Elizaga Navascués et al

1. Introduction

The observational field of high precision cosmology is currently at a full peak of activity,
and it is expected to continue growing with feedback from the recent breakthrough of multi-
messenger astronomy. The success in this field is especially evident when one takes into
account the measurements that have been, and are being performed, of the cosmic microwave
background (CMB) [1, 2]. These observations, when supplemented with a theoretical model,
could shed light on quantum gravity effects of the cosmological geometry that may have had
an impact on the evolution of primordial fluctuations of the spacetime content. In fact, these
fluctuations are believed to constitute the origin of the spatially inhomogeneous degrees of
freedom of the early Universe, and they would have undergone a period of inflation after being
originated in epochs of increasingly high energy density and spacetime curvature. In addition,
they are believed to be responsible for the measured distribution of temperature anisotropies
in the CMB [3, 4]. Under such extreme pre-inflationary conditions, it is reasonable to consider
that the quantum nature of the cosmological spacetime may have had an important influence
on the physical phenomena that took place before inflation.

Over the last decades, there have been several theoretical attempts to incorporate quantum
gravity effects in the study of a primordial cosmology with inhomogeneous perturbations (see,
e.g. [5–29] and references therein). Furthermore, many of them have succeeded in deriving
first approximations to the type of modifications that one can expect to be relevant in the evo-
lution of the perturbations, coming from the quantum behavior of the cosmological spacetime
background. In particular, it is worth pointing out interesting investigations on this topic that,
within the context of loop quantum cosmology (LQC) [30–33], lead to modifications that are
compatible with the observations of the CMB and, at the same time, are potentially capable of
capturing information about the quantum nature of the cosmological background [21, 29, 34].

LQC is known to provide a mathematically robust quantization of homogeneous and
isotropic cosmologies of the Friedmann–Lemaître–Robertson–Walker (FLRW) type, with the
remarkable result of generally replacing the cosmological big bang singularity with a bounce
of quantum origin [35, 36]. The theoretical question of how one should include perturbations
in the LQC description of FLRW spacetimes has been widely studied over the last years, start-
ing from a variety of different fundamental hypotheses, and with different strategies motivated
by first principles and/or phenomenological issues. Among the proposed approaches, let us
mention the effective deformed constraint algebra [10–13], the separate Universe framework
[14, 15], quantum reduced loop gravity [16, 17], the dressed metric formalism [18–21], and
hybrid LQC [22–29]. All these approaches are limited by the use of a series of assumptions
that are specific of each strategy. In this work, we will focus our attention on the two last
mentioned strategies. They are two continued lines of research that have led to preliminary
predictions that appear to be compatible with cosmological observations at a reasonable level.
In hybrid LQC, one considers the cosmological system described in general relativity by an
FLRW metric (typically with compact spatial sections) and an inflaton field with inhomoge-
neous perturbations, truncates the corresponding Einstein–Hilbert action at lowest non-trivial
perturbative order, and identifies a complete set of canonical variables for the description of
the FLRW cosmology and the perturbative gauge invariants [26]. The total Hamiltonian of this
perturbatively truncated system is then a linear combination of constraints, inherited from those
of the Arnowitt–Desser–Misner (ADM) canonical formulation of full general relativity. The
hybrid strategy to quantize these constraints consists in adopting a polymeric representation
for the canonical variables that describe the FLRW background, inspired by the LQC quantiza-
tion of homogeneous cosmologies, while a more standard Fock representation is employed for
the perturbative degrees of freedom. This hybrid approach is affected by the breaking of local
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Lorentz symmetry inherent to all of the descriptions in loop quantum gravity that are formu-
lated in terms of SU(2) connections, a fact that is related with the appearance of the Immirzi
ambiguity [37], as well as by issues about the quantum preservation of full diffeomorphism
covariance that are typical of quantizations that rest on an ADM canonical formalism. Obvi-
ously, it also assumes the validity of a perturbative hierarchy and that the genuine loop quantum
geometry effects can be neglected except for those arising directly from the canonical degrees
of freedom associated with the cosmological scale factor. The combination of representations
used in the hybrid strategy should ultimately lead to a consistent and well-defined set of con-
straint operators. In this process, one frequently studies a rescaled version of the spatial average
of the Hamiltonian constraint, in which a power of the scale factor is absorbed by a mathemat-
ically well-defined procedure [26, 36]. On the other hand, the dressed metric approach to the
LQC treatment of cosmological perturbations does not rely on a canonical framework for the
entire system. As a consequence, the resulting formulation is not that of a constrained system,
with the subsequent problems for diffeomorphism covariance. Instead, it starts from the LQC
solutions of the FLRW background cosmology, and then lifts the main quantum effects on their
dynamics to a physical Hamiltonian for the perturbations [19]. The dressed metric approach
assumes as well the validity of a perturbative hierarchy (the self-consistency of which may be
checked when studying a particular quantum state) and that the genuine loop quantum geom-
etry effects are directly relevant only on the FLRW background. Moreover, it presumes that
these quantum effects can be lifted to the dynamics of the perturbations by capturing them in a
reduced number of quantities, generally given by some expectation values of the background
geometry.

Both of these theoretical frameworks have been able to provide (effective or mean-field)
equations for the gauge invariant perturbations that, while possessing the same local and causal
structure as the classical ones, display contributions from the background that contain LQC
modifications. In particular, these corrections are able to account for the presence of the bounce
of quantum origin that replaces the classical singularity. Furthermore, although in principle it
is not necessary for the applicability of the two approaches, the state for the homogeneous
geometry is often picked out in such a way that those corrections are limited to the vicinity
of the bounce, so the evolution of the background cosmology becomes classical very rapidly,
and such that the effects of the corrections may be observable today in the CMB [21, 29].
More specifically, as a particularization to cases of particular interest, one usually focuses the
attention on certain class of states of the homogeneous geometry for which the cosmological
perturbations propagate in practice over a background that is governed by an effective descrip-
tion of LQC. These effective background geometries are characterized by trajectories for the
FLRW variables that undergo a bounce when the energy density of the Universe reaches the
maximum universal value of (approximately) 41 percent of the Planck density (for the most
commonly accepted value of the Immirzi parameter). Away from the vicinity of this bounce,
namely when the quotient between the energy density and this maximum can be neglected
when compared with the unit, these trajectories behave as if they were solutions to the Fried-
mann equations. The existence of this type of effective behavior in the loop quantization of
massless FLRW cosmologies has been studied in the literature [31–33, 35]. In particular, it
is known their relation with certain family of Gaussian states of the FLRW model in LQC,
that are globally peaked on values of the homogeneous volume and the homogeneous infla-
ton that follow these effective trajectories [38]. In this regime of LQC and in the associated
quantum description of the cosmological perturbations, the differences between the hybrid
and dressed metric approaches can be narrowed precisely to a small region around the bounce,
and they affect the effective field equations for the perturbations in that region only through
the time-dependent mass that appears in them [39]. In fact, these differences are only due to
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the respective strategies adopted for the introduction of inhomogeneous perturbations on the
quantization of FLRW cosmologies, and they persist even if one considers the same effective
LQC trajectories for the background in both approaches.

In general, complete sets of (complex) solutions to the field equations of the gauge invari-
ant perturbations, both for the classical equations and for the quantum corrected ones (whether
derived either from hybrid LQC or from the dressed metric approach) give rise to different
power spectra that can be eventually confronted with observations. In order to select one of
these sets, it suffices to establish initial conditions for the fields at some time of the evolution
of the perturbations, thanks to the causal structure of their dynamical equations. Such a choice
of initial conditions is usually interpreted as a specification of vacuum state for the perturba-
tions, quantized à la Fock. In particular, in the standard cosmological paradigm this initial time
is typically set at the onset of inflation, and the data there are fixed to correspond with the
Bunch–Davies state [4, 40]. This choice is physically reasonable because the standard slow-
roll inflationary period is well modelled by de Sitter spacetime, and the Bunch–Davies state is
the most natural candidate in this context (i.e. it is the unique Hadamard state that is invariant
under the de Sitter isometry group).Remarkably, it provides power spectra for the perturbations
that lead to predictionswhich quite accuratelymatch the observations of the CMB, at least for a
large sector of angles in the sky [2]. However, when the physics that took place before inflation
and all the way back to the cosmological singularity (or its quantum analog) is considered to
be relevant, the choice of a natural vacuum state for the perturbations fails to be a settled issue.
Indeed, the background spacetime in those pre-inflationary epochs, even in the case it remains
semiclassical at least for some stages of the evolution, does no longer resemble de Sitter and
its symmetries alone are not enough to fix a unique state. One can restrict this freedom by
imposing, on top of invariance of the state under the spatial symmetries, the requirement that
the field dynamics is unitarily implementable in the quantum theory (at least in the semiclas-
sical regimes). This criterion actually succeeds in selecting a unique Fock space of states for
the perturbations [41, 42]; however additional input is needed to single out a preferred vacuum
state there.

The choice of a natural state, or equivalently of initial conditions, for the gauge invari-
ant perturbations is a fundamental question to establish the predictive power of any approach
to quantum cosmology that provides equations for the perturbations encoding quantum grav-
ity features of the background geometry. In particular, this question needs to be answered if
one wants to have any hope of disentangling the possible modifications on the power spectra
resulting from genuine quantum cosmology effects from other features of the spectra caused
by alternate choices of vacua, that could also arise in a purely classical pre-inflationary cosmol-
ogy. Concerning this issue, several proposals have been put forward in the context of hybrid
and dressed metric LQC. In these frameworks, a natural choice of initial time to set the data
for the perturbations, and thus their vacuum state, is the moment at which the cosmological
bounce happened. Certain low order adiabatic states were first considered owing to their nice
properties regarding the renormalizability of the energy–momentum tensor [21, 43, 44]. More
recently, a somewhat different criterion for the choice of vacuum state has been proposed by
Ashtekar and Gupt, based on minimizing the quantum uncertainties of the fields around the
bounce and, at the same time, recovering a classical behavior at the onset of inflation [45, 46].
This choice has actually been quite successful in terms of its compatibility with observations
in the dressed metric scenario, displaying a slight power suppression for the largest wavelength
scales. Nonetheless, all of these vacua lead to power spectra that are highly oscillatory with
respect to the scales of observational interest, even in regimes where the pre-inflationary evo-
lution of the background is completely classical, and these oscillations have to be averaged
prior to the extraction of predictions. Actually, in the case of adiabatic states, these oscillations
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are present both in hybrid and dressed metric LQC and they are responsible for an important
amplification of the power at medium scales that seems to be in certain tension with the obser-
vational data [29, 47]. Even if this possible amplification effect may not be significant in some
cases, as it seems to happen with the proposal of Ashtekar and Gupt, one may wonder whether
such highly oscillatory behavior of the power spectrum can wash out, or at least obscure, the
information about the traces of quantum geometry that the non-Einsteinian evolution of the
background cosmology close to the bounce could have imprinted in the dynamics of the per-
turbations.Motivated by these concerns, Mart́ın de Blas and Olmedo have proposed a different
choice of state, based on a selection criterion that is directly tailored to minimize, by numer-
ical methods, the oscillations in the resulting power spectrum [48]. This state has been called
the non-oscillating (NO) vacuum state. The resulting power spectrum in hybrid LQC seems to
be in very good agreement with observations and, again, predicts power suppression at large
scales.

A theoretical drawback of the two mentioned proposals for the choice of a vacuum for the
cosmological perturbations in LQC is that their characterization strongly relies on numeri-
cal and/or minimization techniques, that are often interrelated. In this context, the purpose of
this work is precisely to provide analytical insights supporting a specific characterization of
vacuum state, gained by studying some of the general properties of power spectra for gauge
invariant perturbations in effective descriptions of LQC that include a period of classical (i.e.
Einsteinian) pre-inflationary cosmology. In particular, after a study of the solutions to the field
equations for the perturbations using explicitly time-dependent transformations, we provide
theoretical arguments that put the focus on power spectra that display NO behavior. Then,
starting with the Ermakov–Pinney equation [49, 50], we make use of a general formula for
the computation of any power spectrum in order to characterize specific conditions that the
associated solutions to the field equations must fulfill to minimize the oscillations. After suc-
cessfully checking that both the Bunch–Davies state in de Sitter spacetime and the Poincaré
state in Minkowski spacetime satisfy these conditions, we discuss their application to effective
regimes of LQC. Finally, we show that, in the ultraviolet regime of short wavelength scales,
there is a unique asymptotic expansion of the power spectrum that displays no oscillations at
any asymptotic order. This expansion may potentially serve to fix a unique physically privi-
leged vacuum state for the perturbations, and thus a preferred power spectrum, provided that
the NO conditions remain satisfied at all scales.

The paper is structured as follows. In section 2 we formulate the field equation for the
perturbations and, analyzing the Hamiltonian that generates this field evolution, we consider
time-dependent canonical transformations that render this Hamiltonian diagonal. We use this
procedure to construct and conveniently characterize all the normalized solutions. We then
provide a qualitative analysis of their power spectra in the context of effective regimes in LQC
and argue in favour of the physical importance of finding NO features in it. Section 3 is devoted
to the specific characterization of conditions on general power spectra such that they display
no scale-dependent oscillations over time, making an auxiliary use of the Ermakov–Pinney
equation that is naturally associated with our field equations. We then analyze the feasibility
of these conditions in hybrid LQC. In section 4 we focus on the ultraviolet sector of short
wavelength scales, and perform a study of the oscillatory behavior of the power spectra there.
In particular, we show that there is a unique asymptotic expansion for which one can say that
no oscillations appear at any order. We end the section remarking on the physical relevance of
such expansion in order to fix a natural vacuum state for the perturbations in effective LQC.
Finally, in section 5 we summarize our results. Throughout the paper we work in Planck units,
setting � = c = G = 1.
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2. Solutions from Hamiltonian diagonalization

Consider a real scalar field V(η,�x), where η is a time coordinate and�x is a triple of spatial coor-
dinates in R3, with a Fourier expansion in spatial plane waves in which the mode coefficients
v�k(η) satisfy the equation

v′′�k + (k2 + s)v�k = 0, k = |�k|, �k ∈ R3 − {0}. (2.1)

Here, the primes denote derivatives with respect to η, and s is a time-dependent real function
that we call mass, owing to the formal similarities between this equation and that of a harmonic
oscillator withmass.We notice that, for the fieldV(η,�x) to be real, thesemode coefficientsmust
satisfy the reality condition v̄�k = v−�k. Here and in the following, the bar indicates complex con-
jugation. Fields with this type of Fourier expansion and dynamics are precisely the ones that
describe the gauge invariant perturbations in effective formalisms and mean-field approxima-
tions of LQC, when η is identified with the conformal time. Specifically, these perturbations
are the Mukhanov–Sasaki field for scalar degrees of freedom, and the inhomogeneous contri-
butions of tensor nature to the FLRWmetric [51–53]. The power spectra associated with these
fields are defined in cosmology as [54]

PV (k, η) =
k3

2π2
|μk(η)|2, (2.2)

where μk for all �k �= 0 is a set of complex solutions to equation (2.1) that is required to be
normalized according to

μkμ̄
′
k − μ′

kμ̄k = i. (2.3)

This last requirement on the set of solutions guarantees that the resulting spectra can be directly
obtained from the two-point function at equal time of a Fock representation of the field V(η,�x)
that is invariant under the Euclidean symmetries of the cosmological background.

Power spectra are typically evaluated at the end of the (slow-roll) inflationary period in
cosmology. Thus, any effect of the dynamical evolution of the perturbations prior to that period
that may be observable in the CMB must be found imprinted in the spectra at that moment.
If the spectra have oscillated over time during the previous evolution, and these oscillations
depend on the Fourier scale, we expect that they will be captured as oscillations in the scale k
at the evaluation time. All our following discussions about oscillatory power spectra will keep
in mind this relation between the two possible types of dependence of the oscillations. In fact,
this very relation is at the heart of the proposal of vacuum state made by Mart́ın de Blas and
Olmedo in reference [48].

For a general time-dependent mass s any dynamical equation of the form (2.1) can be
obtained from the Hamiltonian

H�k =
1
2

[(
k2 + s

)
|v�k|2 + |πv�k

|2
]
, (2.4)

where πv�k
is to be understood as the canonical momentum of v�k and satisfies analogous reality

conditions. Note that this Hamiltonian generates both the evolution of v�k and v−�k. In order to
study some general properties of the solutions to equation (2.1), starting from this Hamiltonian
framework it is convenient to perform explicitly time-dependent canonical transformations of
v�k, πv�k

, and their complex conjugates such that the resulting variables obeyHamilton equations
that are purely diagonal. With this purpose, we introduce the transformation

a�k = fkv�k + gkπ̄v�k
, ā�k = f̄ kv̄�k + ḡkπv�k

, (2.5)
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where fk and gk are unspecified complex functions that depend explicitly on time, and are
subject to the constraint

fkḡk − gk f̄ k = −i, (2.6)

that in particular imposes that none of these functions can be zero at any instant of time. Con-
dition (2.6) is simply the requirement that the introduced transformation is canonical, up to a
constant factor −i. The Hamiltonian for the new variables a�k, a−�k, and their complex conju-
gates can be obtained by adding to the former one, given in equation (2.4), the explicit time
derivative of the generating function of the canonical transformation (2.5). The result is

H̃�k =
[(
k2 + s

)
|gk|2 + | fk|2 + f̄ kg

′
k − ḡk f

′
k

] (
ā�ka�k + ā �−ka �−k

)

−
[(
k2 + s

)
g2k + f 2k − gk f

′
k + fkg

′
k

]
ā�kā−�k + c.c., (2.7)

where c.c. indicates the complex conjugate of the preceeding term. This new Hamiltonian
generates diagonal equations for a�k, a−�k, and their complex conjugates if and only if

h′k = k2 + s+ h2k , with hk = fkg
−1
k . (2.8)

This is an ordinary differential equation of the Riccati type for the function hk, which is
equivalent to the set of coupled equations

Re(hk)′ = k2 + s+ Re(hk)2 − Im (hk)2, (2.9)

Im (hk)
′ = 2Re(hk) Im(hk), (2.10)

for its real and imaginary parts. Furthermore, one can check that the canonical condition (2.6)
is equivalent to

|gk|2 = − 1
2 Im(hk)

. (2.11)

So, consistency requires that any allowed solution hk of equation (2.8) must have a strictly
negative imaginary part. It follows that, given any such complex hk, the resulting diagonal
Hamiltonian acquires the form

H̃�k = −Ωk

(
ā�ka�k + ā �−ka �−k

)
, Ωk = F′

k + (k2 + s)
Im(hk)
|hk|2

, (2.12)

where Fk is the phase of fk. The equations of motion for a�k, a−�k, and their complex conjugates
are straightforward to solve in terms of initial data at an arbitrary time η0. These, in turn, give
rise to solutions of our original equation (2.1), obtained by simply taking the inverse of the
canonical transformation (2.5). Specifically, these solutions are

v�k = iḡke
−i

∫ η
η0

dη̃ Ωk(η̃)a�k(η0)− igke
i
∫ η
η0

dη̃ Ωk (η̃)ā−�k(η0). (2.13)

Let us notice that, since gk = fkh−1
k , each of the two summands in the above solution depends

on Fk only through multiplication by the complex exponential of its constant value at η0. Fur-
thermore, equation (2.1) is linear with real coefficients, so each of the summands in question
(multiplied by any constant) provides a complex solution on its own. It follows that we can
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freely choose Fk as the phase of hk, so that gk becomes real, and then obtain the following
solutions to equation (2.1):

μk =
1√−2 Im(hk)

ei
∫
dη Im(hk), (2.14)

as well as their complex conjugates. It is straightforward to check that these solutions are nor-
malized according to equation (2.3), which in particular implies that μk and its complex conju-
gate are linearly independent. Actually, one can see that any complex solution to equation (2.1)
normalized in this way is of the form (2.14), with the role of Im(hk) played by some strictly
negative function which satisfies the same second order differential equation as the imaginary
part of hk [equation that can be derived from equations (2.9) and (2.10)] [44]. This function is
completely fixed once one supplies its value and its first derivative at the initial time η0. But
we can in fact reproduce any such values by varying the initial data for the real and imaginary
parts of hk, in virtue of equation (2.10). It follows that we can write any normalized solution
μk of our original equation (2.1) like in formula (2.14), where hk is any solution of the Riccati
equation (2.8) with a strictly negative imaginary part. Finally, linear combinations of μk and
μ̄k provide the general solution to equation (2.1).

The advantages of characterizing the normalized solutions to equation (2.1) by means of
formulas (2.8) and (2.14) are many. On the one hand, some general features of these solutions,
and of their associated power spectra, can be easily deduced from a direct inspection of the
resulting equations for the real and imaginary parts of hk. On the other hand, we will see in
section 4 that it is possible to characterize a very specific solution to equation (2.8) in the
asymptotic limit of large k that has an associated spectrumwith the most satisfactory properties
in this asymptotic regime.

2.1. NO spectra in effective LQC

The analysis performed so far is valid for any real function of time s, playing the role of a mass
in equation (2.1). Let us focus now on the case of cosmological perturbations in the hybrid and
dressed metric approaches to inflationary LQC, where the mass s becomes a specific function
of the quantum FLRW geometry on the state that describes the background [20, 26, 28, 39].
Inflation is accounted for by the presence of a homogeneous scalar field (with inhomogeneous
perturbations), that we call the inflaton, subject to a potential that, for concreteness, we choose
to be quadratic in the field. In certain regimes of these LQC models, the power spectrum con-
structed from a solution to equation (2.1) can be understood as the two-point function at equal
time of the quantum Heisenberg field operators that describe the Mukhanov–Sasaki pertur-
bations or, as the case may be, the tensor perturbations. Namely, it represents the expectation
value on the vacuum state of the product of two field operators, evaluated at different spatial
points. This interpretation can be formally justified as follows in the case of hybrid LQC, begin-
ning from the perturbatively truncated system (for specific details and formulas, we refer the
reader to references [26, 27, 55, 56]). One starts with a specific ansatz for the quantum states
in which the wave function factorizes its dependence on the background FLRW geometry and
the gauge invariant perturbations, while both parts are allowed to depend on the inflaton field.
Searching for states of physical interest, one usually imposes that the partial wave function
that describes the FLRW part is close to a solution of homogeneous and isotropic LQC with
an inflaton field. Introducing an approximation that is based on the hypothesis of negligible
state transitions on the FLRW geometry, the total Hamiltonian can then be reduced to a con-
straint operator acting only on the partial wave function that corresponds to the gauge invariant
perturbations. This hypothesis mathematically amounts to additional conditions on the partial
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wave function of the FLRW geometry, namely, that it is peaked with respect to some oper-
ators of the homogeneous geometry, that are finite in number (see reference [26] for futher
details). Remarkably, the resulting constraint on the perturbations depends on the homoge-
neous geometry only via expectation values of geometric LQC operators on the partial FLRW
wave function of the state. Then, if the Fock representation of the gauge invariant perturbations
has been chosen adequately, the Heisenberg evolution of the annihilation and creation oper-
ators for the perturbations generated by the aforementioned constraint can be implemented
unitarily on Fock space. The construction of the associated unitary operator involves a careful
definition of the conformal time to absorb the expectation value of certain geometric opera-
tors on the partial state of the FLRW geometry [26, 55]. In fact, this evolution operator can
potentially be used to construct solutions to this constraint, namely (approximate) physical
states for the perturbations. Furthermore, the Heisenberg equations deduced in this manner
turn out to be precisely of the form of equation (2.1). Our quantum states of interest can then
be understood within a context of quantum field theory on a quantum FLRW background, in
which the computation of the two-point functions for the gauge invariant fields is equivalent
to solving equation (2.1) and evaluating the corresponding power spectra. Different solutions
to equation (2.1) just correspond to different choices of states for the gauge invariant pertur-
bations. It is worth pointing out that this equivalence is completely independent of the specific
details of the wave function that describes the cosmological background, provided that it is
close to a solution of homogeneous LQC with negligible geometry transitions, according to
our above discussion. Nonetheless, the details of this FLRW state are transcribed into features
of s. In what respects the pure computation of the two-point function, in particular, the consid-
ered partial FLRW wave function need not obey a semiclassical behavior as long as it fulfills
the aforementioned requirements. Moreover, even if the state of the background cosmology
does display a prominent semiclassical behavior, the Fock state of the perturbations may still
possess genuine quantum features.

Starting from equations of the form (2.1) for the gauge invariant perturbations, where we
recall that s contains the most relevant quantum effects of the cosmological background, in
this work we will focus only on modifications that are important in what is known as effective
LQC. This is a regime obtained by considering a very specific type of state for the background
cosmology, motivated as a solution of homogeneous and isotropic LQC, that is peaked on a
certain bouncing trajectory. More concretely, this trajectory can be analytically modelled by
equations that are of the FLRW type until, torwards the past, the energy density ρ reaches a few
percentages of Planck density (for the standard value of the Immirzi parameter within homo-
geneous LQC). For larger densities, the considered equations dictate a departure from general
relativity such that the scale factor a reaches a minimum, corresponding to the moment at
which the bounce occurs [32]. As it was commented in the Introduction, this bounce happens
at a universal value of the energy density that is roughly given by 0.41 times the Planck den-
sity (again for the most frequently accepted value of the Immirzi parameter). Furthermore, in
order to extract meaningful predictions about the evolution of cosmological perturbations, one
typically focuses only on those background trajectories such that the quantum behavior of the
Hubble parameterH may only affect the sector of large wavelength scales of the perturbations
that are observable nowadays at large angular scales in the CMB. In this way, it is assured
that the quantum corrections do not alter the behavior of the shorter scales in the observed
spectrum, which is very well explained by general relativity, while some quantum cosmology
modifications may survive in the rest of scales.

The commented solutions for the cosmological background in effective LQC, that are of
phenomenological interest for the study of perturbations, are characterized by the following
type of initial conditions at the bounce. In what concerns the geometry, on the one hand the
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Hubble parameter is zero at the bounce, since the scale factor is at a minimum there. On
the other hand, with an appropriate use of conformal time, one can make the effective LQC
equations (as well as the FLRW ones) only dependent on the relative variation of the scale
factor with respect to its value at, e.g. the bounce [57]. We take a as this relative variation;
so we have a = 1 at the bounce. Concerning the homogeneous matter content, our solutions
are characterized by an energy density which is dominated by its kinetic contribution at the
bounce, namely the contribution from the time derivative of the inflaton, while the potential
there is negligible. In the case of a quadratic inflaton potential, it has been proven that these
types of initial data are the only ones that lead to LQC effects that may be observable nowa-
days in the sector of large angular scales of the CMB, while leaving unaffected the rest of
scales which are well described by standard FLRW inflationary cosmology [21, 29, 34, 63].
Explicitly, this feature on the allowed effective LQC solutions requires the contribution of the
potential to the energy density of the Universe at the bounce to be approximately of the order
10−12. For further details about the phenomenological viability of the different regions in the
parameter space that specifies the initial data of effective LQC (namely, the value of the inflaton
at the bounce and its mass), we refer the reader to reference [21]. Let us summarize now the
typical evolution of such initial conditions, that is well understood after many studies about
effective LQC in the literature (see, e.g. the review [47]). First of all, the second conformal
time derivative of the scale factor, a′′, is positive at the bounce and, roughly speaking, of a
few Planck units in magnitude. This causes that, right after the bounce, a very short superin-
flationary period occurs. During this period, the rescaled Hubble parameter aH = a′/a grows
from zero to a maximum of order one in Planck units, and this happens so fast that the scale
factor remains almost constant [18, 47]. Shortly after the end of the superinflationary period
when H reaches its maximum, the quantum corrections to the FLRW equations become com-
pletely negligible and the primordialUniverse starts a classical phase of decelerated expansion,
according to the dynamics of general relativity, that is dominated by the kinetic energy of the
inflaton. More specifically, the quantum modifications in the evolution become ignorable after
the scale factor has increased approximately only 1 or 2 e-folds. This small variation is indeed
enough to produce a large decrease in the inflaton energy density, to values as small as 10−6 in
Planck units, since its dominant kinetic contribution in this regime is proportional to a−6, while
the potential contribution varies very little, with values ranging in the interval [10−12, 10−11]
(see e.g. [39, 47]). The classical kinetically dominated phase then goes on until the kinetic and
potential contributions to the energy density become comparable,moment at which aH reaches
a minimum. After a short transition from the kinetically dominated phase to the domination of
the potential, a period of short-lived inflation starts, leading finally to a slow-roll inflationary
phase. In fact, the variation of the scale factor from the bounce to the subdominance of the
kinetic contribution in the inflaton energy density is typically no more than 4 or 5 e-folds. For
further details on the semiclassical and classical properties of these background solutions, we
refer the reader to references [47, 58–61].

In the evolution equation (2.1) of the Mukhanov–Sasaki and tensor perturbations, the con-
sidered effective LQC solutions for the cosmological background are translated into the fol-
lowing features of the mass s in the pre-inflationary period. Since the inflaton potential remains
completely negligible from the bounce until almost the end of the kinetically driven classical
expansion, in this period we can safely ignore its contribution to s for both types of perturba-
tions. The mass then coincides for the Mukhanov–Sasaki and tensor equations, and is given
by [39]

s =
8π
3
a2ρ, and s = −a′′

a
, (2.15)
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for hybrid and dressed metric LQC, respectively, where we recall that the energy density varies
in time as ρ ∝ a−6 in the considered period. The difference between the value of the mass s in
the two LQC approaches is due to the fact that, in hybrid LQC, the second time derivative of a
is expressed canonically before quantization and then evaluated on effective LQC trajectories,
while in the dressed metric approach the scale factor is evaluated at effective trajectories prior
to taking its explicit derivatives. These discrepancies can, in turn, be traced back to the strate-
gies followed for the quantization of the perturbations. For more details, we refer the reader to
reference [39]. In what concerns this work, the fundamental difference between the two consid-
ered masses is their positivity and negativity at the bounce, for hybrid and dressed metric LQC
respectively, and the subsequent discrepancies in the superinflationary period. Nonetheless,
shortly after the end of superinflation any quantum cosmology correction becomes negligi-
ble and both masses coincide there on, in particular during the kinetically dominated classical
epoch.

In figure 1 we show the relative variation s′/s of the hybrid LQC mass from the bounce
to the first epochs of standard slow-roll inflation. Actually, the curve has been computed for
the exact expression of the Mukhanov–Sasaki mass, taking into account all contributions from
the inflaton potential. However, according to our comments above, this mass must essentially
coincide with the one for tensor perturbations approximately until it becomes negative, that
is when the potential starts to dominate over the kinetic energy of the inflaton. Indeed, notice
that the right-hand side of the first equality in equation (2.15), that only takes into account
the kinetic contribution, is strictly positive. Furthermore, we recall that the period with rele-
vant LQC effects stops soon after the very rapid super-inflationary stage following the bounce,
so the relative variation of the corresponding Mukhanov–Sasaki mass from the dressed met-
ric approach is also given by figure 1 from a few e-folds on. In particular, even though this
mass starts being negative at the bounce in the dressed metric approach, since a′′ > 0 there,
it becomes positive during the decelerated kinetically dominated classical phase, where a′′ is
negative, until the approximate 4.5 e-folds mark in the figure [39].

With this information at hand, let us turn our attention to normalized solutions to
equation (2.1), that we have shown that take the form (2.14), where hk is a solution of the Ric-
cati equation (2.8) with negative imaginary part, particularized to the case where s is provided
by the hybrid or the dressed metric approaches to LQC. The relevant time-dependent quantity
for the computation of power spectra from these solutions is pk = |μk|2. From equation (2.10)
we have

p′k =
Re(hk)
Im(hk)

= −2|gk|2Re(hk). (2.16)

It follows that maxima or minima of pk happen at times when the real part of hk becomes zero
and, taking into account equation (2.9), when

k2 + s− Im (hk)
2 > 0, or k2 + s− Im (hk)

2 < 0, (2.17)

respectively. In particular, let us notice that, within intervals of time and scales k such that
k2 + s � 0, only one minimum may occur for pk (if any). Therefore, within such inter-
vals, the power spectra cannot oscillate, regardless of the choice of normalized solutions to
equation (2.1). For all other scales and intervals of time where k2 + s > 0, the power spectrum
obtained from normalized solutions may oscillate in time in a way that depends on the scale k.

Phenomenologically, using Planck units and setting the reference value of the scale fac-
tor at the bounce, the wavenumbers k of the perturbations that had physical (wavelength)
scales a/k of the order of the Hubble radius H−1 around the bounce in LQC and that are
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Figure 1. Relative variation of theMukhanov–Sasaki mass from hybrid LQC in terms of
the number of e-folds from the bounce. The plot dispays theMukhanov–Sasaki mass for
the effective FRLW background considered in reference [29], determined by an initial
value of the inflaton at the bounce equal to 0.97, and subject to a quadratic potential
corresponding to an inflaton mass equal to 1.2 × 10−6. All quantities are given in Plack
units. The (only) apparent discontinuity in the plot shows the moment when this mass
becomes negative, close to 4.5 e-folds.

observable today would be in the approximate window k ∈ [10−1, 1] (for typical cosmolog-
ical histories and reheating scenarios). This window can be enlarged with some margin to
[10−6, 1] in order to include the possible observational effects of non-Gaussian correlations
with super-Hubble modes [21, 62]. These are the scales that should have experienced the
most significant LQC effects of the homogeneous geometry. On the other hand, if we include
scales that certainly were not affected by quantum effects, the total window of wavelengths that
we can observe nowadays (directly or by non-Gaussian correlations) would approximately be
[10−6, 102]. Focusing our attention on wavenumbers k ∈ [10−6, 1] that might have been influ-
enced by LQC phenomena, we see from figure 1, and our discussion about it, that they are
such that k2 + s > 0 in the kinetically dominated classical period after superinflation, both
for hybrid and dressed metric LQC. Furthermore, the mass s remains almost constant in this
period, with values very close to zero (or numbers much smaller than one). If a power spec-
trum determined by pk oscillates in this classical period of the evolution of the background
then, for modes k � 1, the maxima of the oscillations display Im (hk)2 � 1, in virtue of the
first inequality in equation (2.17). Actually, from equations (2.14) and (2.17), these maxima of
2pk are always greater than (k

2 + s)−1/2 evaluated at those critical points, and therefore much
larger than one for k � 1. It follows that at each instant of time the possible maxima of 2pk,
viewed as a function of k, are bounded from below by the curve (k2 + s)−1/2, which grows
as k decreases, and this curve remains approximately the same throughout the whole interval
of time that we are considering, where s varies very little. Similarly, this curve sets an upper
bound for the minima of an oscillating pk. In this respect, recall that the bound determined by
(k2 + s)−1/2 reaches orders of magnitude much bigger than one for k � 1. On the other hand,
there is no upper bound of this type for the maxima of pk. These features altogether involve that
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oscillating power spectra during the kinetically dominated phase, when evaluated later at the
onset of inflation, often display a net amplification of the power as k decreases, for those k for
which pk had been oscillating [29, 47, 63]. This statement is also true for power spectra evalu-
ated at the end of inflation in the case of the fields that are often used in cosmology to extract
cosmological observations. Indeed, these are not exactly given by the type of field V(η,�x) that
we have been considering, but rather by its rescaling with certain functions of the background,
that lead to the comoving curvature perturbative field for scalar perturbations, or to its equiv-
alent for tensor ones. The power spectra for these rescaled fields freeze during the period of
slow-roll inflation when the wavelength scale a/k gets much larger than H−1, so that the ana-
lyzed mode crossed the Hubble horizon sufficiently long ago [4, 54]. For the type of solutions
that we are studying for the cosmological background, let us recall that the rescaled Hubble
parameter aH reaches a minimum at the end of the kinetically dominated phase, with a typical
value in the range [10−4, 10−3] [47]. Therefore, we conclude that the modes corresponding to
the sector of largest scales under consideration, let us say approximately k ∈ [10−6, 1], must
have either crossed the horizon well before the onset of inflation or are the first ones to cross
after it begins. We then expect that, for such modes, the evaluation of the power spectra of
the comoving curvature fields at the end of inflation provides a good picture of the behavior
of these fields around the end of the kinetically dominated period and the beginning of the
potentially dominated stage, before slow-roll inflation took place.

The presence of oscillations of pk, and their general net effect of amplification of power
for small wavenumbers, can be regarded as a somewhat artificial phenomenon if one takes
into account that equation (2.1) in principle admits normalized solutions such that pk remains
approximately constant during the Einsteinian kinetically dominated phase. Indeed, for this to
happen, one would naturally require that

∣∣∣∣
p′k
pk

∣∣∣∣ = 2|Re(hk)| � 1, (2.18)

where we have used equation (2.10). We can impose this condition at some time ηi in the
beginningof the kinetically dominated phase, and check if it is stable over thewhole considered
period. For that, it is necessary that we also impose

Im (hk)2(ηi) = k2 + s(ηi)+ rk, |rk| � 1 (2.19)

so that |Re(hk)′| � 1 as well in the beginning of the kinetically dominated period. By choosing
these initial quantities sufficiently small, the desired condition (2.18) for an approximately
constant spectrum can be made consistent throughout the whole period in question, because
equations (2.9) and (2.10) imply

Re(hk)′′ = s′ + 2(k2 + s)Re(hk)+ 2Re(hk)3 − 6Re(hk) Im (hk)2, (2.20)

and s′ (as well as s) remains much smaller than the unit in the kinetically dominated phase.
The existence of very slowly varying power spectra during this phase also means that, for the
window k ∈ [10−6, 1] of modes, the features of the two-point function of the perturbations at
the end of the kinetically dominated period can resemble very well those present at the end of
the superinflationary period. It is worth recalling that this is the only regime after the bounce
where effective LQC corrections are important. One can thus raise doubts as to whether it is
physically reasonable to focus the attention on vacuum states for the perturbations that lead
to highly oscillating spectra during the times of kinetic domination. Indeed, such oscillatory
character can easily erase most of the information coming from the previous epochs near the
bounce. Furthermore, these oscillations can result in an enhancement of power that is not due
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to any quantum cosmology effect nor it is intrinsic to the classical behavior of spacetime after
superinflation. Rather, it may correspond to particular features of the specific set of normalized
solutions chosen for the perturbations.

In conclusion, we have argued from an analytical perspective that reasonably natural candi-
dates for power spectra which ought to be able to capture most of the genuine LQC corrections
on the evolution of the perturbations, without introducing artificial modifications in the part
of the pre-inflationary regime that is essentially Einsteinian, are those that present little or no
oscillations during such a regime.An argument of continuity of this behavior to the past encour-
ages one to try and characterize NO spectra throughout the entire evolution of the background
cosmology, from the bounce to the onset of inflation.

3. General form of the power spectra: NO conditions

We have discussed the physical interest of considering vacua, or equivalently initial conditions,
for cosmological perturbations in the framework of effective LQC that lead to power spectra for
which the time and k-dependent oscillations are minimal. In order to analytically characterize
them,we will now study a general formula for the power spectrum associated with any possible
vacuum state, conveniently written in terms of a particular solution to the Ermakov–Pinney
equation.

Starting from equation (2.1) and any set of normalized solutions μk, let us call again
pk = |μk|2. This is the function that codifies the freedom of choice of vacuum state in the
power spectrum (2.2). Using the normalization condition (2.3), we have that any such non-zero
function pk satisfies the following second order differential equation

p′′k + 2(k2 + s)pk =
1
2pk

[
(p′k)

2 + 1
]
. (3.1)

Since pk is by construction a positive function, we can write it as pk = ρ2k/2, where ρk is a real
non-zero function that, in virtue of equation (3.1), must satisfy

ρ′′k + (k2 + s)ρk =
1
ρ3k

. (3.2)

This is the well-known Ermakov–Pinney equation [49, 50]. It has been widely employed in
the context of FLRW cosmology and its perturbations (see e.g. [64–67]). Conversely, given
any real and non-zero solution ρk of this equation, the function pk = ρ2k/2 necessarily satisfies
equation (3.1). Therefore, we can completely specify the general solution of this equation if
we obtain all possible real solutions ρk of the Ermakov–Pinney equation. Actually, this can be
done in terms of just one particular solution to equation (3.2), in such a way that the resulting
formulamanifestly displays the possible oscillatory behavior of pk. Let us sketch the procedure
to do so. For further details, we refer the reader to references [65, 68].

The general solution of any Ermakov–Pinney equation of the form (3.2) can be expressed in
terms of two linearly independent solutions to our original equation (2.1), and their Wronskian
[50]. These two solutions can, in turn, be chosen as two linearly independent functions, given
by one particular real solution ψk to equation (3.2), multiplied by a sinusoidal function (a sine
or a cosine, respectively, for the two considered solutions) of an arc φk such that φ′

k = ψ−2
k .

Using them, the general real solution of the Ermakov–Pinney equation can be written as

ρ2k = ψ2
k

[
Acos2(φk)+ Bsin2(φk)+ C sin(2φk)

]
, C2 = AB− 1, (3.3)
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where A, B, and C are constants that must be real and such that ρ2k be positive. Therefore,
the function pk that determines the form of any power spectrum associated with any set of
normalized solutions to equation (2.1) can be obtained as

pk =
1
4
ψ2
k [A+ B+ (A− B) cos(2φk)+ 2C sin(2φk)] , (3.4)

where we recall that ψk is a real solution to equation (3.2) and φ′
k = ψ−2

k . This last equality
guarantees that φk grows monotonically in time, so that the sine and cosine functions appear-
ing in this formula oscillate in time, generally in a k-dependent way. The overall oscillatory
character of their contribution to pk depends on how fast they oscillate when compared to the
relative variation of the global factor ψ2

k . If they do vary faster, then they generally give rise
to an oscillatory pk unless we have A = B = 1 (or at least that these constants take values in a
small neighbourhood of 1), case in which the two coefficients of the sinusoidal terms are zero
(or negligible). We recall that this can only happen for intervals of time and wavenumbers k
such that k2 + s > 0, since we have seen that for k2 + s � 0 the function pk cannot oscillate
owing to the dynamical equations (2.9) and (2.10). It follows that we can characterize the NO
spectra if we can restrict our considerations to real solutions of the Ermakov–Pinney equation
such that, for k2 + s > 0,

∣∣ψ′
kψk

∣∣ < 1 (3.5)

(ormuch smaller than 1, if preferred), and to constantsA andB in equation (3.4) that take values
in a small neighbourhood of 1. We have taken into account that the frequency of the sinusoidal
functions in equation (3.4), and therefore the rate at which they oscillate, is determined by
2φ′

k = 2ψ−2
k .

In order to analyze condition (3.5), let us recall that equation (3.1) [equivalent to
equation (3.2) for real solutions ρk], is satisfied by every pk = |μk|2, whereμk is any normalized
solution to equation (2.1). Conversely, any real |μk| such that its square satisfies equation (3.1)
univocally leads to a normalized solution to equation (2.1) [in virtue of equation (2.3)]. It then
follows that, up to a sign, we can specify any particular real solutionψk of the Ermakov–Pinney
equation (3.2) as

√
2|μk|, where |μk| is completely determined by equation (2.14) and hk is a

solution to equation (2.8) with strictly negative imaginary part. Therefore, we can rewrite the
NO condition (3.5) in terms of hk as

∣∣∣∣
Re(hk)
Im(hk)

∣∣∣∣ < 1, (3.6)

where we have used equation (2.10).
For illustrative purposes, let us see whether the NO condition (3.6) derived above is sat-

isfied for fields with modes that obey equation (2.1) in two situations where a natural choice
of initial conditions is available. The first of these is when the mass s is exactly a constant,
namely s′ = 0, case in which equation (2.1) represents the dynamical equation of a massive
Klein–Gordon field in Minkowski spacetime. Natural initial conditions are then given by those
corresponding to the Poincaré vacuum state for the field, with associated normalized solutions
(2.14) characterized by

Im(hk) = −
√
k2 + s, (3.7)

that is a constant.We see that the real part of hk is identically zero, and the NO condition indeed
is satisfied for all k. In fact, from the general formula (3.4), it follows that the Poincaré vacuum
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is the unique vacuum state for which the power spectrum is a constant, and therefore has the
minimal oscillatory character. The second situation that we want to analyze is when the field
V(η,�x) describes the Mukhanov–Sasaki or the tensor perturbations of a cosmological back-
groundwhich is the de Sitter solution of general relativity, in flat slicing. In this case, the mass s
coincides for both types of perturbations. It is given by−2η−2, where the conformal time only
takes negative values. Standard initial conditions for the normalized solutions to equation (2.1)
are in this case those specifying the Bunch–Davies vacuum state. These conditions give rise
to solutions with [4]

Im(hk) = − k3η2

1+ η2k2
. (3.8)

Using equation (2.10), it follows that the real part of hk is given by

Re(hk) =
1

η + η3k2
. (3.9)

The NO condition is therefore satisfied when k > |η−1|. It is worth noting that this inequality
can always be satisfied for any k by considering sufficiently large negative times, something
that is certainly met in the limit η →−∞. Moreover, from equation (3.9) for the real part of hk,
we see that the Bunch–Davies spectrum is completely monotonic in time for any k, so it does
not display any oscillations. On the other hand, we know that the possible oscillatory behavior
of any other power spectrum in de Sitter, that can be obtained bymeans of formula (3.4) setting
ψk as the solution selected by the Bunch–Davies conditions, must stop when k2 + s � 0. Since
s = −2η−2, this means that there are no oscillatory pk in de Sitter for k �

√
2|η−1| (again,

when the conformal time tends to minus infinity, the restriction on k disappears). Hence, we
conclude that an NO spectrum for the Mukhanov–Sasaki or the tensor perturbations in a de
Sitter background is obtained with the choice of a Bunch–Davies vacuum state, and any other
NO spectrum must be in a small neighbourhood of it for k >

√
2|η−1|, in the sense of setting

the constants A and B close to 1 in formula (3.4).

3.1. NO condition in effective hybrid LQC

We have seen that the NO condition (3.6) on the power spectrum is satisfied by the natural
Poincaré and Bunch–Davies vacua on their respective Minkowski and de Sitter backgrounds.
The main purpose of this section is to analyze if the condition can also be fulfilled in scenarios
where the mass s is given by effective hybrid LQC, at least in regimes where k2 + s > 0 for
wavenumbers in the phenomenological window k ∈ [10−6, 102] that covers, with some mar-
gin, the range corresponding to scales that we can consider observable nowadays, as we have
commented [21, 29]. Actually, those regimes include the bounce, which can be understood as
a privileged moment to set initial data. In particular, we are going to impose the NO condi-
tion at the time η0 when the bounce occurs, and then study its stability throughout the period
elapsed until the onset of inflation. In the case of dressed metric LQC, for a considerable part
of the phenomenological window of wavenumbers k that we are investigating, we have that
k2 + s � 0 at the bounce owing to the negativity of the mass, that besides takes an absolute
value of approximate order 10 in Planck units [39]. Therefore, it seems unclear whether it is
useful to impose NO conditions at the bouncing time in order to restrict the physically viable
data in this case, at least as we have posed them; rather, one would have to appeal now to some
additional criteria to pick out the vacuum state, that then should satisfy the non-trivial require-
ment of leading to a suppression of the oscillations in the later Einsteinian period of kinetically
dominated evolution of the background.
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Let us first impose theNO condition (3.6) at the time η0 of the bounce, chosen as themoment
to specify the Cauchy data of the normalized solutions to equation (2.1). This restricts the real
part of hk at that time to be small compared to the imaginary part, so that

|Re(hk)(η0)| = εk| Im(hk)(η0)|, (3.10)

where εk is a positive real number smaller than one3. For this restriction to hold in a small
neighbourhoodof η0, it is necessary that the derivativeof Re(hk) Im (hk)−1 is also small initially,
namely using equations (2.9) and (2.10),

∣∣∣∣
k2 + s(η0)
Im(hk)(η0)

− (1+ ε2k) Im(hk)(η0)

∣∣∣∣ < 1. (3.11)

We note that, in general, ε2k provides a subdominant contribution to the second summand in
this inequality. Besides, we recall that the mass s in the kinetically dominated period (that
includes the bounce) is given by the first equality in equation (2.15) for hybrid LQC. Taking
into account that the energy density at the bounce is a universal quantity, with a fixed value that
is approximately a 41 percent of the Planck density, we have that k2 + s(η0) is always larger
than one in Planck units. It then follows that a necessary condition for equation (3.6) to hold is

Im(hk)(η0) = −
√
k2 + s(η0)+ δk,

|δk|√
k2 + s(η0)

< 1 (3.12)

(again, see footnote 3) and we have used that the imaginary part of hk must be negative in order
to provide normalized solutions to equation (2.1). Clearly, one can then choose the parame-
ters εk and δk in such a way that the condition (3.11) on the derivative of Re(hk) Im (hk)−1 is
satisfied. Hence, in hybrid LQC, the NO condition can be guaranteed to hold in a small neigh-
bourhood around the bounce if the initial data for the normalized solutions is constrained by
equations (3.10) and (3.12), with sufficiently small parameters εk and δk.

Let us now proceed to analyze the stability of the NO condition in the kinetically domi-
nated regime that goes from the bounce to the onset of inflation. We recall that the dynamics
experienced by the real and imaginary parts of hk are governed by a coupled set of real first
order differential equations, or equivalently by a decoupled second order equation. Therefore,
if the derived conditions (3.10) and (3.12) on those functions are imposed initially, their sta-
bility under evolution over the interval of time where one wishes to eliminate oscillations is
controlled by the second derivative of Re(hk) Im (hk)−1, that hence must be small in absolute
value. Using equations (2.9) and (2.10) again, we must have, let us say,

|s′ − 4(k2 + s)Re(hk)| < | Im(hk)|. (3.13)

We recall now that the energy density depends on time as ρ ∝ a−6 in the kinetically dominated
region that includes the bounce. Since then s′ ∝ a′, the time derivative of the mass is zero at
the bounce and the above stability condition reduces there to

εk <

∣∣∣∣
1

4[k2 + s(η0)]

∣∣∣∣ , (3.14)

which is perfectly compatible with our previous restrictions to guarantee NO power spectra in
a small neighbourhood of the bounce in hybrid LQC.

3 Or much smaller than one, if preferred.
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In order to check the consistency of our conditions deeper into the kinetically domi-
nated regime, we need more details about the behavior of s′ there. From the first equality in
equation (2.15) and the behavior ρ ∝ a−6 of the energy density, we straightforwardly see that s′

must be negative throughout this whole period (see also figure 1). Furthermore, we recall that
in this region aH = a′/a reaches only one maximum of order one, in Planck units, after the
superinflationary regime that follows the bounce.Since the scale factor remains almost constant
during superinflation, we have that |s′| reaches only one maximum during the kinetically dom-
inated period, that turns out to be approximately four times bigger than s(η0). Afterwards, |s′|
rapidly decreases to negligible values after roughly 1 or 2 e-folds (as it is confirmed in figure 1).
Therefore, if we want a behavior of the form (3.10) and (3.11) for the real and imaginary parts
of hk that guarantees the NO condition at times after the bounce in the kinetically dominated
regime, the only possible tension with stability, governed by equation (3.13), may arise in the
region around the end of superinflation. Indeed, elsewhere we have that s′ contributes negligi-
bly to this inequality, which is then compatible with the NO condition in a similar way as it
was at the bounce. Actually, given that 4(k2 + s) is of the order of |s′| or larger around the end
of superinflation, we think it is likely that this tension disappears if one chooses properly the
initial parameters εk and δk.

We conclude that, in effective hybrid LQC, conditions for NO power spectra on the gauge
invariant perturbations can be consistently set at the bounce via equations (3.10) and (3.12)
with appropriately small parameters εk and δk, that in principle can be chosen without obstruc-
tions. With such a suitable choice, the associated spectra should display a stable NO behavior
throughout the kinetically dominated period after the bounce.Moreover, among the normalized
solutions to equation (2.1) of the form (2.14) restricted by these NO considerations, we notice
that there consistently exist some that satisfy conditions (2.18) and (2.19) at the beginning
of the classical, Einsteinian kinetically dominated regime. These would lead to power spectra
that remain approximately constant throughout this classical period so that, even when evalu-
ated around the onset of inflation, they can still provide useful information about the two-point
function of the perturbations at those primeval stages right when the effective LQC corrections
became negligible.

4. Uniqueness of the NO spectrum in the ultraviolet regime

The procedure of Hamiltonian diagonalization carried out in section 2, using explicitly time-
dependent transformations, parallels a similar construction performed in reference [69] for
the fully canonical formulation of the classical system formed by a homogeneous FLRW
background with perturbations, truncated at lowest non-trivial order in the action. That work
addresses the possibility of diagonalizing the resulting (quadratic) perturbative contribution of
gauge invariants to the zero mode of the Hamiltonian constraint of the full system, employ-
ing transformations of the form (2.5) and (2.6) with coefficients that depend on the canonical
variables which describe the homogeneous background cosmology. If one completes these
transformations to be canonical in the entire system, the perturbative contributions to the zero
mode of the Hamiltonian constraint turn out to be precisely of the form (2.12) (up to a global
factor a−1 for a standard lapse), where the time derivatives are replaced by conformal Poisson
brackets with the Hamiltonian of the unperturbed FLRW cosmology [69]. These perturbative
contributions are then diagonal in this context if hk satisfies equation (2.8), after replacing the
time derivative by the mentioned Poisson brackets.

Focusing on the asymptotic regime of unboundedly large wavenumbers k, or ultraviolet
regime, it was shown in reference [69] that it is possible to eliminate each contribution to
the non-diagonal terms in the perturbative part of the Hamiltonian constraint, order by order
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in powers of k. The result is an ultraviolet diagonalization characterized by a very specific
asymptotic expansion of at least one solution hk to the analog of our equation (2.8) in that
work. Following a completely similar procedure, we can perform the same type of asymptotic
diagonalization of our Hamiltonian (2.12), in the regime of large k, yielding the expansion [69]

kh−1
k ∼ i

[
1− 1

2k2

∞∑

n=0

(−i
2k

)n

γn

]
, (4.1)

where the coefficients γn are real, only depend on time, and are given by the following iterative
relation, that is deterministic:

γ0 = s, γn+1 = −γ ′
n + 4s

[
γn−1 +

n−3∑

m=0

γmγn−(m+3)

]
−

n−1∑

m=0

γmγn−(m+1). (4.2)

We define γ−n = 0 for all n > 0. This leads to a unique asymptotic expansion of, at least, one
solution hk to equation (2.8), with imaginary part that is strictly negative [69]. Therefore, it
provides in turn a very precise asymptotic expansion of, at least, one normalized solution to
equation (2.1), via equation (2.14). We call any such solution μ̃k. Its associated square norm
p̃k = |μ̃k|2 is then of the form

p̃k =
1
2k

(1− Γk) , (4.3)

where Γk has the following asymptotic expansion:

Γk ∼
1
2k2

[
1− 1

2k2

∞∑

n=0

(
i
2k

)2n

γ2n

]−1 ∞∑

n=0

(
i
2k

)2n
[
γ2n −

1
2k2

2n∑

m=0

(−1)mγmγ2n−m

]
. (4.4)

This is a series where each summand depends on the wavenumber k only through an even
inverse power of it. Since we know that any such p̃k must be of the form ψ̃2

k/2, where ψ̃k is a real
solution to the Ermakov–Pinney equation (3.2), this procedure of ultraviolet diagonalization
fixes as well (up to sign) a very specific asymptotic expansion of, at least, one solution ψ̃k to
that equation, in the regime of unboundedly large k. Let us precisely take it (or one of them,
if there were more than one) as the particular solution to insert in the general formula (3.4)
for any other power spectrum. Then, any function pk equal to the square norm of a normalized
solution to equation (2.1) is given by

pk =
1
4k

(1− Γk) [A+ B+ (A− B) cos(2kη + 2θk)+ 2C sin(2kη + 2θk)] , (4.5)

where Γk has the asymptotic expansion (4.4) and θk is a function with dominant contribution
in the ultraviolet regime of order k−1. In this asymptotic regime, the dominant term in pk is

1
4k

[A+ B+ (A− B) cos(2kη + 2θk)+ 2C sin(2kη + 2θk)] , (4.6)

because Γk is of order k
−2. This is a highly oscillatory function for unboundedly large k unless

we strictly imposeA = B = 1, in which case pk reduces to p̃k. Actually, this choice of constants
is the only one that succeeds to eliminate, order by order in the expansion of Γk in inverse
powers of k, all the scale-dependent oscillations in the considered ultraviolet regime.

In this way, we conclude that, in the asymptotic regime of unboundedly large wavenumbers
(or short wavelength scales) there exists only one expansion for the power spectrum of the
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field V(η,�x) for which absolutely no k-dependent oscillations occur over time. Let us notice
that this result holds for any mass s that is a smooth function of time. Moreover, any choice
of normalized solutions to equation (2.1) that presents a completely NO spectrum for all k, if
such a choice exists, must have the asymptotic expansion characterized by equations (4.1) and
(4.2). It is reasonable to expect that there exists at least one set of normalized solutions that
are, e.g. continuous functions of k and possess such asymptotic expansion. If such continuity
in k ensures that the NO condition in the previous section is satisfied for all scales, then we
would have a set of preferred choices of power spectrum for the field V(η,�x). There is actual
evidence that this should be the case in the context of effective LQC, just by looking at the
properties of the asymptotic expansion. Indeed, it has been shown that when s corresponds
to a constant or to the mass for cosmological perturbations on a de Sitter background, the
series given by equations (4.1) and (4.2) converges for sufficiently large k [69]. The resulting
functions are analytically well defined at all other scales, and they correspond to the choices of
normalized solutions set by the Poincaré and Bunch–Davies vacuum states, respectively [69].
As we explicitly saw in the previous section, these two states lead to power spectra that display
no oscillations at all. Furthermore, the Einsteinian regime reached as part of the effective LQC
evolution of the primordial Universe presents two regions where s is very close to either a
constant or to the mass for a de Sitter background: these are the classical kinetically dominated
period and the slow-roll inflationary phase, respectively. It therefore seems reasonable to expect
that there should exist at least one choice of normalized solutions to equation (2.1) that is
continuous in k and has an asymptotic expansion fixed by equations (4.1) and (4.2) at all finite
times such that it gives rise to power spectra that are of NO type in the regime where effective
LQC reproduces the classical FLRW evolution. Any such choice would, in turn, correspond to
a promising candidate for the vacuum state at the bounce, with a power spectrum capable of
capturing the traces left by LQC effects in the dynamics of the primordial perturbations before
these effects became ignorable in the background evolution.

5. Conclusions

We have investigated from a theoretical point of view the possibility of obtaining NO power
spectra for primordial perturbations in cosmology, putting a special emphasis on cosmological
backgrounds that correspond to certain solutions of effective LQCwith inflation, such that they
display a pre-inflationary regime that is dominated by the kinetic energy density of the inflaton.
This type of background is phenomenologically favoured when confronting the expected loop
quantum geometry effects on the evolution of the perturbations with CMB observations. Fur-
thermore, we have characterized the general conditions that any power spectrum must satisfy
in order to eliminate or minimize its scale-dependent oscillations over time, making use of a
well-known equivalence between our hyperbolic field equations with a time-dependent mass
and the Ermakov–Pinney equation. Finally, we have discussed the uniqueness of the NO power
spectrum in the ultraviolet regime of short wavelength scales, concluding that there is only one
asymptotic expansion that displays no scale-dependent oscillations at all. This expansion actu-
ally corresponds to the choice of a standard Poincaré or a Bunch–Davies vacuum, respectively,
for a Minkowski or a de Sitter background, and constitutes a promising line of attack to com-
pletely fix the initial conditions for the primordial perturbations in effective LQC by means of
a physically well-motivated criterion.

In more detail, we have first considered the general equation of a harmonic oscillator with
a time-dependent mass, and have conveniently characterized its normalized solutions by diag-
onalizing the associated Hamiltonian employing explicitly time-dependent transformations.
This is the type of equation that each mode of the gauge invariant perturbations satisfies,
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not only in classical perturbation theory around FLRW cosmology, but also in the context
of the hybrid and dressed metric approaches to LQC when the unperturbed cosmology can be
described effectively. Then, using general features of the effective LQC backgrounds of inter-
est and of the solutions to the considered harmonic oscillator equation, we have discussed the
qualitative impact that oscillatory power spectra may have on observations. We have argued
that, in order to get rid of any net amplification of power artificially pumped by oscillations in
classical regimes where the classical cosmological evolution is recovered, as well as to obtain
a neat information about the quantum state of the perturbations in stages where the LQC mod-
ifications may not yet be completely negligible in the background evolution, we need to focus
our attention on initial conditions that lead to NO spectra.

We have then studied the general conditions that the normalized solutions to our field
equation must satisfy in order to avoid the presence of scale-dependent oscillations over time
in their associated spectra. For that, we have written any possible power spectrum in terms of
one particular solution to the Ermakov–Pinney equation that corresponds to our hyperbolic
equations with time-dependent mass, in a way that makes manifest the possible oscillations.
Imposing that these oscillations have a minimal contribution in the admissible power spectra
results into a very specific condition on the particular solution to the Ermakov–Pinney equation
and on the two integration constants that fix each power spectrum in terms of it. We have ana-
lyzed if this NO condition can be consistently imposed at the bounce that replaces the classical
cosmological singularity, for perturbations in hybrid LQC. The result is in the affirmative. We
have also checked that there are no serious obstructions to extend this requirement from the
bounce all the way to the onset of inflation. On the other hand, in the case of the dressed metric
approach to LQC, we have argued that there is no clear motivation from our analytical con-
siderations to substantiate the imposition of the NO condition at the bounce for the scales of
observational interest, owing to the fact that the associated negativity of the time-dependent
mass around the bounce implies that, in this case, the oscillations at the considered scales can
start only in a later phase of the evolution, which is actually when the main LQC effects are
negligible. This fact leads to the need of additional criteria or extra input in order to pick out
the initial conditions at the bounce in the dressed metric formalism. Nonetheless, these criteria
or input should be non-trivially constrained by requiring the NO condition in the part of the
evolution where the background reaches the classical, Einsteinian regime.

To conclude our analysis, we have investigated the asymptotic behavior of the power spec-
trum in the sector of unboundedly large wavenumbers k. Taking insight from previous results
about asymptotic Hamiltonian diagonalization for cosmological perturbations [69], we have
determined one specific asymptotic behavior for certain solutions to the Ermakov–Pinney
equation, given as a series in inverse powers of k. We have then inserted this asymptotic series
in the general formula for power spectra previously derived. The resulting expression mani-
festly displays rapid oscillations at every order in inverse powers of k, except for a single choice
of the otherwise free integration constants. This allows us to conclude that there is only one
possible asymptotic NO behavior for the power spectrum, that we have completely character-
ized. We have finally argued how this asymptotic expansion can reasonably lead, by imposing
continuity in the scale k, to a unique (set of) choice(s) of normalized solutions to our field
equations with a power spectrum that satisfies the NO condition for all k, in the entire clas-
sical pre-inflationary and inflationary phases of effective LQC. The choice suggested by this
procedure constitutes a promising candidate as a physically distinguished vacuum state for the
cosmological perturbations in effective LQC.

Our work provides an important step towards the analytical characterization of a reasonable
set of initial conditions for the cosmological fluctuations in a pre-inflationary Universe with
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LQC effects. Completing the specification of these data would not only confer more robust-
ness to the predictions that can be drawn from approaches to LQC such as the hybrid or the
dressed metric approaches (as well as to allow one to clearly isolate those predictions from
other classical effects, like e.g. the ones arising from a short-lived inflation). Actually, it would
be a key ingredient to understand the consequences of these various theoretical models in an
analytical way, and discriminate between them. Moreover, it would allow one to falsify them
against the CMB observations without the shadow that quantum field theory ambiguities cast
on such possible tests nowadays.

Finally, it is worth noticing that the conditions found here for NO power spectra have been
obtained for general and unspecified time-dependent (differentiable)mass functions of the per-
turbations. The same is true for our characterization of a unique asymptotic expansion for such
spectra. In this respect, our analysis potentially serves as a first contribution to the study of
preferred choices of a vacuum for primordial perturbations in other theoretical approaches to
cosmology apart from LQC (e.g. in the context of bouncing cosmologies [70]), that produce
modifications to the time-dependent mass of the perturbations with respect to its behavior in
the standard inflationary paradigm.
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Abstract: In generic curved spacetimes, the unavailability of a natural choice of vacuum state introduces
a serious ambiguity in the Fock quantization of fields. In this review, we study the case of fermions
described by a Dirac field in non-stationary spacetimes, and present recent results obtained by us
and our collaborators about well-motivated criteria capable to ensure the uniqueness in the selection
of a vacuum up to unitary transformations, at least in certain situations of interest in cosmology.
These criteria are based on two reasonable requirements. First, the invariance of the vacuum under the
symmetries of the Dirac equations in the considered spacetime. These symmetries include the spatial
isometries. Second, the unitary implementability of the Heisenberg dynamics of the annihilation and
creation operators when the curved spacetime is treated as a fixed background. This last requirement
not only permits the uniqueness of the Fock quantization but, remarkably, it also allows us to determine
an essentially unique splitting between the phase space variables assigned to the background and the
fermionic annihilation and creation variables. We first consider Dirac fields in 2 + 1 dimensions and
then discuss the more relevant case of 3 + 1 dimensions, particularizing the analysis to cosmological
spacetimes with spatial sections of spherical or toroidal topology. We use this analysis to investigate the
combined, hybrid quantization of the Dirac field and a flat homogeneous and isotropic background
cosmology when the latter is treated as a quantum entity, and the former as a perturbation. Specifically,
we focus our study on a background quantization along the lines of loop quantum cosmology.
Among the Fock quantizations for the fermionic perturbations admissible according to our criteria,
we discuss the possibility of further restricting the choice of a vacuum by the requisite of a finite
fermionic backreaction and, moreover, by the diagonalization of the fermionic contribution to the total
Hamiltonian in the asymptotic limit of large wave numbers of the Dirac modes. Finally, we argue
in support of the uniqueness of the vacuum state selected by the extension of this diagonalization
condition beyond the commented asymptotic region, in particular proving that it picks out the standard
Poincaré and Bunch–Davies vacua for fixed flat and de Sitter background spacetimes, respectively.

Keywords: quantum field theory in curved backgrounds; dirac field; loop quantum gravity; cosmology
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1. Introduction

Quantum Field Theory (QFT), namely the description of fields according to quantum rules, is one
of the pillars of Modern Physics (see e.g., Refs. [1,2]). In this description, it is common to use a
Fock formalism in which the physical processes are formulated in terms of creation and annihilation
of field excitations around a vacuum state. Typically, these excitations are interpreted as particles
(or antiparticles) of the field. This kind of description has been adopted successfully for all fundamental
physical interactions, except for gravity: a fully satisfactory quantum field formulation of General
Relativity, or more generally of the gravitational interaction, remains as a defiant challenge.

In standard QFT, the particle excitations develop in flat spacetime. The symmetries of this
background spacetime (regarded as classical) are employed in the selection of a natural state for the
Fock representation of the field: Poincaré invariance fixes a unique vacuum in Minkowski spacetime [3].
However, it is well known that the generalization of the Fock quantization techniques to field theories
in curved spacetimes is by no means straightforward, and in fact involves ambiguities. The most
important of these ambiguities concerns the choice of a (quantum) representation of the algebra,
obtained under Poisson brackets, of (the complex exponentiation of) the basic variables that describe
the field, which are usually chosen to be canonical pairs. In traditional Non-Relativistic Quantum
Mechanics, this algebra is known by the name of Weyl algebra (see e.g., Ref. [4]). Fortunately, in such
case where the system has a finite number of degrees of freedom, the representation of the algebra in a
Hilbert space is unique up to unitary equivalence, provided that certain mild conditions are imposed
(including continuity). This uniqueness result is known as the Stone-von Neumann theorem [5].
This means that two different representations of the same Weyl algebra in the same Hilbert space
are necessarily related by a unitary operator. This property ensures the robustness of the theoretical
predictions of Quantum Mechanics, and in particular of those derived from the evolution of quantum
states, something essential for the viability of the probabilistic interpretation of the quantum theory.

In QFT this uniqueness result for the quantum representation of the variables that describe the
fields is generally no longer valid. It does not even apply to Fock representations of free field theories,
which are typically governed by linear dynamical equations. In fact, it is well known (see e.g., [6]) that
for each given vacuum, there is an infinite number of linear canonical transformations, each of which
provides a Fock representation of the field that have no unitary correspondence in the Fock space.
In short, this means that what in principle ought to be the corresponding unitary transformations
just map the vacuum of the given representation to some vector which does not belong to its Hilbert
space. Therefore, inequivalent quantum representations do exist in QFT, even in the simplest cases.
This issue has been widely studied to be exclusive of systems, such as fields, with an infinite number
of degrees of freedom, since a known mathematical criterion for the unitary implementability of
a given linear canonical transformation involves a summability condition [7,8], which is trivially
satisfied if the number of degrees of freedom is finite. This fundamental obstacle translates into
the existence of an infinity of quantum descriptions of the same physical system that in general,
are not equivalent. However, one may introduce physically motivated requirements to reduce this
ambiguity of the quantum description, and even to eliminate it completely, in certain situations.
A remarkable example is given by fields that propagate in stationary spacetimes. This contains the
case of fields in flat, Minkowski spacetime that we mentioned above. In these types of scenarios,
the possible representations of the analog of the Weyl algebra [commonly known as the field canonical
commutation relations (CCRs) for bosons, or canonical anticommutation relations (CARs) for fermionic
fields] are restricted to only a single representation if one imposes that the quantum theory incorporate
the symmetry displayed by the background under time-like translations and that the evolution be
generated by a positive Hamiltonian that plays the role of an energy [6,9]. At the quantum level,
this implies that the vacuum state of the field is stationary. There is therefore a natural unitary
implementation of the dynamics.

The situation is notably more complicated when one considers fields that propagate in
non-stationary spacetimes. Such systems describe scenarios of great physical interest, such as processes
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of star collapse or the cosmological evolution of the Universe (essentially since its very beginning).
In these cases there is no time-like symmetry of the field equations that one can try and impose to
restrict the admissible quantizations. The situation gets even worse if one takes into account that the
quantum representations of the CCRs or CARs at different times are not necessarily unitarily equivalent.
As a consequence, predictions based on the quantum evolution of the states lose robustness. For this
reason, it is especially relevant to determine some physical criterion that allows us to remove the
ambiguity in the choice of a Fock quantization in non-stationary spacetimes (or at least in a convenient
subset of them) and, at the same time, regain a notion of unitary quantum dynamics for the fields.

Actually, this question has been investigated in recent years and the results indicate that the
resolutions of the two problems are closely related. Indeed, for scalar fields in a multitude of
non-stationary spacetimes of cosmological nature, it has been shown that a requirement of unitarity on
the dynamics of the basic field operators in the Heisenberg picture (henceforth referred to as Heisenberg
dynamics or evolution) can be used to guarantee the uniqueness of the Fock representation of the CCRs
(up to unitary equivalence) if, in addition, one imposes invariance under the symmetries of the field
equations [10–29]. These symmetries include the spatial isometries. In many cases, these isometries
suffice to reach the desired uniqueness when combined with the demand of a unitary Heisenberg
evolution. Recent discussions on the topic of unitary dynamics in QFT in curved spacetimes from
the canonical perspective can be found in Ref. [10] (see also Ref. [30] for related investigations on this
issue). On the other hand, the nature of the vacuum state for fields in curved spacetimes and the Fock
quantization of such fields from a covariant perspective have been widely investigated over recent
decades, see e.g., Refs. [31–34].

In this review, instead, we focus our attention on fermionic fields. Many of the most abundant
elementary particles in standard matter are fermions, and in this respect one can say that fermionic
fields describe more realistic matter contents than scalar fields. In addition, although there exist
well-founded results about the selection of Fock representations of fermionic fields in cosmology,
the literature on this topic is not as prolific as in the case of scalar fields. In this sense, a review
of the recent results obtained by us and our collaborators about uniqueness criteria for the Fock
representation of fermionic fields, based on a unitary Heisenberg dynamics or other related properties,
appears especially useful. For the sake of concreteness, most of our discussion is devoted to the
particular case of a Dirac fermion field, to which we will henceforth refer simply as Dirac field.

The issue of determining Heisenberg dynamics that can be realized as a unitary quantum
transformation in fact involves a freedom in the splitting of the time dependence of the (fermionic)
field. This time dependence can be separated in two parts: one that can be assigned to the quantum
evolution of the creation and annihilation operators of the Fock representation and another that
is due to the evolution of the background in which the field propagates. This second part can be
treated as an explicit time dependence, via the background, when this is considered to be a classical
entity. Strictly speaking, this part of the evolution is not contained in the Heisenberg dynamics of
the fermionic degrees of freedom. A fundamental idea in the search for a criterion to select a Fock
quantization by imposing a notion of unitary dynamics is that the freedom in the splitting of the time
dependence of the field can be employed to restrict the quantization in such a way that one ends up
with a single family of equivalent representations while keeping nontrivial information about the
fermionic evolution.

The idea of using the aforementioned freedom to arrive at a preferred class of Fock representations
has proven to be very fruitful in frameworks that surpass the scheme of QFT in a curved classical
spacetime. This is the case of fields with a dynamics that can be viewed as a propagation in an auxiliary
background, or even quantum geometries that present regimes in which they can be treated effectively.
For instance, this idea has been applied in the framework of hybrid loop quantum cosmology (hLQC),
in which the spacetime is no longer a classical entity, but a quantum object [23–25,28]. For cosmological
systems of notable physical interest, hLQC combines a loop quantization of the zero modes that
(classically) describe the Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime that would
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correspond to a cosmological universe, with a Fock quantization of the field degrees of freedom
that propagate in such a cosmological spacetime, typically viewed as perturbations [35,36]. The action
of the gravitational system and its matter content is truncated at second order in these perturbations
(generally assuming compact spatial sections). The combination of the loop and Fock techniques must
give rise to a consistent quantization of the total system, composed by the background cosmology
and the perturbations. This consistency involves the imposition à la Dirac of a global Hamiltonian
constraint that interrelates the two types of representations as well as the evolution of the homogeneous
universe and of its perturbations. For most of the relevant dynamical aspects of these perturbations,
the information about the quantum geometry can be encapsulated in an effective geometry that in
many respects can be considered to be emerging from a mean-field approximation of the geometric
degrees of freedom contained in the cosmological background. In this approximation, the fields that
correspond to the (gauge invariant part of the) perturbations admit a QFT description where the
background is the aforementioned effective geometry [35,36]. In this context, it is even clearer that
building a formalism capable to maintain the unitarity of the Heisenberg dynamics in non-stationary
spacetimes transcends the need to guarantee the robustness of the physical predictions of the theory.
In hLQC, in particular, the additional advantage to pick out a unique family of equivalent Fock
representations of the gauge invariant perturbations is that one can construct a Heisenberg evolution
(with respect to some parameter of the complete quantum system) that behaves as a unitary quantum
transformation in regimes where an effective background emerges.

Despite the attention that scalar (and tensor) perturbations deserve in cosmology, it is clear that
a realistic matter content must include other types of fields, such as those that describe fermions, as
we have already pointed out. Actually, in hLQC, recent works have introduced Dirac fermions and
treated them as part of the perturbations [37]. The interest of contemplating the presence of these fields
in the very early Universe goes beyond a formal question about the completeness of the description,
because it is necessary to confirm that these fermionic fields do not affect substantially the otherwise
well-established evolution of the primordial scalar perturbations, nor of the tensor ones. The results
obtained in Refs. [37,38] support the expectation that the possible effects are ignorable.

It is worth remarking that there exists an inherent freedom to choose the splitting between the
(fermionic) field variables and the degrees of freedom that describe the background, allowing one to
change between different families of annihilation and creation variables. This can be done by means
of transformations that mix all these degrees of freedom while preserving the canonical symplectic
structure of the combined system, including the field canonical (anti-)commutation relations. If the
fields are treated as perturbations, it suffices that the canonical symplectic structure is preserved at
the level of the perturbative truncation adopted in the system. Instead of considering this freedom
a nuisance, one can try and exploit it to define variables for which the Hamiltonian of the selected
fermionic degrees of freedom has certain nice quantum properties, desirable from the viewpoint of a
good physical and mathematical behavior [38].

In fact, when fermions were studied for the first time within the hybrid approach to loop
quantum cosmology in Ref. [37], considering them as perturbations around a homogeneous and
isotropic cosmological spacetime, the selection of fermionic variables for the corresponding Dirac
field was restricted only by the requirements of invariance of the resulting Fock vacuum under
the spatial isometries, a unitarily implementable Heisenberg evolution in the regime of QFT in a
curved background, and a standard convention for particles and antiparticles. Nonetheless, with a
rather reasonable choice made among the family restricted by these conditions, it was realized that
the resulting Schrödinger equation for the fermionic degrees of freedom (after a sort of mean-field
approximation) involved ultraviolet divergences. To solve these divergences, one either must appeal to
a regularization scheme with subtraction of infinities or, alternatively, employ the remaining freedom
in the choice of fermionic variables and restrict it even further by introducing additional requirements.
Specifically, in Ref. [38] it was required that the fermionic backreaction be finite. In practice, this new
restriction lowers the asymptotic order of the interaction part of the fermionic Hamiltonian at large
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wave numbers (defined for the Dirac field as the eigenvalues of the Dirac operator on the spatial
sections of the background, in absolute value). Consequently, the production of pairs of particles and
antiparticles decreases for large wave numbers, becoming negligible asymptotically.

Actually, it is possible to go one step beyond in the same direction and, by taking advantage again
of the freedom to split the degrees of freedom, demonstrate that one can absorb all the interaction terms
of the fermionic Hamiltonian to make them identically zero order by order in the asymptotic regime of
large wave numbers [39]. In this way, one clearly improves the quantum behavior of the (fermionic)
field contribution to the Hamiltonian of the gravitational system. Moreover, one also greatly reduces
the surviving ambiguity in the choice of Fock representation and vacuum for the field. Moreover,
since the resulting (fermionic) field Hamiltonian contribution is diagonal by construction on states
with a definite number of particle (and antiparticle) excitations, at least asymptotically, the dynamics
ruled by it is very simple. The vacuum of the naturally associated Fock representation changes only
by a rotating phase. In this sense, one can interpret that this vacuum and the corresponding splitting
of degrees of freedom in the hybrid quantization approach are those that get best adapted to the
cosmological evolution. Finally, it is remarkable that this criterion of asymptotic diagonalization
reproduces the standard choices of vacuum state in well-understood situations, within the scheme of
QFT in a curved classical background [39,40]. This happens e.g., in the case of a flat spacetime, as well
as for a de Sitter cosmology, scenario where the Bunch–Davies state is a natural vacuum [41].

The rest of this review is organized as follows. In Section 2 we provide the basics for the
construction of a Fock representation of the CARs for a Dirac field, within the framework of QFT in a
curved spacetime. We also summarize the results about the use of symmetries and of the unitarity of the
Heisenberg evolution as criteria to select a preferred family of equivalent Fock representations. We then
explicitly apply these criteria in Section 3 that deals with the case of a Dirac field in a non-stationary
spacetime in 2 + 1 dimensions. The more interesting case of Dirac fields in a cosmological spacetime
in 3 + 1 dimensions is reviewed in Section 4. After reviewing these aspects and results of QFT in
curved spacetimes, in Section 5 we consider the use of canonical transformations to introduce a
suitable splitting between the degrees of freedom of the cosmological background and of the Dirac
field, treated in principle as a perturbation. In that section, we show how to use this freedom in
the splitting to improve the quantum properties of the fermionic contribution to the Hamiltonian
of the system, and in particular to make finite the backreaction that appears in it. The possibility of
further employing this freedom to diagonalize the fermionic contribution to the Hamiltonian in the
asymptotic limit of large wave numbers is reviewed in Section 6. There, we also explain that this
diagonalization requirement can pick out a unique vacuum state under reasonable conditions, and that
this state coincides with the natural one in situations of interest in QFT, like for Minkowski and de
Sitter backgrounds. In addition, we also comment on the relation of adiabatic states with the vacuum
selected by our criterion. Finally, we present the conclusions and some additional remarks in Section 7.
We set the speed of light in vacuo, the Newton gravitational constant, and the reduced Planck constant
equal to the unit.

2. Fock Quantization of the Dirac field

This section contains some background material about the Fock quantization of a Dirac field
in a curved spacetime. Special emphasis is put on the inherent ambiguity in the representation of
the CARs associated with the infinitely many inequivalent complex structures available to construct
the quantum theory, as well as on the combined criteria of symmetry invariance and of unitary
implementability of the dynamics that have been successfully employed to remove this ambiguity
(and, even more, the ambiguity in the choice of basic field variables) in diverse, physically interesting
fermionic (and bosonic) systems.

For the sake of clarity, let us begin our discussion by introducing the classical setting.
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2.1. Background Spacetime and Dirac Equation

As backgrounds for the propagation of the field, we consider globally hyperbolic spacetimes,
or just globally hyperbolic regions, (M≈ I×Σ, gµν), in either three or four dimensions. Here, I denotes
an interval of the real line, and Σ is a Riemannian, Cauchy (hyper-)surface of dimension d, with d = 2, 3.
For mathematical convenience, we restrict this surface to be topologically compact. In order to ensure
that the spacetime (or region) admits a spin structure [42], we additionally require thatM admit a
global orthonormal frame [43]. Therefore, the spacetime metric can be globally written as

gµν = ea
µeb

νηab, (1)

where ηab is the Minkowski metric in (d + 1)-dimensions, with signature {−,+, . . . ,+}, and ea
µ is

a(n orthonormal) coframe field, with dual frame eµ
a . Throughout this work, Greek indices from

the middle of the alphabet denote spacetime indices (µ, ν, . . . = 0, . . . , d), whereas Latin indices
from the beginning of the alphabet account for the internal Lorentz gauge introduced by the frame
(a, b, . . . = 0, . . . , d). Moreover, Greek indices from the beginning of the alphabet denote spatial indices
(α, β, . . . = 1, . . . , d).

By employing an Arnowitt–Deser–Misner (ADM) decomposition of the considered spacetime
(region) [44], we introduce a coordinate system inM, say {xµ} = {x0, xα}, with x0 = t ∈ I being the
time parameter and {xα} coordinatizing Σ. The line element in coordinates {xµ} reads

ds2 = gµνdxµdxν = −(N2 − NαNα)dt2 + 2Nαdxαdt + hαβdxαdxβ, (2)

where N and Nα are, respectively, the lapse function and the shift vector, and hαβ is the induced metric
on the Cauchy surface Σ.

Let then Ψ be a free, complex, and anticommuting Dirac spinor with mass m, propagating in
(M, gµν). The dynamics of Ψ is governed by the first-order linear equation

eµ
a γa∇S

µΨ−mΨ = 0. (3)

Here, the operator∇S
µ stands for the spin lifting of the Levi–Cività covariant derivative [42], and γa are

the constant Dirac matrices that generate the Clifford algebra of a flat spacetime in (d + 1) dimensions:

γaγb + γbγa = 2ηab I, (4)

where I is the identity matrix and ηab is the (inverse of the) Minkowski metric.
On account of the global hyperbolicity of (M, gµν), the Dirac Equation (3) has a well-posed

Cauchy formulation [45]. Therefore, given any smooth initial value Ψ(~x) of the spinor field on a certain
(compact) Cauchy surface Σ0, say at t = t0 (where t0 ∈ I is a fixed, but arbitrary, reference time),
there exists a unique smooth solution Ψ(t,~x) to Equation (3) which is defined on all ofM and such
that Ψ(t,~x)|Σ0 = Ψ(~x). The solution Ψ(t,~x), restricted to the domain of dependence of an arbitrary
closed subset S of Σ0, depends only upon Ψ(~x)|S. Henceforth, we fix Σ0 (i.e., the section at t = t0) as
the Cauchy reference surface. Let S be the complex linear space of (smooth) solutions to the Dirac
Equation (3) which arises from the complex vector space P = {Ψ(~x)} of (smooth) initial conditions at
time t0. Please note that by construction, the map S 3 Ψ 7→ It0(Ψ) = Ψ|Σ0 is an isomorphism between
the linear spaces S and P .

The space of Cauchy data P is naturally equipped with the product [45]

(Ψ1, Ψ2)D =
∫

Σ0

dd~x
√

h Ψ†
1γ0nµea

µγaΨ2, (5)

where γa = ηabγb, h is the determinant of hαβ, the dagger denotes the Hermitian adjoint, and nµ are
the spacetime components of the future-directed unit normal to the Cauchy surface Σ0. The space of
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solutions S is endowed with an inner product of the form (5), though now at an arbitrary Cauchy
surface Σt′ ; this is so because of the independence of the mapping ( · , · )D : S × S → C upon the
spatial section on which it is evaluated.

The exact meaning of what we understand by classical dynamical evolution in the space P is
as follows. Given any solution Ψ(t,~x) in S , the evaluation Ψ(t,~x)|Σt′ at a fixed time t′ defines the
spinor Ψ′(~x) = Ψ(t′,~x) on Σ0. Namely we can take the induced spinor field on Σt′ as initial condition
on Σ0. Clearly, the mapping It′ : S → P defined by Ψ(t,~x) 7→ It′

(
Ψ(t,~x)

)
= Ψ(t′,~x) = Ψ′(~x)

is an isomorphism. Then, by considering the entire interval I, we get a one-parameter family of
isomorphisms It : S → P . The action of this family of mappings on a solution Ψ ∈ S gives the
dynamical orbit of the Cauchy initial datum Ψ(t,~x)|Σ0 = Ψ(~x) in P ; that is, time evolution in the space
of Cauchy data P is given by the one-parameter family of linear transformations T(t,t0)

= It ◦ I−1
t0

.

2.2. Fock Quantization, Unitarity, and Uniqueness

Let us next discuss the Fock quantization of Dirac fields using an approach based on the space
of Cauchy data. It is worth remarking that an analogous approach constructed from the space of
solutions is readily available, given the isomorphism It0 between both spaces.

We start by equipping the space of Cauchy data P with a complex structure, namely a real linear
automorphism J : P → P with the property J2 = −I, and such that it leaves the inner product (5)
invariant. The complex structure allows for a natural splitting of P into two mutually complementary
orthogonal subspaces (with respect to the considered inner product) P±J = (P ∓ i JP)/2 that are
eigenspaces of J with eigenvalue ±i. Let P̄ be the complex conjugate of P , endowed with the complex
conjugate of Equation (5) as its inner product. The complex structure J is naturally defined by linearity
on P̄ , and we similarly have that the corresponding ±i−eigenspaces, P̄±J = (P̄ ∓ i JP̄)/2, provide a
decomposition of P̄ into mutually orthogonal subspaces. Please note that P̄±J and P±J are related by

P̄±J = P∓J .
By performing the Cauchy completion of P+

J and P̄+
J in their inner products, we get the

one-particle Hilbert spacesHp
J andHap

J of, respectively, particles and antiparticles. The Hilbert space of
the quantum theory is taken to be the antisymmetric Fock space

FJ = ⊕∞
n=0(⊗a

nHJ), (6)

where HJ = Hp
J ⊕ H

ap
J is the one-particle Hilbert space associated with the complex structure J,

and ⊗a
nHJ denotes the n-fold antisymmetric tensor product ofHJ , with ⊗a

0HJ = C [3,46].
Let {ψp

n(~x)} and {ψap
n (~x)} be complete orthonormal bases for, respectively, Hp

J and Hap
J . Then,

the quantum field is (formally) represented in FJ by

Ψ̂(~x) = ∑
n
[ânψ

p
n(~x) + b̂†

nψ̄
ap
n (~x)], (7)

where ân is the annihilation operator associated with the spinor ψ̄
p
n , whereas b̂†

n is the creation operator
associated with the spinor ψ

ap
n . The adjoint operators â†

n and b̂n correspond to the creation and
annihilation operators of, respectively, particles and antiparticles. For a detailed discussion about the
definition of fermionic annihilation and creation operators, see for instance Ref. [46]. For now, let us
stress that the annihilation and creation operators here displayed correspond to the mode expansion
projections of the (smeared) annihilation and creation operators specified in Ref. [46]. The basic
operators {ân, â†

n, b̂n, b̂†
n} satisfy the anticommutation relations,

[ân, â†
m]+ = δnm, [b̂n, b̂†

m]+ = δnm, (8)
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with the remaining anticommutators being null. The vacuum state of the theory corresponds to the
unique (up to a phase) normalized cyclic vector in FJ which vanishes under the action of all the
annihilation operators, ân and b̂n.

Let us emphasize that the choice of a complex structure for the Fock quantization determines the
annihilation and creation operators of the theory. Thus, in general, different complex structures define
different representations of the CARs. Furthermore, there exist infinitely many of these representations
that fail to be unitarily equivalent [3]. This is where the ambiguity in the Fock representation of the
Dirac field resides. Let us be more specific. Let FJ and FJ′ be two distinct Fock spaces, constructed
from the different complex structures J and J′. It can then be shown that on the Fock space FJ ,
the annihilation and creation operators defined by J′ (and which are naturally associated with the
basis of FJ′ ) are given by expressions of the form

â′n = ∑
m
(α

f
nm âm + β

f
nm b̂†

m), â′†n = ∑
m
(ᾱ

f
nm â†

m + β̄
f
nm b̂m), (9)

b̂′n = ∑
m
(ᾱ

g
nm b̂m + β̄

g
nm â†

m), b̂′†n = ∑
m
(α

g
nm b̂†

m + β
g
nm âm). (10)

Here, α
f
nm, β

f
nm, α

g
nm, and β

g
nm are (complex) coefficients satisfying the relationships

∑
l
(αh

nl ᾱ
h
ml + βh

nl β̄
h
ml) = δnm, ∑

l
(α

f
nl β̄

g
ml + β

f
nl ᾱ

g
ml) = 0, h = f , g. (11)

That is, the annihilation and creation operators defined by the two distinct complex structures J
and J′ are related by a Bogoliubov transformation.

By definition, unitary equivalence between the representations defined by J and J′ means that
there exists a unitary operator Û : FJ → FJ intertwining the two representations, i.e., such that
â′n = Û−1 ânÛ and b̂′n = Û−1b̂nÛ. The transformation defined in Equations (9) and (10) is unitarily
implementable then, in the sense that the transformation defined by the coefficients α

f
nm, β

f
nm, α

g
nm,

and β
g
nm is a bona fide canonical transformation between the classical annihilation and creation variables

corresponding to the considered operators.
A well-known result [8] states that unitary equivalence is achieved if and only if

∑
n,m

(|β f
nm|2 + |βg

nm|2) < ∞. (12)

In general, given any two arbitrary complex structures, this condition is not satisfied. In fact,
infinitely many inequivalent Fock representations of the CARs are possible, just as it happens with
bosonic fields and their corresponding CCRs. The usual strategy to remove these types of ambiguities
and to arrive at a (hopefully) unique Fock representation is to exploit the symmetries of the system.
One typically requires that the complex structure (or the vacuum, in more physical terms) be invariant
under some natural existing symmetries. As already mentioned in the Introduction, a crucial role
is played here by time-translation invariance, and therefore that strict strategy fails to produce
a unique representation in non-stationary scenarios, including very familiar and cosmologically
relevant spacetimes.

Notice that a complex structure that remains invariant under time evolution immediately gives
rise to a unitary implementation of (the canonical transformations generated by) the dynamics,
therefore allowing the standard probabilistic interpretation of the quantum theory. It is, therefore,
natural that in non-stationary settings, one should try to preserve the unitary implementation of
dynamical transformations, though giving up on (non-available) fully time-translation invariant
complex structures, taking into account that this invariance is a sufficient, but by no means necessary,
condition for such a unitary implementation. Let us make this more explicit. Suppose we are given
a complex structure J on P , and construct the corresponding Fock representation, with associated
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operators ân and b̂n as above. Since the field equations are linear, the transformations that correspond to
time evolution from initial time t0 to arbitrary time t are linear, and we obtain, for each t, new operators
of the general form

ân(t) = ∑
m

(
α

f
nm(t, t0)âm + β

f
nm(t, t0)b̂†

m

)
, (13)

b̂†
n(t) = ∑

m

(
α

g
nm(t, t0)b̂†

m + β
g
nm(t, t0)âm

)
, (14)

with â†
n(t) and b̂n(t) being supplied by the adjoint expressions of, respectively, Equations (13) and (14).

It should be clear that since the field evolution is a canonical transformation, the new operators satisfy
the CARs, and we therefore have a family of new Fock representations. In fact, the new operators are
simply those associated with the transformed complex structures T(t,t0)

JT−1
(t,t0)

[10], where T(t,t0)
is the

evolution map introduced at the end of Section 2.1. Then, a unitary implementation of the dynamical
transformations implies the unitary equivalence between all the new representations, for all t, and the
original one defined by J. Of course, for a complex structure J that remains invariant under time
evolution, the fulfillment of the unitary equivalence condition (12) is trivial, since all the nondiagonal
beta coefficients of the associated Bogoliubov transformations are null.

On the other hand, there seems to be no compelling reason to relax the requirement of invariance
under other natural remaining symmetries, such as isometries of the spatial manifold Σ, since invariant
complex structures under these types of symmetries typically exist. Therefore, the strategy that we
adopt to deal with the ambiguity of the Fock quantization in non-stationary settings is the following.
We require that the complex structure be invariant under the spatial isometries (and possibly other
remaining symmetries of the system) and that it allows a unitary implementability of the dynamics.
These combined criteria have been shown to be viable and effective in addressing the issue of the
uniqueness of the quantization for a large class of field systems. The criteria were introduced for
the first time in the context of midisuperspace models1, concretely to specify a unique preferred
quantization of the inhomogeneous fields in Gowdy cosmological models [12–16,49], and since then
they have been profusely and successfully employed to address the uniqueness of the quantization
of (test) scalar fields in various, physically relevant cosmological backgrounds [17–22,24,25,27,29,50]
(for a review, see Ref. [51]). Concerning fermionic fields and CARs, the same criteria have been
successfully applied to single out a unique preferred quantum description for (test) Dirac fields in
2 + 1 dimensions [52] and in FLRW spacetimes [53–56], as we discuss in the next two sections.

It is worth pointing out that as discussed in the Introduction, to achieve unitarily implementable
dynamics in the type of non-stationary scenarios here considered, it is inevitable to explore the
freedom in the splitting of the time dependence of the field between a genuine quantum Heisenberg
evolution and an explicit dependence on the spacetime background. Typically, superimposed on
the intrinsic dynamical evolution of the field variables, there is an explicitly time-dependent part
coming from the non-stationary background spacetime itself. This last contribution to the total time
dependence may be viewed as classical in nature, and effectively obstructs the possibility of a unitary
quantum evolution. The solution is to extract the latter part by means of a time-dependent canonical
transformation (performed at the classical level). This type of modification of the quantum notion of
the field evolution is unavoidable in all the cosmological systems analyzed so far, in order to recover a
unitary implementability of the dynamics. Crucial in this approach is to pinpoint exactly the correct
splitting between the intrinsic time dependence of the field and the time dependence coming from
external factors, such as a non-stationary background. It is of the utmost importance to stress that this

1 The term midisuperspace, originally introduced by K. Kuchař [47,48], refers to models that even though possessing some
symmetry, retain an infinite number of degrees of freedom, e.g., certain inhomogeneous models.



Universe 2020, 6, 241 10 of 48

splitting is far from being arbitrary. It is guided, and to a great extent determined, by the requirement
of a unitarily implementable dynamics.

3. Dirac Fields in 2 + 1 Dimensions

This section is devoted to discussing the applicability of the criteria of symmetry invariance and of
unitary implementability of the dynamics in the Fock quantization of a concrete class of field systems,
namely the case of a free Dirac field in 2 + 1-dimensional spacetimes which are conformally ultrastatic,
with a time-dependent conformal factor. We show that under rather non-stringent conditions on the
time dependence of the cosmological background, and once a convention on the notions of particle
and antiparticle has been established, a unique family of equivalent Fock representations is singled
out by imposing (i) invariance under the unitary transformations that implement the symmetries of
the equations of motion, and (ii) a nontrivial and unitarily implementable dynamics [52].

3.1. Dirac Spinor in Conformally Ultrastatic Spacetimes

Let us consider a fermionic field coupled to a globally hyperbolic, smooth manifold (or region)
M, with the topology of I× Σ, where (as before) I ⊆ R is an interval of the real line, and Σ is a
connected, compact, and orientable two-dimensional Riemannian manifold. Since, in particular,M is
an orientable three-dimensional manifold, it is stably parallelizable [57]. We consider here conformally
ultrastatic background geometries, so that the metric can be written as

ds2 = a2(η)
(
−dη2 + 0hαβ(~x)dxαdxβ

)
. (15)

Up to the scale factor a(η), which contains the non-stationary information of the metric, 0hαβ is
the metric induced on the spatial surfaces Ση defined at each fixed value of the conformal time η.

The Dirac field couples to the geometry by means of the global (co)frame (1) defined, up to
SO(2, 1) (orthochronous) gauge transformations, by the metric (15). Since in three dimensions any of
the two irreducible complex representations of the Clifford algebra (4) are generated by 2× 2 Dirac
matrices, complex fermionic fields are locally represented by two-component spinors Ψ. In turn,
we describe the components of these spinors by Grassmann variables, to encode the anticommuting
nature of the fermionic field. We represent the Dirac matrices by

γ0 = i

(
−1 0
0 1

)
, γ1 = i

(
0 −1
1 0

)
, γ2 =

(
0 1
1 0

)
. (16)

The action for a fermionic field of mass m is given by

I f = −i
∫

dη d2~x
√
−g
[

1
2
(Ψ†γ0eµ

a γa∇S
µΨ− h.c.)−mΨ†γ0Ψ

]
, (17)

where g is the determinant of the spacetime metric gµν and h.c. stands for Hermitian conjugate.
Moreover, using the spin connection one-form

ωab
µ =

1
2

(
eνa∂µeb

ν + eνaeλb∂λgµν − eνb∂µea
ν − eνbeλa∂λgµν

)
, (18)

the spin lifting of the Levi–Cività covariant derivative is locally defined on the spinors as [42]

∇S
µΨ = ∂µΨ− 1

4
ωab

µ γbγaΨ. (19)

It is convenient to partially fix the internal Lorentz gauge by choosing nµea
µ = δa

0, where nµ is
the future-directed unit vector field normal to the spatial surfaces Ση . This leads to a reduction of
the structure group of the bundle of oriented frames from SO(2, 1) (orthochronous) to SO(2) [58],
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restricting the spin structure to the double cover of the reduced frame bundle. For each of the
considered spacetime manifolds and choice of spin structure on them, this restriction is well defined
and provides an identical spin structure on each of all the two-dimensional leaves that foliate the
spacetime manifold [42]. Thus, for each value of the time parameter, the field behaves as a spinor
geometrically defined on each of the two-dimensional spatial manifolds Ση that foliate the background.
Equivalently, within the Cauchy data approach, the field can be described by one-parameter families
of spinors, parametrized by the conformal time η, defined on an initial Cauchy reference surface Σ0,
specified by η = η0. Let us denote by P the space of Cauchy data, namely the space of spinors at Σ0.
The aforementioned one-parameter families on P are nothing but the result of evolving the Cauchy
data in time (see Section 2). Thanks to the adopted gauge fixing, we can make a direct use of the
spectral analysis of the Dirac operator defined on the two-dimensional Cauchy surface Σ0, instead of
the Dirac operator on the whole Lorentzian geometry. In fact, in this gauge, the covariant derivative
on spinors becomes simply

∇S
0 Ψ = ∂0Ψ, ∇S

αΨ = (2)∇S
αΨ− 1

4
ω̃ab

α γbγaΨ, (20)

ω̃ab
α =

1
2

(
eβae0b∂0gαβ − eβbe0a∂0gαβ

)
, (21)

where (2)∇S
α is the spin covariant derivative on the spatial leaf with metric 0hαβ. It can then be

checked that

eµ
a γa∇S

µΨ =
γ0

a

(
∂0 +

a′

a

)
Ψ− i

a
/DΨ, (22)

where the prime stands for the derivative with respect to the conformal time η, and /D denotes the
Dirac operator on Σ0.

Once the partial gauge fixing is performed, the inner product (5) on the space of Cauchy data P
simplifies to

(Ψ1, Ψ2)D = a2
0

∫

Σ0

d2~x
√

0hΨ†
1(~x)Ψ2(~x), (23)

where a0 = a(η0) and 0h is the determinant of 0hαβ.
The Dirac operator /D is essentially self-adjoint with respect to the inner product (5) and, since Σ0

is compact, it necessarily has a discrete spectrum, with eigenvalues ±ωn, labeled by natural numbers
n, with ωn (≥ 0) growing with n [42]. Then, the space of Cauchy data P can be endowed with a
basis formed by a set of eigenspinors of the Dirac operator. Let a−1

0 ρnp(~x) be the eigenspinors with
positive eigenvalue ωn and orthonormal with respect to the inner product (5), where the index p
accounts for the degeneracy. Since /D anticommutes with γ1γ2 = γ0, we can choose as eigenspinors
with negative eigenvalue −ωn those defined as σ̄np(~x) = −γ0ρnp(~x). Like ρnp(~x), these eigenspinors
form an orthonormal set when the product is rescaled by the factor a−2

0 . With this rescaling, the set
{ρnp(~x), σ̄np(~x)} provides a complete, orthonormal basis for P .

Let gn be the degeneracy of the eigenspace labeled by n, so that p = 1, . . . , gn. The explicit form
of gn depends on the spectral details of the Dirac operator /D and, consequently, on the particular
2-manifold considered. Nevertheless, for our purposes, we do not need the actual value of gn, but only
to know its behavior in the ultraviolet regime of large eigenvalues ωn. Therefore, let us introduce the
counting function χ /D(ω) of the Dirac operator on a d-dimensional compact Riemannian manifold;
that is, χ /D(ω) is the function that counts the number of positive eigenvalues of /D that are not greater
than ω (including degeneracy). From the Weyl asymptotic formula [59], it follows that χ /D(ω) grows
at most as ωd when ω goes to infinity. Using this result with d = 2, we conclude that the degeneracy
behaves in the large n limit as gn = o(ω2

n), where the symbol o(ω2
n) means negligible with respect

to ω2
n.
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In terms of the basis {ρnp(~x), σ̄np(~x)}, the dynamical families of spinors in P (each one of them
parametrized by the conformal time η) are given by

Ψ(η,~x) =
1

a(η)
ψ(η,~x), ψ(η,~x) =

∞

∑
n=0

gn

∑
p=1

[
snp(η)ρ

np(~x) + r̄np(η)σ̄
np(~x)

]
. (24)

Here, we use overlined symbols to indicate complex conjugation. Apart from the global factor
a−1(η), the time dependence (equivalently, the η-parameterization) is captured by the time-dependent
coefficients snp and r̄np of ψ, which take care of the Grassmannian nature of the fermionic field.
The auxiliary field ψ shows symmetric canonical Dirac brackets with its corresponding adjoint field
that do not depend on the background [60,61]. We represent the algebra generated by these brackets
in a Fock space, with the brackets being replaced with anticommutators , thus obtaining a Fock
representation of the CARs and therefore a quantization of both the auxiliary and the original field,
ψ and Ψ.

By writing the field anticommutation relations in terms of the modes snp, r̄np, and their complex
conjugates, one finds that the only nonvanishing Dirac brackets are {snp, s̄np} = −i and {rnp, r̄np} = −i,
which are symmetric due to the anticommutativity of our Grassmann variables. In the quantum theory,
they become anticommutators of the corresponding operators [60].

From Equations (17) and (24), the equations of motion for the fermionic modes are given by [52]

s′np = i(ωn + ima)r̄np, r′np = −i(ωn + ima)s̄np, (25)

and their complex conjugates. These equations only couple the modes snp and r̄np (respectively s̄np

and rnp) with the same labels n and p, and do not depend on the degeneracy label p. They can be
combined into the second-order differential equation

z′′np = −(ω2
n + m2a2)znp + i

ma′

ωn + ima
z′np, (26)

where znp denotes either snp or rnp. The general solution to this equation does not depend on the label p,
except through the initial conditions, and is a linear combination of two complex independent solutions
that we write in the form exp [(−1)l+1iΘl

n(η)] with l = 1, 2. Let Θl
n(η0) = Θl

n,0 and (Θl
n)
′(η0) = Θl

n,1
be the initial conditions at the initial reference time η0, and let us call Ωl

n,0 = exp [(−1)l+1iΘl
n,0].

A simple inspection shows that the integration constants of the general solution relate the initial
conditions on Θl

n and their derivatives to the initial conditions s0
np and r0

np for the modes (and their
complex conjugates), via Equation (25). One can then deduce that time evolution in the complex linear
space of spinors ψ is dictated by the linear transformation [52]

(
snp

r̄np

)

η

= Vn(η, η0)

(
snp

r̄np

)

η0

, (27)

Vn(η, η0) =

(
∆2

neiΘ1
n(η) + ∆1

ne−iΘ2
n(η) ζ1

neiΘ1
n(η) − ζ2

ne−iΘ2
n(η)

ζ̄2
neiΘ̄2

n(η) − ζ̄1
ne−iΘ̄1

n(η) ∆̄2
ne−iΘ̄1

n(η) + ∆̄1
neiΘ̄2

n(η)

)
, (28)

where the subindex η in column-vectors denotes evaluation at the given value of the conformal time,
and the constants ∆l

n and ζ l
n are

∆l
n =

Θl
n,1

Ωl̃
n,0(Θ

1
n,1 + Θ2

n,1)
, ζ l

n =
ωn + ima0

Ωl
n,0(Θ

1
n,1 + Θ2

n,1)
, (29)

where l̃ is the complementary of l in {1, 2}, namely {l, l̃} = {1, 2}.
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To analyze whether the quantum theory admits a unitarily implementable dynamics, we do not
really need to obtain the solution for Vn(η, η0). It is sufficient to know its behavior in the ultraviolet
regime of large ωn. Under the mild condition that the scale factor be twice differentiable and with
a second derivative that is integrable over each compact subinterval of the time domain I, a careful
asymptotic analysis of the dynamics of the modes {znp} = {snp, rnp} shows that two independent
solutions to Equation (26) can be specified as follows [52]:

Θl
n = ωn∆η +

∫ η

η0

dη̃Σl
n(η̃), Σl

n(η̃) = Λl
n(η̃)− (−1)l ma′(η̃)

2[ωn + ima(η̃)]
, (30)

for l = 1, 2, where ∆η = η − η0, and Λl
n(η) is a function with Λl

n(η0) = 0 that in the ultraviolet regime,
is at most of order ω−1

n . With this choice, the constants (29) turn out to be

∆l
n =

1
2
− (−1)l ma′0

4ωn(ωn + ima0)
, ζ l

n =
1
2
+ i

ma0

2ωn
. (31)

3.2. Fock Quantization and Unitary Evolution

Let us now discuss the quantization of our fermionic system. Concretely, in this section we present
the unique, preferred Fock quantization singled out by the criteria of symmetry invariance and of
unitary implementability of the dynamics introduced in Section 2. The construction is performed in
three steps. (1) We first focus on determining the family of invariant complex structures; namely those
that commute with the action of the group of symmetries of the equations of motion for the modes.
By construction, these complex structures lead to Fock vacuum states that are invariant under the
unitary transformations generated by the symmetry group. We then consider time-dependent families
of annihilation and creation variables associated with the invariant complex structures. By interpreting
these families as dynamical trajectories, a specific redistribution of the implicit and explicit time
dependence of the field is made. The dynamics that we wish to implement quantum mechanically
is that of the implicitly time-dependent part, corresponding to the evolution of the annihilation and
creation variables. (2) Each of the families of annihilation and creation variables defines an invariant
Fock representation and a specific quantum evolution in the corresponding Fock space. We impose the
criterion of unitary implementability of the dynamics, together with the requirement that the evolution
be not trivialized. This leads us to set (or better said, characterize) all invariant Fock quantizations
with a nontrivial and unitarily implementable dynamics. (3) Finally, we show that all such Fock
quantizations turn out to be, in fact, unitarily equivalent, up to conventions in the notions of particles
and antiparticles.

On account of Equation (25), it is clear that the field equations are invariant under the set of
transformations that interchange eigenmodes of the Dirac operator with the same value of ωn. Since the
Dirac operator is built from the spatial metric 0hαβ, these symmetries include the isometries (if any) of
the Cauchy surface Σ0. It should be clear that linear transformations commuting with the action of the
symmetry group of the Dirac equation are composed of 2× 2 blocks which at most, can mix the modes
snp and r̄np with the same value of p. In addition, using all the available symmetries one can reason
that the blocks are necessarily the same for all the modes corresponding to the same eigenvalue of the
Dirac operator (in norm) [52]. Therefore, in particular, invariant complex structures are completely
determined by a series of 2× 2 matrices labeled by n ∈ N.

Let us remark that given a complex structure, their associated annihilation and creation variables,
namely the classical counterparts of the corresponding operators in an expansion of the type (7),
diagonalize its action. Since invariant complex structures can mix only modes snp and r̄np with the
same labels, the corresponding annihilation and creation variables must be linear combinations of
these modes. The annihilation variables of particles and antiparticles are denoted by anp and bnp,
respectively, while the creation variables are their complex conjugates ānp and b̄np. These variables
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must satisfy the usual Dirac brackets for annihilation and creation sets, {anp, ānp} = {bnp, b̄np} = −i
and {anp, bnp} = 0, which lead to the CARs (8) in the quantum theory.

Now, let us consider time-dependent families of annihilation and creation variables associated
with invariant complex structures. Specifically,

(
anp

b̄np

)

η

= Fn(η)

(
snp

r̄np

)

η

, Fn(η) =

(
f n
1 (η) f n

2 (η)

gn
1 (η) gn

2 (η)

)
. (32)

In order that we get the required Dirac brackets for anp, bnp, and their complex conjugates,
the time-dependent functions f n

l and gn
l (l = 1, 2) must satisfy

| f n
1 |2 + | f n

2 |2 = 1, |gn
1 |2 + |gn

2 |2 = 1, f n
1 ḡn

1 + f n
2 ḡn

2 = 0. (33)

Combining these conditions, we can write

gn
1 = f̄ n

2 eiGn
, gn

2 = − f̄ n
1 eiGn

, f n
1 gn

2 − gn
1 f n

2 = −eiGn
, (34)

where Gn is a certain phase. Thus, it suffices just one complex function and two (real) phases for each
n to characterize one family of annihilation and creation variables of the form (32).

If we interpret the variables in each of these families as conforming to dynamical trajectories,
their evolution differs (from each other, in general, and) from that of the modes snp and r̄np that
dictate the evolution of the auxiliary spinor field ψ, because of the explicit dependence on η of the
matrices Fn. By substituting the inverse of Equation (32) in Equation (24), we obtain the expression
of Ψ in terms of the introduced variables anp(η) and b̄np(η). The result makes it clear that the
dynamics of Ψ is determined by the evolution of the annihilation and creation variables, and by
the explicitly time-dependent contributions coming from Fn and the scale factor. It is only the
implicitly time-dependent part, i.e., the part corresponding to the evolution of the annihilation and
creation variables, the one that we want to implement as a quantum Heisenberg evolution. In the
following, we restrict our attention to quantizations that are not only invariant, but also admit a unitary
implementability of these dynamics.

For any of the allowed families of variables given in Equation (32), the dynamical evolution is a
Bogoliubov transformation relating those variables at two different times, say the arbitrary time η and
the initial time η0. By using Equations (27) and (32), we get

(
anp

b̄np

)

η

= Bn(η, η0)

(
anp

b̄np

)

η0

, Bn(η, η0) =

(
α

f
n(η, η0) β

f
n(η, η0)

β
g
n(η, η0) α

g
n(η, η0)

)
, (35)

where Bn(η, η0) = Fn(η)Vn(η, η0)F−1
n (η0). This Bogoliubov transformation introduces the family of

evolved complex structures Jη = Bn(η, η0)Jη0B−1
n (η, η0) on the space of initial Cauchy data, where Jη

is the invariant complex structure associated with (i.e., has a diagonal action on) the annihilation and
creation variables at time η. As we have seen in Section 2, the transformations (35) are implementable
as unitary operators on the Fock space defined by Jη0 if and only if

∑
n

gn|β f
n(η, η0)|2 < ∞ and ∑

n
gn|βg

n(η, η0)|2 < ∞, ∀η ∈ I. (36)

Let us recall that the number of eigenstates of the Dirac operator with positive eigenvalue
not greater than ω grows as ω2 in the ultraviolet regime. Using this asymptotic behavior, it is
possible to show [52] that for large N1 and arbitrary N2 > N1, and with N1 ≥ ωn1 > N1 − 1 and
N2 ≥ ωn2 > N2 − 1,
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n2

∑
n=n1

gn

ω4
n
≤

N2

∑
N=N1

K
N3 , (37)

where K is some positive constant. This identity is important for the subsequent analysis because it
implies that the sequence {√gnω−2

n }n∈N is square summable.
Employing Equations (30) and (31), as well as relations (33) and (34), one can check that in the

asymptotic regime of large ωn,

|βh
n| =

1
2

∣∣∣∣
(
hn,0

2 − hn,0
1
) [

hn
1

(
1 + i

∫
Σ1

n

)
+ hn

2

(
1 + i

∫
Σ̄2

n

)]
eiωn∆η

+
(
hn,0

2 + hn,0
1
) [

hn
1

(
1− i

∫
Σ2

n

)
− hn

2

(
1− i

∫
Σ̄1

n

)]
e−iωn∆η

+
2ma0

ωn

(
hn,0

1 hn
1 + hn,0

2 hn
2

)
sin(ωn∆η)

∣∣∣∣+O(ω−2
n ), (38)

where the integrals are over conformal time from η0 to η, the symbol O stands for asymptotic order,
and h can be set equal to either f or g. To lighten the notation, we have omitted the dependence of
these functions on η and denoted the evaluation at η0 with the superscript 0, preceded by a comma.
It is worth noticing that Relations (33) and (34) guarantee that |β f

n| = |βg
n|. Therefore, for the purpose

of unitarity, it suffices to analyze just one of these types of coefficients.
It is convenient to employ again the notation {l, l̃} = {1, 2}. Then, given that |hn

l̃
|2 + |hn

l |2 = 1,

we get hn
l̃
= eiHn

l̃

√
1− |hn

l |2, where Hn
l̃

denotes some phase that may depend on time.
It is worth remarking that in addition to conditions (36) which severely restrict the behavior of the

coefficients hn
l , both in their mode and time dependence, one should naturally demand that hn

l be such
that the dynamics of the annihilation and creation variables is not trivialized when compared with
the original Dirac evolution. Otherwise, the criterion of a unitary implementation of the dynamics
would be useless, since it would pose no restriction on the Fock representation. Indeed, one may
always extract all the asymptotically dominant time dependence of the fermionic field by means of
explicitly time-dependent canonical transformations, and trivialize in this way the requirement of
a unitarily implementable evolution. More specifically, by examining Equation (38), it can be seen
that the dominant contribution of the Dirac dynamics dictated by Vn(η, η0) is given by imaginary
exponentials of the phases ±ωn∆η. Thus, to avoid a trivial evolution, we rule out the possibility that
these dynamical contributions are counterbalanced with a specific choice of (time and mode-dependent)
phases in the linear combinations that determine the annihilation and creation variables.

Altogether, taking h as either f or g, the requirements of a nontrivial and unitarily implementable
dynamics impose, as a necessary condition that asymptotically [52]

hn
l =

eiHn
l√
2
+ ϑn

h,l , hn
l̃ = ±eiHn

l

√
1− |hn

l |2 = ±eiHn
l

[
1√
2
− Re(e−iHn

l ϑn
h,l)

]
+O(|ϑn

h,l |2), (39)

for a subset of the natural numbers, n ∈ N±l , and with ϑn
h,l being some mode-dependent and

time-dependent complex function that goes to zero in the limit of large ωn. Here, the union of
the four subsets N±l gives (up to a finite number of elements) the natural numbers, allowing for the
possibility that up to three of these subsets be empty, and with identified hn

l with hn
1 for n ∈ N±1 and

with hn
2 for n ∈ N±2 , with the ± superscripts indicating the relative sign for hn

l̃
in the second and third

identities of Equation (39). By substituting this equation into Relation (38), as well as using that the
integral of (Σ̄1

n − Σ2
n) behaves as m (a− a0) /ωn +O(ω−2

n ) in the ultraviolet regime [52], one gets that
the asymptotic behavior of the complex norm of the beta coefficients, for all n ∈ N±l , is
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|βh
n| =

1√
2

∣∣∣∣
[

ϑn,0
h,l e−iHn,0

l + Re(e−iHn,0
l ϑn,0

h,l )− i(−1)l ma0√
2ωn

]
e±iωn∆η

−
[

ϑn
h,le
−iHn

l + Re(e−iHn
l ϑn

h,l)− i(−1)l ma√
2ωn

]
e∓iωn∆η

∣∣∣∣, (40)

up to certain terms that are negligible compared with the largest order between ω−1
n and ϑn

h,l .
So far, no condition has been set on ϑn

h,l other than it must go to zero in the ultraviolet limit.
However, by adding the requirement that the sequence {gn|βh

n|2}n∈N±l
be summable, one gets a

restriction on how fast ϑn
h,l must tend to zero. The line of reasoning is the following. One assumes that

the beta coefficients are square summable in the subsets N±l , including degeneracy, and then one looks
for the functions ϑn

h,l (if any) that solve the resulting conditions. From Equation (40), one finds that
there are two different situations that lead to distinct conditions on ϑn

h,l , namely either the sequence
{√gnω−1

n }n∈N±l
is square summable, or not. In the first situation, it is not difficult to check that

{√gnϑn
h,l}n∈N±l

must be square summable. For the alternative situation (that is when {√gnω−1
n }n∈N±l

is not a square summable sequence), by using the implications of Equation (37) and recalling that any
trivialization of the fermionic dynamics is excluded, one can see that the functions [52]

ϑ̃n
h,l = ϑn

h,l + eiHn
l Re(e−iHn

l ϑn
h,l)− i(−1)l ma√

2ωn
eiHn

l (41)

must form a sequence that is square summable, including degeneracy, in the subsets N±l where
{√gnω−1

n }n∈N±l
fails to satisfy such square summability.

In total, given an invariant family of complex structures Jη characterized by the annihilation
and creation variables (32), the necessary and sufficient conditions for the corresponding Fock
representations of the CARs to be unitarily equivalent, and therefore to support a unitarily
implementable nontrivial dynamics, are the following. (1) The functions hn

l and hn
l̃

must be
asymptotically of the form (39) for n ∈ N±l . (2) The terms ϑn

h,l must be such that either (2a) if
{√gnω−1

n }n∈N±l
is square summable, they form a sequence that is square summable (including over

the degeneracy), or otherwise, (2b) the sequence {√gnϑ̃n
h,l}n∈N±l

is square summable, with ϑ̃n
h,l given

in Equation (41).
Up to now, we have characterized all families of annihilation and creation variables that (i) share

the symmetries of the equations of motion, and (ii) evolve according to nontrivial dynamics that
are unitarily implementable at the quantum level. Each of these families determines an invariant
Fock representation (e.g., that associated with the choice of an invariant complex structure at the
initial time η0) with a nontrivial, unitary quantum evolution in the corresponding Hilbert space.
By referring to the combination of a Fock representation and a specific quantum dynamics as a Fock
quantization of the system, the question now is whether the invariant Fock quantizations with unitarily
implementable nontrivial dynamics are equivalent quantum theories or not. Before we address this
issue of uniqueness, let us make some remarks about the preceding results.

Please note that the criterion of unitary implementability, together with the requirement of
a nontrivial dynamics, fix (up to phases) the leading order behavior of the coefficients hn

l in the
asymptotic regime of large ωn, as it is shown in Equation (39). In addition, for all those cases where
{√gnω−1

n }n∈N±l
fails to be a square summable sequence, the imaginary part of e−iHn

l ϑn
h,l must have its

dominant asymptotic contribution of order ω−1
n , and equal to the function ma/(

√
2ωn) in absolute

value. This follows simply by realizing that the square summability of the sequence {√gnϑ̃n
h,l}n∈N±l

implies that ϑ̃n
h,l = o(ω−1

n ) in Equation (41). Hence, for a nonzero fermionic mass m, the coefficients hn
l

asymptotically depend in a very specific way on the eigenvalue of the Dirac operator and on the mass
of the field. Most importantly, there is also a specific dependence on time, by means of a dependence on
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the background where the field propagates. Finally, let us emphasize that the analysis about unitarity
holds not only for a positive value of the mass m, but also when this mass is zero, i.e., the families of
annihilation and creation variables for the massless Dirac field, selected by the criteria of symmetry
invariance and of unitarity, are fully characterized by coefficients (hn

l , hn
l̃
) with an asymptotic form

given by Equation (39), and such that the sequences {√gnϑn
h,l}n∈N±l

are square summable. It is worth

noticing that within this family, the choice f n
1 = f n

2 = gn
1 = −gn

2 = 1/
√

2 provides a representation
which corresponds to the Fock quantization constructed from the (celebrated) conformal vacuum,
i.e., the natural vacuum specified by imposing the conformal symmetry of the massless Dirac equation
in the quantum theory.

3.3. Uniqueness of the Quantization

Let us now address the issue of uniqueness. With this aim, we proceed as follows. First, as a
reference, we adopt a certain Fock quantization that is invariant and possesses a nontrivial and unitarily
implementable dynamics. Next, we consider any other invariant Fock quantization that admits a
nontrivial, unitarily implementable dynamics, and we examine whether it is unitarily related with the
reference Fock quantization or not. If the answer is in the affirmative, then the uniqueness is proven.

A simple choice of reference quantization is the Fock quantization characterized by annihilation

and creation variables with f n
1 = 1/

√
2− iam/(

√
2ωn), f n

2 =
√

1− | f n
1 |2, gn

1 = f n
2 , and gn

2 = − f̄ n
1 .

Please note that in the case of the massless field, this choice defines the natural quantization
with conformal vacuum. Let { ¯̃anp, ¯̃bnp, ãnp, b̃np} be any other choice of annihilation and creation
variables that defines a Fock quantization with a nontrivial, unitarily implementable dynamics.
The coefficients f̃ n

l and g̃n
l that characterize these variables then satisfy all the conditions stipulated in

the previous subsection.
Given our reference Fock quantization and this other arbitrary one allowed by our criteria,

it follows from Equation (32) that the annihilation and creation variables associated with them are
related via the time-dependent Bogoliubov transformation Kn(η) = F̃n(η)F−1

n (η), so that

(
ãnp
¯̃bnp

)

η

= Kn(η)

(
anp

b̄np

)

η

, with Kn =

(
κ

f
n λ

f
n

λ
g
n κ

g
n

)
. (42)

It is not difficult to check that the norm of the off-diagonal coefficients is |λh
n| = |h̃n

1 hn
2 − h̃n

2 hn
1 |.

Moreover, using Equation (34), one gets that |λ f
n| = |λg

n|. Thus, the square summability conditions
on λ

f
n and λ

g
n that must be satisfied for the Bogoliuvov transformation to be unitarily implementable,

turn out to be just one (and the same) condition. Then, the transformation determined by the sequence
of matrices Kn is implementable on the reference Fock space as a unitary operator if and only if

∑
n

gn|λ f
n(η)|2 < ∞, ∀η ∈ I, (43)

where |λ f
n| =

∣∣ f̃ n
1

√
1− | f n

1 |2 − f̃ n
2 f n

1

∣∣. In case this condition is satisfied, we can consider the two
analyzed quantizations as physically equivalent. Please note that the above condition ensures that the
Fock representations defined for every value of the conformal time η are unitarily equivalent.

Taking e.g., h = f in the formulas of the preceding subsection, we have that the coefficients f̃ n
l

and f̃ n
l̃

are, respectively, of the asymptotic form (39). Then, one gets that for n ∈ N+
l [52],

|λ f
n| =

1√
2

∣∣∣ϑn
f̃ ,l + eiF̃n

l Re(e−iF̃n
l ϑn

f̃ ,l)
∣∣∣ , (44)
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up to terms O(|ϑn
h,l |2) in the asymptotic limit of large ωn if the field is massless, or up to terms O(ω−1

n )

if the mass does not vanish and {√gnω−1
n }n∈N+

l
happens to be square summable. Alternatively, if this

sequence is not square summable and the field is massive, one must have

|λ f
n| =

1√
2
|ϑ̃n

f̃ ,l |+O(ω
−2
n ), (45)

for n ∈ N+
l . Since the sequences formed by ϑn

f̃ ,1
and ϑn

f̃ ,2
in the two first cases above, and by ϑ̃n

f̃ ,1
and ϑ̃n

f̃ ,2
in the last case, are square summable by hypothesis in their respective subsets, including degeneracy,
it follows that the unitary equivalence condition (43) is immediately satisfied for all n ∈ N+

l .
On the other hand, it can be shown that Equation (43) fails to be satisfied if any of the considered

subsets of integers N−l has infinite cardinality. The reason for this failure is rooted at the difference in
the relative sign of the coefficients in the pair ( f̃ n

1 , f̃ n
2 ) with respect to that in ( f n

1 , f n
2 ) [52]. Therefore,

if one then insists and interchanges the roles of f̃ n
l and g̃n

l in the definition of the annihilation and
creation variables for the subsets N−l , something that in practice amounts to an interchange between
the relative signs of the pair ( f̃ n

1 , f̃ n
2 ) and the signs for the pair (g̃n

1 , g̃n
2 ) [see Equation (34)], one gets

that both pairs would display the same relative signs as the coefficients of the reference quantization,
and then condition (43) would be satisfied for n ∈ N−l . According to Equation (32), the exchange of f̃ n

l
and g̃n

l can be interpreted as a change in the convention of what are particles and what are antiparticles.
In this sense, the inequivalence between quantizations before one performs the explained interchange
can be understood as a spurious result coming from the fact that we are just considering two Fock
quantizations with the opposite convention for the concept of particle and antiparticle in an infinite
number of modes.

In summary, the criterion of invariance under the symmetries of the equations of motion and
the unitary implementability of a nontrivial quantum dynamics removes the ambiguities in the
representation of the CARs, both for the massive and for the massless Dirac fields in 2 + 1 dimensions,
selecting a unique family of unitarily equivalent Fock representations, together with a notion of
quantum evolution, up to conventions about the concept of particles and antiparticles.

4. Fock Quantization of Dirac Fields in FLRW Cosmologies

We now discuss the Fock quantization of Dirac fields in cosmological spacetimes of the FLRW
type. In particular, in this section we show that one can achieve results about the uniqueness of the
quantization very much like in the previous section. More precisely, we consider minimally coupled
massive Dirac fields, propagating in homogeneous and isotropic FLRW spacetimes, with 3-dimensional
spatial hypersurfaces that can be either spherical or toroidal. The spherical case was notably analyzed
in great depth by D’Eath and Halliwell [62], within the context of the Wheeler-DeWitt approach to
quantum cosmology. In that seminal treatment, a special time-dependent family of Fock representations
was chosen for the Dirac field, by means of an instantaneous diagonalization of the Dirac Hamiltonian.
In particular, such family is associated with vacua which are invariant under the symmetries of
the Dirac equation. Moreover, it was shown in Ref. [62] that particle production over time remains
finite for those vacua, a fact that is an exclusive characteristic of quantizations that admit a unitary
implementation of the dynamics. We now show that this family of Fock representations is in fact
uniquely selected, up to unitary equivalence, by the criteria of invariance under spatial symmetries
and unitary implementability of the dynamics. Also, we present a similar result concerning the Dirac
field in flat (compact) FLRW spacetime. In this case, moreover spatial translations, the symmetry
group includes helicity-generated spin rotations as well.

4.1. Dirac Spinors in FLRW Cosmologies

As before, we consider spacetime manifolds with topology of the type I×Σ, where I is a connected
interval of the real line and Σ is certain spatial Cauchy surface. In the case of a spherical universe,
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Σ is isomorphic to the 3-sphere, S3, whereas for universes with (compact) flat spatial sections Σ is
isomorphic to the 3-torus, T3. In the following, we often refer to the above two situations as the
spherical case and the flat case, for S3 and T3 respectively. The metrics associated with such universes
can be written as

ds2 = a2(η)(−dη2 + 0hαβdxαdxβ), (46)

where 0hαβ is either the 3-dimensional spherical metric or the flat metric, and a(η) is the scale factor.
It follows from previous comments in Section 2 that spin structures can always be defined in

the above types of cosmological spacetimes [42,43]. Dirac fields Ψ, of mass m, correspond therefore
to sections of the associated spinor bundle. Explicitly, we adopt the Weyl representation of the
Dirac matrices

γa = i

(
0 σa

σ̃a 0

)
, (47)

where σ0 = σ̃0 is the identity 2× 2 matrix and σi = −σ̃i (with i = 1, 2, 3) are the Pauli matrices.
Such representation of the generators of the Clifford algebra allows us to describe Dirac fields by
means of a pair of two-component spinors φA and χ̄A′ possessing well-defined and opposite chirality.
We take φA to be the left-handed projection of Ψ, while χ̄A′ is the right-handed one. Moreover, we adopt
the same conventions as in Ref. [62] concerning the treatment of spinor indices.

In these cosmological spacetimes, the action for the Dirac field of mass m is

I f = −i
∫

dη d3~x a4
√

0h
[

1
2
(Ψ†γ0eµ

a γa∇S
µΨ− h.c.)−mΨ†γ0Ψ

]
, (48)

where the spin covariant derivative ∇S
µ is given by relations (18) and (19), adapted to the models

in question.
Let us perform again a partial fixing of the internal Lorentz gauge, with the purpose of providing

a rigorous treatment of the spatial dependence of spinors, as well as to analyze their properties under
the symmetry groups associated with the considered FLRW cosmologies. To be specific, the gauge
group of the orthonormal and oriented frame bundle can be reduced from SO(3, 1) to SO(3) [58].
In the considered spacetime models, this procedure gives rise to a well-defined restriction of the
spin structures to the double cover of the reduced bundles, with SU(2) as gauge group. Finally,
this restriction provides one (and the same) spin structure on each of the spatial hypersurfaces that
constitute the foliation of the considered cosmologies. In the case of S3, the spin structure turns
out to be unique [63,64]. In the flat case, on the other hand, there are eight possible spin structures
associated with distinct periodic conditions for the spinors in T3 [65,66]. In practice, this partial gauge
fixing is obtained again by imposing the conditions nµea

µ = δa
0 which, moreover, greatly simplify

the Hamiltonian analysis of the system [61]. In particular, one can check that the Dirac operator
(defined over left and right-handed spinors) on the reference spatial hypersurface Σ0 takes the form

ia
√

2 eαAA′ (3)Dα, (49)

where eαAA′ is the spinor version of the triad and (3)Dα is the spin lifting of the Levi–Cività covariant
derivative with respect to the metric 0hαβ [62].

Once the gauge fixing has been performed, we introduce the following inner product on the space
of left-handed spinors defined on the spatial hypersurface Σ0 (as well as the corresponding definition
for right-handed spinors):

∫

Σ0

d3~x
√

0h χ̄A′ I
AA′φA, (50)
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where summation over repeated indices is assumed, IAA′ denotes the components of the identity
matrix, and φA and χA are arbitrary spinors. Since both the spherical and the toroidal hypersurfaces
are geodesically complete [67], it follows that the Dirac operator (49) is essentially self-adjoint with
respect to the inner product (50), with discrete spectrum in both cases.

The spectrum of the Dirac operator on S3 consists of the following sequence of eigenvalues [62,64]:

±ωn = ±
(

n +
3
2

)
, n ∈ N, (51)

each of which has a corresponding degeneracy gn = (n + 1)(n + 2). Using a notation similar to
that employed in the previous section, the left-handed eigenspinors with eigenvalues ωn and −ωn

are denoted by ρ
np
A and σ̄

np
A , respectively, where the label p = 1, . . . , gn accounts for the degeneracy.

Once normalized, the set of all such elements forms an orthonormal basis—with respect to the inner
product (50)—for the space of left-handed spinors in S3. An analogous basis for right-handed spinors
is readily obtained by complex conjugation.

In the spherical case, the chiral projections of the Dirac field can then be written as

φA(η,~x) =a−3/2(η) ∑
npp′

ᾰ
pp′
n [mnp(η)ρ

np′
A (~x) + r̄np(η)σ̄

np′
A (~x)], (52)

χ̄A′(η,~x) =a−3/2(η) ∑
npp′

β̆
pp′
n [s̄np(η)ρ̄

np′

A′ (~x) + tnp(η)σ
np′

A′ (~x)], (53)

with analogous expressions for the complex conjugate versions, and with

∑
npp′

=
∞

∑
n=0

gn

∑
p=1

gn

∑
p′=1

.

The anticommutative nature of the fermionic field Ψ is encoded in the Grassmann variables mnp,
rnp, tnp, and snp (and their complex conjugate versions) that moreover carry the time dependence of

the Dirac field. Finally, the constant coefficients ᾰ
pp′
n and β̆

pp′
n are included for convenience, to avoid

the dynamical coupling of modes with different values of the label p.
Concerning now the flat FLRW model, the spectrum of the corresponding Dirac operator – with

compactification period l0 – consists of the following sequence of eigenvalues [65,66]:

±ωk = ±
2π

l0

∣∣∣~k +~τ
∣∣∣ , ~τ =

1
2

3

∑
j=1

εj~vj, ~k ∈ Z3, (54)

where the three ~vj’s form the standard orthonormal basis for the lattice Z3, and the three numbers
εj ∈ {0, 1} characterize each of the possible choices of spin structure2. Given any such spin structure,
we identify the label k in ωk (or equivalently in −ωk) with the norm of any of the wave vectors~k ∈ Z3

corresponding to ωk. The degeneracy gk associated with each eigenvalue ωk (or −ωk) does not possess
in this case a closed expression. However, well-known results in Riemannian geometry allow us to
conclude that gk grows asymptotically as O(ω2

k), for unboundedly large ωk [24,68]. Let us then fix a
spin structure on T3 and choose a set of triads associated with the flat metric. The eigenspinors of the
Dirac operator then form a basis of the space of spinors in T3, basis that can be made orthonormal
with respect to the inner product (50). In particular, if one chooses a diagonal triad such that the spin

2 These spin structures determine the periodicity or antiperiodicity of the Dirac field in each of the orthogonal directions that
define T3. If, in harmony with spatial isotropy, one imposes the same global behavior for the field in all these directions,
the choice of spin structure is restricted to either εj = 0 or εj = 1 for all j.
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connection 1-form becomes null, the Dirac operator turns out to be the standard one for flat Euclidean
space. Its (left-handed) eigenspinors corresponding to eigenvalues ±ωk are

w(±)
~k A

(~x) = u(±)
~k A

exp
[

i
2π

l0

(
~k +~τ

)
·~x
]

, (55)

where u(±)
~k A

are some ~x-independent two-component spinors, subject to the condition that the

eigenvalue equation must hold. They can be chosen so that the spinors w(±)
~k A

are normalized in
the inner product (50) and such that

∫

Σ0

d3~x w(+)
~k′A

εABw(−)
~kB

= 0,
∫

Σ0

d3~x w(±)
~k′A

εABw(±)
~kB

= eiC(±)
~k δ~k′ ,−~k−2~τ , (56)

for all~k,~k′ 6= −εj~vj/2. Summation over repeated indices is assumed3. Finally, the constants C(±)
~k

are some phases that can be chosen conveniently by modifying those of u(±)
~k A

. Just like in the case

of S3, the chiral projections φA and χ̄A′ in the current flat case can be expanded in Dirac modes in an
analogous fashion as in Equations (52) and (53), with corresponding Grassmann variables m~k, r~k, t~k,
and s~k.

Returning to the spherical FLRW case, notice that upon introduction of the mode
Expansions (52) and (53) in the Dirac action, and once the second-class constraints of the fermionic
system are solved [69], one ends up with the following symmetric Dirac brackets for the mode
variables [60,61]:

{xnp, x̄np} = −i, {ynp, ȳnp} = −i, (57)

where the ordered pair (xnp, ynp) stands for (mnp, snp) or (tnp, rnp). Using Grassmann variational
derivatives and requiring stationarity of the action, one obtains Dirac equations for the modes:

x′np = iωnxnp − imaȳnp, y′np = iωnynp + imax̄np, (58)

as well as the complex conjugate versions. One can combine these dynamical equations to obtain
decoupled second-order equations that are actually the same for all modes {xnp, ynp} with the same
label n. Denoting the mode variables generically by {znp}, the resulting equation for given ωn and
(nonzero4) mass m is the following:

z′′np =
a′

a
z′np −

(
ω2

n + m2a2 + iωn
a′

a

)
znp. (59)

The general solution to this equation is a linear combination of two independent complex solutions,
which we write again in the form exp[iΘ1

n(η)] and exp[−iΘ2
n(η)]. The general expression of the

fermionic modes at arbitrary time η can then be written as a linear transformation of the corresponding
initial values that assigns a different weight to the two independent solutions of Equation (59):

xnp(η) =
[
∆2

neiΘ1
n(η) + ∆1

ne−iΘ2
n(η)
]

x0
np −

[
ζ1

neiΘ1
n(η) − ζ2

ne−iΘ2
n(η)
]

ȳ0
np,

ynp(η) =
[
∆2

neiΘ1
n(η) + ∆1

ne−iΘ2
n(η)
]

y0
np +

[
ζ1

neiΘ1
n(η) − ζ2

ne−iΘ2
n(η)
]

x̄0
np, (60)

3 Except for the index~k on the right-hand side of the second relation in Equation (56).
4 The case m = 0 is slightly different, although straightforward to handle.
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where ∆l
n and ζ l

n, l = 1, 2, are constants that depend on the initial conditions of the independent
solutions exp[iΘ1

n(η)] and exp[−iΘ2
n(η)], and of their derivatives, at the reference time η0 (see Ref. [53]

for explicit expressions and details).
Just as in the previous section, one can obtain the asymptotic behavior of the linear transformations

(60) in the ultraviolet regime of large ωn, and subsequently study the unitary implementability of such
transformations at the quantum level. For that matter, let us impose the initial conditions Θl

n(η0) = 0.
One obtains the following expressions for the (exponents of the) solutions to Equation (59) [53]:

Θl
n(η) = ωn∆η +

i
2
[1 + (−1)l ] ln

(
a
a0

)
+
∫ η

η0

dη̃ Λl
n(η̃), (61)

where a0 = a(η0), ∆η = η− η0, and the functions Λl
n are solutions of an equation of Riccati type which

become negligible in the limit of unboundedly large ωn. In particular, the functions Λl
n have a behavior

of the type O(ω−1
n ). The asymptotic values obtained for the constants ∆l

n and ζ l
n are the following [53]:

∆1
n =0, ∆2

n = 1, (62)

ζ1
n =ζ2

n = ζn =
ma2

0
2ωna0 + ia′0

=
ma0

2ωn
+O(ω−2

n ). (63)

The analysis concerning the fermionic dynamics in the flat case is quite similar, leading to mode
solutions that are the analogs of Equation (60):

x~k(η) = eiΘ1
k(η)x0

~k
− ζk

[
eiΘ1

k(η) − e−iΘ2
k(η)
]

ȳ0
−~k−2~τ

,

y~k(η) = eiΘ1
k(η)y0

~k
+ ζk

[
eiΘ1

k(η) − e−iΘ2
k(η)
]

x̄0
−~k−2~τ

. (64)

The corresponding asymptotic expressions, in the limit of large ωk, are

ζk =
ma2

0
2ωka0 + ia′0

=
ma0

2ωk
+O(ω−2

k ) (65)

and

Θl
k(η) = ωk∆η +

i
2
[1 + (−1)l ] ln

(
a
a0

)
+
∫ η

η0

dη̃ Λl
k(η̃), (66)

where the functions Λl
k are solutions of a Riccati equation with an asymptotic behavior of the

type O(ω−1
k ).

4.2. Fock Quantization and Unitary Evolution

Considering both the spherical and the flat FLRW cosmologies, we proceed now to characterize all
Fock representations for the Dirac field which satisfy the following requirements. First, the associated
vacua must be invariant under the action of the natural symmetries of the system, among them
the spatial isometries (and helicity-generated spin rotations, in the flat case). Secondly, the Fock
quantizations are required to admit a (nontrivial) unitary implementation of the dynamics at the
quantum level.

Let us start by analyzing the behavior of Dirac spinors in the spherical case, when the isometry
transformations of S3 are applied. The transformation group is then SO(4), or equivalently the double
cover Spin(4) = SU(2) × SU(2), with action in S3 defined by means of a Clifford multiplication.
Consequently, Spin(4) acts on the cross-sections of the spinor bundle on S3 [64]. Notice that this action,
when viewed on the four-component Dirac spinor, is reducible to two blocks: the action of Spin(4)
over spinors φA, and the complex conjugate action over spinors χ̄A′ . Both such representations of
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Spin(4) are unitary with respect to the inner product (50), and it follows that each block is further
decomposable in a direct sum of irreducible representations.

Invariant vacua are associated with invariant complex structures, and we therefore seek complex
structures which commute with the action of Spin(4) over spinors. To begin with, given the
decompositions (52) and (53), any complex structure can be seen as an infinite-dimensional matrix in
the basis formed by the modes {mnp, r̄np, tnp, s̄np}. From this point on, we follow the analysis carried
out in Ref. [64], concerning the eigenspaces of the Dirac operator on S3. Consider the action of Spin(4)
on spinors of the type φA. Using Frobenius theorem [70], it is shown in Ref. [64] that each eigenspace
corresponds exactly to a representation space of one of the irreducible representations of Spin(4) on
spinors. Moreover, each such irreducible component shows up in the direct sum with multiplicity
equal to one. This means that the representation spaces generated for each n by the sets

{ρnp
A }p=1,...,gn and {σ̄np

A }p=1,...,gn (67)

provide two irreducible representations which are necessarily inequivalent. Likewise, the representations
associated with the sets

{ρ̄np
A′ }p=1,...,gn and {σnp

A′ }p=1,...,gn (68)

simply reproduce those generated by the sets (67), and therefore each irreducible representation
associated, for each n, with one of the sets (68) is unitarily equivalent to a corresponding one
coming from the sets (67). All this information (combined with an inspection of the dynamical
mode equations [54]) allows us to apply Schur’s lemmas [71] to conclude that a complex structure that
commutes with the action of the group of isometries of S3 over the space of Dirac spinors cannot mix
modes mnp, r̄np, tnp, and s̄np with different values of n. Moreover, within the subspace associated with
a fixed value of n, such complex structures cannot mix the modes {mnp, s̄np} with {tnp, r̄np}, since the
two sets provide inequivalent irreducible representations of Spin(4). Let us consider first, for each
given n, the subspace generated by the modes {mnp, s̄np}. The restriction of an invariant complex
structure to any such subspace can then be characterized by means of four linear maps, relating in all
possible pairings the two subspaces generated by {mnp} and by {s̄np}. Each of these four maps must
be proportional to the identity, as ensured by Schur’s lemma. Finally, similar considerations can be
applied to the subspace generated by the modes {tnp, r̄np} [54].

We now turn to the flat FLRW model, and consider the action of isometries of T3 on the Dirac
field. Restricting our attention to continuous transformations, the isometry group is generated by
constant translations along each of the orthogonal directions of the 3-torus. A general translation
on the torus is thus ~x → ~x +~θ, where for each component we have 2πθα/l0 ∈ S1. For any given
choice of spin structure on T3, one can easily check that a general translation simply results into the
following transformation:

w(±)
~k A

(~x) −→ ei2π~k·~θ/l0 ei2π~τ·~θ/l0 w(±)
~k A

(~x) (69)

in each of the elements (55) of the basis of (left-handed) eigenspinors. For each ~k ∈ Z3 there are
therefore two copies of the same 1-dimensional complex irreducible representation, with different
~k’s giving rise to inequivalent representations [55]. Again, one can perform the same analysis for the
spinors of opposite chirality. Then, taking into account the mode decomposition of the Dirac field Ψ,
and using again Schur’s lemma, one concludes the following. A complex structure that commutes with
the action of translations on T3 can at most mix the modes (m~k, s̄−~k−2~τ , t−~k−2~τ , r̄~k) among themselves,

for each fixed~k ∈ Z3, and is trivial otherwise.
In the flat case there is an additional symmetry of the Dirac system, following from the

conservation of helicity in the evolution of the Dirac field in conformal time η. In fact, one can
consider the projection of the spin angular momentum in the direction of the linear momentum of the
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particle, a projection that (except for the subspace generated by the modes with ωk = 0) defines the
helicity operator h [72]:

h = [−~∇2]−1/2

(
−i~σ · ~∇ 0

0 −i~σ · ~∇

)
. (70)

Here, ~∇ is the standard 3-dimensional Euclidean gradient and~σ denotes a vector with components
given by the Pauli matrices. Eigenspinors of h with eigenvalues +1 or −1 are said to have positive
or negative helicity, respectively. With the choice of gauge such that the spin connection vanishes,
it turns out that the matrix blocks of h (apart from the factor [−~∇2]−1/2) correspond exactly to the
Dirac operator on T3. One can then check that the positive helicity part of the Dirac field Ψ is generated
by the coefficients m~k and s̄~k, for all~k ∈ Z3 different from ~τ. On the other hand, the negative helicity
contribution is generated by the modes t~k and r̄~k, for all~k ∈ Z3 different from ~τ. A simple inspection
of the equations of motion (58) shows that helicity is indeed a conserved quantity. Therefore, one can
include, as an additional symmetry of the fermionic system, the 1-parameter group of spin rotations
generated by helicity, by means of the complex exponentiation of h/2 multiplied by the angle of
rotation. Such group is immediately unitary with respect to the inner product (5), since the operator h
is essentially self-adjoint. It follows that the unitary implementation of this symmetry at the quantum
level is ensured whenever the complex structure that defines the quantization does not mix positive
helicity modes with negative helicity ones.

The complex structures characterized above define the sets of creation and annihilation
operators that provide invariant Fock representations of the CARs for the Dirac field in the
considered homogeneous and isotropic scenarios. In the spherical case, let us denote the classical
counterparts of the annihilation operators for particles and antiparticles by a(x,y)

np and b(x,y)
np , respectively.

The corresponding creation variables are the complex conjugate ones, ā(x,y)
np and b̄(x,y)

np . In the case of

T3, we denote the annihilation variables by a(x,y)
~k

and b(x,y)
~k

, respectively for particles and antiparticles.
We recall that the pairs (x, y) (with the appropriate labels) denote any of the ordered pairs of mode
coefficients (m, s) or (t, r). In the following, we consider all the possible (time-dependent) families of
fermionic creation and annihilation variables selected by invariant complex structures.

In the case of S3, the creation and annihilation variables in question can then be written as

(
a(x,y)

np

b̄(x,y)
np

)

η

=

(
f n
1 (η) f n

2 (η)

gn
1 (η) gn

2 (η)

)(
xnp

ȳnp

)

η

. (71)

Once more, the label η denotes dependence on conformal time. Notice that the time-dependent
functions f n

l and gn
l (with l = 1, 2) may differ for the pairs of modes (mnp, s̄np) and (tnp, r̄np),

although this is not explicit in the notation. The following relations must again be satisfied:

| f n
1 |2 + | f n

2 |2 = 1, |gn
1 |2 + |gn

2 |2 = 1, f n
1 ḡn

1 + f n
2 ḡn

2 = 0, (72)

such that anticommutators of the type (8) are obtained at the quantum level.
Turning to the flat case, the relations (71) are replaced with


a(x,y)

~k
b̄(x,y)
~k




η

=

(
f~k1 (η) f~k2 (η)
g~k1(η) g~k2(η)

)(
x~k

ȳ−~k−2~τ

)

η

, (73)

where conditions analogous to Equation (72) again apply.
When evaluated at different times, the sets of variables (71) are related to each other by means

of dynamical Bogoliubov transformations. The general form of such linear transformations can be
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obtained taking into account Equation (60) for the evolution of the fermionic modes in the spherical
case. In general, terms, the Bogoliubov transformation relating the annihilation and creation variables
at the initial time η0 with those at any time η is given by a sequence of blocks Bn such that

(
a(x,y)

np

b̄(x,y)
np

)

η

= Bn(η, η0)

(
a(x,y)

np

b̄(x,y)
np

)

η0

, Bn =

(
α

f
n β

f
n

β
g
n α

g
n

)
. (74)

The absolute values of the coefficients β
f
n and β

g
n have the following expression [53,54]:

|βh
n(η, η0)| =

∣∣∣∣∣

[
−hn

1

(
hn,0

2 + ζnhn,0
1

)
ei
∫

Λ1
n + ζ̄nhn

2 hn,0
2

a
a0

ei
∫

Λ̄2
n

]
eiωn∆η

+

[
hn

2

(
hn,0

1 − ζ̄nhn,0
2

)
e−i

∫
Λ̄1

n + ζnhn
1 hn,0

1
a
a0

e−i
∫

Λ2
n

]
e−iωn∆η

∣∣∣∣∣, (75)

where the integrals are over conformal time from η0 to η, h denotes either f or g, and the superscript 0
stands for evaluation at the initial time.

Analogous considerations, of course, apply to the flat case, with dynamical Bogoliubov
transformations between variables of the type (73) that are characterized by matrices B~k,

with corresponding coefficients β
f
~k

and β
g
~k

, for which the explicit expressions can be found in Ref. [55].
Considering for instance the Fock representation defined by the annihilation and creation variables

at the initial time η0 (or equivalently by the associated complex structure), the dynamical Bogoliubov
transformations (74) can be implemented on the corresponding Fock space by means of unitary
quantum operators if and only if [7,8]

∑
n

gn|βh
n(η, η0)|2 < ∞ for h = f , g. (76)

Actually, it is sufficient to ensure the above condition for either h = f or h = g, since it follows
again from relations (72) that |βg

n(η, η0)| = |β f
n(η, η0)| [53]. Let us then fix h to be either f or g.

The unitary implementability of the dynamics therefore depends on the asymptotic behavior of
the beta coefficients in the limit of large ωn that in turn depends on the behavior of the sequences
hn

l . A detailed analysis, carried out in Ref. [54], shows that apart from an uninteresting alternative
which would effectively trivialize the quantum dynamics in a similar way as it was discussed in the
previous section, the fulfillment of the unitarity condition (76) requires that the functions hn

l behave
asymptotically as

hn
l = (−1)l+1 ma

2ωn
eiHn

l̃ + ϑn
h,l , hn

l̃ = eiHn
l̃ +O(ω−2

k ), (77)

where {l, l̃} is the set {1, 2}. Moreover, the sequences ϑn
h,l must be square summable,

including degeneracy.
Before continuing with our discussion, a comment is in order. Since we have not put any restriction

on the global asymptotic behavior of the sequences hn
l for fixed l, it is possible that neither hn

1 nor hn
2

actually converges over N. In fact, the sum (76) can be made finite with hn
1 taking the role of hn

l in
Equation (77) for n in a subset of N and hn

2 taking that role over a complementary subset (modulo finite
subsets of N). Hence, the above behavior of hn

l is required only for n ∈ Nl ⊂ N, with N1 ∪N2 = N
modulo finite subsets (including the possibility of one of the subsets Nl being empty).

The analysis concerning the flat case follows similar lines, apart from a careful handling of
the already mentioned issue of the accidental degeneracy of the Dirac eigenspaces (for full details,
see Ref. [55]). The conclusion is that the requirement of (nontrivial) unitary implementation of the
dynamics completely fixes the explicit dependence on time in the dominant part of the Dirac field,
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in a very similar way as in the spherical case [see Equation (77)], for an infinite number of modes
in the asymptotic sector of large ωk. Hence, the time-dependent scaling that must be introduced in
the mode dynamics of the Dirac field, such that the remaining part of the evolution can be unitarily
implemented, is completely fixed (in absolute value) at dominant order. In particular, the scaling
factor for each mode is similarly determined in terms of ma/(2ωk), and includes the global term a−3/2,
introduced in the mode expansions (52) and (53) adapted to the case of T3.

4.3. Uniqueness of the Quantization

In the previous subsection we have characterized the Fock quantizations of the Dirac field which
allow a unitary implementation of the dynamics and which possess vacua that are invariant under
the natural symmetries of the considered cosmological models. We now show that for each of these
models, all such quantizations are unitarily equivalent. Direct consequences are the removal of
quantization ambiguities typically present in QFT and the selection of a very specific, well-defined
notion of quantum evolution.

Let us start with the case of spherical sections. One of the simplest choices of functions that satisfy
the conditions derived above for a unitarily implementable quantum dynamics is

f n
1 =

ma
2ωn

, f n
2 =

√
1− ( f n

1 )
2, gn

1 = f n
2 , gn

2 = − f n
1 , (78)

for all n ∈ N and for both pairs (mnp, s̄np) and (tnp, r̄np). We take this choice as defining our reference
family of complex structures. Let us then consider any other family of invariant complex structures
allowing a unitary implementation of the dynamics. Such family is defined by certain annihilation
and creation variables, ã(x,y)

np and ¯̃b(x,y)
np , with coefficients h̃n

l (for h identified with f or g and for l = 1, 2)
that have the asymptotic behavior described at the end of the preceding subsection. In particular,
the subdominant sequences ϑn

h̃,l
appearing in Equation (77) are square summable (degeneracy included)

over subsequences Nl . The relation between this family and the reference one is given by a Bogoliubov
transformation determined by a sequence of matrices Kn such that

(
ã(x,y)

np
¯̃b(x,y)

np

)

η

= Kn(η)

(
a(x,y)

np

b̄(x,y)
np

)

η

, Kn =

(
κ

f
n λ

f
n

λ
g
n κ

g
n

)
. (79)

One can check that the absolute values of the nondiagonal elements of these matrices have the
following expression [53,54]:

|λh
n| = |h̃n

1 hn
2 − h̃n

2 hn
1 |, (80)

where h stands again for both types of functions f and g. The two Fock quantizations, namely the
reference one associated with the family (78) and the one defined by the coefficients h̃n

l , are unitarily
equivalent if and only if the Bogoliubov transformation (79) is itself unitarily implementable, a demand
that is equivalent to the fulfillment of the conditions

∑
n

gn|λ f
n(η)|2 < ∞ and ∑

n
gn|λg

n(η)|2 < ∞, (81)

for all η of interest. Once more, one of the above conditions is redundant, since the equality |λg
n| = |λ f

n|
is again ensured by relations (72).

Let us then focus on the first condition in Equation (81) and consider the situation such that the
asymptotic behavior (77) applies to the functions f̃ n

l . The alternative, with Equation (77) applying
to the functions g̃n

l , can be treated in a completely analogous way. One can show from Equation (80)

that in the limit of unboundedly large ωn, the coefficients λ
f
n have the following behavior on the

subsequence N1:
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|λ f
n| = |ϑn

f̃ ,1|+O(ω
−2
n ). (82)

Since by hypothesis ϑn
f̃ ,1

is square summable (including the degeneracy gn) over N1, it follows
immediately that the condition for unitary equivalence is satisfied if the set N2 is finite (or empty).
Suppose now that N2 is an infinite set. It is clear that λ

f
n behaves asymptotically like O(1) for n ∈ N2,

and therefore the summability required in Equation (81) cannot be attained, leading to apparently
inequivalent quantizations. However, this inequivalence stems, as it happened in the previous section,
from the fact that the quantization associated with the coefficients h̃n

l defines a convention for the
concept of particles and antiparticles which is completely the opposite, for an infinite number of
modes, of the convention corresponding to the reference quantization. Once both conventions are
reconciled, the quantizations are seen to be physically equivalent. In fact, suppose that in our reference
quantization (78), we switch the convention concerning particles and antiparticles for all modes
corresponding to N2. This redefinition is effectively attained with the interchange f n

l ↔ gn
l (n ∈ N2),

as follows from the definition (71). Then, the behavior of the new coefficients λ
f
n would no longer be

O(1) on N2, but they would behave (in norm) as |ϑn
f̃ ,2
|+O(ω−2

n ) instead. Since, also by the hypothesis
of a unitarily implementable evolution, ϑn

f̃ ,2
is square summable (degeneracy included) over N2,

one concludes that conditions (81) are now satisfied, confirming therefore the unitary equivalence
between the two Fock quantizations, after the two conventions concerning particles and antiparticles
have been harmonized.

The analysis of the uniqueness of the Fock quantization of the Dirac field in the flat FLRW case
proceeds in a similar fashion. One can again choose a reference complex structure allowing a unitary
implementation of the dynamics, namely the one characterized by the following matrix elements in
Equation (73), for all ωk 6= 0:

f k
1 =

ma
2ωk

, f k
2 =

√
1−

(
f k
1
)2, gk

1 = f k
2 , gk

2 = − f k
1 . (83)

Applying the same type of arguments as above, one can prove [55] that as it happened in the case
of S3, once a convention concerning particles and antiparticles is fixed, the condition that there exists a
nontrivial unitary implementation of the dynamics is sufficient to ensure the unitary equivalence of all
Fock quantizations associated with invariant vacua.

Let us conclude with a brief comment on a key difference between the current study and previous
analogous works on quantum scalar fields in FLRW cosmologies [17,19,20,24,25,50]. Like in the scalar
field case, our criteria uniquely fix not only the Fock representation once a suitable set of variables for
the field has been chosen, but actually they greatly reduce the ambiguity in this choice of variables
that arises from time-dependent linear redefinitions as well. Considering, for instance, a spherical
spatial topology, this affects the global scaling introduced in the decompositions (52) and (53), as it
does for the scalar field, but now it affects also the scaling in the particle and antiparticle contributions
that are induced by the time dependence of the functions f n

l and gn
l subject to the unitarity conditions

(77). As such, the Dirac field presents specific and different time-dependent scaling in its particle and
antiparticle parts that are also different for each of the two chiralities, introducing an aspect which is
absent in the scalar field analysis. For the scalar field, the requirement of unitary dynamics imposes
a global scaling of the original field variable, such that the scaled field in practice behaves like a
conformally coupled field, and one might wrongly believe that the possibility of attaining a unitarily
implementable dynamics is somehow constrained by the availability of a conformal symmetry in the
scaled theory (at least in the ultraviolet regime). The work on Dirac fields definitely puts aside such
type of misconceptions.
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5. Hamiltonian Backreaction of Dirac Perturbations in hLQC

The previous uniqueness results about the Fock quantization of Dirac fields in FLRW cosmologies
are of special importance beyond the context of QFT. Actually, they can be used (and further developed)
to confer great robustness to the full quantization of a homogeneous and isotropic cosmological
spacetime perturbed with small matter inhomogeneities described by a Dirac field, in the context
of hybrid quantum cosmology. As mentioned in the Introduction, this framework for the quantum
description of cosmological systems employs techniques from a theory of quantum cosmology (here we
focus our attention on the case of loop quantum cosmology) for quantizing the spatially homogeneous
zero modes of the geometry, while the inhomogeneous fields are quantized using standard Fock
representations. In this setting, the features of the resulting quantum theory and its predictions
are strongly affected by the precise knowledge obtained not only about a unique preferred Fock
space for the fields, but also about which part of their degrees of freedom displays a genuine unitary
quantum evolution when one reaches regimes where the cosmological background behaves classically.
This knowledge serves in hLQC to separate in a specific way this homogeneous background from
the variables that describe the fermionic perturbations, and such splitting can be refined by further
imposing some physically sound properties on the full quantum system, such as a proper definition of
the fermionic part of the Hamiltonian operator. Along these lines, in this section we are going to revisit
the main results in the hybrid loop quantization of a flat homogeneous and isotropic cosmology with
fermionic perturbations, in particular in what concerns the study of the Hamiltonian operator and the
consequences on the quantum backreaction of the fermionic matter on the cosmological background.

5.1. Fermionic Perturbations in flat FLRW: Splitting of the Phase Space

Let us start by considering the Einstein-Hilbert action restricted to symmetry-reduced universes
with a metric given in Equation (46), taking 0hαβ as the Euclidean metric in coordinates adapted to the
spatial homogeneity, and letting the lapse function that we call N0, be arbitrary. We particularize again
the discussion to a topology of the flat spatial sections equal to the compact T3-topology. In order to
include standard inflationary scenarios in our system, we minimally couple a homogeneous scalar
field φ with potential V(φ) that plays the role of an inflaton. In the canonical ADM framework,
the degrees of freedom of this cosmological model can be described with the scale factor a, the inflaton
φ, and their canonical momenta, respectively denoted by πa and πφ. On classical FLRW solutions,
these variables are subject only to one constraint, arising from the zero mode of the Hamiltonian
constraint that generates global time reparameterizations:

H|0 =
1

2l3
0 a3

[
π2

φ −
4π

3
a2π2

a + 2l6
0 a6V(φ)

]
, (84)

where we recall that l0 is the compactification length of T3.
To include inhomogeneous fermionic content in this cosmological model, we minimally couple

a Dirac field Ψ of mass m and treat it entirely as a perturbation (including its purely homogeneous
part, if it had any). For physical completeness, one may also introduce purely inhomogeneous and
anisotropic perturbations of the metric and the inflaton field5. Within this perturbative hierarchy,
we conduct the analysis at the lowest nontrivial order and thus we truncate the whole action of the
system (and its associated symplectic structure) at quadratic order in all the perturbations. Since the
Dirac action is precisely quadratic in the fermionic field, at this order it only couples with the
homogeneous sector of the cosmology6. Therefore, in practice, we can treat its associated spinor

5 The zero modes of the metric and scalar field can be conveniently isolated and accounted for in the scale factor and
homogeneous inflaton, owing to the compactness of the spatial sections.

6 Henceforth, to simplify the terminology and shorten the notation we will refer to the variables that describe this
homogeneous and isotropic background as FLRW variables, even when they are not evaluated on classical solutions.
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bundle as if it were defined on a pure (spatially flat) FLRW universe. Furthermore, this coupling
implies that the Dirac field is a perturbative gauge invariant at our order of truncation, namely it is
independent of perturbatively linear coordinate redefinitions that respect the manifest homogeneity of
the background.

To take advantage of the previous results about the uniqueness of the Fock quantization of the
Dirac field, and to allow for a convenient spatial mode expansion of the fermionic fields, we partially
fix again the local Lorentz gauge imposing the condition nµea

µ = δa
0 on the tetrad of our background.

This allows us to generically perform a decomposition of the two chiral components of the fermionic
perturbations as that given in Equations (52) and (53) (after replacing the eigenspinors of the Dirac
operator on S3 by their analogs for T3). Recall that these behave under local gauge transformations
as SU(2) spinors defined in T3, with a spin structure that is given by the choice of the vector ~τ [c.f.
Equation (54). Of equal importance is the fact that this partial gauge fixing eliminates all the nontrivial
canonical brackets between the homogeneous FLRW geometry and the (rescaled) Dirac field [61]. Then,
the only nonvanishing brackets between the fermionic mode coefficients m~k, r̄~k, t~k, and s̄~k (and their
complex conjugates) are

{x~k, x̄~k} = −i, {y~k, ȳ~k} = −i, (85)

where (x, y) again denotes any of the two possible ordered pairs of mode coefficients (m, s) or (t, r)
(omitting their associated wave vector labels). The introduction of this fermionic mode expansion in
the Dirac Hamiltonian coupled to our considered background gives rise to the following contribution
to the total Hamiltonian of the system:

N0HD = N0


δ~τ~0 H~0 + ∑

~k 6=~τ
∑
(x,y)

H(x,y)
~k


 , (86)

H~0 = m
(
s~0r̄~0 + r~0 s̄~0 + m~0 t̄~0 + t~0m̄~0

)
, (87)

H(x,y)
~k

= m
(
y−~k−2~τx~k + x̄~k ȳ−~k−2~τ

)
− ωk

a
(
x̄~kx~k − y~k ȳ~k

)
. (88)

As we have explained above, N0 is the homogeneous lapse function of the FLRW background.
It follows that the Dirac perturbations, at our considered order of quadratic truncation in the action,
contribute only to the global zero mode of the Hamiltonian constraint of the entire system. Explicitly,
if one ignores the rest of perturbative fields in our model (which do not couple to the fermionic field at
quadratic order), the zero mode of the Hamiltonian constraint is given by the sum of H|0 and HD.

At this point in the discussion, it is worth remarking that there exists an inherent freedom in the
description of the cosmological model at hand. Treating the system formed by the FLRW universe
and its perturbations as a whole entity, one can always mix the different sectors of the phase space by
means of canonical transformations. Even if this mixing does not affect the physical behavior of the
system at the classical level at the end of the day, the freedom in identifying the sets of basic variables
that describe each sector can strongly affect the properties of the hybrid quantization, given that
the perturbative fields are quantized with a different type of representation (à la Fock) than the
homogeneous background (with loop techniques). Focusing the attention on the choice of splitting
between the FLRW sector and the fermionic one, one can understand this as the specific assignment of
how each of these two types of degrees of freedom contributes to the dynamics of the entire system.
To take into account this panorama, and with the aim put on characterizing the Fock representation for
the fermionic perturbations, we introduce general families of annihilation and creation variables of the

In fact, in this section they are rather generic canonical variables, subject to being represented as quantum operators in a
Hilbert space.
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form (73) where the coefficients f~k1 , f~k2 , g~k1, and g~k2 are now taken as functions of the canonical variables
that describe the geometric sector of the cosmological background, understood hereafter as the sector
that corresponds to the scale factor and its momentum7. Furthermore, these functions are subject to
the conditions

g~k1 = eiG~k
f̄~k2 , g~k2 = −eiG~k

f̄~k1 , f~k2 = eiF~k2
√

1− | f~k1 |2, (89)

where G~k and F~k2 are phases given by generic real functions of the FLRW geometry. These conditions
are nothing but the equivalent of Equation (72) (adapted to the case of T3). Therefore, they guarantee
that the definition of the fermionic annihilation and creation variables is a canonical transformation in
the fermionic sector of the phase space (namely if one freezes the FLRW background variables and
ignores their Poisson brackets).

Each of these new families of fermionic variables can codify in different ways the possible splitting
in the dynamical behavior, between the homogeneous cosmological geometry and the fermionic
perturbations that preserve the linearity in the perturbative sector. However, when the cosmological
system is viewed as a whole dynamical entity, and unless the coefficients f~k1 , f~k2 , g~k1, and g~k2 are
constant, the new fermionic variables do not form a canonical set with the scale factor and its canonical
momentum. These variables must be modified if one wishes to restore the canonical algebra fulfilled
by the original basic set for the description of the system. In other words, the canonical transformation
that started with the above definition of families of fermionic annihilation and creation variables
must be completed. This can be readily done, at our order of quadratic perturbative truncation,
by demanding that the symplectic potential of the FLRW and fermionic sectors remain unchanged
after the transformation, up to contributions that are of higher perturbative order than quadratic.
This procedure leads to the new corrected variables for the scale factor and its momentum:

ã = a +
i
2 ∑
~k,(x,y)

[(∂πa x~k)x̄~k + (∂πa x̄~k)x~k + (∂πa y~k)ȳ~k + (∂πa ȳ~k)y~k], (90)

π̃a = πa −
i
2 ∑
~k,(x,y)

[(∂ax~k)x̄~k + (∂a x̄~k)x~k + (∂ay~k)ȳ~k + (∂aȳ~k)y~k]. (91)

Here, the partial derivatives affect only the explicit dependence of the fermionic modes on the
cosmological background geometry, via the functions f~k1 , f~k2 , g~k1, and g~k2. Thus, the new FLRW variables
ã, π̃a, φ, and πφ form a canonical set with the fermionic annihilation and creation variables defined by
means of Equations (73) and (89).

In the following, for convenience, we restrict our attention to families of annihilation and creation
variables defined by coefficients f k

1 , f k
2 , gk

1, and gk
2 that depend on the wave vector~k only through the

corresponding Dirac eigenvalue ωk. Actually, this restriction comes from the symmetry of the fermionic
equations of motion that ultimately can be related to the isotropy of the background spacetime in the
limit where the spatial sections become noncompact. We refer the reader to Ref. [38] for an extended
version of the subsequent analysis, including the possibility of a general dependence of the functions
f~k1 , f~k2 , g~k1, and g~k2 on~k.

5.2. Fermionic Hamiltonian: Restrictions on the Quantization

Every new set of canonical variables for the FLRW background and the fermionic perturbations,
namely every new choice of phase space splitting, naturally contributes to the total Hamiltonian of

7 One can generalize the analysis to coefficients that are functions also of the inflaton and its momentum, thus allowing for a
dependence on all the degrees of freedom of the FLRW background. However, this generalization is not necessary for our
discussion, except at some point in Section 6, where we comment on it explicitly.
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the system in a different way. In particular, if one writes the original zero mode of the Hamiltonian
constraint (that we recall is the sum of H|0 and HD) in terms of an arbitrary new canonical set of
variables as defined above, and truncates it at quadratic order in the perturbations, one obtains [38,39]

H|0(ã, π̃a, φ, πφ) + H̃D(ã, π̃a, φ), (92)

where the round brackets indicate functional evaluation of the corresponding, preceding function on
the new set of FLRW variables, namely the direct replacement of its dependence on the old untilded
set by the new one. The term H̃D is the contribution of the new fermionic variables to the zero
mode of the Hamiltonian constraint. As our notation indicates, it can be made independent of the
canonical momentum of the inflaton. This is always possible by means of a suitable redefinition of the
homogeneous lapse function at our perturbative truncation order [37]. It is given by

H̃D = ∑
~k 6=~τ,(x,y)

[
hk

D

(
ā(x,y)
~k

a(x,y)
~k
− a(x,y)

~k
ā(x,y)
~k

+ b̄(x,y)
~k

b(x,y)
~k
− b(x,y)

~k
b̄(x,y)
~k

)

+ hk
G

(
b̄(x,y)
~k

b(x,y)
~k
− b(x,y)

~k
b̄(x,y)
~k

)
+ h̄k

I

(
a(x,y)
~k

b(x,y)
~k

)
− hk

I

(
ā(x,y)
~k

b̄(x,y)
~k

) ]
, (93)

where we have ignored the contribution from the fermionic zero modes, since they can be isolated and
quantized separately without obstructions, and

hk
D =

ωk
2a

(
| f k

2 |2 − | f k
1 |2
)
+ mRe

(
f k
1 f̄ k

2

)
+

i
2

(
f̄ k
1{ f k

1 , H|0}+ f̄ k
2{ f k

2 , H|0}
)

, (94)

hk
G =

1
2
{Gk, H|0}, (95)

hk
I = e−iGk

[
i f k

1{ f k
2 , H|0} − i f k

2{ f k
1 , H|0}+

2ωk
a

f k
1 f k

2 + m( f k
1 )

2 −m( f k
2 )

2
]

, (96)

modulo changes that can be absorbed by the aforementioned redefinition of the homogeneous lapse.
At the considered perturbative level, this redefinition amounts to eliminate π2

φ in the above equations
by identifying H|0 with the zero function [37]. It is worth noticing that in the context of QFT in curved
spacetimes, the product of this lapse function and H̃D is the Hamiltonian that generates the evolution
of the chosen family of fermionic annihilation and creation variables, evolution that generally differs
from the original Dirac dynamics generated by N0HD.

There are infinitely many possible families of fermionic annihilation and creation variables defined
by means of Equations (73) and (89), even when restricting to coefficients that depend on ~k only
through ωk. This freedom not only reflects the infinitely many inequivalent Fock representations of the
fermionic degrees of freedom, but also the different possible splitting of the phase space between the
fermionic sector and the homogeneous FLRW geometry. Before proceeding to the hybrid quantization
of the entire system, it is, therefore, of the utmost importance to adhere to physical criteria and restrict
the allowed families of fermionic annihilation and creation variables. In view of the results presented
in the previous sections, a first reasonable condition to impose is that when a QFT regime in a classical
background spacetime is recovered, the quantum Heisenberg evolution of the fermionic annihilation
and creation operators can be implemented unitarily. As we have seen, once we set a convention for
particles and antiparticles, this criterion on the considered families of variables completely fixes the
(symmetry invariant) quantum representation of the field, up to unitary equivalence. In other words,
it allows us to determine the Fock space for the representation of the fermionic field. For concreteness,
let us set the particle/antiparticle convention to be such that it corresponds to the standard one in
Minkowski spacetime as the mass of the fermions goes to zero (situation in which the rescaled Dirac
field propagates as if it were in flat spacetime, in conformal time) [55]. Then, the families of annihilation
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and creation variables restricted by the criterion of a unitarily implementable dynamics are those such
that in the asymptotic limit of large ωk:

f k
1 =

ma
2ωk

eiFk
2 + ϑk with ∑

~k

|ϑk|2 < ∞. (97)

The above condition greatly restricts the asymptotic behavior of the allowed families of
annihilation and creation variables. Furthermore, all such choices lead to unitarily equivalent
representations. However, there is still much freedom left, even in the asymptotic regime of large
ωk, as the function ϑk is only constrained to be square summable (including degeneracy). Actually,
this freedom can be used to refine the phase space splitting in such a way that the part of the hybrid
quantization that concerns the fermionic degrees of freedom displays several desirable properties.
In particular, it appears physically sound to demand that the Fock quantization of the contribution
H̃D to the Hamiltonian constraint result into a well-defined operator on the fermionic vacuum
state (and thus on the dense Fock subspace of its associated n-particle states). Such an operator
can be simply obtained by promoting the variables a(x,y)

~k
and b(x,y)

~k
, on the one hand, and ā(x,y)

~k

and b̄(x,y)
~k

, on the other hand, respectively to annihilation and creation operators in the fermionic
Hamiltonian given in Equation (93). As these variables commute with the (perturbatively corrected)
ones that describe the homogeneous FLRW background, the well-definiteness of H̃D on the fermionic
vacuum is insensitive to whether these FLRW variables are fixed as classical or promoted to quantum
operators as well (within the hybrid loop scheme). In turn, if one imposes normal ordering on
the products of annihilation and creation operators, it is easy to see that this property on the Fock
quantization of H̃D depends exclusively on the asymptotic dependence on ωk of the terms hk

I defined
in Equation (96). These provide the interactive part of the fermionic Hamiltonian that is responsible
for the annihilation and creation of pairs of particles and antiparticles, and the resulting operator is
well defined (with normal ordering) on the vacuum state if and only if they form a square summable
sequence, including the degeneracy of the Dirac eigenvalues. Specifically, if one introduces condition
(97), together with Relation (89), in hk

I , the dominant contribution to this function in the asymptotic
regime of large ωk is canceled out. From a Hamiltonian perspective, this cancelation is the ultimate
responsible for the unitarity of the Heisenberg evolution (in the context of QFT in curved spacetimes).
However, it does not guarantee that hk

I forms a square summable sequence over all~k. The necessary
and sufficient condition for this to happen, and thus for the Fock quantization of H̃D to be well defined
on the vacuum, turns out to be that asymptotically [38]

ϑk = −i
πm

3l3
0ω2

k
πaeiFk

2 + θk, with ∑
~k

ω2
k |θk|2 < ∞. (98)

It is worth noticing that this last condition on the allowed families of fermionic annihilation and
creation variables restricts even further the admissible phase space splitting between the fermionic
sector and the background. Namely it specifies even further how the assignment of the dynamical
content of each sector should be made.

Finally, hereafter we restrict the discussion exclusively to phases Gk such that {Gk, H|0} = 0,
in order not to introduce any artificial asymmetry between the dynamical behavior of the fermionic
variables that describe particles and antiparticles (see Equation (93)).

5.3. Hybrid Quantization: Fermionic Backreaction

Let us next summarize the main steps that must be followed for the hybrid quantization of
our cosmological system, formed by an inflationary FLRW background coupled to a perturbative
Dirac field. As mentioned above, one can freely include metric and inflaton perturbations as well,
and discuss a similar phase space splitting and choice of Fock representation for them. We nonetheless
ignore them in this review, as they do not necessarily affect the fermionic sector at the considered order
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of truncation in the action. For details on the treatment of metric and inflaton perturbations in the
context of hLQC, we refer the reader to Refs. [35,36,73].

The first step towards the hybrid quantization of the full system is to specify a concrete splitting
of phase space with physically good properties, along the aforementioned lines. In other words,
one starts by identifying a specific set of fermionic annihilation and creation variables (by means
of Equations (73) and (89)) within the family restricted by the asymptotic conditions (97) and (98).
In addition to the phase space splitting, such choice fixes also the Fock representation for the fermionic
degrees of freedom. Indeed, for their quantization, one just needs to promote these fermionic variables
to the corresponding annihilation and creation operators that in turn completely specify the Fock space
FD from their associated cyclic vacuum state. On the other hand, once a preferred phase space splitting
has been identified, the FLRW background spacetime is described by the set of variables ã, φ, and their
canonical momenta (see Equations (90) and (91)), that as mentioned above, Poisson commute with
the chosen set of annihilation and creation variables, at the classical level. We then adopt a (discrete)
loop quantum cosmology representation for the canonical variables that describe the homogeneous
background geometry, with operators defined on a Hilbert space that we callHgrav

kin . For specific details
on this representation, see Refs. [37,73]. In this review, we only recall its main features when they
are relevant for the quantum dynamics of the fermionic sector. In addition, a standard Schrödinger
representation is adopted for the homogeneous inflaton and its momentum, with Hilbert space given
by L2(R, dφ), such that the inflaton acts by multiplication and the momentum is represented as
−i∂φ. The total representation space for the hybrid quantization of the full canonical set of basic
variables of our cosmological system is then the tensor product of all the introduced individual spaces,
namelyHgrav

kin ⊗ L2(R, dφ)⊗FD.
This tensor product space is often called the kinematical space, and it is not the fully physical one.

Indeed, the whole system is subject to the zero mode of the Hamiltonian constraint that can be found in
Equation (92) and classically generates global time reparameterizations. We implement this symmetry
at the quantum level by demanding that physical states be annihilated by the representation of the
constraint as an operator on the kinematical Hilbert space8. Actually, for mathematical convenience,
one often rather imposes a rescaled version of this constraint, obtained through multiplication by
the volume Ṽ = ã3l3

0 of the homogeneous FLRW sector. To find physical states in the system, it is,
therefore, necessary to specify the corresponding constraint operator and deal with the ambiguities that
its representation involves, as it is not a linear function of the canonical variables. In this construction,
in particular, we impose normal ordering in the fermionic contribution H̃D to the constraint. For details
about the remaining ambiguities and how to reasonably fix them in the context of loop quantum
cosmology, we refer the reader to Ref. [37].

Let a specific quantum representation of the zero mode of the Hamiltonian constraint (with normal
ordering for the fermionic operators) be provided in this way. To search for states of physical interest,
such that the influence of the perturbations on the FLRW background can be made controllably small,
we look for solutions to the quantum constraint starting from the following ansatz for the allowed
wavefunctions Ξ:

Ξ = Γ(Ṽ, φ)ψD(ND, φ). (99)

Here, Ṽ denotes dependence of the wavefunction on the geometric sector of the homogeneous
FLRW background, and ND is a generic label indicating the occupancy numbers in the fermionic
Fock space. Hence, in our states we can regard Γ as the partial wavefunction that describes the
behavior of the FLRW cosmology, whereas ψD is the partial state for the fermionic perturbations.
We notice that both contributions are allowed to depend on the inflaton. It is also worth noting that

8 Alternatively, a sufficiently large number of physical states annihilated by the (dual) action of the constraint may live in the
dual space of a certain dense subset of the kinematical space.
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in case inhomogeneous perturbations of the metric and inflaton were included, this ansatz can be
correspondingly generalized, separating the dependence of the total wavefunction in each different
type of perturbation. In what concerns the partial FLRW state Γ, we further impose as part of our
ansatz that it evolves unitarily with respect to its variation in φ (so that we can normalize it in the
Hilbert spaceHgrav

kin ), with a generator that we call ˆ̃H0 such that

−i∂φΓ = ˆ̃H0Γ. (100)

We take this generator to be a positive self-adjoint operator and furthermore impose that it
gives rise to partial states that are close to exact quantum solutions (i.e., annihilated by the action)
of the (rescaled) constraint operator of the homogeneous FLRW background. Explicitly, let us write
the constraint operator that we would have for our FLRW model in the absence of perturbations in
the form

−1
2
[∂2

φ + Ĥ(2)
0 ] (101)

where −Ĥ(2)
0 is the operator that represents the (rescaled) contribution of the inflaton potential and of

the homogeneous FLRW geometry [see Equation (84)]. Our restriction on ˆ̃H0 translates into demanding
that the action of ( ˆ̃H0)

2 − Ĥ(2)
0 − i[∂φ, ˆ̃H0] on Γ be small, let us say at most comparable to terms of

quadratic order in the perturbative parameter of our system.
For the wave profiles selected by the above ansatz to potentially become physical states, we must

impose that they be annihilated by the (rescaled) constraint operator. Namely the action of the quantum
representation of the function (92), rescaled with the homogeneous volume Ṽ, on states of the form
(99) (and satisfying the aforementioned conditions) must be zero. The resulting constraint equation
can be greatly simplified, and viewed as an evolution equation on the partial fermionic wavefunction,
if the following approximations are applied [37,73]:

(i) The partial state Γ is such that one can ignore transitions in the FLRW geometry mediated
by the zero mode of the Hamiltonian constraint. Then, one can apply a kind of mean-field
approximation and take the inner product of the constraint equation with Γ, with respect to the
Hilbert spaceHgrav

kin .

(ii) The contribution ∂2
φψD can be neglected when compared with 〈 ˆ̃H0〉Γ∂φψD. In other words,

the contribution to the inflaton momentum of the fermionic partial state is negligible compared
with the contribution of the homogeneous FLRW state. The self-consistency of this approximation
can be explicitly checked using the constraint equation [73].

If these approximations hold within our perturbative treatment, then the constraint equation can
be recast as the following Schrödinger-like one:

i∂φψD =


 〈

̂̃VH̃D〉Γ
〈 ˆ̃H0〉Γ

+ C(Γ)
D (φ)


ψD, (102)

where the hat denotes the hybrid loop representation of the underlying function, and [37,38]

C(Γ)
D =

〈Ĥ(2)
0 + i[∂φ, ˆ̃H0]− ( ˆ̃H0)

2〉Γ
2〈 ˆ̃H0〉Γ

. (103)

This function C(Γ)
D encodes, in mean value, how much the partial FLRW state Γ differs from

being an exact solution of the unperturbed system. In this sense, it can be understood as a quantum
backreaction term between the fermionic sector and the homogeneous background. Moreover, it is
worth mentioning that the generator of the fermionic evolution dictated by this Schrödinger equation
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is a φ-dependent operator that only acts on FD, and depends on the homogeneous background
geometry by means of expectation values of FLRW operators on the partial state Γ. Furthermore,
this operator is automatically well defined on the vacuum, given the preferred Fock quantization
adopted for the fermionic degrees of freedom. Therefore, the introduced approximations in the hybrid
quantum constraint equation allow one to recover a QFT regime in a quantum spacetime, with good
physical properties.

Solutions to the Schrödinger Equation (102) can be obtained by considering its associated
Heisenberg dynamics. For that purpose, it is convenient to introduce the following change of
evolution parameter:

dηΓ =
l0〈 ˆ̃V2/3〉Γ
〈 ˆ̃H0〉Γ

dφ, (104)

which is well defined owing to the positivity of ˆ̃H0 and the fact that the volume operator is bounded
from below by a strictly positive number in the loop quantization of the FLRW background [37].
With respect to this parameter, the Heisenberg equations associated with Equation (102), evaluated at
time ηΓ = η, are given by

dηΓ â(x,y)
~k

(η) = −iF(Γ)
k â(x,y)

~k
(η) + G(Γ)

k b̂(x,y)†
~k

(η),

dηΓ b̂(x,y)†
~k

(η) = iF(Γ)
k b̂(x,y)†

~k
(η)− Ḡ(Γ)

k â(x,y)
~k

(η), (105)

where we have introduced the one-parameter family of ηΓ-dependent annihilation and creation
operators in the Heisenberg picture, with initial data at some ηΓ = η0 given by the fermionic
annihilation and creation operators â(x,y)

~k
and b̂(x,y)†

~k
of our hybrid quantization. In addition, dηΓ

denotes the derivative with respect to the parameter ηΓ. Moreover,

F(Γ)
k =

2〈̂̃a3hk
D〉Γ

〈 ˆ̃a2〉Γ
, G(Γ)

k = i
〈 ̂̃a3hk

I 〉Γ
〈 ˆ̃a2〉Γ

, (106)

where the diagonal mode coefficients hk
D and the interaction mode coefficients hk

I of the fermionic
Hamiltonian are respectively given in Equations (94) and (96) (up to the elimination of any dependence
on the inflaton momentum by identifying H|0 with zero, as we have explained). It is worth noting
that strictly speaking, these Heisenberg equations for the fermionic modes can be derived without the
second approximation (ii) introduced above. In fact, given only the first approximation (i), it suffices
that there exists a regime for all the modes in which the annihilation and creation operators find a
straightforward counterpart in the Grassmann variables that they represent [36,73].

The resulting evolution from time η0 to time η of the annihilation and creation operators is a
Bogoliubov transformation that can be easily seen to take the form [37]

â(x,y)
~k

(η) = αk(η, η0)â(x,y)
~k

+ βk(η, η0)b̂
(x,y)†
~k

,

b̂(x,y)†
~k

(η) = −β̄k(η, η0)â(x,y)
~k

+ ᾱk(η, η0)b̂
(x,y)†
~k

, (107)

where αk(η0, η0) = 1, βk(η0, η0) = 0, and, for all η,

|αk(η, η0)|2 + |βk(η, η0)|2 = 1. (108)

In particular, recall that we are focusing our attention on phase space splitting and Fock
representations of the fermionic degrees of freedom characterized by Equations (97) and (98)
in the asymptotic regime of large ωk. These lead to interacting contributions to the fermionic
Hamiltonian such that the beta coefficients of this transformation have the asymptotic behavior
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βk = O[Max(θk, ω−3
k )], where the function Max[., .] picks out the argument of dominant asymptotic

order [38]. Taking into account the second condition in Equation (98), it is clear that these beta
coefficients form a square summable sequence, over all~k. It then follows that our quantum Heisenberg
dynamics is unitarily implementable on the fermionic Fock space.

The unitary operator that implements the considered Heisenberg evolution can be explicitly
constructed [37,38]. Furthermore, it can be checked that its action on the fermionic vacuum state
picked out by the hybrid quantization provides a solution to the Schrödinger Equation (102) if the
backreaction function is of the form

C(Γ)
D (φ) =

l0〈 ˆ̃V2/3〉Γ
〈 ˆ̃H0〉Γ

∑
~k,(x,y)

[
=(ηΓ) + dηΓ c(x,y)

k

]
. (109)

Here, c(x,y)
k are arbitrary real phases of the evolution operator and = is certain function with

an asymptotic behavior which depends on that of the interaction contribution G(Γ)
k (or, equivalently,

on that of βk). For our allowed families of Fock representations of the fermionic degrees of freedom,
one can see that this function is of dominant asymptotic order O[Max(ωk|θk|2, ω−5

k )]. Therefore,
our backreaction term relating the FLRW background and the fermionic perturbations in the regime
of QFT in a quantum spacetime, attained by the hybrid quantization of the system, turns out to be
an absolutely convergent quantity. Thus, one needs not perform any regularization or subtraction of
infinities to render this backreaction term finite, something that could be done by using the arbitrary
phases c(x,y)

k that one can freely add to the evolution operator, but that would imply an unjustified
adjustment of an infinite number of quantities.

We end this section with the following remark. The first work [37] that was carried out about
the introduction of fermionic perturbations in hLQC employed a choice of annihilation and creation
variables analogous to that introduced by D’Eath and Halliwell in Ref. [62]. As mentioned in the
previous section, this choice is within the family of unitarily equivalent quantizations that allow for
a unitarily implementable dynamics, in the context of QFT in curved spacetimes. The analysis in
Ref. [37] shows that with this choice of fermionic variables, the backreaction term C(Γ)

D in the hybrid
quantum theory fails to be an absolutely convergent quantity and needs to be regularized. This is
an example of how the requirement of a unitarily implementable evolution alone is not enough to
guarantee nice properties of the hybrid quantization of the full system. In fact, the conditions that
are needed for the absolute convergence of C(Γ)

D are very similar, but slightly weaker, than those for a
proper definition of the fermionic Hamiltonian on the vacuum. Indeed, it is enough that Equation (98)
is fulfilled and ωk|θk|2 is a summable sequence over all~k [38]. In this respect, any choice of fermionic
variables that leads to a good definition of the Hamiltonian operator on the vacuum automatically
guarantees that the quantum fermionic backreaction is finite, without the need for regularization.

6. Fermionic Hamiltonian Diagonalization: Choice of Vacuum State

The restrictions on the definition (73) of fermionic annihilation and creation variables in hybrid
quantum cosmology to guarantee: (i) unitarity of the QFT evolution [Equation (97)], and (ii) a
well-defined Hamiltonian on the vacuum [Equation (98)], allow us to considerably reduce the possible
choices of such variables, at least in the asymptotic regime of large ωk. However, and even though all
the resulting Fock representations are unitarily equivalent, there is still much freedom in identifying a
particular set of annihilation and creation variables (even in the asymptotic regime). In other words,
there remains ambiguity in the complete characterization of the phase space splitting between the
FLRW background and the fermionic sector, as well as of the fermionic vacuum state of the theory.
In this section we motivate and adhere to the physical criterion of Hamiltonian diagonalization to try
and fix this remaining choice, following a procedure that is specifically adapted to the spatially local
structure of the fermionic dynamics.
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6.1. Hamiltonian Diagonalization in hLQC

The previously imposed criteria on the allowed choices of fermionic annihilation and creation
variables [Equations (97) and (98)] are tailored to have the net effect of diminishing the dominant
asymptotic order, in the regime of large ωk, of the interaction parts hk

I of the fermionic Hamiltonian H̃D
[given in Equation (93). Ultimately, this fact is responsible for the unitarity of the fermionic evolution,
as well as for a proper definition of the fermionic Hamiltonian on the vacuum. As we have already
commented, these interaction parts annihilate and create pairs of particles and antiparticles in the
quantum fermionic dynamics. From a physical perspective, one would think that a choice of phase
space splitting where the assignment of the dynamical contribution of the FLRW background to the
system is such that the fermionic states undergo no annihilation and creation of pairs, would be one
that is naturally adapted to the dynamics of the entire cosmological system. This choice should then
be such that hk

I = 0, so that the Fock quantization of the resulting fermionic Hamiltonian H̃D would
have a diagonal action on the n-particle states associated with the selected set of annihilation and
creation operators.

According to this line of reasoning, we refer to any choice of fermionic annihilation and creation
variables that lead to vanishing interaction terms hk

I , for all ~k, as variables for the Hamiltonian
diagonalization. In general, restricting to cases with f k

2 6= 0 (which include all those choices that respect
the standard convention for particles and antiparticles in the massless limit [55]), one can readily check
that the diagonalization condition hk

I = 0 is fulfilled for all~k if and only if

a
{

ϕk, H|0
}
+ 2iωk ϕk + iamϕ2

k − iam = 0, (110)

where f k
1 = f k

2 ϕk. This is a semi-linear partial differential equation which has locally unique solutions,
as long as the section of initial conditions is transversal to the flow of the Hamiltonian vector field
{., H|0} [74]. Naturally, there are several possible families of such solutions for all~k, and each of them
completely characterizes (up to the two phases Gk and Fk

2 ) a different set of fermionic variables for the
Hamiltonian diagonalization, in virtue of Equation (89). Explicitly, it holds that

| f k
2 |2 =

1
1 + |ϕk|2

. (111)

Let us point out that in fact, the structure of the differential Equation (110) allows for solutions
that moreover on the FLRW geometry, can depend also on the inflaton and its canonical momentum.
Remarkably, nonetheless, the definition of fermionic annihilation and creation variables resulting from
any such choice of coefficients for the Hamiltonian diagonalization can still be completed to become
canonical in the entire cosmological system, following an analogous procedure to that discussed in the
previous section. We adopt this extended framework for the definition of the fermionic variables in
this and the next subsection.

Finally, it is worth noticing that Relation (111) can be used to show that the mode coefficients hk
D

of the resulting diagonal Hamiltonian, for each choice of fermionic variables characterized by a set of
solutions to Equation (110) (for all~k), acquire the form [75]

2hk
D = a−1ωk + mRe (ϕk)−

{
Fk

2 , H|0
}

. (112)

6.2. Asymptotic Diagonalization

In the following, we try and fix a preferred solution to Equation (110), using our previous
knowledge of the restrictions that unitary evolution and a proper definition of the fermionic
Hamiltonian impose, and by looking into the details of this Hamiltonian in the asymptotic regime of
large ωk. For fermionic variables that admit a unitarily implementable evolution, namely when
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Equation (97) holds, the interaction coefficients hk
I of the fermionic Hamiltonian H̃D behave

asymptotically as

hk
I =

2ωk
a

ϑk + i
2πm
3l3

0ωk

πa

a
eiFk

2 +O[Max(ϑk, ω−2
k )], (113)

where the second summand results from the second Poisson bracket in Equation (96). As we pointed
out above, we explicitly see here that demanding condition (98) for a well-defined action of the Fock
quantization of the Hamiltonian on the fermionic vacuum is equivalent to diminishing the dominant
asymptotic order, in inverse powers of ωk, of the interaction coefficients. Once this condition is
imposed, one arrives at an asymptotic behavior for hk

I with an analogous structure as in Equation (113).
More concretely, its dominant contribution is given by 2ωkθk/a plus certain specific terms that are
proportional to ω−2

k . One can cancel this contribution again by conveniently fixing the dominant
asymptotic behavior of θk. The resulting interaction coefficient hk

I displays, once more, a similar
asymptotic structure, but with the role of θk played by its subdominant contributions and the remaining
summands with a lower asymptotic order in powers of ωk. Owing to the asymptotic structure of the
Hamiltonian, this pattern repeats itself at each asymptotic order in inverse powers of ωk, if one admits
an asymptotic expansion of this form and imposes the cancelation of the previous dominant terms in
the interaction coefficient hk

I .
Motivated by these properties of the fermionic Hamiltonian, and taking into account

that asymptotically

f k
2 = eiFk

2 +O(ω−2
k ) (114)

if the unitary evolution condition (97) is fulfilled, we propose the following asymptotic series as an
ansatz for a Hamiltonian diagonalization in the regime of large ωk:

ϕk ∼
1

2ωk

∞

∑
n=0

(
− i

2ωk

)n
γn, γ0 = ma. (115)

Here, the symbol∼ indicates the equality of the asymptotic expansions, and γn are functions of the
homogeneous FLRW background canonical variables. These are completely fixed in an iterative way if
one introduces our ansatz in the interaction coefficients hk

I of the fermionic Hamiltonian, and imposes
that each contribution in inverse powers of ωk be equal to zero. Specifically, one then obtains [39,75]

γn+1 = a
{

H|0, γn

}
+ ma

n−1

∑
m=0

γmγn−(m+1), ∀n ≥ 0, (116)

where γ−n ≡ 0 for all n > 0. This is a deterministic recurrence relation that can be used to fix all the
functions γn, starting from the initial datum γ0.

It is worth mentioning that the proposed function ϕk for the asymptotic diagonalization of the
fermionic Hamiltonian, given by Equations (115) and (116), provides a very specific solution to the
general Equation (110), in the sector of unboundedly large ωk. Such an asymptotic solution can be
thought of as a physically preferred solution, inasmuch as it has been obtained by exclusively adhering
to local features of the fermionic Hamiltonian. However, despite the strong asymptotic restriction that
our requirement sets on the admissible solutions to Equation (110), there may exist many such solutions
for all~k that viewed as functions of ωk, display the same, preferred asymptotic behavior. It seems
therefore most convenient to investigate whether the imposition of certain smoothness conditions on
the dependence of any such ϕk on ωk (e.g., continuity or analyticity) can allow us to fix this solution
completely. Indeed, if we were able to ensure this uniqueness, by taking into account relations (89),
we would solve the last remaining ambiguity in the choice of fermionic variables for the hybrid
description of the system, up to the phases Gk and Fk

2 . In other words, once these phases were chosen,
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we would succeed in specifying a Fock representation (with its associated vacuum state) of the fermionic
degrees of freedom, together with a particular splitting of the fermionic and FLRW sectors of the phase
space and of their contribution to the dynamics of the entire system. Actually, we have already restricted
the phase Gk in a substantial way by demanding it to be a dynamically irrelevant constant in the classical
linearized system, after imposing {Gk, H|0} = 0 to eliminate asymmetries in the evolution of particles
and antiparticles. As for the other phase, Fk

2 , it can be naturally selected by demanding that the original
dynamics that is extracted from the Dirac field by means of the background-dependent transformation
(73) be minimal, along the lines detailed in Ref. [40].

We end this subsection by noting that if one specifies a preferred choice of fermionic annihilation
and creation variables for the Hamiltonian diagonalization, then one is not only fixing the relevant
structures for the hybrid quantization of the cosmological system, but also a concrete Fock
representation of the Dirac field, within the framework of QFT in curved spacetimes. This regime is
attained when the homogeneous background obeys the Friedmann equations, whereas the fermionic
annihilation and creation variables evolve with the dynamics dictated by the fermionic contribution
to the Hamiltonian (92). If the interaction terms in this Hamiltonian are zero, then this fermionic
dynamics can be straightforwardly solved, namely the annihilation and creation variables just evolve
via multiplication of their initial data (at an arbitrary initial time) by a complex phase. With these
solutions at hand, if one takes the inverse of the defining transformation of these variables given by
Equation (73), and introduces it in the mode expansion of the Dirac field, one immediately obtains a
complete basis of solutions for the Dirac equation, in the sense of Equation (7). The constant coefficients
of the elements of this basis in the expansion of the field are the annihilation and creation initial data
that select a unique Fock representation (and its associated vacuum state) once they are promoted
to operators.

6.3. Uniqueness of the Vacuum: Minkowski and de Sitter Spacetimes

In this subsection we focus our discussion on the aforementioned regime of QFT in curved
spacetime, and explain how our ansatz for asymptotic diagonalization succeeds in the selection of
natural vacuum states in Minkowski and de Sitter spacetimes. In fact, the asymptotic expansion
given in Equations (115) and (116) allows us to determine a complete basis of solutions for the
Dirac equation (as in Relation (7)) that turns out to correspond to the choice of the Poincaré or the
Bunch–Davies vacuum, respectively, when the background cosmology is fixed as the Minkowski or the
de Sitter spacetime. Taking into account that when the homogeneous background obeys the Friedmann
equations, we have that a{., H|0} is simply the derivative with respect to the conformal time, in the
considered situations in QFT the recurrence Relation (116) becomes

γn+1 = −γ′n + ma
n−1

∑
m=0

γmγn−(m+1), ∀n ≥ 0. (117)

Let us start by considering the case of a background given by the classical Minkowski spacetime.
This particularization is easily implemented by setting the scale factor as the unit constant, the inflaton
as an arbitrary constant, and its potential equal to zero. Then, we immediately have that γ0 = m,
while any other γn, determined by the recursion Relation (117), has a vanishing time derivative.
That iterative equation can be solved by introducing the generating function G(x) = ∑∞

n=0 γnxn

that leads to a quadratic equation with only one solution consistent with the initial datum γ0 = m:

G(x) =
1

2mx2

[
1−

√
1− 4m2x2

]
. (118)

Around x = 0, this is an analytic function with power series in x characterized by the coefficients
γn, by construction. Then, comparing this series to our ansatz (115) and employing the uniqueness
of the asymptotic expansion, we can directly identify the function ϕk that leads to an asymptotic
diagonalization with the following analytic function:
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ϕk =
1

2ωk
G
( −i

2ωk

)
=

ωk
m

[√
1 +

m2

ω2
k
− 1

]
. (119)

Using the relations (89) and (111) that arise from the requirement that the fermionic annihilation
and creation variables be defined by means of a canonical transformation, one eventually obtains

| f k
1 | =

√
ξk −ωk

2ξk
, | f k

2 | =
√

ξk + ωk
2ξk

, (120)

where ξk =
√

ω2
k + m2. Since the selected function ϕk that permits the Hamiltonian diagonalization

is completely independent of time in this case, according to our comments above, it is natural to
demand that the phase Fk

2 be simply an arbitrary constant, as well as Gk. From Equation (112), one can
straightforwardly check that the diagonal coefficients of the resulting fermionic Hamiltonian are then
hk

D = ξk. A simple inspection of this result, together with Equation (120), immediately reveals that our
criterion of asymptotic diagonalization selects indeed the basis of solutions to the Dirac equation in
Minkowski spacetime that corresponds to the Poincaré Fock representation of the field. Namely it is
the quantization that with a standard convention for particles and antiparticles, separates between
positive and negative mass-shell frequencies ξk.

Let us show, in addition, how our criterion of asymptotic diagonalization recovers the common
notion of Bunch–Davies vacuum for the Dirac field in de Sitter spacetime. In a flat slicing, this spacetime
can be understood as a cosmological solution of Friedmann equations obtained by setting the inflaton
potential equal to the constant 3H2

Λ/(8π) and the inflaton momentum equal to zero. Here, HΛ is the
constant Hubble parameter. In conformal time, the expanding scale factor then behaves as

a = − 1
ηHΛ

, −∞ < η < 0. (121)

The analysis of the restrictions that the asymptotic diagonalization imposes on the choice of a
fermionic vacuum is easier if one first considers the general differential equation for ϕk in our de Sitter
background. It reads

ϕ′k + 2iωk ϕk − i
m

ηHΛ
ϕ2

k + i
m

ηHΛ
= 0. (122)

The general solution of this equation can be found by introducing a mode-dependent complex
time Tk = −2iωkη and the following change of variables [75]:

ϕk = 1 + i
HΛ

m
Tk

d
dTk

(log vk) . (123)

The function vk turns out to satisfy a confluent hypergeometric equation in the complex variable
Tk that has the general solution

vk = A 1F1

(
−imH−1

Λ ; 1− 2imH−1
Λ ; Tk

)

+ B T
2imH−1

Λ
k 1F1

(
imH−1

Λ ; 1 + 2imH−1
Λ ; Tk

)
, (124)

where A and B are integration constants, and 1F1(.; .; z) is the hypergeometric function of type (1, 1)
that is absolutely convergent for all values of its complex argument z [76].

The asymptotic expansion determined by our criterion of Hamiltonian diagonalization, given in
Equations (115) and (117), actually picks out a specific solution of the mentioned hypergeometric
equation, up to an irrelevant multiplicative constant, namely a particular ratio between the integration
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constants A and B. Indeed, the iterative Relation (117), particularized to our de Sitter background,
can be seen to lead to coefficients γn such that

ϕk,λ ∼ i
1
Tk

∞

∑
n=0

(
− 1

Tk

)n
Cn, (125)

where Cn are constants that are completely specified by a complicated nonlinear recurrence relation,
with the initial value C0 = mH−1

Λ [75]. We need not solve this relation, since the Tk-dependence of
the above asymptotic series, together with the known value of C0, is enough to restrict the associated
expansion of vk in Equation (123) so that

vk ∼ T
imH−1

Λ
k

∞

∑
n=0

(
− 1

Tk

)n
vn, with v1 =

(
m

HΛ

)2
v0. (126)

By introducing this ansatz for the asymptotic behavior of vk in the confluent hypergeometric
equation that it must satisfy, one can determine the coefficients vn of the asymptotic expansion
exclusively in terms of v0, yielding

vk ∼ v0T
imH−1

Λ
k 2F0

(
imH−1

Λ ,−imH−1
Λ ;−;−T−1

k

)
, (127)

where 2F0(., .;−; z) is the hypergeometric function of type (2, 0) that has a zero radius of convergence.
Even though it formally diverges, its series is known to provide the asymptotic expansion of a very
particular type of solution to the confluent hypergeometric equation, namely the Tricomi solution [76].
In fact, using the asymptotic properties of the hypergeometric functions in Equation (124), it is possible
to prove that the Tricomi solution is the unique one that has an asymptotic expansion of the form (127).
Therefore, after substituting this solution in Relation (123), we immediately see that our procedure of
asymptotic Hamiltonian diagonalization allows us to obtain again a unique solution to the general
Equation (110), for all wave vectors~k.

In more detail, the Tricomi solution for vk selected by our criterion of asymptotic diagonalization
leads, after several manipulations, to the following function ϕk in Equation (123) [75]:

ϕk(η) =
H(1)
−µ(ωkη)− iH(1)

1−µ(ωkη)

H(1)
−µ(ωkη) + iH(1)

1−µ(ωkη)
, µ = i

m
HΛ

+
1
2

, (128)

where H(1)
ν denotes the Hankel function of the first kind [77]. In turn, using relations (89) and (111),

this result determines the coefficients f k
1 , f k

2 , gk
1, and gk

2 that define the fermionic annihilation and
creation variables, up to the phases Fk

2 and Gk. We recall that the latter is fixed as an arbitrary
constant. As for the former, namely Fk

2 , one can select it following the ideas put forward in the
previous subsection, so that it minimizes the amount of dynamics extracted by the time-dependent
canonical transformation (73). In any case, the details about the time dependence of this phase are
irrelevant for the basis of solutions to the Dirac equation that ϕk selects (in the context of QFT in a
fixed curved spacetime), as one can straightforwardly check using Equations (73) and (112). Then,
after taking into account the diagonal evolution of the annihilation and creation variables dictated by
hk

D in Equation (112), the resulting complete set of solutions for the Dirac equation in which the field
decomposes is given by very specific linear combinations of Hankel functions of the first (in the case of
antiparticles) and second (in the case of particles) kinds, different for each chirality and helicity [75].
We recall that any such basis decomposition fixes a particular Fock representation of the field. In this
case, the basis of solutions turns out to be precisely the one that has been naturally associated in the
literature with the fermionic analog of the Bunch–Davies vacuum in de Sitter spacetime [75,78,79].
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Therefore, our criterion of asymptotic Hamiltonian diagonalization provides again the vacuum state
that is physically accepted as preferred, in this case in a de Sitter background.

We end this section with a final remark. Beyond the well-known background spacetimes analyzed
here, namely Minkowski and de Sitter, quantum fields in FLRW cosmologies suffer from the lack
of a natural choice of vacuum state, at least if one appeals only to the symmetries of the system to
select it. In the case of scalar fields, a common approach to mitigate this issue is the introduction
of adiabatic states (see e.g., Refs. [31,80–82]). Their construction is based on an iterative procedure
to solve the field equations such that the resulting quantization displays certain local Poincaré-like
features. In the case of Dirac fields, there have been at least two notable attempts to generalize the
notion of adiabatic states [83,84]. The proposal in Ref. [84] follows closely the construction procedures
previously established for scalar fields. In particular, this work introduces an algorithm to iteratively
solve the Dirac equation that at each consecutive step, can approach the actual mode solutions up to
contributions that are more and more subdominant in the asymptotic regime of large ωk. An adiabatic
state of nth-order is defined by truncating this procedure at the nth-step of the iteration and setting
the value of the resulting approximate mode solutions, at an arbitrary time, as the initial data that
specify the basis of solutions for the Fock representation of the field. Ref. [85] analyzed the relation
between these adiabatic states and our family of unitarily equivalent quantizations of the Dirac
field, including those that satisfy the condition of asymptotic diagonalization. It was shown that the
representations associated with adiabatic states of all orders belong to the same equivalence class.
In particular, the zeroth-order state already corresponds to a representation that admits unitarily
implantable evolution, once the time dependence attributed to the FLRW background has been
conveniently extracted. In fact, this unitarity guarantees that any two states defined with adiabatic
initial data at different times are unitarily equivalent, so that the choice of initial time for the definition
of the adiabatic states is not a relevant ambiguity. Furthermore, the first-order adiabatic state directly
leads to a Fock quantization of the Dirac field in the family selected by imposing that the fermionic
Hamiltonian for the annihilation and creation variables be well defined on the vacuum. The question
of whether higher-order adiabatic states give rise to representations that behave, in the asymptotic
regime of large ωk, increasingly closer to the one(s) selected by our criterion of asymptotic Hamiltonian
diagonalization is yet an open issue.

7. Conclusions

In this work, we have reviewed some recent investigations, carried out by us and our collaborators,
about the physical motivation and use of certain criteria capable to ensure the uniqueness of the Fock
quantization of fields in cosmological systems, specialized to the case of fermions described by Dirac
fields. The presented results have been applied to the study of the hybrid quantization of the primordial
Universe with perturbations that contain all the fermionic degrees of freedom described by a Dirac
field (and may also include other matter field perturbations and metric perturbations).

We have first considered the Fock quantization of the CARs for Dirac fields in conformally
ultrastatic three-dimensional spacetimes, as well as in cosmological FLRW spacetimes in four
dimensions, with spherical or toroidal spatial hypersurfaces. We have characterized the set of
vacua that are invariant under the physical symmetries of the Dirac equation in these spacetimes.
These symmetries include the continuous isometries of the spatial hypersurfaces, enlarged with the spin
rotations generated by the helicity in the case of FLRW cosmologies with sections of toroidal topology.

For all the Fock representations associated with the above set of invariant vacua, we have proven
that there exists a subset that admits unitary implementability of the dynamics on the Fock space.
This evolution comes from the Dirac equation, after extracting from the fermionic field some of its
time variation that can be attributed to the dependence on the variables that describe the spacetime
background. In the Heisenberg picture, the extracted part is regarded as explicitly time-dependent,
and therefore is not included in the proper quantum dynamics of the annihilation and creation
operators. In fact, this extraction is necessary to achieve the unitary implementability of the quantum
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evolution. It must be restricted, nonetheless, by the condition that the evolution remaining from the
original Dirac equation be not trivialized.

After determining all the Fock representations that are allowed by the criteria of invariance under
the symmetries of the equations of motion and of a nontrivial unitary implementability of the dynamics,
we have shown that all these representations are unitarily equivalent for each of the spacetime scenarios
that we have considered, provided that one fixes a convention to distinguish between particles and
antiparticles of the Dirac field. In other words, our well-motivated conditions of unitarity and
invariance guarantee the uniqueness of the Fock representation, up to unitary equivalence.

This uniqueness result has the immediate consequence of also specifying a unique concept of
quantum dynamics for the fermionic annihilation and creation operators, modulo unitary redefinitions.
Indeed, our analysis allows us to fully characterize the functions of the spacetime background that
need to be removed from the time dependence of the fields, at least in the ultraviolet limit of large
eigenvalues of the Dirac operator on the spatial hypersurfaces. This characterization can alternatively
be understood as the determination of which field excitations are the particles and antiparticles that
preserve their coherence over time.

We have provided an optimal description, with an eye to its quantization, of the phase space
of a homogeneous and isotropic cosmology coupled to a homogeneous scalar field (that acts as an
inflaton in General Relativity) and with fermionic perturbations, when the Einstein-Dirac action is
truncated at quadratic perturbative order. For the fermionic sector of the phase space, we have used
our previous result about the Fock representation of a Dirac field to select a quantization of the
fermionic degrees of freedom, up to unitary modifications. Hence, for the fermionic field, we have
chosen certain annihilation and creation variables that are related with the Dirac modes through
a canonical transformation that depends on the homogeneous and isotropic background, and that
supports a unitarily implementable Heisenberg dynamics when the background is viewed as a fixed
entity. This leads to a specific splitting of the phase space between the background degrees of freedom
and the fermionic content. A particular consequence is the modification of the contribution to the
global Hamiltonian constraint associated with the fermionic perturbations. We have taken advantage
of this modification and, going beyond the criterion of unitary dynamics for the selection of the
fermionic variables, we have employed the remaining freedom in the background dependence of this
choice to obtain other desirable properties in the quantization of our system. One property that we
have investigated is a proper definition of the fermionic Hamiltonian operator on the set of finite
particle/antiparticle states constructed from the vacuum. On the other hand, the discussed splitting
of the phase space also implies a change in the canonical variables that describe the homogeneous
background, to preserve the symplectic canonical structure of the system at the perturbative order of
our truncation. The corresponding change in the background variables amounts to the correction of
the original ones with terms that are quadratic in the perturbations.

Using the above description of the phase space, the only nontrivial constraint that needs to be
imposed quantum mechanically is the zero mode of the Hamiltonian constraint. This global constraint
interrelates the different physically relevant sectors of the phase space, namely the geometric FLRW
sector, for which a loop representation is adopted, the inflaton, with a Schrödinger-like representation,
and the fermionic perturbations, for which one takes a Fock representation in the selected family
(in addition, it is possible to include scalar and tensor perturbations, described by perturbative gauge
invariants, with Fock representations that can be picked out as well with our proposed criteria).
In order to single out this preferred family of Fock representations, in addition to the invariance under
the symmetries of the field equations and the unitary implementability of the Heisenberg dynamics,
we have chosen a convention for the distinction between particles and antiparticles which smoothly
connects with the standard convention of QFT when the mass of the field vanishes.

We have shown how to impose the operator that represents the zero mode of the Hamiltonian
constraint of our perturbed cosmological system on states for which the dependence on the different
sectors of the phase space, except the inflaton, becomes separable. In this way, we have been able to find
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mild conditions under which the imposition of the constraint turns out to be essentially equivalent to a
certain master constraint equation on the fermionic perturbations. Given our perturbative hierarchy,
these conditions amount to have negligible FLRW geometry transitions mediated by the zero mode of
the Hamiltonian for the partial wave function that describes such a homogeneous geometry in our
state. The resulting equation is special since the dependence on the FLRW geometry only persists
by the inclusion of expectation values over that geometry. With an additional approximation on
the variation of the partial wave function of the fermionic perturbations with respect to the inflaton,
that can be checked at least for self-consistency, one can deduce from this master constraint on
the perturbations a Schrödinger equation for the partial state that describes the fermionic content.
This Schrödinger equation involves the quantum backreaction that the fermionic perturbations produce
on the FLRW geometry.

Moreover, within our approximations, it is possible to solve the quantum dynamics dictated by the
commented master constraint equation on the perturbative fermionic modes. We have reviewed how
such dynamics can be implemented on our Fock space. The resulting evolution depends, in particular,
on the FLRW geometry, but this is so exclusively through expectation values that turn out to be
different for each fermionic mode and that are well defined thanks to the loop representation adopted
in the scheme of hLQC. These facts, together with ultraviolet properties, guarantee the unitary
implementability of the fermionic Heisenberg dynamics. One can construct the associated unitary
evolution operator that is generated by the fermionic Hamiltonian that appears in the Schrödinger
equation that has been derived. Actually, we have seen that the requirement that this Hamiltonian be
well defined on the vacuum is enough to guarantee a finite fermionic backreaction on the FLRW
background, without the need for any regularization. On the other hand, the unitarity of the
fermionic dynamics translates into a finite production of pairs of particles and antiparticles in the
evolved vacuum.

We have gone one step beyond and employed the still remaining freedom in the determination
of the Fock representation of the fermionic degrees of freedom, and their splitting from the FLRW
sector of the phase space, to demand an additional feature in the fermionic Hamiltonian, namely that
it become diagonal in terms of the fermionic annihilation and creation variables in the asymptotic
region of large wave numbers of the modes, in the sense that it do not contain interactions in that
region that produce pairs of particles and antiparticles. We have seen that this condition indeed fixes
asymptotically the choice of vacuum state. Furthermore, we have argued in favor of the uniqueness
of the vacuum selected by means of this asymptotic Hamiltonian diagonalization when extended
to all wave numbers by suitable smoothness conditions. In this respect, we have demonstrated the
uniqueness in the case of standard QFT in Minkowski and de Sitter spacetimes, treated as fixed
backgrounds, showing in addition that the vacua that are picked out by the diagonalization procedure
are the Poincaré and the Bunch–Davies vacua, respectively. For more general backgrounds, either of
classical or quantum nature, our proposal can potentially serve to attain a well-defined and unique
choice of vacuum state with especially good physical and mathematical properties.

Finally, we have commented on the relation between adiabatic states and the vacua selected by
our criteria. For iterative constructions of fermionic adiabatic states, all of them turn out to belong
to the unitary equivalence class of Fock states that incorporate symmetry invariance and allow for a
unitarily implementable dynamics. Moreover, states of first or higher adiabatic order belong to the
family of Fock states picked out by the additional requirement of a fermionic Hamiltonian with a
well-defined action on the dense set of finite particle/antiparticle states, and therefore it is ensured
that they lead also to a finite fermionic backreaction. As for the issue of Hamiltonian diagonalization,
it is an open question whether higher-order adiabatic states give rise to representations in which the
vacuum state increasingly approaches our choice in the asymptotic regime of large wave numbers.
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We study the compatibility of the quantum homogeneitiy and isotropy hypothesis (QHIH), proposed by
Ashtekar and Gupt to restrict the choice of vacuum state for the cosmological perturbations in loop
quantum cosmology (LQC), with the requirement that the selected vacuum should lead to a power
spectrum that does not oscillate. We inspect in close detail the procedure that these authors followed to
construct a set of states satisfying the QHIH, and how a preferred vacuum can be determined within this set.
We find a step that is not univocally specified in this procedure, in relation with the replacement of the set of
states that was originally allowed by the QHIH with an alternative set that is more manageable. In fact, the
first of these sets does not contain the state that has been used in most of the implementations of the QHIH
to the analysis of the power spectrum of the perturbations in LQC. We focus our attention on the original set
picked out by the QHIH and investigate whether some of its elements may display a nonoscillatory
behavior. We show that, to the extent to which the techniques used in this paper apply, this possibility is
feasible. Thus, the two aforementioned criteria for the physical restriction of the vacuum state in LQC are
compatible with each other and not exclusive.
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I. INTRODUCTION

In order to extract useful predictions from a physical
theory, sometimes it does not suffice to determine the
dynamical equations that rule the evolution of the system
and analyze their properties. Choosing initial conditions
can be just as important as these dynamical laws, especially
for scenarios that cannot be reproduced in a controlled way
in a laboratory (such as, e.g., gravitational systems). In
these cases, any successful theory should incorporate a
procedure to determine suitable initial conditions, based on
reasonable justifications and leading to phenomenologi-
cally sensible results. A situation in which this issue is
particularly important is in the study of the evolution of
primordial cosmological perturbations. These perturbations
are believed to be the seeds of the temperature anisotropies
that can be observed in the cosmic microwave background
(CMB) [1–4]. Beyond the standard cosmological para-
digm, there is a growing hope that the power spectrum of
the CMB radiation may keep some traces of the quantum
geometry phenomena that would have taken place when

the Universe was extremely young and in this manner
provide a way to falsify the predictions of quantum
cosmology formalisms that describe the behavior of those
early epochs [5–8].
Many attempts have been made to include quantum

gravity effects in the analysis of primordial perturbations in
cosmology (see, e.g., [9–28]). Most of these works adopt a
Fock representation for the linear fields corresponding to
the gauge-invariant perturbations. Then, the choice of
initial conditions is equivalent to selecting a preferred
Fock vacuum state. A natural starting point is to demand
that this vacuum state remains invariant under the spatial
isometries of the homogeneous background (either treated
as a classical or a quantum entity). Nonetheless, since the
cosmological background is not stationary, these sym-
metries are usually not enough to pick out a unique
vacuum, but only to restrict the choice within a family
of states, unitarily equivalent among them in an optimal
scenario, if the selection criteria have been wisely imposed
[29,30]. Within that family, one of the most common
proposals is to choose the Bunch-Davies vacuum at the
onset of inflation, especially if there is an inflationary phase
that admits a slow-roll description. The Bunch-Davies state
is arguably the most natural vacuum in de Sitter spacetime,
which is believed to provide a good approximation for the

*w.iac20060@kurenai.waseda.jp
†mena@iem.cfmac.csic.es
‡santiago.prado@iem.cfmac.csic.es

PHYSICAL REVIEW D 104, 083541 (2021)

2470-0010=2021=104(8)=083541(11) 083541-1 © 2021 American Physical Society



cosmological expansion in such an inflationary phase [2,31].
However, this state is not well adapted to the cosmological
evolution if there are relevant regimes previous to slow-roll
inflation with physical phenomena that can affect the
primordial perturbations. For instance, this may happen
for perturbation modes with wavelengths of the order of
the characteristic scales associated with the quantum gravity
processes that may have affected the Universe well before
inflation, out of the domains of applicability of classical
general relativity. To take those primeval epochs into
account, we must have some level of understanding of
the underlying quantum geometry. Several candidate for-
malisms have been suggested to describe quantum gravity
regimes in cosmology. Among them, we will focus our
attention on loop quantum cosmology (LQC) [32–34],
which is a nonperturbative quantization of cosmological
systems based on the background-independent canonical
theory of loop quantum gravity [35,36]. In LQC, for certain
quantum states with interesting classical properties at large
volumes, the big bang singularity becomes replaced with a
quantum bounce [37,38].
Within these bouncing regimes of LQC, the choices of

vacuum state for the perturbations that were first employed
to extract predictions from the theory correspond to the so-
called adiabatic states [19,39]. Adiabatic states [40,41] are
constructed iteratively from a zeroth-order state and, for
sufficiently high order, they have the physically appealing
property of permitting the renormalization of the stress-
energy tensor. The adiabatic iterative process, however,
is not mathematically robust and breaks down in certain
circumstances. In addition, the motivation for using adia-
batic conditions around a bounce of quantum origin is not
completely clear from a theoretical point of view [42–44].
A more recent proposal for the choice of a vacuum, with a
more elaborated motivation, has been given by Ashtekar
and Gupt [45,46] in the context of the so-called dressed-
metric approach to the study of primordial perturbations
in LQC (see, e.g., Refs. [16,19,20,47]). According to this
proposal, one chooses the state with a maximal classical
behavior at the end of inflation among those that fulfill the
so-called quantum homogeneity and isotropy hypothesis
(QHIH). This is an extension into the quantum realm of
Penrose’s Weyl curvature hypotesis [48,49], which states
that the Weyl curvature should vanish at the big bang. The
vacuum state selected so far using this QHIH has been seen
to lead to a primordial power spectrum that is highly
oscillatory in the dressed-metric approach to LQC, with
respect to the wave number of the Fourier modes of the
perturbations [46]. When these oscillations are suitably
averaged, this power spectrum shows good agreement with
the current CMB observations, and it may even provide a
way to alleviating certain anomalies reported by the Planck
satellite [6,7]. Nonetheless, it has been argued that these
oscillations might come from an evolution of the proposed
vacuum in the preinflationary epoch that blurs the infor-
mation about the genuine effects of the LQC bounce on the

perturbations [50,51]. To deal with the problem of these
superimposed oscillations in the power spectrum, Martín de
Blas and Olmedo put forward an alternative proposal,
implemented numerically, which selects a vacuum state
with a nonoscillatory (NO) spectrum [50]. This NO-
vacuum was originally introduced in the context of the
so-called hybrid approach to LQC (see Ref. [52] for a
comprehensive review on the topic). Recent investigations
have identified some analytical conditions that must be
satisfied by a vacuum displaying NO properties, and that
restrict its asymptotic behavior for infinitely large wave
numbers [51,53].
The aim of this work is to investigate the relationship and

compatibility between the QHIH and the NO-proposal as
two criteria to restrict the choice of vacuum state in the
context of hybrid LQC. In order to do this, we start by
revisiting the mathematical conditions that define the
admissible states according to the QHIH in a bouncing
quantum cosmological scenario, indicating the steps where
there appear ambiguities when the original proposal of
Ashtekar and Gupt [45] is put into practice [46]. This
construction starts by defining a ball of states that satisfies
the QHIH in an interval around the quantum bounce, that is
regarded as the Planck regime. In more detail, this interval
is defined, for the sake of concreteness, as the period in
which the density of the Universe is higher than 10−4 in
Planck units. Then, according to Ashtekar and Gupt, a
preferred state should be selected within this ball such that
it has maximal classical behavior at the end of inflation.
However, because of the numerical complications in the
imposition of these requirements, an alternative but much
more manageable definition of the ball of admissible states
was finally adopted in Ref. [46]. In the present work we
show that this alternative definition leads to a different set
of states to the original QHIH ball, raising the question of
whether the Ashtekar-Gupt state selected in this manner
actually lives in such original ball. We find that the answer
is in the negative, at least in the hybrid approach to LQC.
We recall that this state has highly oscillatory properties in
the case of the dressed-metric approach to LQC, and it can
be reasonably expected that it also displays this behavior
in hybrid LQC.1 Our result then opens the possibility that
the preferred vacuum state that would arise from the
original QHIH considerations may be compatible with
the demand of an NO-behavior. With this motivation in
mind and using the results of Ref. [51], we derive certain
necessary conditions for the simultaneous satisfaction of an
NO-behavior and the QHIH. Employing these conditions,
we then examine the possibility that the Ashtekar-Gupt
proposal may eventually lead to the choice of an NO-
vacuum. Our result is that, without additional inputs, the
two proposals are compatible.

1This is because both approaches share a classical preinfla-
tionary period that tends to produce oscillations in the evolution
of the vacuum state, if this vacuum is not carefully chosen [43].
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The structure of this paper is as follows. In Sec. II we
take a close look at the definition of the QHIH given in
Ref. [45] and the Ashtekar-Gupt vacuum selected in
Ref. [46]. In Sec. III we identify a loose step in the passage
from the theoretical construction of the ball of QHIH states,
where this vacuum should reside, to its practical imple-
mentation. Furthermore, we derive certain compatibility
conditions between the ball introduced in Ref. [45] and an
NO-behavior. Section IV considers the analog in the hybrid
approach to LQC of the Ashtekar-Gupt vacuum that was
finally selected in Ref. [46], proving that it does not belong
to the original QHIH ball of states of Ref. [45]. In view of
this result, in this section we also study the compatibility
conditions between the original QHIH and an NO-behavior
in hybrid LQC, showing that they are not exclusive.
Section V contains our conclusions and further comments.
Throughout this paper, we work in Planck units, setting
ℏ ¼ c ¼ G ¼ 1.

II. CONSTRUCTION OF THE
ASHTEKAR-GUPT VACUUM

Given a real-valued function sðηÞ, where η is a time
coordinate, let us consider all complex solutions of the
following family of differential equations:

μ00k þ ðk2 þ sÞμk ¼ 0; k ∈ Rþ; ð2:1Þ

that satisfy the normalization condition,

μkμ̄
0
k − μ0kμ̄k ¼ i: ð2:2Þ

Here, the prime denotes the derivative with respect to
the time η and the overhead bar indicates complex con-
jugation. On the other hand, let us consider a purely
inhomogeneous real scalar field on R4 with Fourier
coefficients labeled by a real wave vector  k ∈ R3 − f  0g
and satisfying Eq. (2.1) with k ¼ j  kj. It is well known that
any complete set fμkgk∈Rþ of normalized solutions univ-
ocally defines a quantum Fock representation of the
considered real scalar field [54]. Now, since Eq. (2.1) is
linear and real, we may write its general complex solution
as a linear combination of a particular solution and its
complex conjugate [which are functionally independent in
virtue of Eq. (2.2)]. It then follows that any two choices of
basis elements, μ̃k and μk, may be related to each other
through a linear Bogoliubov transformation,

μ̃kðηÞ ¼ αkðμ̃k; μkÞμkðηÞ þ βkðμ̃k; μkÞμ̄kðηÞ: ð2:3Þ

The normalization condition (2.2) holds provided that the
constant Bogoliubov coefficients satisfy

jαkðμ̃k; μkÞj2 − jβkðμ̃k; μkÞj2 ¼ 1; ∀ k ∈ Rþ: ð2:4Þ

A choice of solutions fμkgk∈Rþ is often called a basis of
positive-frequency solutions, and it completely specifies a
vacuum state from which the Fock space can be con-
structed. Henceforth, we refer to the vacuum state selected
by a specific basis fμkgk∈Rþ as j0μi.
In cosmological perturbation theory, both classically as

well as for several approaches to quantum cosmology, an
equation of the form (2.1) typically dictates the propagation
of the mode coefficients of the real Mukhanov-Sasaki
field that describes the gauge-invariant scalar perturbations
[55–57]. Therefore, this equation is frequently called the
Mukhanov-Sasaki equation. Moreover, the dynamics of
the tensor perturbations are also ruled by an equation of this
type [2]. The function sðηÞ is commonly referred to as the
(effective) mass of the perturbations, and it can be given as
a function of the geometrical variables of the background
on classical solutions or alternatively on quantum back-
ground states [19,25]. In this context, any choice of basis
of positive-frequency solutions (or, equivalently, of their
initial conditions) amounts to the choice of a specific
vacuum state in the Fock quantization of the perturbations.
Let us define μη0k as the solution to Eq. (2.1) determined

by the following initial conditions at any given time η0:

μη0k ðη0Þ ¼
1ffiffiffiffiffi
2k

p ; μη00k ðη0Þ ¼ −i
ffiffiffi
k
2

r
: ð2:5Þ

The basis constructed from such solutions μη0k for all k gives
rise to the so-called adiabatic state of zeroth-order, j0μη0 i
[41]. The family of adiabatic states of zeroth-order para-
metrized by η0 has some interesting physical properties, as
we have succinctly commented in the Introduction. One of
these properties is that j0μη0 i is the unique state that exactly
fulfills at time η0 the QHIH formulated in Refs. [45,46].
In the case of tensor perturbations, this condition can be
understood as an instantaneous quantum generalization of
Penrose’s Weyl curvature hypothesis that takes into account
and minimizes the quantum uncertainties of the operators
representing the Weyl tensor at η0. Owing to the similarities
between the dynamics of the tensor and scalar perturba-
tions, the QHIH has also been proposed in order to select a
preferred family of quantum states for the Mukhanov-
Sasaki field [46].
Actually, the space of states allowed in the analysis of

Ashtekar and Gupt is larger than the family of adiabatic
states of zeroth-order that we have introduced. This is to
cope with the fact that the dynamical evolution of the
quantum field states is nontrivial in cosmological scenarios,
something that leads to an instability of the instantaneous
QHIH condition as time evolves. Explicitly, the QHIH is
fulfilled at time η0 by a normalized solution μ̃k of Eq. (2.1)
if and only if [45]

Λkðμ̃; η0Þ ¼ 1; Λkðμ̃k; ηÞ ¼ kjμ̃kðηÞj2 þ
1

k
jμ̃0kðηÞj2:

ð2:6Þ
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As commented above, this condition alone fixes μ̃k ¼ μη0k
(up to a constant phase that does not affect the definition of
the corresponding vacuum). In fact, one may write Λk in
terms of beta coefficients for Bogoliubov transformations
to adiabatic states,

Λkðμ̃k; ηÞ ¼ 1þ 2jβðμ̃k; μηkÞj2: ð2:7Þ

This implies that Λkðμη0k ; ηÞ > 1 in general, for any η ≠ η0.
In view of this property of the cosmological system,
Ashtekar and Gupt generalized the instantaneous QHIH
condition to a dynamical one by requiring that physically
admissible vacuum states should belong to the set [45,46],

B ¼ fj0μ̃ijΛkðμ̃k; ηÞ ≤ zk; ∀ k ∈ Rþ; η ∈ Ig; ð2:8Þ

where I is certain compact interval of time, and we have
defined the supremum,2

zk ¼ sup
η0;η1∈I

Λkðμη0k ; η1Þ: ð2:9Þ

We will refer to the family of states B as the total Weyl
uncertainty ball. Obviously, its construction depends on the
choice of interval I. Since the QHIH is a generalization of
Penrose’s Weyl curvature hypothesis, which should only be
applied in the high-curvature regime of spacetime, it is
natural to demand that this interval coincides with the
period where important quantum cosmological phenomena
take place (the so-called Planck regime). Specifically, in
Ref. [45] this interval was defined as the epoch in which the
density of the Universe is higher than 10−4 Planck units.
In order to extract robust physical predictions from the

theory, one needs to single out a preferred vacuum state
within B by demanding a suitable behavior. According to
Ref. [46], this preferred state must minimize the quantum
dispersions of the field operators at the end of inflation, so
that the state has optimal classical properties at times when
the quantum effects should be negligible. In practice, it is a
complicated task to find such a state starting from B (even
from a numerical perspective). This difficulty was circum-
vented in Ref. [46] by instead searching for the vacuum
among states that live in instantaneous Weyl uncertainty
balls Bη0 , defined as follows:

Bη0 ¼ fj0μ̃ijΛkðμ̃k; η0Þ ≤ zη0k ∀ k ∈ Rþg; ð2:10Þ

where

zη0k ¼ sup
η∈I

Λkðμηk; η0Þ: ð2:11Þ

According to Ref. [46], the state j0νη0 i that minimizes the
quantum field dispersions at the end of inflation, within the
instantaneous Weyl uncertainty ball Bη0 , has the form,

νη0k ðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðrη0k Þ2

q
μη0k ðηÞ þ rη0k e

−iθη0k μ̄η0k ðηÞ; ð2:12Þ

where

ðrη0k Þ2 ¼
1

2
ðzη0k − 1Þ; θη0k ¼ π − 2 arg ½μη0k ðηendÞ�;

ð2:13Þ

where ηend marks the end of inflation, rη0k ≥ 0, and arg
denotes the argument of the complex quantity. Considering
then all instantaneous Weyl uncertainty balls in the
Planck regime, we have a one-parameter family of states
that minimize the quantum dispersions at ηend. The state
corresponding to the global minimum is the unique
Ashtekar-Gupt vacuum.3

III. QHIH: AMBIGUITIES IN ITS
IMPLEMENTATION AND COMBINATION

WITH THE NO-PROPOSAL

A. Difference between balls of states

As we have commented, the actual construction of the
Ashtekar-Gupt vacuum state put forward in Ref. [46] does
not start from the total Weyl uncertainty ball of states B, but
rather from the union of instantaneous balls, ∪η0∈IBη0 . An
important question that immediately arises is whether the
two sets of states are equal. If this were the case, then the
procedure followed in Ref. [46] to find the state with a
maximally classical behavior at the end of inflation would
be, without question, consistent with the QHIH originally
proposed in Ref. [45] (and actually used as a motivation in
Ref. [46]). In the following, we show that the answer is in
the negative.
We begin by using Eq. (2.6) to rewrite the definition of

B and Bη0 in terms of beta coefficients,

Bη0 ¼ fj0μ̃ijjβkðμ̃k;μη0k Þj2 ≤ sup
η∈I

jβkðμηk;μη0k Þj2 ∀k ∈Rþg;

ð3:1Þ

2This definition is consistent as long as sðηÞ has no singular-
ities in I. This is the case for LQC, where sðηÞ is obtained from
well-defined expectation values of quantum geometry operators.

3In principle, there is no guarantee that there exists such global
minimum simultaneously for all k. If this did not happen, one
may instead choose the state j0νη0 i that minimizes a (suitably
defined) average of the quantum dispersions over all of the
modes. Alternatively, one may construct a new state by picking
out each positive-frequency solution, among the two-parameter
family fνη0k g, that minimizes the quantum dispersions for each k
separately. Unfortunately, by its construction, one cannot gen-
erally assure that the state that would result from this last
procedure belongs to any of the instantaneous balls Bη0 . So,
we will not consider this possibility in this paper.
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B ¼ fj0μ̃ijjβkðμ̃k; μηkÞj2 ≤ sup
η0;η1∈I

jβkðμη0k ; μη1k Þj2

∀ k ∈ Rþ; ∀ η ∈ Ig: ð3:2Þ

Given a compact interval I and any positive k there exist
times ηk− and ηkþ in I such that

jβkðμη
k
−
k ; μ

ηkþ
k Þj2 ¼ sup

η0;η1∈I
jβkðμη0k ; μη1k Þj2: ð3:3Þ

Considering a fixed (but otherwise generic) wave number k̃,
let us then define a state j0μSi such that

μSkðηÞ ¼ ᾱkðμη
k̃
þ
k ; μη

k̃
−
k Þμηk̃þk ðηÞ þ βkðμη

k̃
þ
k ; μη

k̃
−
k Þμ̄ηk̃þk ðηÞ: ð3:4Þ

This state belongs to the instantaneous ball Bηk̃þ
, which is by

definition contained in the union ⋃η0∈IBη0 . In order to
show this, we first notice that

jβkðμSk; μ
ηk̃þ
k Þj ¼ jβkðμη

k̃
−
k ; μ

ηk̃þ
k Þj; ð3:5Þ

as one can check using the general property jβkðμ̃k; μkÞj ¼
jβkðμk; μ̃kÞj, which follows from Eqs. (2.3) and (2.4). Thus,
for any k and taking into account the definition of
supremum, it holds that

jβkðμSk; μ
ηk̃þ
k Þj2 ≤ sup

η∈I
jβkðμηk; μ

ηk̃þ
k Þj2: ð3:6Þ

This inequality can at most be saturated, as it happens e.g.,
for k ¼ k̃. Hence we conclude that, according to the
definition of instantaneous ball given in Eq. (3.1), the state
j0μSi belongs to Bηk̃þ

as we wanted to show.

Now, we can write the basis element μ
ηk̃þ
k in terms of the

Bogoliubov coefficients that relate it to μη
k̃
−
k ,

μ
ηk̃þ
k ðηÞ ¼ αkðμη

k̃
þ
k ; μη

k̃
−
k Þμηk̃−k ðηÞ þ βkðμη

k̃
þ
k ; μη

k̃
−
k Þμ̄ηk̃−k ðηÞ: ð3:7Þ

Composing the transformations (3.7) and (3.4), we see that

βkðμSk; μη
k̃
−
k Þ ¼ 2ᾱkðμη

k̃
þ
k ; μη

k̃
−
k Þβkðμη

k̃
þ
k ; μη

k̃
−
k Þ: ð3:8Þ

Therefore, focusing our discussion on the mode k ¼ k̃, we
have that

jβk̃ðμSk̃ ; μ
ηk̃−
k̃
Þj2 ¼ 4jαk̃ðμη

k̃
þ
k̃
; μη

k̃
−
k̃
Þj2jβk̃ðμη

k̃
þ
k̃
; μη

k̃
−
k̃
Þj2

≥ 4 sup
η0;η1∈I

jβk̃ðμη0k̃ ; μ
η1
k̃
Þj2; ð3:9Þ

where we have used that the squared norm of the alpha-
coefficient is never smaller than the unit because of the

normalization condition (2.4). This inequality straightfor-
wardly implies that j0μSi does not belong to B, and hence
we have that B ≠ ⋃η0∈IBη0 . Of course, this does not mean
that the intersection of these two sets is empty. In fact, we
clearly have that any adiabatic state of zeroth-order j0μηi,
with η ∈ I, automatically belongs to both sets.

B. Nonoscillatory requirements for states
in the Weyl uncertainty ball

The primordial power spectrum of the perturbations in a
state j0μ̃i can be obtained from the evaluation of jμ̃kj2 at the
end of slow-roll inflation. The dynamical evolution of the
perturbations from their initial conditions in the Planck
regime to this stage when inflation ends can leave imprints
that are potentially observable in the CMB. In particular,
any oscillatory behavior of the amplitude of the positive-
frequency solutions during the preinflationary evolution
may affect the spectrum and, in this way, produce oscil-
lations in it. These oscillations may be superimposed to
the genuine imprints of the preinflationary dynamics of
the Universe on the spectrum, including quantum gravity
modifications, and blur them [51]. With this motivation in
mind, Martín de Blas and Olmedo proposed a criterion to
select a state with nonoscillatory behavior, called the NO-
vacuum, which minimizes the oscillations in the spectrum
over the interval between the time where the initial
conditions are imposed and the onset of inflation [50].
The implementation of this criterion was generally numeri-
cal, in the way in which it was originally introduced.
More recently, it has been possible to derive some

necessary conditions that an NO-vacuum has to satisfy.
In detail, given an NO-vacuum j0μNOi (the existence of
which is supported at least from a numerical perspec-
tive), we can write the squared amplitude of the basis of
positive-frequency solutions associated with any other state
j0μ̃i as [51],

jμ̃kj2 ¼
1

2
jμNO

k j2½AþBþðA−BÞcosð2ϕkÞþ 2Csinð2ϕkÞ�;

ϕ0
k ¼

1

2
jμNO

k j−2; ð3:10Þ

where A, B, and C are real constants, with C2 ¼ AB − 1.
As long as there exists a sufficiently long regime in the
evolution of the perturbations in which 2jjμNO

k j0jμNO
k jj < 1,

it follows from this formula that any other NO-vacuum
state must have constants A and B lying in a close
neighborhood of the unit. The existence of such a regime
is expected in any preinflationary cosmological evolution
that resembles the Einsteinian one for a universe with a
massless scalar field at low energy densities, as it is the case
e.g., in interesting LQC scenarios [43,47]. This is because,
in low-curvature regimes of general relativity where the
energy density of the inflaton is dominated by its kinetic
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contribution, the mass sðηÞ is a very slowly varying
function of time [51,58].
Following these considerations, we can regard as a

necessary condition for any candidate to be an NO-vacuum
j0μNOi that it must satisfy 2jjμNO

k j0jμNO
k jj < 1 at least for all

times η near the end of the Planck regime. Explicitly, if we
write the basis of positive-frequency solutions fμNO

k g in the
form [51],

μNO
k ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2ImðhkÞ
p e

i
R

η

η1
dη̃ ImðhkÞ ðη̃Þ; ð3:11Þ

where η1 is a reference time, irrelevant for the choice of
vacuum state, and hk is a solution to the Riccati equation

h0k ¼ k2 þ sþ h2k ð3:12Þ

with strictly negative imaginary part, then the aforemen-
tioned necessary condition on an NO-vacuum can be
equivalently expressed as

jReðhkÞðηÞj ¼ ϵkðηÞjImðhkÞðηÞj with 0 < ϵkðηÞ < 1;

ð3:13Þ
���� k

2 þ sðηÞ
ImðhkÞðηÞ

− ½1þ ϵ2kðηÞ�ImðhkÞðηÞ
���� < 1; ð3:14Þ

at least for all times η at the end of the Planck regime.
Actually, we expect the above expressions involving hk to
be much smaller than the unity, in particular for the
resulting value of ϵk.

One can use the Bogoliubov transformation between the
NO-vacuum and a zeroth-order adiabatic state j0μηi to
obtain that

jμNO
k ðηÞj ¼ 1ffiffiffiffiffi

2k
p jαkðμNO

k ; μηkÞ þ βkðμNO
k ; μηkÞj;

jμNO0
k ðηÞj ¼

ffiffiffi
k
2

r
jαkðμNO

k ; μηkÞ − βkðμNO
k ; μηkÞj: ð3:15Þ

These identities, combined with Eqs. (3.12) and (3.13),
imply that

2ΛkðμNO
k ; ηÞ ¼ k

jImðhkÞðηÞj
þ ½1þ ϵ2kðηÞ�

jImðhkÞðηÞj
k

ð3:16Þ

for times η at the end of the Planck regime.
Hence, given an interval I defining this Planck regime,

a state satisfying the first necessary NO-vacuum condi-
tion (3.13) can belong to the total Weyl uncertainty ball B
only if

k
jImðhkÞðηÞj

þ ½1þ ϵ2kðηÞ�
jImðhkÞðηÞj

k
≤ 2zk; ð3:17Þ

for all η at the end of I [and with ϵkðηÞ being small]. This
inequality can be solved and leads to the following
restriction:

½1þ ϵ2kðηÞ�jImðhkÞðηÞj ∈
h
kzk − k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2k − ½1þ ϵ2kðηÞ�

q
; kzk þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2k − ½1þ ϵ2kðηÞ�

q i
: ð3:18Þ

On the other hand, the second necessary condition (3.14) for an NO-vacuum is satisfied if and only if

½1þ ϵ2kðηÞ�jImðhkÞðηÞj ∈
�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4½k2 þ sðηÞ�½1þ ϵ2kðηÞ�

q
−
1

2
;
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4½k2 þ sðηÞ�½1þ ϵ2kðηÞ�

q
þ 1

2

�
: ð3:19Þ

Recalling that ϵk is expected to be much smaller than the unity for an NO-vacuum, at leading order we can ignore the
contribution of this parameter in the above expressions. With this approximation, it follows that the two necessary
conditions for an NO-vacuum can only be compatible with the QHIH (as formulated in terms of the total ball B) if

h
kzk − k

ffiffiffiffiffiffiffiffiffiffiffiffi
z2k − 1

q
; kzk þ k

ffiffiffiffiffiffiffiffiffiffiffiffi
z2k − 1

q i
⋂

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4½k2 þ sðηÞ�

q
−
1

2
;
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4½k2 þ sðηÞ�

q
þ 1

2

�
≠ =0; ð3:20Þ

for all instants of time η near the end of I. It is worth
remarking that this interval I should cover all of the Planck
regime, so that it smoothly connects with a kinetically
dominated universe where, according to general relativity,
the mass sðηÞ varies very slowly over time.

One can similarly obtain a consistency requirement for a
state that satisfies the necessary NO-vacuum conditions in
order that it also belongs to the instantaneous Weyl
uncertainty balls Bη0 for times η0 close to the end of I:
it suffices to replace η with η0 and zk with z

η0
k in Eq. (3.20).
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Nonetheless, we will mainly focus our attention on the
consistency of the nonoscillatory behavior with the QHIH
formulated in terms of the total ball B. This is so because
of two reasons. The first one is that this is the original
formulation of the QHIH, motivated in Ref. [45] on
fundamental issues. The second one is that, for the alter-
native formulation of the QHIH given in Ref. [46], our
current analytic knowledge of the NO-vacua only allows us
to study the consistency requirement on solid grounds for
instantaneous Weyl uncertainty balls Bη0 defined at times η0
that are near the end of the Planck regime.

IV. QHIH IN HYBRID LQC: COMPATIBILITY
WITH THE NO-PROPOSAL

Our previous discussion is valid for any choice of mass
sðηÞ for the perturbations, provided that it is nonsingular in
the time interval of interest, and that it varies slowly at the
end of this interval. In the following we will focus our
attention on the case that this mass is given by the
evaluation on effective LQC backgrounds of the result
of a hybrid quantization of the perturbed inflationary
cosmology. In this hybrid approach, the Friedmann-
Lemaître-Robertson-Walker (FLRW) background is quan-
tized according to LQC, while the perturbations are treated
with typical techniques of quantum field theory in curved
spacetimes, more specifically by adopting a Fock descrip-
tion. If we consider certain quantum states for the back-
ground in LQC that are highly peaked in bouncing
trajectories, the evaluation of background operators on
these quantum states can be well approximated by consid-
ering the evaluation of their classical analogs on the peak
trajectories. Actually, these peak trajectories follow the
evolution dictated by an effective Hamiltonian constraint
on the FLRW background. In this background, inflation is
driven by a homogeneous scalar field subject to a potential,
that we will particularize to a quadratic one for simplicity.
In this setting, any background solution is completely fixed
by the value of the inflaton field at an arbitrary initial time,
e.g., at the bounce, and of its mass m. From a phenom-
enological point of view, in order to obtain power spectra
that are compatible with the observations but still are
capable of including traces of the LQC effects, the typical
effective solutions that turn out to be interesting present a
classical era shortly after the bounce in which the kinetic
energy of the inflaton greatly dominates over its potential,
era that extends almost until the onset of inflation [43,47].
This type of solutions is obtained for initial values of
the inflaton at the bounce and values of its mass close to
ϕB ¼ 0.97 and m ¼ 1.2 × 10−6, data that we will adopt
from now on for our analyses [43,58]. In the hybrid
approach, the gauge-invariant perturbations that propagate
on the above LQC backgrounds follow dynamical equa-
tions of the form (2.1).
We can numerically integrate the background evolution

with the aforementioned initial conditions to obtain the

value of the mass sðηÞ, and then apply the procedure that
we have explained in Sec. II to determine the Ashtekar-
Gupt vacuum in hybrid LQC. For this numerical integra-
tion, we use Verner’s “most efficient” 9=8 Runge-Kutta
method (with a lazy nineth-order interpolant) [59,60]. To
implement this procedure, we first need to characterize
the Planck regime in a precise manner. According to the
definition given by Ashtekar and Gupt, which requires
values of the inflaton energy density above 10−4, the
conformal times that define the considered regime are
IPL ¼ ½−4.2; 4.2� (with η ¼ 0 corresponding to the
bounce). Employing the interval I ¼ IPL, we can obtain
values of the upper bounds zη0k , for all η0 ∈ IPL, and zk,
which respectively define the instantaneous and total Weyl
uncertainty balls Bη0 and B. As in the case of the dressed-
metric approach to LQC [45,46], these bounds rapidly
approach the unit for Fourier scales k that are much larger
than the Planck scale, which is the characteristic order of
magnitude of the spacetime curvature around the bounce in
LQC. This behavior reflects the fact that the effects of the
cosmological evolution on a zeroth-order adiabatic state are
negligible in the ultraviolet regime, and hence the ultra-
violet scales approximately remain in this vacuum state,
thus satisfying the QHIH at all times. On the other hand, for
scales of the Planck order and smaller, the effects of the
cosmological evolution on the dynamics of a zeroth-order
adiabatic state become increasingly important, and as a
consequence the bounds zη0k and zk grow above one in the
infrared regime.
With the obtained values of the bounds zη0k that character-

ize the instantaneous uncertainty balls Bη0 in hybrid LQC,
we can determine the initial conditions that correspond to
the one-parameter family of states j0νη0 i with maximal
classical behavior at the end of inflation. Indeed, in view of
Eqs. (2.12) and (2.13) determining such states, the only
additional data that we need are the phases of the adiabatic
solutions μη0k at the end of inflation, which we compute
numerically. As we explained in Sec. II, the vacuum state
that Ashtekar and Gupt would propose as preferred,
according to Ref. [46], should lie in the resulting family
of states. Recalling that the QHIH was originally formu-
lated in terms of the total uncertainty ball B which, as we
have shown in Sec. III A, is different to the union of
instantaneous balls ⋃η0∈IPLBη0 , the following question
naturally arises: does the family of states fj0νη0 igη0∈IPL
actually belong to B, within the hybrid LQC framework?
According to the definition given in Eq. (2.8) for this total
ball, the considered states belong to B if and only if, for
each η0 ∈ IPL, we have

ðzkÞ−1max
η∈IPL

Λkðνη0k ; ηÞ ≤ 1; ð4:1Þ

for all k ∈ Rþ. In Fig. 1 we plot this function of η0 for
two representative values of k, showing that the above
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requirement cannot be met for any time η0 in the Planck
regime. Therefore, in the case of hybrid LQC, the vacuum
state proposed by Ashtekar and Gupt in Ref. [46] does not
belong to the total Weyl uncertainty ball that was originally
motivated by the QHIH. From this perspective, the oscil-
latory behavior that is expected for this vacuum (taking into
account its analog in dressed-metric LQC) does not imply
an incompatibility between the NO-criterion and the
original implementation of the QHIH when combined with
a maximal classical behavior at the end of inflation.
This result further supports our decision to focus the

attention on vacua belonging to the total uncertainty ball B,

when studying the compatibility of the QHIH with the
necessary NO-vacuum conditions in hybrid LQC.
According to our discussion in Sec. III B, in order to do
this we just have to particularize the intervals appearing in
Eq. (3.20) to the case of hybrid LQC and check that their
intersection is nonempty. All the ingredients needed for this
test, namely the mass sðηÞ and the upper bound zk, are
readily available from our previous computations. In Fig. 2
we plot the curves that limit these two intervals at the
representative time η ¼ 4.2 that marks the end of the Planck
regime IPL. We clearly see that their intersection is not
empty, indicating the compatibility between the QHIH and
the NO-criterion for the choice of a vacuum state of the
cosmological perturbations in hybrid LQC. Actually, in the
infrared regime (which is where oscillations can appear
for the considered type of states [43]) the zk-independent
interval related with the NO-condition is contained in the
interval that corresponds to the original version of the
QHIH. Therefore, it follows that any state that is an NO-
vacuum satisfies this version of the QHIH at least at the end
of the Planck regime.

V. CONCLUSIONS

With a combination of analytical and numerical means,
we have investigated the compatibility between the QHIH
proposed by Ashtekar and Gupt [45,46] and the NO-
proposal for the choice of initial conditions on primordial
perturbations in quantum cosmology [50,51]. In order to do
this, we have examined in detail the construction that
Ashtekar and Gupt employed to determine their vacuum
state, and we have discussed a step that is not univocal and
its consequences. In addition, we have derived some
analytical conditions that a vacuum state must satisfy to
comply with the original formulation of the QHIH intro-
duced in Ref. [45] and with the NO-condition. We have
followed the Asthekar-Gupt proposal, adapted to hybrid
LQC, in the phenomenologically interesting case with a
kinetically dominated preinflationary era. We have shown
that the vacuum selected by the Ashtekar-Gupt construction
in fact lies outside the ball of states that satisfy the QHIH
according to the prescription of Ref. [45], where it was
motivated as a quantum generalization of Penrose’s Weyl
curvature hypothesis. Because of this, we have focused our
attention on the properties of the states in this last ball,
showing that the original formulation of the QHIH is
perfectly compatible with an NO-behavior.
More specifically, our starting point has been a careful

revisitation of the entire Ashtekar-Gupt proposal, appli-
cable for any real-valued (and nonsingular) function that
plays the role of a time-dependent mass in the dynamical
equations of the Fourier modes of the perturbations, which
have the form of generalized harmonic oscillator equations.
By translating Penrose’s hypothesis to the quantum realm,
one then defines a Weyl uncertainty ball for the states of the
perturbations such that they all fulfill the QHIH in a specific

FIG. 2. The bounds imposed by the Weyl uncertainty ball,
kðzk −

ffiffiffiffiffiffiffiffiffiffiffiffi
z2k − 1

p
Þ and kðzk þ

ffiffiffiffiffiffiffiffiffiffiffiffi
z2k − 1

p
Þ, in red dashed and solid

lines respectively, compared with the bounds imposed by the NO-
condition, 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4½k2 þ sðηÞ�

p
− 1

2
and 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4½k2 þ sðηÞ�

p
þ 1

2
,

in blue dashed and solid lines respectively, for different modes k.
These are evaluated for the mass sðηÞ obtained in the hybrid
approach to LQC, where I ¼ IPL ¼ ½−4.2; 4.2� and η ¼ 4.2, time
near which the mass varies slowly. The intersection given by
these bounds is not empty for any k.

FIG. 1. The quantity Ckðη0Þ ¼ ðzkÞ−1 maxη∈IPLΛkðνη0k ; ηÞ com-
pared with 1 for k ¼ 10−6 and k ¼ 10−0.5. There exists no value
of η0 such that the two curves remain below or equal to 1, a fact
that implies that no state νη0k lives in B.
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interval of time [45]. Since this hypothesis is formulated for
high-curvature regimes, this interval is chosen as the Planck
regime in which quantum gravity effects are truly impor-
tant. To extract meaningful predictions, a unique preferred
state must be chosen from the ball obtained for the Planck
interval: this is the state with a maximal classical behavior
at times when quantum effects have become irrelevant,
e.g., the end of inflation for concreteness. Finding this state
directly with numerical methods is a very complicated task.
As an alternative route, in Ref. [46] Ashtekar and Gupt
opted to instead consider instantaneous Weyl uncertainty
balls, defined at each instant of time in the studied interval.
In this manner, one characterizes in an analytical way a
one-parameter family of states, namely, one with maximal
classical behavior for each instantaneous ball. Among
them, one should numerically find the state with best
classical properties and identify it with the Ashtekar-
Gupt vacuum.
The need to replace the ball of states originally deter-

mined by the QHIH by its instantaneous counterparts can
give rise to questions about the real habitat of the Ashtekar-
Gupt vacuum and to ambiguities in its construction, if these
balls are different. In fact, in this work we have shown that
the original Weyl uncertainty ball is actually different to the
union of all its instantaneous counterparts. It is worth
remarking that our proof is independent of the specific form
of the mass of the perturbations, the choice of compact
interval for the definition of the Planck regime, and the
wave number of the Fourier mode. In addition, we notice
that our proof does not exclude the fact that the two
considered sets of states, even if different, have a nonempty
intersection (e.g., adiabatic states of zeroth-order do belong
to both sets). For a fixed functional form of the time-
dependent mass of the perturbations, it is then legitimate to
ask whether any of the states with maximal classical
behavior in the instantaneous balls belongs to the original
Weyl uncertainty ball. To get an answer in the case of the
mass function derived in hybrid LQC, we have explicitly
evaluated all these possible vacuum candidates of
Ashtekar-Gupt type and shown that they do not belong
to the ball obtained with the original implementation of
the QHIH.
On the other hand, a physically relevant question one

may ask to any viable choice of vacuum state is whether or
not it leads to a highly oscillatory power spectrum. This
oscillatory behavior can be considered an undesirable
property inasmuch as it may blur away any modification
to the primordial power spectrum that is ultimately caused

by quantum geometry corrections [51]. Actually, it is clear
from the analysis carried out by Ashtekar and Gupt that
these oscillations indeed appear in the dressed-metric
approach for their choice of vacuum [46] (and a similar
behavior can be expected for hybrid LQC). Our result
shows, nonetheless, that in hybrid LQC this vacuum is
outside of the ball of states that was introduced to comply
with the fundamentals of the QHIH. This new perspective
has led us to wonder whether the basic requirements on this
set of admissible states are compatible with a nonoscillatory
behavior of (at least) a subset of them. In order to answer
this question, we have derived an analytical compatibility
condition between these two types of requirements and
then have proceeded to check it in hybrid LQC. The result
is satisfactory, from a theoretical perspective. Not only the
QHIH is compatible with an NO-behavior but, furthermore,
any NO-vacuum fulfills the QHIH at least at the end of the
Planck regime.
The conclusions of this work are an important advance

towards the theoretical motivation and determination of a
preferred vacuum for the perturbations and the extraction of
the corresponding physical predictions in (loop) quantum
cosmology. Given two well-motivated criteria for the
restriction of physically sound vacuum states (the QHIH
proposed by Ashtekar and Gupt and the NO-criterion
proposed by Martín de Blas and Olmedo), both of which
lead to predictions that are compatible with observations
[6,50,58], testing and ensuring their compatibility is a key
step to understand which physical conditions determine the
quantum state of the primordial perturbations that explains
the power spectrum that we observe nowadays in the CMB.
This knowledge is paramount to investigate and falsify on a
robust basis the phenomenological predictions that follow
from any theory of quantum cosmology, since an inappro-
priate choice of vacuum state can hide or misreflect the
imprints that the genuine quantum cosmological dynamics
may have left on the primordial fluctuations.
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We discuss the freedom available in hybrid loop quantum cosmology to define canonical variables for
the matter content and investigate whether this can be used to derive a quantum field theory with good
properties for the matter sector. We study a primordial, inflationary, cosmological spacetime with
inhomogeneous perturbations at lowest nontrivial order, and focus our attention on the contribution of
minimally coupled fermionic perturbations of Dirac type. Within the framework of the hybrid quantization,
we analyze the different possible separations of the homogeneous background and the inhomogeneous
perturbations, by means of canonical transformations that mix the two separated sectors. These possibilities
provide a family of sets of annihilation and creationlike fermionic variables, each of them with a different
associated contribution to the total Hamiltonian. In all cases, imposing the quantum constraints and
introducing a Born-Oppenheimer approximation, one can derive a Schrödinger equation for the fermionic
part of the wave functions. The resulting evolution turns out to be generated, for each of the allowed choices
of variables, by a version of the fermionic contribution to the Hamiltonian which is obtained by evaluating
all the dependence on the homogeneous geometry at quantum expectation values. This equation contains a
term that encodes the backreaction of the fermionic perturbations on the quantum dynamics of the
homogeneous sector. We analyze this backreaction by solving the associated Heisenberg evolution of the
fermionic annihilation and creation operators. Then, we identify the conditions that the choice of those
operators must satisfy in order to lead to a finite backreaction. Finally, we discuss further restrictions on
this choice so that the fermionic Hamiltonian that dictates the Schrödinger dynamics is densely defined in
Fock space.
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I. INTRODUCTION

In conventional quantum theories of matter fields, one
employs, in one way or another, some type of renorm-
alization or regularization procedure to obtain physically
acceptable results. Such techniques are especially well
understood when it comes to (perturbatively) describing
the nongravitational interactions contained in the standard
model of particle physics. Nonetheless, the issue exceeds
this traditional framework in high energy physics.
Actually, divergences become even more severe when
one considers matter fields propagating in generally
curved spacetimes, as it is allowed by Einstein’s theory.
In those cases, one usually considers that the matter
fields are coupled gravitationally to the spacetime, which

is viewed as a classical entity. Besides, one frequently
neglects the contribution of the fields to the dynamics
of the spacetime geometry itself. In such scenarios,
infinities generically arise in the quantum theories that
describe the matter fields. This problem has been studied
in depth over the last decades (see, e.g., Refs. [1–11]), and
it is commonly believed that the reasons behind it can be
traced to the treatment of the spacetime as a classical,
continuum background.1 In particular, this type of space-
time description triggers the appearance of ill-defined
products of field operators, which typically include
the building blocks of the free field Hamiltonian in the
considered background (and thus of the energy in sta-
tionary situations).

*beatriz.b.elizaga@gravity.fau.de
†mena@iem.cfmac.csic.es
‡santiago.prado@iem.cfmac.csic.es

1We are deliberately avoiding any mention to the so-called
infrared divergences in quantum field theory. If necessary, they
can be prevented by, e.g., considering topologically compact
spatial hypersurfaces in the considered spacetimes.
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Despite the considerable effort devoted to develop
covariant renormalization techniques, even for free fields
in curved spacetimes, one could be tempted to believe that,
instead of recurring to those schemes for the “substraction
of infinities,” a formalism that satisfactorily accounts for
the presumable quantum nature of the spacetime would be
able to prevent the occurrence of divergencies in the first
place. In this sense, the role that a theory of quantum
gravity might play in surpassing the limits of predictability
of our current theoretical models could be twofold, actually,
because it might also cure the problem of formation of
spacetime singularities that is intrinsic to classical general
relativity [12].
A promising candidate for the quantization of Einstein’s

theory is the nonperturbative and canonical formalism
known as loop quantum gravity [13]. To make direct
contact with physically feasible models, the techniques
developed in this formalism have been used, suitably
combined with more conventional Fock quantization meth-
ods, in order to describe certain types of inhomogeneous
spacetimes quantum mechanically. This procedure has
been given the name of hybrid quantization, and it has
been primarily applied to cosmological scenarios [14–18].
Essentially, this hybrid approach is based on a convenient
splitting of the cosmological phase space into two sectors: a
purely homogeneous one, that is represented in a quantum
mechanical way by employing methods that are inspired in
loop quantum gravity, and an inhomogeneous sector, for
which a suitable Fock representation is adopted. In fact, the
application of loop quantum gravity techniques to the
quantization of homogeneous cosmologies, often known
as loop quantum cosmology [19–21], has been shown to
lead to a quite general resolution of the cosmological
singularities predicted by general relativity [22,23].
Remarkably, the big bang singularity is replaced with a
bounce in the trajectories followed by the peaks of a wide
class of quantum states in the homogeneous cosmologies
studied so far in the literature (see, e.g., Refs. [24–26]).
The hybrid quantization approach extends to inhomo-

geneous models the expectation that, with a loop quantum
cosmology representation of the homogeneous sector of the
geometry, one should be able to solve (at least) the most
severe singularities of a genuine cosmological nature. At
the same time, this hybrid strategy gives hope for the
possibility that a suitably chosen Fock representation for
the inhomogeneous sector of the phase space may complete
the quantum description of the system in a divergence-free
way. This possibility is motivated by the existing freedom
in performing canonical transformations within the entire
phase space, transformations that assign different dynami-
cal roles to the homogeneous sector of the system and to the
rest of matter and gravitational degrees of freedom (d.o.f.).
Indeed, these transformations change the part of the total
Hamiltonian (constraint) that, while retaining the coupling
with the homogeneous sector, generates the dynamics of

the inhomogeneous, fieldlike d.o.f.. Given that each sector
of the phase space is quantized in a different type of
representation, it is then possible that a suitable choice of
canonical transformation and Fock representation for the
inhomogeneities may yield a quantum description that is
free of the divergences that would otherwise appear in
standard quantum field theory in curved spacetimes. In
particular, this procedure would allow us to handle properly
(at least certain forms of) the matter-geometry backreaction
in a quantum mechanical way.
The aim of this work is to provide solid ground for our

expectations by showing, in a specific cosmological sys-
tem, that one can attain such a well-defined quantum hybrid
description without the need of any regularization. The case
that we discuss here is an inflationary homogeneous and
isotropic cosmology in the presence of Dirac fermions,
considered as perturbations. The hybrid quantization of this
system was introduced in Ref. [27], allowing also for the
presence of scalar and tensor perturbations of the metric
and of the inflaton field, and after truncating the action at
second order in all the perturbations. As far as the Dirac
perturbations are concerned, the splitting of the (truncated)
phase space adopted in that reference was inspired by the
pioneer work in Ref. [28] about fermions in quantum
cosmology, developed in the context of quantum geo-
metrodynamics. It was seen in Ref. [27] that, by adopting a
separation of variables between the homogeneous part of
the geometry, on the one hand, and the inhomogeneities, on
the other hand, in the dependence of the quantum states
(separation that can be viewed as a kind of Born-
Oppenheimer ansatz in which the inflaton field plays the
role of an internal time), it is possible to derive a quantum
evolution for the fermionic perturbations that is ruled by a
Schrödinger-like equation. Actually, the resulting dynamics
is generated by the fermionic contribution to the total
Hamiltonian (constraint), converting the coupling of the
fermionic perturbations with the homogeneous geometry
into expectation values of the corresponding geometric
operators. In addition, the expectation value of this total
Hamiltonian supplies information about the backreaction of
the fermions (and of the rest of perturbations) on the
homogeneous background. This information is given by
the difference between the average of two operators on the
homogeneous part of the state, difference that tells us
whether such a quantum state is an exact solution of the
unperturbed model or not. It was then proven in the cited
work that the discussed evolution of the fermionic pertur-
bations can be implemented unitarily in Fock space.
Furthermore, explicit solutions were found by constructing
an evolution operator and evolving the fermionic vacuum
with it. However, it was shown that the mentioned
Hamiltonian contribution of the fermionic d.o.f. intrinsi-
cally leads to divergences (of an ultraviolet nature), with an
infinite backreaction, unless one introduces a convenient
regularization procedure.
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In this article, we present an alternative and, at the same
time, rather generic description of the system that resolves
the problem of the divergences encountered in Ref. [27].
We do so by employing in our benefit the commented
freedom in adopting different dynamical splittings between
the homogeneous geometric background and the fermionic
perturbations, related by canonical transformations. It
suffices to restrict our discussion to choices of annihilation
and creationlike variables for the fermionic fields such
that, when the spacetime background is considered to be
classical and the fermions are treated in the context of
quantum field theory in curved spacetimes, the quantum
dynamics becomes unitarily implementable in Fock space
(while being nontrivial according to the evolution dictated
by the Dirac equation) [29]. It has been shown that all such
variables define unitarily equivalent Fock representations
of the Dirac field, once a convention for the notions of
particles and antiparticles has been set [29]. In fact, the
variables introduced in Ref. [28] and then used in Ref. [27]
satisfy this unitarity condition. We characterize here the set
of such annihilation and creationlike variables for which the
description of the system is free of the divergences of
standard quantum field theory. From a conceptual view-
point, this result may have important implications.
Moreover, it will shed light on the problem of the choice
of a unique vacuum for the Dirac field in quantum
cosmology (among all those available in our unitary class
of Fock representations) with good physical properties.
The structure of the paper is the following. In Sec. II we

summarize the description of the classical system presented
in Ref. [27], and then introduce a more general class of
annihilation and creationlike variables for the Dirac field
than those adopted in that reference. With those definitions
at hand, we compute the Hamiltonian that generates the
associated fermionic dynamics. We start Sec. III with a
brief review of the procedure to derive the corresponding
Schrödinger equation for the fermionic d.o.f., after adopt-
ing a kind of Born-Oppenheimer ansatz for the physical
states. In addition, we analyze the ultraviolet properties of
the fermionic dynamics and deduce the conditions that the
annihilation and creationlike variables must fulfil in order
that their backreaction be finite. Finally, we further impose
that the Hamiltonian that drives this evolution be a well-
defined operator on the fermionic vacuum and, as a
consequence, a densely defined operator in Fock space.
We conclude in Sec. IV with a summary of our results and a
brief outlook.

II. THE CLASSICAL SYSTEM

In this section we use the conventions and notation of
Ref. [27]. We refer the reader to that work for specific
derivations and formulas. The starting point for the
construction of the system is a Friedmann-Lemaître-
Robertson-Walker (FLRW) spacetime with flat and com-
pact spatial hypersurfaces (isomorphic to a three-torus, T3).

We employ spatial coordinates adapted to the homogeneity.
The matter content is given by a homogenous scalar field
subject to a potential (that, classically, would play the role
of the inflaton), and a Dirac field, both of them minimally
coupled. The Dirac field is treated entirely as a perturba-
tion. Besides, we can introduce perturbations of the metric
and of the scalar field, as discussed in Refs. [27,30,31].
More specifically, we truncate our perturbed system so

that its Einstein-Dirac action is at most quadratic in all the
perturbations [28,32]. Our canonical formulation is
obtained from the symplectic structure and from the
Hamiltonian associated with this truncated action. Within
this truncation scheme, and regardless of the consideration
or not of additional perturbations, the Dirac field couples
exclusively to the homogeneous tetrad that describes the
FLRW sector of the cosmology, because the Dirac action is
already quadratic in the fermionic field. This fact immedi-
ately implies that the fermionic d.o.f. are gauge invariant, at
the considered perturbative order. Namely, they commute
under Poisson brackets with the linear perturbative
(Hamiltonian and diffeomorphisms) constraints of the
relativistic system. On the other hand, together with an
Abelianization of these linear perturbative constraints and
suitable momenta of them, it is possible to construct a
completely gauge-invariant parametrization of the sector of
the phase space that contains the physical information
about the metric and scalar field perturbations, as explained
in Refs. [30,31]. In particular, this information can be
encoded in a set of variables that consists of the well-known
tensor and Mukhanov-Sasaki gauge invariants [33–37]. To
arrive at this description of the perturbations, one intro-
duces linear transformations on the original perturbative
variables, transformations which depend on the homo-
geneous sector of the phase space. It is then possible to
complete the change of variables to include this homo-
geneous sector as well and obtain a canonical set for the
entire system, again at the considered truncation order in
perturbations. As a result, the new canonical variables for
the homogeneous d.o.f. acquire a (spatially integrated)
correction which is quadratic in the metric and inflaton
perturbations. In the case of the Dirac field, given its
consideration as a perturbation and the fact that its con-
tribution to the action is quadratic, one finds within our
truncation scheme that the expression of the Dirac
Hamiltonian in terms of the new homogeneous tetrads
amounts just to a minimal coupling of the fermions directly
with such new variables.
To exploit the spatial symmetries associated with the

homogeneous foliation of the unperturbed sector of our
model, that is, the FLRW cosmology, it is most convenient
to expand the perturbations in spatial modes (of the
Laplace-Beltrami or Dirac operators) on T3. For the
fermionic content, in particular, each of the two chiral
components of the Dirac field may be expanded in a
complete set of eigenspinors of the Dirac operator on T3,
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after imposing the time gauge on the homogeneous tetrads
(e.g., by considering a diagonal gauge) [28]. The spectrum
of that operator is discrete and characterized by eigenvalues
�ωk ¼ �2πj  kþ  τj=l0, where l0 is the compactification
length of the tori,  k ∈ Z3, and 2  τ can be any of the constant
vectors that form the standard orthonormal basis of the
lattice Z3 and that characterize each of the eight possible
spin structures on T3 [38,39]. Since ωk grows like j  kj when
this quantity tends to infinity, the density of states with
eigenvalues in an interval ðωk;ωk þ Δωk� grows asymp-
totically as ω2

kΔωk multiplied by a constant. Then, let us
consider the Dirac field multiplied by the rescaling factor
e3α=2, where α is, up to an additive constant, the logarithm
of the scale factor of the FLRW cosmology, once we have
corrected it with quadratic contributions of the perturba-
tions as we have commented above. In the expansion of the
left-handed component of such rescaled Dirac field, we call
m  k and r̄  k, up to a multiplicative constant ½4π=ð3l0Þ�−3=4,
the time-dependent coefficients of the eigenspinors of the
Dirac operator on T3 with respective eigenvalues ωk and
−ωk. Similarly, s̄  k and t  k respectively denote the coeffi-
cients, up to the mentioned constant factor, of the complex
conjugates of the eigenspinors with eigenvalues ωk and
−ωk in the expansion of the right-handed component of the
rescaled Dirac field. All of these eigenspinor coefficients
are taken as Grassmann variables [40], in order to capture
the anticommuting nature of the field. Besides, each of
them forms a canonical pair with its complex conjugate,
with a Dirac bracket (obtained after eliminating second-
class constraints that relate the Dirac field with its momen-
tum) equal to −i, and vanishing anticommutation relations
with the rest of coefficients. Introducing these mode
decompositions in the action, one obtains the fermionic
contribution to the total Hamiltonian. This contribution is
quadratic in the fermionic variables, and is given by a sum
over all modes, which decouple from each other. It comes
multiplied by the homogeneous lapse function N0, so we
call it N0HD. As expected, this fermionic term adds to the
zero mode of the Hamiltonian constraint, which is therefore
the only constraint affected.

A. Instantaneous diagonalization
of the Dirac Hamiltonian

As commented in the introduction, and partially motivated
by the work of D’Eath and Halliwell [28], the following
annihilation and creationlike variables were chosen in
Ref. [27] for the description of the fermionic d.o.f.:

ăðx;yÞ k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξk − ωk

2ξk

s
x  k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξk þ ωk

2ξk

s
ȳ−  k−2  τ;

¯̆b
ðx;yÞ
 k

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξk þ ωk

2ξk

s
x  k −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξk − ωk

2ξk

s
ȳ−  k−2  τ; ð2:1Þ

where ðx  k; y  kÞ is any of the ordered pairs ðm  k; s  kÞ or ðt  k; r  kÞ,
and ăðx;yÞ k

and ¯̆b
ðx;yÞ
 k

correspond to annihilationlike variables

for particles and creationlike variables for antiparticles,
respectively. Besides, an overbar denotes complex conjuga-
tion, and we have defined

ξk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
k þ M̃2e2α

q
; ð2:2Þ

where M̃ ¼ 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð3l30Þ

q
is the mass M of the Dirac field

up to a multiplicative constant [27]. Notice that then the
square roots appearing in Eq. (2.1) are always well defined
and real. The variables (2.1) are distinguished (apart from
irrelevant redefinitions among degenerate modes) by the fact
that they diagonalize HD (if one ignores the  k ¼  τ mode2).
This diagonalization means that no term containing creation
or annihilation of particle-antiparticle pairs appears in the
resulting expression of HD. More specifically, if we call H  k,

with  k ≠  τ, each of the terms in the sum that forms HD,
we get

H  k ¼
e−α

2

X
ðx;yÞ

½ξkð ¯̆aðx;yÞ k
ăðx;yÞ k

− ăðx;yÞ k
¯̆aðx;yÞ k

þ ¯̆b
ðx;yÞ
 k

b̆ðx;yÞ k
− b̆ðx;yÞ k

¯̆b
ðx;yÞ
 k

Þ�; ð2:3Þ
where the sum over ðx; yÞ is over the pairs ðm; sÞ and ðt; rÞ.
Although this diagonalization might seem appealing, it turns
out that the introduction of these annihilation and creation-
like variables gives rise to the appearance of an additional,
nondiagonal, quadratic contribution to the fermionic part of
the Hamiltonian of the system. This is due to the fact that the
definition (2.1) is a background-dependent linear trans-
formation of the fermionic mode coefficients, inasmuch as
it involves the homogeneous variable α. In fact, it is not hard
to see that the transformation is canonical when restricted to
the fermionic sector of the phase space. However if, adopting
the strategy of the hybrid approach, one wants a trans-
formation that respects the canonical symplectic structure of
the entire set of d.o.f. at the considered order of truncation,
then the momentum of α must be modified with the addition
of a factor that is quadratic in the fermionic perturbations,
according to our previous comments. If we call π̆α this
new canonical momentum, the expression of the total
Hamiltonian in terms of the new canonical variables is
functionally the same as in terms of the old homogeneous
ones, but with an additional sum over  k of the following
contributions [27]:

2This particular contribution to HD is only present when a
trivial spin structure is chosen on T3, and it corresponds to
ωk ¼ 0. We safely ignore it throughout this work since, owing to
the compactness of the spatial sections, it can be isolated from the
rest of contributions and be handled without producing infrared
divergences.
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−iN0

X
ðx;yÞ

M̃ωk

2ξ2k
e−2απ̆αðăðx;yÞ k

b̆ðx;yÞ k
þ ¯̆aðx;yÞ k

¯̆b
ðx;yÞ
 k

Þ: ð2:4Þ

The coefficient of each of these “interaction” terms, that
produce the creation and annihilation of pairs, decays
asymptotically as ω−1

k . As shown in Ref. [27], this asymp-
totic behavior is transmitted to the quantum theory [at least in
regimes where the state for the homogeneous geometry
experiences (almost) no transition mediated by the total
Hamiltonian, so that the geometric information can be
encoded in expectation values on this state]. This asymptotic
behavior, together with the specific dependence on ωk, α,
and M̃ of the part ofH  k which is asymptotically dominant, is
what at the end of the day guarantees that the fermionic
quantum dynamics can be implemented unitarily in Fock
space. Nonetheless, the fact that the discussed interaction
terms decay asω−1

k in the ultraviolet regime, and not faster, is
precisely what leads to a possibly divergent backreaction on
the state of the homogenous geometry. Indeed, such back-
reaction was seen to be a sum over  k of terms of dominant
order equal toω−3

k , which is not absolutely convergent, given
the quadratic growth of the density of states (see e.g.,
Refs. [41,42] for additional details concerning the conver-
gence of mode-dependent series in T3).

B. Alternative choices of fermionic variables

In order to explore whether other choices of fermionic
variables may elude the appearance of divergences in the
quantum field theory treatment, in this section we consider
a rather generic family of alternative definitions of anni-
hilation and creationlike variables for the Dirac field. For
this purpose, we exploit the freedom to perform linear
canonical transformations of the fermionic variables that
depend on the homogeneous background geometry. In
doing it, we are contemplating the possibility of consid-
ering different dynamical splittings between the back-
ground geometry and the genuine fermionic d.o.f. This
possibility comes naturally on stage when one aims at
constructing a quantum mechanical description of the
system as a whole, following a hybrid scheme in which
the homogeneous sector of the phase space is represented in
a fundamentally different manner.
Obviously, when one adopts this perspective, the choice

of fermionic variables is affected by a vast ambiguity. This
ambiguity can be viewed as twofold. On the one hand, there
are certainly many ways of redefining the dynamical
behavior of the fermionic excitations (and, correspond-
ingly, of the cosmological variables) by plugging different
dependencies on α and its momentum πα in the linear
canonical transformations that define the fermionic varia-
bles. On the other hand, even after a dynamical splitting has
been set, choices of fermionic annihilation and creationlike
variables related by constant transformations can give
rise to different, and in many cases inequivalent, Fock

representations, each with its associated vacuum. Actually,
both types of ambiguities can be analyzed simultaneously,
restricting to choices that respect the dynamical decoupling
between modes, by introducing generic annihilation and
creationlike variables of the form

aðx;yÞ k
¼ f

 k;ðx;yÞ
1 ðα; παÞx  k þ f

 k;ðx;yÞ
2 ðα; παÞȳ−  k−2  τ;

b̄ðx;yÞ k
¼ g

 k;ðx;yÞ
1 ðα; παÞx  k þ g

 k;ðx;yÞ
2 ðα; παÞȳ−  k−2  τ; ð2:5Þ

where, to satisfy the standard canonical anticommutation
relations, one must have [27]

g
 k;ðx;yÞ
1 ¼ eiJ

ðx;yÞ
 k f̄

 k;ðx;yÞ
2 ; g

 k;ðx;yÞ
2 ¼ −eiJ

ðx;yÞ
 k f̄

 k;ðx;yÞ
1 ; ð2:6Þ

f
 k;ðx;yÞ
2 ¼ eiF

 k;ðx;yÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jf  k;ðx;yÞ

1 j2
q

; ð2:7Þ

with Jðx;yÞ k
and F

 k;ðx;yÞ
2 being some (possibly background-

dependent) phases. Clearly, the choice (2.1) is one of these
many different sets of annihilation and creationlike variables.
Despite all the freedom allowed in the definitions (2.5),

one can restrict the selection of annihilation and creation-
like variables to a single privileged family of unitarily
equivalent choices by imposing some physically desirable
properties. In this sense, a satisfactory criterion is the
imposition that the dynamics of the annihilation and
creationlike variables can be implemented as unitary trans-
formations in Fock space (for dynamics that are not
rendered trivial with respect to the evolution dictated by
the Dirac equation and when the Dirac field is treated as a
test field propagating on the FLRW cosmology). This
condition, together with the invariance of the vacuum
under the continuous isometries of the toroidal sections
of the homogeneous cosmology, and a standard convention
for the notions of particles and antiparticles, indeed leads to
a family of unitarily equivalent Fock representations [29].
Actually, the set of annihilation and creationlike variables
defined in Eq. (2.1) belongs to this privileged family (this
was precisely the motivation to adopt that set in Ref. [27]).
Going beyond this particular choice, which we recall
diagonalizes HD, it turns out that the family of fermionic
variables (2.5)–(2.7) that satisfies the explained selection
criterion is totally specified by the following asymtpotic
behavior in the limit of large ωk:

f
 k;ðx;yÞ
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξk − ωk

2ξk

s
þ M̃eα

2ωk
½eiF  k;ðx;yÞ

2 − 1� þ θðx;yÞ k
with

X
 k

jθðx;yÞ k
j2 < ∞: ð2:8Þ

More specifically, the sequence fθðx;yÞ k
g  k∈Z3 must contain

an infinite subsequence that is oðω−1
k Þ, where the symbol

oð:Þ means asymptotically negligible with respect to its
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argument. In fact, given the asymptotic behavior of the
Dirac eigenvalues and of their density of states, and hence
the generic nonsummability of the sequence ω−3

k over all
 k ∈ Z3, it is not hard to convince oneself that θðx;yÞ k

must

have the following asymptotic behavior. For a nonempty

and infinite subset Z̃3 ⊂ Z3, the functions θðx;yÞ k
with

 k ∈ Z̃3 must be oðω−3=2
k Þ. In addition to this, there might

exist a complementary subset Z3
↑ of infinite cardinal such

that the sequence fθðx;yÞ k
g  k∈Z3

↑
, while being square sum-

mable, is of asymptotic order ω−3=2
k or higher.

On the other hand, let us recall that both F
 k;ðx;yÞ
2 and θðx;yÞ k

may be functions of the homogeneous FLRW variables
ðα; παÞ. For the sake of concreteness in our analysis and
adopting in the following the notation fhlg ¼ ffl; glg, with
l ¼ 1, 2, for any of the functions that determine the
fermionic variables, we restrict ourselves to functional
dependencies such that

∂n
αh

 k;ðx;yÞ
l ¼ Oðh  k;ðx;yÞ

l Þ; ∂n
παh

 k;ðx;yÞ
l ¼ Oðh  k;ðx;yÞ

l Þ; ð2:9Þ
for integers n at least up to 3 (and where the derivatives act
order by order in the asymptotic expansion for large ωk, at
least for the relevant orders in our discussion). Here, a
contribution isOð:Þwhen it is of the asymptotic order of the
corresponding argument (or smaller). Our restriction
excludes, in particular, the possibility of absorbing in the

phases of h
 k;ðx;yÞ
1 and h

 k;ðx;yÞ
2 any of the dominant oscil-

lations in conformal time that the Dirac field displays in the
limit of large ωk when it is treated as a test field obeying the
Dirac equation in a classical FLRW cosmology.
Similar to the situation found in the previous subsection,

the family of annihilation and creationlike variables defined
by Eqs. (2.5)–(2.7), together with condition (2.8), is
obtained by means of an ðα; παÞ-dependent transformation
that is canonical within the fermionic sector of the phase
space. In order to be canonical in the entire truncated
system, as desired e.g., in the hybrid quantization strategy,
the geometric variables ðα; παÞ of the homogeneous sector
must be replaced with a new, corrected, canonical pair
ðα̃; π̃αÞ. Concretely, the corrections Δα̃ ¼ α̃ − α and Δπ̃α ¼
π̃α − πα that determine these new variables are quadratic in
the fermionic perturbations, and are given by [27]

Δα̃ ¼ i
2

X
 k;ðx;yÞ

½ð∂παx  kÞx̄  k þ ð∂πα x̄  kÞx  k þ ð∂παy  kÞȳ  k

þ ð∂πα ȳ  kÞy  k�; ð2:10Þ

Δπ̃α ¼ −
i
2

X
 k;ðx;yÞ

½ð∂αx  kÞx̄  k þ ð∂αx̄  kÞx  k þ ð∂αy  kÞȳ  k

þ ð∂αȳ  kÞy  k�: ð2:11Þ

Taking into account the quadratic order of our perturbative
truncation, one then concludes that the expression of the
total Hamiltonian of the cosmological system in terms of
these new variables can be obtained by directly substituting
the new pair ðα̃; π̃αÞ in its functional dependence on ðα; παÞ,
and replacing the Dirac Hamiltonian N0HD with

N0H̃D ¼ N0½HD þ e−3α̃π̃αΔπ̃α − 8πe3α̃VðϕÞΔα̃�: ð2:12Þ

Here, VðϕÞ is (up to a multiplicative constant [27]) the
potential of the homogeneous inflaton field ϕ, and all the
dependence of HD, Δα̃, and Δπ̃α on the homogeneous pair
ðα; παÞmust again be evaluated at ðα̃; π̃αÞ. In order to arrive
at this corrected fermionic Hamiltonian, a well-controlled
redefinition of the homogeneous lapse function must be
performed, adding to it a sum over modes of certain terms
that are quadratic in the fermionic perturbations [27].
Let us notice that, in terms of the family of annihilation

and creationlike variables (2.5)–(2.8) that we are consid-
ering, the Dirac contribution HD to the Hamiltonian does
no longer, in general, display a diagonal form as it did
before [see Eq. (2.3)]. In fact, one may obtain the new
expression of HD by inserting in Eq. (2.3) the Bogoliubov
transformation

ăðx;yÞ k
¼ κðx;yÞ k

aðx;yÞ k
þ λðx;yÞ k

b̄ðx;yÞ k
;

¯̆b
ðx;yÞ
 k

¼ e−iJ
ðx;yÞ
 k ½κ̄ðx;yÞ k

b̄ðx;yÞ k
− λ̄ðx;yÞ k

aðx;yÞ k
�; ð2:13Þ

that relates the old variables făðx;yÞ k
; ¯̆b

ðx;yÞ
 k

g employed in

Refs. [27,28] with the more general family considered here.
It is not hard to check that relations (2.6) and (2.7)
guarantee that this is indeed a Bogoliubov transformation
in the fermionic phase space, so that in particular we have

jκðx;yÞ k
j2 þ jλðx;yÞ k

j2 ¼ 1. A straightforward computation then

shows that

H  k ¼
e−α̃

2

X
ðx;yÞ

½ξ̃kð1 − 2jλðx;yÞ k
j2Þðāðx;yÞ k

aðx;yÞ k
− aðx;yÞ k

āðx;yÞ k

þ b̄ðx;yÞ k
bðx;yÞ k

− bðx;yÞ k
b̄ðx;yÞ k

Þ − 4ξ̃kðκðx;yÞ k
λ̄ðx;yÞ k

aðx;yÞ k
bðx;yÞ k

− κ̄ðx;yÞ k
λðx;yÞ k

āðx;yÞ k
b̄ðx;yÞ k

Þ�; ð2:14Þ

where ξ̃k stands for the result of replacing α directly with α̃
in the definition (2.2) of ξk. Besides, we recall that HD is
the sum over all modes  k ≠  τ of the corresponding
Hamiltonian term H  k.
Apart from the mentioned contributions to HD, inter-

action terms that cause the creation and annihilation of pairs
in all modes arise again from the corrections that are
proportional to Δα̃ and Δπ̃α in the expression (2.12) of
the fermionic Hamiltonian N0H̃D. All those terms can be
computed using Eqs. (2.10) and (2.11) after imposing the
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asymptotic relations (2.8). Then, one can regard the
resulting fermionic Hamiltonian as a sum over all  k ∈
Z3 of some functions N0H̃  k that possess a quite specific
asymptotic behavior. One obtains

H̃  k ¼
X
ðx;yÞ

��
e−α̃

2
ξ̃k þ h  k

D

�
ðāðx;yÞ k

aðx;yÞ k
− aðx;yÞ k

āðx;yÞ k

þ b̄ðx;yÞ k
bðx;yÞ k

− bðx;yÞ k
b̄ðx;yÞ k

Þ
þ h  k

Jðb̄ðx;yÞ k
bðx;yÞ k

− bðx;yÞ k
b̄ðx;yÞ k

Þ

þ eiðJ
ðx;yÞ
 k

−F
 k;ðx;yÞ
2

Þe−α̃ð2ωkθ̄
ðx;yÞ
 k

þ h̄  k
I Þaðx;yÞ k

bðx;yÞ k

− e−iðJ
ðx;yÞ
 k

−F
 k;ðx;yÞ
2

Þe−α̃ð2ωkθ
ðx;yÞ
 k

þ h  k
I Þāðx;yÞ k

b̄ðx;yÞ k
�;
ð2:15Þ

where we have defined

h  k
J ¼ −4πe3α̃VðϕÞ∂ π̃αJ

ðx;yÞ
 k

ðα̃; π̃αÞ

−
1

2
e−3α̃π̃α∂ α̃J

ðx;yÞ
 k

ðα̃; π̃αÞ: ð2:16Þ

To avoid complicating the notation in excess, we denote the
partial derivatives with respect to the homogeneous geom-

etry evaluated at ðα̃; π̃αÞ directly by ∂ α̃ and ∂ π̃α . Besides, h
 k
D

is a real function that, in the asymptotic regime of large ωk,
is given by

h  k
D ¼ 4πe4α̃VðϕÞ∂ π̃αF

 k;ðx;yÞ
2 ðα̃; π̃αÞ

þ 1

2
e−2α̃π̃α∂ α̃F

 k;ðx;yÞ
2 ðα̃; π̃αÞ

þOðMax½ω−2
k ; ðθðx;yÞ k

Þ2�Þ: ð2:17Þ

In this asymptotic regime, we also have for  k ∈ Z3
↑,

h  k
I ¼ OðMax½ω−1

k ; θðx;yÞ k
;ωkðθðx;yÞ k

Þ3�Þ; ð2:18Þ

while, for  k ∈ Z̃3,

h  k
I ¼ ie−2α̃π̃α

�
M̃eα̃

2ωk
eiF

 k;ðx;yÞ
2 þ ∂ α̃θ

ðx;yÞ
 k

ðα̃; π̃αÞ

− iθðx;yÞ k
∂ α̃F

 k;ðx;yÞ
2 ðα̃; π̃αÞ

�

þ 8πie4α̃VðϕÞ½∂ π̃αθ
ðx;yÞ
 k

ðα̃; π̃αÞ

− iθðx;yÞ k
∂ π̃αF

 k;ðx;yÞ
2 ðα̃; π̃αÞ� þOðω−2

k Þ: ð2:19Þ

The function Max½:; :� picks out the argument of dominant
asymptotic order. To arrive at these expressions, we have
made a convenient use of condition (2.9). Given the
standard convention for the assignation of particles and

antiparticles, this is the only relevant restriction that we
impose on the family of annihilation and creationlike
variables, apart from the physically appealing requirement
of a quantum dynamics that is compatible with the
symmetries of the homogeneous cosmology and is unitarily
implementable, in the context of quantum field theory in
curved spacetimes.

III. BACKREACTION TERM IN THE
HAMILTONIAN

The asymptotic characterization that we have carried out
of the fermionic part H̃D in the zero mode of the
Hamiltonian constraint allows for a rather general passage
to the quantum theory, without the need to specify a
particular choice of fermionic annihilation and creationlike
variables [among those allowed by Eqs. (2.8) and (2.9)].
With that freedom in mind, we now briefly summarize the
hybrid quantization of the system and display the equations
that result for the fermionic perturbations when one adopts a
kind of Born-Oppenheimer ansatz for the quantum states.
We recall that the phase space of the system has been split
into the following sectors. First of all, there is the homo-
geneous background, with canonical variables that, after
being perturbatively corrected, describe the homogeneous
FLRW geometry and the homogeneous inflaton. Secondly,
we have the information about the scalar and tensor
perturbations, encoded in the tensor and Mukhanov-
Sasaki gauge invariants, as well as in the linear perturbative
constraints of the system, together with their canonical
momenta. Finally, the fermionic d.o.f. are characterized
by variables of the form (2.5)–(2.7) subject to the conditions
(2.8) [and (2.9)]. All of these sectors are jointly subject to the
zero mode of the Hamiltonian constraint, formed from the
constraint of the unperturbed inflationary model (but evalu-
ated now in the new, corrected, background variables) by
adding to it terms that are quadratic in the gauge-invariant
perturbations. In particular, H̃D provides the fermionic
contribution to this global constraint. In the hybrid approach,
one then adopts some suitably chosen quantum representa-
tions for each of the different sectors, each of them with its
corresponding Hilbert or Fock space, and introduces some
well-defined operator(s) on the resulting tensor product
space to represent the constraint(s), imposed quantum
mechanically. This is highly nontrivial, given the fact that
the zero mode of the Hamiltonian constraint mixes the
homogeneous sector, which is provided with a quantum
gravity-inspired representation, with all the rest.
In this work, we do not worry about the specific details

of the representation chosen for the tensor and Mukhanov-
Sasaki perturbations, or about their associated part of the
zero mode of the Hamiltonian constraint. It suffices to say
that they are described with a suitable Fock representation
(for additional details, see e.g., Refs. [27,30,43]). As for the
Abelianized, linear perturbative constraints, their imposi-
tion can be made straightforward, since they are part of the
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constructed set of canonical variables. They just restrict the
quantum states not to depend on their canonical momenta,
which are purely gauge d.o.f. The remaining sectors that are
relevant for our study are then the homogeneous background
and the fermionic perturbations. For the former, we select a
loop quantum cosmology-inspired representation [22,25]. In
short, this means that, instead of working with the canonical
pair ðα̃; π̃αÞ, one performs a canonical transformation to
obtain a new pair that describes (up to corrections that are
quadratic in perturbations) the physical volume of the
universe V and its canonical momentum. This latter variable
contains, in turn, the information about the Ashtekar-
Barbero connection for the homogeneous sector. The volume
variable and the complex exponentiation of its momentum
are then the functions of the homogeneous geometry that are
represented quantum mechanically, adopting what is known
as a polymeric representation. It is common to construct it on
a Hilbert space formed from eigenstates of the volume, with
the discrete inner product [21]. We denote this polymeric
Hilbert space as Hgrav

kin . On the other hand, for the inflaton
field ϕ and its momentumwe choose a standard Schrödinger
representation, with Hilbert space given by the space of
square integrable functions of the inflaton, L2ðR; dϕÞ. And
for the fermionic perturbations we consider the Fock
representation associated with any choice of annihilation
and creationlike variables within the family defined by
Eqs. (2.5)–(2.9). We call FD the corresponding Fock space.

Besides âðx;yÞ k
and b̂ðx;yÞ† k

respectively denote the annihilation

operators of particle excitations and the creation operators of
antiparticle excitations, with their adjoints acting reversely.
Let us recall that all the possible Fock representations chosen
in this way are unitarily equivalent. However, as we have
seen in the previous section, the fermionic Hamiltonian, and
in particular its asymptotic tail in the mode decomposition
with respect to the eigenspinors of the Dirac operator in T3,
can experience significant changes when choosing different
annihilation and creationlike variables in the considered
family. It is this freedom what we now exploit in order to see
whether we can avoid the appearance of ultraviolet diver-
gences in the quantum theory.
With the representation space fixed as the tensor product

of all the mentioned spaces, the construction of an operator
for the zero mode of the Hamiltonian constraint involves
some additional choices. For the representation of the
nonpolynomic functions of the homogeneous variables that
appear in the different contributions to the constraint, we
refer the reader to the prescriptions listed in Refs. [27,43]. It
suffices to say here that it is possible to define them in such a
way that the action of the constraint divides the space Hgrav

kin
into separable sectors (called superselection sectors) which
provide a strictly positive lower bound for the homogeneous
volume V [22]. On the other hand, we impose normal
ordering for the annihilation and creation operators that
represent the Fock quantized perturbations.

A. Schrödinger and Heisenberg equations

In order to find solutions to the zero mode of the
Hamiltonian constraint, namely states that are annihilated
by its (adjoint) action, we follow the strategy of
Refs. [27,30,43] and adopt a convenient ansatz as follows.
We consider states with a wave function in which the
dependence on the homogeneous geometry and on each of
the perturbative sectors can be factorized in a different term.
On the other hand, all of these factors, that can be regarded
as wave functions for each of the corresponding sectors, are
allowed to depend on the homogeneous inflaton, ϕ, which
then plays the role of an internal time for the total system.
We generically call ΓðV;ϕÞ the part of the wave function
that contains the information about the homogeneous
geometry, while ψDðN D;ϕÞ denotes the part with depend-
ence on the fermionic d.o.f. The abstract notationN D refers
to the occupation numbers of all the fermionic particles and
antiparticles. Moreover, as an ingredient of our ansatz, we
restrict our considerations to normalized states Γ in Hgrav

kin
with a unitary evolution in ϕ, which furthermore is

generated by a positive operator ˆ̃H0,

−i∂ϕΓðV;ϕÞ ¼ ˆ̃H0ΓðV;ϕÞ: ð3:1Þ
Besides, the above generator is chosen so that the action of

ð ˆ̃H0Þ2 þ ∂2
ϕ on Γ differs from the corresponding action of

the constraint of the unperturbed FLRW cosmology at most
in a quadratic contribution of the perturbations.
With this ansatz for the states, we impose the

Hamiltonian constraint (conveniently densitized in the
homogeneous volume). Then, if in the state Γ we can
ignore any transition in the homogeneous geometry medi-
ated by the action of our quantum Hamiltonian constraint,
and the contribution of the perturbations to the momentum
of the inflaton is negligible with respect to that of Γ
(estimated as the expectation value of ˆ̃H0), we arrive at a
collection of Schrödinger-like equations, with respect to ϕ,
one for each of the partial wave functions of the system on
the different perturbative sectors. For details about the
calculations and involved approximations, we refer
the reader to Refs. [27,30]. Here we are interested in the
equation that rules the evolution of the fermionic wave
function ψD with respect to ϕ. This equation was deduced
in Ref. [27] for the particular choice (2.1) of annihilation
and creationlike variables. Adapting the derivation to the
family of fermionic variables considered here, we get

i∂ϕψDðN D;ϕÞ ¼
l0h dV2=3eα̃H̃DiΓ − CðΓÞ

D ðϕÞ
h ˆ̃H0iΓ

ψDðN D;ϕÞ

≡HðΓÞ
D ðϕÞψDðN D;ϕÞ: ð3:2Þ

Here, the hat over classical observables indicates their
corresponding representation as operators, according to the
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prescriptions of the works that we have already mentioned.
Besides, the brackets h:iΓ stand for the expectation value in
Γ, taken with respect to the inner product inHgrav

kin . Since the
momentum of ϕ does not appear in H̃D, the right-hand side
of (3.2) represents a ϕ-dependent operator (or a family of
operators labeled by ϕ, as one prefers) acting on the
fermionic sector. Hence, one may interpret this operator
as the (effective) Hamiltonian that generates the evolution
of the fermionic d.o.f. in the time ϕ. This Hamiltonian,

HðΓÞ
D ðϕÞ, captures the most relevant features of the quantum

background spacetime by means of the expectation values
on Γ and the specific quantum representation of the
geometry that is employed.

On the other hand, the function CðΓÞ
D ðϕÞ, added to similar

contributions that arise from the scalar and tensor pertur-
bations, provides the mean value in Γ of the difference

between ð ˆ̃H0Þ2 þ ∂2
ϕ and the Hamiltonian constraint of the

unperturbed model3 [27]. Thus, it can be understood as
the fermionic contribution to the quantum backreaction on
the homogeneous background, inasmuch as the mentioned
difference actually measures how much Γ departs from an
exact solution of the unperturbed system.
Since the term H̃D is a sum over all possible fermionic

modes, the Schrödinger equation (3.2) may be decomposed
in a collection of individual equations, one for each of the
modes. The fermionic contribution to the backreaction,

CðΓÞ
D ðϕÞ, then depends on the behavior of the mode

solutions. In fact, one does not always get a well-defined
fermionic backreaction without applying regularization
techniques. This issue critically depends on the asymptotic

tail of the fermionic Hamiltonian HðΓÞ
D ðϕÞ, when expressed

as a sum over modes. And therefore it depends on the set of
annihilation and creationlike variables chosen to describe
the fermionic d.o.f. Thus, in order to analyze the possible

divergence of CðΓÞ
D ðϕÞ, we study the solutions to Eq. (3.2).

In doing this, it is most convenient to view the Hamiltonian

HðΓÞ
D ðϕÞ as the generator of some Heisenberg-like dynam-

ics for the fermionic annihilation and creation operators. In
fact, from Eq. (3.2) one can easily get the associated
Heisenberg equations, taking into account the decomposi-
tion of H̃D as a sum over modes of the functions H̃  k that
have an asymptotic behavior determined by Eq. (2.15). In
more detail, if we introduce the following state-dependent
change to a conformal time,

dηΓ ¼ l0hV̂2=3iΓ
h ˆ̃H0iΓ

dϕ; ð3:3Þ

which is well-defined thanks to the positivity of ˆ̃H0 and the
lower positive bound on the volume in each superselection
sector of loop quantum cosmology, we obtain the following
Heisenberg equations, evaluated at ηΓ ¼ η:

dηΓ â
ðx;yÞ
 k

ðη; η0Þ ¼ −iFðΓÞ
 k
âðx;yÞ k

ðη; η0Þ þGðΓÞ
 k
b̂ðx;yÞ† k

ðη; η0Þ;
dηΓ b̂

ðx;yÞ†
 k

ðη; η0Þ ¼ iðFðΓÞ
 k

þ J̃ðΓÞ k
Þb̂ðx;yÞ† k

ðη; η0Þ
− ḠðΓÞ

 k
âðx;yÞ k

ðη; η0Þ; ð3:4Þ

where, in the asymptotic regime of large ωk,

J̃ðΓÞ k
¼ h d

2eα̃V2=3h  k
JiΓ

hV̂2=3iΓ
; ð3:5Þ

FðΓÞ
 k

¼ h dV2=3ξkiΓ þ 2h d
eα̃V2=3h  k

DiΓ
hV̂2=3iΓ

; ð3:6Þ

GðΓÞ
 k

¼
2iωkh

d
eiðF

 k;ðx;yÞ
2

−Jðx;yÞ
 k

ÞV2=3θðx;yÞ k
iΓ þ ih

d
eiðF

 k;ðx;yÞ
2

−Jðx;yÞ
 k

ÞV2=3h  k
I iΓ

hV̂2=3iΓ
: ð3:7Þ

The factors h  k
J, h

 k
D, and h  k

I are given in Eqs. (2.16)–(2.19).
Provided that our prescriptions for the representation of the
homogeneous geometry promote real functions to (at least)

symmetric operators, we have that FðΓÞ
 k

and J̃ðΓÞ k
are real. In

addition, we assume that the state Γ is such that all the
considered functions admit asymptotic expansions in the
limit of infinitely large ωk. The coefficients of these expan-
sions are expectation values in Γ of mode-independent

operators. Actually, for our discussion, it suffices that the
expansions exist up to terms of the order of a certain inverse
power of ωk.
The Heisenberg equations determine a family of anni-

hilation and creation operators parametrized by different
values η of ηΓ, once one fixes as initial data at ηΓ ¼ η0 the

annihilation and creation operators âðx;yÞ k
and b̂ðx;yÞ† k

that

appear in the fermionic Hamiltonian (together with their
adjoints). It is straightforward to see that each such family

of operators, âðx;yÞ k
ðη; η0Þ and b̂ðx;yÞ† k

ðη; η0Þ, can be obtained

by means of a Bogoliubov transformation from the initial

ones, âðx;yÞ k
and b̂ðx;yÞ† k

. In order to analyze the properties of

3We notice here a typo in Ref. [27], where CðΓÞ
D ðϕÞ and the rest

of the backreaction contributions in Eqs. (6.5)–(6.7) of that paper
should appear divided by h ˆ̃H0iΓ.
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that transformation, we follow a strategy that is close to the
one developed in Ref. [27] for the particular choice of
variables (2.1). In the present and more general case,
nonetheless, the analysis has some peculiarities that affect
the asymptotic regime of large ωk. So, let us study in detail
this asymptotic behavior.
We first introduce the following fermionic operators,

motivated in part by the previous definitions (2.5)–(2.7) of
the annihilation and creationlike variables and by the

dominant asymptotic term in FðΓÞ
 k
,

x̂  kðη; η0Þ ¼ fðΓÞ1;k â
ðx;yÞ
 k

ðη; η0Þ

þ e
−i
R

η

η0
dηΓJ̃

ðΓÞ
 k fðΓÞ2;k b̂

ðx;yÞ†
 k

ðη; η0Þ;
ŷ†
−  k−2  τ

ðη; η0Þ ¼ fðΓÞ2;k â
ðx;yÞ
 k

ðη; η0Þ

− e
−i
R

η

η0
dηΓJ̃

ðΓÞ
 k fðΓÞ1;k b̂

ðx;yÞ†
 k

ðη; η0Þ; ð3:8Þ

where

fðΓÞ1;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F̃ðΓÞ
k − ωk

2F̃ðΓÞ
k

vuut ; fðΓÞ2;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F̃ðΓÞ
k þ ωk

2F̃ðΓÞ
k

vuut ;

F̃ðΓÞ
k ¼ h ˆV2=3ξkiΓ

hV̂2=3iΓ
: ð3:9Þ

Notice that fðΓÞ1;k and fðΓÞ2;k are both real functions for
sufficiently large ωk, given the asymptotic behavior of

ξk, and they satisfy jfðΓÞ1;k j2 þ jfðΓÞ2;k j2 ¼ 1. These newly
introduced operators inherit the following dynamics
from Eq. (3.4):

dηΓ x̂  kðη; η0Þ ¼ i

�
ωk

�
1þ

FðΓÞ
 k

− F̃ðΓÞ
k

F̃ðΓÞ
k

�
þ PðΓÞ

 k

�
x̂  kðη; η0Þ þHðΓÞ

 k
ŷ†
−  k−2  τ

ðη; η0Þ;

dηΓ ŷ
†
−  k−2  τ

ðη; η0Þ ¼ −i
�
ωk

�
1þ

FðΓÞ
 k

− F̃ðΓÞ
k

F̃ðΓÞ
k

�
þ PðΓÞ

 k

�
ŷ†
−  k−2  τ

ðη; η0Þ − H̄ðΓÞ
 k
x̂  kðη; η0Þ; ð3:10Þ

with the definitions

PðΓÞ
 k

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF̃ðΓÞ

k Þ2 − ω2
k

q
F̃ðΓÞ
k

ℑðGðΓÞ
 k
e
i
R

η

η0
dηΓJ̃

ðΓÞ
 k Þ; ð3:11Þ

HðΓÞ
 k

¼ −GðΓÞ
 k
e
i
R

η

η0
dηΓJ̃

ðΓÞ
 k

− i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF̃ðΓÞ

k Þ2 − ω2
k

q �
1þ

FðΓÞ
 k

− F̃ðΓÞ
k

F̃ðΓÞ
k

�

þ
ωkðF̃ðΓÞ

 k
Þ0

2F̃ðΓÞ
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF̃ðΓÞ

k Þ2 − ω2
k

q þ iQðΓÞ
 k
; ð3:12Þ

QðΓÞ
 k

¼ F̃ðΓÞ
k þ ωk

F̃ðΓÞ
k

ℑðGðΓÞ
 k
e
i
R

η

η0
dηΓJ̃

ðΓÞ
 k Þ: ð3:13Þ

Here, the prime denotes the derivative with respect to ηΓ
and ℑð:Þ is the imaginary part. Employing now the compact
notation fẑ  kg ¼ fx̂  k; ŷ−  k−2  τg and introducing the rescaled

operators ˆ̃z  k ¼ ðiHðΓÞ
 k
Þ−1=2ẑ  k, these all turn out to satisfy

the same second order equation,

ˆ̃z00 k ¼ −½ω̃2
 k
þ jHðΓÞ

 k
j2 − iω̃0

 k
� ˆ̃z  k; ð3:14Þ

where

ω̃  k ¼ ωk

�
1þ

FðΓÞ
 k

− F̃ðΓÞ
k

F̃ðΓÞ
k

�
þ PðΓÞ

 k
þ i
2
ðlnHðΓÞ

 k
Þ0:

ð3:15Þ

It can be checked that two independent solutions of the
linear differential equation (3.14) are z̃l k ¼ exp½−ið−1ÞlΘ̃l

 k
�

with

Θ̃l
 k
ðη0Þ ¼ 0; ðΘ̃l

 k
Þ0 ¼ ω̃  k þ Λl

 k
; l ¼ 1; 2; ð3:16Þ

where Λl
 k
are the solutions of the Ricatti equation

ðΛl
 k
Þ0 ¼ ið−1Þl½ðΛl

 k
Þ2 þ 2ω̃  kΛ

l
 k
� − ul k; ð3:17Þ

ul k ¼ ið−1ÞljHðΓÞ
 k
j2 þ ½ð−1Þl þ 1�ω̃0

 k
; ð3:18Þ

with initial conditions Λl
 k
ðη0Þ ¼ 0. The corresponding

independent solutions for ẑ  k, after undoing the scaling,
are then given by zl k ¼ exp½−ið−1ÞlΘl

 k
�, where
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Θl
 k
¼ ωkðη − η0Þ þ

i
2
½ð−1Þl þ 1� ln

� HðΓÞ
 k

HðΓÞ;0
 k

�

þ ωk

Z
η

η0

dηΓ

�FðΓÞ
 k

− F̃ðΓÞ
k

F̃ðΓÞ
k

�
þ
Z

η

η0

dηΓðΛl
 k
þ PðΓÞ

 k
Þ:

ð3:19Þ
From now on, we use a superindex or a subindex 0 (on
occasions preceded by a coma) to denote evaluation at
ηΓ ¼ η0. With the above independent solutions of the
second order equation at hand, the relation between x̂  k
and ŷ†

−  k−2  τ
(or their adjoints) implied by the first order

equations (3.10), and the relation of these operators with
the annihilation and creation operators in the Heisenberg
picture, we can readily derive the dynamical Bogoliubov
transformation of the latter as

âðx;yÞ k
ðη; η0Þ ¼ α  kðη; η0Þâ

ðx;yÞ
 k

þ β  kðη; η0Þb̂
ðx;yÞ†
 k

;

b̂ðx;yÞ† k
ðη; η0Þ ¼ −e

i
R

η

η0
dηΓJ̃

ðΓÞ
 k β̄  kðη; η0Þâ

ðx;yÞ
 k

þ e
i
R

η

η0
dηΓJ̃

ðΓÞ
 k ᾱ  kðη; η0Þb̂

ðx;yÞ†
 k

; ð3:20Þ

where the alpha and beta coefficients take the expressions

α  k ¼
�
fðΓÞ1;kðfðΓÞ;01;k − fðΓÞ;02;k ζ  kÞe

i
R

η

η0
dηΓΛ̃1

 k − fðΓÞ2;kf
ðΓÞ;0
1;k ζ̄  k

H̄ðΓÞ
 k

H̄ðΓÞ;0
 k

e
i
R

η

η0
dηΓ

¯̃Λ2
 k

�
e
iωk

h
η−η0þ

R
η

η0
dηΓ

F
ðΓÞ
 k

−F̃ðΓÞ
k

F̃
ðΓÞ
k

i

þ
�
fðΓÞ2;k ðfðΓÞ;01;k ζ̄  k þ fðΓÞ;02;k Þe−i

R
η

η0
dηΓ

¯̃Λ1
 k þ fðΓÞ1;kf

ðΓÞ;0
2;k ζ  k

HðΓÞ
 k

HðΓÞ;0
 k

e
−i
R

η

η0
dηΓΛ̃2

 k

�
e
−iωk

h
η−η0þ

R
η

η0
dηΓ

F
ðΓÞ
 k

−F̃ðΓÞ
k

F̃
ðΓÞ
k

i
;

ð3:21Þ

β  k ¼
�
fðΓÞ1;kðfðΓÞ;02;k þ fðΓÞ;01;k ζ  kÞe

i
R

η

η0
dηΓΛ̃1

 k − fðΓÞ2;kf
ðΓÞ;0
2;k ζ̄  k

H̄ðΓÞ
 k

H̄ðΓÞ;0
 k

e
i
R

η

η0
dηΓ

¯̃Λ2
 k

�
e
iωk

h
η−η0þ

R
η

η0
dηΓ

F
ðΓÞ
 k

−F̃ðΓÞ
k

F̃
ðΓÞ
k

i

þ
�
fðΓÞ2;k ðfðΓÞ;02;k ζ̄  k − fðΓÞ;01;k Þe−i

R
η

η0
dηΓ

¯̃Λ1
 k − fðΓÞ1;kf

ðΓÞ;0
1;k ζ  k

HðΓÞ
 k

HðΓÞ;0
 k

e
−i
R

η

η0
dηΓΛ̃2

 k

�
e
−iωk

h
η−η0þ

R
η

η0
dηΓ

F
ðΓÞ
 k

−F̃ðΓÞ
k

F̃
ðΓÞ
k

i
: ð3:22Þ

Here, we have defined

ζ  k ¼
iHðΓÞ;0

 k

2ωk½1þ ðFðΓÞ;0
 k

− F̃ðΓÞ;0
k Þ=F̃ðΓÞ;0

k � þ iðlnHðΓÞ
 k
Þ00 þ 2PðΓÞ;0

 k

; ð3:23Þ

Λ̃l
 k
¼ Λl

 k
þ PðΓÞ

 k
: ð3:24Þ

B. Unitarity and backreaction

The Bogoliubov transformation of the annihilation and
creation operators that implements the Heisenberg dynam-
ics dictated by Eq. (3.4) may be used to obtain solutions of
the associated Schrödinger equation (3.2) [27]. In order to
do so, nonetheless, it is necessary that the transformation
admits a unitary implementation in the fermionic Fock
space FD, for all values of initial and final times, η0 and η.
If this is the case, one can construct the unitary operator that
integrates the Heisenberg equation. Evolving with it the

Fock vacuum defined by the initial operators fâðx;yÞ k
; b̂ðx;yÞ k

g,
one indeed arrives at a solution of the Schrödinger
equation. Other solutions can be similarly found starting
with the initial n-particle states.
Actually, the considered Bogoliubov transformation is

unitarily implementable in Fock space if and only if the
sequence fβ  kðη; η0Þg  k∈Z3 is square summable [44,45]. This
summability exclusively depends on the asymptotic behav-
ior of the beta coefficients, in the regime of large ωk,
provided that they are regular in their dependence on η and

η0 for all  k ∈ Z3. This should be the case with the adopted
loop representation of the homogeneous geometry (and

suitable operator prescriptions), assuming that θðx;yÞ k
is
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taken as a smooth function of the geometric d.o.f.
Therefore, we are interested in the asymptotic behavior
of all functions and quantities appearing in Eq. (3.22). On
the one hand, as it was shown in Ref. [27], we have

F̃ðΓÞ
k ¼ ωk þ

M2

2l20ωk
WðΓÞ

1 þOðω−3
k Þ; WðΓÞ

1 ¼ hV̂4=3iΓ
hV̂2=3iΓ

;

ð3:25Þ

where we recall that M is the bare mass of the Dirac field.
Then,

fðΓÞ1;k ¼ M
2l0ωk

ffiffiffiffiffiffiffiffiffiffi
WðΓÞ

1

q
þOðω−3

k Þ;

fðΓÞ2;k ¼ 1 −
M2

8l20ω
2
k

WðΓÞ
1 þOðω−4

k Þ: ð3:26Þ

On the other hand, from the asymptotic behavior of h  k
D ¼

Oð1Þ and h  k
I , that follows from Eqs. (2.17)–(2.19) together

with condition (2.9), we get

FðΓÞ
 k

− F̃ðΓÞ
k

F̃ðΓÞ
k

¼ 2h d
eα̃V2=3h  k

DiΓ
h dV2=3ξkiΓ

¼ Oðω−1
k Þ;

PðΓÞ
 k

¼ Oq

�
GðΓÞ

 k
ω−1
k

�
¼ OðMax½ω−2

k ; θðx;yÞ k
�Þ;

ð3:27Þ

and therefore

HðΓÞ
 k

¼ −ḠðΓÞ
 k
e
−i
R

η

η0
dηΓJ̃

ðΓÞ
 k

þM
l0

ffiffiffiffiffiffiffiffiffiffi
WðΓÞ

1

q �
−i
�
1þ 2h d

eα̃V2=3h  k
DiΓ

h dV2=3ξkiΓ

�

þ 1

4ωk
ðlnWðΓÞ

1 Þ0
�
þOðMax½ω−2

k ; GðΓÞ
 k
ω−2
k �Þ;

ð3:28Þ

so that

ζ  k ¼
M

2l0ωk

ffiffiffiffiffiffiffiffiffiffiffiffi
WðΓÞ;0

1

q
−

i
2ωk

ḠðΓÞ;0
 k

þOðMax½ω−m
k ; GðΓÞ

 k
ω−2
k �Þ; ð3:29Þ

where m ¼ 2 for  k ∈ Z3
↑, whereas m ¼ 3 for  k ∈ Z̃3. The

remaining functions that we have to analyze in order to
derive the asymptotic behavior of β  kðη; η0Þ are the solutions
Λl

 k
of the Ricatti equation (3.17). Their behavior depends

drastically on the function ul k, given in Eq. (3.18). It is not

difficult to see that, provided condition (2.9) holds for
second order derivatives, all the contributions to those
functions are of asymptotic order Oð1Þ, except possibly for
jHðΓÞ

 k
j2. For this specific quantity, a look at Eq. (3.28)

reveals that one gets a contribution that may grow as

ω2
kðθðx;yÞ k

Þ2. In particular, it is Oð1Þ if θðx;yÞ k
¼ Oðω−1

k Þ.
Recalling the characterization of the possible asymptotic

behavior allowed for θðx;yÞ k
, described in the previous

section, we have the following scenarios:
(a) For  k ∈ Z̃3 or  k ∈ Z3

↑;1 ⊂ Z3
↑, with θ

ðx;yÞ
 k

¼ Oðω−1
k Þ in

Z3
↑;1, the source term ul k of the Ricatti equation (3.17)

is asymptotically Oð1Þ and the solutions Λl
 k
satisfy

Z
η

η0

dηΓΛl
 k
¼ −ð−1Þl i

2ωk

Z
η

η0

dηΓul k þOðω−2
 k
Þ

¼ Oðω−1
k Þ; ð3:30Þ

similarly as it happened in Ref. [27]. This can be
checked by solving Eq. (3.17), with vanishing initial
condition and after ignoring the nonlinear term,
by means of a repeated integration by parts [taking
into account condition (2.9)]. With the result, one
can estimate the order of the ignored term, obta-
ining Eq. (3.30).

(b) For tuples  k in the complement (up to a finite subset)

Z3
↑;2 of Z3

↑;1 in Z3
↑, that is such that ω−1

k ¼ oðθðx;yÞ k
Þ,

we use that ul k ¼ Oðω2
k½θðx;yÞ k

�2Þ. Let us notice, how-

ever, that it is only the imaginary part of ul k that gives a

growing contribution in the asymptotic regime of large
ωk, as can be seen from definition (3.18). It follows
that one may again compute the solutions of the linear
part of the Ricatti equation (3.17), that we call λl k, with

vanishing initial conditions. In this way, one finds

Z
η

η0

dηΓℜðλl kÞ ¼
1

2ωk

Z
η

η0

dηΓjHðΓÞ
 k
j2 þ oð1Þ;Z

η

η0

dηΓℑðλl kÞ ¼ oð1Þ; ð3:31Þ

where ℜð:Þ is the real part. Taking into account this
behavior, and iteratively repeating the same analysis
for the subdominant contributions to λl k in the solution

Λl
 k
of the entire Ricatti equation, one can show that,

asymptotically,Z
η

η0

dηΓℜðΛl
 k
Þ ¼ γ  k þ oð1Þ;Z

η

η0

dηΓℑðΛl
 k
Þ ¼ oð1Þ; ð3:32Þ

BEATRIZ ELIZAGA NAVASCUÉS et al. PHYS. REV. D 98, 063535 (2018)

063535-12



where γ  k does not depend on l. Therefore, in particu-
lar, in the asymptotic regime of large ωk,

e
−ið−1Þl

R
η

η0
dηΓΛl

 k ¼ e
−ið−1Þl

R
η

η0
dηΓℜðΛl

 k
Þ½1þ oð1Þ�:

ð3:33Þ

Employing all this asymptotic information, we can easily
show that the alpha and beta coefficients (3.21) and (3.22)
have the following behavior for infinitely large ωk:

α  kðη; η0Þ ¼ e
−iωkðη−η0Þ−i

R
η

η0
dηΓΞ

 k
1 þ oð1Þ; ð3:34Þ

β  kðη;η0Þ ¼
i

2ωk
fGðΓÞ;0

 k
e
−iωkðη−η0Þ−i

R
η

η0
dηΓΞ

 k
1

−GðΓÞ
 k
e
iωkðη−η0Þþi

R
η

η0
dηΓ½J̃ðΓÞ k

þΞ  k
2
�gþ δ  k; ð3:35Þ

δ  k¼OðMax½ω−3
k ;GðΓÞ

 k
ω−2
k �Þ

when  k∈ Z̃3;δ  k¼oðGðΓÞ
 k
ω−1
k Þ when  k∈Z3

↑; ð3:36Þ

where we have defined, with l ¼ 1, 2,

Ξ  k
l ¼ ωk

FðΓÞ
 k

− F̃ðΓÞ
k

F̃ðΓÞ
k

for  k ∈ Z̃3 ∪ Z3
↑;1;

Ξ  k
l ¼ ωk

FðΓÞ
 k

− F̃ðΓÞ
k

F̃ðΓÞ
k

þℜðΛl
 k
Þ for  k ∈ Z3

↑;2: ð3:37Þ

Then, in all cases, we have that

β  kðη; η0Þ ¼ OðMax½ω−3
k ; GðΓÞ

 k
ω−1
k �Þ: ð3:38Þ

Since the sequences that define any of the two quantities in
the Max function are square summable over Z3 [see the

definition of GðΓÞ
 k
, together with the asymptotic expression

for h  k
I and condition (2.8)], we can conclude that the

transformations implied by the Heisenberg equations (3.4)
are unitarily implementable in Fock space.
A comment is in order at this point. In our previous

analysis, we have assumed that HðΓÞ
 k

≠ 0. If this were not

the case, it is not hard to convince oneself that the beta
coefficients of the dynamical Bogoliubov transformation
would be of the same asymptotic order as ω−1

k , given the

behavior of fðΓÞ1;k and f
ðΓÞ
2;k . However, from Eq. (3.28) one can

check that, for HðΓÞ
 k

to vanish, θðx;yÞ k
must be precisely of

order Oðω−1
k Þ. Since θðx;yÞ k

forms a square summable

sequence by assumption, that might only happen for  k
in some subset of Z3

↑ where any sequence that is Oðω−1
k Þ

turned out to be square summable. Therefore, the
Heisenberg dynamics would also be unitarily implement-
able in this particular case. Taking this into account, our
following analysis about the backreaction can be applied to
all possible scenarios.
Once we have confirmed the unitarity of the Heisenberg

dynamics determined by our quantum expectation values
over the homogeneous geometry, which do not even need
to correspond to a background described by effective loop
quantum cosmology, we can proceed to construct solutions
of the associated Schrödinger equation (3.2) by evolving
the initial Fock vacuum with the corresponding unitary
operator. In order to do so, we follow the strategy of
Ref. [27], conveniently generalized to the present situation
but avoiding the repetition of redundant computations. First
of all, given the asymptotic formula (3.34), it is most
convenient to split the operator that implements the
Heisenberg dynamics into the composition of two unitaries.
The first one incorporates the dominant ηΓ-dependent phase
of the alpha coefficients; namely, it is the unitary operator
associated with the Bogoliubov transformation

âðx;yÞ k
→ e

−iωkðη−η0Þ−i
R

η

η0
dηΓΞ

 k
1 âðx;yÞ k

;

b̂ðx;yÞ† k
→ e

iωkðη−η0Þþi
R

η

η0
dηΓ½J̃ðΓÞ k

þΞ  k
1
�
b̂ðx;yÞ† k

: ð3:39Þ

The second unitary operator then completes the dynamical
transformation (3.20) by implementing the linear mapping

âðx;yÞ k
→ α̃  kðη; η0Þâ

ðx;yÞ
 k

þ β̃  kðη; η0Þb̂
ðx;yÞ†
 k

;

b̂ðx;yÞ† k
→ − ¯̃β  kðη; η0Þâ

ðx;yÞ
 k

þ ¯̃α  kðη; η0Þb̂
ðx;yÞ†
 k

; ð3:40Þ

with

α̃kðη; η0Þ ¼ e
iωkðη−η0Þþi

R
η

η0
dηΓΞ

 k
1αkðη; η0Þ;

β̃kðη; η0Þ ¼ e
−iωkðη−η0Þ−i

R
η

η0
dηΓ½J̃ðΓÞ k

þΞ  k
1
�
βkðη; η0Þ: ð3:41Þ

This latter operator can be written in the form e−T̂ , with [27]

T̂ ¼
X

 k≠  τ;ðx;yÞ
½Δ  kâ

ðx;yÞ†
 k

b̂ðx;yÞ† k
− Δ̄  kb̂

ðx;yÞ
 k

âðx;yÞ k

− iρ  kðâ
ðx;yÞ†
 k

âðx;yÞ k
þ b̂ðx;yÞ† k

b̂ðx;yÞ k
Þ þ icðx;yÞ k

�; ð3:42Þ

where cðx;yÞ k
∈ R is an undetermined phase, and we have

chosen the following parametrization of the (modified)
Bogoliubov coefficients:

BACKREACTION OF FERMIONIC PERTURBATIONS IN … PHYS. REV. D 98, 063535 (2018)

063535-13



α̃  k ¼ cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔ  kj2 þ ρ2 k

q
þ iρ  k

sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔ  kj2 þ ρ2 k

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔ  kj2 þ ρ2 k

q ;

β̃  k ¼ −Δ  k

sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔ  kj2 þ ρ2 k

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔ  kj2 þ ρ2 k

q : ð3:43Þ

An analogous calculation to that presented in Ref. [27],
taking now due care of the additional phase contribution

J̃ðΓÞ k
, shows that the evolution of the fermionic Fock

vacuum by the combined action of the two introduced
unitary operators indeed gives rise to solutions of the
Schrödinger equation (3.2), provided that

CðΓÞ
D ðϕÞ ¼ l0hV̂2=3iΓ

X
 k;ðx;yÞ

½ℑðGðΓÞ
 k
Δ̄  kÞ − dηΓc

ðx;yÞ
 k

�: ð3:44Þ

This is the fermionic contribution to the backreaction. In
the rest of this section, we analyze the convergence of this
fermionic backreaction by using our asymptotic analyses

above. In fact, one might always set the quantity CðΓÞ
D equal

to 0 by means of an appropriate choice of cðx;yÞ k
, i.e., by

conveniently tuning the phase of the solutions ψD to the
Schrödinger equation, even if the total sum of these phases
could then diverge. Ignoring this fine-tuning of the phases,
and hence avoiding the possible resummation of two
individually divergent quantities, we focus our attention
on the terms that depend on Δ̄  k. From our previous
definitions and considerations, it is not difficult to check
that α̃  k ¼ 1þ oð1Þ in the asymptotic regime of large ωk.
Therefore, the parametrization (3.43) implies that the
asymptotically dominant term in Δ  k is the same as for
β̃  k. Using Eq. (3.35) and the asymptotic behavior of ℜðΛl

 k
Þ

shown in Eq. (3.32), we then obtain

ℑðGðΓÞ
 k
Δ̄  kÞ ¼

1

2ωk

�
jGðΓÞ

 k
j2 −ℜ½GðΓÞ

 k
ḠðΓÞ;0

 k
� cos

�
2ωkðη − η0Þ þ

Z
η

η0

dηΓðJ̃ðΓÞ k
þ 2Ξ  k

1Þ
�

þ ℑ½GðΓÞ
 k
ḠðΓÞ;0

 k
� sin

�
2ωkðη − η0Þ þ

Z
η

η0

dηΓðJ̃ðΓÞ k
þ 2Ξ  k

1Þ
��

þ δ̃  k; ð3:45Þ

where the subdominant terms δ̃  k are of the asymptotic order

of δ  kG
ðΓÞ
 k
, with the behavior of δ  k being given in Eq. (3.36).

Hence, to ensure that the backreaction is finite, without the
need of introducing a divergent phase in the fermionic part
of the states, we only have to impose that the sum over
 k ∈ Z3 of the contributions in Eq. (3.45) be absolutely
convergent. In particular, this condition eliminates any
ambiguity that might affect the nonabsolute sum, given
the possibility of attaining conditional convergences.
Besides, we naturally require that this contribution to the
backreaction is well defined independently of the choice of
homogeneous state Γ, and for all times η. Taking into
account the different asymptotic behaviors allowed for

θðx;yÞ k
, we contemplate the following cases:

(i) For tuples  k ∈ Z3
↑, we have from Eqs. (2.15) and

(2.18) that GðΓÞ
 k

is of the same order as ωkθ
ðx;yÞ
 k

. The

subdominant term δ̃  k in Eq. (3.45) is then asymp-

totically negligible compared to ½GðΓÞ
 k
�2ω−1

k , since

θðx;yÞ k
is of order ω−3=2

k or higher in this case. Besides,

with our assumptions [including condition (2.9)], the
time-dependent oscillations in Eq. (3.45) cannot be
compensated, at dominant order, with the first term.
Hence, we conclude that the contribution to the

backreaction is absolutely summable over the con-
sidered modes, independently of Γ, if and only if the
sequence fωkjθðx;yÞ k

j2g  k∈Z3
↑
is summable (regardless

of the values of the canonical variables for the

homogeneous geometry on which θðx;yÞ k
may de-

pend). The sufficiency of this condition for the
oscillating terms in Eq. (3.45) follows, in particular,
from the use of the Cauchy-Schwarz inequality.

(ii) On the other hand, for  k ∈ Z̃3, we recall that ωkθ
ðx;yÞ
 k

must be negligible compared to ω−1=2
k . Employing

the asymptotic expressions (2.15) and (2.19), we

conclude that GðΓÞ
 k

is either of the same order as

ωkθ
ðx;yÞ
 k

or of order ω−1
k , whichever is dominant,

unless these two types of contributions are of the
same order and cancel each other. If this cancellation
did not happen, at least for a nonempty infinite
subset Z̃3

1 ⊆ Z̃3, it is not difficult to realize that the
terms (3.45) would not be absolutely summable over
Z̃3, given the asymptotic growth of the density of
states with the Dirac eigenvalue ωk. Therefore, it is

necessary that the term 2ωkθ
ðx;yÞ
 k

in H̃  k cancels any

possible contribution of order ω−1
k in h  k

I , up to terms
that are oðω−1

k Þ. Imposing this requirement, and
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recalling condition (2.9), we must have that, for
 k ∈ Z̃3

1,

θðx;yÞ k
¼ −i

M̃e−α

4ω2
k

παeiF
 k;ðx;yÞ
2 þ ϑðx;yÞ k

; ð3:46Þ

where ϑðx;yÞ k
¼ oðω−2

k Þ. This is a necessary condition
for the absolute convergence of the terms (3.45) in
Z̃3. Inserting this behavior into the interacting part of

H̃  k, and considering its relation with GðΓÞ
 k
, one can

show that this latter quantity has the same asymp-
totic order, for  k ∈ Z̃3

1, as the dominant contribution

among the terms ωkϑ
ðx;yÞ
 k

and ω−2
k . The latter type of

term automatically provides, when introduced in
Eq. (3.45), a convergent series in Z̃3

1. Thus, follow-
ing analogous arguments to those explained in our
previous case, we reach the conclusion that the
sufficient condition in Z̃3 for the absolute conver-
gence of the considered fermionic backreaction is
that

X
 k∈Z̃3

1

ωkjϑðx;yÞ k
j2 < ∞ ð3:47Þ

and that the sequence fMax½ω−3
k ;ωkjθðx;yÞ k

j2�g  k∈Z̃3
2

be

summable if the complement Z̃3
2 of Z̃3

1 in Z̃3 is
infinite.

All of these conditions, that ensure that the backreaction

contribution CðΓÞ
D is well defined without introducing any

regularization scheme, impose much more severe ultra-
violet restrictions to the choice of fermionic annihilation
and creationlike variables than the unitarity requirement
(2.8). Besides, it is worth emphasizing that the asymptotic
behavior characterized by conditions (3.46) and (3.47)
must hold for  k in a nonempty infinite subset Z̃3

1 of the
lattice Z3, while each of the subsets for which one must
demand the rest of conditions stated in the cases i and ii
above might be empty. At the end of the day, the asymptotic
behavior of the characteristic density of states of the Dirac
eigenvalues in T3 determines the specific form of these
conditions. Because of this, if we further restricted the
choice of annihilation and creationlike variables (e.g., by
symmetry considerations) so that they could not depend on
the tuple  k except through the corresponding eigenvalue
ωk, we would conclude that the studied fermionic back-
reaction would be absolutely convergent if and only if
conditions (3.46) and (3.47) are asymptotically satisfied for
all  k ∈ Z3 (except, possibly, a finite subset).
Finally, let us comment that one may want to restrict

even further the choice of fermionic variables in order to
guarantee that the Hamiltonian operator that appears in the

Schrödinger equation (3.2) has a well-defined action on the
Fock vacuum. As a consequence, the Hamiltonian would
then be properly defined in the dense subset of the Fock
space FD spanned by the n-particle/antiparticle states that
have a finite number of fermionic excitations. In that case,
the constraint equation (and thus the Schrödinger equations
derived from it) would indeed be a rigorously defined
equation, at least in what concerns the fermionic d.o.f.
Given the normal ordering adopted in the fermionic
Hamiltonian, it is clear that only the interacting terms, that
annihilate and create infinite pairs of particles and anti-
particles, may prevent the image of the vacuum providing a
normalizable state in FD. In fact, this nomalizability holds

if and only if the terms that multiply aðx;yÞ k
bðx;yÞ k

(and their

complex conjugates) in the decomposition of H̃D as a sum
over modes form a square summable sequence. Arguments
like those that we have explained show that this happens if
and only if one imposes conditions that are similar to the
ones displayed in i–ii above, but demanding the stronger
requirement of the summability of the sequences

fω2
kjθðx;yÞ k

j2g  k∈Z3
↑
; fω2

kjϑðx;yÞ k
j2g  k∈Z̃3

1

; and

fMax½ω−2
k ;ω2

kjθðx;yÞ k
j2�g  k∈Z̃3

2

: ð3:48Þ

IV. CONCLUSIONS

In this work, we have investigated a possible procedure
to avoid some of the typical divergences of quantum field
theory in the context of hybrid loop quantum cosmology.
Specifically, we have studied in detail the case of a Dirac
field minimally coupled to an inflationary cosmology. The
Dirac field has been treated as a perturbation, including its
zero mode if one exists, and in general additional scalar and
tensor perturbations have been permitted. In our perturba-
tive scheme, the action of the system is truncated at second
order in all the perturbations. After decomposing the
inhomogeneities in suitable modes, defined on the spatial
hypersurfaces of the homogeneous model, the resulting
relativistic system is subject to the zero mode of the
Hamiltonian constraint, that in particular contains all the
relevant fermionic contribution to the Hamiltonian, as well
as to (an infinite mode collection of) perturbative con-
straints that are linear in the metric and scalar perturbations.
At the considered quadratic perturbative order of our
truncation, the time-dependent mode coefficients that
describe the fermionic field are automatically gauge invari-
ant with respect to these perturbative constraints. Besides,
the rest of the perturbations in the system can be described
by means of a set of canonical variables that are formed by
the well-known Mukhanov-Sasaki and tensor gauge invar-
iants, and by an Abelianized version of the linear pertur-
bative constraints, together with all their momenta. The
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hybrid approach for the quantization of this cosmological
system is based in a convenient Fock representation for
each of the perturbative sectors of the phase space,
combined with a less standard quantum gravity-inspired
representation of the purely homogeneous d.o.f. (that can
be thought to describe an inflationary FLRW cosmology on
their own), namely the representation employed in loop
quantum cosmology.
We have focused our analysis on divergences that may

arise in the quantum theory from the standard Fock treat-
ment of the fermionic d.o.f. Actually, we have explored the
possibility of avoiding that these infinities appear by taking
into consideration the fact that it is the whole phase space of
the cosmological system what has to be treated quantum
mechanically in a hybrid way, rather than only the
fermionic d.o.f., while the FLRW cosmology is maintained
as a classical entity. As commented above, this means that
each sector of the total phase space is given a qualitatively
different quantum representation. This applies in particular
to what one may call the homogeneous background sector
and the Dirac perturbations. Within this context, it does not
seem unnatural to question whether one may separate them
in different ways, and thus assign different dynamical roles
to each of these sectors. These different alternatives for the
splitting can be realized in practice, without affecting the
rest of scalar and tensor perturbations, by considering
canonical transformations of the fermionic variables that
depend on the homogeneous background. When these
transformations are completed to be canonical for the
entire system (at the considered perturbative order of our
truncation), the Hamiltonian that generates the dynamics of
the new fermionic variables changes with respect to the
original one. We are then tempted to expect that, with an
adequate splitting of the joint dynamics of the geometric
FLRW d.o.f. and the Dirac field, we may attain a sat-
isfactory control of the divergences that arise from the
quantum field theory representation of the fermionic
variables in their corresponding Hamiltonian.
In more detail, here we have incorporated the freedom

that exists in identifying the Heisenberg dynamics of the
fermionic d.o.f., exploiting the different dynamical roles of
the homogeneous background and of the fermionic per-
turbations, by introducing families of annihilation and
creationlike variables that are obtained through back-
ground-dependent canonical transformations. The specific
form of these transformations is a priori only restricted by
the following physical consideration [and a mild condition
on their dependence on the homogeneous d.o.f.: see
Eq. (2.9)]. They must define variables that, in the context
of quantum field theory in classical curved spacetimes,
possess a nontrivial dynamics that is unitarily implement-
able in Fock space. Besides, the associated Fock vacuum
must be invariant under the classical symmetries of the
Dirac-FLRW system, and define a standard convention for
particles and antiparticles. These families of annihilation

and creationlike variables turn out to determine unitarily
equivalent Fock representations of the Dirac field. With
such a generic collection of different descriptions for the
fermionic d.o.f., we have computed the form of the
resulting Hamiltonian that generates their dynamics. In
particular, we have characterized its asymptotic tail, when it
is expressed as an infinite sum in terms of the annihilation
and creation coefficients of the spatial eigenmodes of the
Dirac operator. This fermionic Hamiltonian has a nontrivial
dependence on the resulting homogeneous sector of the
cosmological model. In fact, after implementing the hybrid
quantization procedure and adopting a kind of Born-
Oppenheimer ansatz for the physical quantum states that
are annihilated by the zero mode of the entire constraint,
one arrives at a fermionic Hamiltonian that is defined by
means of expectation values over the homogeneous geom-
etry, and that can be understood to generate a Schrödinger
dynamics for the part of the states that encodes the
information about the fermionic d.o.f. This Hamiltonian
operator, which varies with the specific choice of annihi-
lation and creationlike variables, generalizes the operator
that would be obtained in quantum field theory on curved
spacetimes, inasmuch as its dependence on the homo-
geneous background is no longer evaluated on a classical
geometry, but replaced with the corresponding expectation
values. We have carried out an asymptotic analysis, in the
regime of large eigenvalues ωk of the spatial Dirac operator,
of the Heisenberg dynamics associated with this fermionic
Hamiltonian, and we have shown that it amounts to a
Bogoliubov transformation of the annihilation and creation
operators which is unitarily implementable in Fock space.
The vacuum state, when evolved with the corresponding
unitary operator, can then be seen to provide solutions of
the Schrödinger equation with a very specific backreaction
term that depends on the geometric expectation values that
define the considered dynamics. This backreaction term
can serve to measure (in mean value) how much the
homogeneous part of the quantum states departs from an
exact solution of the unperturbed inflationary model. With
the obtained asymptotic information about the Heisenberg
dynamics, we have been able to characterize the choices of
annihilation and creationlike variables, in the family under
consideration, that allow for a finite fermionic backreac-
tion, without the need of introducing any regularization
technique or resummations of infinities based on a condi-
tional convergence. Once we have guaranteed that the
analyzed backreaction is well defined, we have seen that,
with some slightly more stringent conditions on our choice
of fermionic variables, we can also ensure that the fer-
mionic Hamiltonian is actually a rigorously defined oper-
ator in the dense subset of the Fock space spanned by
n-particle/antiparticle states.
The relevance of our characterization of the families of

fermionic annihilation and creationlike variables that
prevent divergences within the hybrid framework of loop
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quantum cosmology can be seen twofold. On the one hand,
we have shown that, for an infinite number of modes, the
canonical transformation that defines the fermionic variables
must display a very specific asymptotic dependence on the
homogeneous geometry, as well as on the mass of the Dirac
field [see Eqs. (2.8) and (3.46)]. This dependence in the
ultraviolet regime of large ωk actually implies a severe
restriction, in the quantum theory, about which part of the
dynamical d.o.f. of the system must be treated as geometric,
and which part contains the information about the genuine
fermionic excitations. On the other hand, it is clear that a
specific characterization of the physically admissible anni-
hilation and creationlike variables leads to a restriction on the
choice of fermionic vacuum, among the infinitely many that
are available (even when restricting all considerations to
choices selected by the unitarity of the classical dynamics).
In fact, the already mentioned, specific dependence on the
homogeneous background of the transformations that define
the fermionic variables has the effect of reducing the
asymptotic order of the interaction terms in the correspond-
ing fermionic Hamiltonian. One could think that a further
restriction of the choice of fermionic variables, and therefore
of their vacuum, is possible if one investigates even deeper
the asymptotic tail of the Hamiltonian and tries to eliminate
completely its interacting contribution. If this procedure
were viable, the variables determined in this way for the
description of the fermionic d.o.f. would then diagonalize the
resulting Hamiltonian, at least in the ultraviolet sector, and
therefore might be thought to be optimally adapted to the
quantum dynamics of the entire cosmological system.
Furthermore, the specification of suitable variables for

the quantum description of the fermionic d.o.f. can, at least
in certain regimes of physical interest, shed light on the
influence that the dynamics of this type of matter might
have on the quantum evolution of the homogeneous
background geometry. In this work, such effects can be
found, first, in the redefinition of the scale factor and its
momentum that is required in order that they remain
canonical with respect to the introduced fermionic varia-
bles. Besides, at least at the level of expectation values, a

genuinely quantum backreaction of the fermionic d.o.f. on
the behavior of the partial wave function that describes this

homogeneous geometry is contained in the function CðΓÞ
D ,

inasmuch as it measures, in mean value, how much the
homogeneous background differs from a quantum solution
of the nonperturbed cosmology. These effects can be given
precise formulas [see Eqs. (2.10), (2.11) and (3.44)] which,

if shown to be well-defined quantities as CðΓÞ
D has been seen

to be here, can serve as a starting point for the quantitative
determination of modifications that the presence of fer-
mionic matter may introduce in the dynamics of the
background geometry, with respect to the purely homo-
geneous scenario found in standard linearized cosmology
(even when this is described within the context of loop
quantum cosmology). These modifications would likely, in
turn, leave some imprint in the evolution of the primordial
perturbations of scalar and tensor type. Following tech-
niques like those explored recently in Ref. [46], one may
investigate the consequences and physical relevance that
these modifications may have on the power spectrum of the
cosmological perturbations, as well as on possible non-
Gaussianities. Actually, it should be possible to perform an
analysis similar to the one conducted in this work in order
to specify a privileged family of variables for the descrip-
tion of scalar and tensor perturbations in quantum cosmol-
ogy, such that their quantum Hamiltonian and backreaction
effects display well-behaved properties. If that were the
case, it might even be possible to investigate the interplay
between their associated backreaction functions [analogous

to CðΓÞ
D ] [27], the fermionic contribution, and the quantum

evolution of the background geometry.
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