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We consider a spin-3=2 particle and show that with a Planck reduced coupling, we can obtain a
sufficiently long lifetime making the spin-3=2 particle a good dark matter candidate. We show that this dark
matter candidate can be produced during inflationary reheating through the scattering of Standard Model
particles. The relic abundance as determined by Planck and other experimental measurements is attained
for reasonable values of the reheating temperature TRH ≳ 108 GeV. We consider two possible gauge
invariant couplings to the extended Standard Model. We find a large range of masses are possible which
respect the experimental limits on its decay rate. We expect smoking-gun signals in the form of a
monochromatic photon with a possible monochromatic neutrino, which can be probed in the near future in
IceCube and other indirect detection experiments.
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I. INTRODUCTION

Almost 90 years ago, in 1933, F. Zwicky published
a work that shed the first light on the presence of dark
matter in the Coma cluster [1], confirmed by Babcock in his
Ph.D. thesis while measuring the rotation curves of
Andromeda [2]. Several studies, including the study of
the stability of large-scale structures [3] confirmed the
hypothesis of a dark component in the Universe. Dark
matter composed of a new weakly interacting massive
neutral particle (WIMP) was proposed by Steigman et al.
[4] in 1978, and its precise abundance determination was
made from cosmic microwave background measurements
by the Planck satellite [5] and other experiments. Despite
being attractive, the WIMP paradigm is in tension with
direct detection measurements (see [6] for a review).
Indeed, the limit on the WIMP-nucleon scattering cross
section is σχ−p ≲ 10−46 cm2 for mχ ¼ 100 GeV [7–9]. The
next generation of experiments will probe cross sections as
low as σχ−p ≲ 10−48 cm2 [10], approaching the irreducible
neutrino background [11], which correspond to a beyond
the Standard Model (BSM) scale of roughly 1 PeV,

i.e., significantly above the electroweak scale. The
WIMP paradigm is based on the supposition that the dark
matter was initially in thermal equilibrium with the
Standard Model (SM) sector before decoupling (freeze-
out). As such, its lack of dependence on initial conditions
remains attractive. However, its lack of discovery to date
may be implying that out-of-equilibrium processes domi-
nate the production of dark matter. The freeze-in paradigm
[12,13] is an interesting alternative.
The main idea behind freeze-in is that the dark sector is

highly secluded from the visible sector. This seclusion
may be due to a coupling so small so as to prevent the
dark matter from equilibrating with the SM thermal bath.
Unlike a WIMP and thermal freeze-out, any dark matter
produced this way will have its abundance frozen in. An
early example of a such a candidate is the gravitino [14],
produced through thermal scattering during reheating
[15–17], yet never achieving equilibrium. There are of
course many other options, which include the existence of
a very heavy mediator, above the maximum temperature
reached during reheating, but below the Planck scale, which
also prevents the dark sector from coming into thermal
equilibrium with the primordial plasma.
This framework is quite common in SO(10)-like models

[18,19], high-scale supersymmetry (SUSY) [20–22], moduli
portals [23], spin-2 portals [24], Z0 portals [25], or other
types of heavy mediators [26]. Depending on the specific
model, the production rate may be sensitive to the details of
reheating, and in particular, to the effects of noninstanta-
neous reheating [17,27–31], thermalization [32], contribu-
tions from inflaton decay [33], or the details of the inflaton
potential leading to reheating [29,34,35].
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Of course, the specific identity of the dark matter
candidate can significantly affect its production rate.
Nature has provided us with a spin-0 particle, spin-1

2
matter

fields, spin-1 gauge fields, and a spin-2 graviton. Is a spin-3
2

dark matter particle the missing piece in the puzzle? Of
course, the gravitino appears naturally in local supersym-
metry, or supergravity, and, as remarked above, was even
one of the first dark matter candidates ever proposed.
However, when Rarita and Schwinger in 1941 [36] decided
to simplify the (overly general) Fierz-Pauli framework [37],
proposing a Lagrangian for a free spin-3

2
field, they were

obviously not motivated by any arguments based on
supersymmetry.
It is well known that a massive spin-3

2
particle directly

coupled to a Uð1Þ gauge field could potentially generate
some acausal pathologies [38] if not treated correctly in a
coherent UV framework. This is in fact the case for any
model including particles with spin >1. For example, in
N ¼ 2 extended gauged supergravity, the superluminal
propagation of the graviphoton is cured by gravitational
backreaction. It is also possible to consider a nonminimal
Rarita-Schwinger Lagrangian [39], by adding nonminimal
gauge invariant terms in the action. In any case, we do not
consider a spin-3

2
particle which is charged under a Uð1Þ

symmetry and the potential issues raised in [38] do not
apply to our work.
There have been several studies of spin-3

2
WIMP-like

dark matter candidates. Effective operators coupling spin-3
2

dark matter to the Standard Model were considered for
annihilations (in a freeze-out scenario and indirect detec-
tion) and scatterings (for direct detection) in [40]. Effective
interactions for spin-3

2
dark matter were also considered in

[41]. Spin-3
2
dark matter has been recently explored in [42],

where they proposed a WIMP-like candidate in a Higgs-
portal scenario. The detection rate in colliders was con-
sidered in [43]. For other recent work see [44]. In every
case, the spin-3

2
dark matter is protected by a Z2 symmetry

to stabilize it as it is otherwise assumed to have weak scale
interactions.
In our work, we propose an extremely simple and

minimal setup, where the SM model is extended with a
right-handed neutrino sector needed for the seesaw mecha-
nism for neutrino masses [45]. The spin-3

2
dark matter is

coupled to a single fermion and gauge field strength. The
fermion is a SM singlet right-handed neutrino, and there-
fore, the only SM choice for the gauge field is the
hypercharge gauge boson Bμ. This is necessarily a dimen-
sion-5 operator and is suppressed by a BSM scale which
permits a long lifetime while at the same time serves as a
portal to the SM through the left-right mixing in the
neutrino sector. We also include an explicit lepton number
violating dimension-5 operator coupling the spin-3

2
to the

SM Higgs and lepton doublets as allowed by gauge

invariance. We consider each of these couplings separately.
We show that for a large part of the parameter space, it is
possible to satisfy the lifetime constraints and obtain a
sufficient (and not excessive) relic density through pro-
duction during reheating.
The paper is organized as follows. We introduce the

model in Sec. II. The Lagrangian of interest will include the
aforementioned dimension-5 operators and the neutrino
sector giving rise to the seesaw mechanism [45]. In Sec. III,
we consider first the dark matter lifetime. Assuming that the
dark matter mass, m3=2, is less than the mass of the right-
handed neutrino,MR, the dark matter can decay into a light
neutrino and gauge boson. We then consider the production
of dark matter through scattering during reheating and
directly from inflaton decay. The allowed parameter space
of the model is examined in Sec. IV, and we consider the
observational signatures of the model in Sec. V. We
summarize in Sec. VI.

II. THE MODEL

A. Motivations

A massive spin-3
2
particle is described by the Rarita-

Schwinger Lagrangian1 [36]

L0
3=2 ¼ −

1

2
Ψ̄μðiγμρν∂ρ þm3=2γ

μνÞΨν; ð1Þ

where γμν ¼ γ½μγν� ¼ 1
2
½γμ; γν� and γμνρ ¼ γ½μγνγρ�. One can

extract the equations of motion describing a spin-3
2
particle

iγμνρ∂νΨρ þm3=2γ
μνΨν ¼ 0; γμν∂μΨν ¼ 0; ð2Þ

along with an extra condition appropriate for a spin-1 field

∂μΨμ ¼ 0; ð3Þ

which can be deduced from the preceding constraints. We
emphasize that the condition γμΨμ ¼ 0 severely limits the
operators available to couple a spin-3

2
field to the Standard

Model sector, as we discuss below.

B. The Lagrangian

In any UV completion of the SM which contains local
supersymmetry, there is at least one spin-3

2
particle, the

gravitino, with well-defined couplings to SM fields. These
are governed by gauge invariance and perhaps other
symmetries, such as R-parity, that the full theory contains.
In a nonsupersymmetric theory, or in a theory with high-
scale supersymmetry [20–22] at mass scales below that of

1Our metric convention is gμν ¼ diagðþ1;−1;−1;−1Þ. In
Appendix A, we provide a simple derivation of the Rarita-
Schwinger Lagrangian.
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the superpartners, the couplings of any spin-3
2
field become

greatly limited.
Here, we do not consider a specific UV theory which

contains the spin-3
2
field, and therefore we use gauge

invariance to define any possible coupling to the SM which
includes a right-handed and/or sterile neutrino sector. Our
beyond the SM Lagrangian can be defined by

LBSM ¼ L3=2 þ Lν; ð4Þ

where L3=2 and Lν are defined below.
The most general Lagrangian coupling of a spin-3

2
field to

the SM including a right-handed and/or sterile neutrino, νR,
consistent with Lorentz and gauge invariance is

L3=2 ¼ i
α1
2MP

ν̄Rγ
μ½γρ; γσ�ΨμFρσ þ H:c:

þ i
α2
2MP

iσ2ðDμHÞ�L̄Ψμ: ð5Þ

It is straightforward to show that dimension-4 operators of
the type L̄HγμΨμ or dimension-5 operators ν̄RγμΨμjHj2 are
the only other Lorentz and gauge invariant operators and
vanish due to the constraint given in Eq. (2). In Eq. (5),
Fμν ¼ ∂μBν − ∂νBμ is the field strength of the Standard
Model hypercharge gauge boson, Bμ, H is the SM Higgs
doublet, and L is a SM lepton doublet. Due to the unknown
and surely model-dependent origin of the spin-3

2
field, we

have scaled its couplings in L3=2 by M−1
P (where MP ¼

2.4 × 1018 GeV is the reduced Planck mass), and therefore
we can allow the couplings, αi, to take values larger as well
as smaller than 1.
Both couplings in Eq. (5) are gauge and Lorentz

invariant, and can be seen as low energy couplings for
gravitino dark matter in high-scale SUSY constructions.2 It
is important to note that if a model contains a SM singlet
such as a right-handed (or sterile) neutrino, in the absence
of symmetry which prevents it, the coupling scaled by α1 is
present. In supersymmetric models, R-parity would prevent
both couplings in Eq. (5). If R-parity is broken, signatures
of gravitino dark matter are typically a γν final state, as will
be the case here.
In addition, we include a contribution to the Lagrangian

which can accommodate the seesaw mechanism [45] for
neutrino masses when right-handed neutrinos are included.
This part of the Lagrangian is commonly written as

Lν ¼ yHν̄LνR þMR

2
ν̄cRνR þ H:c:; ð6Þ

where the first term provides a Dirac mass when the SM
Higgs picks up a vacuum expectation value, and the second
term provides a Majorana mass, MR, for the right-handed
neutrino. Even if MR ≳m3=2, a coupling of the type in
Eq. (6) will generate three- and/or four-body decays of Ψμ.
As a consequence, spin-3

2
dark matter is naturally unstable.

We will refer to our metastable candidate as the raritron, an
obvious tribute to the Rarita-Schwinger field.3

The Yukawa term yHν̄LνR generates mixing between the
neutral (νR) and the charged (νL) neutrino sectors, and one
can define the mass eigenstates

ν1 ¼ cos θνL − sin θνR; ð7Þ

ν2 ¼ sin θνL þ cos θνR; ð8Þ

with

m1 ¼
y2v2

2MR
; m2 ≃MR;

tan θ ¼
ffiffiffiffiffiffi
m1

m2

r
≃

yvffiffiffi
2

p
MR

; ð9Þ

where we have assumed MR ≫ m1 (which corresponds to
a classical seesaw mechanism of type I) and v ≃ 246 GeV
is the vacuum expectation value of the Standard Model
Higgs boson. We have considered for simplicity only
one active neutrino generation, and the extension to
three families is straightforward. θ represents the mixing
between the two sectors, and is expected to be small for
large values of MR, consistent with recent limits on m1

(m1 ≲ 0.15 eV [49]).

III. THE CONSTRAINTS

The Lagrangian we consider contains two gauge
invariant operators with couplings α1 and α2. In general,
the contribution to the raritron decay rate is dominated by
the term proportional to α2 as there is no suppression
from the heavy right-handed neutrino mass. However,
we examine the consequences of each of these terms
separately. We begin with the case where α2 is suffi-
ciently small that it can be neglected. In the subsequent
subsection, we consider the case where the rates are
dominated by α2 and neglect the contributions from α1.

2We will not develop this analogy any further as we prefer to
remain as general as possible. We note, for example, in the μ-
from-ν supersymmetric Standard Model the right-handed neu-
trino can mix with the bino and generate the α1 coupling [46] and
an R-parity violating coupling of the type LH would generate the
α2 coupling.

3It is interesting to note that the article immediately following
the original work of Rarita-Schwinger [36], computed the
β-decay spectrum of a spin-3

2
neutrino [47]. This followed

Oppenheimer’s suggestion [48] that the neutrino may have a
spin other than 1

2
.
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A. Constraints from α1

1. The lifetime (α1)

Depending on its mass, the dominant decay channel
for the raritron, Ψμ, may contain either two or three final
states. The two-body decay channel Ψμ → ν1Aμ is always
available. For m3=2 > mZ, the ν1Zμ final state is open
and the two-body final state dominates for m3=2 <

2π
ffiffiffiffiffi
15

p
v ≃ 6 TeV. Whenm3=2 ≳mHðmH þmZÞ, the chan-

nel Ψμ → ν1HAμðZμÞ opens up as seen in Fig. 1. For
m3=2 ≳ 6 TeV, the three-body final state dominates the
decay width.
The decay rates for the two-body decaysΨμ → Aμν1 and

Ψμ → Zμν1 are

ΓðΨμ → Aμν1Þ ¼
α21y

2

8π

v2m3
3=2 cos

2 θW

M2
PM

2
R

;

ΓðΨμ → Zμν1Þ ¼
α21y

2

8π

v2m3
3=2 sin

2 θW

M2
PM

2
R

f

�
mZ

m3=2

�
; ð10Þ

where fðxÞ ¼ 1 − 4
3
x2 þ 1

3
x8 and θW denotes the Weinberg

angle. The processes that produce the antineutrinos have
the same decay rate, i.e., ΓðΨμ → Aμν1Þ ¼ ΓðΨ̄μ → Aμν̄1Þ
and ΓðΨμ → Zμν1Þ ¼ ΓðΨ̄μ → Zμν̄1Þ.
In the limit m3=2 ≫ mZ, we find the following total two-

body decay width

Γ2b
3=2 ¼

α21y
2

8π

v2m3
3=2

M2
PM

2
R
: ð11Þ

For the three-body decays Ψμ → AμHν1 and Ψμ →
ZμHν1, we find

ΓðΨμ→AμHν1Þ¼
α21y

2

480π3
m5

3=2cos
2θW

M2
PM

2
R

g

�
mH

m3=2
;0

�
; ð12Þ

ΓðΨμ → ZμHν1Þ ¼
α21y

2

480π3
m5

3=2 sin
2 θW

M2
PM

2
R

g

�
mH

m3=2
;
mZ

m3=2

�
;

ð13Þ

where the expression for gðx; yÞ is given in Appendix B.
The three-body decays to antiparticles have the same

production rate ΓðΨμ → AμHν1Þ ¼ ΓðΨ̄μ → AμHν̄1Þ and
ΓðΨμ → ZμHν1Þ ¼ ΓðΨ̄μ → ZμHν̄1Þ.
In the limit m3=2 ≫ mH;mZ, the total three-body decay

rate is given by

Γ3b
3=2 ¼

α21y
2

480π3
m5

3=2

M2
PM

2
R
: ð14Þ

The total two- and three-body decay rates when m3=2 ≫
mH;mZ correspond to lifetimes

τ2b3=2 ≃ 1.6 × 1029
�
10−2

yα1

�
2
�

MR

1014 GeV

�
2
�
104 GeV
m3=2

�
3

s;

τ3b3=2 ≃ 5.6 × 1028
�
10−2

yα1

�
2
�

MR

1014 GeV

�
2
�
104 GeV
m3=2

�
5

s:

ð15Þ

Note that in contrast to [50] (but like [51]), the four-body
decay will not dominate over the three-body decay for large
values of m3=2, because of a suppression factor of order
ðm3=2=MRÞ2 between the two modes of decay.

2. The relic abundance from scattering (α1)

The raritron can be produced directly from the thermal
bath during reheating, which is assumed to be a result of
inflaton decay. To compute the dark matter density, n3=2,
we consider the out-of-equilibrium dark matter annihila-
tion processes, H þ ν1 → Bþ Ψμ, H þ B → ν1 þ Ψμ, and
Bþ ν1 → H þΨμ, as depicted in Fig. 2. We can write the
Boltzmann equation as

FIG. 1. The allowed two- and three-body decays of the raritron.

FIG. 2. Processes contributing to the dark matter production
from the thermal bath.
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dn3=2
dt

þ 3Hn3=2 ¼ RðTÞ; ð16Þ

where the Hubble parameter for the radiation-dominated
Universe is given by

HðTÞ ¼ π
ffiffiffiffiffi
g�

pffiffiffiffiffi
90

p T2

MP
: ð17Þ

It is convenient to rewrite the Boltzmann equation (16) as

dY3=2

dT
¼ −

RðTÞ
HðTÞT4

; ð18Þ

with Y3=2 ¼ n3=2
T3 .

The dark matter production rate (per unit volume per unit
time) is represented by

RðTÞ ¼ 1

1024π6

Z
f1f2E1dE1E2dE2d cos θ12

×
Z

jMj2dΩ13; ð19Þ

for the processes 1þ 2 → 3þ 4, where 1 and 2 correspond
to particles in the thermal bath, 3 and 4 correspond to
produced particles, f1 and f2 represent the thermal dis-
tribution functions of the incoming particles, and M is the
scattering amplitude for the processes shown in Fig. 2, with
the expressions for the scattering amplitudes given in
Appendix B. From these, we find the following dark
matter production rate,

R1ðTÞ ¼
338ζð5Þ2α21y2T10

π5M2
PM

2
Rm

2
3=2

; ð20Þ

where ζðnÞ is the Riemann zeta function.
It is useful to compare the raritron production rate to that

of the gravitino in supersymmetric theories. In weak scale
supersymmetry, the dominant production channel is
gluonþ gluon → gravitinoþ gluino. The dimensionful
contributions to the cross section for this process originate
from the gravitino vertex ð1=m2

3=2M
2
PÞ, the gluino propa-

gator (m2
g̃=T

4), and T4 from phase space, so that the cross
section scales as m2

g̃=m
2
3=2M

2
P. In this case, the production

rate scales as T6m2
g̃=m

2
3=2M

2
P. For the case of raritron

production, when MR ≫ TRH, the contribution from the
propagator is instead 1=M2

R so that the cross section scales
as T4=m2

3=2M
2
PM

2
R giving a production rate which scales as

in Eq. (20).
Since the temperature dependence of the production rate,

Tβ, has β < 12, the final density dark matter density is
mostly sensitive to the reheat temperature, TRH, rather than
the maximum temperature attained during the reheating
process [28]. Therefore, after integration of Eq. (18), the
density at TRH can be written

nðTRHÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2

5gRH

s
1014ζð5Þ2α21y2
π6MPM2

Rm
2
3=2

T8
RH; ð21Þ

from which we can calculate the present relic abundance at
temperature T0:

Ωh2 ≃ 109
nðTRHÞ
cm−3

�
g0
gRH

��
T0

TRH

�
3
�

m3=2

104 GeV

�

≃ 0.1

�
α1

1.1 × 10−3

�
2
�
427=4
gRH

�
3=2

�
TRH

1010 GeV

�
5

×

�
m1

0.15 eV

��
1014 GeV

MR

��
104 GeV
m3=2

�
; ð22Þ

where g0 ¼ 43=11. In writing Eq. (22), we have substituted
Eq. (9) for y, assuming a characteristic mass of 0.15 eV for
the light neutrino. Note that Eqs. (21) and (22) are derived
using an instantaneous reheating approximation. Dropping
this approximation results in a density which is about 2
times larger for a production rate proportional to T10 as in
Eq. (20) [28].
It is interesting to note that the same set of para-

meters which provide a sufficiently long-lived raritron so
as to respect the indirect detection constraints, Eq. (15),
also produce a relic density in agreement with Planck
data, Eq. (22), for a reasonable reheating temperature
TRH ≃ 109 GeV.
The scattering processes considered in Fig. 2 led to a

scattering cross section that scales with the fourth power of
the energy of the scatterers, σ ∼ s2 [cf. Eq. (B5) in
Appendix B]. In the classification of [28], this corresponds
to the n ¼ 4 scenario (σ ∼ sn=2). For such a steep depend-
ence on the energy of the scatterers, the instantaneous
thermalization approximation can severely underestimate
the magnitude of the relic abundance. Indeed, in [32] it was
found that the production of particles from scatterings in
the not-yet-thermalized relativistic plasma, present at the
earliest stages of reheating, will generically determine the
dark matter abundance if n > 2. The decay products have
initial momenta p ∼mΦ, where mΦ is the mass of the
inflaton, and it is only after interactions in the plasma can
equilibrate that p ∼ T. The very energetic particles pro-
duced before the thermalization of the Universe can there-
fore dominate the dark matter density budget despite their
dilution by entropy production during the late stages of
reheating.
Let us assume for definiteness that the inflaton decays

predominantly to Higgs bosons, and subdominantly to
neutrinos and gauge bosons. When this is the case, the
prethermal production rate of raritrons can be easily
estimated, following the procedure outlined in [32].
When reheating ends, the number density of prethermally
generated raritrons via the processes depicted in Fig. 2 can
be written as

CASE FOR DECAYING SPIN-3=2 DARK MATTER PHYS. REV. D 102, 083533 (2020)

083533-5



nðTRHÞ ≃
�
5π2gRH
72

�
17=10 2α21y

2m14=5
Φ T34=5

RH B1

147πα16=5SM m2
3=2M

2
RM

13=5
P

; ð23Þ

where

B1 ≡ Brν1 þ
2

3
BrB þ 1

6
Brν1BrB: ð24Þ

Here Brν1 (BrB) denotes the branching ratio to light
neutrinos (to B), and αSM denotes the gauge coupling
strength of the interaction responsible for thermalization
during reheating. This results in the following closure
fraction,

Ω3=2h2 ≃ 0.1

�
α1

1.1 × 10−3

�
2
�
0.030
αSM

�
16=5

�
m1

0.15 eV

�

×
�

gRH
427=4

�
7=10

�
104 GeV
m3=2

��
1014 GeV

MR

�

×

�
mΦ

3 × 1013 GeV

�
14=5

�
TRH

1010 GeV

�
19=5

×

�
B1

7 × 10−4

�
: ð25Þ

Note that for the chosen model parameters this nonther-
mally produced population of raritrons dominates over the
thermally produced one (22) if B1 ≳ 7 × 10−4. This
“enhancement” of the production rate is dependent on
the possibility of producing the parent scatterersH, νL, and/
or B directly from inflaton decay. Substantially suppressing
two of these decay channels will lead to a raritron
population overwhelmingly dominated by late-time reheat-
ing thermal effects, with rate (20). In the following section
we specialize to reheating driven by the coupling between
the inflaton Φ and νR. In the case when MR ≫ mΦ, the
dominant decay channel of Φ is precisely to Higgs bosons,
while the decay to neutrinos is suppressed by

Brν1 ≃
�
m1mΦ

8M2
R

�
2

ln−2
�
M2

R

m2
Φ

�
; ð26Þ

which is Oð10−51Þ for the fiducial values considered in
(25). Moreover, we assume no direct production of gauge
bosons.4 This then renders nonthermal production com-
pletely negligible in this case. In what follows we will
therefore disregard this production mechanism, albeit
having in mind that for a different reheating process it
could be of importance.

3. The relic abundance from inflaton decay (α1)

In principle, it is also necessary to consider dark matter
production directly from inflaton decay. We parametrize the
total width for inflaton decay as follows,

Γtot
Φ ¼ y2Φ

8π
mΦ: ð27Þ

Inflaton decay produces a thermal bath, and we define the
moment of reheating to be the time of inflaton-radiation
equality.5 During the process of reheating, the temperature
of the newly created radiation bath falls as T ∝ a−3=8,
where a is the cosmological scale factor. From the solution
to the set of Boltzmann/Friedmann equations

_ρΦ þ 3HρΦ ¼ −ΓΦρΦ; ð28Þ

_ρR þ 4HρR ¼ ΓΦρΦ; ð29Þ

H2 ¼ ρΦ þ ρR
3M2

P
≃

ρΦ
3M2

P
; ð30Þ

we find [29]

π2gRHT4
RH

30
¼ 12

25
ðΓtot

Φ MPÞ2; ð31Þ

and we can write

TRH ≃ 6 × 1014 GeVyΦ

�
mΦ

3 × 1013 GeV

�
: ð32Þ

The source of the Yukawa coupling yΦ is of course model
dependent. If the inflaton is directly coupled to the SM, there
may be, for example, a direct coupling of the inflaton to the
Higgs of the type ΦHH�, or the decay to Standard Model
fields may involve loops containing SM and/or BSM fields.
As a minimal assumption, we assume first that the inflaton
couples directly only to the BSM field νR through yνΦν̄RνR
and this is the main source of the reheating.
If mΦ > MR, then the decay rate of Φ is simply ΓΦ ¼

y2νmΦ=8π (yΦ ¼ yν), and the raritron is produced through
the decay process shown in Fig. 3. The partial width in this
case is

ΓΦ→3=2 ≃
α21y

2
νm5

Φ
288π3m2

3=2M
2
P
; ð33Þ

where we have assumed that mΦ ≫ MR;m3=2. The branch-
ing ratio is therefore given by

Br3=2 ¼
α21m

4
Φ

36π2m2
3=2M

2
P
: ð34Þ

4The timescale for efficient emission of energetic (p ∼mΦ)
gauge bosons from the inflaton decay products is typically larger
than the thermalization timescale [52–54].

5We are further assuming a matter-dominated Universe prior to
decay and H ¼ 2

3t.
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For a given branching ratio, the number density of
raritrons at the end of reheating will be given by [29,33]

nðTRHÞ ¼
π2Br3=2gRHT4

RH

18mΦ
; ð35Þ

and the relic density in turn takes the form

Ω3=2h2 ≃ 0.1 ×

�
Br3=2

9 × 10−11

��
TRH

1010 GeV

�

×

�
3 × 1013 GeV

mΦ

��
m3=2

104 GeV

�
ð36Þ

≃ 0.1

�
α1

5 × 10−9

�
2
�

TRH

1010 GeV

�

×
�

mΦ

3 × 1013 GeV

�
3
�
104 GeV
m3=2

�
: ð37Þ

As one can see, a very small coupling between the raritron
and νR is required to avoid overclosure.6

When MR > mΦ, the direct decay to νR is not kinemat-
ically allowed. There is a two-body decayΦ → ν1ν̄1 and the
decay rate for this channel would be given by y2νθ4mΦ=8π.
However, decay to Higgs and light neutrino pairs can
proceed through the loop diagrams shown in Fig. 4 and
is computed in Appendix C.7 For MR ≫ mΦ; m3=2, we find
the following partial widths to Higgses and neutrinos,

ΓΦ→H ≃
y2νy4M2

R

256π5mΦ
ln2

�
M2

R

m2
Φ

�
; ð38Þ

and

ΓΦ→ν1 ¼
y2νy4v4mϕ

32πM4
R

�
1þ y4

256π4

�
; ð39Þ

where in the decay to ν1ν̄1, we include the tree-level and one-
loop contributions. In this case, the decay to Higgs is clearly

dominant and we can associate (38) with a total rate such
that yΦ ¼ ðyνy2=4π2ÞðMR=mΦÞ lnðMR=mΦÞ2.
Inflaton decays to raritrons is also possible when

MR > mΦ. A tree-level decay to ν1BΨμ has a rate given
by Eq. (33) multiplied by θ2. There is also the loop
process shown in Fig. 58 and its partial width is given by9

ΓΦ→3=2 ≃
α41y

2
νM4

Rm
5
Φ

4π5M4
Pm

4
3=2

ϒ

�
M2

R

m2
ϕ

�
; ð40Þ

where ϒðM2
R=m

2
ϕÞ ¼ ðlnðM2

R=m
2
ϕÞ − 5=6Þ2. The loop

decay dominates whenever

α21M
4
Rϒ

�
M2

R

m2
ϕ

�
>

π2

72
M2

Pm
2
3=2: ð41Þ

When MR > mΦ, the right-hand side of Eq. (41) should be
multiplied by θ2. When the loop dominates, the branching
ratio is given by

Br3=2 ≃
64α41M

2
Rm

6
Φ

y4m4
3=2M

4
P

ϒðM2
R=m

2
ϕÞ

ln2ðM2
R=m

2
ϕÞ

: ð42Þ

Using Eq. (36) we can immediately deduce the relic
abundance,

Ω3=2h2 ≃
4π4g0α41nγv

4m5
ΦTRH

9ζð3Þρch−2m2
1m

3
3=2M

4
P

ϒðM2
R=m

2
ϕÞ

ln2ðM2
R=m

2
ϕÞ

≃ 0.1
�

α1
1.1× 10−8

�
4
�

mΦ

3× 1013 GeV

�
5
�
0.15 eV

m1

�
2

×

�
104 GeV
m3=2

�
3
�

TRH

1010 GeV

�
×

ϒðM2
R=m

2
ϕÞ

ln2ðM2
R=m

2
ϕÞ

:

ð43Þ

FIG. 3. Three-body decay of the inflaton producing a raritron
when MR ≪ mΦ.

FIG. 4. Inflaton decay to Higgses and light neutrinos when
MR ≫ mΦ.

6Since the decay of the inflaton is not instantaneous, entropy
production continues for some time beyond inflaton-radiation
equality. A numerical calculation shows that this injection of
entropy, overlooked in our analytical estimates, reduces the value
of Ω3=2 by a factor of ∼0.7.

7There are also four-body decays with an off-shell νR, but
those rates are highly suppressed, Γ4b ∝ y2νy4m5

Φ=M
4
R.

8We note that if there is no direct coupling between the inflaton
and νR (i.e., yν ¼ 0), and the inflaton decays directly to SM
particles, such as Φ → HH�, raritron production through inflaton
decay is still possible at two loops.

9We find an analogous suppression for the four-body decay to
B and 3=2.
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In this case too, a small coupling between the raritron and
νR is required to avoid overclosure, though for MR > mΦ,
it is more easily mitigated by taking a large raritron mass
as Ω3=2h2 ∝ α41=m

3
3=2. As one can see, for a given set of

parameters (α1, MR, y), the possibility of the direct
production of raritrons from inflaton decay opens up a
new window, allowing for the production of superheavy
spin-3=2 dark matter. Indeed the raritron mass may be well
above the reheating temperature, and then only accessible
through decay rather than from scattering.
Larger values of α1 are possible if there are inflaton

decay channels directly to the SM. Thus if yΦ [defined in
Eq. (27)] is much larger than yν. In this case,

Br3=2 ¼
2α41
π4

�
yν
yΦ

�
2 M4

Rm
4
Φ

M4
Pm

4
3=2

ϒ

�
M2

R

m2
ϕ

�
; ð44Þ

which gives

Ω3=2h2≃
g0α41y

2
νnγM4

Rm
3
ΦTRH

18ζð3Þρch−2y2Φm3
3=2M

4
P
ϒ

�
M2

R

m2
ϕ

�

≃
�

9

40π4gRH

�
1=2 g0α41y

2
νnγM4

Rm
4
Φ

18ζð3ÞTRHρch−2m3
3=2M

3
P
ϒ

�
M2

R

m2
ϕ

�

≃0.1

�
α1

ffiffiffiffiffi
yν

p
2.7×10−10

�
4
�
427=4
gRH

�
1=2

�
mΦ

3×1013GeV

�
4

×
�
1014GeV

MR

�
4
�
104GeV
m3=2

�
3
�
1010GeV

TRH

�

×ϒ

�
M2

R

m2
ϕ

�
; ð45Þ

where we have used (32) to substitute TRH for yΦ. Even in
this case, we require the product of couplings α1

ffiffiffiffiffi
yν

p ≈
10−10 to obtain the correct relic density.

B. Constraints from α2

Having established the decay and production rates for
the raritron stemming from the coupling to the right-handed
neutrino sector, we now repeat the analysis when the
contributions proportional to α2 are dominant.

1. The lifetime (α2)

When the term proportional to α2 dominates raritron
decay, two-body decays to lW, νZ, and νH are possible

provided that m3=2 > mW .
10 The Feynman graphs for these

are shown in Fig. 6. When m3=2 < mW , there are many
three-body final states where W, Z, and H are all produced
off shell. These are also shown in Fig. 6.
The decay rates for the two-body decays Ψμ →

lðνÞWðZÞ and Ψμ → νH are

ΓðΨμ → ZμνÞ ¼
α22

3072π

m3
3=2

M2
P
f1

�
mZ

m3=2

�
; ð46Þ

ΓðΨμ → HνÞ ¼ α22
3072π

m3
3=2

M2
P
f2

�
mH

m3=2

�
; ð47Þ

where f1ðxÞ ¼ ð1 − x2Þ2ð1þ 10x2 þ x4Þ and f2ðxÞ ¼
ð1 − x2Þ4. The rate for Ψμ → lW is twice that of the
ν1Z final state.
In the limit m3=2 ≫ mH, we find the following total two-

body decay width

Γ2b
3=2 ¼

α22
256π

m3
3=2

M2
P
: ð48Þ

Comparing Eqs. (11) and (48) we notice that for α2 >
4

ffiffiffi
2

p yv
MR

α1, this contribution to the two-body decays domi-
nates the raritron lifetime.
For the three-body decay to fermions via Higgs

exchange (mH ≫ m3=2), we find

ΓðΨμ → νf̄fÞ ≃ α22Ncfh2fm
7
3=2

1474560π3m4
HM

2
P
g1

�
mf

m3=2

�
; ð49Þ

where the Yukawa coupling is hf ¼ mf

ffiffiffi
2

p
=v, Ncf is the

number of colors of fermion f, and the expression for g1ðxÞ
is given in Appendix B. If m3=2 ≫ mH ≫ mf, we have

FIG. 5. Inflaton decay to two raritrons when MR ≫ mΦ.

FIG. 6. The allowed two- and three-body decays of the raritron
with coupling α2.

10For these decay rates, unless otherwise specified, l (ν) stands
for all of e, μ, τ (νe, νμ, ντ).
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ΓðΨμ → νf̄fÞ ≃ α22Ncfh2fm
3
3=2mH

49152π2M2
PΓH

; ð50Þ

which is equal to the product ΓΨμ→Hν × BrH→f̄f.
For the three-body decay to fermions via W-boson

exchange (assuming mW ≫ m3=2 ≫ mf;mf0 ; ml), we find

ΓðΨμ → lff0Þ ≃ α22g
2NcfjVff0 j2m5

3=2

61440π3m2
WM

2
P

; ð51Þ

where Vff0 ¼ δff0 for leptonic decays, and Vff0 is the
Cabibbo-Kobayashi-Maskawa matrix element for decays
into quarks. If m3=2 ≫ mW ≫ mf;f0 , we have

ΓðΨμ → lff0Þ ≃ α22g
2NcjVff0 j2m3

3=2mW

73728π2M2
PΓW

; ð52Þ

equal to ΓΨμ→Wl × BrW→f0f.
For the three-body decay to fermions via Z exchange

(mZ ≫ m3=2), we find

ΓðΨμ → νf̄fÞ ≃ α22ðg2 þ g02ÞNcfm5
3=2

122880π3m2
ZM

2
P

g2

�
mf

m3=2

�
; ð53Þ

where g2 is given in Appendix B. If m3=2 ≫ mZ ≫ mf, we
find

ΓðΨμ → νf̄fÞ ≃ α22Ncfðg2 þ g02Þðc2A þ c2VÞm3
3=2mZ

147456π2M2
PΓZ

; ð54Þ

where cV ¼ T3 − 2Q sin2 θW , cA ¼ T3 denote the axial
and vector couplings of f. This rate is equal to
ΓΨμ→Zν × BrZ→f̄f.
When m3=2 ≪ me, we can approximate the total decay

rate as

Γ3b
3=2 ¼ 9ΓΨμ→νlν̄l0νl0 ¼

3α22ðg2 þ g02Þm5
3=2

81920π3m2
ZM

2
P

: ð55Þ

The various two- and three-body partial rates are shown
relative to the total two-body rate in Fig. 7.
When m3=2 < mW , the raritron lifetime is solely deter-

mined by the three-body rates, and the number of different
fermion final state pairs will depend on the raritron mass.
This is clearly seen in Fig. 7 as more partial rates come into
play as m3=2 is increased. Note that for m3=2 ≪ mW, (and
thus ≪ mt) the three-body decay through Higgs exchange
is subdominant. Indeed, we find

Γ3b=H
3=2

Γ3b=W
3=2

∝
h2fm

2
3=2M

2
W

g2M4
H

≪ 1: ð56Þ

The total rate can be expressed by approximate analytic
expression in three separate mass regimes. For m3=2 > mH,
the sum of all the three-body final state channels gives a
rate slightly larger (by a factor of 1.09) than the two-body
rate so that the lifetime for large masses is

τ3=2
1028 s

≃ 14.8

�
10−7

α2

�
2
�
1 GeV
m3=2

�
3

; m3=2 > mH: ð57Þ

For m3=2 < mW, the two-body rate is kinematically for-
bidden, and the total three-body rate is complicated by the
various thresholds and a single simple expression for the
lifetime is not possible. However, for m3=2 < me, we can
use Eq. (55),

τ3=2
1028 s

≃ 4.8

�
10−3

α2

�
2
�
1 GeV
m3=2

�
5

; m3=2 < me; ð58Þ

while for me < m3=2 < mW we can fit the total three-body
rate given by the black line in Fig. 7 and find

τ3=2
1028 s

≃ 0.6

�
10−3

α2

�
2
�
1 GeV
m3=2

�
5.28

; me < m3=2 < mW:

ð59Þ

As one can see, for the same raritron mass, a sufficiently
long lifetime requires α2 ≪ α1 as expected. Conversely, for
similar values of the couplings, the rate proportional to α2
will produce a long lifetime at small values of the rariton
masses. Typically for large enough α2, we require m3=2 <
mW and only the three-body decay channels are open.

FIG. 7. The allowed partial rates for both two-body and three-
body final states relative to the total two-body decay rate as a
function of the raritron mass. The black line corresponds to the
sum of all partial rates.
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2. The relic abundance from scattering (α2)

When α2 is the dominant coupling, there are many
channels from which the raritron can be produced directly
from the thermal bath during reheating. These include
LþL→ Ψμ þΨμ, HþH→ΨμþΨμ, H þ L → BμðWμÞþ
Ψμ, H þ BμðWμÞ → Lþ Ψμ, Lþ BμðWμÞ → H þ Ψμ, as
well as many other diagrams mediated by Higgs exchange
as depicted in Fig. 8.
The temperature dependence of the production rate will

depend on the number of raritons in the final state. The total
rate is

R2ðTÞ ¼
3139α42π

7T12

76204800M4
Pm

4
3=2

þ α22π
3ð1521g2 þ 165g02 þ 441h2t þ 50h2τÞT8

3110400M2
Pm

2
3=2

¼ 0.125α42T
12

M4
Pm

4
3=2

þ 0.011α22T
8

M2
Pm

2
3=2

; ð60Þ

where the first term corresponds to diagrams with two
raritrons in the final state and the second with one. Notice
that in both cases the temperature dependence differs from
that in processes dominated by α1 discussed in the previous
subsection. Indeed, because of the steep temperature
dependence for two raritrons in the final state, the relic
density from this term will be sensitive to the maximum
temperature, Tmax, attained during reheating, whereas the
term stemming from single raritron production will be
sensitive only to TRH [28].
Following the procedure detailed in [28], we obtain the

number density of dark matter at TRH, which takes the
following form,

nðTRHÞ ¼
ffiffiffiffiffiffiffiffi
10

gRH

s
0.995α42T

10
RH

πM3
Pm

4
3=2

ln

�
Tmax

TRH

�

þ
ffiffiffiffiffiffiffiffi
10

gRH

s
0.011α22T

6
RH

πMPm2
3=2

; ð61Þ

where the ratio of Tmax to TRH, assuming instantaneous
thermalization, is given by [17]

Tmax

TRH
≃ 0.5

�
mΦ

ΓΦ

�
1=4

: ð62Þ

From this we can calculate the present relic abundance at
temperature T0:

Ω3=2h2 ≃ 0.1

�
α2

6.2 × 10−9

�
2
�
427=4
gRH

�
3=2

×

�
TRH

1010 GeV

�
3
�
1 GeV
m3=2

�
: ð63Þ

Note that this expression corresponds to that obtained from
scatterings with a single raritron in the final state. Indeed,
under the constraint that the raritron abundance saturates
the observed dark matter relic density, single raritron
production dominates over double raritron production for
any phenomenologically sensible values of TRH and m3=2

(see Sec. IV).
When thermalization is not assumed to occur instanta-

neously, the previous results can be significantly changed,
given that the two raritron production cross section scales
with the sixth power of the scatterer energy, that is, σ ∼ s3,
or n ¼ 6 in the classification of [28]. In this case, the
number density of nonthermally generated raritrons can be
found to be given by

nðTRHÞ ≃
�
5π2gRH
72

�
17=10 α42m

24=5
Φ T34=5

RH B2

32400πα16=5SM m4
3=2M

23=5
P

: ð64Þ

Here

B2 ≡ BrL þ 1

12
BrH; ð65Þ

where BrL (BrH) denotes the inflaton branching ratio to
leptons (to Higgs). The corresponding nonthermal closure
fraction can be written as follows,

Ω3=2h2 ≃ 0.1

�
α2

5.9 × 10−8

�
4
�
0.030
αSM

�
16=5

�
gRH

427=4

�
7=10

×
�
1 GeV
m3=2

�
3
�

mΦ

3 × 1013 GeV

�
24=5

×

�
TRH

1010 GeV

�
19=5

B2: ð66Þ

FIG. 8. Processes contributing to the dark matter production
from the thermal bath, for the coupling α2. In each diagram the
dashed lines denote the Higgs SUð2Þ doublet, the wavy curves
the gauge bosons Wμ or Bμ, and the solid lines the SUð2Þ
doublets Le;μ;τ or the singlets lR, as appropriate.
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Comparing this expression with Eq. (63), we obtain that for�
m3=2

1 GeV

��
TRH

107 GeV

�
11=5 ≲ 4B2; ð67Þ

it is the nonthermal raritron population that dominates
the dark matter energy budget. As in the case of the α1
coupling, in the discussion that follows we will omit this
production mechanism due to its dependence on the
inflationary model.
In the previous subsection, we considered the production

of raritrons from inflaton decay. We assumed that the
inflaton was coupled only to the right-handed neutrino. In
that case, raritron production from decay is possible only at
two loops, and we do not consider that here. In principle
one can couple the inflaton directly to the Standard model,
but raritron production would be highly model dependent
on the inflaton-SM coupling. Therefore in the case of the α2
coupling, we do not consider raritron production from
inflaton decay.

IV. RESULTS AND ANALYSIS

A. Results when α1 dominates

In the preceding analysis, we derived the raritron lifetime
and density in terms of the Dirac coupling y, the right-
handed neutrino mass,MR, and the light neutrino mass,m1,
though these are related through Eq. (9). In addition, there
is an absolute theoretical limit on y (y≲ ffiffiffiffiffiffi

4π
p

) from
perturbativity and an experimental cosmological constraint
on the sum of the light neutrino masses which force m1 ≲
0.15 eV [49]. In other words, for a given MR, the upper
bound on m1 implies an upper bound on y, and as a
consequence a lower bound on the raritron lifetime and
upper bound on its relic abundance. For example,

m1 ≲ 0.15 eV ⇒ y≲ 0.7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MR

1014 GeV

r
: ð68Þ

We can then express the lifetime constraints (15) as a
function of m1

Γ3=2 ¼ Γ2b
3=2 þ Γ3b

3=2 ¼
α21
4π

m1m3
3=2

M2
PMR

�
1þ m2

3=2

60π2v2

�
: ð69Þ

Givenm3=2 and α1, limits from the dark matter lifetime (15)
give us a lower bound on MR (we fix m1 ¼ 0.15 eV to be
specific). For dark matter production from scattering,
we can use the lower bound on MR to find the reheating
temperature TRH necessary to obtain the correct relic
abundance in Eq. (22). For dark matter produced from
decay, the bound on MR is not needed. Note that when we
saturate the bound on m1 we also have an upper limit
on MR from the perturbativity of y <

ffiffiffiffiffiffi
4π

p
, which

is MR ≲ 2.5 × 1015 GeV.

1. Dark matter production from scattering

We consider first the case where dark matter is produced
exclusively through scatterings during reheating. That is,
we assume that the direct production from inflaton decay is
negligible. We show in Fig. 9 the available parameter space
in the (m3=2; TRH) plane. In the lower right portion of the
plane, the raritron lifetime is too short when compared with
experimental constraints. Due to the large range of dark
matter masses we apply constraints from several experi-
ments: XMM-Newton observations of M31 [55] at the keV
scale, SPI, INTEGRAL, and COMPTEL observations
[56,57] at the MeV scale, the latest limits from FERMI-
LAT at the GeV scale [58], and HESS above the TeV scale
[59] (see also [60]). Note that the limits on the dark matter
lifetime given by the collaborations correspond to a specific
final state. A complete study taking into account the exact
shape of the spectrum is beyond the scope of our work, and
is not necessary considering the large dependence of the
relic abundance on the reheating temperature.
To obtain the limit on the lifetime in the (m3=2; TRH)

plane, we first fix the value of τ3=2 at the experimental limit
from Eq. (15) for each value of m3=2. This determines the
combination MR=α1y. Then from Eq. (22), we can deter-
mine the value of TRH needed to obtain Ω3=2h2 ≃ 0.1. This
procedure determines the blue line in Fig. 9. For lower
masses (<10 TeV), we use γ-ray limits, whereas for higher
masses (>1 PeV) we use neutrino limits and the dot-
dashed portion of the line in between is an extrapolation. In
the shaded region below this line, we continue to fix
Ω3=2h2 ≃ 0.1, but to do so at lower TRH requires lower

FIG. 9. The (m3=2, TRH) plane with astrophysical constraints on
the lifetime from γ-ray observations and Planck constraints on the
relic abundance for different values of α1 (10−8, 10−4, and 1) and
m1 ¼ 0.15 eV. See the text for details.
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values of MR=α1y and hence lifetimes below the exper-
imental limit. Conversely, in this shaded region, satisfying
the lifetime limit would imply an insufficient relic density
(though this cannot be excluded). For reference we also plot
in Fig. 9 the line corresponding to a projected sensitivity
corresponding to a lifetime of τ3=2 ¼ 1030 s which is
similar to the present experimental limits. This line can
be determined from the substitution of τ3=2 into Ω3=2h2

giving

Ω3=2h2 ≃ 0.1 ×

�
3 × 1031 s

τ2b3=2

��
104

m3=2

�
4
�
TRH

1010

�
5

; ð70Þ

resulting in a slope of 4=5 (in the logs) for TRH vs m3=2.

A change of slope in this line occurs form3=2 ¼ 2
ffiffiffiffiffi
15

p
πv ≃

6 TeV corresponding to the point when the three-body and
two-body decay rates are equal. At higher masses, using
τ3b3=2 we have

Ω3=2h2 ≃ 0.1 ×

�
1031 s
τ3b3=2

��
104

m3=2

�
6
�
TRH

1010

�
5

; ð71Þ

which results in a slope of 6=5.
In the upper left portion of the (m3=2; TRH) plane we fix

the value of MR ¼ 2.5 × 1015 GeV at its perturbative limit
from y <

ffiffiffiffiffiffi
4π

p
. In this region, above the blue line, the

lifetime is always longer than the experimental limit.
Assuming m1 ¼ 0.15 eV, we show three contours with
fixed α1 as indicated and Ω3=2h2 ¼ 0.1. For each value of
α1, the shaded region above the line (at higher TRH) would
have an excessive raritron density. We see immediately that
raritron masses from about a keV to a PeV are all allowed
for reasonable reheat temperatures TRH ≳ 106 GeV.
It is also useful to consider the allowed parameter space

in the (m3=2, α1) plane. We show in Fig. 10 the region
allowed for different values of the reheating temperature as
indicated. The curves and shadings are as in the previous
figure, however, we now fix bothm1 ¼ 0.15 eV andMR ¼
1014 GeV everywhere across the plane. In this case, the
lifetime limit shown by the blue curve can be viewed as a
function of m3=2 and α1 and should be close to a line with
log slope of −3=2 for low m3=2 and −5=2 for larger masses
when the three-body decay dominates. As discussed above,
we find that values of α1 of order 1 are allowed for
relatively low reheating temperatures (TRH ≃ 108 GeV),
whereas higher reheating temperatures of order 1012

necessitate α1 ≲ 10−8 to avoid an overabundance of dark
matter.

2. Including the inflaton decay

Reheating is the result of inflaton decay to SM particles.
IfMR < mΦ, there will be tree-level diagrams which lead to
reheating and raritron production. When MR > mΦ, there

may be a direct coupling between the inflaton and the SM
[characterized by the coupling yΦ > yν in Eq. (27)] or
through loops with yΦ ¼ yν as in Fig. 4 and discussed
earlier. Even if there is no direct coupling between the
inflaton and raritron, raritron production through loops is
possible as in Fig. 5. Unless inflaton decay to dark matter is
highly suppressed, once a direct decay channel is open even
through loops, it can easily dominate the dark matter
production [33]. We have seen this effect for the specific
case of raritron dark matter in the preceding section.
To get an idea of the relevant parameter values, we

rewrite Eq. (43) (ignoring the logs) with Ω3=2h2jdecay≃
0.1 as

m3=2 ≃ 4 × 1014α
4
3

1

�
0.15 eV

m1

�
2=3

�
TRH

1010 GeV

�1
3

GeV:

ð72Þ
Using this value for m3=2 in the lifetime in Eq. (15)
(using the three-body decay as an example), we find for
τ3=2 ≳ 1030 s

α1 ≲ 2 × 10−7
�

MR

1014 GeV

� 3
26

�
m1

0.15 eV

�
7=26

×

�
1010 GeV

TRH

� 5
26

: ð73Þ

The relevant parameter space in the (m3=2, α1) plane is
shown in Fig. 11. Since the blue line is determined solely

FIG. 10. The (m3=2, α1) plane with astrophysical constraints on
the lifetime from the γ-ray observations and Planck constraints on
the relic abundance produced by scattering for MR ¼ 1014 GeV,
m1 ¼ 0.15 eV, and different values of TRH (108, 1010, and
1012 GeV). See the text for details.
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from the limit on the raritron lifetime, it is independent of
the production mechanism and is the same as in Fig. 10.
Comparing Fig. 11 with Fig. 10, we see clearly that the
production of dark matter through inflaton decay is much
more copious and the parameter space is much more
constrained. The relic abundance necessitates much lower
values of α1 to avoid overabundance, and the result is much
less dependent on TRH as one can see comparing Eqs. (22)
and (70), where Ω3=2h2 depends on T5

RH in the scattering
case, compare to the TRH inflaton decay process. This
feature is also clearly illustrated in Fig. 11, where we show
two lines producing the correct relic abundance with TRH ¼
105 and 1010 GeV.

B. Results when α2 dominates

We can now repeat the previous analysis when the
raritron is coupled to the SM through α2. We first show
the results in the (m3=2; TRH) plane in Fig. 12 produced in
the same manner as in the previous subsection. Due to the
model dependence of the abundance of produced raritrons
from prethermal scatterings, encoded in the effective
branching ratio B2, we limit ourselves here to ratiron
production in thermal equilibrium, i.e., Eq. (63). We note
that while there is not a direct raritron decay channel with a
photon in the final state, photons will be produced.
However, in the absence of a simulation of the full decay
chain, we show the same experimental limits used in the
previous subsection. We also show for reference the curve
corresponding to a lifetime of 1030 s. The experimental
constraints demanding a sufficiently long lifetime and

suitable relic density push the allowed mass range to
m3=2 ≲ 100 GeV when TRH ∼ 1012 GeV, and m3=2 ≲
1 GeV when TRH ∼ 108 GeV. Note that our numerical
results include the running of the gauge and Yukawa
couplings to the appropriate temperature scale, though
not explicitly written in the analytic formulas.
As one can see from comparing Figs. 9 and 12, for a

given reheat temperature and relic density, we need α2 ≪
α1 as noted earlier. For example, for m3=2 ∼ 10 MeV, and
TRH ∼ 108 GeV, we find α1 ∼ 10−2, whereas α2 ∼ 10−7.
Similarly, we show the results in the (m3=2, α2) plane in
Fig. 13. We see that unless α2 is very small (<10−11),
m3=2 < 100 GeV, and the upper limit on the raritron mass
decreases with increasing α2.
We also see by comparing Figs. 10 and 13 that when the

reheat temperature is rather large (TRH ∼ 1012 GeV) and
m3=2 ∼ 10 MeV, the values of α1;2 needed to produce
Ωh2 ¼ 0.12 are similar though quite small. The required
difference in the couplings is much greater at smaller TRH.

V. SIGNATURES

Having established the viable parameter space for the
raritron dark matter model, we now discuss in more detail
the possible experimental signatures for such a model. The
two-body decay mode shown in Fig. 1 will produce a
monochromatic photon and neutrino.11 If m3=2 > mZ, there

FIG. 11. The (m3=2, α1) plane with astrophysical constraints
on the lifetime from the γ-ray observations and Planck constraints
on the relic abundance produced by inflaton decay for
MR ¼ 1014 GeV, m1 ¼ 0.15 eV, and two values of TRH (105

and 1010 GeV). See the text for details.

FIG. 12. As in Fig. 9, the (m3=2, TRH) plane with astrophysical
constraints on the lifetime from γ-ray observations and Planck
constraints on the relic abundance for different values of α2 (10−8,
10−4, and 1).

11A signal of this type was termed a “double smoking-gun” in
[61]. Spin-3=2 fields were not included in their study, nor in [62],
and they did not try to produce cosmologically viable scenarios.
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is also a two-body final state Z þ ν1. These decay channels
are easily observable at detectors and the signal will give us
(1) the mass of the dark matter (from the position of the
signal in the spectrum) and (2) the lifetime (from the
strength of the signal). On top of the monochromatic signal,
there will also be a continuous spectrum due to the three-
body channels which dominate at higher raritron masses.
If the raritron is produced mainly through scattering, the
signal can be translated to the reheating temperature needed
to obtain the right relic abundance using Eq. (70). For
example, a GeV gamma ray observed by FERMI with a
signal strength corresponding to a lifetime of 1030 s would
imply a reheating temperature of ≃3 × 106 GeV. In this
case, the temperature is independent of the parameter α1. In
contrast, if the production were dominated by inflaton
decays, some information on the combination of α1 and
TRH could be ascertained.
As an exercise, we reanalyze one of the most popular

recent “signals”: the 130 GeV line observed by the FERMI
satellite in 2012 [63]. This is a monochromatic signal that
could be fit with a dark matter massm3=2 ≃ 260 GeV and a
lifetime Γ3=2 ≃ 1029 s [64], for a Navarro, Frenk, andWhite
profile [65].12 Interestingly, this kind of signal could
correspond to a spin-3

2
dark matter decay. For scattering-

dominated production, we can use Eq. (70) to determine the
reheat temperature, TRH ≃ 2 × 108 GeV. From the lifetime,

we can also determine the combination ðα1y=MRÞ2 or
α21=MR upon fixing the light neutrino mass, m1. We find,
α21=MR ¼ 2 × 10−13 GeV−1 or α1 ≈ 4 forMR ¼ 1014 GeV.
Note that for this value of α1, when inflaton decay is the
dominant production mode, the reheating temperature must
be extremely (and unphysically) low. Thus not only would
we determine the reheat temperature and α1, but we would
also know that inflaton decay does not play a role in dark
matter production. This position of this example in the
(m3=2, α1) plane is illustrated in Figs. 10 and 11 by a star.
Such a signal, if observed below mH, could be correlated
with a similar monochromatic signal from neutrino detec-
tors like ANTARES or IceCube.13 Even if dedicated
neutrino line searches have not been yet performed by
the IceCube Collaboration, its sensitivity has been calcu-
lated in [66] and should probe a lifetime Ψμ → Aμ þ ν
of ≃1029 s.
Next, we repeat the exercise for the PeV neutrino signal

observed by IceCube [67]. There were some attempts to
explain these events from a dark matter perspective (see
[50] for instance) but it was difficult to reconcile the signal
with the correct relic abundance. The number of events
expected by IceCube is [50,68]

Γevents ¼ 1.5 × 1057ηEfastro
Γ3=2

m0.637
3=2

yr−1; ð74Þ

where ηE ∼ 0.4 is defined from the fiducial volume
Vfid ¼ ηEV and fastro ∼ 1 corresponds to the astrophysical
uncertainty in the local distribution of the dark mater halo.
The mass and widths are expressed in GeV. A rate of
one PeV event per year gives us Γ3=2 ≃ 10−53 GeV,
corresponding to τ3=2 ≃ 6 × 1028 s.14 Using this lifetime,
withm3=2 ¼ 1 PeV, we can again determine the value of α1
now from the three-body decay rate which is dominant,
α1 ≃ 10−7. The reheating temperature in this case can be
obtained from Eq. (71) and we find TRH ≃ 9 × 1011 GeV,
when raritron production is due to scattering. When
production is due to inflaton decay, we can use Eq. (73)
and find TRH ≃ 4 × 1011 GeV. The position of this example
is displayed in Figs. 10 and 11 by the black diamond. Both
the scattering production and the inflaton decay process
scenarios are compatible correct relic abundance and the
IceCube PeV monochromatic signals.

VI. CONCLUSION

We have shown that a metastable spin-3
2
particle can

be a suitable dark matter candidate through the introduc-
tion of a minimal (Planck-suppressed) coupling, α1, to a

FIG. 13. As in Fig. 10, the (m3=2, α2) plane with astrophysical
constraints on the lifetime from the γ-ray observations and Planck
constraints on the relic abundance produced by scattering for
different values of TRH (108, 1010, and 1012 GeV).

12The dependence on the dark matter distribution for decaying
dark matter being proportional to its density ρ (versus ρ2) is much
weaker than for annihilating dark matter.

13The latter being more sensitive to track events than the
ANTARES telescope.

14This is similar to what was obtained in [69], namely,
τ3=2 ≃ 1.9 × 1028 s.
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right-handed neutrino. Surprisingly, the parameter space
needed to generate a sufficiently long lifetime is perfectly
compatible with both the astrophysical constraints from
γ-ray and neutrino experiments as well as the cosmological
determination of the dark matter density. Our results are
summarized in Figs. 10 and 11 where we display the
allowed region in the ðm3=2; α1Þ plane. We considered both
the production of dark matter from the thermal bath
produced during reheating, and production directly from
inflaton decay. We also have shown that smoking-gun
signals are expected from such couplings, in the form of a
monochromatic neutrino and/or a monochromatic gamma-
ray line.
In addition, we considered a second possible gauge

invariant coupling, α2, of the raritron to the SM Higgs and
lepton doublet. The requirement of a sufficiently long
lifetime and correct relic abundance restricts the raritron
mass range to lower values and lower coupling as seen in
Figs. 12 and 13.
We have also illustrated, as examples, the points in the

parameter space that could explain the gamma-ray signal
observed by the FERMI telescope, or PeV neutrinos
observed by IceCube that can be combined with the recent
ANITA analysis [70]. Moreover, it was shown in [71] that
spin-3

2
particles can have an impact on the form of

gravitational waves produced during reheating that could
be observable in future ultrahigh frequency detectors.
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APPENDIX A: THE RARITA-SCHWINGER
LAGRANGIAN

Rarita and Schwinger [36] derived the Lagrangian (1)
following the work of Fierz and Pauli [37]. One can start
with the hypothesis that a spin-3

2
particle should respect

both the spin-1
2
Dirac equation and spin-1 divergence

relation, namely,

ðiγρ∂ρ −m3=2ÞΨμ ¼ 0; ðA1Þ
∂μΨμ ¼ 0: ðA2Þ

By writing the field Ψ in terms of its spin components and
after a Clebsch-Gordan decomposition, we have

Ψ̄þ3
2

μ ¼ Ψþ1
2ϵþ1

μ ;

Ψþ1
2

μ ¼ 1ffiffiffi
3

p Ψ−1
2ϵþ1

μ þ
ffiffiffi
2

3

r
Ψþ1

2ϵ0μ;

Ψ−1
2

μ ¼ 1ffiffiffi
3

p Ψþ1
2ϵ−1μ þ

ffiffiffi
2

3

r
Ψ−1

2ϵ0μ;

Ψ−3
2

μ ¼ Ψ−1
2ϵ−1μ ; ðA3Þ

where Ψsz is a Dirac spinor of helicity 2sz, which is a
solution of Eq. (A1), and ϵλμ is a vector polarization with
spin projection λ along the direction of the momentum, so
that ∂μϵμ ¼ 0. See [43] for a detailed solution. One can
show, using each of the components in Eq. (A3) by direct
calculation and after a little algebra, that Eqs. (A1) and (A2)
imply

γμΨμ ¼ 0: ðA4Þ
We can construct a Lagrangian for a spin-1

2
field, whose

Euler-Lagrange equation gives Eq. (A1), with terms such as
γμγν, γμ∂ν, or any combinations of that type, which are
consistent with the relations (A2) and (A4). Among the
class of possible Lagrangians, the simplest one is

L0
3=2 ¼ Ψμðigμνγρ∂ρ −m3=2gμν

−iγμ∂ν − iγν∂μ þ iγμγργν∂ρ þm3=2γ
μγνÞΨν: ðA5Þ

Note that the coefficient of the last four terms in Eq. (A5) is
arbitrary (e.g., [36] included a factor of 1=3 in front of each
of these terms). Equation (A5) can be simplified to

Ψ̄μðiγμρν∂ρ þm3=2γ
μνÞΨν; ðA6Þ

which is, up to a normalization factor, our Lagrangian
in Eq. (1).

APPENDIX B: DECAY AND SCATTERING
RATES

In this appendix, we provide some relevant details
concerning the computation of the dark matter decay rate.

1. Three-body decay formula

The phase space integration for the three-body decay
processes Ψμ → AμHν1 and Ψμ → ZμHν1 can be per-
formed analytically if one disregards the small neutrino
massm1. In this limit, the decay rates are given by Eqs. (12)
and (13), where the threshold function is given by the
following expression,
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gðx; yÞ ¼
��

1þ y2

4

�
ð1 − y2Þ3 þ 113

8
x2
�
1 −

119y2

339
−
29y4

339
−
131y6

339

�
þ 59

24
x4
�
1þ 6y2

59
−
51y4

59

�

−
1

24
x6ð1 − 9y2Þ − x8

24

�
ξ − 5x2y6ð2x2 þ y2Þ ln j2xyðξ − x2 − y2 þ 1Þj

þ 5

2
x2ð4x2 − 4y2 þ 3Þ ln

���� x4 − x2ðξþ 2y2 þ 1Þ þ y2ðξþ y2 − 1Þ
ξ − x2 − y2 þ 1

����; ðB1Þ

where

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − 2x2ðy2 þ 1Þ þ ð1 − y2Þ2

q
: ðB2Þ

For the three-body decay processes Ψμ → νlf̄f, we find

g1ðxÞ ¼ 30ð14x8 − 24x6 þ 18x4 − 8x2 þ 3Þx4 × ln

�
4x4

ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2

p
Þð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2

p
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2

p
− 3Þx2Þ
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þ ðx − 1Þðxþ 1Þð420x8 − 230x6 þ 204x4 þ 33x2 − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2

p
ðB3Þ

and

g2ðxÞ ¼ 20x4 ln

�
4x4 þ 4ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2

p
− 2Þx2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2

p
þ 2

4x4

�
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þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2
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c2V

�
−20x8 −

190x6

3
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3
− 3x2 þ 1

�
þ c2A

�
−20x8 þ 170x6

3
−
152x4

3
− 23x2 þ 1
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: ðB4Þ

2. Scattering amplitudes

The amplitudes for the scattering processes contributing
to dark matter production from the thermal bath, for the
case with coupling α1, can be written as

jMj2Hν1→ΨμB
¼−

8

3

α21y
2

m2
3=2M

2
P

�
s

s−M2
R

�
2

ðM2
RtþsuÞ; ðB5Þ

jMj2HB→Ψμν1
¼8

3

α21y
2

m2
3=2M

2
P

�
t

t−M2
R

�
2

ðM2
RsþutÞ; ðB6Þ

jMj2Bν1→ΨμH
¼−

8

3

α21y
2

m2
3=2M

2
P

�
t

t−M2
R

�
2

ðM2
RuþstÞ: ðB7Þ

In the limit of MR ≫ m3=2, we find

jMj2Hν1→ΨμB
¼ −

8

3

α21y
2

m2
3=2M

2
RM

2
P
s2t; ðB8Þ

jMj2HB→Ψμν1
¼ 8

3

α21y
2

m2
3=2M

2
RM

2
P
st2; ðB9Þ

jMj2Bν1→ΨμH
¼ −

8

3

α21y
2

m2
3=2M

2
RM

2
P
ut2: ðB10Þ

Similarly, for the interactions mediated by the coupling
α2, assuming T ≫ m3=2, we find

jMj2Lf→Ψμf0
¼ 3

8

α22m
2
t

v2m2
3=2M

2
P

ðt −m2
3=2Þ3

t
; ðB11Þ

jMj2ff0→ΨμL
¼ 3

8

α22m
2
t

v2m2
3=2M

2
P

ðs −m2
3=2Þ3

s
; ðB12Þ

jMj2LW→ΨμH
¼ 3

32

α22g
2

m2
3=2M

2
P
ðs − 2tÞðs − tÞ; ðB13Þ

jMj2LB→ΨμH
¼ 1

32

α22g
02

m2
3=2M

2
P
ðsþ tÞðsþ 2tÞ; ðB14Þ

jMj2LH→ΨμW
¼ 3

16

α22g
2

m2
3=2M

2
P
ðsþ 2tÞðsþ 3tÞ; ðB15Þ
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jMj2LH→ΨμB
¼ 1

16

α22g
02

m2
3=2M

2
P
sðs − tÞ; ðB16Þ

jMj2HW→ΨμL
¼ 3

16

α22g
2

m2
3=2M

2
P
ð2s2 − 3stþ t2Þ; ðB17Þ

jMj2HB→ΨμL
¼ 1

16

α22g
02

m2
3=2M

2
P
ðsþ tÞð2sþ tÞ; ðB18Þ

jMj2Hl→ΨμH
¼ −

α22m
2
τst

6m2
3=2M

2
Pv

2
; ðB19Þ

jMj2HH→Ψμl
¼ −

α22m
2
τ

6m2
3=2M

2
Pv

2
tðsþ tÞ; ðB20Þ

jMj2
HH̄→Ψ̄μΨμ

¼ −
α42
96

tðsþ tÞ3
m4

3=2M
4
P
; ðB21Þ

jMj2
LL̄→Ψ̄μΨμ

¼ α42
128

t4

m4
3=2M

4
P
: ðB22Þ

APPENDIX C: LOOP CALCULATIONS

First, we consider the inflaton decay to two Higgs bosons
through the loop process shown in Fig. 4. The amplitude is
given by

MΦ→HH ¼ AΦHH

Z
d4q
ð2πÞ4

×
PL=qð=qþ =p1 þMRÞð=qþ =p2 þMRÞ

D0D1D2

; ðC1Þ

with the coupling AΦHH ¼ −2yνy2, and the propagators are
defined as D0 ¼ q2 −m2

1 ≃ q2 and Di ¼ ðqþ piÞ2 −M2
R

(i ¼ 1, 2), where m1 is the left-handed neutrino mass and
MR is the right-handed neutrino mass. We remind the
reader that when mΦ > MR, we use the coupling yν ¼ yΦ.
To calculate the amplitudes, we use the Passarino-

Veltman functions [72]. The two-point form factors can
be expressed as

B0;Bμ;Bμν ¼
Z

d4q
iπ2

1; qμ; qμqν
D0D1

; ðC2Þ

where

Bμ ¼ p1μB1 ðC3Þ

and

Bμν ¼ gμνB00 þ p1μp1νB11; ðC4Þ

and the three-point form factors are given by

C0;Cμ;Cμν;Cμνα ¼
Z

d4q
iπ2

1; qμ; qμqν; qμqνqα
D0D1D2

; ðC5Þ

where

Cμ ¼ p1μC1 þ p2μC2; ðC6Þ

Cμν ¼ gμνC00 þ p1μp1νC11 þ p2μp2νC22

þ fp1μp2ν þ p2μp1νgC12; ðC7Þ

and

Cμνα ¼
X
i¼1;2

fgμνpiα þ gναpiμ þ gαμpiνgC00i

þ p1μp1νp1αC111 þ p2μp2νp2αC222

þ fp1μp1νp2α þ p1μp2νp1α þ p2μp1νp1αgC112

þ fp2μp2νp1α þ p2μp1νp2α þ p1μp2νp2αgC122:

ðC8Þ

Using the Passarino-Veltman functions, we can express the
amplitude (C1) as

MΦ→HH

¼ −
iAΦHH

16π2
PL½ð−=p1 þ =p2 þ 2MRÞB0 þ =p2B1

þ ðMRp2
1 þ p2

1=p2 þ p2
2=p1 þ 2M2

R=p1 þMR=p1=p2ÞC1

þ ðMRp2
2 − p2

2=p1 þ 2p1 · p2 − p2
1=p2 −MR=p1=p2ÞC2�:

ðC9Þ

Assuming MR ≫ mΦ ≫ mH we obtain

jMΦ→HHj2 ¼
y2νy4M2

R

8π4
ln2

�
M2

R

m2
Φ

�
; ðC10Þ

and the decay rate is given by Eq. (38).
Next, we calculate the inflaton decay rate to left-handed

neutrinos through the loop process shown in Fig. 4. The
amplitude of this process is

MΦ→νLνL ¼ AΦνLνL

Z
d4q
ð2πÞ4 ūðp1ÞPR

×
ðqþ =p1 þMRÞðqþ =p2 þMRÞ

D0D1D2

PLvðp2Þ;

ðC11Þ

where AΦνLνL ¼ −2yνy2, D0 ¼ q2, and Di ¼ ðqþ piÞ2 −
M2

R (i ¼ 1, 2). Using the Passarino-Veltman functions, we
can express the amplitude (C11) as
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MΦ→νLνL ¼ −
iAΦνLνL

16π2
ūðp1ÞPR

× ½ðMRð=p1 þ =p2 þMRÞ þ =p1=p2ÞC0

þ ð2MR=p1 þ p2
1 þ =p1=p2ÞC1

þ ð2MR=p2 þ p2
2 þ =p1=p2Þ þ B0�PLvðp2Þ:

ðC12Þ

With p2
1 ¼ p2

2 ¼ m2
1, p1 · p2 ¼ m2

Φ
2
−m2

1, and MR ≫ mΦ,
we find

jMΦ→νLνL j2 ¼
y2νy4

128π4
m2

1M
2
ϕ

M2
R

; ðC13Þ

and upon substitution of Eq. (9), the decay rate is given
by Eq. (39).
Finally, we calculate the inflaton decay rate to the

raritrons through the loop process shown in Fig. 5. We
can express the amplitude as follows,

MΦ→ΨμΨμ
¼ −

iAΦΨμΨμ

16π2

Z
d4q
ð2πÞ4 ūμðp1Þ½γρ; q�γμ

×
ðqþ =p1 þMRÞðqþ =p2 þMRÞ

D0D1D2

× γν½q; γρ�vνðp2Þ; ðC14Þ

where AΦΨμΨμ
¼ 2α2

1
yν

M2
P
, D0 ¼ q2, and Di ¼ ðqþ piÞ2 −M2

R

(i ¼ 1, 2). We do not include the full expression of the
amplitude (C14) in terms of the Passarino-Veltman func-
tions due to its complexity. With MR ≫ mΦ ≫ m3=2, the
amplitude takes the form

jMj2 ¼ 2α41y
2
νm2

Φ
9π4M4

pm4
3=2

�
5 − 6 ln

�
M2

R

m2
Φ

��
2

; ðC15Þ

and the decay rate is given by Eq. (40).
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