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Resumen

Esta tesis explora la relación entre teoŕıas en diferentes dimensiones, centrándo-
se en la f́ısica de las compactificaciones de teoŕıa de cuerdas a D = 4. Estas
teoŕıas se consideran en el ĺımite en que pueden ser descritas por super-
gravedad en D = 11 o por supergravedades de tipo II, y las soluciones
estudiadas contienen un factor AdS4 y son por tanto relevantes en holograf́ıa.

Los dos principales objetos de estudio son la espectroscoṕıa de Kaluza-
Klein (KK) y los truncamientos consistentes. La primera consiste en el
estudio de las caractersticas de las torres infinitas de modos resultantes de
la compactificación, cuyas propiedades están controladas por los flujos y la
geometra del espacio interno. Las segundas son situaciones en las que estas
torres pueden reducirse a un subconjunto finito de modos cuya dinámica
viene dada por una supergravedad en cuatro dimensiones que puede ser
embebida consistentemente en su contrapartida con dimensiones extra.

Tras discutir compactificaciones en toros como un ejemplo introductorio
donde presentar los conceptos relevantes, analizaremos cada uno de estos
temas en partes separadas. En la primera parte, explicamos los recientes pro-
gresos en la obtención de truncamientos consistentes mediante supersimetŕıa
y G-estructuras por un lado, y por otro basándonos en los grupos de dualidad
que gobiernan las supergravedades en cuatro dimensiones gracias a las jer-
arqúıas tensoriales, las jerarqúıas de dualidades y Exceptional Field Theory
(ExFT). La segunda parte aborda la espectroscoṕıa KK y su importancia en
holograf́ıa. Hasta hace muy poco, sobre soluciones inhomogéneas solamente
exist́ıan herramientas para estudiar el sector de esṕın-2. Estas herramientas
en combinación con teoŕıa de grupos son utilizadas para examinar la configu-
ración dual a la teoŕıa de campos superconforme que aparece en el infrarrojo
de una deformación relevante de la teoŕıa en el interior de una pila de M2
branas. Posteriormente, se muestra cómo estos métodos se pueden extender
a campos de menor esṕın mediante el marco proporcionado por ExFT, y su
uso para analizar diferentes clases de soluciones en D = 10 y D = 11 con
interés holográfico.
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Abstract

This thesis explores the relation between theories in different dimensions,
focusing on the physics of string theory compactifications down to D = 4.
We consider the limit in which the higher-dimensional theories are described
by D = 11 or type II supergravity, and the studied solutions contain an AdS4

factor and are thus relevant for holography.
The two main objects of study are Kaluza-Klein (KK) spectroscopy and

consistent truncations. The first consists in the study of the features of the
infinite towers of modes resulting from the compactification, whose properties
are controlled by the choice of fluxes and geometry on the internal space. The
latter are situations in which we can reduce these towers to a finite subset of
modes whose dynamics is given by a lower-dimensional supergravity which
can be consistently embedded into the higher-dimensional counterpart.

After discussing the compactifications on tori as an introductory example
to present the relevant concepts, we will analyse each topic in separate
parts. In the first part, we explain how progress has been made in obtaining
consistent truncations based on supersymmetry and G-structures, and on the
duality groups governing the lower-dimensional supergravities thanks to the
tensor and duality hierarchies and Exceptional Field Theory (ExFT). The
second part addresses KK spectroscopy and its importance to holography.
Until very recently, on non-homogeneous solutions only tools to study the
spin-2 sector were available. These tools are combined with group theory to
examine the configuration dual to the IR SCFT of a relevant deformation
of the theory in the worldvolume of a stack of M2 branes. Subsequently,
we show how these methods can be extended to lower-spin fields within the
ExFT framework, and use them to analyse different classes of solutions in
D = 10 and D = 11 of holographic interest.
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apprendre de toi. My time in Ann Arbor was equally lovely, and this was
because the real kindness of Jim Liu. Deep recognition is also for Christoph
Uhlemann, Leo Pando-Zayas, Henriette Elvang and all the students there,
specially Marina and Robbie, for making me feel part of the group from the
very first moment. In these two stays, there were also people who made me
feel literally at home while I was away. Merci beaucoup, Claire, pour ta
douce gentillesse essayant de comprendre mon pauvre français, and to the
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xiv



Contents

Resumen vii

Abstract ix

Preface xi

Agradecimientos & Acknowledgements xiii

Invitation 1

I Consistent Truncations 11

1 Introduction: The road to consistency 13

2 Supersymmetry and G-structures 17

2.1 Holonomy and G-structures . . . . . . . . . . . . . . . . . . . 17

2.2 Classification of AdS4 N = 2 solutions . . . . . . . . . . . . . 20

2.3 Consistent truncations . . . . . . . . . . . . . . . . . . . . . . 24

3 Duality in maximal supergravity truncations 31

3.1 Maximal supergravity in D = 4 . . . . . . . . . . . . . . . . . 31

3.1.1 Gauged sugra and the Embedding Tensor . . . . . . . 31

3.1.2 SU(3)-invariant truncation of SO(8)-gauging . . . . . 40

3.2 The explicit uplift on S7 . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 D = 11 supergravity in 4 + 7 split and the S7 truncation 53

3.2.2 SU(3)-invariant truncation . . . . . . . . . . . . . . . 57

II Kaluza-Klein Spectroscopy 69

4 Introduction: Weighing ripples of the world 71

xv



Contents

5 KK spectrum on the cubic deformation of ABJM 75

5.1 ABJM, its deformations and their duals . . . . . . . . . . . . 75

5.1.1 Relevant Superpotential Deformations . . . . . . . . . 76

5.1.2 Gravity duals . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Massive KK modes on the GMPS solution . . . . . . . . . . . 81

5.2.1 Algebraic Structure . . . . . . . . . . . . . . . . . . . 81

5.2.2 Spin-2 sector . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Geometry and spectrum . . . . . . . . . . . . . . . . . . . . . 93

6 Spectra from maximal truncations 95

6.1 Spin-2 spectrum from SL(8,R) matrices . . . . . . . . . . . . 95

6.2 ExFT spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.1 Fundamentals of Exceptional Field Theory . . . . . . 98

6.2.2 Generalised Scherk-Schwarz ansätze . . . . . . . . . . 101

6.2.3 KK mass matrices . . . . . . . . . . . . . . . . . . . . 103

7 Applications 109

7.1 N = 1 spectra in massive IIA and M-theory . . . . . . . . . . 109

7.1.1 Salient features of the new spectra . . . . . . . . . . . 110

7.2 S-fold conformal manifolds . . . . . . . . . . . . . . . . . . . . 114

7.2.1 KK towers on the two-parameter N = 2 family . . . . 118

7.2.2 The holographic conformal manifold . . . . . . . . . . 130

7.3 Universality of traces . . . . . . . . . . . . . . . . . . . . . . . 137

7.3.1 Graviton spectra in string theory . . . . . . . . . . . . 137

7.3.2 Universality in SU(3)-invariant sector . . . . . . . . . 147

Coda 155
Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . 155

Conclusiones y perspectiva . . . . . . . . . . . . . . . . . . . . . . 159

Appendices 163

A Consistency of the truncation in chapter 2 165

A.1 Consistency of Equations of motion . . . . . . . . . . . . . . . 165

A.2 Consistency of Supersymmetry variations . . . . . . . . . . . 170

B SU(3) subsector of maximal SO(8)-supergravity 173

C Geometric structures on S7 177

C.1 S7 as the join of S1 and a Sasaki-Einstein S5 . . . . . . . . . 177

C.2 S7 as a homogeneous Sasaki-Einstein space . . . . . . . . . . 179

C.3 S7 as the sine-cone over a nearly-Kähler S6 . . . . . . . . . . 180

xvi



Contents

D Checks on D = 11 field equations in the SU(3) sector 183
D.1 Consistency of the minimal N = 2 truncation . . . . . . . . . 183
D.2 D = 11 field equations on the AdS4 solutions . . . . . . . . . 185

E Group theory compendium 191
E.1 Structure of the KK spectra from N = 8 . . . . . . . . . . . . 191

E.1.1 SO(8) towers . . . . . . . . . . . . . . . . . . . . . . . 192
E.1.2 SO(7) towers . . . . . . . . . . . . . . . . . . . . . . . 192
E.1.3 SO(6)v × SO(2) towers . . . . . . . . . . . . . . . . . . 192

E.2 Embedding SU(3)×U(1)p into SO(8) . . . . . . . . . . . . . . 193
E.3 N = 4 supermultiplets . . . . . . . . . . . . . . . . . . . . . . 196

xvii



Invitation

Modern physics is based on two solid pillars describing the four known forces
of Nature. On the one hand, at large distances everything is dominated
by gravity. This is the case because the other forces, although individually
much stronger, can be both repulsive and attractive, and over large distances
their net effects cancel. At the classical level, this interaction is described by
Einstein’s General Relativity, which identifies gravity with the geometry of
the spacetime in which the rest of the matter lives.

On the other hand, microscopic phenomena belong to the quantum realm,
whose most powerful description is quantum field theory. This language is
the relevant tool to describe the physics over several orders of magnitud
in distance and energy, from quantum computers to particle physics. In
the theory of fundamental interactions, the main exponent is the Standard
Model, which combines the forces describing atoms and nuclei into a single
framework.

Both theories have been tested to agree with experiments at unprece-
dented levels. For quantum field theory, most predictions of the Standard
Model have been verified. This ranges from the existence of the Higgs boson
and the value of its mass [1, 2], to the value of quantities like the anomalous
magnetic dipole of the electron, which has been checked to differ from the ex-
perimental data in less than one part in a billion [3]. Similarly, on the gravity
side both the prediction of exotic phenomena and the precision checks have
been verified. Among the recently achieved experimental findings predicted
decades in advance, the photography of black holes by the Event Horizon
Telescope [4] and detection of gravitational waves by the LIGO and Virgo
spectrometers [5] stand out.

However, the puzzle of reality is not complete. There are certain extreme
situations that require the combination of gravity and quantum mechanics,
such as the physics of black holes or the entire universe close to the Big Bang.
Nevertheless, General Relativity and quantum mechanics cannot be easily
reconciled. Furthermore, apart from pieces that do not cope well with one
another, there are entire sectors which are missing. The matter described
by the Standard Model constitutes only 5% of what we think the Universe
is currently formed by, with the remaining 95% being components that we
only know by their gravitational interaction, which we call dark matter and
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energy [6, 7]. The theory that would allow us to understand these unknowns
is known as Quantum Gravity, and finding its precise shape is one of the
main objectives of theoretical physics today.

String theory [8–13] is currently our best candidate for such a theory. Its
name originates from its weakly coupled limit, in which the relevant dynamical
objects are one-dimensional cords characterised by a tension T = (2πα′)−1.
The theory on the worldsheet that these objects sweep as they propagate
leads to an emergent notion of spacetime and includes gravity, which was not
a priori required to be part of the theory. Surprisingly, quantum consistency
of the two-dimensional theories describing these tiny strings is extremely
restrictive, demanding that the strings propagate in ten dimensions, and
providing only five examples, named type I, IIA, IIB, Heterotic E8 × E8 and
Heterotic SO(32), whose spectrum includes fermions. These five theories turn
out to have the precise spectrum and interactions to enjoy a very powerful
symmetry relating bosons and fermions, known as supersymmetry. Moreover,
these superstring theories are strongly suspected to be UV-finite, and their
low energy limits are described by ten-dimensional supergravities, which are
theories combining General Relativity with supersymmetry.

A surprising fact is that all these theories, despite constructed inde-
pendently, know from one another. For example, type IIA string theory
compactified on a circle of radius R yields exactly the same predictions
as type IIB string theory on a circle of radius α′/R, and type IIB string
theory at weak coupling is expected to be equivalent to its strongly coupled
regime. These relations, known respectively as T- and S-dualities, are the
fundamental examples of string dualities, which provide links connecting all
five string theories.

Another case in which string theory is understood follows from taking
two consecutive limits. If one takes the strongly coupled limit of type IIA
string theory, one can infer the existence of a theory in eleven dimensions
which contains membranes but no strings. This theory, known as M-theory,
therefore has the unique eleven-dimensional supergravity as its low-energy
limit. Eleven-dimensional supergravity compactified on a circle successfully
recovers type IIA supergravity. Moreover, if we compactified it on an interval,
we would recover the dynamics of heterotic E8 × E8 supergravity. All these
interrelations suggest that the different string theories and eleven dimensional
supergravity are only different limits of a single theory, that is often referred
to as a whole as M-theory as well. A pictorial representation of this duality
network can be found in figure I.1a.1 This figure also shows a distinguishing
feature of eleven-dimensional supergravity and the type II theories: they
enjoy as much supersymmetry as a theory can have, whilst the other three

1Away from the boundaries in figure I.1a, it is expected that different extended objects
apart from strings contribute in equal footing. This has led some authors to refer to the
complete theory as “The theory formerly known as strings” (TTFKAS) [14, 15]. We will
however use the names string/M-theory understood lato sensu.
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M-Theory
(hic sunt dracones)

Type I

Type IIBType IIA

D = 11
sugra

Heterotic
E8 × E8

Heterotic
SO(32)

S-duality

T-duality

S1/Z2

S1

T-duality

Ω-action
maximal susy

half-max susy

(a)

String theory on AdS
(bulk)

CFT (boundary)

Φ(x, r)

O(x)

(b)

Figure I.1: (a) All the different supersymmetric string theories and eleven-
dimensional supergravity, and their web of dualities leading to the notion of M-theory.
The edges of the star contain information about the relation between adjacent nodes,
with Ω denoting the orientifold action and all the other links mentioned in the text.
(b) Schematic picture of the AdS/CFT correspondence, where the operators in the
boundary CFT are dual to fields propagating in the AdS bulk.

theories are only half-maximal. In this work, we will devote ourselves to the
maximal case.

Another duality found in string theory has deserved much attention
in the recent years. It has a different flavour as compared to the other
string dualities, as instead of relating different string theories, it equates
string theory to quantum field theories without gravity. This duality is
usually referred to as AdS/CFT correspondence or gauge/gravity duality,
and it is holographic in nature: it states that certain string theory solutions
with a d+ 1 dimensional anti-de Sitter (AdS) factor are exactly equivalent
to field theories with conformal symmetry (CFTs) in one dimension less
sitting at the conformal boundary of AdS, as schematically represented in
figure I.1b. The utility of this duality is manifold. From the computational
side, given that it relates the limit in which we have good control of one
theory with the one in which we hardly have tools to address the other, it
provides new directions to approach situations where perturbation theory
breaks down. Prominent examples of these applications are the use of simple
gravity models to study the quark-gluon plasma in the Standard Model
or systems in condensed matter with strongly correlated electrons, as high-
temperature superconductors. On the other hand, it has also provided insight
into deep conceptual issues in black hole evaporation, providing convincing
evidence that evolution must be unitary in spite of the näıve expectation
from Hawking’s evaporation.

Apart from the abundance of dualities, string theory is characterised by
the presence of extra dimensions. Contrary to previous proposals displaying
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this feature, in string theory the dimension of spacetime is not an arbitrary
parameter, but the aforementioned quantum consistency requirements de-
mand a precise value. To make contact with physics in lower dimensions,
it is therefore necessary to specify what happens with the extra ones. The
most common mechanism is known as compactification and lies in assuming
that spacetime can be divided into external and internal spaces, and the
latter form a compact manifold.

From a lower-dimensional perspective, the complete dynamics of the
higher-dimensional theory can be reformulated in terms of objects that only
depend on the external coordinates. Each of the different higher dimensional
fields can be written as an infinite sum of lower-dimensional ones times
specific functions describing vibrations in the internal manifold. For each
vibrational mode, the associated fields will carry a different mass. As we will
discuss in detail, each of these massive excitations, known as Kaluza-Klein
(KK) modes, enjoys a very precise understanding in the the CFT side if we
choose our external manifold to be anti-de Sitter.

Nonetheless, for most purposes, we would like to restrict ourselves to a
finite subset of this infinite tower of Kaluza-Klein excitations. This reduction
is non-trivial, as one cannot freely set some modes to zero while keeping
others and still satisfy the required equations of motion. When it is possible,
one obtains a consistent truncation that guarantees that every solution of
the lower-dimensional theory, usually a gauged supergravity which combines
General Relativity with gauge theories that generalise the Standard Model,
provides a solution of the higher-dimensional counterpart. However, despite
desirable, until very recently only a handful of non-trivial examples of
consistent truncations were known.

The research in this work is framed in the intersection between holographic
and string dualities, and focuses on their relevance in the physics of the
Kaluza Klein modes and the existence of consistent truncations. To motivate
a bit further the actual problems that this work addresses and in order to
introduce some concepts in the simplest context, let us finish this invitation
with a discussion of the most paradigmatic case where they make appearance:
the toroidal compactification of D = 11 supergravity.

D = 11 supergravity on T n

Let us recall the field content and dynamics of D = 11 supergravity [16],
following the conventions of [17]. The bosonic field content includes the
metric ds2

11 = gMNdx
MdxN , M = 0, . . . , 10, and a three-form potential A(3)

with four-form field strength G(4) = dA(3). The fermionic sector is simply
comprised by a Majorana gravitino ψM . In the following, we will consider
configurations in which the gravitino vanishes, and the remaining fields are
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governed by the field equations

dG(4) = 0 ,

d ?11 G(4) +
1

2
G(4) ∧G(4) = 0 ,

RMN −
1

12

[
GMPQRGN

PQR − 1

12
G2gMN

]
= 0 ,

(I.1)

where the first relation is the Bianchi identity for G(4), and the other two
are the equations of motion that stem from the Lagrangian

L11 = R vol11 −
1

2
G(4) ∧ ?11G(4) −

1

6
A(3) ∧G(4) ∧G(4) . (I.2)

The complete action (including fermions) is invariant under local supersym-
metry. On bosonic backgrounds, the variations of the metric and three-form
identically vanish. On the other hand, the gravitino variation reads

δεΨM = ∇M ε+
1

288

(
ΓM

SPQR − 8δSMΓPQR
)
GSPQRε , (I.3)

where ε is Majorana supersymmetry generator and ΓA1...An are the Dirac
matrices and their antisymmetrised products. In (I.3), these matrices appear
contracted with a local orthonormal frame eAM in terms of which the metric
can be written as

gMN = ηAB e
A
Me

B
N , (I.4)

with ηAB the mostly plus eleven-dimensional Minkowski metric. In flat
indices, A = 0, . . . , 10, the Dirac matrices satisfy the Clifford algebra

{ΓA,ΓB} = 2 ηAB , (I.5)

and
Γ0 . . .Γ10 = 1 . (I.6)

As argued before, the spacetimes of interest in string theory are most often
factorised into a d-dimensional external space and an internal n-dimensional
compact manifold. In the eleven dimensional case, n = 11− d. The simplest
example of this is the internal space having the topology of a torus,

Tn = S1 × · · · × S1︸ ︷︷ ︸
n

, (I.7)

so that the coordinates can be split into xM = (xµ, ym), with µ = 0, . . . , d
and m = 1, . . . , n, and the yn chosen to be periodic. The eleven-dimensional
fields can then be written in terms of indices that break the manifest higher-
dimensional Lorentz invariance as

GL(d+ n,R) → GL(d,R)× SL(n,R)

{xM} → {xµ, ym} ,
(I.8)
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in terms of which the bosonic fields can be written as

dŝ2
11 = ∆−1gµνdx

µdxν + gmn(dym +Bm)(dyn +Bn) ,

Â(3) = 1
6Aµνρdx

µ ∧ dxν ∧ dxρ + 1
2Aµνmdx

µ ∧ dxν ∧ (dym +Bm)

+ 1
2Aµmndx

µ ∧ (dym +Bm) ∧ (dyn +Bn)

+ 1
6Amnp(dy

m +Bm) ∧ (dyn +Bn) ∧ (dyp +Bp) ,

(I.9)

with ∆(x, y) a function introduced for later convenience. We will refer
to this way of writing higher-dimensional fields in terms of fields with a
lower-dimensional tensor structure as a KK factorisation or KK ansatz.
Notice that we have not restricted any coordinate dependence, and all fields
are understood to depend on the full set of coordinates. As the internal
coordinates label the circle directions in (I.7), we can encode this dependence
as an expansion of the fields into Fourier modes, e.g.

Âµνρ(x, y) =
∑
k∈Zn

Â(k)
µνρ(x) eikmy

m
. (I.10)

Thus, as mentioned before, we can trade higher-dimensional fields into an
infinite number of lower-dimensional ones once we know a complete basis of
functions on the internal space.

The lower-dimensional fields, known as KK modes, inherit their properties
from the with which they appear. For example, in our toroidal compactifica-
tion the Fourier basis is organised in representations of U(1)n, and the fields
therefore carry U(1)n-charges. In this case, the functions are also harmonic,
and this endows the different KK fields with d-dimensional masses dictated
by them. Schematically,

∂M∂Mφ(x, y) =
∑
k

(∂µ∂µ − |k|2)φ(k)(x) eikmy
m

(I.11)

for φ any of the fields in (I.9). In more general compactifications, it is
therefore convenient to require that the functions controlling the KK tower
also be harmonic. These masses and charges for the full set of modes are
interesting from different perspectives. First, from a phenomenological point
of view, these modes could correspond to actual particles beyond the Standard
Model in large compact dimensions scenarios. In our case, our main interest
in them is going to originate from the AdS/CFT correspondence, as will be
explained in more detail in chapter 4.

In many situations, we nevertheless want to restrict ourselves to a finite
subset of fields within infinite-dimensional KK tower, i.e. we want to split
the entire set as {ϕkept, φtrunc} and set φtrunc = 0. Obtaining a truncation
such that every solution of the equations for the reduced set of fields provides
a solution of the full set of equations requires that the fields retained do

6
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not source the truncated ones. From an action perspective, this means that
there is no term linear in φtrunc in the Lagrangian.

On generic grounds, this is a very subtle requirement. However, in the
toroidal compactification the underlying group theory makes it possible to
truncate all fields in (I.10) with km 6= 0, while retaining the ones with zero
charge under U(1)n. Consistency is guaranteed because we are keeping all
singles under this group while discarding every non-singlet, and it is not
possible to source non-singlets out of singlets for any group. One can also
check that this truncation is compatible with supersymmetry, and therefore,
through the ansatz (I.9), one can obtain solutions of D = 11 supergravity
out of solutions of maximal supergravities in lower dimensions. In fact, the
action of maximal supergravity with no gauging in D = 4 was obtained out
of (I.2) by means of reduction on T 7 [18]. Let us finish this invitation with a
brief recollection of how these supergravities are obtained and their duality
groups identified.

If we reduce on a single circle, (I.9) simplifies into

dŝ2
11 = eφ/6gµνdx

µdxν + e−4φ/3(dy +B)2 ,

Â(3) = 1
6Aµνρdx

µ ∧ dxν ∧ dxρ + 1
2Aµν 1 dx

µ ∧ dxν ∧ (dy +B) ,
(I.12)

where we have chosen the warp factor ∆ = e−φ/6 so that (I.2) leads to a
ten-dimensional action in the Einstein frame. This is the choice we make
throughout this work, which more generally amounts to choosing ∆ in (I.9) as

∆ =
(det gmn

det g̊mn

)1/(d−2)
, (I.13)

with g̊mn the metric obtained when setting all scalars to zero. From a ten-
dimensional perspective, the M-theory fields in (I.12) are given in terms of
a ten-dimensional metric, a vector, a scalar, a three form and a two-form.
As is well-known, this is the bosonic field content of type IIA supergravity
in D = 10. These fields carry a definite weight under GL(1,R), and the
scalar can be thought to parametrise this scaling. Let us also point out that
the two-forms in (I.12) are physical and cannot be set to zero despite the
gauge freedom of Â(3), as they can be thought as Wilson lines on S1. For the
nine-dimensional theory obtained by reduction of D = 11 supergravity on
T 2, we have the same types of forms, now transforming in representations of
GL(2,R), and the scalars can be thought as coordinates on GL(2,R)/SO(2).

More generally, from a d-dimensional perspective and once the y-dependence

7
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d n En(n) K(En(n))

8 3 SL(2,R)× SL(3,R) SO(2)× SO(3)

7 4 SL(5,R) SO(5)

6 5 Spin(5, 5) SO(5)× SO(5)

5 6 E6(6) USp(8)

4 7 E7(7) SU(8)

3 8 E8(8) SO(16)

Table 1: Maximal supergravity En(n) duality groups and their respective
maximal compact subgroups.

in (I.9) is dropped, the fields entering the metric and three-form are

gµν(x) : metric ,

Bm
µ (x), Aµnp(x) : vectors ,

Aµνp(x), Aµνρ(x) : two- and three-forms ,

gmn(x), Amnp(x) : scalars .

(I.14)

These fields can be understood to furnish different GL(11− d,R) representa-
tions, as for the previous reductions. However, the complete duality groups
for the maximal supergravities arising from toroidal reduction of M-theory
are bigger than this for d ≤ 8, as hinted by the appearance of the axionic
scalar Amnp outside the GL(n,R)/SO(n) coset. The duality group in this
cases enhances to the En(n) family, where the notation denotes that they
are the maximally non-compact (split) real form of the associated complex
algebras. The associated scalar manifolds are then cosets of these duality
groups by their maximal compact subgroup. A summary of these groups is
given in table 1.

For d ≤ 6, some of these forms need to be Hodge-dualised into lower rank
fields to complete representations of En(n). In particular, for d = 5

gµν(x) : metric ,

Bm
µ (x), Aµnp(x), Ãµp(x) : vectors ,

gmn(x), Amnp(x), Ã0(x) : scalars ,

(I.15)

with
dÃp = ∗dAp , dÃ0 = ∗dA (I.16)

in terms of the two- and three-forms in (I.14), and ∗ the d = 5 Hodge
operator. Here, p = 1, . . . , 6, and (I.15) therefore amounts to 27 vectors in
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the 6⊕15′⊕6 of SL(6,R), and 42 scalars in the 20⊕1 plus GL(6,R)/SO(6),
as appropriate for their respective branchings from the 27′ of E6(6) and the
E6(6)/USp(8) scalar manifold.

Correspondingly, in d = 4 the fields are

gµν(x) : metric ,

Bm
µ (x), Aµnp(x) : vectors ,

gmn(x), Amnp(x), Ãp(x) : scalars ,

(I.17)

with p = 1, . . . , 7. In this case, the three-form Aµνρ in (I.14) does not
carry degrees of freedom, and Ãp are the axions dual to the two-form Aµνp.
This totals 70 scalars in GL(7,R)/SO(7) plus the 35 ⊕ 7 of SL(7,R), as
appropriate for fields in the E7(7)/SU(8) coset. The counting of the vectors
is more subtle due to electric-magnetic duality in even dimensions. In (I.17),
and thus in the action, there are 28 of them in the 7′ ⊕ 21, which is half
of the number required for E7(7) covariance. The missing 28 vectors can be
understood as the magnetic duals of the ones appearing here. We will dwell
at length into this point in chapter 3.

In this simple example we have observed the appearance of towers of
KK modes upon compactification, and the possibility of setting to zero an
infinite number of these fields while retaining a finite choice of them in a way
consistent with the equations of motion of D = 11 supergravity. Although
these two topics are very much interrelated, we have decided to treat them
separately in the following for the sake of clarity. The analysis of consistent
truncations will be carried out in Part I in the light of supersymmetry,
dualities, and the holography of relevant deformations in the dual CFTs. In
Part II, we will analyse perturbations on top of solutions of type II and eleven-
dimensional supergravity. Many of these higher-dimensional solutions have
been constructed by uplifting solutions of the consistent truncations discussed
in the former part, and the analysis of the spectrum takes advantage of this
fact and from a duality-covariant reformulation of the higher-dimensional
theories known as Exceptional Field Theory. We will end this dissertation
with some comments on applications and future directions and relegate some
further discussion on technical details to five appendices.
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Part I

Consistent Truncations



Chapter 1

Introduction:
The road to consistency

The construction of String/M-theory solutions with non-trivial fluxes and
reduced (super-)symmetry at the ten- or eleven-dimensional level is a monu-
mental task. Moreover, in many cases we are not interested in the dynamics
of the full set of modes, but only in a restricted subset, as might be the
reduction to lower-dimensional configurations discussed in the invitation. In
general, however, the reduction of the equations of motion to such a finite
subset of modes, despite desirable, is very far from trivial due to the highly
non-linear nature of the equations.

Traditionally, group theory has enjoyed a prominent rôle in these trunca-
tions, as already encountered in the toroidal case and discussed above (I.12).
This idea in the Tn reduction can be generalised to other group manifolds in
what are known as deWitt reductions [19]. If the internal manifold is chosen
to be a non-abelian Lie group G, e.g. G = SU(2) ' S3, the isometry group
is Gleft ×Gright, with one factor acting on the group element from the left
and the other from the right. Using the same logic as before, we can com-
pactify a higher-dimensional supergravity on this manifold and expand the
higher-dimensional fields into a tower of KK modes carrying representations
of Gleft ×Gright

1 and discard all modes which transform non-trivially under
one of the factors, say Gright. The retained fields, in spite of being singles
under Gright, need not be singlets under Gleft, and this leads to interesting
gauged supergravities in lower dimensions.

One could also try to perform this exercise on other seemingly simple
spaces with non-trivial symmetry groups, such as spheres other than S1

or S3 (as these two spheres are the only cases that are group manifolds).

1Strictly speaking, the KK modes furnish representations of the symmetry group
preserved by both the supergravity metric and fluxes, which is generically smaller than
the isometry group. Here, for simplicity, we assume that the (possibly zero) fluxes do not
break any symmetries.
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Part I Chapter 1 – Introduction: The road to consistency

From a group theoretic perspective, an n-sphere can be understood as a
homogeneous space

Sn ' SO(n+ 1)

SO(n)
. (1.1)

and on a maximally symmetric solution all fields can be taken to transform
in representations of SO(n+ 1). If we keep all singlets under any subgroup
of the isometry group, the truncation is again guaranteed to be consistent
[20]. We could try to perform a truncation retaining fields that transform
non-trivially under this SO(n + 1) so that it becomes the gauge group of
the lower dimensional supergravity. However, this kind of truncations, know
as Pauli reductions [21, 22], are generically inconsistent as the coordinate
dependence does not factorise [23, 24]. The problem is easy to see: starting
from the ansatz (I.9), the external components of the Einstein equation are,
in general,

Rµν − 1
2 gµνR = 1

2 Y
IJ T (A)IJ µν − Λ gµν (1.2)

for a solution dependent cosmological constant, as we have chosen ∆ so that
(1.2) is in Einstein frame. Here, T (A)IJ µν is the appropriate stress-energy
tensor for the Yang-Mills field strengths associated to the gauge vectors
AI , and the tensor Y IJ is a theory-dependent combination of the internal
Killing vectors and their derivatives. Here, the internal index I now runs over
adj⊕ . . . representations of the gauge group. In simple terms, the obstacle
is that the tensor Y IJ(y) generically depends on the internal coordinates.

Nevertheless, in a number of cases one succeeds in this remarkable
exercise, with the truncations to gauged maximal supergravities in D = 4
and 5 being some prominent instances [25–28]. When this is possible, the
lower-dimensional gauged supergravities can be regarded as efficient ways of
probing the higher-dimensional counterparts, as every stationary point of
their potentials will correspond, by the consistency of the truncation, to a
higher-dimensional solution.

These consistent truncations to lower-dimensional maximal supergravities
of D = 11 or type II supergravities can be understood as turning on the
supergravity multiplet on top of maximally supersymmetric configurations
of the higher-dimensional theories. From this point of view, the KK ansatz
in (I.9) can be understood as a proper embedding of the (suitably dualised)
fields of maximal D = 4 supergravity on top of the vacuum

dŝ2
11 = ds2(R1,3) + δmndy

m dyn , F(4) = 0 . (1.3)

Similarly, we can ask whether it is possible to embed other supergravities
on top more non-trivial solutions with a lower amount of preserved super-
symmetry. If the solution upon which we want to build can be found in the
potential of a maximal supergravity, the corresponding embedding of the
associated N < 8 supergravity also follows from the maximal truncation
from a suitable dismissal of part of the N = 8 fields. On the other hand, we
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expect these truncations to exist also on top of solutions which do not arise
from a lower-dimensional maximal supergravity.

In the two remaining chapters of this part, we are going to be interested
in truncations based on configurations that also split the eleven-dimensional
spacetime as

GL(11,R) → GL(4,R)× SL(7,R)

{xM} → {xµ, ym} ,
(1.4)

with µ = 0, . . . , 3 and m = 1, . . . , 7 in line with (I.8). These configurations
are going to be taken to be maximally symmetric solutions of M-theory
such that the external factor is four-dimensional anti-de Sitter, AdS4, and
the seven-dimensional internal space will be required to be compact. Then,
instead of (1.3), we will consider an eleven-dimensional metric of the form

dŝ2
11 = e2Ads2(AdS4) + gmn(y)dym dyn , (1.5)

with ds2(AdS4) having unit radius and A(y) a warp factor which only depends
on the internal coordinates. The four-form accordingly factorises as

G(4) = m vol4 + 1
4!Fmnpq dy

m ∧ dyn ∧ dyp ∧ dyq , (1.6)

with the Freund-Rubin term involving the volume form associated to the
corresponding external metric, and the magnetic component, F , carrying
dependence on the internal coordinates only.

When we turn on the four-dimensional fields, they deform (1.5) and
(1.6) in different ways. The four-dimensional metric simply replaces the
vacuum ds2(AdS4) factor. In turn, D = 4 the scalars modify the warping,
the Freund-Rubin factor and the internal metric and four-form. Finally, as
happened for the maximal toroidal reduction in (I.9), the lower-dimensional
vectors fibre the internal manifold over the external space and can also enter
through their field strengths in the eleven-dimensional four-form.

Under the 4+7 dimensional splitting, fermions also need to be repackaged.
As mentioned in the invitation, the two relevant spinors in M-theory are
the gravitino, ΨM , and the supersymmetry generator, ε. Both of them are
Majorana spinors in D = 11, with the former also carrying a vector index.
The Majorana spinor index becomes under (1.4) a product of D = 4 and
D = 7 spinor indices. Accordingly, it is useful to decompose the elements of
the Clifford algebra as

Γα = ρα ⊗ 1 , Γa = ρ5 ⊗ γa (1.7)

in terms of D = 4 Dirac matrices, ρα, α = 0, . . . , 3, with ρ5 = iρ0ρ1ρ2ρ3;
and their D = 7 counterparts γa, a = 1, . . . , 7. These matrices satisfy the
Clifford algebras

{ρα, ρβ} = 2 ηαβ , {γa, γb} = 2 δab , (1.8)
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Part I Chapter 1 – Introduction: The road to consistency

with ηαβ the four-dimensional mostly plus Minkowski metric and δab the
Euclidean metric. The chirality matrix satisfies (ρ5)2 = 1.

When a D = 11 fermion is expressed in this spitting, the D = 11 Majorana
index Â = 1, . . . , 32 factorises as a product Â = (â, I), with â = 1, . . . , 4 and
I = 1, . . . , 8 Dirac indices in D = 4 and D = 7, respectively. The latter can
also be thought as a fundamental SU(8) index thanks to the inclusion

SU(8) ⊃ SO(8) ⊃ SO(7)

8 → 8s → 8 ,
(1.9)

as required by the D = 4 R-symmetry of the N = 8 theory.

Currently, the main tools to obtain these consistent truncations are either
based on the supersymmetry of the higher-dimensional background solution
and how it constrains the string theory configurations, or rely on the structure
of the lower-dimensional truncated theory and take advantage of its duality
group. In the first approach, the fundamental tool are G-structures [29].
These can be understood as a preferred basis of p-forms built out of the
preserved Killing spinors on which to expand the supersymmetric solutions.
This language is very well suited to classification efforts, and was used in [17]
to obtain the form of all solutions of M-theory with an AdS4 factor preserving
N = 2. In chapter 2, we review these notions and the construction in [17]
to then build new consistent truncations of D = 11 supergravity to D = 4
N = 2 minimal gauged supergravity on a topological S7.

Regarding the approach based on dualities, it is explored in chapter 3,
where the fully-fledged uplift to D = 11 of the maximal SO(8)-gauged
supergravity in D = 4 is presented. This uplift is performed by making use
of the formulation of the gauged supergravity theory in a E7(7) covariant
language by means of the tensor hierarchy [30]. We further focus on the
solutions present in the SU(3)-invariant subsector of the gauged supergravity
and their uplift to eleven dimensions. The consistency of the truncation of
M-theory on S7 is checked for these solutions at the level of the D = 11
four-form equations, and having the detailed form of this solutions proves
instrumental in Part II. Moreover, as the full dynamics of the D = 4 theory
is kept, this also allows us to construct the long-sought minimal N = 2
consistent truncation about the Corrado-Pilch-Warner (CPW) solution [31].
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Chapter 2

Supersymmetry and
G-structures

It has long been known that supersymmetry is a powerful tool in string
and field theory. In this chapter, we will review how to use it to classify
configurations in M-theory which preserve N = 2 in four dimensions using
the notion of G-structures in section 2.1. This technique was used in [17] to
construct a general class of AdS4 vacua, which we review in section 2.2. After
this recap, we will construct consistent truncations around the solutions in
section 2.2 down to N = 2 minimal supergravity, in line with the general
conjecture in [32].

2.1 Holonomy and G-structures

Requiring that a configuration is supersymmetric amounts to finding a spinor
generator ε such that

δεB = 0 , δεF = 0 , (2.1)

for every bosonic, B, and fermionic, F , field. In the case of bosonic con-
figurations, where all fermionic fields vanish, the first equality in (2.1) is
automatic, as the right-hand side of the supersymmetric variation depends
on the fermions. In M-theory, the second amounts to the vanishing of (I.3),
which depends on the background geometry and fluxes. Requiring that
globally well-defined non-vanishing solutions to this equation exist constrains
severely the properties of the vacuum.

Before any further structure is introduced, the fibre bundle of all possible
frames on a d-dimensional manifold, known as the frame bundle, is patched
with GL(d,R) transformations. If some globally well-defined non-vanishing
section is introduced, we can choose the subset of frames adapted to it. For
instance, if an orientation is introduced, we can restrict to frames whose
wedge has the same sign as the non-vanishing volume form; or, if a metric is
present, we can take frames whose elements are orthonormal with respect to
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it. For each of these restricted frames, the structure group is reduced, being
SL(d,R) in the first case and O(d) in the second. Further, these restrictions
are compatible, and for oriented Riemannian manifolds, the structure group
is SO(d), or a subgroup thereof in case other sections such as our Killing
spinors are introduced.

For configurations without flux [33], (I.3) reduces to requiring the ex-
istence of a spinor parallel transported with respect to the Levi-Civita
connection

∇M ε = 0 . (2.2)

In this case, the manifold must not only be Ricci-flat from (I.1),1 but also
admit a metric with special holonomy, which is a very restrictive topological
requirement. These metrics have been classified [33, 34], and for the static
case the problem reduces to classifying Calabi-Yau 5-folds, as the metric is
locally isometric to a product R× CY5.

In flux compactifications, where the four-form does not vanish identi-
cally, spinors are not covariantly constant with respect to the Levi-Civita
connection, but the torsion-full connection appearing in (I.3)

∇̂M ≡ ∇M +
1

288

(
ΓM

SPQR − 8δSMΓPQR
)
GSPQR . (2.3)

The existence of a globally well-defined non-vanishing spinor implies that
the manifold admits a reduced structure group G [35] under which this spinor
is left invariant. In the seven-dimensional case, the relevant structure groups
are therefore those subgroups of SO(7) for which the spinorial representation
of SO(7) contains singlets. The number of internal Killing spinors associated
to the reduced structure group follows the chain [35]

SO(7) ⊃ G2 ⊃ SU(3) ⊃ SU(2)

8 → 1 + 7 → 2× 1 + 3 + 3̄ → 4× 1 + 2× 2 .
(2.4)

It is useful to consider the p-forms that can be constructed as bilinears of
these Killing spinors. Group theoretically, they follow the rule

SO(7) ⊃ G2 ⊃ SU(3) ⊃ SU(2)

7 → 7 → 1 + 3 + 3̄ → 3× 1 + 2× 2 ,

21 → 7 + 14 → 1 + 2× (3 + 3̄) + 8 → 6× 1 + 6× 2 + 3 ,

35 → 1 + 7 + 27 → 3× 1 + 2× (3 + 3̄)

+ 6 + 6̄ + 8
→ 10× 1 + 8× 2 + 3× 3 .

(2.5)
with vectors and six-forms transforming in the 7, two- and five-forms in the
21, and three- and four-forms in the 35 of the Riemannian SO(7). This

1Note that Ricci-flatness is not an integrability condition for the existence of covariantly
constant spinors in the case of Lorentzian manifolds.
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2.1 Holonomy and G-structures

Λ1 Λ2 Λ3

G2 − − ϕ

SU(3) η J Ω

SU(2) EI JI −

Table 2.1: G-invariant forms for structure groups inside SO(7).

means that a G2-structure is characterised by a globally defined three-form ϕ
(and its Hodge dual ψ = ∗ϕ). Similarly, an SU(3)-structure is characterised
by a one-form η, a two-form J and a complex three-form Ω (the third
invariant three-form in (2.5) is simply η ∧ J). Finally, an SU(2)-structure is
characterised by a triplet of one-forms EI and a triplet of two-forms JI . In
this case, there is no non-trivial three-form, but only E ∧E ∧E and EI ∧ JJ .

Parallel transport of ε with respect to ∇̂ in (2.3) can be characterised
in terms of the tensor ∇̂ − ∇ with information about the fluxes [35, 36].
This tensor can be identified as the torsion of the ∇̂ connection, which is
an element of Λ1 ⊗ Λ2. Given the isomorphism Λ2 ' so(7) = g⊕ (so(7)/g),
with g the Lie algebra of the structure group G and so(7)/g its complement
inside so(7), the action of ∇̂−∇ when acting on G-invariant objects is given
by the intrinsic torsion T (G) in Λ1 ⊗ (so(7)/g). The different G-modules in
Λ1 ⊗ (so(7)/g) are known as torsion classes. Their presence characterises the
supergravity solution, as it is possible to express the supergravity fields in
terms of them and the invariant forms [36, 37].

Let us briefly introduce the different torsion classes for the reduced
structures in (2.4), and how they relate the differentials of the invariant
p-forms to the forms themselves. For G2-structures,

Λ1 ⊗ (so(7)/g2) = 7⊗ 7 = 1 + 7 + 14 + 27 , (2.6)

and combining this information with (2.5), we find

dϕ = τ0
1ψ + τ1

7 ∧ ϕ+ τ3
27 ∧ (ϕyψ) , (2.7)

with τkm being k-form representatives of the m-th torsion class in (2.6).
Similarly, for the SU(3) and SU(2) structures we have

Λ1 ⊗ (so(7)/su(3)) = (1 + 3 + 3̄)⊗ [1 + 2× (3 + 3̄)]

= 5× 1 + 5× (3 + 3̄) + 2× (6 + 6̄) + 4× 8
(2.8)

and
Λ1 ⊗ (so(7)/su(2)) = (3× 1 + 2× 2)⊗ (6× 1 + 6× 2)

= 30× 1 + 30× 2 + 12× 3 ,
(2.9)

with the derivatives dη, dJ and dΩ given in terms of the 23 torsion classes
in (2.8), and dEI , dJI in terms of the 72 in (2.9). Detailed expressions can
be found, e.g. in [37].
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2.2 Classification of AdS4 N = 2 solutions

The class of background geometries that we are going to focus on was studied
in [17]. These correspond to warped products AdS4 × Y7 preserving two
supersymmetries and the maximal symmetry of the AdS4 factor. As such,
the have factorised D = 11 metric and four-form as given in (1.5) and (1.6)

g11 = e2∆ (gAdS4 + g7) , G(4) = m vol(AdS4) + F(4) , (2.10)

where m is a constant and the function e2∆, the Riemannian metric g7 and the
four-form F(4) are all defined on the internal manifold Y7. In the remainder
of this chapter, we follow [17] in defining gAdS4 to be of radius LAdS4 = 1

2
so that its Ricci tensor is −12 times the metric. In (2.10), vol(AdS4) is the
volume form of gAdS4 .

The preserved N = 2 supersymmetry means that there exist two inde-
pendent AdS4 spinors ψi satisfying the lower dimensional Killing equation
and of positive chirality

∇µψi = ρµ(ψi)c , ρ5ψ
i = ψi . (2.11)

The superscript c here and in the following stands for charge conjugate
with the standard conventions of [17], both for four- and seven-dimensional
spinors. To promote these spinors to Killing spinors of the eleven-dimensional
configuration, they must be interwoven with internal spinors χ. This still
allows freedom to use the SU(3) or SU(2) structures discussed in section 2.1.

In the case relevant for SU(3) structures, the eleven-dimensional Majorana
spinor ε can be decomposed as

ε =
(
ψ1 + (ψ2)c

)
⊗ χ+m.c. . (2.12)

with χ the complex spinor in (2.4) and m.c. here and henceforth denoting
charge conjugation of the terms shown. This class of solutions was analysed
in [37], who showed that the only solutions are unwarped Freund-Rubin
compactifications with a Sasaki-Einstein internal manifold. On the contrary,
we will consider the SU(2) factorisation

ε =
∑
i

ψi ⊗ e∆/2χi + (ψi)
c ⊗ e∆/2χci , (2.13)

where the two linearly independent Dirac spinors χi, i = 1, 2 on Y7 correspond
to the four singlets in (2.4), and the factors e∆/2 have been introduced as in
[17] for convenience. Combining (2.11) with this ansatz implies that χi are
subject to the constraints

1

2
∂n∆γnχi −

ime−3∆

6
χi +

e−3∆

288
Fbcdeγ

bcdeχi + χci = 0 ,

∇mχi +
ime−3∆

4
γmχi −

e−3∆

24
γcdeFmcdeχi − γmχci = 0 ,

(2.14)
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2.2 Classification of AdS4 N = 2 solutions

imposed by the Killing spinor equation. Indices a, b, c, . . . = 4, . . . , 10 and
m,n, p, . . . = 4, . . . , 10 respectively are M7 global and local indices, γa and
γm respectively denote the seven-dimensional Dirac matrices and their con-
traction with a local frame, ∇m is the covariant derivative compatible with
g7 acting on spinors.

A number of bilinears in χi can be constructed that correspond to the
triplet of orthonormal one-forms, E1, E2, E3, and two-forms, J1, J2, J3 of
the local SU(2) structure in table 2.1. One of the one-forms, E1, is dual to a
Killing vector ξ of g7 that also preserves the four-form flux F(4). This vector
thus generates the Reeb-like N = 2 direction. Local coordinates ψ, τ and
ρ can be introduced on Y7 so that the Killing vector is ξ = 4∂ψ, and the
one-forms become

E1 =
1

4
‖ξ‖(dψ +A) , E2 =

e−3∆

4
√

1− ‖ξ‖2
dρ ,

E3 =
6

m

ρ‖ξ‖
4
√

1− ‖ξ‖2
(dτ +A) ,

(2.15)

where ‖ξ‖ is the norm of ξ with respect to g7,

‖ξ‖2 =
e−6∆

36

(
m2 + 36ρ2

)
, (2.16)

and A is a local one-form such that LξA = 0 and iξA = 0.
The metric on M7 can now be written as

g7 = gSU(2) + E2
1 + E2

2 + E2
3 , (2.17)

with gSU(2) a metric on the local four-dimensional space where the two-forms
JI , I = 1, 2, 3, are defined. The SU(2) structure group rotates the frame
of this four-dimensional metric, and is embedded into its spin group as
SO(4) ' SU(2)×SU(2)′. Using this SU(2)′, we can choose a frame such that
the two-forms take on canonical expressions2

J3 = e45 + e67 , Ω = J1 + iJ2 = (e4 + ie5) ∧ (e6 + ie7) . (2.18)

In particular, JI are self-dual with respect to the Hodge star associated to
gSU(2) and obey JI ∧ JJ = 2 vol(gSU(2)) δIJ . The derivatives of these SU(2)-
invariant forms can be shown [17] to combine into the following torsion
conditions

e−3∆d
[
‖ξ‖−1

(m
6
E1 + e3∆|S|

√
1− ‖ξ‖2E3

)]
= 2 (J3 − ‖ξ‖E2 ∧ E3) ,

(2.19)

2 We label the D = 11 frame so that g4 + g7 = −e0 ⊗ e0 +
∑10
i=1 e

i ⊗ ei, with e0, . . . , e3

associated to AdS4, e4, . . . , e7 to gSU(2), and e8 = E1, e9 = E2, e10 = E3.
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d
(
‖ξ‖2e9∆J2 ∧ E2

)
− e3∆|S|d

(
‖ξ‖e6∆|S|−1J1 ∧ E3

)
= 0 , (2.20)

d
(
e6∆J1 ∧ E2

)
+ e3∆|S|d

(
‖ξ‖e3∆|S|−1J2 ∧ E3

)
= 0 , (2.21)

where S ≡ ρe−3∆ei(ψ−τ) is a zero-form bilinear. These determine the internal
four-form as

F(4) =
1

‖ξ‖E1 ∧ d
(
e3∆
√

1− ‖ξ‖2J1

)
−m

√
1− ‖ξ‖2
‖ξ‖ J1 ∧ E2 ∧ E3 , (2.22)

and the differential of the one-form A as

dA =
4me−3∆

3‖ξ‖2
[
J3 +

(
3‖ξ‖ − 4

‖ξ‖

)
E2 ∧ E3

]
. (2.23)

The supersymmetric configuration (2.10) with (2.15)–(2.23) solves the
Bianchi identities and equations of motion of D = 11 supergravity [17], as
discussed in section 2.1. In particular, it is straightforward to check that the
four-form (2.22) is closed, using the differential relations (2.19)–(2.21). In
fact, the two distinct contributions to the four-form can be checked to be
separately closed.

An interesting case of the general class of configurations of [17] was
also studied in that reference, where the vector ∂τ along the coordinate τ
becomes an isometry of the internal metric g7. This vector can never become
a symmetry of F(4), though, unlike the Reeb vector ξ = 4∂ψ, which preserves
the entire D = 11 configuration. For this subclass, it is convenient to rescale
the coordinate ρ by a constant factor as r ≡ 6

mρ and introduce a function
f(r) such that

JI =
m

24
e−3∆f(r) JI , I = 1, 2, 3 , (1 + r2)(dτ +A) = f(r)(dτ +AKE) ,

(2.24)
where the one-form AKE and the triplet of two-forms JI are r–independent and
defined on the four-dimensional space with metric gSU(2). The latter becomes,
up to an overall r-dependent factor (cf. (2.28)), a Kähler-Einstein metric
gKE with canonical normalisation RicKE = 6 gKE. The torsion conditions
(2.19)–(2.21) reduce to

dAKE = 2 J3 , d (J1 + iJ2) = 3i(J1 + iJ2) ∧ (dτ +AKE) , (2.25)

together with the following ordinary differential equations (ODEs) for f(r),

f ′ = −1

2
r α2 f ,

(rα′ − r2α3)f√
1 + (1 + r2)α2

= −3 , (2.26)

where a prime denotes derivative with respect to r. The warp factor can be
expressed in terms of α as e6∆ =

(
m
6

)2 (
1 + r2 + α−2). The first equation
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2.2 Classification of AdS4 N = 2 solutions

in (2.25) signals the two-form J3 as the Kähler-Einstein form and AKE as a
potential for it. Finally, the one-forms (2.15) become, using (2.16),

E1 =
α
√

1 + r2

4
√

1 + (1 + r2)α2

[
dψ − dτ +

f

1 + r2
(dτ +AKE)

]
,

E2 =
1

4
αdr , E3 =

1

4

r α f√
1 + r2

(dτ +AKE) .

(2.27)

In terms of these objects, the solutions simplify down to

g11 = e2∆

{
gAdS4 +

α f

4
√

1 + (1 + r2)α2
gKE +

α2

16

[
dr2 +

r2f2

1 + r2
(dτ +AKE)2

+
1 + r2

1 + (1 + r2)α2

(
dψ − dτ +

f

1 + r2
(dτ +AKE)

)2
]}

,

F̂(4) = h1(r)(dψ − dτ) ∧ dr ∧ J1 + h2(r)(dψ − dτ) ∧ (dτ +AKE) ∧ J2

+ h3(r)(dτ +AKE) ∧ dr ∧ J1 ,
(2.28)

where we have defined the following shorthand functions of r

h1(r) =
m2

32 · 26

(
α−1e−3∆f

)′
, h2(r) = − m2

3 · 26

(
α−1e−3∆f

)
,

h3(r) =
m2

32 · 27

f

1 + r2

[
2
(
α−1e−3∆f

)′ − 3r α2
(
α−1e−3∆f

)]
.

(2.29)

Explicit instances in this subclass of geometries are obtained for each
solution f(r) of the ODE system (2.26). Two such solutions were discussed
in [17]. The first one, analytic, is obtained by setting [17]

f(r) = 3

(
2− r√

2

)
, α(r) =

√
2

2
√

2r − r2
, (2.30)

with r ∈ [0, 2
√

2]. This reproduces the N = 2 AdS4 solution first obtained
by Corrado, Pilch and Warner (CPW) [31] by other methods. A second,
numerical, solution to the ODE system (2.26) was obtained in [17] (see
also [38]). This AdS4 solution was argued [17] to dominate holographically
the low-energy physics of a relevant deformation of the Aharony-Bergman-
Jafferis-Maldacena (ABJM) [39] field theory defined on a stack of planar
M2-branes, which is cubic in the adjoint N = 2 chiral fields. Its physical
rôle is thus similar to the CPW solution, which is related to an analogue,
quadratic, deformation in the chirals. We will describe further and spend
much attention to this solution in chapter 5.
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Part I Chapter 2 – Supersymmetry and G-structures

2.3 Consistent truncations

General idea and a simple example

For many supersymmetric AdSd configurations of string theory, it was found
to be possible to build Kaluza-Klein truncation ansätze that retained the
full dynamics of the d-dimensional stress-energy supermultiplet [25, 40–
43]. This dynamics is captured by a (possibly gauged) supergravity in d
dimensions with as many supersymmetries as the base solution and involving
only the supermultiplet containing the graviton field, which we refer as the
minimal supergravity. This led Gauntlett and Varela [32] to conjecture
that such consistent truncations always exist, and their reduction ansatz
can be constructed using the G-structure machinery reviewed above. This
conjecture was recently proved by Cassani, Josse, Petrini and Waldram [44]
with arguments from generalised geometry [45–56].

As a simple example, we can consider the aforementioned N = 2 AdS4

solutions of M-theory with SU(3) structure. They take the form

ds2
11 = 1

4ds
2(AdS4) + ds2(SE7)

G = 3
8 vol(AdS4) ,

(2.31)

with
ds2(SE7) = (dψ + σ)2 + ds2(M6) , (2.32)

where the Sasaki-Einstein manifold is normalised as Ric(SE7) = 6ds2(SE7).
Here ψ is the coordinate along the Reeb direction corresponding to the R-
symmetry of the dual N = 2 SCFT, and ds2(M6) is locally Kähler-Einstein
with Kähler form J such that dσ = 2J .

The supergravity multiplet in D = 4 N = 2 contains two gravitini and
a massless vector apart from the graviton. This vector can be understood
as the gauge field of the U(1) R-symmetry, under which the gravitini are
charged. The ansatz (2.31) can be modified to accommodate the bosonic
degrees of freedom of the lower dimensional supergravity as [32, 57].

ds2
11 = 1

4ds̄
2
4 + (dψ + σ + 1

4Ā)2 + ds2(M6)

G = 3
8 vol4 − 1

4 ?̄4 F̄ ∧ J ,
(2.33)

where vol4 and ?̄4 are now associated to the arbitrary ds̄2
4 metric, and the

graviphoton Ā enters both through its gauge-invariant field strength and
gauging shifts along the U(1) Reeb direction. It is straightforward to show
that the new ansatz satisfies the equations of motion (I.1) provided that the
four-dimensional fields satisfy

dF̄ = 0 , d ?̄4F̄ = 0 , R̄µν = −3g2ḡµν + 1
2

(
F̄µσF̄ν

σ − 1
4 ḡµν F̄ρσF̄

ρσ
)
,

(2.34)
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2.3 Consistent truncations

which are precisely the equations of motion of minimal D = 4 N = 2
supergravity stemming from the bosonic Lagrangian

L = R̄ vol4 − 1
2 F̄ ∧ ?̄4F̄ + 6g2 vol4 . (2.35)

In remainder of this section, we will construct the reduction ansatz for the
class of AdS4 N = 2 solutions with SU(2) structure reviewed in section 2.2
and check that the the eleven-dimensional field equations are indeed satisfied
upon imposing the D = 4 counterparts. Furthermore, we also show that the
supersymmetry variations of the higher-dimensional theory follow from the
lower-dimensional ones. This implies that any supersymmetric configuration
will uplift to a solution preserving at least as many supercharges. Together
with the Sasaki-Einstein case just reviewed, this exhausts all consistent
truncations from M-theory down to minimal D = 4 N = 2 supergravity.

Minimal supergravity on N = 2 backgrunds

As just recalled, the bosonic sector of pure D = 4 N = 2 supergravity [58, 59]
includes the metric, ḡµν , µ = 0, . . . 3, and a gauge field Ā, the graviphoton,
with field strength F̄ = dĀ. The gauged supergravity has a cosmological
constant related to the coupling constant g that couples Ā to the N = 2
gravitini, which can be chosen to be Weyl fermions, ψ+

iµ. Their variation
under supersymmetry is

δψ+
iµ = ∇̄µψ̄i +

ig

2
εijĀµψ̄j −

g

2
ρ̄µ(ψ̄i)

c +
g2

32
F̄δε ρ̄

δερ̄µεij(ψ̄j)
c , (2.36)

for a Weyl spinor parameter ψ̄i and ρ̄µ associated to a local frame for ḡ4.
In line with (2.33), we propose the following KK ansatz for the eleven-

dimensional fields:

g11 = e2∆(g4 + ĝ7) , G(4) = m vol4 +F̂(4)−X ∧ gF̄ −Y ∧ g ?4 F̄ . (2.37)

The metric g4 is now a general D = 4 metric and vol4 its corresponding
volume form. Hats over ĝ7 and F̂(4) have been employed to signify a shift
of the Reeb direction ξ by the D = 4 graviphoton Ā. This motivates, from
(2.15), the definition

Ê1 =
1

4
‖ξ‖(dψ +A− gĀ) . (2.38)

Accordingly we have, from (2.17) and (2.22),

ĝ7 = gSU(2) + Ê2
1 + E2

2 + E2
3 ,

F̂(4) =
1

‖ξ‖Ê1 ∧ d
(
e3∆
√

1− ‖ξ‖2J1

)
−m

√
1− ‖ξ‖2
‖ξ‖ J1 ∧ E2 ∧ E3 .

(2.39)
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The graviphoton also enters the KK ansatz (2.37) through its field strength
F̄ = dĀ and through the Hodge dual of the latter with respect to the four-
dimensional metric g4. The constant g that appears in (2.37) and (2.38)
is the gauge coupling of the D = 4 supergravity. Finally, X and Y are
two-forms on the internal seven-dimensional manifold to be determined.

When g4 is set equal to the AdS4 metric and the graviphoton is turned
off, Ā = 0, F̄ = 0, the D = 11 configuration (2.37) reduces to the N = 2
class of solutions in section 2.2. In this case, the two-forms X, Y drop out
from the picture and do not play any rôle in the background geometry. More
generally, though, the full configuration (2.37) with general D = 4 fields
g4, Ā subject to the field equations of D = 4 N = 2 minimal supergravity,
(2.34), can still be forced to obey the field equations of D = 11 supergravity
for suitable X and Y .

The strategy is to substitute (2.37) into the D = 11 field equations
treating the linear, F̄ , ?4F̄ , and quadratic, F̄ ∧ F̄ , ?4F̄ ∧ F̄ , combinations
of the D = 4 graviphoton field strength as independent quantities. Upon
imposing the D = 4 field equations, a number of differential and algebraic
equations for X and Y are produced. Proposing a suitable ansatz for these
two-forms in terms of the SU(2)–structure forms and using the torsion
conditions (2.19)–(2.21), we can solve this system of equations and, thus,
find the explicit consistent KK reduction.

Let us summarise, along these lines, the system of equations that X and
Y must obey for the truncation ansatz to be consistent. Further details on
the consistency proof are relegated to appendix A.1. In our conventions, the
D = 11 and D = 4 field equations take on the form (I.1) and (2.34). It is
convenient to introduce the two-forms X̃, Ỹ containing the contributions
to X, Y with no legs along the gauged E1 direction (see the appendix).
Imposing the Bianchi identity for the undeformed four-form in (2.10), and
the Bianchi and Maxwell equation for the D = 4 graviphoton, the Bianchi
identity of the deformed four-form in (2.37) is satisfied provided the unknown
forms obey the following constraints:

F̄ ∧ F̄ : iξX = 0 , F̄ :
1

4
iξF(4) + dX̃ = 0 ,

?4F̄ ∧ F̄ : iξY = 0 , ?4F̄ : dỸ = 0 . (2.40)

These expressions arise in the D = 11 five-form dG(4) = 0 wedged with
the indicated D = 4 graviphoton contributions, and must be enforced to
vanish separately for arbitrary F̄ . The constraints coming from the quadratic
graviphoton contributions imply X = X̃, Y = Ỹ . We will make use of these
relations in the sequel to simplify the resulting expressions.

Proceeding similarly, we find the constraints imposed on X and Y by
the equation of motion for the D = 11 four-form. Assuming, again, that the
undeformed four-form (2.10) satisfies the equation of motion and imposing
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the Bianchi and equation of motion for F̄ , the equation of motion for G(4) in
(2.37) is satisfied provided the following relations hold:

F̄ ∧ F̄ :
1

4
e3∆iξ ?7 Y +

1

2
(Y ∧ Y −X ∧X) = 0 ,

?4F̄ ∧ F̄ :
1

4
e3∆iξ ?7 X +X ∧ Y = 0 ,

F̄ :
m

8
‖ξ‖e3∆J3 ∧ J3 ∧ E2 ∧ E3 −

1

4
e3∆dA ∧ iξ ?7 Y

+
1

4
ê ∧ d (e3∆iξ ?7 Y ) +X ∧ F̂(4) = 0 ,

?4F̄ :
1

4
e3∆dA ∧ iξ ?7 X −

1

4
ê ∧ d (e3∆iξ ?7 X) + Y ∧ F̂(4) = 0 ,

(2.41)

with ê defined below (A.2). We have again indicated the linear or quadratic
graviphoton combinations with which these expressions appear wedged in
the D = 11 eight-form equation of motion for G(4).

Finally, we turn to the evaluation of the D = 11 Einstein equation on the
configuration (2.37). Combining the Ricci tensor (A.8) and the r.h.s. (A.11)
of the Einstein equation as given in (I.1), this yields the following three
equations,

Ricαβ −
g2

32
‖ξ‖2F̄αγF̄βγ − 9(∂a∆∂

a∆ +∇a∇a∆)ηαβ

= −e−6∆

{
1

3
m2ηαβ −

g2

4
(X2 + Y 2)F̄αγF̄β

γ +
g2

24
ηαβF̄

2(X2 + 2Y 2) (2.42)

+
g2

4
F̄γ(αεβ)

γµνF̄µνXcdY
cd +

g2

24
ηαβεµνρσF̄

µνF̄ ρσXcdY
cd

}
,

g

8
‖ξ‖δ8b∇γF̄αγ = 0 , (2.43)

Ricab +
g2

64
‖ξ‖2δ8aδ8bF̄γδF̄

γδ + 9[∂a∆∂b∆−∇a∇b∆− (∂c∆∂
c∆−∇c∇c∆)

= e−6∆

{
1

2
m2ηab +

1

2

[
FacdeFb

cde − 1

12
ηabF

2

]
+
g2

24
F̄ 2
[
6(XacXb

c − YacYbc)− ηab(X2 − Y 2)
]

(2.44)

+
g2

24
εµνρσF̄

µνF̄ ρσ
[
3(XacYb

c + YacXb
c)− ηabXcdY

cd
]}

,

with α = 0, . . . , 3 and a = 4, . . . , 10 external and internal tangent space
indices related to the frame specified in footnote (2). Also, X2 = XabX

ab

and similarly for Y 2, F 2 and F̄ 2. In (2.42) and (2.44), Ricαβ and Ricab
are the Ricci tensors of g4 and the undeformed g7 metric. Expectedly, the
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Part I Chapter 2 – Supersymmetry and G-structures

only non-trivial mixed components, (2.43), of the Einstein equations arise in
the direction (the 8-th in the notation of footnote 2) that is gauged. The
resulting equation is automatically satisfied on the graviphoton’s Maxwell
equation (the second equation in (2.34)).

For suitably chosen X and Y in terms of background SU(2)-structure
forms, equations (2.40)–(2.44) must be satisfied identically, and equation
(2.42) must reduce to the D = 4 Einstein equation. As shown in appendix A.1,
all these requirements are satisfied by setting

X = −1

4
e3∆
√

1− ‖ξ‖2J1 , Y = −1

4
e3∆ (J3 − ‖ξ‖E2 ∧ E3) . (2.45)

The KK ansatz (2.37) is thus consistent, at the level of the bosonic field
equations, when the two-form coefficients X, Y are taken as in (2.45).

Furthermore, consistency can be extended to include the fermions, as
we now turn to discuss at the level of the supersymmetry variations of the
gravitino. See appendix A.2 for further details. First, we decompose the
Majorana spinor parameter in D = 11 as

ε =
∑
i

ψ̄i ⊗ e∆/2χi + (ψ̄i)
c ⊗ e∆/2χci , (2.46)

with ψ̄i two D = 4 Weyl spinors of positive chirality. The difference between
(2.46) and (2.13) is that we do not impose the D = 4 Killing spinor equation in
(2.11) on ψ̄i. Next, we plug the KK ansatz (2.37) with (2.45) into the D = 11
gravitino variation (I.3), written in the basis (1.7) for the D = 11 Dirac
matrices in terms of their four-, ρα, and seven-dimensional, γa, counterparts.
Then, we address the internal and external gravitino variations separately.

A long calculation, summarised in appendix A.2, shows that the internal
gravitino variations vanish identically provided the following projections,[
‖ξ‖(3γ8 + iγ910) +

√
1− ‖ξ‖2(γ46 − γ57)− i(γ45 + γ67)

]
χi = 0 , (2.47)

and

(γ46 + γ57)χi = 0, (γ45 − γ67)χi = 0 ,[
−
√

1− ‖ξ‖2γ46 + i(γ45 + ‖ξ‖γ910)
]
χi = 0 , (2.48)

are imposed on the internal spinors χi. These projections, however, add
nothing new: they follow from the undeformed Killing spinor equations
(2.14) of the undeformed geometry. This is best seen by sandwiching (2.47),
(2.48) with the conjugate spinors χ̄j : the resulting constraints are identically
satisfied by the spinor bilinears that defined the undeformed SU(2)–structure.
The internal gravitino variations are thus automatically satisfied for the
general class of solutions (2.37), using only the restrictions that characterise
the AdS4 solutions (2.10).
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The calculation of the external gravitino variations proceeds similarly.
Together with (2.47), (2.48), the following projection must be imposed:

iγ45χi = −εijχcj . (2.49)

This, like (2.47), (2.48), is still compatible with the original Killing spinor
equations (2.14) of the undeformed geometry, as argued in appendix A.2, and
does not reduce the amount of supersymmetry or constrain the undeformed
geometry further. The calculation allows one to read off the consistent
embedding of the D = 4 N = 2 gravitini ψ+

iµ, i = 1, 2, into its D = 11
counterpart ΨM , for M = µ:

Ψµ =
∑
i

ψ+
iµ ⊗ e∆/2χi + (ψ+

iµ)c ⊗ e∆/2χci , (2.50)

Using (2.50), the external components of the D = 11 gravitino variation (I.1)
finally reduce to their D = 4 N = 2 counterparts, (2.36).

To summarise, any solution of minimal D = 4 N = 2 gauged supergravity
gives rise to a class of solutions of D = 11 supergravity of the form

g11 = e2∆(g4 + ĝ7) ,

G(4) = m vol4 +F̂(4) (2.51)

+
g

4
e3∆
√

1− ‖ξ‖2J1 ∧ F̄ +
g

4
e3∆ (J3 − ‖ξ‖E2 ∧ E3) ∧ ?4F̄ ,

with ĝ7, F̂(4) defined in (2.39), upon uplift on the class of seven-dimensional
geometries [17] reviewed in section 2.2. The uplift preserves supersymmetry if
originally present in D = 4. The general class of solutions (2.51) is completely
specified by the D = 4 supergravity fields and the same SU(2)-structure that
characterises the background AdS4 class of solutions (2.10) of [17].

It is interesting to determine how our KK truncation ansatz adapts itself
to various particular cases of the general geometries of [17]. In the purely
magnetic flux case, the geometries [17] reduce, by appropriately taking the
m = 0 limit, to the N = 2 class of geometries describing M5-branes wrapped
on internal SLAG 3-cycles described in [60]. Accordingly, our consistent
truncation reduces to the one considered in section 3 of [32].

Let us particularise now our general consistent truncation (2.51) to the
class of solutions in (2.28), where the vector ∂τ along the coordinate τ
becomes an isometry of the internal metric g7. In this case, we find that the
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Part I Chapter 2 – Supersymmetry and G-structures

KK ansatz becomes3

g11 = e2∆

{
g4 +

α f

4
√

1 + (1 + r2)α2
gKE +

α2

16

[
dr2 +

r2f2

1 + r2
(dτ +AKE)2

+
1 + r2

1 + (1 + r2)α2

(
Dψ − dτ +

f

1 + r2
(dτ +AKE)

)2
]}

,

F̂(4) = h1(r)(Dψ − dτ) ∧ dr ∧ J1 + h2(r)(Dψ − dτ) ∧ (dτ +AKE) ∧ J2

+ h3(r)(dτ +AKE) ∧ dr ∧ J1 −X ∧ gF̄ − Y ∧ g ?4 F̄ ,
(2.52)

with the shorthands (2.29). The D = 11 metric g11 depends on the D = 4
metric g4, explicitly and through the Hodge star operator, and on the D = 4
graviphoton Ā through the gauge covariant derivative Dψ = dψ − gĀ. The
latter also enters the D = 11 four-form through its field strength F̄ and its
Hodge dual. These contributions are wedged with internal forms X, Y which
now read, from (2.45),

X = −m
2

576

(
α−1e−3∆f

)
J1 , Y = −mf

96

[
J3 −

1

4
r α2dr ∧ (dτ +AKE)

]
.

(2.53)
This can be applied, in particular, for the two solutions corresponding to

the IR fixed points of the superpotential deformations of the ABJM SCFT
by terms quadratic or cubic in one of the chirals.

As a concluding remark, it is interesting to note that our results bring
together in D = 11 the separate classification efforts of [61, 62] and [17, 37].
The supersymmetric solutions of D = 4 N = 2 minimal gauged supergravity
were classified in [61, 62]. By the consistency of our uplift, any such D = 4
solution can be fibred over any of the seven-dimensional manifolds of [17] and
[37] to produce, via (2.51), a supersymmetric solution of D = 11 supergravity.

3When the D = 4 supergravity fields are turned off, the metric (2.28) agrees, up to a
straightforward redefinition of ψ, with (4.13) of [17]. However, the background four-form
(2.52) seems to disagree with their (4.14).
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Chapter 3

Duality in maximal
supergravity truncations

As reviewed in the invitation, duality has been recognised as one of the guiding
principles in string theory and supergravity. Its rôle in the introduction of
gaugings compatible with N = 8 supersymmetry in D = 4 is explored in
section 3.1, where the tensor hierarchy and embedding tensor formalisms
are presented. Most of the discussion is particularised to the electric SO(8)
gauging, and specially to its SU(3)-invariant sector [A], although much of it
is only slightly altered for the dyonic ISO(7) and [SO(6)× SO(1, 1)] n R12

gaugings that will be relevant in later chapters.

Section 3.2 follows on discussing how to embed the D = 4 SO(8) theory
in eleven dimensions while maintaining covariance under the duality group
of the lower-dimensional supergravity. This allows one to obtain explicit
Kaluza-Klein ansätze for the D = 11 fields in terms of the D = 4 counterparts,
which make it possible to recover at once several previously-known solutions
of M-theory and a new consistent truncation to the full minimal N = 2
gauged supergravity. Some of the technical details in this discussion are
relegated to appendices B–D.

Some of the materials covered in this chapter, such as gauged supergravity
and the embedding tensor formalism, deserve themselves an entire dissertation
and some of them in fact enjoy very nice recent reviews (see [63, 64]). For
the sake of clarity, we have decided to briefly comment on some of their
aspects here in order to fix notation and conventions.

3.1 Maximal supergravity in D = 4

3.1.1 Gauged sugra and the Embedding Tensor

In the toroidal reduction in the invitation, we saw how to obtain the field
content and Lagrangian of (non-chiral) maximal supergravity in D dimensions
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Part I Chapter 3 – Duality in maximal supergravity truncations

out of eleven-dimensional supergravity compactified on T 11−D with only the
constant modes on the torus kept. For D = 4, one can dualise all two-forms
into scalars and in (I.17), and the field content from the reduction can be
taken to be

gµν(x) (metric) , AABµ (x) (28 vectors) , VMM̄ (x) (70 scalars) ,

ψiµ(x) (8 gravitini) , χijk(x) (56 fermions) . (3.1)

Here, the scalars can be understood as coordinates on the symmetric space

E7(7)

SU(8)
, (3.2)

with the coset representative V transforming from the left in the fundamental
of E7(7), with index M = 1, . . . , 56, and in the 28 + 28 of a local SU(8)
from the right, whose fundamental is labelled by an index i = 1, . . . , 8.
The barred index that the coset representative carries is the shorthand
M̄ = ([ij], [ij]), with both sets related by complex conjugation. Similarly,
the indices A,B = 1, . . . , 8 that the vectors carry label the fundamental
of SL(8,R), and the gravitini and spin-1/2 fermions live in the 8 and 56 of
SU(8), which is accordingly identified with the R-symmetry of the N = 8
superalgebra in D = 4. The dynamics for these fields is dictated by [18, 65]

L = R vol4− 1
48dMMN ∧ ∗dMMN

+ 1
2I[AB][CD]HAB(2) ∧ ∗HCD(2) + 1

2R[AB][CD]HAB(2) ∧HCD(2) + (fermions) .
(3.3)

This is the Lagrangian of N = 8 supergravity in D = 4 when the gauge
group is U(1)28 and all matter is chargeless with respect to it. All fields
appearing, both bosonic and fermionic, are massless. The scalar kinetic term
describes a non-linear sigma model with (3.2) as the target space in terms
of the symmetric matrix MMN = 2V(M

ijVN)ij . The vector field strengths,

HAB(2) = dAAB, are non-minimally coupled to the scalars via the matrices
I[AB][CD] and R[AB][CD], both symmetric under the exchange of pairs AB
and CD, and the first of them positive definite.1 In terms of these matrices,
the field equations for the vectors are

dHAB = 0 , d
(
I[AB][CD] ∗ HCD(2) +R[AB][CD]HCD(2)

)
= 0 , (3.4)

which can be combined as
dFM = 0 (3.5)

in terms of

FM =

(HAB
H̃AB

)
, (3.6)

1We employ the “mostly pluses” convention for the signature of spacetime.
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3.1 Maximal supergravity in D = 4

with the magnetic field strength

H̃AB = I[AB][CD] ∗ HCD(2) +R[AB][CD]HCD(2) . (3.7)

The definition of H̃AB in terms of HAB implies

∗H = −I−1RH+ I−1H̃ ,

∗H̃ = −(I +RI−1R)H +RI−1H̃ ,
(3.8)

which can be phrased as a twisted self-duality condition on (3.6),

∗ FM = −ΩMNM̂NPFP . (3.9)

This condition involves the symplectic form in R56,

ΩMN =

(
0 δABCD

−δABCD 0

)
, (3.10)

and the matrix

M̂ =

(
−I −RI−1R RI−1

I−1R −I−1

)
. (3.11)

It is easy to check that this matrix is an element of Sp(56,R), satisfying

M̂MP M̂NQ ΩMN = −ΩPQ , (3.12)

with ΩMNΩNP = −δMP . Thus, the index M = 1, . . . , 56 can be naturally
understood as labelling the fundamental representation of the symplectic
group. Conversely, any field strength satisfying (3.9) with (3.10) and (3.11)
can be written as (3.6) with (3.7). The self-duality condition is therefore
preserved if we transform simultaneously FM and M̂MN under a symplectic
rotation EM

N ∈ Sp(56,R).

In N = 8 supergravity this is precisely the case, as the symplectic
matrix in (3.11) is in fact the coset representative MMN [18]. Therefore, the
full set of equations of motion (including Einstein), is invariant under the
global symmetry group E7(7) ⊂ Sp(56,R). For this reason, it is convenient to
describe this supergravity in an E7(7)-covariant way, which in the present case

just requires supplementing the vector fields AAB with redundant magnetic
duals ÃAB into AM such that (3.5) is (locally) integrated by FM = dAM .

Contrary to what happens in higher dimensions, the theory (3.3) is not the
unique N = 8 supergravity in D = 4. One can promote a subgroup of E7(7)

2

2One can in principle consider gaugings inside E7(7) × R+ [66]. However, when the
generator of the trombone participates in the gauging, the resulting equations of motion
do not admit an action. We will not consider these trombone gaugings in the following.
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Part I Chapter 3 – Duality in maximal supergravity truncations

to a local symmetry by means of the embedding tensor [67–69], ΘM
α,3 which

selects which of the generators of the global symmetry group of the ungauged
theory participate in the gauging. The matter fields, Φℵ = {g, V, ψ, χ},
and gauge bosons then transform under this gauge group as

δΛΦℵ = gΛM XM [Φℵ] ,

δΛAM = DΛM = dΛM + g XNP
MANΛP ,

(3.13)

with g the gauge group coupling constant, Λ a spacetime-dependent param-
eter, and XM = ΘM

α tα the generators of the gauge algebra, for tα the
E7(7) generators in the appropriate representation. In particular, in the

fundamental representation XMN
P = ΘM

α(tα)N
P . Covariance under (3.13)

requires the introduction of covariant derivatives for the matter fields

d → D = d− gAM XM . (3.14)

Consistency of the gauging requires it to be compatible with the field
content (in particular, with supersymmetry) and that the embedding tensor
is invariant under gauge transformations. These requirements are respectively
known as the linear and quadratic constraints on the embedding tensor. The
former demands

X(MNP ) = 0 , (3.15)

which implies that all the representations in the product

(56⊗ 56⊗ 56)sym = 56⊕ 6480⊕ 24320 (3.16)

are absent from the embedding tensor, who could in principle live in

56⊗ 133 = 56⊕ 912⊕ 6480 . (3.17)

Therefore, (3.15) implies that ΘM
α only has components in 912. On the

other hand, the quadratic constraint can be stated as

[XM , XN ] = −XMN
PXP , (3.18)

which, in combination with (3.15), implies

ΩMNΘM
αΘN

β = 0 . (3.19)

This condition can be understood as saying that there always exists a
symplectic rotation such that ΘM

α = (ΘAB
α,ΘABα) can be transformed into

Θ̂M
α = (Θ̂AB

α, 0). This is known as the locality constraint, and guarantees
that the dimension of the gauge group, equal to the rank of the embedding

3The adjoint E7(7) index, α = 1, . . . , 133, should not be confused with the flat indices
in the D = 4 vierbein eµ

α.
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3.1 Maximal supergravity in D = 4

tensor, is not bigger than the number of (electric) vectors appearing in the
original Lagrangian. Let us note en passant that for non-maximal theories
this constraint is not automatic, but an independent requirement [64].

The physical meaning of (3.18) is more profound than it seems at first
sight. Obviously, it implies that the gauge algebra generators close into a
subalgebra of Lie(E7(7)). However, the structure constants XMN

P are not
necessarily antisymmetric in MN , but can be decomposed as

XMN
P = X[MN ]

P + ZMN
P , (3.20)

with ZMN
P ≡ X(MN)

P . This symmetric component is generically non-zero,

and therefore (3.18) also imposes ZMN
PXP = 0. The presence of this sym-

metric part and the fact that the X’s play both the rôle of algebra generators
and structure constants implies that the Jacobi identity is also satisfied only
up to terms that vanish when contracted with the embedding tensor. Namely,
from (3.18) with the generators in the fundamental representation of E7(7),
it is easy to obtain

X[MN ]
PX[QP ]

R +X[QM ]
PX[NP ]

R +X[NQ]
PX[MP ]

R = −ZP [Q
RXMN ]

P .
(3.21)

To define a non-abelian gauge theory, apart from defining covariant
derivatives we also need to find an appropriate generalisation for field strength
of AM . The natural guess,

FMguess = dAM + g
2XNP

MAN ∧ AP , (3.22)

turns out not to be a good one precisely because of the failure of the Jacobi
identity in (3.21). Under (3.13), FMguess transforms as

δΛFMguess = −gΛPXPN
MFNguess + 2gZPQ

M
(
ΛPFQguess−AP ∧ δΛAQ

)
, (3.23)

which is non-covariant given the term proportional to ZPQ
M . This non-

covariance can be subsided by introducing a two-form BNP = B(NP ) with a
Stückelberg coupling

FM = dAM + g
2XNP

MAN ∧ AP + g ZNP
MBNP . (3.24)

This augmented field strength is covariant under the following gauge trans-
formations of AM and BMN ,

δΛ,ΞAM = DΛM − g ZNPM ΞNP ,

δΛ,ΞBMN = DΞNP − Λ(MFN) +A(M ∧ δΛ,ΞAN) ,
(3.25)

with Ξ a spacetime dependent one-form gauge parameter. Notice that for δΛ

gauge transformations, (3.25) is tailor-suited to cancel the second term in
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Part I Chapter 3 – Duality in maximal supergravity truncations

(3.23). These two-form potentials do not introduce new degrees of freedom,
but are dual (in D = 4) to scalar fields. In fact, out of the a priori

(56⊗ 56)sym = 133⊕ 1463 , (3.26)

the linear constraint (3.15) implies that they are only valued in the adjoint
of E7(7) and can be taken as Bα, as expected for the scalar Noether cur-
rents. This is a remarkable interplay between duality groups and spacetime
dimension that persists in other maximal supergravitites [70].

The addition of the two-forms in (3.24) modifies the Bianchi identity for
FM by a term depending on the field strength for Bα. This field strength
is again not only the näıve expectation, but depends on the vectors and
a three-form potential via another Stückelberg coupling to ensure gauge
covariance. This three-form in turn needs a four-form potential to enjoy a
gauge covariant field strength, and this exhausts the elements of the tensor
hierarchy in D = 4. The complete D = 4 tensor hierarchy is thus comprised
by vectors in the 56 of E7(7), two-forms in the 133, three-forms in the 912,
and four-forms in the 133⊕ 8645 [70, 71]. This is conveniently summarised
(up to the four-forms, which will not play a major rôle in the following) in
(3.47) below. The higher-rank forms are not dual to any dynamical degrees
of freedom, but carry information about the gauging. In particular, the
three-forms are dual to the embedding tensor and the four form to the
constraints it satisfies, as suggested by the representations that they furnish.
The field strengths for these forms are (3.24) and [72]

Hα(3) = DBα + (tα)MN AM ∧
[
dAN + 1

3XPQ
NAP ∧ AQ

]
+ Y α

M
βCβM ,

H(4)α
M = DCαM + FM ∧ Bα − 1

2ZNP
MBNP ∧ Bα

+ 1
3(tα)NPAM ∧ AN ∧

[
FP − 1

4XQR
PAQ ∧ AR − ZQRPBQR

]
+Wα

MβγDβγ +WαNPQ
MDNPQ +WαNP

MβDβ
NP ,

(3.27)
where the invariant E7(7) tensors involved are

YαM
β = ΘM

γfαγ
β − (tα)M

NΘN
β ,

Wα
Mβγ = 1

2ΘM [βδγ]
α , WαNPQ

M = (tα)(NP δQ)
M ,

WαNP
Mβ = ΘN

γfαγ
βδP

M +XNP
Mδβα − YαP βδNM .

(3.28)

with fαγ
β the E7(7) structure constants. The corresponding Bianchi identities

are, by construction,

DFM = ZNP
MHNP(3) , DHα(3) = Y α

M
βH(4)β

M + (tα)MNFM ∧ FN ,
(3.29)
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3.1 Maximal supergravity in D = 4

plus the trivial dH(4) = 0.
At this point, we have all the necessary ingredients to build an action

for our gauged supergravity. Apart from the obvious covariantisation of
derivatives and field strengths, gauging additionally introduces a few impor-
tant changes in (3.3). Firstly, the further insertions of gauge fields in the
Lagrangian require the presence of a topological term involving the vectors
and two-form potentials to ensure gauge covariance. They also demand mass
terms for the fermions for the theory to be supersymmetric at first order in g.
These mass matrices are constructed out of contractions of the embedding
tensor and scalar representatives,

TM̄N̄
P̄ = XMN

P (V−1)MM̄ (V−1)NN̄ VP P̄ , (3.30)

and take the form

A1ij = 4
21Tikjlkl , A2l

ijk = 2Tlm
imjk , (3.31)

and
A3

ijk lmn =
√

2
144 ε

ijkpqr[lmA2
n]
pqr , (3.32)

which can be identified as the irreducible SU(8) modules within (3.30), as
they satisfy

A1ij = A1(ij) , A2l
ijk = A2l

[ijk] , A2k
ijk = 0 . (3.33)

Finally, to preserve supersymmetry at order g2, a potential for the scalar
fields must be introduced. This potential, quadratic in the embedding tensor,
reads

V =
g2

168
XMP

RXNQ
SMMN

(
MPQMRS + 7δPS δ

Q
R

)
. (3.34)

Thereby, the generalisation of (3.3) when a non-trivial gauging is active
can be given as

L = R vol4− 1
48DMMN ∧ ∗DMMN − V vol4

+ 1
2MMNFM ∧ ∗FN + Ltop + (fermions) ,

(3.35)

or, integrating the two-forms from the topological terms to get back to the
original fields,

L = R vol4− 1
48DMMN ∧ ∗DMMN − V vol4

+ 1
2I[IJ ][KL]HIJ(2) ∧ ∗HKL(2) + 1

2R[IJ ][KL]HIJ(2) ∧HKL(2) + (fermions) .
(3.36)

Let us observe that (a subset of) the equations of motion following from
(3.36) can be encoded in the Bianchi identities for the tensor hierarchy fields
[72]. The duality relations that recover these equations are (3.6) and

Hα(3) = 1
2 ∗ jα , H(4)α

M = 1
2 ∗
( ∂V

∂ΘM
α

)
, (3.37)

with jα the scalar Noether currents.
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Part I Chapter 3 – Duality in maximal supergravity truncations

Gaugings inside SL(8,R) and restricted hierarchies

Any embedding tensor satisfying the linear and quadratic constraints (3.15)
and (3.18) defines a consistently gauged maximal supergravity. In the
following, we shall focus on three choices that enjoy a higher-dimensional
interpretation, all of them subgroups of SL(8,R) ⊂ E7(7).

The relevant representations discussed above decompose as follows

E7(7) ⊃ SL(8,R)

56 → 28⊕ 28′ ,

133 → 63⊕ 70 ,

912 → 36⊕ 36′ ⊕ 420⊕ 420′ .

(3.38)

Accordingly, the embedding tensor can be decomposed as

ΘM
α =

(
ΘAB

C
D, ΘAB

CDEF ; ΘABC
D, ΘABCDEF

)
, (3.39)

with the different components given in terms of θAB , ξAB , ζABCD and ζ̃A
BCD

in the 36, 36′, 420 and 420′,

ΘAB
C
D = 2δC [AθB]D + ζCABD , ΘAB

CDEF = a ζ̃[A
GHIδB]GHI

CDEF ,

ΘABC
D = 2δD

[AξB]C + ζ̃D
ABC , ΘABCDEF = b ζ [A

GHIε
B]CDEFGHI ,

(3.40)
for a and b constants. Therefore, to have a gauge group which only involves
the tC

D generators of SL(8,R) ⊂ E7(7), we are forced to restricting to the

36 and 36′ components of the embedding tensor and setting ζABCD and
ζ̃A

BCD to zero. Doing so, the quadratic constraint (3.18) requires

(θξ)A
CδB

D − (θξ)B
DδA

C = 0 , (3.41)

which implies

(θξ)A
B = 1

8tr(θξ)δA
B ⇔

{
(θξ)A

B = 0

ξ = cθ−1
. (3.42)

We will restrict ourselves to the case in which θ and ξ are singular. Then, by
means of an SL(8,R) conjugation, the most general choice is given by

θAB = diag(+, . . . ,+,−, . . . ,−, 0 , . . . , 0 , 0 , . . . , 0 , 0, . . . , 0) ,

ξAB = diag( 0, . . . , 0︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

, +, . . . ,+︸ ︷︷ ︸
p′

,−, . . . ,−︸ ︷︷ ︸
q′

, 0, . . . , 0︸ ︷︷ ︸
r

) , (3.43)

where ± denotes ±1 and p + q + p′ + q′ + r = 8. In the following, we will
take r = 0, leading to [SO(p, q)× SO(p′, q′)] nN gaugings with N abelian.
In particular, we will consider the electric SO(8) gauging [73], with

θAB = g δAB , ξAB = 0 ; (3.44)
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3.1 Maximal supergravity in D = 4

SO(8) ↪−→ M-theory on AdS4 × S7

ISO(7) ↪−→ mIIA on AdS4 × S6

[
SO(6)× SO(1, 1)

]
nR12 ↪−→ IIB on AdS4 × S1 × S5 S-fold

Figure 3.1: Uplift of gauged maximal supergravity into string theory on spheres.

the dyonic ISO(7) ' SO(7) nR7 gauging [74], with

θAB = g diag(1×7, 0) , ξAB = diag(0×7,m) ; (3.45)

and the dyonic [SO(6)× SO(1, 1)] nR12 gauging [75], with

θAB = g diag(1×6, 0, 0) , ξAB = m diag(0×6, 1,−1) , (3.46)

where g and m are respectively the electric and magnetic coupling constants,
which can be set to one without loss of generality [76]. These three gaugings
stand out for being the only known cases to oxidise respectively into M-theory,
massive type IIA and type IIB supergravity on spheres [25, 26, 28]. See
figure 3.1 for a schematic description of these embeddings. In the remainder
of this chapter, we will study these string theory uplifts, focusing mainly
on the electric SO(8) case. In Part II, the three instances will be treated
in more equal footing and the Kaluza-Klein spectra around their solutions
analysed.

To describe the embeddings of these gaugings into the corresponding
ten- or eleven-dimensional supergravities, not all the tensor hierarchy fields
are necessary. For the gaugings in SL(8,R), we can restrict ourselves to the
SL(8,R)-covariant tensor hierarchy that only retains

GL(4,R) E7(7) SL(8,R)

metric 1 1

ds2
4 ds2

4

scalars 56 28 + 28′

VMM̄ VABij , VAB ij

vectors 56 28 + 28′

AM AAB, ÃAB
two-forms 133 63

Bα BAB

three-forms 912 36′

CMα CAB

(3.47)
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Part I Chapter 3 – Duality in maximal supergravity truncations

and all the fermionic fields. This subset of fields can be shown to close under
the Bianchi identities, duality relations and supersymmetry variations. The
field strengths and duality relations depend on the actual embedding tensor
considered, via the factors of Z, Y and W in (3.24) and (3.27). For the
electric SO(8) gauging (3.44), they are

HAB(2) = dAAB − g δCDAAC ∧ ADB ,

H̃(2)AB = dÃAB + g δC[AACD ∧ ÃB]D + 2g δC[ABB]
C ,

H̃(3)A
B = DBAB − 2g δACCBC + 1

2ABC∧ dÃAC + 1
2ÃAC∧ dABC

− g
2 δCDABC∧ ADE∧ ÃAE + g

6 δACABD ∧ ACE ∧ ÃAE − 1
8δ
B
A (trace) ,

HAB(4) = DCAB + 1
6

[
AAC∧ ABD∧ dÃCD−AC(A∧ ÃCD∧ dAB)D

− gδCDAC(A ∧ AB)E ∧ ADF ∧ ÃEF
]
−HC(A

(2) ∧ BCB) . (3.48)

with the covariant derivative in (3.14) reducing to

D = d− gAAB t[AC δB]C . (3.49)

These fields strengths satisfy the Bianchi identities that follow from (3.29)

DHAB(2) = 0 , DH̃(2)AB = −2gH(3)[A
CδB]C ,

DH(3)A
B = H̃(2)AC ∧HBC(2) − 2g δACHBC(4) − 1

8δ
B
A (trace) , dHAB(4) = 0 .

(3.50)
Finally, the E7(7) duality hierarchy in (3.37) reduces to

H̃(2)AB = I[AB][CD] ∗ HCD(2) +R[AB][CD]HCD(2) ,

H(3)A
B = 1

12(tA
B)M

PMNP ∗DMMN ,

HAB4 = 1
84XNQ

S(tC
(A|)P

RM|B)CM
(
MPQMRS + 7δPS δ

Q
R

)
vol4 ,

(3.51)

which make manifest that this restriction is sufficient for the SO(8) gauging.
Similar formulae in the case of the ISO(7) gauging can be found in [74].
When written in terms of the original N = 8 supergravity fields (3.1) via
(3.51), equations (3.48) and (3.50) recover the equations of motion that follow
from (3.36).

3.1.2 SU(3)-invariant truncation of SO(8)-gauging

For most practical applications, the field content in (3.1) is unnecessary and
difficult to manage. Often, it proves useful to set many of them to zero by
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3.1 Maximal supergravity in D = 4

means of a consistent truncation. In the remainder of this section, we study
the SO(8) gauging and its associated tensor hierarchy keeping only the fields
which are singlets under the unique SU(3) ⊂ SO(8). This SU(3)–invariant
theory corresponds to an N = 2 supergravity coupled to a vector and a
hypermultiplet, and, as shown in [77], its potential retains a rich structure.

In addition to the fields entering these N = 2 multiplets, we wish to
consider the SU(3)–singlets in the restricted tensor hierarchy in (3.47). The
relevant bosonic matter content thus includes

the metric : ds2
4 ,

6 scalars : ϕ , χ , φ , a , ζ , ζ̃ ,

4 vectors : A0 , A1 , Ã0 , Ã1 , (3.52)

5 two-form : B0 , B2 , Bab = B(ab) ,

4 three-form : C1 , Cab = C(ab) ,

all of them real. The superscripts on B0, B2 and C1 are just labels without
further meaning. The electric and magnetic vectors can be collectively
denoted AΛ and ÃΛ, with the index Λ = 0, 1 formally labelling “half” the
fundamental representation of Sp(4,R). The indices on Bab and Cab take
on two values which, for convenience, are labelled a = 7, 8. The index a
formally labels a doublet of SL(2), but we do not attach any significance to
its position as it can be raised and lowered with δab. See appendix B for
the embedding of the SU(3)–invariant fields (3.52) into their parent N = 8
counterparts in (3.47).

Only the metric, the scalars and the vector fields enter the conventional
Lagrangian. The fields ϕ, φ and a are proper scalars, while χ, ζ and ζ̃ are
pseudoscalars. All of these parametrise a submanifold

SU(1, 1)

U(1)
× SU(2, 1)

SU(2)×U(1)
(3.53)

of E7(7)/SU(8) in (3.2), where each factor respectively contains the vector,

(ϕ, χ), and the hypermultiplet, qu ≡ (φ, a, ζ, ζ̃), (pseudo)scalars.4 The vectors
gauge (electrically, in the usual symplectic frame), the U(1)2, compact
Cartan subgroup of the hypermultiplet isotropy group. In the Iwasawa
parametrisation of the scalar manifold (3.53), the bosonic Lagrangian reads

L = R vol4 + 3
2(dϕ)2 + 3

2e
2ϕ (dχ)2

+ 2(Dφ)2 + 1
2 e

4φ
(
Da+ 1

2(ζDζ̃ − ζ̃Dζ)
)2

+ 1
2 e

2φ (Dζ)2 + 1
2 e

2φ (Dζ̃)2

+ 1
2 IΛΣH

Λ
(2) ∧ ∗HΣ

(2) + 1
2 RΛΣH

Λ
(2) ∧HΣ

(2) − V vol4 , (3.54)

4We will rarely need indices to label the scalars but, when needed, the local indices will
be denoted m = 1, . . . , 6, on the entire manifold (3.53), α = 1, 2 on the first factor, and
u = 1, . . . , 4 on the second.
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with (dϕ)2 ≡ dϕ ∧ ∗dϕ, etc. The covariant derivatives of the hyperscalars
take on the form

Dφ = dφ−gA0 a , Da = da+ gA0
(
1 + e−4φ(Z2 − Y 2)

)
,

Dζ = dζ + gA0 e−2φ
(
ζ Z − ζ̃ Y

)
− 3gA1 ζ̃ ,

Dζ̃ = dζ̃ + gA0 e−2φ
(
ζ̃ Z + ζ Y

)
+ 3gA1 ζ . (3.55)

Following [74], here and in the following we employ the shorthand definitions

X ≡ 1 + e2ϕχ2 , Y ≡ 1 + 1
4 e

2φ (ζ2 + ζ̃2) , Z ≡ e2φ a . (3.56)

The covariant derivatives (3.55) correspond to an electric gauging of the
U(1)2 Cartan subgroup of SU(2)×U(1) ⊂ SU(2, 1) generated by

k0 = 1√
2

(k[E2]− k[F2]) , k1 = −k[H2] , (3.57)

where k[E2], etc., are SU(2, 1) Killing vectors: see (B.18) and (B.19) for the
explicit expressions for the Killing vectors of the scalar manifold (3.53) in
our parametrisation.

The scalar potential V in (3.54) reads

g−2V = 6e−2φ−ϕ(Y − 1)
(
e4φ + Y 2 + Z2

)
X2 − 12eϕ

− 6e−2φ−ϕXY
(
e4φ + Y 2 + Z2

)
− 12eϕ(Y − 1)

(
1 + Y − 3

2XY
)

+ e−3ϕ
[

1
2e
−4φ + a2 − 1 + 1

2e
4φ(1 + a2)2 + e−4φ(Y − 1)

(
Z2 − e4φ

)
+ 1

2e
−4φ(Y − 1)

(
1 + Y (1 + 2e4φ + 2Z2) + Y 2 + Y 3

)]
X3 ,

(3.58)
and derives from the following real superpotential (squared)

W 2 = 1
32 g

2X

[
12e−ϕ−2φ(X − 2)(Y − 2)

(
Y 2 + Z2 + e4φ

)
+ 36eϕY 2

+ e−3ϕ−4φX2
(
Y 2 + Z2 + e4φ

)2
− 16e−3ϕX2(Y − 1) (3.59)

−48e−ϕ−2φ

√
(X − 1)(Y − 1)

[
(e4φ − Y 2 + Z2)

2
+ 4Y 2Z2

]]
,

through the usual formula

1
4V = 2Gmn∂mW∂nW − 3W 2 . (3.60)

Here, Gmn, m = 1, . . . , 6, denotes the nonlinear sigma model metric on
(3.53), and Gmn its inverse, which can be read off from the scalar kinetic
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terms in the Lagrangian (3.54). The superpotential (3.59) corresponds to
one of the eigenvalues of the N = 8 gravitino mass matrix restricted to the
SU(3)–singlet space. See [78] for the N = 2 special geometry of the model, in
unitary gauge for the scalar coset. Superpotentials have previously appeared,
also in unitary gauge, in [79, 80].

Finally, the gauge kinetic matrix is

NΛΣ = RΛΣ + i IΛΣ =
1

(2 eϕ χ+ i)


− e3ϕ

(eϕ χ− i)2

3 e2ϕ χ

(eϕ χ− i)
3 e2ϕ χ

(eϕ χ− i) 3 (eϕ χ2 + e−ϕ)

 ,

(3.61)
and the (electric) two-form field strengths that appear in (3.54) are simply

HΛ
(2) = dAΛ , Λ = 0, 1. (3.62)

Among the forms in the SL(8,R) restricted tensor hierarchy discussed
in the previous section, the ones that survive in this truncation are those
that transform as singlets under SU(3) ⊂ SL(8,R). The complete list is
given in (3.52). See appendix B for further details. The field strengths of
these SU(3)–invariant tensor hierarchy fields can be similarly obtained by
suitably particularising the N = 8 expressions in (3.48). The electric vector
field strengths have already been given in (3.62), while the magnetic field
strengths are

H̃(2)0 = dÃ0 + gB0 , H̃(2)1 = dÃ1 − 2gB2 . (3.63)

The three-form field strengths read, in turn,

H0
(3) = dB0 , H2

(3) = dB2 ,

Hab
(3) = DBab + 1

4

(
3A0 ∧ dÃ0 + 3Ã0 ∧ dA0 −A1 ∧ dÃ1 − Ã1 ∧ dA1

)
δab

+ 3g C1 δab − 4g Cab + 1
2g C

c
c δ

ab , (3.64)

with DBab = dBab + 2g εc(aA0 ∧Bb)
c. Finally, the four-form field strengths

in (3.48) reduce to

H1
(4) = dC1 − 1

3 H
1
(2) ∧B2 ,

Hab
(4) = DCab + 1

2 H
0
(2) ∧

(
ε(acB

b)c +B0 δab
)
,

(3.65)

with DCab = dCab + 2gεc(aA0 ∧ Cb)c.
The field strengths (3.62)-(3.65) are subject to the Bianchi identities

dH0
(2) = 0 , dH1

(2) = 0 , dH̃(2)0 = gH(3)0 , dH̃(2)1 = −2gH(3)2 ,
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DHab
(3) =

(
3
2H

0
(2) ∧ H̃(2)0 − 1

2H
1
(2) ∧ H̃(2)1 + 3gH1

(4) + 1
2gH(4)c

c
)
δab − 4gHab

(4) ,

dH0
(3) = 0 , dH2

(3) = 0 , dH1
(4) = 0 , dHab

(4) = 0 , (3.66)

where we have used DHab
(3) = dHab

(3) − 2gε(acA
0 ∧ Hb)c

(3) . These expressions
particularise (3.50) to the present case.

As in the N = 8 setting, all of the fields in (3.52) carry degrees of freedom,
although not independent ones. The magnetic two-form field strengths can be
written as scalar-dependent combinations of the electric gauge field strengths
and their Hodge duals:

H̃(2)0 =
1

X2(4X − 3)

[
−e3ϕ(3X − 2) ∗H0

(2) + 3eϕX(X − 1) ∗H1
(2)

−2e6ϕχ3H0
(2) + 3χ e2ϕX(2X − 1)H1

(2)

]
,

H̃(2)1 =
1

X(4X − 3)

[
3eϕ(X − 1) ∗H0

(2) − 3e−ϕX2 ∗H1
(2)

+3χe2ϕ(2X − 1)H0
(2) + 6χX2H1

(2)

]
. (3.67)

The three-form field strengths are dual to scalar-dependent combinations of
derivatives of scalars:

H0
(3) = − ∗

[(
Y 2 − 2Y + Z2 + e4φ

)(
Da+ 1

2(ζDζ̃ − ζ̃Dζ)
)

+ Y
(
ζDζ̃ − ζ̃Dζ

)
+ 2aDY − 4aY Dφ

]
,

H2
(3) = 3 e2φ ∗

[
(Y − 1)

(
Da+ 1

2(ζDζ̃ − ζ̃Dζ)
)

+ 1
2

(
ζDζ̃ − ζ̃Dζ

)]
,

H77
(3) = ∗

[
Ze2φ

(
2Da+ ζDζ̃ − ζ̃Dζ

)
+ 2DY − 4Y Dφ+ 3

(
dϕ− e2ϕχdχ

)]
,

H78
(3) = ∗

[(
Y 2 − 2Y + Z2 − e4φ

)(
Da+ 1

2(ζDζ̃ − ζ̃Dζ)
)

+ Y
(
ζDζ̃ − ζ̃Dζ

)
+ 2aDY − 4aY Dφ

]
,

H88
(3) = − ∗

[
Ze2φ

(
2Da+ ζDζ̃ − ζ̃Dζ

)
+ 2DY − 4Y Dφ− 3

(
dϕ− e2ϕχdχ

)]
.

(3.68)
Finally, the four-form field strengths correspond to the following scalar-
dependent top forms on four-dimensional spacetime:

H1
(4) = g

[
2eϕY

(
3X + 2Y − 3XY

)
+ e−ϕ−2φX

(
X + Y −XY

)(
Y 2 + Z2 + e4φ

)]
vol4 ,
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H77
(4) = −gX

[
e−3ϕX2

(
Y 2 − 2Y + Z2 + e4φ

)
+ 6e−ϕ+2φ

(
XY −X − Y

)]
vol4 ,

H78
(4) = −gXZ

[
e−3ϕ−2φX2

(
Y 2 + Z2 + e4φ

)
+ 6e−ϕ(XY −X − Y )

]
vol4 ,

H88
(4) = −gX

[
e−3ϕX2

(
Y 2 − 2Y + Z2

)
+ 6e−ϕ−2φ(XY −X − Y )

(
Y 2 + Z2

)
+e−3ϕ−4φX2

(
Y 2 + Z2

)2]
vol4 . (3.69)

The dualisations (3.67)-(3.69) particularise the SL(8,R) duality hierarchy
(3.51) to the SU(3)–invariant case.

It can be checked that the scalar potential (3.58) can be recovered from
the dualised four-forms (3.69) via

g
(
6H1

(4) +H77
(4) +H88

(4)

)
= −2V vol4 . (3.70)

Likewise, the Bianchi identities (3.66) combined with the dualisation condi-
tions (3.67)-(3.69) partially reproduce the equations of motion that derive
from the Lagrangian (3.54). The list of identities needed to verify this in-
cludes the action of the SL(2,R) Killing vector k[H0] in (B.18) on the gauge
kinetic matrix (3.61),

(∂ϕ−χ∂χ)N00 = 3N00 , (∂ϕ−χ∂χ)N11 = −N11 , (∂ϕ−χ∂χ)N01 = N01 ,
(3.71)

and the following identities that can be checked to hold for the dualised
three-form field strengths (3.68),

H77
(3) −H88

(3) = −4huv k
u[H1] ∗Dqv ,

H78
(3) = −

√
2huv

(
ku[E2] + ku[F2]

)
∗Dqv ,

H0
(3) = −2huv k

u
0 ∗Dqv , H2

(3) = huv k
u
1 ∗Dqv ,

(3.72)

and four-form field strengths (3.69) and the potential (3.58),

3g
(
2H1

(4) −H77
(4) −H88

(4)

)
= −kα[H0] ∂αV vol4 ,

2g
(
H77

(4) −H88
(4)

)
= − ku[H1] ∂uV vol4 ,

4
√

2 gH78
(4) = −

(
ku[E2] + ku[F2]

)
∂uV vol4 ,

ku0 ∂uV = 0 , ku1 ∂uV = 0 .

(3.73)

In (3.72) and (3.73), Dqu, u = 1, . . . , 4, collectively denote the hypermultiplet
covariant derivatives (3.55); k0 and k1 are the hypermultiplet Killing vectors
(3.57) along which the gauging is turned on; k[H0] and k[H1] are other Killing
vectors (see (B.18), (B.19)) on each factor of the scalar manifold (3.53); and
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Sector scalars pseudoscalars vectors 2-forms 3-forms

SU(3) 3 3 4 5 4

SU(3)×U(1)2 1 1 4 1 2

SU(3)×U(1)v 3 1 4 4 4

SU(3)×U(1)c 1 3 4 2 2

SU(3)×U(1)s 1 1 4 1 2

SO(6)v 3 0 2 4 4

SU(4)c 0 3 2 1 1

SU(4)s 0 0 2 1 1

SO(7)v 1 0 0 1 2

SO(7)c 0 1 0 0 1

SO(7)s 0 0 0 0 1

G2 1 1 0 1 2

Table 3.1: Number of bosonic tensor hierarchy fields in each subsector.

huv is the metric that can be read off from the hypermultiplet kinetic terms
in the Lagrangian (3.54).

The last two identities in (3.73) reflect the invariance of the potential
(3.58) under the gauged hypermultiplet isometries (3.57). These are the
only symmetries of the SU(3)–invariant potential (3.58). The symmetry is
enhanced in the subsectors that we now turn to discuss.

Subsectors within the SU(3)-invariant truncation

It is interesting to consider further subsectors contained in the SU(3)–
invariant sector in the notation that we are using. A natural way to obtain
those is to impose invariance under a subgroup G of SO(8) that contains
SU(3). The relevant tensor hierarchy field strengths and their dualisation
conditions are obtained by bringing the G–invariant restrictions specified
on a case-by-case basis below to (3.62)-(3.65) and (3.67)-(3.69). The field
content in each of these subsectors is summarised for convenience in table 3.1.

An obvious yet still interesting sector is attained by requiring an additional
invariance under the U(1)2 with which SU(3) commutes inside SO(8). The
resulting SU(3)×U(1)2–invariant sector throws out the hypermultiplet and
sets identifications on the restricted tensor hierarchy,5

SU(3)×U(1)2 : φ = a = ζ = ζ̃ = 0 ,

B0 = B2 = B78 = 0 , B77 = B88 ,

C78 = 0 , C77 = C88 .

(3.74)

5Curiously, B0 and B2 are allowed by group theory to be non-vanishing, but are set to
B0 = B2 = 0 by the duality relations (3.68) evaluated with the scalar restrictions (3.74).
Similar comments apply to the condition B2 = 0 in (3.76) and B0 = − 2

3
B2 in (3.77).
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This sector thus reduces to N = 2 supergravity coupled to a vector multiplet
with a Fayet-Iliopoulos gauging, namely, to the U(1)4–invariant sector (i.e.,
the gauged STU model) with all three vector multiplets identified, along with
the relevant tensor hierarchy fields. Inserting (3.74) in (3.54), the Lagrangian
indeed reduces to e.g. (6.28), (6.29) of [81] with the fields and coupling
constants here and there identified as

eϕthere = e−ϕhere(1 + e2ϕhereχ2
here) , χthere e

ϕthere = χhere e
ϕhere ,

Ã(1)there = −A0
here , A(1)there = A1

here , gthere = −ghere .
(3.75)

The potential of the SU(3)×U(1)2–invariant sector, (3.58) with (3.74), ac-
quires a symmetry under the compact generator, k[E0]−k[F0] in the notation
of (B.18), of the vector multiplet scalar manifold. The field redefinition in
the first line of (3.75) is a U(1) ⊂ SL(2,R) transformation generated by this
Killing vector, followed by a change of sign of χ.

One may also consider SU(3)×U(1)–invariant sectors, with U(1) chosen to
be one of the three triality–inequivalent6 U(1)v, U(1)s or U(1)c, factors with
which SU(3) commutes inside SO(8). These invariant sectors are attained by
setting

SU(3)×U(1)v : ζ = ζ̃ = 0 , B2 = 0 , (3.76)

SU(3)×U(1)c : e−2φ = 1− 1
4(ζ2 + ζ̃2) , a = 0 ,

B0 = −2
3B

2 , B78 = 0 , B77 = B88 ,

C78 = 0 , C77 = C88 , (3.77)

SU(3)×U(1)s : φ = a = ζ = ζ̃ = 0 ,

B0 = B2 = B78 = 0 , B77 = B88 ,

C78 = 0 , C77 = C88 , (3.78)

while retaining both vectors and their magnetic duals. Only the SU(3) ×
U(1)s–invariant subtruncation is supersymmetric, and coincides with the
SU(3) × U(1)2 sector discussed above –in other words, invariance under
U(1)s cannot be enforced on top of SU(3) without also imposing U(1)c
invariance, but not the other way around. The other two subtruncations
retain the would-be vector multiplet and ‘half’ a hypermultiplet: either the
scalars φ, a in the SU(3) × U(1)v sector, or the pseudoscalars ζ, ζ̃ in the
SU(3)×U(1)c sector, with φ a function of the pseudoscalars in the latter case.
The covariant derivatives (3.55) simplify accordingly. In the SU(3)×U(1)v

6Under triality, the SO(7) subgroups of SO(8) are identified by the splitting 8v → 1⊕ 7
for SO(7)v, and similarly for SO(7)s and SO(7)c. We follow the spectrum conventions of
e.g. [82] whereby, at the SO(8) vacuum, the (graviton, gravitini, vectors, spinors, scalars,
pseudoscalars) of N = 8 supergravity lie in the (1,8s,28,56s,35v,35c) of SO(8).
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sector, φ, a remain charged under A0 and no field is charged under A1. In
the SU(3)×U(1)c sector the covariant derivatives reduce to

Dζ = dζ − g(A0 + 3A1) ζ̃ , Dζ̃ = dζ̃ + g(A0 + 3A1) ζ , (3.79)

showing that ζ, ζ̃ become a doublet charged only under the combined gauge
field A0 + 3A1.

It is possible to further truncate the SU(3)×U(1)c sector to a two-scalar
model retaining (ϕ, ζ) along with B77 = B88 and C1, C77 = C88 by imposing
(3.77)) together with χ = 0, ζ̃ = ζ, A0 = A1 = 0 and B0 = −2

3B
2 = 0.

The Lagrangian is (3.54) with these identifications and the superpotential
reduces, from (3.59), to

W = 1
2
√

2
g e−

3
2
ϕ
(
e2φ − 3e2φ+2ϕ − 2

)
, (3.80)

where e2φ is shorthand for the expression in terms of ζ = ζ̃ that appears in
(3.77). This is the model considered in [31]. The identifications

e−ϕhere = ρ4
there , ζ2

here = ζ̃2
here = 2 tanh2 χthere (3.81)

(the second equation implies e2φhere = cosh2 χthere on (3.77)) indeed bring
the superpotential (3.80) to (3.9) of [31], up to normalisation.

The SU(3)×U(1)–invariant sectors can be further reduced by imposing
a larger SO(6) ∼ SU(4) symmetry. The corresponding sectors are obtained
by letting

SO(6)v : ζ = ζ̃ = χ = 0 , A1 = Ã1 = 0 , B2 = 0 , (3.82)

SU(4)c : e−2φ = 1− 1
4(ζ2 + ζ̃2) , a = 0 , e−2ϕ = 1− χ2 ,

A1 = A0 ≡ A , Ã1 = 3Ã0 ,

B0 = −2
3B

2 , Bab = 0 , C1 = C77 = C88 , C78 = 0 , (3.83)

SU(4)s : φ = a = ζ = ζ̃ = ϕ = χ = 0 ,

A1 = −A0 , Ã1 = −3Ã0 ,

B0 = 2
3B

2 , Bab = 0 , C1 = C77 = C88 , C78 = 0 . (3.84)

Again, only the SU(4)s–invariant sector is supersymmetric: it truncates out
the vector multiplet of the SU(3)×U(1)c sector, leading to minimal N = 2
gauged supergravity. Setting all scalars to zero as in (3.84), further setting
consistently B0 = 2

3B
2 = 0, and rescaling for convenience the metric and the

graviphoton as
gµν ≡ 1

4 ḡµν , A1 = −A0 ≡ 1
4Ā , (3.85)

equation (3.54) reduces to the bosonic Lagrangian of pure N = 2 gauged
supergravity (2.35) introduced in the previous chapter. For later reference,
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we note that the only tensor hierarchy field strengths that are active in the
SU(4)s sector are

H1
(2) = −H0

(2) ≡ 1
4 F̄ , H̃(2)0 = −1

3H̃(2)1 = 1
4 ∗̄F̄ ,

H1
(4) =H77

(4) = H88
(4) = 3

8g vol4 ,
(3.86)

where the bars refer to the rescaled quantities (3.85). The other two trunca-
tions (3.82), (3.83) are manifestly non-supersymmetric. Imposing invariance
under SO(6)v selects the proper scalars ϕ, φ, a along with the gauge field A0,
while invariance under SU(4)c retains the pseudoscalars χ, ζ, ζ̃ along with
A0 +A1. In the latter case, the scalars become functions of the pseudoscalars
as indicated in (3.83).

It was noted in [78] that the SU(4)c–invariant sector coincides with a
subtruncation, considered in [83], of the D = 4 N = 2 gauged supergrav-
ity obtained upon consistent truncation of M-theory on any (skew-whiffed)
Sasaki-Einstein seven-manifold [84]. Indeed, using (3.83) and further identi-
fying the pseudoscalars and vectors here and in [83] as

χhere = hthere , ζhere = −
√

3 Imχthere , ζ̃here = −
√

3 Reχthere ,

A0
here = A1

here = −A1 there , ghere = − (2L)−1
there (3.87)

(which further imply ϕhere = −2Uthere − Vthere and φhere = −3Uthere, with
ϕ, φ here subject to (3.83)) and U , V there subject to their (4.1)), the
Lagrangian (3.54) here reproduces (4.3) of [83]. Neither the SO(6)v nor the
SU(4)c sectors admit a further truncation to the Einstein-Maxwell, bosonic
Lagrangian (2.35) of minimal N = 2 supergravity.

It is possible to enlarge the symmetry to the three different SO(7) sub-
groups of SO(8) by further imposing

SO(7)v : ζ = ζ̃ = χ = 0 , ϕ = φ , a = 0 ,

A0 = A1 = Ã0 = Ã1 = 0 , (3.88)

B0 = B2 = B78 = 0 , B88 = −7B77 , C1 = C77 , C78 = 0 ,

SO(7)c : e−2φ = 1− 1
4(ζ2 + ζ̃2) = 1− χ2 = e−2ϕ , a = 0 ,

A0 = A1 = Ã0 = Ã1 = 0 , (3.89)

B0 = B2 = 0 , Bab = 0 , C1 = C77 = C88 , C78 = 0 ,

SO(7)s : φ = a = ζ = ζ̃ = ϕ = χ = 0 ,

A0 = −A1 = 0 , (3.90)

B0 = B2 = 0 , Bab = 0 , C1 = C77 = C88 , C78 = 0 .
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The SO(7)s truncation gives minimal N = 1 gauged supergravity while the
SO(7)v and the SO(7)c sectors are non-supersymmetric. They respectively
retain one dilaton (ϕ = φ) and one axion (χ, together with the identifications
(3.89)), along with the relevant tensors in the hierarchy.

All three SO(7) sectors are contained within the G2–invariant sector.
This corresponds to N = 1 supergravity coupled to a chiral multiplet with a
scalar manifold SL(2)/SO(2) which is diagonally embedded in (3.53) via

G2 : φ = ϕ , ζ̃ = −2χ , a = ζ = 0 ,

A0 = A1 = Ã0 = Ã1 = 0 , (3.91)

B0 = B2 = B78 = 0 , B88 = −7B77 , C1 = C77 , C78 = 0 .

The Lagrangian in this sector is (3.54) with the identifications (3.91). It can
be cast in canonical N = 1 form, in the conventions of e.g. section 4.2 of [74],
in terms of the following Kähler potential and holomorphic superpotential

K = −7 log(−i(z − z̄)) , W = 2g (7z3 + z7) , (3.92)

with z = −χ + ie−ϕ. On the identifications (3.91) that define the G2–
invariant sector, the real superpotential (3.59) becomes related to (3.92) via
W 2 = eKWW .

All of the above truncations arise from symmetry principles, by retaining
the fields that are neutral under the relevant invariance groups. For this
reason, the above truncations can be directly implemented at the level of
the Lagrangian (3.54). In particular, a consistent truncation to minimal
N = 2 supergravity is obtained by retaining singlets under SU(4)s, as noted
above. We conclude this section by noting an alternate truncation of the
SU(3) sector to minimal N = 2 supergravity that is inequivalent to the
SU(4)s–invariant truncation. In fact, this alternative minimal truncation is
not driven by symmetry principles in any obvious way, so we have verified
its consistency at the level of the field equations. Firstly, freeze the scalars
to their vacuum expectation values (vevs) at the SU(3) × U(1)c–invariant
vacuum (see table 3.2),

e−2ϕ = 3 , χ = 0 , e−2φ = 1− 1
4(ζ2 + ζ̃2) = 2

3 , a = 0 . (3.93)

Secondly, identify the electric and magnetic vectors as

A0 = −3A1 ≡ 1
2 Ā , Ã0 = −1

9Ã1 ≡ 1
6
√

3
˜̄A , (3.94)

turn off all the two-forms, and retain one of the three-forms as

B0 = −2
3B

2 = Bab = 0 , C78 = 0 , C1 = C77 = C88 . (3.95)

Finally, rescale the metric for convenience:

gµν ≡ 1
3
√

3
ḡµν . (3.96)

50



3.1 Maximal supergravity in D = 4

We have verified at the level of the bosonic field equations, including Einstein,
that these identifications define a consistent truncation of the theory (3.54)
to minimal N = 2 gauged supergravity (2.35).

The identification of the electric vectors in (3.94) retains the SU(3)×U(1)c–
invariant vector (see (B.20) with (B.15)) that remains massless (see (3.79))
at the N = 2 vacuum (3.93). For future reference, it is also interesting
to keep track of the field strengths for this truncation. On (3.94), (3.95),
the two-form potential contributions to the magnetic vector two-form field
strengths (3.63) drop out, and the vector field strengths become

H0 = −3H1 ≡ 1
2 F̄ , H̃0 = −1

9H̃1 ≡ 1
6
√

3
˜̄F = − 1

6
√

3
∗̄F̄ , (3.97)

with F̄ ≡ dĀ. The relations here for the magnetic field strengths are
compatible with the vector duality relations (3.67) evaluated on the scalar
vevs (3.93), and the last equality for the magnetic graviphoton field strength
˜̄F is fixed by ˜̄F = ∂L/∂F̄ , with L as in (2.35). Moving on to the three-form
field strengths, we find that all of them are zero by bringing (3.94), (3.95)
to their definitions (3.64) in terms of potentials. This was expected, as the
three-form form field strengths are dual to combinations (3.68) of (Hodge
duals of) derivatives of scalars, and these have been frozen to their vevs
(3.93). Finally, for the four-form field strengths we obtain, from (3.65) with
(3.95), H78

(4) = 0, H1
(4) = H77

(4) = H88
(4) = dC1, expressions which are again

compatible with the dualisation conditions (3.69). Rescaling the volume
form using (3.96), we find

H1
(4) = H77

(4) = H88
(4) = 1

2
√

3
g vol4 . (3.98)

Vacuum structure

The list of vacua of D = 4 N = 8 supergravity with an electric SO(8)
gauging [73] that preserve at least a subgroup SU(3) of SO(8) was elucidated
in [77]. All of them are AdS. These vacua arise as extrema of the scalar
potential (3.58), in our conventions, and for convenience we have summarised
them in table 3.2. The table includes the residual supersymmetry N and
bosonic symmetry G0 for each vacuum, as well as its location in the scalar
space (3.53) in the parametrisation that we are using. The corresponding
cosmological constant, given by (3.58), and the scalar mass spectrum within
the SU(3)–invariant sector is also given. See [78] for the bosonic spectra
within the full N = 8 supergravity. All three supersymmetric points are also
extrema of the superpotential (3.59). On the SO(8) and the G2 points, the
F-terms that derive from the holomorphic superpotential 3.92 also vanish.

It was argued in [30] that some combinations of the four-form field
strengths of the duality hierarchy ought to vanish at critical points of the
scalar potential, thus yielding necessary conditions for critical points. In our
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Part I Chapter 3 – Duality in maximal supergravity truncations

N G0 χ e−ϕ e−φ a ζ ζ̃

8 SO(8) 0 1 1 0 0 0

2 U(3)c 0
√

3
√

2
3 0

√
2
3

√
2
3

1 G2 12−1/4
(

25
12

)1/4 (
25
12

)1/4
0 0 −2 · 12−1/4

0 SO(7)v 0 51/4 51/4 0 0 0

0 SO(7)c
1√
5

2√
5

2√
5

0 0 − 2√
5

0 SU(4)c 0 1 1√
2

0 1 1

N G0 g−2V0 L2M2

8 SO(8) −24 (−2, −2, −2, −2, −2, −2)

2 U(3)c −18
√

3
(
3±
√

17, 2, 2, 2, 0
)

1 G2 −2
11/2 3

13/4

55/2

(
4±
√

6, −11±
√

6
6 , 0, 0

)
0 SO(7)v −8× 53/4

(
6, −12

5 − 6
5 , −6

5 , −6
5 , 0

)
0 SO(7)c −25

√
5

2

(
6, −12

5 − 6
5 , −6

5 , −6
5 , 0

)
0 SU(4)c −32

(
6, 6 − 3

4 , −3
4 , 0, 0

)
Table 3.2: All critical points of D = 4 N = 8 supergravity with electric SO(8)
gauging with at least SU(3) invariance, reproducing the results of [77] in our
parametrisation. For each point we give the residual supersymmetry N and bosonic
symmetry G0 within the full N = 8 theory, their location in the parametrisation
that we are using (upper table), the cosmological constant V0 and the scalar mass
spectrum within the SU(3)–invariant sector (lower table). The masses are given in
units of the AdS radius, L2 = −6/V0. We have abbreviated U(3)c ≡ SU(3)×U(1)c.

SU(3)–invariant case, these conditions read

8H1
(4)−

(
6H1

(4) + δcdH
cd
(4)

)
= 0 , 8Hab

(4)−
(
6H1

(4) + δcdH
cd
(4)

)
δab = 0 . (3.99)

Using the dualisation conditions (3.69), it can be checked that the relations
(3.99) do indeed hold at the critical points summarised in table 3.2.

3.2 The explicit uplift on S7

As discussed in previous chapters, the existence of a consistent truncation
of string theory on a non-trivial compact manifold is a rare phenomenon.
Beyond its intrinsic mathematical interest, this problem is also relevant for
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detailed computations in top-down holographic applications, as the needed
computations can be effectively treated as lower-dimensional.

The tensor hierarchy was introduced in the previous section to maintain
covariance of the field content under E7(7). This addition of redundant fields
was observed in [26, 30, 85] to be very well-adapted to show the consistency
of the uplifts of maximal supergravities into string theory. In particular,
it was used to show that massive type IIA on AdS4 × S6 reduces to the
dyonically-gauged ISO(7) supergravity in [26, 85], and to provide explicit
details to the proof of consistency of the electric SO(8) gauging uplift to M-
theory on AdS4×S7 in [30]. In this section we review the main results of the
later reference and employ them to discuss the uplifts of the SU(3)-invariant
sector [A] of maximal supergravity on the S7

3.2.1 D = 11 supergravity in 4 + 7 split and the S7 truncation

Consider the following ansatz for the M-theory bosons

dŝ2
11 = ∆−1ds2

4 + gmn(dym +Bm)(dyn +Bn) ,

Â(3) = 1
6Aµνρdx

µ ∧ dxν ∧ dxρ + 1
2Aµνmdx

µ ∧ dxν ∧ (dym +Bm)

+ 1
2Aµmndx

µ ∧ (dym +Bm) ∧ (dyn +Bn)

+ 1
6Amnp(dy

m +Bm) ∧ (dyn +Bn) ∧ (dyp +Bp) ,

(3.100)

with the warp factor

∆2 =
det gmn
det g̊mn

(3.101)

for an arbitrary background metric g̊mn homeomorphic to gmn. The presence
of this warping guarantees that the reduced theory is in the Einstein frame,
in analogy to the choice of coefficients in (I.12). This splitting breaks the
eleven-dimensional diffeomorphisms as

GL(11,R) → GL(4,R)× SL(7,R)

{xM} → {xµ, ym}
. (3.102)

Similarly, the eleven-dimensional gravitino can be split into ψIµ and ψIm, with,
following (1.9), I an index in the 8 of an SU(8) local in D = 11 coordinates.
Using the seven-dimensional Clifford algebra, we can rearrange the latter

fermions as a tri-spinor χIJK = 3i√
2
(ΓaC−1)

[IJ
ψ
K]
a , in the 56 of SU(8) [18,

86].
From a lower dimensional perspective, it proves sometimes useful to

dualise the two-form contributions in (3.100) into scalars. In the context of
the T 7 reduction, this is what we saw to be needed to show E7(7)-covariance
of the equations of motion. However, in the spirit of the tensor hierarchy, we
will keep the higher forms and only dualise them at the very end. On the
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Part I Chapter 3 – Duality in maximal supergravity truncations

other hand, to make contact with the D = 4 expressions, we consider the
field redefinitions

Cµ
m8 = Bm

µ , C̃µmn = Aµmn , Cµν m
8 = −Aµνm +B[µ

n Aν]nm ,

Cµνρ
88 = Aµνρ −B[µ

mBν
nAρ]mn , (3.103)

and the generalised vielbeine [86, 87]

V m8
IJ = 1

4∆−
1
2 ea

m(CΓa)IJ ,

ṼmnIJ = 1
4∆−

1
2
[
em

aen
b(CΓab)IJ + ea

p(CΓa)IJApmn
]
.

(3.104)

In these expressions, arbitrary local SU(8) rotations ΦI
J(x, y) should be

included to allow the generalised vielbeine to be complex-valued, as SU(8)
covariance demands [86, 88]. However, their presence will be understood but
not explicitly included in the following. As usual, complex conjugation is
denoted by a change in the position of the SU(8) indices, e.g. (VIJ )∗ = V IJ .

The GL(4,R)× SL(7,R) representations of these fields are

GL(4,R) SL(7,R)

generalised vielbeine 7′ + 21

V m8
IJ , VmnIJ

vectors 7′ + 21

Cµ
m8, C̃µmn

two-forms 7

Cµνm
8

three-forms 1

Cµνρ
88

(3.105)

and it must be emphasised at this point that their full coordinate dependence
on both xµ and ym is kept.

The SL(7,R) representations in (3.105) must be confronted with the
SL(8,R) representations in (3.47). The 8 indices in (3.103) and (3.104)
are written in hindsight to signal the SL(8,R) ⊃ SL(7,R) breaking, which
suggests how to relate both sets of fields.

In the previous chapter, the bridge between the fields in four and eleven
dimensions were the structure group invariant tensors corresponding to the
specific supersymmetric background. To relate the fields in (3.105) and (3.47)
we must proceed similarly. In the present context, the background will be the
round S7. This sphere can be defined in terms of the SL(8,R) coordinates
that embed it in R8 as

δAB µ
AµB = 1 . (3.106)
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3.2 The explicit uplift on S7

The round metric can also be given in terms of these coordinates as the
pullback of the flat euclidean metric on R8 to the (3.106) hypersurface

g̊mn = g−2δAB ∂mµ
A∂nµ

B , (3.107)

which is invariant under the action of the SO(8) Killing vectors Km
AB. In

terms of the µA coordinates, these and their derivatives read

KmAB = 2g−2g̊mnµ[A∂nµ
B] ,

Kmn
AB = 4g−2∂[mµ

[A∂n]µ
B] .

(3.108)

Notice that we have normalised the sphere to have radius g−2.

In terms of these objects, we can perform the reduction of M-theory on
S7 by restricting the y dependence of the fields as [30]

ds2
4(x, y) = ds2

4(x) ,

Cµ
m8(x, y) = g

2K
m
AB(y)AABµ (x) ,

C̃µmn(x, y) = g
4Kmn

AB(y) ÃµAB(x) ,

Cµν m
8(x, y) = −g−1(µA∂mµ

B)(y)Bµν BA(x) ,

Cµνρ
88(x, y) = (µAµB)(y) CµνρAB(x) ,

(3.109)

and
V m8 IJ(x, y) = g

2K
m
AB(y) ηIi (y) ηJj (y)VAB ij(x) ,

Vmn
IJ(x, y) = g

4Kmn
AB(y) ηIi (y) ηJj (y) ṼABij(x) .

(3.110)

The objects intertwining the SU(8) indices i and I respectively appearing in
the D = 4 and D = 11 descriptions are the Killing spinors of the background
S7, satisfying ηIi η

j
I = δji and ηIi η

i
J = δIJ . Here, as in (3.104), we have omitted

the scalar-dependent SU(8) rotations [86] needed to gauge fix the generalised
vielbein, which must also be tuned to appropriately align both SU(8) groups.
Explicit expressions can be found in [25, 88].

The history of this truncation ansatz spans more than three decades. In
their seminal paper [25], de Wit and Nicolai proved that the factorisation
of the metric, scalars and vectors was consistent at the level of the N = 8
trasformations in D = 4, and further checks on the consistency followed
in [25, 88]. The factorisation of the two- and three-forms in the tensor
hierarchy was put forward in [30], and also verified to be consistent with
supersymmetry. This proves instrumental in obtaining explicit expressions
for the eleven-dimensional metric and three-form in (3.100).

The inclusion of the D = 4 forms and metric in the KK ansatz (3.100)
can be straightforwardly achieved by plugging (3.109) into (3.103). The
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Part I Chapter 3 – Duality in maximal supergravity truncations

relation of the warp factor and purely internal components of the metric
and three-form with the D = 4 scalars is much more subtle. First one needs
to take all possible products between the generalised vielbeine and their
conjugates, and trace over the SU(8) indices. Doing so, the dependence on
the Killing spinors and SU(8) scalar matrices drops out, and the system
reduces to the equations

MABCDKm
ABK

n
CD = 4g−2∆−1gmn ,

MAB
CDK

m
ABKnp

CD = 8g−1∆−1gmq Aqnp ,

MABCDKmn
ABKpq

CD = 16∆−1
(
2gm[pgq]n + grsArmnAspq

)
,

(3.111)

in terms of the SL(8,R)-covariant blocks in MMN . It is possible to combine
these equations to obtain independent expressions for ∆, gmn and Amnp, and
after this is done, the full non-linear embedding of maximal SO(8)-gauged
supergravity into M-theory can be given as [30]

dŝ2
11 = ∆−1ds2

4 + 1
12g
−2∆2 (tA

B)M
P (tC

D)N
QMMNMPQµBµDDµ

ADµC ,
(3.112)

and

Â(3) = µAµB
(
CAB+ 1

6AAC∧ ABD∧ ÃCD
)

(3.113)

+ g−1
(
BBA+ 1

2AAC∧ ÃCB
)
∧ µADµB + 1

2g
−2ÃAB ∧DµA∧DµB +A(3) ,

with DµA = dµA − g δBCAABµC , the internal three-form

A(3) = − 1
72 g

−3∆3 (tA
B)P

RX ′MQ
SδNT ΩTU ΘU

C
D

×MMNMPQMRS µ
B DµA ∧DµC ∧DµD ,

(3.114)

and the warp factor given by

∆−3 = 1
84X

′
MP

RX ′NQ
SMMN

(
MPQMRS + 7δPS δ

Q
R

)
. (3.115)

The internal three-form and the warp factor involve the primed embedding
tensor X ′MN

P = Θ′M
α(tα)N

P . This ancillary object can be decomposed as
the actual embedding tensor in (3.40), and is taken to have non-vanishing
contributions only in the 36 of SL(8,R) given by θ′AB = µAµB.

Some comments are in order. First, notice that the relative size of the
geometry in (3.112) is controlled by the D = 4 coupling constant g. The free
limit from the gauged supergravity side corresponds to the decompactification
limit from the higher dimensional perspective. In this limit, we can replace
a large S7 by a large T 7, and the invariance under the full E7(7) is recovered.
This is a general rule that prevents the uplift of gaugings with gauge groups
that are not contained in the ungauged duality group [89].
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On the other hand, at the level of (3.113), it is non-trivial how to express
the truncation in terms of the N = 8 fields in (3.1), as the tensor hierarchy
potentials enter the expressions directly. This can however be achieved at
the level of the four-form field strength, which can be written as

F̂(4) = µIµJ H(4)
IJ + g−1H(3)J

I ∧µI DµJ + 1
2g
−2H̃(2)IJ ∧DµI ∧DµJ + dA(3).

(3.116)
Employing the dualities in (3.51), the four-form can thus be unambiguously
expressed in terms of the fields appearing in the Lagrangian (3.36). Let us
remark the highly non-trivial fact that, upon taking the exterior derivative
of (3.113), all the derivatives and products of tensor hierarchy forms nicely
combine into the covariant field strengths in (3.48).

3.2.2 SU(3)-invariant truncation

We now want to particularise the uplift of the entire N = 8 gauged super-
gravity in (3.112)-(3.116) to the SU(3)-invariant subsector in section 3.1.2.
This will allow us to make contact with previous literature, thus checking
the uplifting formulae, and to obtain a new consistent truncation of D = 11
supergravity to minimal D = 4 N = 2 gauged supergravity which does not
follow from any obvious group theory argument.

In the present case, the embedding coordinates µA, A = 1, . . . , 8, which
define the S7 as the locus (3.106) in R8 can be suitably branched into
representations of SU(3). Under SU(3), the 8v of SO(8) breaks down as
8v → 3 + 3̄ + 1 + 1. In maintaining an explicitly real notation, it is thus
convenient to split R8 = R6 × R2, and the indices as A = (i, a), with
i = 1, . . . , 6 and a = 7, 8 respectively labelling the first and second factors.7

The D = 11 uplift of the SU(3)–invariant sector utilises the tensors δij , J
(6)

ij

(real) and Ω(6)

ijk (complex) that define the natural Calabi-Yau structure of

R6. See (B.9) for our conventions. Inside R8, these tensors are respectively
invariant under SO(6)v × SO(2), SU(3)×U(1)2 and SU(3)×U(1)c, where
SO(2) rotates the R2 factor in R8 = R6 × R2. Indices on R6 and R2 are
raised and lowered with δij and δab, respectively.

As before, only the D = 4 metric, the scalars, and the electric gauge
fields in the SU(3)–invariant restricted duality hierarchy (3.52) enter the
D = 11 metric dŝ2

11. In order to express the result, it is useful to introduce a
symmetric matrix hab of D = 4 scalars and its inverse as8

h =

(
e2φ Z
Z e−2φ

(
Y 2 + Z2

)) , h−1 = Y −2

(
e−2φ

(
Y 2 + Z2

)
−Z

−Z e2φ

)
,

(3.117)

7The index i in the 3⊕ 3̄ of SU(3) should not be confused with the fundamental index
of the local SU(8) index in D = 4.

8This matrix hab should not be confused with the metric huv on the hypermultiplet
scalar manifold.
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and the following combination of D = 4 scalars and coordinates µi, µa,

∆1 = e2ϕ Y µiµ
i +X hab µ

aµb . (3.118)

With these definitions, the embedding into the D = 11 metric in (3.112)
reads

dŝ2
11 = e−ϕX1/3 ∆

2/3
1

[
ds2

4 + g−2 eϕ ∆−1
1

(
DµiDµ

i + e2ϕ Y
X (h−1)abDµ

aDµb
)

+ g−2e3ϕX−1Y −1(Y −X) ∆−2
1

(
Y J (6)

ij µ
iDµj + habε

bcµaDµc

)2 ]
,

(3.119)
where εab is the totally antisymmetric symbol with two indices, and the
covariant derivatives are defined as

Dµi = dµi − g A1J (6)ijµj , Dµa = dµa − g A0εabµb . (3.120)

For generic values of the D = 4 scalars, the metric (3.119) enjoys an SU(3)×
U(1)v isometry.

Moving on to the D = 11 three-form Â(3), all the D = 4 fields in the
tensor hierarchy (3.52), except for the metric, enter its expression. A long
calculation shows that (3.113) becomes

Â(3) = C1µiµ
i + Cab µ

aµb − 1
12g
−1
[(
Ba

a + 2A1∧ Ã1

)
δij + 4B2J (6)

ij

]
∧ µiDµj

+ 1
2g
−1
[
Bab −A0 ∧ Ã0 δab +B0 εab

]
∧ µaDµb

+ 1
6 g
−2 Ã1 ∧ J (6)

ij Dµ
i ∧Dµj + 1

2 g
−2Ã0 ∧ εabDµa ∧Dµb +A , (3.121)

where the internal three-form A reducing from (3.114) reads

A = −g−3 ∆−1
1

[
1
2 e

4ϕ χX−1Y J (6)

ij µ
iDµj ∧ εabDµa ∧Dµb

+ 1
2 χ e

2ϕ
(
Y J (6)

ij µ
iDµj + habε

bcµaDµc
)
∧ J (6)

kl Dµ
k ∧Dµl

− 1
4 e

2ϕ
(
V1 Re Ω(6)

ijk + V2 Im Ω(6)

ijk

)
∧ µiDµj ∧Dµk

+ 1
12 e

2φX
(
v1 Re Ω(6)

ijk + v2 Im Ω(6)

ijk

)
Dµi ∧Dµj ∧Dµk

]
.

(3.122)
Here, we have defined the shorthand functions

v1 = µ7ζ + µ8e
−2φ(ζZ + ζ̃Y ) , v2 = µ7ζ̃ − µ8e

−2φ(ζY − ζ̃Z) , (3.123)

and one-forms

V1 = (ζY − ζ̃Z)Dµ7 + e2φζ̃ Dµ8 , V2 = (ζZ + ζ̃Y )Dµ7 − e2φζ Dµ8 .
(3.124)
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The field strength four-form F̂(4) = dÂ(3) is computed to be

F̂(4) = H1
(4) µiµ

i +Hab
(4) µaµb − 1

12g
−1
[
H(3)a

a δij + 4H2
(3) J

(6)

ij

]
∧ µiDµj

+ 1
2g
−1
[
Hab

(3) +H0
(3) ε

ab
]
∧ µaDµb + 1

6g
−2H̃(2)1 ∧ J (6)

ij Dµ
i ∧Dµj

+ 1
2g
−2H̃(2)0 ∧ εabDµa ∧Dµb

+ 1
4 g
−2 e2ϕ∆−1

1

[
4χe2ϕX−1Y J (6)

ij µ
iDµj ∧ µkDµk

+ e2φ
(
v2 Re Ω(6)

ijk − v1 Im Ω(6)

ijk

)
µiDµj ∧Dµk

]
∧H0

(2)

− 1
4g
−2 ∆−1

1

[
2χe2ϕX−1Y µkµ

k
(
XJ (6)

ij Dµ
i ∧Dµj + e2ϕεabDµ

a ∧Dµb
)

− 4χ e2ϕ µkDµ
k ∧
(
Y J (6)

ij µ
iDµj + hac εcb µaDµ

b
)

+ e2φX
(
v2 Re Ω(6)

ijk − v1 Im Ω(6)

ijk

)
µiDµj ∧Dµk

]
∧H1

(2)

+ dAscalars . (3.125)

In this expression, H1
(4), H

ab
(4), etc., turn out to reproduce the D = 4 four-,

three- and magnetic two-form field strengths (3.63)-(3.64) of the restricted
tensor hierarchy (3.52). This provides a D = 11 crosscheck of the D = 4
calculation of section 3.1.2. The terms that contain the electric two-form
field strengths H0

(2), H
1
(2), come from the vector contributions in the covariant

derivatives Dµi and Dµa in (3.122). Finally, dAscalars contains two types
of terms. The first type includes contributions of covariant derivatives of
D = 4 scalars, wedged with three-forms on the internal S7. The second
type includes internal four-forms with coefficients that depend on the D = 4
scalars algebraically only. The presence in Â(3) of J (6)

ij , Ω(6)

ijk and hab breaks
the symmetry of the full D = 11 configuration to SU(3), in agreement with
the symmetry of the D = 4 model.

The above expressions provide the complete embedding of the SU(3)–
invariant, restricted tensor hierarchy (3.52) into D = 11 supergravity. As
such, these expressions contain redundant D = 4 degrees of freedom. As
argued below (3.116), these redundancies can be eliminated at the level of
the D = 11 four-form field strength by making use of the D = 4 duality
relations. Indeed, regarding the tensor field strengths in (3.125) as shorthand
for the dualisation conditions (3.67)-(3.69), equations (3.119), (3.125) then
express the embedding into D = 11 supergravity exclusively in terms of
the dynamically independent (metric, electric-vector and scalar) degrees of
freedom that enter the D = 4 Lagrangian (3.54).

In particular, the Freund-Rubin term (the first two contributions on the
r.h.s. of (3.125)), can be simplified by using the identities (3.70), (3.73) that
relate the dualised four-form field strengths (3.69) to the scalar potential
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(3.54) and its derivatives:

H1
(4) µiµ

i +Hab
(4) µaµb = − 1

4g

[
V + 1

6(µiµ
i − 3µaµ

a) kα[H0] ∂αV

+
(
(µ7)2 − (µ8)2

)
ku[H1] ∂uV (3.126)

+
√

2µ7µ8
(
ku[E2] + ku[F2]

)
∂uV

]
vol4 .

At a critical point, the terms in derivatives of the potential drop out and the
Freund-Rubin term becomes proportional to the AdS4 cosmological constant,
in agreement with the general N = 8 discussion of [30]. See also [90] for a
related discussion.

The uplifting formulae (3.119)-(3.122) simplify by imposing a symmetry
enlargement, carried over to D = 11 by restricting the D = 4 fields to the
previous subsectors studied in section 3.1.2. We now turn to the description
of these subsectors in terms of the intrinsic S7 angles that are best adapted
to making the relevant symmetry apparent in D = 11. See appendix C for
some relevant geometric structures on S7.

SU(3)×U(1)2–invariant sector

For the SU(3)×U(1)2–invariant sector (3.74), the embedding formulae for
the D = 11 metric, (3.119), and three-form, (3.121), (3.122), become

dŝ2
11 = e−ϕX1/3∆

2/3
1 ds2

4 + g−2
[
X−2/3∆

2/3
1 dα2 +X1/3∆

−1/3
1 cos2 αds2(CP2)

+ e2ϕX−2/3∆
2/3
1 ∆−1

2 sin2 α cos2 α (Dτ− + σ)2

+X−2/3∆2 ∆
−4/3
1

(
Dψ− + ∆3∆−1

2 cos2 α
(
Dτ− + σ

))2]
,

(3.127)

Â(3) = C1 cos2 α+ C77 sin2 α

+ 1
12 g

−1 sin 2α
(
4B77 +A1 ∧ Ã1 − 3A0 ∧ Ã0

)
∧ dα

− 1
6 g
−2 sin 2α (Ã1 + 3Ã0) ∧ dα ∧Dψ−

+ 1
3 g
−2 cosα Ã1 ∧

[
cosαJ (4) − sinαdα ∧ (Dτ− + σ)

]
+ 1

2 g
−3χe2ϕX−1 sin 2αdα ∧Dψ− ∧ (Dτ− + σ)

− g−3χe2ϕ∆−1
1 cos4 α (Dτ− + σ) ∧ J (4)

− g−3χe2ϕ∆−1
1 cos2 α cos 2αDψ− ∧ J (4) . (3.128)

In these expressions, α, τ−, ψ− are angles on S7 whose relation to the
constrained coordinates µA of R8 is given in appendix C. The covariant
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derivatives for the last two are

Dψ− = dψ− − gA0 , Dτ− = dτ− + g(A0 +A1) . (3.129)

The line element ds2(CP2) and the two-form J (4) respectively correspond to
the Fubini-Study metric, normalised so that its Ricci tensor is six times the
metric, and the Kähler form, with potential one-form σ such that dσ = 2J (4),
on the the complex projective plane. Finally, ∆1, ∆2 and ∆3 are the following
functions of the S7 angle α and the SU(3)×U(1)2–invariant, D = 4 vector
multiplet scalars

∆1 = X sin2 α+ e2ϕ cos2 α ,

∆2 = e2ϕ
[
sin4 α+

(
e2ϕ + 2χ2e2ϕ + e−2ϕX2

)
sin2 α cos2 α+ cos4 α

]
,

∆3 =
(
X2 + χ2e4ϕ

)
sin2 α+ e2ϕ cos2 α .

(3.130)
with ∆1 being simply the particularisation of (3.118) to the present case.

The field strength corresponding to (3.128) can be computed to be

F̂(4) = 2g
[
2
(
eϕ cos2 α+ e−ϕX sin2 α

)
+Xe−ϕ

]
vol4

+ g−1 sin 2α (∗dϕ− e2ϕχ ∗ dχ
)
∧ dα

− 1
6 g
−2
[

sin 2α (H̃1 + 3H̃0) ∧ dα ∧Dψ−

− 2H̃1 ∧
(
cos2 αJ (4) − sinα cosαdα ∧ (Dτ− + σ)

) ]
+ 1

2 g
−2χe2ϕ

[
X−1 sin 2αdα ∧

(
H0 ∧ (Dτ− + σ) + (H0 +H1) ∧Dψ−

)
− 2∆−1

1 cos4 α (H0 +H1) ∧ J (4) + 2∆−1
1 cos2 α cos 2αH0 ∧ J (4)

]
+

1

2
g−3 e2ϕX−2 sin 2α

[
2χdϕ− (X − 2)dχ

]
∧ dα ∧Dψ− ∧ (Dτ− + σ)

+ g−3 e2ϕ
{

∆−2
1 (Dτ− + σ) ∧

[
− 2χ(∆1 +X) sinα cos3αdα

+ cos4α
(

2χ sin2αdϕ+
(
e2ϕ cos2α− (X − 2) sin2α

)
dχ
)]

+ ∆−2
1 Dψ− ∧

[
− 1

2 χ sin 2α
(

4e2ϕ cos4α+X
(
sin2 2α+ 2 cos 2α

) )
dα

+ cos2α cos 2α
(

2χ sin2αdϕ+
(
e2ϕ cos2α− (X − 2) sin2α

)
dχ
)]

+ χX−1 sin 2αdα ∧Dψ− − 2χ∆−1
1 cos4αJ (4)

}
∧ J (4) . (3.131)

Here, we have explicitly made use of the dualisation conditions (3.68), (3.69)
for the three- and four-form field strengths, particularised to SU(3)×U(1)2–
scalars via (3.74). The magnetic two-form field strengths H̃Λ, Λ = 0, 1, stand
for the dualised expressions (3.67).
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As noted in section 3.1.2, the SU(3)×U(1)2–invariant sector coincides
with the gauged STU model with all three vector multiplets identified. This
was embedded in D = 11 supergravity in [81] (see also [91]), along with the
entire STU model. Our uplifting formulae (3.127), (3.131), obtained instead
from the D = 11 embedding of the SU(3) sector, are in perfect agreement
with (6.22)-(6.24) of [81]. This can be seen by using the D = 4 redefinitions
(3.75), which also imply H̃0 here = R̃there and H̃1 here = −Rthere, along with
the S7 angle and one-form identifications

ξthere = αhere + π
2 , φ1there = ψ−here ,

ψthere = ψ−here + τ−here , Bthere = σhere ,
(3.132)

or, in terms of the ψ, τ defined in equation (C.1) of appendix C, φ1there = −ψ,
ψthere = τ .

SU(4)–invariant sectors

While the deformations inflicted on the internal S7 by the SU(3)–invariant
D = 4 fields are inhomogeneous, enlarging the symmetry to SU(4)c and
SU(4)s results in the deformations becoming homogeneous.

For the SU(4)c–invariant D = 4 fields (3.83), the D = 11 embedding
formulae (3.119), (3.121)), (3.122) simplify to

dŝ2
11 = e

4
3
φ+ϕ ds2

4 + g−2
[
e−

2
3
φds2(CP3

+) + e
4
3
φ−2ϕ(η(7)

+ + gA)2
]
, (3.133)

Â(3) = C1 + 1
2 g
−1B0 ∧ (η(7)

+ + gA) + g−2Ã0 ∧ J (7)

+

− g−3
[
χJ (7)

+ ∧ (η(7)

+ + gA)− 1
2 ζ Re Ω(7)

+ − 1
2 ζ̃ Im Ω(7)

+

]
, (3.134)

where φ, ϕ stand for the expressions in terms of χ, ζ, ζ̃ given in (3.83). Here,
ds2(CP3

+) is the Fubini-Study metric on CP3 normalised so that the Ricci
tensor is eight times the metric, and η(7)

+ , J (7)

+ , Ω(7)

+ are the homogeneous
Sasaki-Einstein forms on S7 defined in appendix C. The four-form field
strength corresponding to (3.134) reads

F̂(4) = −6g e4φ+3ϕ
[
− 1 + χ2 + 1

3

(
ζ2 + ζ̃2

)]
vol4

+ 1
2 g
−1 e4φ ∗

(
ζ̃Dζ − ζDζ̃

)
∧ (η(7)

+ + gA)

+
g−2(1− χ2)

1 + 3χ2

[
2χF −

√
1− χ2 ∗ F

]
∧ J (7)

+

− g−3
[
dχ ∧ J (7)

+ ∧ (η(7)

+ + gA)− 1
2Dζ ∧ Re Ω(7)

+ − 1
2Dζ̃ ∧ Im Ω(7)

+

]
− 2g−3χJ (7)

+ ∧ J (7)

+ − 2g−3
(
ζ̃ Re Ω(7)

+ − ζ Im Ω(7)

+

)
∧ (η(7)

+ + gA) ,
(3.135)
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with, again, φ, ϕ written in terms of χ, ζ, ζ̃ as in (3.83). As noted in
section 3.1.2 following [78], the SU(4)c–invariant sector of SO(8) supergravity
coincides with the model considered in [83]. Using the redefinitions (3.87)
and straightforwardly identifying our Sasaki-Einstein structure with theirs,
our uplifting formulae (3.133), (3.135) do indeed match (2.2), (2.3) of [83]
when the identifications of their equation (4.1) are taken into account.

The SU(4)s–sector coincides with minimal N = 2 gauged supergravity,
(2.35). The D = 11 uplift of this sector can be achieved by bringing the
restrictions (3.84) to the general formulae (3.119)-(3.122) or, equivalently,
by further setting ϕ = χ = 0, A1 = −A0 ≡ 1

4Ā, and Ã1 = −3Ã0 in the
uplifting formulae (3.127)-(3.131) of the SU(3) × U(1)2 sector. Using the
rescaled fields (3.85) and the D = 4 field strengths (3.86), and combining the
resulting expressions in terms of the Sasaki-Einstein forms J (7)

− , η(7)

− specified
in appendix C, the D = 11 uplift of the SU(4)s–sector can be written as

ds2
11 = 1

4 ds̄
2
4 + g−2

(
ds2(CP3

−) + (η(7)

− + 1
4gĀ)2

)
,

F̂(4) = 3
8 g vol4 − 1

4 g
−2 ∗̄F̄ ∧ J (7)

− . (3.136)

This coincides with the consistent truncation of D = 11 supergravity down
to minimal N = 2 gauged supergravity obtained in [32], with straightforward
identifications. An alternate D = 11 embedding of minimal N = 2 supergrav-
ity based on (3.93)-(3.96) will be given in (3.142)-(3.143) whose consistency
does not follow from group theory arguments in any manifest way.

G2–invariant sector

The D = 11 embedding formulae (3.119)-(3.122) particularised to the G2–
invariant sector (3.91) become, in the relevant set of intrinsic coordinates
described in appendix C,

ds2
11 = e−ϕX1/3∆

2/3
1 ds2

4 + g−2X1/3∆
−1/3
1

(
e2ϕX−3∆1dβ

2 + sin2β ds2(S6)
)
,

Â(3) = C1 sin2 β + C88 cos2 β + 4g−1 sinβ cosβ B77 ∧ dβ

+ g−3 χ∆−1
1 sin2β

[
e2ϕX−1∆1J ∧ dβ

+X2 sinβ cosβReΩ + e2ϕX sin2β ImΩ
]
, (3.137)

where β is an angle on S7, ds2(S6) is the round metric on S6 normalised
so that the Ricci tensor equals five times the metric, J and Ω are the
homogeneous nearly-Kähler forms on S6 and the function ∆1 is, from (3.118)
with (C.22),

∆1 = X
(
e−2ϕX2 cos2β + e2ϕ sin2β

)
. (3.138)
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The associated four-form field strength reads

F̂(4) = −g e−3ϕX2
[[

(X − 2)X2 + e4ϕ(7X − 12)
]

sin2β

+ e−4ϕX2
[
X3 + 7e4ϕ(X − 2)

]
cos2β

]
vol4

− 4g−1 sinβ cosβ
(
∗ dϕ− e2ϕχ ∗ dχ

)
∧ dβ

+ g−3e2ϕX−2 sin2 β
(
2χdϕ− (X − 2)dχ

)
∧ J ∧ dβ

− 2g−3e2ϕχX∆−1
1 sin4 β J ∧ J

+ g−3 ∆−2
1 sin2 β

{
χX3 sin22β dϕ ∧ ImΩ

+ χX sin 2β
(
∆1 − 2e2ϕX sin2 β

)
dϕ ∧ ReΩ

+X2dχ ∧
[

sin2 β
[
e4ϕ sin2 β −X(3X − 4) cos2 β

]
ImΩ

+ 1
2 sin 2β

[
e2ϕ(3X − 2) sin2 β − e−2ϕX2(X − 2) cos2 β

]
ReΩ

]
+ χX sin2 β dβ ∧

[
X sin 2β

[
(e4ϕ +X2) sin2 β + 2X2 cos2 β

]
ImΩ

− e−2ϕ
[
e4ϕ
(
3e4ϕ +X2

)
sin2 β +X2

(
5e4ϕ −X2

)
cos2 β

]
ReΩ

]}
.

(3.139)

In order to obtain this expression, we have again made explicit use of
the dualisation conditions (3.68), (3.69) for the three- and four-form field
strengths, particularised to the G2–invariant sector (3.91). The D = 11 uplift
of the various SO(7)–invariant sectors can be straightforwardly obtained
by bringing (3.88)-(3.90) to (3.137)-(3.139). See [90] for a previous D = 11
uplift of the G2–invariant sector.

A new embedding of minimal N = 2 gauged supergravity

It was noted below (3.84) that the SU(4)s sector coincides with minimal
N = 2 gauged supergravity. In (3.136), the corresponding D = 11 uplift was
obtained and shown to coincide with the consistent embedding of [32]. It was
also discussed in that section that the SU(3)–sector admits an alternative
truncation to minimal N = 2 supergravity, by fixing the scalars to their vevs
(3.93) at the N = 2, SU(3)×U(1)c–invariant point and selecting the N = 2
graviphoton as in (3.94). Bringing these D = 4 identifications to the general
SU(3)–invariant consistent uplifting formulae, we obtain a new embedding
of pure N = 2 gauged supergravity into D = 11.

We find it convenient to present the result in local intrinsic S7 coordinates
ψ′, τ ′, α, and in terms of a local five-dimensional Sasaki-Einstein structure
η′, J ′ and Ω′. The former are locally related to the global coordinates ψ, τ ,

64



3.2 The explicit uplift on S7

α, defined in (C.1), that are adapted to the topological description of S7 as
the join of S5 and S1, with α here identified with that in (C.1) and

ψ = ψ′ , τ = τ ′ − 1
3 ψ
′ . (3.140)

The local five-dimensional Sasaki-Einstein structure forms η′, J ′ and Ω′ are
related to their globally defined counterparts η(5), J (5) and Ω(5) discussed in
appendix C and the global coordinate ψ via

η′ ≡ dτ ′ + σ ≡ η(5) + 1
3dψ , J ′ ≡ J (5) , Ω′ ≡ ei(ψ+π

4
) Ω(5) . (3.141)

The real two-form J ′ coincides with the Kähler form on CP2, σ is a one-form
on the latter such that dσ = 2J ′ (given e.g. by (C.11)) and the constant
phase ei

π
4 in the complex two-form Ω′ has been chosen for convenience, in

order to simplify the resulting expressions. The primed forms defined in
(3.141) satisfy the Sasaki-Einstein conditions (C.5) and (C.6).

Bringing all these definitions, along with the D = 4 restrictions (3.93)-
(3.96), to the uplifting formulae (3.119), (3.121), (3.122), we find a new
consistent embedding of minimal D = 4 N = 2 gauged supergravity (2.35)
into the D = 11 metric and three-form:

dŝ2
11 =

1

3
· 2−2/3 (1 + 2 sin2 α)2/3

[
ds̄2

4 + g−2
[

2 dα2 +
6 cos2 α

1 + 2 sin2 α
ds2(CP2)

+
18 sin2 α cos2 α

1 + 8 sin4 α
η′

2
+

1 + 8 sin4 α(
1 + 2 sin2 α

)2(Dψ′ − 3 cos2 α

1 + 8 sin4 α
η′
)2]]

,

(3.142)

Â(3) = C1 − 1

2
√

3
g−2 cosα ˜̄A ∧

[
cosα J ′ − sinαdα ∧ η′

]
+

1√
3
g−3 cos2 α

[
dα ∧ Im Ω′ +

sinα cosα

1 + 2 sin2 α

(
2Dψ′ − 3η′

)
∧ Re Ω′

]
.

(3.143)
These expressions depend explicitly on the dynamical D = 4 metric ds̄2

4

and graviphoton Ā. The former only features in dŝ2
11 but not in Â(3). The

latter appears both in dŝ2
11 and in Â(3), but only through the gauge covariant

derivative

Dψ′ = dψ′ + 1
2gĀ . (3.144)

This singles out ψ′ as the angle on the local N = 2 “Reeb” direction and
thus justifies the primed coordinates (3.140) that we chose to present the
result. Two other D = 4 fields enter the consistent embedding through the

three-form (3.143): the magnetic dual, ˜̄A, of the D = 4 graviphoton, and the
auxiliary three-form potential C1.

The four-form field strength corresponding to Â(3) in (3.142) can be
computed with the help of (the primed version of) the Sasaki-Einstein
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conditions (C.5), (C.6). We find

F̂(4) =
g

2
√

3
vol4 +

g−3

√
3

[
−cos2 α (7− 10 cos 2α+ cos 4α)(

1 + 2 sin2 α
)2 dα ∧Dψ′ ∧ Re Ω′

− 6 cos4 α

(1 + 2 sin2 α)2
dα ∧ η′ ∧ Re Ω′ +

6 sinα cos3 α

1 + 2 sin2 α
Dψ′ ∧ η′ ∧ Im Ω′

]
+
g−2

4
√

3

[
4 sinα cos3 α

1 + 2 sin2 α
F̄ ∧ Re Ω′ + ∗̄ F̄ ∧ d

(
cos2αη ′

)]
. (3.145)

Again, we have made use of appropriate dualisation conditions, (3.97), (3.98)
in this case, to express the result for the embedding (3.145) into the four-form
only in terms of the independent D = 4 degrees of freedom (the metric ds̄2

4,
the graviphoton field strength F̄ = dĀ and its Hodge dual), that appear in
the Lagrangian (2.35).

The truncation (3.142), (3.145) of D = 11 supergravity down to pure
D = 4 N = 2 gauged supergravity (2.35) is consistent by construction. We
have explicitly verified consistency at the level of the Bianchi identities and
equations of motion for the D = 11 four-form: its field equations are indeed
satisfied, provided the D = 4 Bianchi, dF̄ = 0, and equation of motion,
d ∗̄ F̄ = 0, of the D = 4 graviphoton are imposed. Some details can be
found in appendix D.1. Moreover, these local uplifting formulae are still
valid if, more generally, η′, J ′, Ω′ are taken to be the defining forms of any
Sasaki-Einstein five-manifold, and ds2(CP2) is replaced with the metric on
the corresponding local Kähler-Einstein base. This is in agreement with the
G-structures perspective provided in chapter 2, as this truncation can be
recovered from that route as (2.52) with (2.30).

Recovering D = 11 AdS4 solutions

Setting the scalars to the vevs at each critical point with at least SU(3)
invariance that were recorded in table 3.2, and turning off the relevant tensor
hierarchy fields, the consistent embedding formulae (3.119)-(3.122) produce
AdS4 solutions of D = 11 supergravity. All these D = 11 solutions are
known, so our presentation must necessarily be brief. The main motivation
to work out these solutions is rather to test the consistency of the uplifting
formulae presented in section 3.2.1 (and their particularisation to an explicit,
SU(3)–invariant, subsector). Except for the more involved D = 11 Einstein
equation, the metrics and four-forms that we write below have been verified
to solve the eleven-dimensional field equations. Please refer to appendix D.2
for details.

We present the solutions in the appropriate intrinsic S7 angles defined
in appendix C. Also, AdS4 is always taken to be unit radius (so that the
Ricci tensor equals −3 times the metric). As a consequence, the metric
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ds2(AdS4) that appears in the expressions below is related to the metric ds2
4

that appears in the D = 4 Lagrangian (3.54) and D = 11 embedding (3.119)
by a rescaling

ds2
4 = −6V −1

0 ds2(AdS4) , (3.146)

where V0 is the cosmological constant at each critical point given in table
3.2. The Freund-Rubin term is rescaled accordingly with respect to (3.126).

Let us first discuss the supersymmetric solutions. The N = 8, SO(8)
point uplifts to the Freund-Rubin solution [92] for which the internal four-
form vanishes and the internal metric is the round, Einstein metric ds2(S7),
given in e.g. (C.3) or (C.17). The N = 2, SU(3) × U(1)c critical point
uplifts to the D = 11 CPW solution [31]. A local form of this solution
can be obtained from (3.142)-(3.145) by turning off the D = 4 graviphoton,
Ā = 0, F̄ = 0, and fixing the metric to ds̄2

4 = g−2ds2(AdS4). As a check,
we have verified that the solution in R8 embedding coordinates µA, directly
obtained from (3.119)-(3.122), perfectly agrees with the CPW solution as
given in [93]. Finally, the N = 1 G2–invariant solution can be written, using
(3.137)-(3.139), as

dŝ2
11 = g−2

(
25
12

) 1
6 (2 + cos 2β)

2
3

[
5
24ds

2(AdS4)+ 1
3dβ

2+
sin2 β

2 + cos 2β
ds2(S6)

]
,

F̂(4) = 1
8

(
25
12

) 5
4 g−3 vol(AdS4) +

√
2g−3 sin2 β

31/4(2 + cos 2β)2

[√
3 sin2 βReΩ ∧ dβ

− sinβ cosβ (5 + cos 2β) ImΩ ∧ dβ − sin2 β(2 + cos 2β)J ∧ J
]
,

(3.147)

with internal three-form potential

A =
g−3 sin2 β

33/4
√

2(2 + cos 2β)

[
3
2 sin 2βReΩ+

√
3 sin2 β ImΩ+(2+cos 2β)J∧dβ

]
,

(3.148)
in terms of the nearly-Kähler structure of the S6 in S7. This solution was
first obtained by de Wit, Nicolai and Warner [94].

Turning to the non-supersymmetric solutions, the SO(7) critical points
can again be uplifted using (3.137)-(3.139). The SO(7)v solution uplifts to a
solution first written by de Wit and Nicolai [95]. In our conventions, we get

dŝ2
11 = 5−

5
6 g−2 (3 + 2 cos 2β)

2
3

[
3
4ds

2(AdS4) + dβ2 +
5 sin2 β

3 + 2 cos 2β
ds2(S6)

]
,

F̂(4) = 9
8 · 5−

3
4 g−3 vol(AdS4) , (3.149)

while the SO(7)c point uplifts to Englert’s solution [96]

dŝ2
11 = g−2

(
4
5

) 1
3
[

3
10ds

2(AdS4) + ds2(S7)
]
,
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F̂(4) = g−3 18
25
√

5
vol(AdS4) +

4 sin4 β√
5 g3

[
ReΩ ∧ dβ − cotβ ImΩ ∧ dβ − 1

2 J 2
]
,

(3.150)

with internal three-form

A =
sin2 β

2
√

5 g3

[
2 sin2 β ImΩ + 2J ∧ dβ + sin 2βReΩ

]
. (3.151)

In the SO(7)c solution, ds2(S7) is, as always, the round, SO(8)–invariant
metric. It should be understood in this context as the sine-cone form (C.23).
Since SO(7)c ⊃ SU(4)c, this solution can also be re-obtained from the SU(4)c–
invariant truncation and written in terms of the homogeneous Sasaki-Einstein
structure on S7. The D = 11 metric is the same appearing in (3.150) with
ds2(S7) now understood as the Hopf fibration (C.17), and the four-form is
given by

F̂(4) =
18

25
√

5 g3
vol(AdS4) +

2√
5g3

[
2 Re Ω(7)

+ ∧ η(7)

+ − J (7)

+ ∧ J (7)

+

]
, (3.152)

with internal three-form

A = − 1√
5 g3

[
J (7)

+ ∧ η(7)

+ + Im Ω(7)

+

]
. (3.153)

The metric in (3.150) and four-form (3.152) for the SO(7)c solution coincide
with (3.11) of [83] upon using the redefinitions (3.87), and making an appro-
priate choice for the phase of the complex scalar χthere ≡ − 1√

3
(ζ̃here + iζhere),

which is unfixed at the critical point. We obtain perfect agreement with [83]
upon shifting that phase by π.

Finally, the SU(4)c–invariant point gives rise to the Pope-Warner solution
[97] in eleven dimensions. Using (3.133)-(3.135), this solution can also be
written in terms of the homogeneous Sasaki-Einstein structure on S7 as

dŝ2
11 =

1

21/3 g2

[
3
8ds

2(AdS4) + ds2(CP3
+) + 2η(7)

+ ⊗ η(7)

+

]
,

F̂(4) =
9

32g3
vol(AdS4)− 2

g3

[
Re Ω(7)

+ ∧ η(7)

+ − Im Ω(7)

+ ∧ η(7)

+

]
, (3.154)

where the internal three-form potential is now

A = 1
2 g
−3
[
Re Ω(7)

+ + Im Ω(7)

+

]
. (3.155)

We again find agreement with [83]: 3.154 coincides with (3.8) of that reference
when the identifications (3.87) are taken into account and the phase of
χthere ≡ − 1√

3
(ζ̃here + iζhere), which is again unfixed at the critical point, is

shifted by π
4 .
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Chapter 4

Introduction:
Weighing ripples of the world

On any compactification of string theory there are several competing scales.
This can already be seen in the spectrum of states of the bosonic theory
compactified on a circle,

M2 =
k2

R2
+
R2

α′2
w2 +

2

α′
(N + Ñ − 2) , (4.1)

where k labels the KK level, as in the invitation, w the winding number
of the string around the compact dimension, and N , Ñ the number of
string oscillators applied onto the vacuum. For α′ � R2, i.e. when the
characteristic string length is much smaller than the size of the internal
dimensions, the states with non-zero winding or N + Ñ − 2 > 0 are very
heavy compared to the characteristic KK mass scale and thus decouple. This
idea persists in the more interesting superstring theories, where α′ � R2

characterises the regime in which the supergravity approximation is valid,
and is therefore the limit that we are interested in.

In this limit, we can understand the dynamics of the full higher-dimensional
theory from a lower dimensional point of view. This tactic is of special rel-
evance in holography, as KK modes on an AdSd+1 solution describe the
spectrum of single-trace operators of the dual CFTd at strong coupling and
large N through the dictionary [98–103]

gravitons/stress-energy : ∆ = 1
2(d+

√
d2 + 4L2M2) ,

p-forms/conserved currents : ∆ = 1
2(d+

√
(d− 2p)2 + 4L2M2) ,

scalars : ∆ = 1
2(d±

√
d2 + 4L2M2) ,

grivitini/supercurrents : ∆ = |LM |+ d
2 ,

spin-1/2 fields : ∆ = |LM |+ d
2 ,

(4.2)
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Part II Chapter 4 – Introduction: Weighing ripples of the world

where ∆ is the conformal dimension of the CFT operators and M the mass of
the supergravity KK modes.1 We normalise with respect to the effective AdS
length L so that the combination LM is dimensionless. The two possible
signs for the scalars [107] correspond to the two roots of L2M2 = ∆(∆−3). If

L2M2 > −d2

4 +1, only the larger root leads to admissible boundary conditions.

However, in the range −d2

4 < L2M2 < −d2

4 + 1 both boundary conditions are
possible. Notice that for scalar masses below the Breitenlohner-Freedman
bound [104]

L2M2 > −d
2

4
, (4.3)

the dimensions obtained from (4.2) are imaginary, and thus incompatible
with the representation theory of the conformal group.

Operators in a CFT must arrange themselves in representations of the
conformal group SO(2, d), and the conformal dimensions ∆ are one of the
fundamental pieces of information describing these multiplets which are
usually very difficult to determine in strongly interacting field theories.
This is one of the cases mentioned in the invitation where gravity becomes
informative about interesting properties of non-trivial quantum field theories.

On top of a given solution in higher dimensions, the KK masses appearing
in (4.2) can be computed by shifting the background field configuration by
small deformations δϕ(x, y) and linearising the equations of motion. For
generic solutions of the higher-dimensional supergravities, this computation
is simply out of reach. The main difficulty is that usually these perturbations
couple to the metric and background fluxes in a very intricate way, and it
is very subtle to find the precise combination of perturbations which carry
definite mass. The situation is different if one focuses again on homogeneous
solutions, which can be addressed by group theory methods [108, 109]. This
approach led to the early computation of the complete spectra of M-theory
on the S7 [110] and of type IIB supergravity on the S5 [111] maximally
supersymmetric solutions, which can be thought in this context as the coset
spaces (1.1). More recent illustrations of this method can be found in [112,
113], but in general unless both G and H in G/H are sufficiently big, this
computation becomes quickly unfeasible. For this reason, this approach will
not be covered here.

A more general case in which the situation simplifies drastically is when
one focuses on the set of massive gravitons only. On maximally symmetric
backgrounds, these modes decouple from the fluxes [114] and are only sensitive
to the internal metric and warping of the higher-dimensional metric. The
precise form of these perturbations reads

dŝ2
D = e2A(y)

[
(ḡµν(x) + hµν(x, y))dxµdxν + ds̄2

d(y)
]
, (4.4)

1These formulae were in fact known long before, with ∆ then interpreted as the scaling
dimension of the AdS supergroup so that modes could be arranged in supermultiplets at
supersymmetric solutions. See [24, 104–106].
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with the coordinates and indices ranging as in (I.8). We take the external
metric ḡµν dx

µdxν ≡ ds2(AdSd) to be the unit-radius anti-de Sitter metric.
The internal ds̄2

d(y) denotes a background metric on the n-dimensional space,
where the warp factor e2A(y) also takes values. The perturbation, hµν , is
assumed to take the factorised form

hµν(x, y) = h[tt]
µν (x)Y(y) , (4.5)

with Y(y) a function on the internal space only, and h[tt] transverse (∇̄µh[tt]
µν=

0) with respect to the Levi-Civita connection corresponding to ḡµν , traceless

(ḡµνh
[tt]
µν = 0), and subject to the Fierz-Pauli equation

�̄h[tt]
µν = (M2L2 − 2)h[tt]

µν . (4.6)

The masses and modes are then related by the differential equation [114, 115]

LY = −e
−(D−2)A

√
ḡ

∂m
(
e(D−2)A√ḡ ḡmn∂nY

)
= M2Y . (4.7)

The differential operator appearing here is therefore a warped Laplacian
completely insensitive to the background fluxes. These approach has been
previously used to compute massive spin-2 spectra in a variety of cases with
holographic interest [93, 114, 116–122].

Finally, another interesting case is the class of solutions that uplift from
the vacua of a lower-dimensional maximal gauged supergravity. As in the
study of consistent truncations of chapter 3, duality plays a prominent rôle in
this context. A systematic way of taking advantage of the duality groups that
appear in the lower-dimensional supergravities are Exceptional Field Theory
(ExFT) [123–130] and Generalised Geometry [45–52, 54, 56], which are
reformulations of the full higher-dimensional theories in a duality-covariant
fashion that resembles the lower-dimensional counterparts (see [131] for a
recent review). In this duality-covariant language, the consistent truncations
studied in chapter 3 can be expressed as a factorisation of the dependence on
external and internal coordinates by means of a Scherk-Schwarz ansatz [55,
132] generalising (3.109)-(3.110). Given that these reformulations encode
the full higher-dimensional dynamics, their usefulness does not restrict to
consistent truncations, but can also be effectively applied to the study of the
KK tower. This route has received much attention in recent times [133–141]
given the ability of ExFT to recover the masses of modes of all spins in terms
of mass matrices controlled by very limited data.

The rest of this part proceeds as follows. In chapter 5 we employ (4.7)
to analyse the KK spectrum of massive gravitons on the N = 2 solutions of
M-theory reviewed in chapter 2 which enjoy a U(1)2 isometry group. For
the solution which cannot be obtained within the truncation to maximal
supergravity, this analysis reveals interesting structures in the dual theory
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such as the space invaders scenario for the completion of supermultipets [24]
or the apparent protection of operators not saturating the unitarity bound.

In chapter 6 we analyse how, based on SL(8,R) covariance, the spectrum
of KK gravitons can be computed algebraically in terms of the embedding
tensor. To address lower-spin fields, the recent toolkit from ExFT must be
employed, and we first review the basic notions of E7(7) ExFT to subsequently
introduce the KK mass matrices on top of solutions that uplift from D = 4
maximal gauged supergravity. One of the powerful aspects of this new
method is that, contrary to all others, the fully-fledged uplifts in higher-
dimensions are not needed to compute the spectrum, and in fact many of
the solutions here and in the literature are only known at the D = 4 level.

Finally, in chapter 7 we apply these tools to compute the KK spectrum on
different (families of) solutions in eleven-dimensional and type II supergravity.
Out of the obtained spectra, we discuss the global properties of conformal
manifolds of the CFTs dual to a class type IIB S-fold solutions. Finally, we
also note some intriguing universality properties in the spectrum of massive
spin-2 modes. This universality seems a robust phenomenon in all solutions
analysed so far, but both gravity and QFT understanding are still pending.
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Chapter 5

KK spectrum on the cubic
deformation of ABJM

As emphasised in chapter 4, the Kaluza-Klein modes with spin-2 decou-
ple from most of the details about the higher dimensional configuration
and obey the simple modified-laplacian equation (4.7). The simplicity of
the latter has allowed its solution on a variety of configurations [93, 114,
116–122, 142–144], and the modes thus obtained enjoy a nice holographic
interpretation as the duals of heavier cousins of the stress-energy tensor in
the corresponding SCFTs.

This chapter explores the dual of a relevant deformation of the Aharony-
Bergman-Jafferis-Maldacena (ABJM) [39] SCFT, which describes the world-
volume of a stack of M2 branes at an orbifold singularity. The reformulation
of this theory in N = 2 language will be recalled in section 5.1, together
with its AdS dual, which is a particularisation of the class of solutions dis-
cussed in section 2.2. The spectrum of KK excitations will be analysed in
section 5.2, addressing first its algebraic structure based on the R-charges
induced by the relevant deformation, and then focusing on the spin-2 sector.
Section 5.3 concludes with comments about some intriguing patterns that
our results exhibit.

5.1 ABJM, its deformations and their duals

The ABJM theory [39] is the superconformal U(N)×U(N) Chern-Simons-
matter gauge theory with N = 6 supersymmetry describing the worldvolume
of a stack of M2-branes on a C4/Zk orbifold singularity. In D = 3 N = 2
superfield language, its field content comprises gauge and chiral superfields.
The gauge superfields Vab and V̂ â

b̂
, with a, â labelling the fundamental of each

U(N) factor in the gauge group, are governed by a Chern-Simons action at
levels k and −k respectively. The matter superfields are (ZA)aâ and (WA)âa,
with A = 1, 2, transforming in the (N, N̄) and (N̄,N) of the gauge group as
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Part II Chapter 5 – KK spectrum on the cubic deformation of ABJM

well as in the fundamental of two global SU(2)’s. Apart from the standard
kinetic term for the chiral matter, the theory also contains the quartic
superpotential

W =
2π

k
εACε

BD tr(ZAWBZCWD) . (5.1)

The theory is manifestly invariant under U(1)R×SU(2)×SU(2). However, for
k = 1, 2, supersymmetry is expected to enhance to N = 8, with the global
symmetry correspondingly upgrading to a manifest U(1)R×SU(4). To make
the theory manifestly invariant under this larger group, t’Hooft monopole
operators [145] must be used, see e.g. [146]. These operators, (Mq)

a1,...,aq
â1,...,âq

,

carry q units of the baryonic U(1)b flux, with U(1)b ⊂ U(N)×U(N) being
the linear combination of U(1)’s orthogonal to the one corresponding to the
centre of mass of the branes. With the help of these monopole operators,
a new set of chiral superfields ZI = (Z1,Z2,Z3,Z4) in the fundamental of
SU(4) and in the (N, N̄) of the gauge group, can be introduced related to
the original ABJM ones as

(Z3)aâ = (W1)b̂b(M2)ab
âb̂
, (Z4)aâ = (W2)b̂b(M2)ab

âb̂
. (5.2)

The SU(4)-invariant [147, 148] superpotential can then be written as

W =
4π

k
(Z1)aâ(Z2)b

b̂
(Z3)cĉ(Z4)d

d̂

[
(M−2)âĉbc (M−2)b̂d̂ad − (M−2)âd̂bd (M−2)b̂ĉac

]
.

(5.3)
Although not manifestly, for k = 1 the supersymmetry of the model is
increased to N = 8 [148]. The supersymmetry superalgebra is therefore
OSp(8|4), and the R-symmetry group contained within the superalgebra is
accordingly enhanced to SO(8).

5.1.1 Relevant Superpotential Deformations

For N = 8 ABJM, the superpotential (5.3) can be deformed by introducing
an operator polynomial in one of the chirals, say Z4. Schematically,

∆W = (Z4)p . (5.4)

This deformation preserves SU(3) × U(1)p ⊂ SO(8), with SU(3) ⊂ SU(4)
the flavour group that rotates the remaining ZA, A = 1, 2, 3, and U(1)p the
R-symmetry associated to the manifestly preserved N = 2 supersymmetry.

For p = 2 and p = 3, the operator in (5.4) induces a relevant deformation.
In the p = 2 case, it corresponds to the mass deformation introduced in
[147]. Here, we will be more interested in the case in which the deformation
is instead cubic in Z4. In either case, the actual deformations are

p = 2 : ∆W = α(Z4)aâ(Z4)b
b̂
(M−2)âb̂ab , (5.5)
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and
p = 3 : ∆W = α(Z4)aâ(Z4)b

b̂
(Z4)cĉ(M−3)âb̂ĉabc , (5.6)

where α is a coupling constant, and the gauge indices have been contracted
using a monopole operator, making equation (5.4) more precise.

The IR R-charges of the chirals under the R-symmetry group U(1)p for
each case can be computed by requiring that the total superpotential, (5.3)
plus (5.6), has R-charge two and that the free energy be extremal [149].
Assuming that the monopole operators are R-neutral, the result for these
U(1)2 and U(1)3 IR R-charges are, correspondingly [82, 150],

p = 2 : R1 ≡ R(ZA) = 1
3 , A = 1, 2, 3 , R2 ≡ R(Z4) = 1 , (5.7)

and

p = 3 : R1 ≡ R(ZA) = 4
9 , A = 1, 2, 3 , R2 ≡ R(Z4) = 2

3 . (5.8)

The SU(3) flavour group of both the p = 2 and p = 3 IR phases is the same
subgroup of the SO(8) R-symmetry of the ultraviolet (UV) N = 8 ABJM
theory: it is, in fact, the unique SU(3) ⊂ SO(8). However, (5.7) and (5.8)
show that the U(1)p R-symmetry groups for p = 2 and p = 3 are different U(1)
subgroups of SO(8): they are different U(1) combinations of the U(1)×U(1)
that commutes with SU(3) inside SO(8), as explained in appendix E.2. The
full (super)symmetry of these IR SCFTs is thus OSp(2|4)p × SU(3), with
U(1)p ⊂ OSp(2|4)p having a subscript p = 2 or p = 3 attached to signify
that they are different (super)groups.

It is also useful to look at the deformation at the level of the Lagrangian.
In terms of field components, the chiral superfields can be expanded in the
usual way as [151]

ZI = ZI+
√

2θχI+θ2ζI+i(θγµθ̄)∂µZ
I− i√

2
θ2∂µχ

Iγµθ̄− 1

4
θ2θ̄2�ZI , (5.9)

with ZI and χI respectively the dynamical scalars and fermions, and ζI non-
propagating auxiliary fields. The potential that derives from a superpotential
then reads

V = −
∫
d2θ W(Z) + h.c. = −∂W(Z)

∂ZI
ζI +

1

2

∂2W(Z)

∂ZI∂ZJ
χIχJ + h.c. (5.10)

The auxiliary fields can be integrated out using their equations of motion,
which set them to ζI = −∂W̄/∂Z̄I , with the potential becoming

V =
∂W(Z)

∂ZI
∂W̄(Z̄)

∂Z̄I
+

1

2

∂2W(Z)

∂ZI∂ZJ
χIχJ +

1

2

∂2W̄(Z̄)

∂Z̄I∂Z̄J
χ̄I χ̄J . (5.11)

Therefore, the effect of the deformation (5.6) on top of (5.3) is to augment
the ABJM Lagrangian with the following schematic interaction terms:

p = 2 : ∆L = 1
2 |α|2 Z4 Z̄4 + 1

2αχ
4χ4 + h.c. , (5.12)
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and

p = 3 : ∆L = 1
2 |α|2 (Z4)2(Z̄4)2 + 1

2αχ
4χ4Z4 + h.c. , (5.13)

where the contractions occur with monopole operators, which we have sup-
pressed to avoid cluttering.

In real notation, ZI and χI respectively transform in the 8v and 8c of the
SO(8) R-symmetry group of N = 8 ABJM. Accordingly, the deformations in
(5.12) correspond, up to terms in the ABJM analogue of the N = 4 super-
Yang-Mills Konishi operator, to mass terms for the scalars and fermions.
These mass terms have canonical dimension, ∆ = 1 and ∆ = 2, and branch
from the 35v and 35c of SO(8). On the other hand, the operators in (5.13)
respectively branch from the 294v and 224cv representations of SO(8). These
operators have relevant dimension ∆ = 2 and ∆ = 5

2 , and thus do indeed
generate RG flow as expected.

5.1.2 Gravity duals

The relevant operators in (5.12) are dual to scalar and pseudoscalar KK modes
that branch from the 35v and 35c representations of SO(8), respectively.
Both these modes arise at KK level n = 0 in the spectrum of the N = 8
AdS4 × S7 Freund-Rubin (FR) solution of D = 11 supergravity, dual to
N = 8 ABJM: see [24] for a review and table 2 of [82] for a convenient
summary. As is well-known, a consistent truncation of D = 11 supergravity
on S7 exists [25] that retains all n = 0 KK modes and reconstructs their
full non-linear interactions. The resulting D = 4 supergravity is N = 8 and
has gauge group SO(8) [73], and the RG flow triggered by (5.12) can be
described at the level of this truncation.

In contrast, the operators in (5.13) that trigger the p = 3 RG flow are
dual to scalar and pseudoscalar KK modes which arise at KK levels n = 2 and
n = 1. There is no known consistent truncation, maximally supersymmetric
or otherwise, that retains these modes,1 and this prevents a purely four-
dimensional description of the flow. For this reason, unlike for p = 2, the
geometry dual to the p = 3 IR SCFT must be engineered directly in D = 11.
The general class of M-theory solutions involving N = 2 supersymmetry and
an AdS4 factor was analysed in [17] and reviewed in section 2.2. What we
are referring to here as the p = 3 Gabella-Martelli-Passias-Sparks (GMPS)
geometry is a particular solution to their formalism which the authors of
[17] discuss in detail. The p = 2 CPW geometry [31] can also be recovered
[17] as a different solution in the same class. The local form of the family of

1Some consistent truncations are known [84, 152, 153] that retain modes up the KK
towers, but not the required ones. For example, the N = 2 truncation of [84] keeps
SU(4)s-invariant scalar and pseudoscalar modes from KK level n = 2, dual to irrelevant
operators. A different consistent truncation retaining massive modes has recently been
constructed in [G].
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geometries that encompasses both specific solutions takes the form (2.28) in
section 2.2. In particular, the seven-dimensional internal metric takes on the
local form in (2.28)

ds2
7 =

f · α
4
√

1 + (1 + r2)α2
ds2(CP2) +

α2

16

[
dr2 +

r2f2

1 + r2
(dτ̃ + σ)2

+
1 + r2

1 + (1 + r2)α2

(
dψ̃ +

f

1 + r2
(dτ̃ + σ)

)2]
,

(5.14)

in terms of coordinates r, ψ̃, τ̃ . The Kähler-Einstein base in (2.28) has
been chosen as the Fubini-Study metric on the complex projective plane,
normalised so that the Ricci tensor equals six times the metric, and σ is
a local one-form potential for the Kähler form J on CP2, normalised as
dσ = 2 J . Finally, α and f are functions of the coordinate r only, the former
simply a rewrite of the warp factor:

e6∆ ≡
(
m
6

)2
(1 + r2 + α−2) . (5.15)

These functions are subject to the following system of non-linear differential
equations:

f ′

f
= −1

2
rα2 ,

(rα′ − r2α3)f√
1 + (1 + r2)α2

= −3 , (5.16)

where a prime denotes derivative with respect to r. The vectors ∂ψ̃ and ∂τ̃ are
Killing, and the isometry of the metric (5.14) is manifestly SU(3)×U(1)×U(1).
The former vector defines the local N = 2 Reeb direction corresponding to
the U(1)p R-symmetry, and the latter is broken by the internal four-form
F(4) in (2.28). The internal symmetry of the full D = 11 configuration (2.10)
is thus SU(3)×U(1)p.

Each solution f and α to the system of ODEs (5.16) gives rise to an
N = 2 solution to the equations of motion of D = 11 supergravity of the
form (2.28) and (2.29) with (5.15). The two solutions, GMPS and CPW,
of interest here correspond to specific choices of f and α subject to the
boundary conditions

f −−−→
r→0

3p

p− 1
, α −−−→

r→0
wr−1+1/p , with w > 0 ,

f −−−→
r→r0

2
√

1 + r2
0

r0
(r0 − r) , α −−−→

r→r0

√
2

r0(r0 − r)
,

(5.17)

for p = 2 or p = 3. For these choices, the local geometry (5.14) extends
globally over S7. The coordinate r is globally defined and ranges in 0 ≤ r ≤ r0

for a solution-dependent constant r0. The coordinates ψ̃ and τ̃ are only
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Figure 5.1: Comparison between the numerically obtained functions f and α for
the GMPS solution and their respective polynomial, (5.23), and rational, (5.24),
approximations.

defined locally, but can be related to globally defined angles ψ and τ of
period 2π via the transformation2

ψ = 1
p ψ̃ , τ = τ̃ + 1

3

(
1− 1

p

)
ψ̃ (5.18)

for p = 2 or p = 3. The global coordinates ψ and τ are the angles on the
Hopf fibres of S7 and on the S5 inside S7. In terms of the globally-defined
angles, the N = 2 Reeb vector is

R = 4(p−1)
3p ∂τ + 4

p ∂ψ ≡ 4 ∂ψ̃ . (5.19)

The analytical p = 2 CPW solution [31] is recovered for [17]

f = 6
(

1− r

r0

)
, α =

√
2

r(r0 − r)
, r0 = 2

√
2 . (5.20)

The p = 3 GMPS solution is only known numerically [17]. We re-derive it
here following [17] in order to calibrate our numerics. The equations (5.16)
can be combined into a single non-linear ODE for f ,

1

9
f
(
Rf̈ − 5ḟ

)
+

1

3
Rḟ2 =

√
−ḟ
(

6R5f − 4ḟ (1 +R6)
)
, (5.21)

in terms of a convenient new independent variable

R = r1/3 . (5.22)

2In the notation of [17], ψ̃here = ψthere, τ̃here = τthere and ψhere = ϕ0there and τhere = ϕthere

up to orientation.
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5.2 Massive KK modes on the GMPS solution

In (5.21), a dot denotes derivative with respect to R. An approximate
solution to equation (5.21) can be found by expanding in Taylor series about
R = 0:

f(R) =
9

2
−cR2−c

2

9
R4+

(
2187− 128c3

)
3888

R6+

(
19683c− 1264c4

)
104976

R8+O(R10) ,

(5.23)
with c an integration constant. Using (5.23), the function α derives from
(5.16) as

α2(R) ≈ 4
3R4

[
177147R4 + 26244c

(
3R6 − 4

)
− 23328c2R2 − 10368c3R4 − 5056c4R6][

1264c4R8 + 3456c3R6 + 11664c2R4 − 6561c
(
3R6 − 16

)
R2 − 59049

(
R6 + 8

) ]−1
.

(5.24)

The approximate analytical solutions (5.23), (5.24) can now be used to kick
off a numerical integration of the system of ODEs (5.16). Imposing the right
asymptotic behaviour near R = R0, given by (5.17) with p = 3 through
(5.22), the integration constant c and the upper limit r0 for the variable r
become fixed to

c ≈ 2.4998 , R0 ≈ 1.1585 ⇐⇒ r0 ≈ 1.555 . (5.25)

Interestingly, the approximate solutions (5.23), (5.24) found close to R = 0
fit the numerically integrated functions very well across the entire range
0 ≤ R ≤ R0 for the value of c in (5.25): see figure 5.1.

5.2 Massive KK modes on the GMPS solution

After reviewing the principal aspects of the configuration to be perturbed,
let us analyse its ripples. This problems is technically very complicated, and
we will content ourselves with drawing some conclusions from group theory
about its structure, as similarly done in [82] for the CPW solution [31] and
focusing on the KK graviton towers. The main observation is that the KK
spectrum displays a space invaders scenario similar to that described in [24]
for the KK spectrum on the squashed S7 solution [154].

5.2.1 Algebraic Structure

As remarked in the previous section, the full (super)symmetry group of both
the CPW and GMPS solutions is OSp(2|4)× SU(3), and the KK spectrum
must accordingly organise itself in representations of this (super)group. See
appendix A of [82] for a convenient summary of OSp(2|4) multiplets. On the
other hand, these configurations are connected through an RG flow to the
N = 8 AdS4 × S7 FR solution, whose spectrum at KK level n is organised
in terms of the SO(8) representations

graviton : Gn ≡ [n, 0, 0, 0] ,
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gravitini : Gn ≡ [n, 0, 0, 1]⊕ [n− 1, 0, 1, 0] ,

vectors : Vn ≡ [n, 1, 0, 0]⊕ [n− 1, 0, 1, 1]⊕ [n− 2, 1, 0, 0] ,

fermions : Fn ≡ [n+ 1, 0, 1, 0]⊕ [n− 1, 1, 1, 0]

⊕ [n− 2, 1, 0, 1]⊕ [n− 2, 0, 0, 1] ,

scalars : S+
n ≡ [n+ 2, 0, 0, 0]⊕ [n− 2, 2, 0, 0]⊕ [n− 2, 0, 0, 0] ,

pseudoscalars : S−n ≡ [n, 0, 2, 0]⊕ [n− 2, 0, 0, 2] , (5.26)

where only representations with non-negative Dynkin labels contribute.
This connection implies that the SU(3)×U(1)p representations in the

deformed solution must be related to the SO(8) representations in the round
one by branching them under

SO(8) ⊃ SU(3)×U(1)p . (5.27)

For the gravitons, the result of this branching is

[n, 0, 0, 0]
SU(3)×U(1)p−−−−−−−−→

n⊕
`=0

n−⊕̀
t=0

⊕̀
p=0

[p, `− p]−R1(`−2p)+R2(n−`−2t) , (5.28)

where R1 and R2 are the IR R-charges (5.8) (or (5.7) for CPW) of the
coordinates transverse to the M2-branes. The branchings of the lower spins
in (5.26) are summarised in appendix E.2.

The next step is to allocate fields of different spin but the same SU(3)
charges into OSp(2|4) multiplets. For CPW [31] this exercise was carried out
in [82], and crucially relies on the assignment of R-charges (5.7). Under the
assumption that the allocation into supermultiplets should take place KK
level by KK level, group theory alone was found to narrow down the possible
spectrum of (short) multiplets to two possibilities dubbed scenarios I and II
in [82]. Both scenarios differ by the embedding of the U(1)2 IR isometry into
SO(8), and are related by a triality rotation [143]. The actual calculation of
the KK graviton spectrum [93] confirmed scenario I as the correct choice.

Going through the same exercise for the GMPS solution [17] we find that
we need to relax the assumption that the allocation of SU(3)×U(1)3 states
into OSp(2|4) multiplets should proceed KK level by KK level. Otherwise,
the problem has no solution starting from the R-charge assignment (5.8), and
that is not an option. Instead, states entering the same OSp(2|4) multiplet
must be retrieved from different SO(8) KK levels n. For example, states
from higher KK levels are needed to complete Short Gravitino multiplets in
the [1, 0] 1

9
and [1, 0]− 1

9
and a Long Vector in the [0, 0]0, whose states come

mostly from n = 0. Table 5.1 shows a possible distribution of the n = 0
states into OSp(2|4) multiplets that assumes that all needed space invaders
descend from KK level n = 1. Group theory is not enough to determine
whether this or another invasion pattern is the correct one, though.
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Table 5.1: Possible branching of the N = 8 massless graviton multiplet into
Osp(2|4) × SU(3) representations. The symbol

÷

denotes space invader states
coming from higher KK levels.

5.2.2 Spin-2 sector

The spectrum of massive KK gravitons about the CPW solution [31] was
determined analytically in [93]. Here, we pose the analogue boundary value
problem for the GMPS solution [17] and turn to solve it numerically. The
numerical integration can be systematised using the group theory of section
5.2.1, and the complete graviton spectrum can be found. Here we present
the numerical outcomes up to KK level n = 3, out of which analytic results
on the short graviton spectrum and on a specific type of long OSp(2|4)
supermultiplets can be found. This results will be used in section 5.3 to
show that the GMPS metric does not descend from the flat Euclidean metric
on R8.

Boundary value problem

As reviewed in chapter 4, we consider the line element

dŝ2
11 = e2A

[
(ḡµν(x) + hµν(x, y)

)
dxµdxν + ds̄2

7(y)
]
, (5.29)
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where we have rescaled for convenience the warp factor and internal metric
in (5.14) as

e2A = 1
4 e

2∆ , ds̄2
7 = 4 ds2

7 , (5.30)

with respect to (5.15) and (5.14). We fix the functions f and α appearing in
the internal squashed and stretched metric on S7 and warp factor to those
corresponding to the p = 3 GMPS solution [17] as reviewed in section 5.1.

Accordingly, using (4.7), the KK graviton mass operator associated to
(5.29) reads [114]

L =− 4

rα2f3
∂r

[
rf3∂r

]
−
√

1 + (1 + r2)α2

f · α �S5

− 4

9

(
1 +

1

r2α2

)
∂2
ψ −

8

3

[2

9

(
1 +

1

r2α2

)
− 1

r2α2f

]
∂ψ∂τ

−
[
−
√

1 + (1 + r2)α2

f · α +
16

81

(
1 +

1

r2α2

)
+

4(1 + r2)

r2α2f2
− 16

9r2α2f

]
∂2
τ .

(5.31)
in terms of the global coordinates (5.18) for p = 3. Here, �S5 is the Laplacian
on the round, unit radius S5. With a graviton perturbation of the form (4.5)
subject to the field equation (4.6), the linearised Einstein equation satisfied
by (5.29) becomes an eigenvalue problem for the mass operator (5.31):

LY = L2M2 Y . (5.32)

with the combination L2M2 being dimensionless.

At this point, we can exploit the SU(3)×U(1)τ ×U(1)ψ isometry of the
metric (5.14) and expand the L–eigenfunction Y as

Y =
∑
`,m,j

ξ`,m,j(r)Y`,m(z, z̄, τ) eijψ . (5.33)

Here, ξ`,m,j(r) is a function of r only and Y`,m(z, z̄, τ) are the S5 spherical
harmonics (with definite U(1)τ charge)

�S5Y`,m = −`(`+ 4)Y`,m , ∂τY`,m = imY`,m . (5.34)

The quantum numbers in (5.33) and (5.34) range as

` = 0, 1, 2, . . . , m = −`,−`+ 2, . . . , `− 2, ` , j = 0, ±1, ±2, . . .
(5.35)

(note that i in (5.33) and (5.34) is the imaginary unit). This quantum
numbers follow the structure set by (5.28) under the usual relation m = 2p−`
and a proper identification of the U(1) charges that will be given in (5.49)
below.
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5.2 Massive KK modes on the GMPS solution

k\ j 0 1 2 3

0 0.00 2.44 5.78 9.99
1 5.92 10.00 14.86 20.54
2 14.94 20.57 26.94 34.11
3 27.03 34.13 42.05 50.71

Table 5.2: KK graviton masses L2M2
k,j,`=0,m=0 on the GMPS background for a few

values of the quantum numbers k and j, at ` = m = 0, as obtained from figure 5.2.
The KK tower with k = 0 corresponds to short gravitons (c.f. (5.51) and below).

The partial differential equation (5.32) thus reduces to the following
Sturm-Liouville problem in ξ`,m,j(r) where, to avoid cluttering, we omit the
quantum number subscripts on ξ:

L2M2ξ =− 4

rα2f3

d

dr

[
rf3dξ

dr

]
+

√
1 + (1 + r2)α2

f · α `(`+ 4)ξ

+
4

9

(
1 +

1

r2α2

)
j2ξ +

8

3

[2

9

(
1 +

1

r2α2

)
− 1

r2α2f

]
jmξ

−
[√1 + (1 + r2)α2

f · α − 16

81

(
1 +

1

r2α2

)
− 4(1 + r2)

r2α2f2
+

16

9r2α2f

]
m2ξ .

(5.36)
The normalisable spin-2 modes correspond to the solutions of this ODE such
that [114, 116] ∫ r0

0
dr rα2f3|ξ|2 <∞ , (5.37)

supplemented with the fall-offs (5.17) with p = 3 for the metric functions.

Numerics

Solving the ODE (5.36) on the GMPS background entails a non-trivial
numerical integration over a numerical background. We have nevertheless
managed to address the complete graviton spectrum. In this section, we set
up our numerics.

We start by conveniently rewriting the ODE (5.36) in terms of the variable
R defined in (5.22), whereby it becomes

ξ̈−
(9

2
R5α2−R−1

)
ξ̇+
(9

4
L2M2R4α2 +Aj2 +B`(`+4)+Cm2 +Djm

)
ξ = 0 .

(5.38)
Here we have defined

A ≡ −
(
R4α2 +R−2

)
,

B ≡ −9

4
R4αf−1

√
1 + (1 +R6)α2 ,
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Figure 5.2: Wronskian W in (5.48) of the numerical functions ξLλ (R) and ξRλ (R) at
R = R0/2 for ` = m = 0 and various values of j. The masses in table 5.2 correspond
to the zeroes of W . The masses lying in short multiplets are marked with red dots
(c.f. (5.51) and below).

C ≡ 9

4
R4αf−1

√
1 + (1 +R6)α2

− 4

9

(
R4α2 +R−2

)
− 9R−2(1 +R6)f−2 + 4R−2f−1 ,

D ≡ −4

3

(
R4α2 +R−2

)
+ 6R−2f−1 . (5.39)

Next, we obtain asymptotic forms of the normalisable solution to (5.38) close
to each endpoint, R = 0 and R = R0, of the domain of R. Near R = 0, the
asymptotic form of (5.38) implied by (5.23) and (5.24) depends on whether
the quantum number j is zero or not. For j 6= 0, the ODE (5.38) close to
R = 0 takes on the form

ξ̈ +
1

R
ξ̇ − j2

R2
ξ = 0 , (5.40)

where the term in the eigenvalue L2M2 drops out as it is subleading. The
ODE (5.40) has solutions

ξ = aRj + bR−j , (5.41)

86



5.2 Massive KK modes on the GMPS solution

��� ��� ��� ��� ��� ���
-�

-�

-�

�

�

�

�

�

(a) j = 0

��� ��� ��� ��� ��� ���

-���

���

���

���

���

(b) j = 1

��� ��� ��� ��� ��� ���

-���

���

���

���

���

���

���

(c) j = 2

��� ��� ��� ��� ��� ���

-���

���

���

���

���

���

(d) j = 3

Figure 5.3: Numerical eigenfunctions for the modes with masses in table 5.2.

with a, b constants. Compatibility with the normalisability condition (5.37)
requires a = 0 for j < 0 and b = 0 for j > 0. When j = 0, (5.38) close to
R = 0 reduces instead to

ξ̈ +
1

R
ξ̇ +

(2c

3
L2M2 − 4c

27
`(`+ 4) +

4c

243
m2
)
ξ = 0 , (5.42)

with the constant c given in (5.25). The solutions of (5.42) are now

ξ = a J0

(√
2c
3 L

2M2 − 4c
27`(`+ 4) + 4c

243m
2R
)

+ b Y0

(√
2c
3 L

2M2 − 4c
27`(`+ 4) + 4c

243m
2R
)
,

(5.43)

with a, b again integration constants and J0 and Y0 Bessel functions. In this
case, normalisability, (5.37), requires b = 0.

Near R = R0, with R0 specified in (5.25), the asymptotic form turns out
to depend on the quantum number `. For ` = 0, (5.38) close to R = R0
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becomes

ξ̈ − 3

R0 −R
ξ̇ +

1

R0(R0 −R)

(
3

2
L2M2 − 2

3
j2

)
ξ = 0 . (5.44)

This has solutions

ξ =
u

R0 −R
I2

√2

3

(4j2 − 9L2M2) (R0 −R)

R0



+
v

R0 −R
K2

√2

3

(4j2 − 9L2M2) (R0 −R)

R0

 ,

(5.45)

where u, v are constants and I2 and K2 modified Bessel functions. If ` 6= 0,
then (5.38) close to R = R0 can be approximated to

ξ̈ − 3

R0 −R
ξ̇ − 1

4(R0 −R)2
`(`+ 4)ξ = 0 , (5.46)

which has solutions

ξ = u(R0 −R)`/2 + v(R0 −R)−(`+4)/2 . (5.47)

In this case, normalisability requires v = 0 in both (5.45) and (5.47).

Now, the above asymptotic functions near R = 0 and R = R0 can be
used as seeds for the numerical integration of the ODE (5.38). Following
[116], we have performed the integration starting from both ends of the R
interval, in terms of a parameter λ that labels the possible dimensionless
squared masses. Denoting the functions obtained, for each λ, by integrating
from the left and from the right as ξLλ (R) and ξRλ (R), the valid solutions to
(5.38) can only arise for the specific values of λ for which both ξLλ (R) and
ξRλ (R) are linearly dependent. This requires that the Wronskian,

W (λ,R) = ξLλ (R) ξ̇Rλ (R)− ξRλ (R) ξ̇Lλ (R) , (5.48)

vanishes for all R in its range. We choose, without loss of generality, to
evaluate (5.48) at the midpoint of the interval in order to minimise the
accumulated numerical error of each solution, ξLλ (R) and ξRλ (R). Plotting
W (λ, R0

2 ) as a function of λ at fixed value of the quantum numbers j, ` and
m, the physical masses occur at the zeros of this function: see for example
figure 5.2 for the ` = m = 0 case. The zeroes turn out to form an infinite
discrete set, which we label by a non-negative integer k = 0, 1, 2, . . . (the first
zero corresponding to k = 0). We have tabulated a few results in table 5.2.
Finally, the eigenfunctions can be plotted numerically: see figure 5.3 for a
few examples.
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n [p, `− p] 4
9

(2p−`)+ 2
3

(n−`−2t) dp, `−p L2M2
n,`,t,p ∆n,`,t,p Dual operator Short?

0 [0, 0]0 1 0 3 T (0)
αβ |s=2 X

1
[0, 0]± 2

3
1 22

9
11
3 T (0)

αβ Z4|s=2, c.c. X

[1, 0] 4
9
, [0, 1]− 4

9
3 1.76 3.50 T (0)

αβ Za|s=2, c.c.

2

[0, 0]± 4
3

1 52
9

13
3 T (0)

αβ (Z4)2|s=2, c.c. X

[1, 0]− 2
9
, [0, 1] 2

9
3 4.68 4.13 T (0)

αβ ZaZ̄4|s=2, c.c.

[2, 0] 8
9
, [0, 2]− 8

9
6 3.88 3.97 T (0)

αβ Z(aZb)|s=2, c.c.

[1, 0] 10
9
, [0, 1]− 10

9
3 5.07 4.21 T (0)

αβ ZaZ4|s=2 , c.c.

[0, 0]0 1 5.92 4.36 T (0)
αβ (1− 4a2Z4Z̄4 + bZaZ̄a)|s=2

[1, 1]0 8 4 4 T (0)
αβ (ZaZ̄b − 1

3δ
a
bZcZ̄c)|s=2

3

[0, 0]±2 1 10 5 T (0)
αβ (Z4)3|s=2, c.c. X

[1, 0]− 8
9
, [0, 1] 8

9
3 8.48 4.77 T (0)

αβ Za(Z̄4)2|s=2, c.c

[2, 0] 2
9
, [0, 2]− 2

9
6 7.27 4.59 T (0)

αβ Z(aZb)(Z̄4)|s=2, c.c.

[3, 0] 4
3
, [0, 3]− 4

3
10 6.36 4.43 T (0)

αβ Z(aZbZc)|s=2, c.c.

[0, 0]± 2
3

1 10.00 5.00 T (0)
αβ (2− 5a2Z4Z̄4 + bZcZ̄c)Z4|s=2, c.c.

[1, 0] 16
9
, [0, 1]− 16

6
3 9.28 4.90 T (0)

αβ Za(Z4)2|s=2, c.c.

[1, 0] 4
9
, [0, 1]− 4

9
3 9.08 4.87 T (0)

αβ Za(1− 5a2Z4Z̄4 + bZcZ̄c)|s=2, c.c.

[1, 1]± 2
3

8 70
9

14
3 T (0)

αβ (ZaZ̄b − 1
3δ
a
bZcZ̄c)Z4|s=2, c.c.

[2, 0] 14
9
, [0, 2]− 14

9
6 8.02 4.70 T (0)

αβ Z(aZb)Z4|s=2, c.c

[2, 1] 4
9
, [1, 2]− 4

9
15 6.60 4.48 T (0)

αβ (Z(aZb)Z̄c − δ(a
c Zb)ZdZ̄d)|s=2, c.c.

Table 5.3: The complete KK graviton spectrum on the GMPS solution up to KK
level n = 3. For each state, the SU(3)× U(1)3 representation where it belongs is
shown, along with its degeneracy dp, `−p, mass L2M2

n,`,t,p, and conformal dimension

∆n,`,t,p. The schematic form of the dual operator is shown, with T (0)
αβ denoting

the IR SCFT stress-energy operator. Masses that correspond to short multiplets
(ticked in the last column) and shadow long multiplets have been given analytically
in (5.51) and (5.62), respectively.

Repeating this process for other values of the quantum numbers j, ` and
m, we are guaranteed to sweep over the complete KK graviton spectrum by
the arguments in section 5.2.1. Group theory arguments also allow us to
translate between the set of quantum numbers (k, j, `,m), with the quantum
numbers (n, `, p, t) adapted to the branching (5.28):

n = 2k + |j|+ ` , m = 2p− ` , j = n− `− 2t , (5.49)

Finally, it can be checked that the quantum numbers (n, `, p, t) that charac-
terise the KK graviton spectrum range as

n = 0, 1, . . . , ` = 0, 1, . . . , n , t = 0, 1, . . . , n−` , p = 0, 1, . . . , ` ,
(5.50)

in agreement with the branching (5.28). The eigenfunctions, and thus the
schematic form of the dual operators, can be similarly inferred from the
branching (5.28). Table 5.3 summarises our results up to SO(8) KK level
n = 3.
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Analytic results: short and shadow gravitons

In the previous section, we arranged the GMPS graviton spectrum in repre-
sentations of the SU(3)×U(1)3 residual bosonic symmetry of the background.
This geometry also preserves N = 2 supersymmetry, so the graviton spectrum
must organise itself into representations of the full (super)symmetry group
OSp(2|4)× SU(3) (with the U(1)3 R-symmetry contained in the OSp(2|4)
factor). Recall that there are three types of OSp(2|4) multiplets that contain
states up to spin s = 2: massless, short and long. See e.g. tables 8, 9 and 10
of [82] for a summary of their state contents.

From table 5.3 we see that we obtain, as expected, a massless graviton
which is an SU(3) × U(1)3 singlet. In addition to the D = 4 metric and
gravitini, the N = 2 massless graviton multiplet contains a vector. A fully
non-linear consistent truncation on GMPS [B] (and on CPW [A, B]) beyond
the linearised analysis presented here exists to this D = 4 field content. This
is in agreement with the general statements of [32, 44].

Inspection of our numerical results also allows us to detect analytically a
tower of short gravitons. We indeed observe that, for every n, our numerical
eigenvalues for the states with SU(3)×U(1)3 quantum numbers [0, 0]±R2n,
with R2 given by the R-charge of Z4 in (5.8), are very well approximated by
the analytic expression

L2M2
n = R2n

(
R2n+ 3

)
. (5.51)

These states are thus short, since their conformal dimensions

∆n = R2n+ 3 , (5.52)

which arise from (5.51) as the larger solution to the equation

∆(∆− 3) = M2L2 , (5.53)

are locked in terms of their R-symmetry charges

Rn = ±R2n (5.54)

through the relation

∆n = |Rn|+ 3 . (5.55)

For these states, the numerically obtained value of the masses has been
replaced in table 5.3 with the analytic value (5.51).

From the branching (5.28), the short graviton multiplets can be seen
to correspond to bound states of the energy-momentum superfield and the
operator Z4 that is integrated out in the IR. Schematically,

T (0)

αβ

(
Z4
)n
, n = 0, 1, 2, . . . , (5.56)
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Figure 5.4: Comparison between the numerical result for the k = ` = m = 0
wavefunctions with j = 1, 2, 3, corresponding to short states, and the expected
analytical result: the modulus of (5.57) with (5.59).

where n = 0 corresponds to the massless graviton. Curiously, for the
CPW geometry, the operators (5.56) are also short [93]. Their physical
properties remain as in (5.51)–(5.55) with R2 still given by the R-charge
of Z4, which now takes on the value (5.7). The group theory result (5.56)
is in agreement with our numerics, and in fact allows us to obtain the
corresponding eigenfunctions analytically. The eigenfunction of (5.32) with
(5.31), dual to the operator (5.56), is given by

Yj = (ξ1)jeijψ , (5.57)

in terms of ξ1(r), which is the r-dependent function ξ`,m,j(r) in (5.33) with
j = 1, ` = m = 0 and k = 0 so that n = 1 via (5.49). The subscript in ξ1(r)
refers to the fact that this function corresponds to an SU(3) singlet: the
SU(3) singlet at KK level n = 1 in table 5.3. Inserting the eigenfunction
ξ1(r) and its analytic eigenvalue (5.51) into (5.36) with the above choice of
quantum numbers, the ODE (5.36) reduces to

(ξ′1)2 =
1

9r2
ξ2

1 . (5.58)

This equation can be analytically solved as

ξ1 = r1/3 ≡ R , (5.59)

in exact agreement with our numerical integration, see figure 5.4. A similar
analysis for CPW leads to ξ1 = r1/2.

Our numerics strongly suggest that all other gravitons belong to long
multiplets, with masses M2L2 leading to conformal dimensions ∆ through
(5.53) that are above the bound (5.55), ∆ > |R|+ 3. Group theory allows us
to determine the structure of the dual operators as reported in table 5.3, but
in general we can only access the mass eigenvalues numerically. There is an
exception: for a certain series of long gravitons starting at SO(8) KK level
n = 2, we can determine the masses analytically and relate the corresponding
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Figure 5.5: (a): Wronskian at R = R0/2 of the functions ξLλ (R) and ξRλ (R)
corresponding to shadow solutions with ` = 2, m = j = 0. A blue dot signals the
expected mass of a shadow octet state. (b): Wavefunction ξ8(R) for the lightest
shadow mode with ` = 2, m = j = 0. The agreement of the numerical result ξ8 with
the background function af is excellent, with the proportionality constant a fixed
to a = 2/9.

eigenfunctions to precise metric functions. These modes have SU(3)×U(1)3

charges [1, 1]±R2(n−2), with R2 again given in (5.8), and are dual to operators
of the schematic form

T (0)

αβ

(
ZAZ̄B − 1

3δ
A
BZCZ̄C

)
(Z4)n−2 , n = 2, 3, . . . (5.60)

In [93] it was observed that the analogue tower of modes for CPW has
dimensions

∆n = (n− 2)R2 + 4 (5.61)

(with R2 accordingly given in (5.7) above). The authors of [93] suggested
that this apparent protection of the conformal dimensions in terms of the
R-charges for these modes occurs, despite being long, because they are
shadows [155] of the massless vector at KK level n = 0, which lies in the 80

of SU(3)×U(1)2.
Our numerical routine finds a massive KK graviton over GMPS with

quantum numbers ` = 2, k = j = m = 0 and mass that can be very well
approximated by the analytic value L2M2 = 4. In terms of the quantum
numbers (5.50) associated to the branching (5.28), this state is attained
at KK level n = 2 with quantum numbers ` = 2, p = 1, t = 0. From
(5.53), the conformal dimension of this state is ∆ = 4, which agrees with
(5.61) for n = 2. This suggests that this state lies at the bottom of a tower
of shadow gravitons with dual operators (5.60) and conformal dimensions
(5.61), exactly as for CPW but now with R2 given by (5.8). The numerical
integration confirms this expectation. We do find numerically a tower of
masses that can be very well approximated by the analytic expression

L2M2
n =

(
(n− 2)R2 + 4

)(
(n− 2)R2 + 1

)
, n = 2, 3, . . . (5.62)
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5.3 Geometry and spectrum

with R2 as in (5.8). These masses indeed correspond to the conformal
dimension (5.61) through (5.53).

For these shadow gravitons we can also relate their eigenfunctions to
a precise metric function. The eigenfunctions (5.33) corresponding to this
tower of states can be written as

Yj = ξ8 r
j/3 Y2,0 e

ijψ , j = 0, 1, . . . , (5.63)

where ξ8(r) is the r-dependent part of the eigenfunction of the lightest state
in the tower, with ` = 2, k = j = m = 0. The subscript in ξ8(r) refers to
the fact this function corresponds to an SU(3) octet: the SU(3) octet, [1, 1],
at KK level n = 2 in table 5.3. In (5.63) we have assumed that the (Z4)j

contributions in (5.60) amount to factors of (r1/3eiψ)j in the eigenfunction
by virtue of (5.57), (5.59). The function ξ8 satisfies the ODE (5.36) for all j
and with the other quantum numbers suitably fixed, with mass eigenvalue
(5.62) with n there related to j and ` = 2 through (5.49). This discrete,
j-dependent set of ODEs can be shown to be equivalent to the following set
of two ODEs:

ξ8 +
2

rα2
ξ′8 = 0 , ξ8−

3
√

1 + (1 + r2)α2

f · α ξ8 +
1

rα2f3

(
rf3ξ′8

)′
= 0 . (5.64)

Now, the first ODE in (5.64) is the same as the first of the ODEs in (5.16)
that characterise the background geometry. We thus conclude that ξ8 is
proportional to the metric function f . Having used this proportionality, it
can then be shown that the second ODE in (5.64) can be deduced from (5.16).
The complete set of eigenfunctions for the tower of long shadow multiplets
is thus given by (5.63) with ξ8 ∝ f . See figure 5.5. We have verified that
ξ8 ∝ f also holds for the CPW case, with f now given analytically in (5.20).

5.3 Geometry and spectrum

For all other long gravitons on the GMPS background, we do not have an
argument to fix analytically their mass eigenvalues from our numerical results.
Still, for the triplet, [1, 0]R1 , of long gravitons at KK level n = 1 we may
ask whether the corresponding eigenfunction is ξ3 ∝

√
f . This suspicion is

based on the previous observation that ξ8 ∝ f , and that the radial part of
the octet eigenfunction should be quadratically related to that of the triplet,
in agreement with the group theory branching (5.28). Figure 5.6 shows that
this is indeed the correct picture, as our numerically integrated ξ3 perfectly
matches

√
f up to a numerical constant. Using the analytic expression (5.20),

it is straightforward to check that ξ3 ∝
√
f also holds for the CPW solution.

It is also easy to verify for the CPW solution that the triplet, ξ3, and
singlet, ξ1, radial eigenfunctions at KK level n = 1 are related through the
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Figure 5.6: The radial wavefunction ξ3(R) of the triplet of long gravitons at
KK level n = 1. The numerically integrated result is matched by

√
f up to a

proportionality constant a = 2/9, but not by the expression that would be expected
if the S7 constraint (5.65) held.

quadratic constraint that realises S7 as a geometric locus in R8:

Z̄CZ
C + Z̄4Z

4 = 1 . (5.65)

Somewhat surprisingly, this relation does not hold for GMPS, as we will now
show building on our results from section 5.2. To see this, let us assume
(5.65) and reach a contradiction. Equation (5.65) implies

ξ3 ∝
√

1− ξ2
1 (5.66)

by identifying the modulus of Z4 with ξ1 and that of ZC with ξ3. Using
ξ1 = (r/r0)1/3 as follows from a constant rescaling of (5.59), ξ3 ∝

√
f as

verified in figure 5.6, and ξ8 ∝ ξ2
3 ∝ f as shown in figure 5.5, we conclude

from (5.66) that

ξ8 ∝ 1−
( r
r0

)2/3
(5.67)

for the octet at level n = 2. Using (5.64), we finally manage to obtain the
following explicit expression for the α metric function:

α2 =
4

3r2
[(

r
r0

)−2/3 − 1
] . (5.68)

Remarkably, this expression obeys the correct asymptotics (5.17). Unfortu-
nately, the function α in (5.68) does not satisfy the second ODE in (5.16) for
any value of r0 and thus cannot be the correct GMPS metric function. In
contrast, for CPW the same logic starting from (5.65) allows one to recover
the correct α in (5.20). The failure of the argument for GMPS leads us to
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5.3 Geometry and spectrum

abandon the hypothesis that (5.65) should hold in the latter case. Equa-
tions (5.66)–(5.68) for GMPS are false, as must be the original assumption
(5.65). Indeed, figure 5.6 manifestly shows that (5.66) as derived from the
S7 contraint (5.65) does not reproduce our numerical result for ξ3.

From this discussion, we infer that the GMPS geometry is defined on a
topological S7 that, however, fails to satisfy the relation (5.65) and thus is
not embedded isometrically in R8. Another example of an AdS4×S7 solution
for which (5.65) does not hold is provided by the squashed S7 of [154].
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Chapter 6

Spectra from maximal
truncations

When the solutions of string theory that serve as background for the KK
perturbations can be obtained from the uplift of a maximal gauged super-
gravity, new methods based on duality have been very recently put forward.
In this chapter, we first discuss in the lines of [C] how the embedding tensor
formalism and the truncation ansätze for maximal gauged supergravities in
chapter 3 can be used to turn the differential equation (4.7) relevant for the
spin-2 sector into an SL(8,R)-covariant algebraic problem.

The full higher-dimensional supergravities can in fact be reformulated in a
manifestly duality-covariant way at the cost of breaking Lorentz symmetry in
higher dimensions. This reformulation is known as Exceptional Field Theory
(ExFT). For lower spins, ExFT proves fundamental, and we review its basics
and application to consistent truncations and spectroscopy in section 6.2,
following [E].

6.1 Spin-2 spectrum from SL(8,R) matrices

We would like to determine the KK graviton mass matrix corresponding to
string/M-theory AdS4 solutions that uplift from the SL(8,R) gaugings in
figure 3.1. In [143], an SO(7)-covariant mass matrix was derived for KK
gravitons about solutions that uplift from the ISO(7) gauging. Here, we
extend those results into a mass matrix that is formally SL(8,R) covariant, in
agreement with the covariance that the gauged supergravitites take on using
the embedding tensor formalism [69] particularised to gaugings contained in
SL(8,R) ⊂ E7(7).

As discussed before, the KK graviton spectrum can be computed by
considering a perturbed metric of the form in (4.4), with the perturbation
factorising as in (4.5) into a transverse traceless part which only depends on
the external coordinates and satisfies the Fierz-Pauli equation (4.6), and a
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Part II Chapter 6 – Spectra from maximal truncations

function Y(y) on the internal space. In all previously studied cases where the
solution uplifts from a gauging within SL(8,R), these functions are symmetric
polynomials

YA1...Am = µ(A1 . . . µAm) , m = 0, 1, 2, . . . , (6.1)

of the R8 coordinates µA, A = 1, . . . , 8. The latter are formally in the
fundamental of SL(8,R) and constrained as

θAB µ
AµB = 1 , (6.2)

with θAB = δAB for the SO(8) gauging, θAB = diag(17, 0) for ISO(7), and
θAB = diag(16, 0, 0) for the

[
SO(6) × SO(1, 1)

]
n R12 gauging. Strictly

speaking, the eigenfunctions (6.1) appearing in these gaugings are traceless
with respect to these SO(n)-invariant metrics, but it is often convenient to
retain the traces during the computation.

The KK graviton mass equation (4.7) can be written as a differential
operator in the µA coordinates by means of the truncation ansätze given
in [26, 30, 156]. In all these cases, the internal metric is related to gauged
supergravity data via (c.f. (3.111))

4 g−2 ḡmn =MMNΘM
A
B ΘN

C
DK

m
A
BKn

C
D , (6.3)

with the vectors Km
A
B∂m = −µB∂µA related to the Killing vectors of the

round spheres by

Km
AB = 2Km

[A
CθB]C , KmAB = 2Km

C
[AξB]C , (6.4)

in terms of the components of the embedding tensor in (3.40)

Θ[AB]
C
D = 2 δC [AθB]D , Θ[AB]C

D = 2 δD
[AξB]C , (6.5)

for gaugings within SL(8,R).1 For the specific cases considered here, the
choices for θ and ξ are given in (3.44)-(3.46).

Then, the operator in (4.7) can be transformed as

LY = −g
2

4
MMNΘM

A
B ΘN

C
D

1√
g̊
∂m
[√

g̊Km
A
BKn

C
D∂nY

]
= −g

2

4
MMNΘM

A
B ΘN

C
DK

m
A
B∂m

(
Kn

C
D∂nY

)
,

(6.6)

upon using Killing equation. When (6.6) acts on the harmonics (6.1), the
PDE (4.7) simplifies into an algebraic eigenvalue problem by reading off an
infinite-dimensional block-diagonal mass matrix,

M2 = diag
(
M2

(0),M
2
(1),M

2
(2), . . . ,M

2
(m), . . .

)
, (6.7)

1In (6.4), the geometric Killing vectors are understood to have their indices appropriately
restricted. For instance, in the S6 case, KAB = {KIJ , 0} with I, J = 1, . . . , 7, and for the
S5 × S1, KAB = {Kij , 0} and KAB = {0,K78} with i, j = 1, . . . , 6.
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6.1 Spin-2 spectrum from SL(8,R) matrices

labelled by an SL(8,R) Kaluza-Klein level m. Each block in this decomposi-
tion is a square matrix of size

dimM2
(m) ≡ [m, 0, 0, 0, 0, 0, 0]SL(8) =

(
m+ 7

m

)
. (6.8)

They are given explicitly by the following expressions. For m = 0, expectedly,

M2
(0) = 0 . (6.9)

For m = 1,
(M2

(1))A
B = −g2MMN ΘM

B
C ΘN

C
A , (6.10)

for m = 2,

(M2
(2))

B1B2
A1A2

= −2g2MMN
[
ΘM

(B1|
C ΘN

C
(A1

δA2)
|B2)+ΘM

(B1
(A1

ΘN
B2)

A2)

]
,

(6.11)
and for m ≥ 3,

(M2
(m))A1...Am

B1...Bm = −mg2MMN
[
ΘM

(B1|
C ΘN

C
(A1

δA2
|B2 . . . δAm)

|Bm)

+ (m− 1)ΘM
(B1

(A1
ΘN

B2
A2δA3

B3 . . . δAm)
Bm)
]
.

(6.12)
Like the bosonic mass matrices of D = 4 N = 8 gauged supergravity (c.f.
section 4.4 of [64]), the KK graviton mass matrices (6.9)-(6.12) are quadratic
in the D = 4 embedding tensor and depend on the E7(7)/SU(8) (inverse)

scalar matrix MMN .
Since we have refrained ourselves from removing traces on same-level in-

dices of the KK graviton mass matrices (6.9)–(6.12), the latter are manifestly
SL(8,R)-covariant. Proceeding like this, though, the price one pays is that
every fixed SL(8,R) KK level m ≥ 2 contains repeated physical modes. For
instance, for the SO(8) gauging the spectrum at SL(8,R) level m includes
modes of all SO(8) KK levels n = m− 2s according to

[m, 0, 0, 0, 0, 0, 0]
SO(8)−→

[m2 ]∑
s=0

[m− 2s, 0, 0, 0] . (6.13)

For the other gaugings, there is an even larger overcounting. In the ISO(7)
case, every SL(8,R) level m ≥ 0 formally contains the SO(8) levels n specified
in (6.13), and each of these, in turn, includes all SO(7) levels k = 0, 1, . . . , n
following

[n, 0, 0, 0]
SO(7)v−→

n∑
k=0

[k, 0, 0] , (6.14)

and similarly for the [SO(6)× SO(1, 1)] nR12 gauging by branching SO(8)
representations into SO(6)×SO(2), see appendix E for details. The repeated
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states can be projected out unambiguously leaving only physical modes by
computing these levels subsequently, e.g. in (6.13)

[m, 0, 0, 0] = [m, 0, 0, 0, 0, 0, 0]	 [m− 2, 0, 0, 0, 0, 0, 0] . (6.15)

We also remark that it is the full embedding tensor for the dyonic gaugings,
including the magnetic contributions from ξAB, that enters (6.9)-(6.12) for
these gaugings.

The eigenvalues of the mass matrices (6.9)-(6.12) corresponding to the
critical points in the SU(3) sector of the gaugings in figure 3.1 have been
checked to reproduce the spectra obtained by directly solving the eigen-
value equation (4.7) in each case. This was only possible because of the
availability and relative simplicity of the higher-dimensional solutions in,
e.g. (3.147)-(3.154). There are other cases where solutions of the D = 4
gauged supergravity are known but their fully-fledged uplift has not been
constructed. Despite the existence of the higher-dimensional solution by the
consistency of the truncations, the lack of explicit expressions prevents the
computation of the spin-2 spectra using (4.7) directly. Nonetheless, the mass
formulae (6.9)-(6.12) can still be used in these cases, and the results can be
checked to be compatible with the symmetry of the solutions.

6.2 ExFT spectroscopy

In general, the computation of the masses of KK modes with spin less than
2 is a much harder problem, as they do not decouple from the background
fluxes and mix with one another. Lacking a relatively simple formula like
(4.7), it would be desirable to have mass matrices similar to (6.9)-(6.12)
that applied to other solutions apart from the ones of coset type. Again,
such matrices exist when the higher-dimensional solutions are uplifted from
lower-dimensional maximal supergravities, and their use goes beyond the
cases where these solutions have been explicitly constructed.

The construction of these matrices relies on the language of Excep-
tional Field Theory to describe consistent truncations via generalised Scherk-
Schwarz factorisations, which we now turn to succinctly discuss. Then, we
will describe in detail how to address spectroscopy in this framework. The
discussion in sections 6.2.1 and 6.2.2 mainly borrows from [125] and [28, 132]
respectively. We have included them here to set the notation and introduce
the concepts relevant for section 6.2.3.

6.2.1 Fundamentals of Exceptional Field Theory

We have seen in section 3.1 that the global symmetry group of the maximal
ungauged supergravity organises the different gaugings that the theory allows
by means of the embedding tensor. The full matter content and action of
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6.2 ExFT spectroscopy

D = 4 N = 8 supergravity can also be given in a manifestly duality-covariant
manner by means of the tensor hierarchy. Subsequently, in section 3.2, we
have shown that this tensor hierarchy proves instrumental to provide explicit
oxidation formulae for the SO(8)-gauged theory into eleven-dimensional
supergravity.

One does not need to stop there, but can reformulate the entire D = 11
and type II supergravities in a duality-covariant fashion, and not only the
lower-dimensional truncations thereof. These reformulations, known as
Generalised Geometry [45–54, 56] and Exceptional Field Theory [123–130]
(see also [131] for a review), have provided much insight in the understanding
of string unification.

We are interested here in the E7(7)-covariant formulation of M-theory,
massive type IIA and type IIB supergravities based on a 4+56-dimensional
generalised spacetime. The fields in this ExFT, are the following bosons

{eµa, MM̂N̂ , A
M̂
µ , Bµν α̂, Bµν M̂} , (6.16)

and fermions
{ψµi, χijk} . (6.17)

This set of fields is very similar to the tensor hierarchy found in (3.47)
for maximal D = 4 supergravity, with all bosons (fermions) carrying E7(7)

(SU(8)) indices and MM̂N̂ = (VVT )M̂N̂ an E7(7)/SU(8) coset representative.
However, in ExFT all of them depend on both external xµ, µ = 0, . . . , 3, and

internal coordinates Y M̂ , the latter also in the fundamental of E7(7).
The theory is constructed to be invariant under both local internal

E7(7) and external GL(4,R) transformations which, similar to the toroidal
reduction of the invitation, combine the group of diffeomorphisms and
gauge transformations of the different differential forms in the D = 10, 11
supergravities. The internal transformations act through a generalised Lie
derivative that, on a generalised vector in the 56λ of R+ × E7(7), is given by

LΛV
M̂ = ΛK̂∂K̂V

M̂ − 12PM̂ N̂
K̂
L̂ ∂K̂ ΛL̂ V N̂ + λ ∂K̂ΛK̂ V M̂ , (6.18)

with ΛK̂(x, Y ) an E7(7) gauge parameter local in all 60 coordinates, and

PM̂ N̂
K̂
L̂ the projector onto the adjoint representation of E7(7)

PM̂ N̂
K̂
L̂ = (tα̂)N̂

M̂ (tα̂)L̂
K̂

= 1
24δ

M̂
N̂
δK̂
L̂

+ 1
12δ

M̂
L̂
δK̂
N̂

+ (tα̂)N̂L̂ (tα̂)M̂K̂ − 1
24ΩN̂L̂ΩM̂K̂ ,

(6.19)

with the adjoint index α̂ = 1, . . . , 133 raised and lowered with the Cartan-
Killing metric. Similarly, on a tensor Wα̂ in the 133λ, the generalised Lie
derivative is given by

LΛWα̂ = ΛK̂∂K̂Wα̂ − 12 fα̂β̂
γ̂(tβ̂)L̂

K̂ ∂K̂ ΛL̂Wγ̂ + λ ∂K̂ΛK̂Wα̂ , (6.20)
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with fα̂β̂
γ̂ the E7(7) structure constants. These definitions guarantee that

fα̂β̂
γ̂ , (tα̂)M̂

N̂ and ΩM̂N̂ are invariant tensors of weight zero under internal
gauge transformations. The derivatives just introduced define a consistent
gauge algebra only when the coordinate dependence of the fields and gauge
parameters on the internal coordinates is restricted by the section conditions

(tα̂)M̂N̂∂M̂ ⊗ ∂N̂ = 0 , ΩM̂N̂∂M̂ ⊗ ∂N̂ = 0 , (6.21)

acting in any order on any fields or gauge parameters. The two-form Bµν M̂
also needs to be covariantly constrained and compatible with the derivatives
∂M̂ through similar conditions. Finally, the external gauge transformations
take the form of covariantised diffeomorphisms with additional compensating
field-dependent transformations.

The fields in (6.16) and (6.17) carry the following weights under R+

eµ
a MM̂N̂ AM̂

µ Bµν α̂ Bµν M̂ ψµ
i χijk

λ 1
2 0 1

2 1 1
2

1
4 −1

4 .
(6.22)

Requiring invariance under internal and external gauge transformations

given by ΛM̂ (x, Y ) and ξµ(x, Y ) completely fixes the dynamics, which can
be encoded into a twisted self-duality condition analogous to (3.9)

FM̂
µν = −1

2
e εµνρσ ΩM̂N̂ MN̂K̂ FρσK̂ , (6.23)

and an action

S =

∫
d4x d56Y e

(
R̂+ 1

48g
µνDµMM̂N̂DνMM̂N̂

− 1
8MM̂N̂F

µνM̂Fµν
N̂ − V

(
MM̂N̂ , gµν

))
+ Ltop .

(6.24)
Here, the covariant derivatives are given by

Dµ = ∂µ − LAµ , (6.25)

and the vector field strengths involve Stückelberg couplings to the two-forms
Bµν α̂, Bµν M̂ . These forms also appear in the topological term. Given

that the vierbein is an E7(7) scalar of weight 1
2 , the Einstein-Hilbert term

is built out of a covariantised Riemann tensor which also includes a non-
minimal coupling to the vectors that assures covariance under local Lorentz
transformations. See section 3 of [125] for further details.

The section constraints (6.21) admit two inequivalent solutions involving
a maximal subgroups of E7(7). The first one, relevant for M-theory, decom-
poses the ExFT fields under GL(7,R) and only keeps dependence under the
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coordinates ym in

E7(7) ⊃ GL(7,R)

56 → 7+3 ⊕ 21′
+1 ⊕ 21−1 ⊕ 7′

−3 ,

YM → {ym, ymn, ymn, ym} .

(6.26)

This decomposition is analogous to the one in section 3.2.1 and provides a
bridge between the fields in ExFT and eleven-dimensional supergravity.

The other inequivalent solution of the section constraints relies on the
decomposition of E7(7) under GL(6,R)× SL(2,R). In this case,

E7(7) ⊃ GL(6,R)× SL(2,R)

56 → (6,1)+2 ⊕ (6′,2)+1 ⊕ (20,1)0 ⊕ (6,2)−1 ⊕ (6′,1)−2 ,

YM → {ym, yma, ymnp, yma, ym} ,
(6.27)

and only the dependence on the six ym is allowed for the fields. This
decomposition describes the embedding of the full type IIB supergravity
in ten dimensions, with GL(6,R) understood as a subgroup of the ten-
dimensional diffeomorphisms, and SL(2,R) being the S-duality group.

Let us finally note that to account for type IIA supergravity with a
non-vanishing Romans mass, the generalised Lie derivatives (6.18) and (6.20)
must be deformed by an extra non-derivative term [129], which induces
further constraints onto (6.21).

6.2.2 Generalised Scherk-Schwarz ansätze

The consistent truncations of the eleven-dimensional and type II theories
down to D = 4 maximal gauged supergravities can be described in terms of
a generalised Scherk-Schwarz ansatz generalising (6.3). The dependence on
external and internal coordinates is taken to factorise, with the former carried
by the D = 4 fields and the later by an E7(7) twist matrix UM̂

N (Y ) and a

scale factor ρ(Y ) [55, 132]. The indices M̂, N̂ = 1, . . . , 56 are understood as
local E7(7) indices, with group transformations acting through the generalised
Lie derivative (6.18). On the other hand, the indices M,N = 1, . . . , 56 are
the global E7(7) indices of the lower dimensional supergravity appearing in
chapter 3.

The precise factorisation for most of the fields is given by their index
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structure and the R+ weights in (6.22)

gµν(x, Y ) = ρ(Y )−2gµν(x) ,

MM̂N̂ (x, Y ) = UM̂
M (Y )UN̂

N (Y )MMN (x) ,

AM̂
µ (x, Y ) = ρ(Y )−1(U−1)N

M̂ (Y )ANµ (x) ,

Bµν α̂(x, Y ) = ρ(Y )−2Uα̂
β(Y )Bµν β(x) ,

(6.28)

and2

ψµ
i(x, Y ) = ρ−

1
2 (Y )ψµ

i(x) , χijk(x, Y ) = ρ
1
2 (Y )χijk(x) . (6.29)

The only exception is the covariantly constrained two-form, whose reduction
is given by

Bµν M̂ (x, Y ) = −2ρ(Y )−2(U−1)S
P̂ (Y )∂M̂UP̂

R(Y )(tα)R
SBµν α(x) . (6.30)

The factorisations in (6.28)-(6.30) define consistent truncations if, when
inserted in (6.23) and (6.24), the dependence on Y completely factorises.
This is the case provided that the scale factor and twist matrix satisfy the
consistency conditions [132]

[(U−1)M
P̂ (U−1)N

Q̂∂P̂UQ̂
K ]912 = ρXMN

K ,

∂N̂ (U−1)M
N̂ − 3ρ−1(∂N̂ρ)(U−1)M

N̂ = 0 ,

(6.31)

with XMN
K a constant tensor in the 912 of E7(7) playing the rôle of the

embedding tensor of the D = 4 gauged supergravity.3 These conditions can
be nicely expressed as a generalised parallelisability condition [55]

LUMUN = XMN
PUP , (6.32)

in terms of the generalised Lie derivative acting on the generalised vectors
UM = ρ−1(U−1)M of weight 1

2 .

Different consistent truncations are associated to different expressions for
the scale factor and twist matrix in the Scherk-Schwarz factorisation. See
e.g. [27, 28, 132].

2Different to the case in section 3.2.1, we fix a gauge in which the SU(8) transformations
of the (4+56)-dimensional and 4-dimensional spinors coincide

3This can be generalised to include trombone gaugings, but we will take these compo-
nents of the embedding tensor to be absent in line with footnote 2 of chapter 3.
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6.2.3 KK mass matrices

Given a background of eleven-dimensional or type II supergravity specified
by a Scherk-Schwarz ansatz (6.28) and (6.29) and a set of D = 4 fields

{gµν , MMN , ANµ , Bµν α, , ψµi , χijk} = {ḡµν , ∆MN , 0, 0, 0, 0} , (6.33)

its associated Kaluza-Klein spectrum can be obtained by making the ExFT
fields depend on the linearised perturbations as an extension to the Scherk-
Schwarz ansatz [133, 134, 137]

gµν(x, y) = ρ(y)−2
(
ḡµν + hµν(x, y)

)
,

MM̂N̂ (x, y) = UM̂
M (y)UN̂

N (y)
(
∆MN + jMN (x, y)

)
,

AM̂
µ (x, y) = ρ(y)−1(U−1)N

M̂ (y) aNµ (x, y) ,

Bµν α̂(x, y) = ρ(y)−2Uα̂
β(y) bµν β(x, y) ,

Bµν M̂ (x, y) = −2ρ(y)−2(U−1)S
P̂ (y) ∂M̂UP̂

R(y)(tα)R
S bµν α(x, y) ,

(6.34)

and [136]

ψµ
i(x, y) = ρ−

1
2 (y) ψ̃µ

i(x, y) , χijk(x, y) = ρ
1
2 (y) χ̃ijk(x, y) , (6.35)

with the bosonic hµν(x, y), jM̄N̄ (x, y), aNµ (x, y), bµν α(x, y), bµν α(x, y), and

fermionic ψ̃µ
i(x, y), χ̃ijk(x, y) fields understood as small perturbations. These

linear perturbations have a natural tower structure when expanded in terms
of the harmonics of the background solution. In fact, the expansion only
requires the harmonics corresponding to the maximally symmetric case, and
the perturbations become simply

hµν(x, y) = hµν
Λ(x)YΛ(y) , jM̄N̄ (x, y) = jM̄N̄

Λ(x)YΛ(y) ,

aNµ (x, y) = aNµ
Λ(x)YΛ(y) , bµν α(x, y) = bµν α

Λ(x)YΛ(y) ,

ψ̃µ
i(x, y) = ψ̃µ

iΛ(x)YΛ(y) , χ̃ijk(x, y) = χ̃ijkΛ(x)YΛ(y) ,

(6.36)

where Λ denotes Kaluza-Klein indices in the tower of symmetric traceless
representations of the maximal isometry group the corresponding sphere.
For the present cases, the index Λ runs over the infinite towers formed by
the symmetric-traceless representations

S7 of M-theory :
⊕∞

n=0 [n, 0, 0, 0] of SO(8) ,

S6 of massive IIA :
⊕∞

k=0 [k, 0, 0] of SO(7) ,

S5 × S1 S-fold of IIB :
⊕∞

`=0

⊕∞
n=−∞ [0, `, 0]n of SU(4)× SO(2) .

(6.37)
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These indices are raised and lowered with δΛΣ and their position thus has no
meaning. See appendix E.1 for discussion of this group theory structure.

The choice of YΛ as the harmonics corresponding to the configuration
with maximal symmetry translates into the fact that they close under the
action of the relevant Killing vector fields. This leads to the definition of
TMΛΣ as the (6.37) representation matrices encoded in the twist matrix as

ρ−1UN
M̂ ∂M̂YΛ = −TNΛΣYΣ . (6.38)

The properties of the twist matrix (6.32) guarantee that the TMΛΣ represent
the gauge algebra, with the commutator normalised as

[TM , TN ] = −XMN
P TP . (6.39)

For the backgrounds in figure 3.1, the matrices TM can be decomposed into
SL(8,R) blocks given by

TM =
(
TAB, T AB

)
. (6.40)

For the S7 and S6 cases, T AB = 0 and at lowest KK level in the towers
(6.37), the non-vanishing components are

(TAB)C
D = 2δD [AδB]C for S7 ,

(TAB)K
L = 2δL[AδB]K for S6 ,

(6.41)

with A,B = 1, . . . , 8 and I, J = 1, . . . , 7. At higher levels, these tensors can
be constructed recursively from (6.41)

(TM )A1...An
B1...Bn = n (TM ){A1

{B1δB2
A2
. . . δ

Bn}
An} ,

(TM )I1...Ik
J1...Jk = k (TM ){I1

{J1δJ2I2 . . . δ
Jn}
In} .

(6.42)

where curly brackets denote traceless symmetrisation. Similarly, for the
S5 × S1 configuration they take the tensor product form

(TM )Λc
Σd = (TM )Λ

Σ δc
d + δΛ

Σ (TM )c
d , (6.43)

where the index c = 1, 2 is rotated by SO(2), while Λ ranges in ⊕∞`=0 [0, `, 0]
with fundamental index i = 1, . . . , 6. The matrices on the r.h.s. of (6.43)
can in turn be defined as

(TM )Λ
Σ =

(
(TAB)Λ

Σ , (T AB)Λ
Σ ≡ 0

)
,

(TM )c
d =

(
(TAB)c

d ≡ 0 , (T AB)c
d
)
,

(6.44)

with (TAB)Λ
Σ given by

(TAB)i1...i`
j1...j` = ` (TAB){i1

{j1δj2i2 . . . δ
j`}
i`} , (6.45)
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in terms of the SO(6)v and SO(2) generators

(Tij)kl ≡ 2 δl[iδj]k , (T ab)cd ≡ 2πn
T εab εc

d , (6.46)

with all the rest, (Tib)kl, (Tab)kl, (T ij)cd and (T ib)cd, identically zero.

The equations of motion that follow from (the supersymmetrised version
of) (6.24) are linear and quadratic in derivatives for fermions and bosons
respectively. Introducing the fluctuation ansätze (6.34) and (6.35) with (6.36)
into these equations and linearising in the perturbations, we can easily read
off the mass matrix for each field. Thanks to the choice of the internal
harmonics as those satisfying (6.38) and the consistency of the truncation
(6.32), these matrices are combinations of the embedding and background
tensors suitably modulated by the scalar coset representatives. Schematically,

LMferm ∼ X + T , L2M2
bos ∼ X2 +XT + T 2 . (6.47)

More precisely, the fermion mass matrices are

(LM 3
2
)iΛ,jΣ = 1

2
√

2
A1 iΛ,jΣ , (LM 1

2
)ijkΛ,lmnΣ = 2

√
2A3 ijkΛ,lmnΣ ,

(6.48)
with the generalised shift tensors given by [136]

A1 iΛ,jΣ = A1ij δΛΣ − 8 (V−1)ij
M (TM )ΛΣ ,

A3 ijkΛ,lmnΣ = A3 ijk,lmn δΛΣ +
√

2
18 εijklmnpq (V−1)pqN (TN )ΛΣ .

(6.49)

The coset representative (V−1)ij
M and the quantities A1ij , A3 ijk,lmn were

already encountered in section 3.1, as they pertain to D = 4 N = 8 gauged
supergravity [69]. As shown in (3.33), these shift tensors are determined by
the N = 8 scalar fields and the embedding tensor.

Moving on into the bosonic sector, the KK graviton mass matrix coincides
with the suitable SO(n) restrictions of (6.10)-(6.12), and can be given as [133]

(M2
grav)ΛΣ = MMN (TM )Λ

Ω (TN )Σ
Ω . (6.50)

Strictly speaking, this is not exactly the same as the mass matrix appearing
in (6.10)-(6.12), as in the latter case there where magnetic contributions
induced by ξAB for the ISO(7) gauging. However, these contributions drop
out in the relevant contractions, and both results perfectly match.

The KK vector mass matrix was first presented in SU(8) covariant form
in [137]. The E7(7) covariant result obtained in [134] can be expressed as

(M2
vec)MΛ

NΣ = 1
12

(
XMΛ (R|

TΩXPΣU
(R|Ω +XPΣ (R|

TΩXMΛU
(R|Ω

)
×M|S)T M

|S)U MPN , (6.51)
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in terms of the quantity

XMΛN
PΣ ≡

(
XMN

P δΣ
Λ − 12PPNQM (TQ)Λ

Σ
)
. (6.52)

In (6.50) and (6.51), MMN and its inverse MMN are the D = 4 supergravity
scalar representatives and XMN

P the usual embedding tensor [69]. The
tensor PPNQM is the projector given in (6.19) but now for the global E7(7)

corresponding to the lower dimensional maximal supergravity. A mass matrix
for the KK scalar perturbations has also been presented in [137]. Nonetheless,
we will refrain from providing its concrete (fairly involved) expression, as
it will not be used in the following. In fact, if we focus on supersymmetric
solutions, this computation is not needed as the scalar masses can be deduced
from supersymmetry.

The SU(8) form of the KK vector mass matrix (6.51) presented in [137]
can be brought to the form(

M2
vec

)
ĀΛ

B̄Σ = 1
12 TĀΛ C̄

D̄Ω
(
TḠΣ D̄

C̄Ω + TḠΣ Ē
F̄Ω ηF̄ D̄η

C̄Ē
)
ηḠB̄ , (6.53)

where ηḠB̄ is the SO(28,28) invariant metric such that the E7(7) coset repre-

sentative can be written asMMN = VMAVNBηAB . In (6.53) we have defined

TĀΛ B̄
C̄Σ ≡ TĀB̄C̄ δΣ

Λ − 12PC̄ B̄
D
Ā (TD)Λ

Σ , (6.54)

featuring the T -tensor TĀB̄
C̄ of D = 4 N = 8 supergravity [69]. The quantity

(6.54) is the dressed version of (6.52), obtained through contractions of the
latter with the E7(7)/SU(8) coset representative and its inverse,

TĀΛ B̄
C̄Σ = (V−1)Ā

M (V−1)B̄
N VP C̄ XMΛ N̄

PΣ , (6.55)

exactly as for the relation between the X- and T -tensors of D = 4 N = 8
supergravity reviewed in (3.30). This makes apparent the equivalence between
the two vector mass matrices (6.51) and (6.53), and also to (4.31) of [137].

On a related note, the vector mass matrix of D = 4 N = 8 gauged
supergravity can be written in terms of the N = 8 fermion shifts A1ij and
A2h

ijk in (3.33), c.f. (4.83), (4.84) of [64]. Similarly, splitting the indices in
the 28 + 28 of SU(8) in terms of fundamental indices as Ā =

(
[ij],

[ij]
)
, the

KK vector mass matrix (6.53) with (6.54) takes on the block structure

(
M2

vec

)
ĀΛ

B̄Σ =

( (
M2

vec

)
ijΛ

lmΣ
(
M2

vec

)ij Ω lmΣ
δΩΛ(

M2
vec

)
ijΛ lmΩ

δΩΣ
(
M2

vec

)ijΩ
lmΩ′ δ

Ω′Σ δΛΩ

)
(6.56)

with(
M2

vec

)
ijΛ

lmΩ =
((
M2

vec

)ijΛ
lmΩ

)∗
,

(
M2

vec

)
ijΛ lmΩ

=
((
M2

vec

)ijΛ lmΩ
)∗
,

(6.57)
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and(
M2

vec

)ijΛ
lmΩ =

1

12

(
−A[i

2 pqrδ
j]
[lA2 m]

pqr + 3A
[i
2 pq[lA2 m]

j]pq
)
δΛ

Ω

+
(
δ

[i
[lA2 m]

j]pqTpqΛ
Ω +A2 [m

ijqTl]qΛ
Ω

− δ[i
[lA

j]
2 m]pqT pqΛ

Ω −A[j
2 lmqT i]qΛ

Ω

)
− 12

[
2
3δ

[i
[lT

j]rΛ
ΣTm]r

Σ
Ω − 1

2δ
[i
[lTm]r

Λ
ΣT j]rΣ

Ω + 1
4TlmΛ

ΣT ijΣ
Ω

− 1
12T ijΛ

ΣTlmΣ
Ω + 1

4δ
ij
lmTrsΛ

ΣT rsΣ
Ω

]
, (6.58)

(
M2

vec

)ij Λ lmΩ
=

1

144
A

[i
2 qrsε

j]qrsuvw[lA
m]
2 uvwδ

ΛΩ

+
1

12

(
A

[i
2 uvwε

j]uvwlmpqTpqΛΩ − εijpquvw[lA
m]
2 uvwT ΛΩ

pq

)
+ 12

[
1
4

(
T imΛ

ΣT jlΣΩ − T jmΛ
ΣT ilΣΩ

+ T ilΛΣT mjΣΩ − T jlΛΣT miΣΩ
)

− 1
24T ijΛ

ΣT lmΣΩ − 1
48ε

ijpqlmrsTpqΛ
ΣTrsΣΩ

]
. (6.59)

In order to arrive at these expressions, some calculation involving the identi-
ties given in appendix B of [127] is necessary. Against naive expectations, the
blocks (6.58), (6.59) cannot be rewritten exclusively in terms of the combined
KK fermion shifts A1 iΛ,jΣ in (6.49) above and A2 iΛ

jklΣ in (2.26) of [136].
This is reminiscent of the situation for the vector mass matrix, (5.27), (5.28)
of [157], of D = 4 N = 8 supergravity with a trombone gauging, which
cannot be written either in terms of the relevant fermion shifts solely. Indeed,
the “KK embedding tensor” (6.52) does bear some resemblance with the
trombone embedding tensor of [157], along with some crucial differences as
the presence of extra KK indices, which allow for the existence of actions
like (I.2), although defined in higher dimensions and not D = 4.

The KK mass matrices (6.48)-(6.51) reduce to their counterparts within
D = 4 N = 8 gauged supergravity (see [64]), and extend those to higher KK
levels. Diagonalisation of these four mass matrices is enough to determine
the spectrum of any supersymmetric AdS4 solutions to any desired KK level.

All the eigenvalues of the graviton and gravitino mass matrices, (6.50),
(6.48), at a given AdS4 vacuum correspond to physical spin-2 and spin-3/2 KK
modes in the spectrum. In contrast, the vector and fermion mass matrices in
(6.51) and (6.48), contain spurious eigenvalues at all KK levels corresponding
to the magnetic vectors (in the former case), along with Goldstone and
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Goldstino states eaten by the spin-2 and spin-3/2 states in the super-Higgs
mechanism upon taking into account the off-diagonal couplings between
modes of different spin.

For the explicit computations, it is useful to observe that the naive eigen-
values of the above mass matrices corresponding to Goldstone modes (ignoring
their off-diagonal couplings) are related to the masses of the corresponding
gravitons and gravitini at the same KK level through

L2M2
1 Goldstone = 3L2M2

2 + 6 , LM 1
2

Goldstino = 2LM 3
2
. (6.60)

Similar relations have also been observed to hold for the KK spectra in other
dimensions (c.f. [G]) and are very helpful to identify the unphysical vector
and fermion states to be removed from the spectra.

The KK spectral techniques discussed in this section, despite only being
roughly two-year old, have already been applied in a variety of cases. See e.g.
[C, E–G] and [134–141, 158]. In the next chapter, we will analyse the results
in [C] and [F] to provide tight consistency checks of these methods based
on compatibility with independent group theory results and the graviton
spectrum based on (4.7) when possible. These analyses will yield interesting
consequences for these examples.
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Chapter 7

Applications

In this chapter, I will particularise the formalism discussed in the previous
sections to specific solutions in ten- and eleven-dimensional supergravity.
We will focus on three different classes. First, in section 7.1 we analyse
the set of N = 1 AdS4 solutions of M-theory and massive type IIA that
respectively uplift from the SO(8) and ISO(7) gaugings but are not in their
SU(3) invariant sector. The symmetry groups of these solutions are very
small or even empty, and this therefore constitutes a remarkable instance of
the power of the methods explained in chapter 6.

Then, in section 7.2 a two-parameter family of AdS4 N = 2 that uplifts
to an S-fold configuration of type IIB supergravity will be presented, and
its spectrum analysed. This family is holographically dual to the conformal
manifold of a strongly coupled CFT3, and the global structure of this moduli
space at large N can be inferred out of the KK spectrum. Finally, in
section 7.3 we will scan over all known solutions in the SU(3) invariant
sectors of the gauged supergravities in figure 3.1. The spectra thus obtained
point at a curious universality property.

7.1 N = 1 spectra in massive IIA and M-theory

In this section we compute the KK spectrum of the solutions of D = 11
supergravity that uplift from the vacua of D = 4 N = 8 SO(8) supergravity
preserving N = 1 and SO(3) [159, 160] or U(1) × U(1) [161, 162] residual
symmetry, and the solutions of massive IIA supergravity that uplift from
the N = 1 vacua of D = 4 N = 8 ISO(7) supergravity with U(1) (two
of these) [163] and no leftover continuous symmetry [164]. As mentioned
in chapter 6, a powerful feature of the ExFT-based techniques of [133] is
that the resulting KK mass matrices only depend on data of the relevant
D = 4 N = 8 gauged supergravity along with the generators of SO(8) or
SO(7) in (6.41) for the uplifts on S7 and S6, respectively. None of the
aforementioned AdS4 solutions has actually been constructed in fully-fledged
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susy G g−2V D = 4 D = 11 Kaluza-Klein
solution uplift spectrum

N = 8 SO(8) −24 [73] [92] [105, 110, 165]

N = 2 SU(3)×U(1) −18
√

3 [77] [31] [82, 137]

N = 1 G2 −2
11/2 3

13/4

55/2
[77] [94, 166] [136]

N = 1 SO(3) −55.363855 [159, 160] N.A. [E]

N = 1 U(1)×U(1) −48 [161, 162] N.A. [E]

susy G g−2c
1
3V D = 4 IIA Kaluza-Klein

solution uplift spectrum

N = 3 SO(3)× SO(3) −216/3

31/2
[167] [168, 169] [134]

N = 2 SU(3)×U(1) −22 33/2 [26] [26] [134]

N = 1 G2 −228/3 31/2

55/2
[170] [171, 172] [136]

N = 1 SU(3) −28 33/2

55/2
[74] [172] [136]

N = 1 U(1) −25.697101 [163] N.A. [E]

N = 1 U(1) −35.610235 [163] N.A. [E]

N = 1 ∅ −35.598340 [164] N.A. [E]

Table 7.1: All known supersymmetric AdS4 solutions that consistently uplift to

D = 11 (left) and massive IIA (right) supergravities from D = 4 N = 8 supergravity

with SO(8) and dyonic ISO(7) gaugings, respectively. For every solution it is shown

its residual supersymmetry N , bosonic symmetry G, and D = 4 cosmological

constant V in units of the gauge coupling g and dyonic parameter c (if applicable).

Our conventions for these differ by a factor of 4 with those of the SO(8) survey

[159], but agree with the ISO(7) survey [164]. Pointers are given to the references

where the solutions were found within D = 4 and D = 11 or IIA (if available), and

to their KK spectra.

ten- or eleven-dimensional form.

Together with the complete KK spectra of the D = 11 and type IIA
supersymmetric AdS4 solutions summarised in table 7.1 that have been
previously computed in [82, 105, 110, 134, 136, 137, 165], our results exhaust
the spectra for all known such supersymmetric AdS4 solutions. We discuss
at length these new KK spectra in the following. The first few KK levels
thereof have been tabulated appendix A of [E] and will not be repeated here.

7.1.1 Salient features of the new spectra

Except for the U(1)×U(1)-invariant vacuum of SO(8)-gauged supergravity
[161, 162] which was reported ten years or so ago, all the other solutions that
we will cover here have been discovered fairly recently. These include another
vacuum of SO(8)-gauged supergravity with residual SO(3) invariance [159,
160]; and, in the dyonic ISO(7) gauging, two vacua with U(1) symmetry
[163] and one more vacuum with no continuous symmetry at all [164]. These
solutions are only known as critical points of the corresponding D = 4
N = 8 gauged supergravities, but associated higher-dimensional solutions
are guaranteed to exist by the consistency of the truncations in figure 3.1.
All these higher-dimensional solutions will be warped, supported by internal
supergravity forms, and equipped with inhomogeneous metrics on the internal
spheres with isometry groups containing the residual symmetry groups G of
their associated D = 4 critical points.

All these AdS4 solutions are N = 1 and preserve a (possibly empty)
subgroup G of SO(8) or SO(7) in the D = 11 or IIA cases, respectively.
Accordingly, their KK spectra must organise themselves in representations
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of OSp(1|4) × G. For all five cases, we have translated the individual KK
masses into conformal dimensions via (4.2), and we have indeed been able
to allocate these into OSp(1|4) supermultiplets [173] KK level by KK level.
This is a successful crosscheck of our diagonalisations of the mass matrices
(6.48)-(6.51) of the previous chapter. See table 1 of [136] for a summary of
the state content of the OSp(1|4) supermultiplets, which we refer to here
as (M)GRAV, GINO, (M)VEC and CHIRAL. The OSp(1|4) content of the
spectra at lowest KK level, n = 0, is known for all five solutions.1

We recover these results and extend them to higher KK levels, n ≥ 1. In
all cases, we find one and only one massless graviton (MGRAV) multiplet,
arising at KK level n = 0, as expected. Also at level n = 0, and only at this
level, we find a number of massless vector (MVEC) multiplets compatible with
the dimension of the residual symmetry group G of each solution: three, two,
one or none for the solutions with SO(3), U(1)×U(1), U(1) or no continuous
symmetry. For all the solutions, KK level n = 0 is completed with a number
of massive gravitino (GINO), vector (VEC) and scalar (CHIRAL) multiplets.
At every KK level n ≥ 1, all four generic massive multiplets, GRAV, GINO,
VEC and CHIRAL, of OSp(1|4) appear with suitable dimensions E0 for all
solutions. As usual, singleton multiplets are absent in all spectra.

The D = 4 scalar vevs for all solutions under consideration are only
known numerically, except for the U(1) × U(1) solution, where they are
known analytically [162]. Thus, our results for the spectra of all four solutions
different than this one are necessarily numerical. For U(1)×U(1), most of
our results are numerical as well, although we have determined analytically
some masses and dimensions. Some conformal dimensions stand out as
rational or integer within numerical precision. For example, there is a GRAV
with E0 = 9

2 in the SO(3) spectrum at level n = 2. The U(1) × U(1)
spectrum also shows a GINO and a CHIRAL, both at n = 2, with E0 = 3
and E0 = 2 respectively. Perhaps more curiously, the U(1) solution with
g−2c1/3V = −35.610235 contains a doubly-degenerate GINO and CHIRAL,
both of them with E0 = 3, and a single GINO with E0 = 4, all of them at
KK level n = 1; in contrast, the U(1) solution with g−2c1/3V = −25.697101
does not seem to contain multiplets with rational or integer dimensions.

Contrary to all previously known cases in table 7.1, it has not been
possible to recover the values of these masses at each solution from a single
formula, at least, of the general type considered in [136]. For gravitons,
the formulae in [136] are naturally associated to geometrical data via (4.7)
provided this equation can be turned into an ODE by expanding the Y

1Strictly speaking, for the D = 11 U(1)×U(1) solution, the n = 0 OSp(1|4) spectrum
does not seem to have been given in the literature, but it follows from the individual mass
states given in [161, 162]. The n = 0 bosonic spectrum for the IIA U(1)-invariant solutions
was given in [174] and allocated into OSp(1|4) supermultiplets in [164]. The OSp(1|4)
spectrum for the solutions with SO(3) symmetry in D = 11 and no continuous symmetry
in IIA can be respectively found at KK level n = 0 in [160, 164].
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eigenfunctions in spherical harmonics exploiting the isometry of the internal
manifold. Given the little amount of preserved symmetry for the present
solutions, it is not surprising that this cannot be accomplished here.

Let us now be more specific about each one of these spectra, particularly
regarding degeneracies in them. Degeneracy, or lack thereof, in the conformal
dimensions E0 of the generic OSp(1|4) supermultiplets present in the spectra
arises in a way compatible with the additional bosonic symmetry G preserved
by each solution. Accidental degeneracies also occur for the G = U(1) and
G = U(1) × U(1) invariant solutions, as do for the N = 2 [134, 137] and
N = 3 [134] solutions of table 7.1, and for the N = 1 cases covered in [136].

D = 11 solution with SO(3) symmetry

The only degeneracies that appear in the N = 1 spectrum of the D = 11
SO(3)-invariant solution are those demanded by its SO(3) representation
content. In other words, the spectrum arranges itself in OSp(1|4)× SO(3)
representations, with no accidental degeneracies between different represen-
tations, either at the same or across different KK levels. This feature singles
out this solution together with the N = 8 SO(8) solution, as the only ones in
table 7.1 with a continuous residual symmetry and completely non-degenerate
supersymmetric spectrum. Except for the type IIA solution with no resid-
ual continuous symmetry (which exhibits complete non-degeneracy), the
OSp(N|4) spectrum of any other solution with residual continuous symmetry
in table 7.1 contains accidental degeneracies.

Another peculiar feature of the KK spectrum of theN = 1 SO(3)-invariant
solution is that all the individual states within every OSp(1|4) multiplet have
the same charges, not only under SO(3) (as of course they must) but also,
somewhat unexpectedly, under a larger SU(3)×U(1)s. The actual symmetry
group SO(3) is embedded into this SU(3) as the real subgroup of the latter
(so that the fundamental representation is irreducible), while SU(3)×U(1)s
is embedded into SO(8) through SO(7)s, with 8s → 1 + 7 and 8v, 8c → 8
under SO(7)s so that2

8s −→ 3− 2
3

+ 3̄ 2
3

+ 10 + 10 , 8v, 8c −→ 3 1
3

+ 3̄− 1
3

+ 11 + 1−1 (7.1)

under SU(3) × U(1)s. This is notable for a couple of reasons. Firstly,
the symmetry group SO(3) is SO(8)–triality invariant as noted in [160];
yet, the KK spectrum shows some preference for the 8s. Secondly, the
spectrum exhibits a qualitative OSp(1|4) × SU(3) × U(1)s structure, even
if this group is certainly not a symmetry of the solution and the spectrum

2Our conventions are such that, at the N = 8 SO(8) point, the (graviton, grav-
itini, vectors, spinors, scalars, pseudoscalars) of N = 8 supergravity lie in the
(1,8s,28,56s,35v,35c) of SO(8), as reviewed in appendix E.1. In these conventions, the
bosonic symmetries of the N = 2 solutions in table 7.1 are, more precisely, SU(3)×U(1)c
and SU(3)×U(1)v in the SO(8) and ISO(7) gaugings, respectively.

114



7.1 N = 1 spectra in massive IIA and M-theory

does not organise itself in representations of this larger group (because of the
SO(3) non-degeneracy just noted). More concretely, the OSp(1|4)× SO(3)
representations in the spectrum branch down from OSp(4|8) via

OSp(4|8) ⊃ OSp(1|4)× SU(3)×U(1)s ⊃ OSp(1|4)× SO(3) , (7.2)

so that, in order to form OSp(1|4) multiplets KK level by KK level, it
is enough to split the SO(8) content at each level only under SO(8) ⊃
SU(3)×U(1)s.

We are unaware of anything similar happening in the KK spectrum of
any other AdS4 solution in table 7.1. For example, in the KK spectrum of
the N = 2 or N = 1 SU(3)–invariant solutions [82, 134, 136, 137], all the
individual states within a given OSp(N|4) supermultiplet have the same
charges under SU(3) (as of course they must). However, different states within
the same OSp(N|4) multiplet will typically lie in different representations of
any larger group containing SU(3), say SU(4) or G2. Of course, this is not
surprising, because these larger groups are not symmetries of these solutions.
In these cases, one can only form OSp(N|4) multiplets KK level by KK level
when the SO(8) in D = 11 [105] or SO(7) in type IIA [134] state content at
each level has already been broken down to the actual residual symmetry
group SU(3). In section 7.2 we will see this Zeeman-like effect happening for
other solutions in type IIB.

D = 11 solution with U(1)×U(1) symmetry

The spectrum for the D = 11 U(1)×U(1)-invariant solution displays frequent
degeneracies 1, 2 and 4 for the OSp(1|4) dimensions, but also 8 and even
3. The former set of degeneracies, 1, 2 and 4, seems natural for multiplets
charged under none, one or both U(1)’s. Any other degeneracy can only
be accidental. For example, the spectrum must contain seven U(1)×U(1)-
neutral GRAVs at level n = 2, as these descend from the 35v of SO(8) [105]
and, under SO(8) ⊃ U(1)×U(1) [162],

35v −→ 7(0, 0) + 4(±1, 0) + 4(0,±1) + 3(±1,±1) + 3(±1,∓1) . (7.3)

However, there are only two non-degenerate n = 2 GRAVs, with dimensions

E0 = 9
2 = 4.5 and E0 = 1 +

√
21
2 ≈ 3.2912878. The five remaining singlet

GRAV multiplets have dimensions E0 = 1 +
√

37
2 ≈ 4.0413813 and E0 =

1 +
√

29
2 ≈ 3.6925824 with accidental degeneracies 3 and 2, respectively.

Type IIA solutions with U(1) symmetry

Inspection of the spectra around these solutions shows that, for both type IIA
solutions with U(1) symmetry, the dimensions E0 are either non-degenerate
or doubly-degenerate. An analysis of the U(1) charges present in both spectra
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suggests that OSp(1|4) multiplets with non-vanishing, opposite U(1) charges
are always degenerate. These appear as doubly-degenerate multiplets in
the tables. All non-degenerate multiplets are in turn U(1)–neutral. The
converse is not true, however: some U(1)–neutral multiplets are accidentally
doubly-degenerate.

In order to see this, let us look for example at the spectrum of GRAV
and GINO multiplets at KK level n = 1. The individual spin–2 and spin–3/2
states contained therein have U(1) charges that respectively descend from
the representations 7 and 8 + 48 of SO(7) [134]. Under the embedding
SO(7) ⊃ U(1) described in [163],

7→ 3(0)+2
(
±1

2

)
, 8→ 4(0)+2

(
±1

2

)
, 48→ 16(0)+12

(
±1

2

)
+4(±1) ,

(7.4)
in line with the 3 non-degenerate and 2 doubly degenerate n = 1 GRAVs
present in the spectrum of either solution. Each of these spectra also shows
12 non-degenerate and 15 doubly-degenerate GINOs at level n = 1. The
branchings (7.4) are compatible with all 12 non-degenerate GINOs being
U(1)-neutral, 14 doubly-degenerate GINOs being charged, and two further
U(1)-neutral GINO multiplets being accidentally degenerate.

Type IIA solution with no continuous symmetry

The KK spectrum of the type IIA solution with no continuous symmetry
is completely non-degenerate. Indeed the conformal dimension E0 of every
single OSp(1|4) multiplet present in the spectrum is different. This spectrum
thus plays by the book, making no concessions whatsoever to accidental
degeneracies.

We conclude by emphasising that, by N = 1 supersymmetry, our results
also contain the KK scalar spectrum above all these solutions, even if we did
not explicitly diagonalise the KK scalar mass matrix.

7.2 S-fold conformal manifolds

The specific AdS/CFT instances with an associated maximal gauged super-
gravity interpretation are few and far between and, for that reason, must
be treasured. All the string theory configurations in figure 3.1 enjoy such
an understanding, with the well-known S7 case dual to the ABJM the-
ory reviewed in section 5.1 [39, 175], and the S6 configuration dual to the
Guarino-Jafferis-Varela (GJV) super Chern-Simons theory [26].

The proposed holographic dual the N = 4 AdS4 solution of type IIB
supergravity constructed in [28] is the three-dimensional CFT described in
[176]. This CFT arises as an N = 4 infrared fixed point of the T[U(N)]
field theory of [177], enhanced with an adjoint Chern-Simons term at level
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k, and with its U(N) × U(N) global symmetry gauged with an N = 4
vector multiplet. This field theory can be also thought to arise as a limit of
four-dimensional N = 4 super-Yang-Mills at a co-dimension one interface
[178, 179]. Contrary to the other supergravity solutions in figure 3.1, the
type IIB configuration of [28] is non-geometric, of the form AdS4 × S5 × S1,
with non-trivial SL(2,Z) S-duality monodromy on S1, and with S5 and S1

radii related to the gauge group rank and CS level, N and k, in the CFT.
This AdS4 solution can be thought as a limit of a Janus solution of type IIB
[180, 181], compatible with the interface interpretation of the CFT.

As mentioned in section 3.1, this type IIB solution enjoys a maximal
consistent truncation with dyonic [SO(6)× SO(1, 1)] nR12 gauge group [75,
76]. The D = 4 gauge couplings g and m ≡ gc are related to N and k. Due
to the consistency of the truncation, the vacua of this gauged supergravity
(all of which are AdS, see [75, 156, 167, 182–184] for examples) give rise to
(non-geometric) AdS4 × S5 × S1 solutions of type IIB, with the S5 possibly
fibred trivially over the S1. The above D = 4 N = 8 supergravity has
an N = 4, SO(4)-invariant critical point [167] that uplifts to the N = 4
type IIB S-fold solution of [28]. The N = 8 gauged supergravity also has a
two-parameter family of N = 2 AdS vacua [183] continuously connected to
the N = 4 point, with the same cosmological constant as the latter. These
features led the authors of [183] to put forward the interpretation of this
family of AdS4 solutions as the holographic realisation of the (necessarily
N = 2 [185]) conformal manifold (CM) of the N = 4 CFT of [176].

A convenient subsector of the D = 4 N = 8 gauged supergravity to
address this family was constructed in [182]. It contains seven scalars, ϕi, and
seven pseudoscalars, χi, i = 1, . . . , 7, that parameterise an (SL(2,R)/SO(2))7

submanifold of E7(7)/SU(8). A one-parameter family of N = 2 vacua was
identified in [182] (and referred to as Family I in [183]) located, in our
conventions, at

c−1e−ϕ1 = c−1e−ϕ2 = e−ϕ6 = e−ϕ7 = 1√
2
, c−1e−ϕ3 = e−ϕ4 = e−ϕ5 = 1 ,

χ1 = χ2 = c χ , χ3 = χ4 = χ5 = 0 , χ6 = −χ7 = 1√
2
. (7.5)

The free parameter here is the pseudoscalar χ. A second one-parameter
family of N = 2 vacua was found in [183], where it was named Family II.
This occurs at the locus

ϕ1 = ϕ2 = ϕ , e−ϕ3 = c , e−ϕ6 = e−ϕ7 = 1√
2
, e−ϕ4 = e−ϕ5 = c√

2
eϕ ,

χ1 = χ2 = χ3 = 0 , χ6 = −χ7 = 1√
2
, χ2

4 = χ2
5 = 1− 1

2 c
2 e2ϕ , (7.6)

parameterised by the scalar ϕ. These families contain the N = 4 point at
ϕ = χ = 0. In (7.5), (7.6), c = m/g 6= 0, with g and m the electric and
magnetic gauge couplings of the parent D = 4 N = 8 supergravity. We
henceforth set c = 1 without loss of generality. A series of dualities can be
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performed on the E7(7)/SU(8) coset representative corresponding to the vacua
(7.5), (7.6), in order to generate a larger set of vacua with both parameters
(ϕ, χ) turned on [183]. This local family of AdS vacua parameterised by (ϕ, χ)
was proposed in [183] as the holographic CM of the N = 4 CFT of [176] at
large N . Generically, it is still N = 2 (with supersymmetry enhancement
at the N = 4 point) and lies outside the (SL(2,R)/SO(2))7 submanifold of
[182]. When restricted to this two-dimensional surface, the N = 8 non-linear
sigma model on E7(7)/SU(8) gives rise to the leading contribution to the
Zamolodchikov metric on the CM [183]. This metric is Kähler and reads,
with our parameterisation,3

ds2 = (4− e2ϕ)
[
(2− e2ϕ)−1 dϕ2 + dχ2

]
. (7.7)

The corresponding Riemann tensor and Ricci scalar are

Rmnpq = −Rgm[pgq]n , R =
2 e2ϕ

(
e4ϕ − 12 e2ϕ + 16

)
(4− e2ϕ)3

. (7.8)

The local D = 4 N = 8 supergravity scalars originally range on the entire
real line, but we find the CM construction to be only well defined if the
parameters are restricted as:

0 < e2ϕ ≤ 2 , 0 ≤ χ < 2π
T , and periodic: χ ∼ χ+ 2π

T . (7.9)

with T the inverse radius of the S1 factor of the associated type IIB S-fold
solutions. Within the intervals (7.9), both the metric (7.7) and the curvature
(7.8) are smooth and finite. The Ricci scalar is in fact bounded, −2 ≤ R ≤ 10

27 ,

and the Riemann tensor vanishes at e2ϕ = 2(3−
√

5) and in the limit e2ϕ → 0,
with χ arbitrary within its allowed interval.

The range of ϕ specified in (7.9) must be enforced already at the gauged
supergravity level, so that the solution (7.6) (with c = 1) is well defined
and singularity-free. This is further confirmed by the KK analysis of section
7.2.1, as only within the range (7.9) for ϕ are the KK spectra on the CM free
from tachyonic modes, as required by supersymmetry. The periodicity in χ
cannot be seen at the D = 4 gauged supergravity level, but is an intrinsically
higher-dimensional feature of the corresponding type IIB S-folds, as will be
argued in section 7.2.2.

The CM is generically N = 2 and U(1)F × U(1)R–invariant, except
at the locations specified below. Here, U(1)F × U(1)R is the subgroup of
SO(6) ∼ SU(4) (the isometry of the round S5 in type IIB, or the R-symmetry
of the parent dual N = 4 super-Yang-Mills) defined by

SU(4) ⊃ SO(4) ∼ SU(2)1 × SU(2)2 ⊃ U(1)1 ×U(1)2 , (7.10)

3Our moduli and those in [183] are related as χhere = χthere and e−2ϕhere = 1
2
(1+ϕ2

there).
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with SO(4) the real subgroup of SU(4), SU(2)i ⊃ U(1)i, i = 1, 2, and
U(1)R and U(1)F respectively corresponding to the diagonal and antidiagonal
combinations of U(1)1 and U(1)2. Alternatively, U(1)F×U(1)R is equivalently
defined through

SU(4) ⊃ SU(3)×U(1)b ⊃ SU(2)F ×U(1)a ×U(1)b ⊃ U(1)F ×U(1)R ,
(7.11)

with 3→ 2⊕ 1 under SU(3) ⊃ SU(2)F ; then, SU(2)F ⊃ U(1)F and U(1)a ×
U(1)b ⊃ U(1)R, so that if p, q, y0 are U(1)a, U(1)b, U(1)R charges, then
y0 = 1

3(p − q). The SO(6) in (7.10) and (7.11) is in turn embedded inside
the SU(8) compact subgroup of the N = 8 supergravity scalar manifold as
the SO(6)v subgroup of the real subgroup SO(8) of SU(8) [140, 186]. The
commutant of SO(6)v inside SO(8) will be denoted as SO(2) and is broken
by the type IIB configuration. The labels F and R in the U(1) and SU(2)
groups above refer to the flavour and R-symmetry of the dual CFTs. An R
label could also be added to the SO(4) in (7.10), but is omitted for notational
simplicity. Note, for later reference, that the embeddings (7.10), (7.11) are
globally defined and independent of the D = 4 supergravity scalars.

The CM exhibits symmetry or supersymmetry enhancements at specific
points. The N = 4 SO(4)-invariant vacuum [167] of the N = 8 supergravity,
which uplifts to the AdS4 × S5 × S1 type IIB S-fold solution of [28] with the
CFT dual of [176] is attained in our parameterisation at

N = 4 SO(4) point : ϕ = 0 , χ = 2π
T n
′ , n′ = 0,±1,±2, . . . (7.12)

with the SO(4) symmetry group being the one that appears in the branching
(7.10). Strictly speaking, only the n′ = 0 (super)symmetry enhancement to
N = 4 SO(4) can be seen at the gauged supergravity level: the periodicity
for |n′| ≥ 1 will be shown in section 7.2.2 out of the spectrum in section 7.2.1.

All other points in the CM are N = 2, with generic U(1)F × U(1)R
symmetry. The latter is enhanced to the SU(2)F ×U(1)R defined in (7.11) at
two specific locations within Family I, (7.5), of [182, 183], which corresponds
to the upper boundary e2ϕ = 2 in (7.9). The first such symmetry enhancement
occurs, in our parameterisation, for

N = 2 SU(2)F ×U(1)R point 1 : e2ϕ = 2 , χ = π
T n
′ , n′ even .

(7.13)
Again, only the n′ = 0 realisation is visible in gauged supergravity, and
corresponds to the N = 2 SU(2) × U(1) critical point found in [182]. The
second such enhancement occurs at

N = 2 SU(2)F ×U(1)R point 2 : e2ϕ = 2 , χ = π
T n
′ , n′ odd . (7.14)

and has no counterpart in gauged supergravity [140] (note the different
ranges of n′ in (7.14) and (7.13)). Of course, the generic U(1)F × U(1)R
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symmetry group of the CM is a subgroup of both enhanced symmetry groups
SO(4) and SU(2)F ×U(1)R as indicated in (7.10) and (7.11), but the latter
SU(2)F ×U(1)R is not a subgroup of the former SO(4).

There are no (super)symmetry enhancements across the CM other than
(7.12), (7.13) and (7.14). A couple of other notable loci within the CM are
the following one-parameter families. The following locus parameterised by
ϕ,

Family II :
(
0 < e2ϕ ≤ 2 , χ = 2π

T n
′) , n′ = 0,±1,±2, . . . (7.15)

was discussed for n′ = 0 in [183] (see also [187]) and, for this value of
n′, corresponds to the gauged supergravity solution (7.6). Family II is the
geodesic of the metric (7.7) that passes through the N = 4 SO(4) point (7.12)
and ends at the N = 2 SU(2)F ×U(1)R point 1, (7.13), with zero winding
number on the cylindrical CM. On the other hand, the lower endpoint of
the ϕ range in (7.9) in this curve is at infinite distance with respect to the
Zamolodchikov metric (7.7). In fact the lower inequality in (7.9) is strict and
the singular locus e2ϕ = 0 does not belong to the CM, as will be argued in
section 7.2.2. Family II provides a useful way to visualise the global aspects
of the CM. If the latter is first represented as a rectangle in R2 with sides
defined by (7.9), the cylinder is constructed by identifying the geodesics
corresponding to Family II at χ = 0 and χ = 2π

T . In spite of this periodicity,
the large-N CM in (7.9) non-compact, with infinite volume w.r.t. the leading
contribution (7.7) to the Zamolodchikov metric.

Finally, the following circumference, parameterised by χ, in the interior
of the CM is also interesting

Family III : e2ϕ = 1 , 0 ≤ χ < 2π
T , and periodic: χ ∼ χ+ 2π

T , (7.16)

as the complete KK spectrum on this locus can be given in closed form and
its type IIB uplift provided. See figure 7.1 for a visual summary of the CM.

7.2.1 KK towers on the two-parameter N = 2 family

The existence of a maximal gauged supergravity description of the AdS4/CFT3

dualities at hand allows one to apply to the present two-dimensional holo-
graphic CM the ExFT-based KK spectral methods of [133, 136, 137] discussed
in section 6.2. It is noteworthy that the ten-dimensional picture of this con-
formal manifold is unavailable for most of it. However, as mentioned at the
end of section 6.1, this is not required to obtain the spectrum using the new
duality-based techniques.

The spectrum can be labelled by the two independent KK levels, ` and
n, appearing in (6.37) respectively associated with the internal S5 and S1 of
the IIB S-folds. They range as

` = 0, 1, 2, . . . n = 0, ±1, ±2, . . . (7.17)
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Figure 7.1: The large-N holographic CM. The left plot indicates the location of the
upper boundary (solid black line), Family I (7.5), along with the (super)symmetry
enhanced points: (7.12) in solid (n′ = 0) and hollow (n′ = 1) red, (7.13) in solid
(n′ = 0) and hollow (n′ = 1) blue, and (7.14) in hollow green (n′ = 1). The dashed
lines marked as II and II′ correspond to Family II, (7.15), at n′ = 0 and n′ = 1,
respectively. These two lines are identified per the periodicity (7.9) of χ, rendering
the topological cylinder on the right plot. Family III, (7.16), in the interior is also
indicated. The locus e2ϕ = 0 lies outside the CM and is at infinite distance of the
upper boundary w.r.t. the metric (7.7).

At generic N = 2 points in this two-dimensional holographic CM, the
KK spectrum organises itself in representations of OSp(2|4)×U(1)F , with
U(1)R ⊂ OSp(2|4) and U(1)F defined by either branching rule (7.10) or (7.11).
At the N = 2 points (7.13) and (7.14) with enhanced flavour symmetry,
the KK spectrum lies in representations of OSp(2|4) × SU(2)F , with the
latter factor defined in (7.11). Finally, at the N = 4 point (7.12) the KK
spectrum is organised in OSp(4|4) multiplets, with R-symmetry given by
the SO(4) group defined in (7.10). Multiplets of these supergroups whose
superconformal primary has dimension E0 and U(1)R or SO(4) R-charges y0

or (`1, `2) will be labelled as

OSp(2|4)×U(1)F : MULT2 [E0, y0; f ] ,

OSp(2|4)× SU(2)F : MULT2 [E0, y0]⊗ [k] ,

OSp(4|4) : MULT4 [E0, `1, `2] ,

(7.18)

with f and k the additional U(1)F charge and SU(2)F (half-integer) spin,
common to all states in a given OSp(2|4) multiplet MULT2. The subindices
in MULT2 and MULT4 are used to distinguish N = 2 and N = 4 multiplets.
For the former, we follow the notation and conventions of appendix A of [82].
See also that reference for their state contents. For the N = 4 multiplets,
we record some relevant aspects in appendix E.3. See also appendix E.1 for
more details on the setup and calculations behind the results reported in
this section. Previous results on the spectra of these solutions may be found
in [140, 167, 182, 183] as well as [C].
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Before diagonalising the relevant mass matrices, we will use this group
theory information to obtain the algebraic structure of the complete KK
spectrum across the entire CM, and then use the latter to obtain explicit
information about the dimensions of the N = 2 supermultiplets. We provide
closed-form, analytic expressions for the multiplet dimensions of the complete
spectrum at specific loci, and for specific multiplets at all points in the
CM. However, for most of the CM the computation needs to be performed
numerically and we only highlight some aspects here. The complete results
on a lattice of points across the entire moduli space can be found as an
ancillary file of [F].

Algebraic structure of the complete spectrum

The algebraic structure of the complete spectrum at all points in the CM,
including the protected spectrum, is inherited from that at the N = 4 point.
The KK spectrum at this point was given for lowest KK levels ` = n = 0 in
[167] and was extended to all higher levels in [140]. (see also [C] for previous
partial results).

At fixed SO(6)v × SO(2) KK levels (`, n) ranging as in (7.17), the KK
spectrum at theN = 4 point is composed of OSp(4|4) long graviton multiplets

LGRAV4

[
E0, `1, `2

]
, (7.19)

whose scalar superconformal primaries have SO(4) Dynkin labels and dimen-
sions specified as follows. The Dynkin labels correspond to all possible pairs
(`1, `2) that appear on the r.h.s. of the following branching under the first
inclusion in the chain (7.10), namely,

[0, `, 0] →
[`/2]⊕
a=0

`−2a⊕
k=0

(`− 2a− k, k) . (7.20)

At fixed `, each of these
(
` + 1 −

[
`
2

])(
1 +

[
`
2

])
pairs of integers (`1, `2)

defines a multiplet (7.19) present in the spectrum if n = 0, or two if n 6= 0,
corresponding to the two signs of n.4 The conformal dimension for each of
these depends on the KK levels `, n and on the SO(4) Dynkin labels `1, `2,
restricted as in (7.20), through the formula

E0 = −1
2 +

√
9
4 + 1

2`(`+ 4) + `1(`1 + 1) + `2(`2 + 1) + 1
2

(
2πn
T

)2
. (7.21)

4 This is the only effect of the S1 KK level n in the algebraic structure of the N = 4
spectrum. The spectrum, though, does not come in OSp(4|4) × SO(2) representations
(7.19) with definite SO(2) charge 2n, because different states in a given OSp(4|4) multiplet
carry different charges under the (broken) SO(2), see e.g. table E.3 in appendix E.1. The
S1 level n also affects the spectrum through the dimensions E0, see (7.21), with degeneracy
for both signs of n at all other quantum numbers held equal. On the rest of the CM,
similar remarks apply about the dependence of the algebraic structure of the multiplet
spectrum with n. The dimensions also acquire an n dependence, and the sign degeneracy
is lifted for flavoured multiplets.
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The l.h.s. in (7.20) corresponds to the SO(6)v representations of the putative
graviton states discussed in appendix E.1. The dimensions (7.21), computed
in [140] using ExFT methods, agree with those that follow from the individual
KK graviton masses found in (3.9) of [C] (with nhere = jthere). See appendix
E.3 for the state content of the N = 4 multiplets (7.19).

For specific values of the quantum numbers some of the multiplets (7.19)
in the spectrum become short, and split into a SGRAV4 (or MGRAV4 for
` = 0) and a SGINO4 via (E.17). Specifically, this happens for [C]

n = 0 , `1 = `2 = 1
2` , with ` even . (7.22)

Indeed, when (7.22) holds, the dimension (7.21) saturates the N = 4 unitarity
bound, (E.16) with s0 = 0.

The algebraic structure of the complete KK spectrum across the entire
CM turns out to be determined by the spectrum at the N = 4 point, through
the branching (E.18) of the multiplets (7.19) under

OSp(4|4) ⊃ OSp(2|4)×U(1)F . (7.23)

More concretely, at fixed ` and n, the spectrum at an arbitrary point (ϕ, χ)
in the CM contains

(
1 +H(|n|)

)
contributions of the form

`1⊕
m1=−`1

`2⊕
m2=−`2

{
LGRAV2

[
E(1)
m1m2

, ym1m2 ; fm1m2

]
⊕ LGINO2

[
E(2)
m1m2

, ym1m2 ; fm1m2 + 1
]
⊕ LGINO2

[
E(3)
m1m2

, ym1m2 ; fm1m2 − 1
]

⊕ LGINO2

[
E(4)
m1m2

, ym1m2 ; fm1m2 + 1
]
⊕ LGINO2

[
E(5)
m1m2

, ym1m2 ; fm1m2 − 1
]

⊕ LVEC2

[
E(6)
m1m2

, ym1m2 ; fm1m2

]
⊕ LVEC2

[
E(7)
m1m2

, ym1m2 ; fm1m2 + 2
]
⊕ LVEC2

[
E(8)
m1m2

, ym1m2 ; fm1m2

]
⊕ LVEC2

[
E(9)
m1m2

, ym1m2 ; fm1m2 − 2
]
⊕ LVEC2

[
E(10)
m1m2

, ym1m2 ; fm1m2

]}
,

(7.24)

for each of the
(
`+ 1−

[
`
2

])(
1 +

[
`
2

])
pairs of integers (`1, `2) defined by the

r.h.s. of (7.20). All of the multiplets in (7.24) are typically long. In (7.23),
the N = 2 U(1)R ⊂ OSp(2|4) R-symmetry and the U(1)F flavour symmetry
are embedded into the N = 4 SO(4) ⊂ OSp(4|4) R-symmetry as indicated in
(7.10) and below that equation. As remarked below (7.11), these embeddings
are independent of the D = 4 supergravity scalars. For this reason, the
R- and flavour charges of the N = 2 multiplets in the spectrum do not
depend on the position on the CM. Indeed, the quantities ym1m2 and fm1m2

in (7.24) that govern these charges are simply given, in our conventions, by
the integers

ym1m2 = m1 +m2 , fm1m2 = m1 −m2 . (7.25)
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SGRAV2

[
`+ 2, ±`; 0

]
SVEC2

[
`+ 1, ±`; 0

]
SGINO2

[
`+ 5

2 , ±(`+ 1); 0
]

HYP2

[
`+ 2, ±(`+ 2); 0

]
Table 7.2: The protected (short, moduli independent) OSp(2|4) spectrum on the

CM at KK levels n = 0 and ` ≥ 0 even. At ` = 0, there is only one graviton and

one vector multiplets, both of them massless.

The dimensions E(1)
m1m2 , etc., in (7.24) do depend on the moduli (ϕ, χ) and,

except for Family III, do not follow in any obvious way from the N = 4
dimensions (7.21).

At particular points in the CM and for specific choices of quantum
numbers, the dimension of some of the multiplets in (7.24) might saturate
the corresponding N = 2 unitarity bounds. In those cases, these long
multiplets may be formally written in terms of short N = 2 multiplets.
In general, though, these accidental saturations will not lead to multiplet
protection: the dimensions will typically remain moduli dependent and the
short multiplets will tend to recombine into long ones. For the concrete
choice of quantum numbers

n = 0 , |m1 +m2| = 2`1 = 2`2 = ` , with ` even , (7.26)

which encompasses the N = 4 shortening condition (7.22), some of the
multiplet dimensions in (7.24) both saturate the N = 2 unitarity bound and
become moduli independent. This series, labelled by even `, is protected in
the sense that the multiplet dimensions are independent of the moduli. The
series includes, at ` = 0, a MGRAV2 and a MVEC2, respectively dual to the
energy-momentum tensor and the U(1)F flavour current of the CFT, as well
as two SGINO2’s and two HYP2’s. The latter contain the two real moduli
on the CM, dual to a superpotential deformation [183]. For each ` = 2, 4, . . .,
the protected series includes two of each of the possible short multiplets
of OSp(2|4), with `-dependent opposite R-charges. All of these protected
multiplets are U(1)F flavour neutral (the converse is not true, though). See
table 7.2 for a summary.

After these generalities, let us highlight the main features of the spectra
at specific loci within the two-parameter family.

Spectrum on the upper boundary

The complete KK spectrum on the upper boundary, Family I (7.5), of the
CM has already been determined in [140] for all KK levels ` and n (see also
[182] for the ` = n = 0 spectrum). Our presentation will therefore be brief.

The main new observation is that the KK spectrum on this locus follows
the algebraic pattern just presented, which is valid across the CM on general
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grounds. At fixed ` and for all n, the spectrum of OSp(2|4)×U(1)F multiplets
on the upper boundary of the CM contains contributions of the form (7.24),
with R- and flavour charges controlled by (7.25). Expressions may be found
for the multiplet dimensions in terms of the quantum numbers, adapted to
the branching (7.10), that appear in those expressions. For example, the
dimension on the upper boundary of the LGRAV2

[
E(1)
m1m2 , ym1m2 ; fm1m2

]
in

(7.24) can be written, suppressing the subindices on the l.h.s. for simplicity, as

E(1) = 1
2 +

[
9
4 + `(`+ 4) + 1

2(m1 +m2)2 +
(

2πn
T + (m1 −m2)χ

)2
− 1

2

(
|m1|+|m2|

)(
|m1|+|m2|+2`− 2`1 − 2`2 + 2

)
− 1

2

(
`− `1 − `2

)(
`− `1 − `2 + 2

)] 1
2
.

(7.27)

As usual, the χ dependence is introduced by a non-zero flavour, e.g. fm1m2

in (7.25) for the LGRAV2 dimension in (7.27). This dimension saturates the
relevant N = 2 unitarity bound for the choice of quantum numbers (7.26),
and the multiplet becomes short as indicated in table 7.2. For all other
multiplets in (7.24), we also find the protected shortening patterns of that
table and, for generic points in this family with only U(1)F×U(1)R symmetry,
we find no further shortenings beyond the protected ones in table 7.2.

At the points (7.13) and (7.14) on this boundary, the flavour symmetry
is enhanced to SU(2)F , and the spectrum accordingly recombines into rep-
resentations of OSp(2|4) × SU(2)F [140]. The algebraic structure and the
dimensions (in particular (7.27)) at these symmetry-enhanced points are the
same as in the rest of the upper boundary, only with U(1)F charges now
labelling SU(2)F representations. This reassembling into SU(2)F multiplets
occurs at every fixed S5 KK number `, with the same (at χ = 0) or possibly
different (at χ = π/T and χ = 2π/T ) S1 KK levels n [140]. Though all these
three (up to periodicity) locations exhibit SU(2)F symmetry enhancement,
only χ = 0 and χ = 2π/T have the same KK spectrum, and this differs from
that at χ = π/T [140]. These SU(2)F symmetry enhancements are somewhat
peculiar from the point of view of the parent N = 4 point of the CM in the
sense that SU(2)F is not a subgroup of its SO(4) R-symmetry group. The
symmetry breaking from SO(4) to SU(2)F proceeds by first breaking the
former into U(1)F ×U(1)R via (7.10) and then recombining back up through
(7.11). In fact, an alternate dimension formula adapted to the quantum
numbers of the latter branching also exists [140]. Similarly to the N = 4
point, the spectrum on the SU(2)F -enhanced points has (U(1)F -charged)
short multiplets [140] besides the ones in table 7.2: see the discussion around
equation (E.19) in appendix E.3.

Spectrum on Family III

At this one-parameter locus defined in (7.16), which contains the N = 4
SO(4) point at (7.12), the spectrum can be given in closed form at all KK
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levels. The contributions (7.24) to the spectrum at KK levels ` and n take
on the specific form:

`1⊕
m1=−`1

`2⊕
m2=−`2

{
LGRAV2

[
1 + Ef0 , y; f

]
⊕ LGINO2

[
1
2 + Ef+1

0 , y; f + 1
]
⊕ LGINO2

[
1
2 + Ef−1

0 , y; f − 1
]

⊕ LGINO2

[
3
2 + Ef+1

0 , y; f + 1
]
⊕ LGINO2

[
3
2 + Ef−1

0 , y; f − 1
]

⊕ LVEC2

[
Ef0 , y; f

]
⊕ LVEC2

[
1 + Ef+2

0 , y; f + 2
]
⊕ LVEC2

[
1 + Ef0 , y; f

]
⊕ LVEC2

[
1 + Ef−2

0 , y; f − 2
]
⊕ LVEC2

[
2 + Ef0 , y; f

]}
, (7.28)

with y = ym1m2 and f = fm1m2 given in (7.25), and dimensions E(1)
m1m2 ≡

1 + Ef0 , etc., specified as follows. The quantity Ef0 that determines the
dimension of a multiplet in (7.28) with U(1)F flavour f is simply obtained
from the N = 4 expression (7.21) with the same `, n, `1, `2 quantum numbers

by replacing the contribution
(

2πn
T

)2
there as

Ef0 = −1
2 +

√
9
4 + 1

2`(`+ 4) + `1(`1 + 1) + `2(`2 + 1) + 1
2

(
2πn
T + fχ

)2
.

(7.29)
At χ = 0, the contributions to the spectrum (7.28) with (7.29) straight-
forwardly recombine KK level by KK level into the contributions at the
N = 4 point, (7.19) with (7.21), via the branching (??) under the supergroup
embedding (7.23).

It is instructive to write the above expressions for a few particular cases.
The lowest lying, ` = n = 0, case contains simply (`1, `2) = (0, 0), and
becomes

MGRAV2

[
2, 0; 0

]
⊕ SGINO2

[
5
2 , ±1; 0

]
⊕ LGINO2

[
1
2

√
9 + 2χ2, 0; ±1

]
⊕ LGINO2

[
1 + 1

2

√
9 + 2χ2, 0; ±1

]
⊕ LVEC2

[
1
2 + 1

2

√
9 + 8χ2, 0; ±2

]
⊕ LVEC2

[
2, 0; 0

]
⊕ LVEC2

[
3, 0; 0

]
⊕ MVEC2

[
1, 0; 0

]
⊕ HYP2

[
2, ±2; 0

]
, (7.30)

after writing all possible long multiplets at the N = 2 unitarity bounds
in terms of short ones. This agrees with the gauged supergravity result,
(4.3), (4.4) of [183] with ϕthere = 1, after some dimensions there are square-
completed. In (7.30) and elsewhere, a flavour or R-symmetry charge with
± sign indicates the existence of multiplets with both charges. The short
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multiplets in (7.30) are those appearing in table 7.2 for ` = 0. In agreement
with the general discussion, the dimensions of all flavoured multiplets develop
a χ dependence and thus the multiplets remain necessarily long. Not all long
multiplets are flavoured, though, and those that are not have χ-independent
dimensions.

Spectrum at generic points on the interior

Away from the origin and the upper boundary, the spectrum on the CM
remains organised for all ` and n strictly in the collections (7.24) of OSp(2|4)×
U(1)F multiplets with moduli-independent charges controlled by (7.25). The
multiplet dimensions typically depend on both moduli.

Diagonalising analytically the KK mass matrices at generic locations of
ϕ and χ requires formidable computer power even at first S5 KK level ` = 1.
The tower with ` = 0 and n arbitrary is still tractable analytically, and so
are the first few KK levels of the graviton mass matrix. We report on these
results here. More generally, we have resorted to numerics to obtain the
multiplet spectrum on a (Euclidean) lattice on the CM, with the database
provided as an attachment to [F].

The spectrum at lowest, ` = n = 0, levels has already been computed
from gauged supergravity at generic points in the CM [183]:

MGRAV2

[
2, 0; 0

]
⊕ SGINO2

[
5
2 , ±1; 0

]
⊕ LGINO2

[
1
2 − s+ 1

2

√
e−2ϕ (2 + e2ϕ)2 + 2e2ϕχ2, 0; ±1

]
⊕ LGINO2

[
1
2 + s+ 1

2

√
e−2ϕ (2 + e2ϕ)2 + 2e2ϕχ2, 0; ±1

]
⊕ LVEC2

[
1
2 +

√
−7

4 + 4e−2ϕ + 2e2ϕχ2, 0;±2

]
⊕ LVEC2

[
1
2 +

√
1
4 + 2e2ϕ, 0; 0

]
⊕ LVEC2

[
1
2 +

√
33
4 − 2e2ϕ, 0; 0

]
⊕ MVEC2

[
1, 0; 0

]
⊕ HYP2

[
2, ±2; 0

]
.

(7.31)

with the shorthand s = 1
2

√
2− e2ϕ. This reduces to the ` = n = 0 spectra on

the upper boundary, [140, 182], and on Family III, (7.30). It also contains
the protected multiplets of table 7.2 at ` = 0 and no other short multiplet.
The dimensions of all the long multiplets depend on ϕ, and also on χ for
flavour-charged multiplets.

Still at ` = 0 but now at all n, (7.31) extends into the following tower of
generically long multiplets:

LGRAV2[1
2 + β1, 0; 0]
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⊕ LGINO2

[
1
2 − s+ β+

2 , 0; +1
]
⊕ LGINO2

[
1
2 − s+ β−2 , 0;−1

]
⊕ LGINO2

[
1
2 + s+ β+

2 , 0; +1
]
⊕ LGINO2

[
1
2 + s+ β−2 , 0;−1

]
⊕ LVEC2

[
1
2 + β+

3 , 0; 0
]
⊕ LVEC2

[
1
2 + β−3 , 0; 0

]
⊕ LVEC2

[
1
2 + β4, 0; 0

]
⊕ LVEC2

[
1
2 + β+

5 , 0; +2
]
⊕ LVEC2

[
1
2 + β−5 , 0; −2

]
, (7.32)

where we have introduced the shorthands

β2
1 = 9

4 + 1
2e

2ϕ
(

2πn
T

)2
,

(β±2 )2 = 1
4e
−2ϕ

(
2 + e2ϕ

)2
+ 1

2e
2ϕ
(

2πn
T ± χ

)2
,

(β±3 )2 = 17
4 + 1

2e
2ϕ
[(

2πn
T

)2 − 2
]
±
√

(4− e2ϕ)2 + 2 e2ϕ(2− e2ϕ)
(

2πn
T

)2
,

β2
4 = 1

4 + 2e2ϕ + 1
2e

2ϕ
(

2πn
T

)2
,

(β±5 )2 = −7
4 + 4 e−2ϕ + 1

2e
2ϕ
(

2πn
T ± 2χ

)2
. (7.33)

These dimensions allow for no point in (7.9) such that all values are rational
for any n, and this therefore excludes the presence of a free point.

At n = 0, the multiplet content (7.32) with (7.33) reduces to (7.31). It
also reproduces the ` = 0, n = 0,±1,±2, . . . towers at the upper boundary,
(4.25) of [140], and on Family III when e2ϕ = 2 and e2ϕ = 1, respectively. In
particular, as ϕ→ 0, χ→ 0, the multiplets in (7.32), (7.33) yield

LGRAV2

[
1
2 + β1, 0; 0

]
→ LGRAV2

[
1
2 + 1

2

√
9 + 2

(
2πn
T

)2
, 0; 0

]
,

LGINO2

[
1
2 − s+ β±2 , 0;±1

]
→ LGINO2

[
1
2

√
9 + 2

(
2πn
T

)2
, 0;±1

]
,

LGINO2

[
1
2 + s+ β±2 , 0;±1

]
→ LGINO2

[
1 + 1

2

√
9 + 2

(
2πn
T

)2
, 0;±1

]
,

LVEC2

[
1
2 + β±3 , 0; 0

]
→ LVEC2

[
1
2 ± 1 + 1

2

√
9 + 2

(
2πn
T

)2
, 0; 0

]
,

LVEC2

[
1
2 + β4, 0; 0

]
→ LVEC2

[
1
2 + 1

2

√
9 + 2

(
2πn
T

)2
, 0; 0

]
,

LVEC2

[
1
2 + β±5 , 0;±2

]
→ LVEC2

[
1
2 + 1

2

√
9 + 2

(
2πn
T

)2
, 0;±2

]
,

(7.34)
and thus reproduce via (E.18) the ` = 0, n = 0,±1, . . . tower at the N = 4
point, (7.20) with ` = `1 = `2 = 0. When e2ϕ → 2, χ → 0, the multiplet
content instead reproduces the ` = 0, n = 0,±1, . . . tower at SU(2)F point 1,
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(7.13), in agreement with [140]. This occurs through the recombinations

LGRAV2

[
1
2 + β1, 0; 0

]
→ LGRAV2

[
1
2 + 1

2

√
9 + 2

(
2πn
T

)2
, 0

]
⊗ [0],

LGINO2

[
1
2 ± s+ β+

2 , 0; +1
]

LGINO2

[
1
2 ± s+ β−2 , 0;−1

]} → 2 LGINO2

[
1
2 +

√
2 +

(
2πn
T

)2
, 0

]
⊗ [1

2 ],

LVEC2

[
1
2 + β+

3 , 0; 0
]

LVEC2

[
1
2 + β4, 0; 0

]} → 2 LVEC2

[
1
2 +

√
17
4 +

(
2πn
T

)2
, 0

]
⊗ [0] ,

LVEC2

[
1
2 + β+

5 , 0; +2
]

LVEC2

[
1
2 + β−3 , 0; 0

]
LVEC2

[
1
2 + β−5 , 0;−2

]
 → LVEC2

[
1
2 +

√
1
4 +

(
2πn
T

)2
, 0

]
⊗ [1] ,

(7.35)
in the notation of (7.18), as usual. In our conventions, the U(1)F ⊂ SU(2)F
charges are normalised to be integers so that, for example, the [ 1

2 ] of SU(2)F
breaks into ±1 U(1)F charges.

For the tower ` = 1 with any integer n, we can provide analytic expressions
for the dimensions of the LGRAV2 multiplets contained therein. From (7.20)
and (7.24), these gravitons are controlled by the SO(4) labels (`1, `2) given
by (1, 0) or (0, 1). Altogether, the multiplets are

2× LGRAV2

[
1
2 + γ1, 0; 0

]
⊕ LGRAV2

[
1
2 + γ+

2 , +1; +1
]
⊕ LGRAV2

[
1
2 + γ−2 , +1;−1

]
⊕ LGRAV2

[
1
2 + γ+

2 , −1; +1
]
⊕ LGRAV2

[
1
2 + γ−2 , −1;−1

]
, (7.36)

where we have defined

(γ1)2 = 25
4 + e2ϕ

2

[
(2πn
T )2 +1

]
, (γ±2 )2 = 23

4 +e−2ϕ+ e2ϕ

2 (2πn
T ±χ)2 . (7.37)

It is again instructive to see how these expressions reduce to the known
towers on the points with enhanced (super)symmetry. At the SO(4) point,
all of the multiplets in (7.36) degenerate with dimension

E0 = 1
2 +

√
27
4 + (2πn

T )2 . (7.38)

This agrees with (7.21), with ` = 1 and (`1, `2) = (1, 0) or (0, 1) there.
At the SU(2) point e2ϕ = 2, χ = 0, the graviton multiplets (7.36), (7.37)
recombine as

LGRAV2

[
1
2 + γ1, 0; 0

]
→ LGRAV2

[
1
2 +

√
29
4 + (2πn

T )2, 0
]
⊗ [0] ,

LGRAV2

[
1
2 + γ+

2 ,±1; +1
]

LGRAV2

[
1
2 + γ−2 ,±1;−1

]} → LGRAV2

[
1
2 +

√
25
4 + (2πn

T )2,±1
]
⊗ [1

2 ],

(7.39)
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Figure 7.2: N = 2 multiplets at KK levels ` = 1 and n = 0, . . . , 3 on Family II at
χ = 0, with T = 2π.

again matching the result in [140].
Moving up in S5 KK level, the multiplet content at the tower ` = 2

and any n follows from the (`1, `2) pairs (0, 0), (1, 1), (2, 0) and (0, 2) in
(7.24). Analytic expressions for these graviton multiplets where given in
[F], reducing appropriately again to the previously obtained formulae at the
points with enhanced (super)symmetry.

For low values of the KK levels up to ` = |n| = 3, we have recomputed
numerically the spectrum of graviton multiplets at a grid of locations in
the CM, and our results agree with the analytic expressions above. We
have also determined numerically on this grid the remaining contributions,
from LGINO2’s and LVEC2’s, to the KK spectrum at those levels. The
complete results were presented in separate files in [F] (see appendix A
therein). Here, we only provide figures 7.2 and 7.3 as graphical summaries
of those calculations, on the representative one-parameter locus on the CM
corresponding to Family II at χ = 0. These plots show the dependence on
the modulus ϕ of the dimensions of all long graviton, gravitino and vector
OSp(2|4) multiplets present in the spectrum at S5 levels ` = 1 (in figure 7.2)
and ` = 2 (in figure 7.3), for various choices of the S1 KK level n.

Our numerical results across the interior of the holographic CM are
compatible with the shortening patterns of table 7.2. Reciprocally, we do
not see any other accidental shortenings taking place, at least on our grid.
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Figure 7.3: N = 2 multiplets at KK levels ` = 2 and n = 0, . . . , 3 on Family II at
χ = 0, with T = 2π.

At level ` = 2 we indeed see moduli-independent multiplet dimensions given,
within numerical precision, by the integers specified in the table. Curiously,
we also see other integer multiplet dimensions arising on certain loci of the
CM, although these should not be regarded as particularly significant, as
they were obtained for fixed T = 2π. For example, at fixed e2ϕ = 3

2 and all
χ, there is a (flavour neutral) LVEC2 with dimension E0 = 3 that arises at
KK levels ` = 0 and n = 2. This multiplet contains classically marginal,
∆ = 3, scalars which, however, cannot become exactly marginal because the
multiplet lies above the unitarity bound and thus must be long. Also on
this locus, and on the e2ϕ = 6

5 , χ free locus, there are LGRAV2’s arising at
(`, n) = (2, 2) and (`, n) = (1, 3), respectively, with E0 = 4. The latter locus
has an LVEC2 with E0 = 6 at (`, n) = (3, 3), and there is also a LVEC2

with E0 = 4 at (`, n) = (2, 2) on the family e2ϕ = 8
5 with χ free. The points

(e2ϕ, χ) = (6
5 , 0) and (e2ϕ, χ) = (5

4 , 1) have LVEC2’s with E0 = 5 and E0 = 7,
arising in both cases at (`, n) = (3, 1). This list is presumably not exhaustive.
Finally, in the region 1 ≤ e2ϕ ≤ 2 for all χ, all relevant or marginal, ∆ ≤ 3,
scalars arise at KK levels up to ` = 2: at KK levels ` = 3, all scalars have
dimensions ∆ > 3 for all n. For 0 < e2ϕ < 1, there are ∆ ≤ 3 scalars even at
` = 3. Our numerical calculations fix T = 2π for simplicity, but the results
do not differ qualitatively from those with the more realistic k-dependent
choices for T in [28, 176].
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Our numerics show that for all values of the parameters within the ranges
specified in (7.9), the KK spectra are well behaved. As the singular limit
e2ϕ = 0 with χ arbitrary is approached, the multiplet dimensions become
independent of χ even for flavoured multiplets. The dimensions also become
independent of the S1 KK level n. For example, from (7.32), the ` = 0
spectrum on this asymptotic locus becomes, for all n = 0,±1,±2, . . .,

MGRAV2

[
2, 0; 0

]
⊕ SGINO2

[
5
2 , ±1; 0

]
⊕ 2× LGINO2

[
e−ϕ + . . . , 0; ±1

]
⊕ LVEC2

[
2e−ϕ + . . . , 0; ±2

]
⊕ LVEC2

[
1
2

(
1 +
√

33
)
, 0; 0

]
⊕ 2×MVEC2

[
1, 0; 0

]
⊕ 2×HYP2

[
2, ±2; 0

]
, (7.40)

after again writing all the multiplets at the N = 2 unitarity bound as short.
The dimensions of the flavour-neutral multiplets reduce to finite constants,
but those with flavour f appear to grow without bound as |f | e−ϕ. This
is apparent from (7.40) for the ` = 0, n = 0,±1,±2, . . . tower (the ellipses
in (7.40) denote subleading terms with respect to that behaviour), and is
further confirmed at higher `, at least for the graviton multiplets, by the
e2ϕ → 0 limit of (7.36). Note also that (7.40) contains an infinite tower,
n = 0,±1,±2, . . ., of massless scalars, vectors and gravitons.

7.2.2 The holographic conformal manifold

On the interior of the conformal manifold, it has not been possible to establish
in general the analytical functional dependence of the KK dimensions either
on the modulus ϕ or on the quantum numbers `, `1, `2 (or possibly others).
However, the dependence on χ of the dimension of a multiplet with flavour
charge f arising at S1 KK level n is always locked into the combination (c.f.
(7.33) and (7.37)) (

2πn
T + fχ

)2
, (7.41)

across the entire CM. This combination was noted in [140] to hold for the
KK spectrum on Family I, but it does extend at all other points in the CM.

There are two immediate consequences of the χ-dependence (7.41) of the
multiplet dimensions. Firstly, a multiplet in the spectrum is flavour neutral
if and only if its dimension is independent of the modulus χ. Secondly,
the dependence (7.41) establishes the periodic behaviour of the multiplet
dimensions in χ advertised in (7.9) and depicted in figure 7.1. Indeed, for
all fixed S5 KK level `, the dimension of any given multiplet with flavour f ,
evaluated at χ = χ0 and S1 KK level n, coincides with the dimension of the
same multiplet evaluated at χ = χ0 + 2π

T and S1 level n′, with

n′ = n− f . (7.42)

Such integer n′ always exists given n and f because, as (7.24), (7.25) show,
the flavour charges are also integer (in our conventions). As noted in footnote
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4 of this chapter, only the dimensions, but not the multiplet content (7.24)
itself, depend on n. For this reason, the entire contribution (7.24) to the
spectrum at KK level ` goes back to itself as χ ranges from 0 to 2π/T . Only
the S1 KK level needs to be readjusted as χ reaches each endpoint of its
cycle. As remarked in [140], this mixture of KK levels is reminiscent of the
‘space invaders scenario’ described in [24] and also encountered in chapter 5.

To see how this mechanism works, let us analyse the recovery of the
N = 4 point [167] in detail. At χ = 0, (7.30) reduces to the ` = n = 0
spectrum at the N = 4 point [167], branched out under (7.23) into N = 2
representations through (E.24). At χ = 2π/T the N = 4 spectrum at lowest
KK levels is also reproduced, but with reshuffled S1 levels. In order to make
this more apparent, it is convenient to extract the KK tower with ` = 0 and
n = 0,±1,±2, . . ., for Family III (7.28), (7.29). The result,

LGRAV2

[
1
2 + 1

2

√
9 + 2

(
2πn
T

)2
, 0; 0

]
⊕ LGINO2

[
1
2

√
9 + 2

(
2πn
T ± χ

)2
, 0;±1

]
⊕ LGINO2

[
1 + 1

2

√
9 + 2

(
2πn
T ± χ

)2
, 0;±1

]
⊕ LVEC2

[
1
2 + 1

2

√
9 + 2

(
2πn
T ± 2χ

)2
, 0;±2

]
⊕ LVEC2

[
1
2 + 1

2

√
9 + 2

(
2πn
T

)2
, 0; 0

]
⊕ LVEC2

[
3
2 + 1

2

√
9 + 2

(
2πn
T

)2
, 0; 0

]
⊕ LVEC2

[
− 1

2 + 1
2

√
9 + 2

(
2πn
T

)2
, 0; 0

]
,

(7.43)

reduces to (7.30) at n = 0 and extends that equation to all other n. Here and
elsewhere, the presence in a multiplet of two labels with ± signs indicates
the existence of two (not four) multiplets with correlated upper and lower
signs (note incidentally that, at |n| 6= 0 fixed, each of these appears twice like
any other multiplet, once for each sign of n). All the multiplets present in
(7.43) are generically long, and the dimension of those with non-zero U(1)F
charge develops a χ dependence, as usual. At χ = 0, (7.43) reproduces
the ` = 0, n = 0,±1,±2, . . . tower at the N = 4 point, (7.19)-(7.21) with
` = `1 = `2 = 0 therein, through the branching (E.18). At χ = 2π/T , (7.43)
also recombine into N = 4 multiplets through (E.18), possibly retrieved from

different KK levels n. For example, the LGINO2

[
1
2

√
9 + 2

(
2πn
T ± χ

)2
, 0; ±1

]
multiplets in (7.43) are indeed long at χ = 0, but at χ = 2π/T become
massless for KK levels n = ∓1. For that value of χ, these join the flavour-
neutral (and thus χ-independent) MGRAV2[2, 0; 0] and MVEC2[1, 0; 0] that
arise at level n = 0 in (7.30) into an MGRAV4[1, 0, 0] through (E.24). See
figure 7.4 for a graphical account of these ‘space invasion’ patterns.

By the above analysis, the supermultiplets on Family III recombine into
N = 4 supermultiplets at both endpoints of the χ range (7.9). It is also
informative to look at the individual states contained in those multiplets,
and see how two gravitino states become ‘massless’ (or rather, acquire AdS4

mass mL = 1 so that their dimension becomes ∆ = 5
2) at χ = 2π/T , thus

enhancing the generic N = 2 supersymmetry on Family III to N = 4. Four

133



Part II Chapter 7 – Applications

LVEC2[ 3
2 + 1

2 9 + 2( 2π
T )2, 0; 0]

LGRAV2[ 1
2 + 1

2 9 + 2( 2π
T )2, 0; 0]

LGINO2[ 1
2 9 + 2( 2π

T )2, 0; ± 1]

LVEC2[ 3
2 + 1

2 9 + 2( 2π
T )2, 0; 0]

LVEC2[ 1
2 + 1

2 9 + 2( 2π
T )2, 0; 0]

LVEC2[ 1
2 + 1

2 9 + 2( 2π
T )2, 0; ± 2]

LVEC2[− 1
2 + 1

2 9 + 2( 2π
T )2, 0; 0]

LGINO2[1+ 1
2 9 + 2( 2π

T )2, 0; ± 1]

MGRAV2[2, 0; 0]

LGRAV2[ 1
2 + 1

2 9 + 2( 2π
T )2, 0; 0]

LVEC2[− 1
2 + 1

2 9 + 2( 2π
T )2, 0; 0]

LVEC2[ 3
2 + 1

2 9 + 2( 2π
T )2, 0; 0]

LGINO2[ 1
2 9 + 2( 2π

T )2, 0; ± 1]

LVEC2[2, 0; 0]

LGINO2[ 3
2 , 0;− 1]

LGINO2[1+ 1
2 9 + 8( 2π

T )2, 0; + 1]

MGRAV2[2, 0; 0]

LVEC2[ 1
2 + 1

2 9 + 2( 2π
T )2, 0; 0]

LGINO2[ 1
2 9 + 8( 2π

T )2, 0; + 1]

LGRAV2[ 1
2 + 1

2 9 + 2( 2π
T )2, 0; 0]

(n = 2, χ = 0)

(n
=1

,χ
=0

)

(n
=0

,χ
=0

)

(n
=−

1,
χ
=0

)

(n = 3, χ = 0) (n = 3, χ = 2π
T )

(n = 2, χ = 2π
T )

(n = − 2, χ = 0) (n = − 2, χ = 2π
T )

(n = − 3, χ = 0) (n = − 3, χ = 2π
T )

( n=1,χ=
2πT )

( n=0,χ=
2πT )

( n=−1,χ=
2πT )

HYP2[2, ± 2; 0]

LGINO2[ 5
2 , 0;− 1]

LVEC2[ 1
2 + 1

2 9 + 8( 2π
T )2, 0; + 2]

LVEC2[ 1
2 + 1

2 9 + 2( 2π
T )2, 0;− 2]

LVEC2[− 1
2 + 1

2 9 + 2( 2π
T )2, 0; 0]

SGINO2[ 5
2 , ± 1; 0]

LGINO2[1+ 1
2 9 + 2( 2π

T )2, 0; ± 1]

LGINO2[ 1
2 9 + 2( 2π

T )2, 0; ± 1]

LVEC2[3, 0; 0]

MVEC2[1, 0; 0]

HYP2[2, ± 2; 0]

LVEC2[ 3
2 + 1

2 9 + 2( 2π
T )2, 0; 0]

LGINO2[ 3
2 , 0; + 1]

LGINO2[1+ 1
2 9 + 8( 2π

T )2, 0;− 1]
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2 + 1

2 9 + 2( 2π
T )2, 0; 0]

LGINO2[ 1
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T )2, 0; 0]

LGINO2[ 5
2 , 0; + 1]
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2 9 + 8( 2π
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LVEC2[ 1
2 + 1
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LVEC2[2, 0; 0]
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LGINO2[1+ 1
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Figure 7.4: ‘Space invasion’ patterns for the reassembling of the OSp(2|4)×U(1)F
multiplets present in the KK spectrum on Family III, (7.16), within the CM at
KK levels ` = 0, n = 0,±1,±2, . . ., into OSp(4|4) multiplets at the same S5 level
` = 0 but possibly different S1 level n, at χ = 0 (left) and χ = 2π/T (right). The
boxes correspond to the multiplet content in (7.28) with `1 = `2 = 0 and n fixed
as indicated. Black lines connect χ-independent, flavour-neutral N = 2 multiplets.
Blue and red lines respectively connect N = 2 multiplets that need to be retrieved
from one or two higher (or lower) S1 KK levels.
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Figure 7.5: Dimensions ∆ (dashed blue lines) of individual gravitino (left) and
vector (right) states with flavour f in the spectrum on Family III, at KK levels
` = 0, n = 1, as functions of χ. The solid red lines stand at the massless threshold.
At χ = 0, the SO(4) representations from which the flavoured states branch down
are shown.

KK vector states must also become massless, ∆ = 2, in order for the bosonic
symmetry to get enhanced from U(1)F × U(1)R to SO(4). The evolution
with χ of these gravitino and vector mass eigenstates on Family III, as they
arise from the diagonalisation of the ` = 0, n = 1 mass matrices of [134,
136], is depicted in figure 7.5. The left plot indeed identifies one gravitino
with flavour f = −1 that branches out from the ( 1

2 ,
1
2) SO(4) mode with

∆ = 1 +
√

9
4 + 2π2

T 2 at χ = 0 (and T = 2π in the plot), and reaches χ = 2π/T

with ∆ = 5
2 . The other relevant gravitino, not depicted, has f = 1 and

becomes massless at n = −1. A similar story unfolds for the vectors on the
right plot. Two vector states (superimposed in the plot) with flavour f = −1
branch out from the (1, 0) + (0, 1) of SO(4) at χ = 0 and become massless
at χ = 2π/T . Two more vectors, not depicted, with flavour f = 1 become
massless for n = −1, while the two vectors that gauge U(1)F ×U(1)R stay
massless all along.

Type IIB uplift of Family III

Some aspects of the holographic CM, like the symmetry enhancement (7.14)
and the periodicity in χ determined through the KK spectra cannot be seen
in D = 4 gauged supergravity, which has fixed n = 0, but are an intrinsic
feature of the fully-fledged type IIB ten-dimensional solution. Determining
the type IIB uplift of the entire two-parameter family of D = 4 gauged
supergravity vacua of [183] is beyond the scope of this work. Previously
known uplifts into type IIB S-folds of points or loci in the holographic CM
include that of the N = 4 SO(4) point [28], the N = 2 SU(2)F × U(1)R
point [182], and Family I [140]. Here we will give the uplift of Family III
to explain the N = 4 SO(4) (super)symmetry enhancements (7.12) under
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complete cycles of χ.
The type IIB uplift of any solution of D = 4 N = 8 [SO(6)× SO(1, 1)] n

R12-gauged supergravity may be obtained using the ExFT approach reviewed
in section 6.2.2 with the explicit formulae of [28]. However, we have not
followed this route to obtain the type IIB solutions corresponding to Family
III. Instead, we have used the following reverse engineering approach. Firstly,
we wrote an educated guess for the ten-dimensional metric, and confirmed
it by reproducing the graviton sector of the KK spectrum of section ??
using the formalism of [114]. Secondly, we wrote ansätze for the remaining
supergravity fields, and enforced the type IIB field equations on the full
configuration. In retrospect, the successful reproduction of the graviton
spectrum for Family III using [114], together with the fact that all KK modes
close into OSp(2|4)×U(1)F representations, provides a solid crosscheck on
our implementation of the ExFT spectral techniques [133, 136, 137] presented
in section 6.2.3.

In order to write the type IIB solutions, it is convenient to employ the
same coordinates, η on S1 and (r, θi, φi), i = 1, 2, on S5, used in [28] to
express the N = 4 SO(4)-invariant solution. These coordinates range as

0 ≤ η < T , 0 ≤ r ≤ 1 , 0 ≤ θi ≤ π
2 , 0 ≤ φi < 2π , i = 1, 2 .

(7.44)
In particular, η and φi are periodic with periods T and 2π,

η ∼ η + T , φi ∼ φi + 2π , i = 1, 2 . (7.45)

It is also helpful to introduce the following χ-dependent one-

e1 = dφ1 − χdη , e2 = dφ2 + χdη , (7.46)

and two-forms

v1 = r2

1+2r2
sin θ1 dθ1 ∧ e1 , v2 = 1−r2

3−2r2
sin θ2 dθ2 ∧ e2 . (7.47)

The relative signs in (7.46) have been chosen to match the flavour group in
(7.10), but any other choice of signs will also yield a solution of the equations
of motion by reparameterisation invariance.

With these definitions, the type IIB uplift of D = 4 Family III of vacua
can be written as follows. The metric reads

ds2
10 = L2∆−1

[
ds2(AdS4) + 2dη2 +

2dr2

1− r2

+
2r2

1 + 2r2

[
dθ2

1 + sin2θ1 e
2
1

]
+

2(1− r2)

3− 2r2

[
dθ2

2 + sin2θ2 e
2
2

]]
,

(7.48)

and the self-dual five-form is

F(5) = L4
[
6 vol4∧

(4

3
rdr−dη

)
+

6√
1− r2

dr∧v1∧v2+ 8r
√

1− r2 v1∧v2∧dη
]
.

(7.49)
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Here, ds2(AdS4) and vol4 are the metric and volume form on unit radius
AdS4 space and L is related both to the electric gauge coupling g of the
D = 4 N = 8 supergravity as L2 ≡ 1

2g
−2, and to the dual gauge group rank

N as L4 ∼ N upon flux quantisation. The warp factor depends only on the
coordinate r,

∆ =
(

(1 + 2r2)(3− 2r2)
)− 1

4
, (7.50)

while the dilaton and axion depend also on η:

e−Φ =

√
2
√

(1 + 2r2)(3− 2r2)

(3 + 2r3) cosh 2η + 4r2 sinh 2η
,

C(0) =
4r2 cosh 2η + (3 + 2r3) sinh 2η

(3 + 2r3) cosh 2η + 4r2 sinh 2η
.

(7.51)

Finally, the Neveu-Schwarz and Ramond-Ramond three-form field strengths
are

H(3) = 4L2
[
− 3−

1
4 e−η

(
(3 + 2r2)

(1 + 2r2)
dr − rdη

)
∧ v1

+ 3
1
4 eη

(
(5− 2r2)

(3− 2r2)

r√
1− r2

dr ∧ v2 −
√

1− r2 v2 ∧ dη
)]

,

F(3) = F̃(3) − C(0)H(3) , (7.52)

where

F̃(3) = 4L2
[
3−

1
4 e−η

(
(3 + 2r2)

(1 + 2r2)
dr − r dη

)
∧ v1

+ 3
1
4 eη

(
(5− 2r2)

(3− 2r2)

r√
1− r2

dr ∧ v2 −
√

1− r2 v2 ∧ dη
)]

.

(7.53)

We also note the following expressions for the two-form potentials,

B(2) = 4L2
(
− 3−

1
4 e−ηr v1 − 3

1
4 eη

√
1− r2 v2

)
,

C(2) = 4L2
(

3−
1
4 e−ηr v1 − 3

1
4 eη

√
1− r2 v2

)
, (7.54)

such that H(3) = dB(2) and F̃(3) = dC(2).
We have verified that (7.48)-(7.53) solve the equations of motion and

Bianchi identities of type IIB supergravity, as given in e.g. appendix A of
[188]. This configuration thus defines a one-parameter family, labelled by
the constant χ, of non-geometric S-fold solutions of type IIB supergravity.
At both endpoints of the interval in (7.44) for the S1 coordinate η, the fields
(7.51), (7.52) charged under SL(2,R) (or SL(2,Z) in the full string theory),
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are related by an SL(2,R) (or SL(2,Z)) S-duality transformation, exactly as
in [28, 176]. Further, as argued in the first of these references, supersymmetry
is not upset by the uplifting process as long as such S-duality transformation
lies in the hyperbolic SL(2,Z) conjugacy class. Thus, the type IIB solution
(7.48)-(7.53) inherits the generic N = 2 supersymmetry of the D = 4 Family
III solution it uplifts from. It also contains the N = 4 SO(4) point at χ = 0
and at the other locations specified below.

The type IIB solution (7.48)-(7.53) depends on the parameter χ only
through the one-forms (7.46) (and the two-forms (7.47) via their dependence
on the former). For all values of χ and the specified coordinate ranges (7.44),
the solution extends globally over S5 × S1, with the S5 trivially fibred over
S1. At χ = 0, our solution reduces to the N = 4 SO(4)-invariant solution on
S5 × S1, (3.35)-(3.41) of [28], upon identifying Yp, Zp, p = 1, 2, 3 there as

{Y1 , Y2 , Y3} = r {cos θ1 , sin θ1 cosφ1 , sin θ1 sinφ1} ,

{Z1 , Z2 , Z3} =
√

1− r2 {cos θ2 , sin θ2 cosφ2 , sin θ2 sinφ2} .
(7.55)

This is the type IIB counterpart of the fact that the D = 4 Family III reduces
to the four-dimensional N = 4 SO(4) vacuum of [167] when χ = 0. For
this value of χ, the brackets in the internal portion of the ten-dimensional
metric (7.48) become the round metrics on two two-spheres, S2

i , i = 1, 2. In
turn, the two-forms (7.47) become the volume forms vol(S2

i ), up to overall
functions of r. The χ = 0 metric on S5 is thus a deformation of the round,
Einstein metric on the join of the two S2

i , i = 1, 2, such that only the
SO(4) ∼ SU(2)1 × SU(2)2 subgroup of SO(6) in (7.10) is preserved. Each
SU(2)i rotates each S2

i , for i = 1, 2. The SO(2) isometry of S1 is broken by
the supergravity fields.

When χ 6= 0, the symmetry of the solution (7.48)–(7.53) generically
reduces to the U(1)1×U(1)2 defined in (7.10), with U(1)i generated by ∂φi for
i = 1, 2. Equivalently, the generic symmetry when χ 6= 0 is the U(1)R×U(1)F
group generated by the diagonal and anti-diagonal combinations

∂R = ∂φ1 + ∂φ2 , ∂F = ∂φ1 − ∂φ2 , (7.56)

as specified below (7.10). Interestingly, the change of coordinates

φ1 −→ φ′1 = φ1 − χη , φ2 −→ φ′2 = φ2 + χη , (7.57)

with η, r, θi, i = 1, 2, untouched, can be used to eliminate χ locally from
the solution. Generically, though, the change (7.57) is not globally well
defined, i.e. is not a diffeomorphism, and does not generically allow one to
eliminate χ globally. For specific values of χ, the change (7.57) is globally
well defined: these are the values that render φ′i periodic, φ′i ∼ φ′i + 2π.
Given the periods (7.45) of the original coordinates, this induces a periodic
identification χ ∼ χ+ 2π/T such that, for χ = 2πn′/T , with n′ integer, the
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solution (7.48)-(7.53) becomes diffeomorphic to the χ = 0, N = 4 SO(4)
solution. This explains the compactness of the χ direction for Family III
observed below (7.43).

7.3 Universality of traces

The mass formulae discussed in section 6.2.3 lead to spectra which exhibit
a curious phenomenon of universality. In this section we will first use the
explicit higher-dimensional solutions available at the SU(3)-invariant sector
of the D = 11 and type II uplifts of the gaugings in figure 3.1 to crosscheck
again the mass matrices in chapter 6 using the alternate approach based on
equation (4.7). Precise combinations of these masses, which we name traces
following the intuitions of chapter 6, are shown to be common to different
solutions of different theories when they preserve the same (super)symmetry
at the gauged supergravity level. The discussion is extended for lower-spin
fields for the first time, where this form of universality is still present.

7.3.1 Graviton spectra in string theory

The KK graviton spectrum about the AdS4 solutions of D = 11 supergravity
and type IIB supergravity that uplift from critical points of SO(8) supergrav-
ity and dyonic

(
SO(6) × SO(1, 1)

)
n R12 supergravity with at least SU(3)

symmetry can be computed using (4.7). Around the solutions of massive
type IIA that uplift from the dyonic ISO(7) gauging this computation was
performed in [143], and we bring here their results for convenience.

We find it useful to collect here some facts about the SU(3)-invariant
sector of the three different gaugings of D = 4 N = 8 supergravity consid-
ered in the following. The field content is of course the same for all the
gaugings considered but the interactions differ. The SU(3)-invariant sector
contains three scalars, ϕ, φ, a, and three pseudoscalars χ, ζ, ζ̃. All these are
coordinates on the submanifold (3.53),

SU(1, 1)

U(1)
× SU(2, 1)

SU(2)×U(1)
(7.58)

of E7(7)/SU(8), with the first factor parametrised by (ϕ, χ), and the second

by (φ, a, ζ, ζ̃). The Lagrangian in this sector is (3.54), with the precise form
of the minimal (Dφ, etc.) and non-minimal (RΛΣ, IΛΣ) couplings of the
scalars to the vectors not needed in the following. The most relevant object
for us is the scalar potential V , which fixes the radius L of its AdS4 vacua
(for which V0 < 0 at a critical point) as

L2 = − 6

V0
. (7.59)
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N G0 χ e−ϕ e−φ a ζ ζ̃ V0

1 SU(3) 0
√

5m
3g

√
5
6 0 1√

3
1√
3
− 648g3

25
√

5m

0 SO(6)v 0 m√
2g

1 0 0 0 −8
√

2g3

m

0 SU(3) χ m√
2g

(1− a2)1/4 a 0 0 −8
√

2g3

m

Table 7.3: All critical loci of D = 4 N = 8 [SO(6) × SO(1, 1)] n R12-gauged
supergravity with at least SU(3) invariance. All of these are AdS. For each point we
give the residual supersymmetry N and bosonic symmetry G0 within the full N = 8
theory, their location in the parametrisation that we are using and the cosmological
constant V0. The N = 0 SO(6)v vacuum is the χ = a = 0 point of the N = 0 SU(3)
critical locus.

The potential is different for each gauging. For the SU(3)-invariant sector of
the purely electric SO(8) gauging [73], the potential in our conventions was
already given in (3.58). For the dyonic ISO(7) gauging the, SU(3)-invariant
potential reads [74]

V = 6g2
[ 1

12
e4φ−3ϕX3 + e2φ−ϕ

(
X2(Y − 1)−XY

)
+ eϕ

(
3XY (Y − 1)− 2Y 2

)]
− gmχe3ϕ+2φ

[
6(Y − 1) + e2φ−2ϕ(X − 1)

]
+

1

2
m2e3ϕ+4φ . (7.60)

Finally, the SU(3)-invariant potential [156] for the [SO(6)× SO(1, 1)] nR12

gauging is

V = 6 g2eϕ
[
3XY (Y − 1)− 2Y 2

]
+ 6 gmχe3ϕ+2φ(Y − 1)

[
1− e−4φ

(
Y 2 + Z2

) ]
+

1

2
m2e3ϕ

[
e4φ + e−4φ

(
Y 2 + Z2

)2 − 2
(
Y 2 − 2Y + Z2

) ]
, (7.61)

In these potential, as in (3.44)-(3.46), g and m are the electric and magnetic
gauge couplings of the parent N = 8 supergravities. For the latter two
gaugings at hand, these can be set equal, m = g, without loss of generality
[76], which we have done. We have also employed the shorthand notations
in (3.56) for frequent combinations of the scalars.

The AdS vacua of the SO(8), ISO(7) and [SO(6)× SO(1, 1)]nR12 N = 8
gaugings that preserve at least the SU(3) subgroup of those gauge groups
were respectively investigated in [74, 77, 156]. In our conventions, these
correspond to extrema of the scalar potentials (3.58), 7.60 and (7.61). The
location of these vacua in scalar space, in the notation that we are using,
can be respectively found in table 3.2, table 3 of [74] (with labels + there
replaced with labels v here), and table 7.3.
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M-theory configurations

The class of AdS4 solutions of D = 11 supergravity [16] that we are interested
in was the subject of section 3.2.2. These solutions are invariant, both in
D = 4 and in D = 11, under a number of subgroups of SO(8) larger than
SU(3), and display supersymmetries N = 0, 1, 2, 8. See table 3.2 for a
summary. The entire spectrum about the Freund-Rubin N = 8 SO(8)-
invariant AdS4 solution [92] has long been known [105, 110, 165] (see also [24]
for a review) thanks to its supersymmetry and homogeneity. The spectrum
of gravitons about the N = 2 SU(3)× U(1)c-invariant solution [31] is also
known [93]. Here we compute the graviton spectra for the four other AdS4

solutions in this sector.
The starting point for our analysis is the local geometries presented

in section 3.2.2. In order to simplify the calculations, we will focus on
two disjoint further subsectors with symmetries G2 and SU(4)c larger than
SU(3). We will obtain the graviton spectra for arbitrary constant values of
the D = 4 scalars in those sectors. Finding the actual spectra about each
individual solution will simply entail an evaluation of those formulae at the
corresponding scalar vevs.

G2-sector The G2-invariant sector of the D = 4 SO(8) supergravity is
attained from the SU(3) sector through the identifications (3.91). It contains
an SL(2,R)/SO(2) dilaton-axion pair (ϕ, χ), and its uplift was given in
(3.137). The warp factor and internal d = 7 geometry that feature in (4.7)
are given by

e2A = e−ϕX1/3∆
2/3
1 L2 ,

ds̄2
7 = g−2L−2

(
e3ϕX−3dβ2 + eϕ∆−1

1 sin2 β ds2(S6)
)
.

(7.62)

Here β is an angle on S7, with 0 ≤ β ≤ π, and ds2(S6) is the round Einstein
metric on the unit radius S6. The dilaton ϕ appears explicitly in (7.62) and
the axion χ appear both explicitly and through the combinations X defined
in equation (3.56) and

∆1 = X
(
e2ϕ sin2 β + e−2ϕX2 cos2 β

)
. (7.63)

The geometry (7.62) is in fact invariant under the SO(7)v that rotates the
round S6. When χ 6= 0, the symmetry of the full D = 11 configuration is
broken to G2 by the supergravity four-form field strength (3.139).

For the class of geometries (7.62), the differential equation (4.7) becomes[
e−3ϕX3(∂2

β + 6 cotβ∂β) + e−ϕ∆1 sin−2 β�S6

]
Y = −g−2M2 Y , (7.64)

where �S6 is the S6 Laplacian. Using separation of variables,

Y = f Yk , (7.65)
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where f = f(β) depends only on β and Yk are the S6 spherical harmonics,

�S6Yk = −k(k + 5)Yk , (7.66)

the PDE (7.64) reduces to an ODE for f(β),

e−3ϕX3(f ′′(β)+6 cot βf ′(β))−e−ϕ∆1 sin−2 β k(k+5)f(β) = −g−2M2f(β) ,
(7.67)

where a prime denotes derivative with respect to β. Finally, it is convenient
to introduce a further change of variables,

u = cos2 β , f(u) = (1− u)
k
2H(u) . (7.68)

The independent variable u now ranges in 0 ≤ u ≤ 1, covering this interval
twice given the range of β below (7.62). In the variables (7.68), the differential
equation (7.67) takes on the standard hypergeometric form

u(1− u)H ′′ + (c− (1 + a+ + a−)u)H ′ − a+a−H = 0 , (7.69)

with

a± = 1
2(k + 3)∓ 1

2

√
9 + e3ϕX−3 g−2M2 + (1− e4ϕX−2)k(k + 5) ,

c = 1
2 .

(7.70)

The two linearly independent solutions to (7.69) are given by the hyper-
geometric functions

2F1(a+, a−, c;u) and u1−c
2F1(1 + a+ − c, 1 + a− − c, 2− c;u) . (7.71)

Both solutions are regular at u = 0 for all values of the parameters (7.70). At
u = 1, however, regularity imposes restrictions on the parameters. Regularity
of the first solution in (7.71) demands a+ = −j with j a non-negative integer.
Bringing this condition to (7.70), we find a first tower of KK graviton squared
masses:

g−2M2
(1) j,k = e−3ϕX3(2j + k)(2j + k + 6) + e−ϕX(e2ϕ − e−2ϕX2)k(k + 5) .

(7.72)
The corresponding eigenfunctions are given by (7.65), (7.68), with H(u)
given by the first choice in (7.71), namely

Y(1) j,k = Yk sink β

j∑
s=0

(−1)s
(
j

s

)
(j + k + 3)s

(1
2)s

cos2s β (7.73)

(no sum in k), where

(x)s =

{
1 , if s = 0
x(x+ 1) · · · (x+ s− 1) , if s > 0

(7.74)
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is the Pochhammer symbol. Regularity of the second solution in (7.71) at
u = 1 in turn requires 1 + a+ − c = −j, with j again a non-negative integer.
Bringing this condition to (7.70), we find a second tower of KK graviton
squared masses:

g−2M2
(2) j,k = e−3ϕX3(2j+1+k)(2j+1+k+6)+e−ϕX(e2ϕ−e−2ϕX2)k(k+5) .

(7.75)
The associated eigenfunctions are now given by (7.65), (7.68), with H(u)
given by the second choice in (7.71):

Y(2) j,k = Yk sink β

j∑
s=0

(−1)s
(
j

s

)
(j + k + 4)s

(3
2)s

cos2s+1 β . (7.76)

The eigenvalues (7.72) and (7.75) actually correspond to a unique tower
of KK graviton masses. This is made apparent by introducing a new quantum
number n defined as

n =

{
2j + k , for the first branch
2j + 1 + k , for the second branch .

(7.77)

In terms of (n, k), (7.72) and (7.75) can be combined into the single KK
tower:

g−2M2
n,k = e−3ϕX3n(n+ 6) + e−ϕX(e2ϕ − e−2ϕX2)k(k + 5) , (7.78)

which is our final result. The quantum numbers range here as

n = 0, 1, 2, . . . , k = 0, 1, . . . , n . (7.79)

Only n ranges freely over the non-negative integers, due to its definition
(7.77)) in terms of the non-negative but otherwise unconstrained integer j.
The range of k is limited to k ≤ n by (7.77). At fixed n, the eigenvalue (7.78)
occurs with degeneracy

Dk,7 ≡ dim [k, 0, 0]SO(7) , (7.80)

where, more generally, Dk,N is the dimension of the symmetric traceless
representation [k, 0, . . . , 0] of SO(N),

Dk,N =

(
k +N − 1

k

)
−
(
k +N − 3

k − 2

)
(7.81)

= 1
(N−2)! (2k +N − 2)(k +N − 3)(k +N − 4) · · · (k + 2)(k + 1) ,

for k ≥ 2 and

D0,N = 1 , D1,N = N , for all N = 2, 3 . . . (7.82)
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It is also useful to note that

Dn,N−1 = Dn,N −Dn−1, N , for all n = 1, 2, . . . and all N = 2, 3 . . .
(7.83)

The eigenfunctions (7.73), (7.76) can be similarly combined into

Yn,k = Yk sink β

[n−k2 ]∑
s=0

(−1)s
([n−k

2

]
s

)
(
[
n−k

2

]
+ k + 3 + hn,k)s

(1
2 + hn,k)s

cos2s+hn,k β ,

(7.84)
where [·] means integer part and we define the symbol hn,k as

hn,k = n− k − 2

[
n− k

2

]
=

{
0 , n− k even (for the first branch)
1 , n− k odd (for the second branch) .

(7.85)

At fixed n and k, the eigenfunctions (7.84) span the [k, 0, 0] representation
of SO(7)v. Moreover, it can be checked that these eigenfunctions at fixed n
actually span the full symmetric traceless representation [n, 0, 0, 0] of SO(8).
In other words, the eigenfunctions (7.84) turn out to be simply the SO(8)
spherical harmonics of S7, branched out into SO(7)v representations through

[n, 0, 0, 0]
SO(7)v−→

n∑
k=0

[k, 0, 0] . (7.86)

This is consistent with the quantum number ranges (7.79). This is also
compatible with the internal geometry (7.62) being topologically S7: it can
be continuously deformed into the round SO(8)-invariant geometry by setting
ϕ = χ = 0. These arguments suggest that the spectrum (7.78), (7.84) is
in fact complete. Thus, the quantum number n can be regarded as the
Kaluza-Klein level in (6.37), as it coincides with the unique integer that
characterises the KK spectrum of the N = 8 SO(8)-invariant Freund-Rubin
solution.

SU(4)c-sector The SU(4)c-invariant sector of SO(8)-gauged supergravity
contains three pseudoscalars: χ, ζ, ζ̃. In the Iwasawa parametrisation of the
appendix, the SU(3)-invariant dilatons ϕ, φ become identified in terms of
the pseudoscalars via equation (3.83). With the understanding that ϕ, φ
depend on the independent fields χ, ζ, ζ̃, the former can be conveniently
used to parametrise the SU(4)c-invariant sector, as the resulting expressions
are more compact. The embedding of this sector into the D = 11 warp factor
and internal metric [78] given in (3.133) read

e2A = e
4
3
φ+ϕ L2 , ds̄2

7 = g−2L−2
[
e−2φ−ϕds2(CP3) + e−3ϕ(dψ + σ)2

]
.

(7.87)
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Here, ds2(CP3) is the Fubini-Study metric on the complex projective space,
σ a one-form potential for the Kähler form on the latter, and 0 ≤ ψ ≤ 2π a
coordinate on the Hopf fibre of S7. Away from the SO(7)c-invariant locus,
(3.89), where the symmetry is enhanced accordingly, the geometry (7.87) is
invariant under SU(4)c × U(1), with U(1) generated by ∂ψ. This U(1) is
broken by the D = 11 supergravity four-form (3.135).

The D = 11 configuration (7.87) is homogeneous: the warp factor depends
only on the D = 4 scalars and not on the S7 coordinates, and the metric ds̄2

7

corresponds to a homogeneous stretching of the S7 geometry along its Hopf
fibre. Therefore, the differential equation (4.7) simplifies for this geometry as[(

e3ϕ − e2φ+ϕ
)
∂2
ψ + e2φ+ϕ�S7

]
Y = −g−2M2 Y , (7.88)

with �S7 the Laplacian on the round, Einstein metric on S7. The solutions
of (7.88) are accordingly given by the SO(8) spherical harmonics on S7,
branched out into representations of the SU(4)c ×U(1) symmetry group of
(7.87) and (7.88) via

[n, 0, 0, 0]
SU(4)c×U(1)−−−−−−−−→

n∑
r=0

[r, 0, n− r]2r−n , (7.89)

with the subindex indicating the U(1) charge. More concretely, the S7

spherical harmonics, in the [n, 0, 0, 0] of SO(8), split according to (7.89) as

Yn,r(z, z̄) = ca1...ar
b1...bn−r za1 . . . zar z̄b1 . . . z̄bn−r , (7.90)

for
n = 0, 1, 2, . . . , r = 0, 1, . . . , n . (7.91)

In (7.90), z1 = µ1 + iµ2, etc, are complexified embedding coordinates of R8

constrained as δAB µ
AµB = 1, with A,B = 1, . . . , 8, and ca1...ar

b1...bn−r is a
constant tensor in the [n − r, 0, r] of SU(4). The functions (7.90) obey

�S7Yn,r = −n(n+ 6)Yn,r , ∂2
ψYn,r = −(n− 2r)2Yn,r , (7.92)

and thus satisfy the differential equation (7.88) with eigenvalue

g−2M2
n,r = e2φ+ϕn(n+ 6) +

(
e3ϕ − e2φ+ϕ

)
(n− 2r)2 . (7.93)

This occurs with multiplicity

dn,r = dim[r, 0, n−r]SU(4) = 1
12(n+3)(r+1)(r+2)(n−r+1)(n−r+2) . (7.94)

To summarise, the complete spectrum of the eigenvalue equation (7.88)
is (7.93), (7.90), with the quantum numbers ranging as in (7.91). The
eigenvalues (7.93) have multiplicity (7.94) and the eigenfunctions (7.90) are
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simply the S7 spherical harmonics split into SU(4)c ×U(1) representations
through (7.89). The eigenvalues have been given in terms of D = 4 scalars.
The massive KK graviton spectra about D = 11 AdS4 solutions in this sector
are obtained by fixing the D = 4 scalars to the corresponding vevs. Like in
the case of the G2 sector, the integer n is identified with the KK level by an
argument similar to that put forward below (7.86).

Type IIB

We now move on to compute the graviton spectrum about the AdS4 solutions
of type IIB supergravity recently obtained in [156]. These geometries, in the
same class as addressed in section 7.2 arise upon consistent uplift [28] on an
S-fold geometry of AdS4 vacua of D = 4 N = 8 gauged supergravity with
dyonic [SO(6)× SO(1, 1)]nR12 gauging [75, 76]. Again, we will focus in this
section on solutions that preserve at least SU(3) symmetry classified in [156].
We will compute the generic graviton spectra for arbitrary constant values
of the SU(3)-invariant scalars of the D = 4 supergravity.

The type IIB geometries under consideration are given by [156]

e2A =
√
Y eϕ L2 ,

ds̄2
6 =

e−ϕ√
Y
g−2L−2

[√
Y e−2ϕdη2 +

1√
Y

(
ds2(CP2) + Y (dτ + σ′)2

)]
.

(7.95)

The geometry inside the last parenthesis extends globally over a topological
S5, with ds2(CP2) the Fubini-Study metric on the complex projective plane
within S5 and 0 ≤ τ < 2π the Hopf fibre angle. The local one-form σ′

is a potential for the Kähler form on CP2. The sixth internal coordinate
η will be taken to be periodic, η ∼ η + T , with T a positive number.
The ten-dimensional geometry (7.95) also depends on the SU(3)-invariant
scalars both explicitly and through the combination Y defined in (3.56). For
general values of the scalars, the geometry (7.95) displays an isometry group
SU(3)×U(1)τ ×U(1)η, with the U(1)η factor broken by the type IIB fluxes.
In particular, the type IIB fields charged under the S-duality group SL(2,R)
undergo a monodromy transformation as η crosses through different periods
[28]. The type IIB metric is neutral under S-duality and thus insensitive to
this transformation.

Like (7.87), the type IIB embedding (7.95) is homogeneous. Accordingly,
the differential equation (4.7) reduces for this geometry to[

e3ϕ∂2
η + eϕ(1− Y )∂2

τ + eϕY �S5

]
Y = −g−2M2 Y , (7.96)

where �S5 is the Laplacian on the round, Einstein metric on S5. The
complete set of eigenfunctions Y ≡ Y`,p,n that solve (7.96) can be taken to
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satisfy

�S5Y`,p,n = −`(`+ 4)Y`,p,n , ∂2
τY`,p,n = −(`− 2p)2Y`,p,n ,

∂2
ηY`,p,n = −

(
2π
T n
)2 Y`,p,n , (7.97)

for

` = 0, 1, 2, . . . , p = 0, 1, . . . , ` , n = 0,±1,±2, . . . , (7.98)

with ` and n unconstrained and p constrained by ` through p ≤ `. In
other words, the eigenfunctions Y`,p,n come in representations of SU(3) ×
U(1)τ ×U(1)η, and are explicitly given by products of harmonics on the S1

generated by ∂η and spherical harmonics [0, `, 0]SU(4) on S5 branched out
into representations of SU(3) ×U(1)τ via

[0, `, 0]
SU(3)×U(1)τ−−−−−−−−→

∑̀
p=0

[p, `− p]`−2p . (7.99)

Bringing (7.97) to (7.96), we find the eigenvalues

g−2M2
`,p,n = eϕY `(`+ 4) + eϕ(1− Y )(`− 2p)2 + e3ϕ

(
2π
T j
)2
, (7.100)

occurring with degeneracy

d`,p,j =

{
dim[p, `− p]SU(3) = 1

2 (p+ 1)(`− p+ 1)(`+ 2) , if j = 0

2 dim[p, `− p]SU(3) = (p+ 1)(`− p+ 1)(`+ 2) , if j 6= 0 .

(7.101)
In summary, the complete eigenvalue spectrum of equation (7.96) is

(7.100) with the eigenfunctions Y`,p,n described above and with the quantum
numbers ranging as in (7.98). The eigenvalues (7.100) have multiplicity
(7.101), and have been given in terms of D = 4 scalars. The massive KK
graviton spectra about D = 11 AdS4 solutions in this sector are obtained by
fixing the D = 4 scalars to the corresponding vevs, as we will see next.

Graviton masses at the solutions

Using the previous results for the M-theory and type IIB configurations, as
well as [24, 93, 143], we can write down the KK graviton spectra about the
AdS4 solutions of the ten and eleven-dimensional supergravities that uplift
from critical points with at least SU(3) symmetry of the three D = 4 N = 8
gauged supergravities in figure 3.1.

In M-theory, the spectrum above the AdS4 solutions with at least G2

symmetry and at least SU(4)c symmetry can be obtained by particularising

(7.78) and (7.93), respectively, to the scalar vevs given in table 3.2. We have
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Solution Mass Degeneracy

N = 8 , SO(8) L2M2
n = 1

4n(n+ 6) dn = Dn,8

N = 2 , U(3)c
L2M2

n,p,`,r = 1
2n(n+ 6)− 1

3`(`+ 4)− 1
9(`− 2p)2

dn,p,`,r = 1
2(p+ 1)(`− p+ 1)(`+ 2)

+ 1
18 [3(n− 2r) + 4(`− 2p)]2

N = 1 , G2 L2M2
n,k = 5

8n(n+ 6)− 5
12k(k + 5) dn,k = Dk,7

N = 0 , SO(7)v L2M2
n,k = 3

4n(n+ 6)− 3
5k(k + 5) dn,k = Dk,7

N = 0 , SO(7)c L2M2
n = 3

10n(n+ 6) dn = Dn,8

N = 0 , SU(4)c L2M2
n,r = 3

8n(n+ 6)− 3
16(n− 2r)2 dn,r = 1

12(n+ 3)(r + 1)(r + 2)(n− r + 1)(n− r + 2)

Table 7.4: The KK graviton spectra of AdS4 solutions of D = 11 supergravity that

uplift from critical points of D = 4 N = 8 SO(8)-gauged supergravity with at least

SU(3) symmetry. See (7.81) for the notation Dk,N . The quantum numbers range as

in (7.102).

brought these results to table 7.4. In order to exhaust the KK graviton spectra

of AdS4 solutions of D = 11 supergravity that uplift from critical points

of D = 4 N = 8 SO(8)-gauged supergravity with at least SU(3) symmetry,

the table also includes the spectrum [24] about the N = 8 Freund-Rubin

solution [92] and the spectrum [93] about the SU(3)×U(1)c–invariant AdS4

solution [31, 77]. The latter is given as in [143], with `here = pthere + qthere.

The corresponding multiplicites are also given in the table, and the quantum

numbers range as

n = 0, 1, 2, . . . , r, k = 0, 1, . . . , n , ` = p, . . . , p+ r , p = 0, 1, . . . , n− r .
(7.102)

The only quantum number that is free to range unrestricted over the non-

negative integers is n, all the others being bound by it. This is consistent

with the interpretation of n as the SO(8) KK level in (6.37). At fixed KK

level n, the degeneracy of the N = 8 SO(8)-symmetric spectrum is broken

into representations of the isometry group of the internal metric. This may

be larger than the symmetry of each solution, as the fluxes will further break

the isometry to the actual symmetry quoted in the table. Similarly, the

eigenfunctions corresponding to each solution are simply the S7 spherical

harmonics branched out into the representations of the relevant group.

For convenience, table 7.5 imports from [143] the KK graviton spectra of

AdS4 solutions of massive IIA supergravity that uplift from critical points of

D = 4 N = 8 dyonic ISO(7)-gauged supergravity with at least SU(3) symme-

try. The table includes the squared masses in units of the corresponding AdS

radius L, as well as the multiplicites. In this case, the quantum numbers’

148



7.3 Universality of traces

Solution Mass Degeneracy

N = 2 , U(3)v L2M2
k,`,p = 2

3k(k + 5)− 1
3`(`+ 4) + 1

9(`− 2p)2 dk,`,p = 1
2(p+ 1)(`− p+ 1)(`+ 2)

N = 1 , G2 L2M2
k = 5

12k(k + 5) dk = Dk,7

N = 1 , SU(3) L2M2
k,`,p = 5

6k(k + 5)− 5
12`(`+ 4)− 5

36(`− 2p)2 dk,`,p = 1
2(p+ 1)(`− p+ 1)(`+ 2)

N = 0 , SO(7)v L2M2
k = 2

5k(k + 5) dk = Dk,7

N = 0 , SO(6)v L2M2
k,` = k(k + 5)− 3

4`(`+ 4) d` = D`,6

N = 0 , G2 L2M2
k = 1

2k(k + 5) dk = Dk,7

Table 7.5: The KK graviton spectra of AdS4 solutions of massive IIA supergravity

that uplift from critical points of D = 4 N = 8 dyonic ISO(7)-gauged supergravity

with at least SU(3) symmetry, taken from [143]. See (7.81) for the notation Dk,N .

The quantum numbers range as in (7.103).

ranges are

k = 0, 1, 2, . . . , ` = 0, 1, . . . , k , p = 0, 1, . . . , ` , (7.103)

with khere = nin [143]. Again, k is the only quantum number that is unre-

stricted. For this reason, k can be interpreted in this case as the SO(7) KK

level in (6.37). The eigenfunctions are now the S6 spherical harmonics split

into representations of the internal isometry group. This again may be larger

than the symmetry of each solution given in table 7.5 because the fluxes may

further break the isometry to the actual symmetry of the full solution.

Finally, we turn to the spectrum of gravitons corresponding to the type

IIB AdS4 S-fold solutions that uplift from critical points with at least SU(3)

symmetry [156] of D = 4 N = 8 supergravity with
(
SO(6)× SO(1, 1)

)
nR12

gauging. These are found by bringing the corresponding vevs, collected in

our conventions in table 7.3, to equation (7.100). The results are summarised

in table 7.6. The KK graviton spectra are sensitive to the period T of the

S-folded S1. The eigenfunctions are products of S5 harmonics, possibly

branched out into SU(3)×U(1)τ representations, and U(1)η harmonics. This

U(1)η is broken by the IIB fluxes.

The masses and degeneracies in tables 7.4–7.6 perfectly match the one

obtained through the algebraic route discussed in chapter 6 for every solution.

In the following, the SL(8,R) formulation of section 6.1 will prove particularly

useful to formulate the universal properties identified in the spectra.
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Solution Mass Degeneracy

N = 1 , SU(3) L2M2
`,p,n = 5

6`(`+ 4)− 5
36(`− 2p)2 + 5π2

T 2 n
2 d`,p,n

N = 0 , SO(6)v L2M2
`,n = 3

4`(`+ 4) + 6π2

T 2 n
2 d`,n = (2− δn0)D`,6

N = 0 , SU(3) L2M2
`,n = 3

4`(`+ 4) + 6π2

T 2 n
2 d`,n = (2− δn0)D`,6

Table 7.6: The KK graviton spectra of AdS4 S-fold solutions of type IIB supergravity

that uplift from critical points of D = 4 N = 8
(
SO(6)× SO(1, 1)

)
n R12-gauged

supergravity with at least SU(3) symmetry. See (7.81) for the notation Dk,N and

(7.101) for d`,p,n. The quantum numbers range as in (7.98).

7.3.2 Universality in SU(3)-invariant sector

When regarded as vacua of their corresponding D = 4 N = 8 gauged

supergravities, the AdS solutions under consideration with at least SU(3)

symmetry tend to exhibit the same mass spectrum of scalars, vectors and

fermions within their D = 4 supergravities. This is the case for all these

solutions, except for the two N = 0, SU(3)-invariant critical points of ISO(7)

supergravity and the N = 0, SU(3)-invariant critical locus of
(
SO(6) ×

SO(1, 1)
)
n R12 supergravity, as shown in table 7.7. The question that we

would like to address in this section is whether this situation persists for

higher KK modes. The spectrum of gravitons computed for these solutions

and recorded in tables 7.4–7.6 shows that this universality is indeed lost at

higher KK levels: the KK gravitons do have completely different masses for

all the solutions considered.

However, as we will now show, universality is still maintained, though in a

milder form that is not apparent from the individual mass values. It turns out

that certain sums of KK graviton masses weighted with their multiplicities

do remain universal. This is the case at least for solutions in the same or

different N = 8 gaugings with the same symmetry and whose spectra within

the D = 4 supergravity are the same. Specifically, if two AdS4 solutions of

D = 11 supergravity or type II supergravity uplift from critical points with

the same supersymmetry N ≤ 8, the same symmetry G ⊃ SU(3) (possibly

embedded differently into the gauge group) and the same spectrum within the

D = 4 N = 8 gauged supergravities, then there exist infinitely many discrete

combinations L2 trM2
(n), n = 1, 2, 3, . . ., of graviton masses weighted with

their multiplicities that are the same for both solutions. This statement was

first observed for the N = 2 SU(3)×U(1)-invariant solutions in [143]. Here

we will extend that result to all other solutions with at least SU(3) symmetry
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(Super)symmetry SO(8) ISO(7)
(
SO(6)× SO(1, 1)

)
nR12 same spectrum?

N = 8 , SO(8) X × × –

N = 2 , U(3) X X × X

N = 1 , G2 X X × X

N = 1 , SU(3) × X X X

N = 0 , SO(7) X X × X

N = 0 , SO(6) X X X X

N = 0 , G2 × X × –

N = 0 , SU(3) × X X ×

Table 7.7: Possible residual (super)symmetries, regardless of their E7(7) embedding,

of AdS vacua in the SU(3)-invariant sector of the three different gaugings that we

consider.

in the gaugings of figure 3.1, summarised in table 7.7. With the hindsight

gained in chapter 6, the notation L2 trM2
(n), relates to the fact that the

combinations in question correspond to traces of the (infinite-dimensional)

KK graviton mass matrix at fixed KK level n.

More concretely, for the M-theory solutions we define L2 trM2
(n) to be

the sum of the squared masses in units of the corresponding AdS radius L,

weighted with the corresponding multiplicity as given in table 7.4. The sum

is taken at fixed KK level n and over all other quantum numbers ranging as

in (7.102). For example, using this prescription, one obtains for the N = 8

SO(8) solution [143],

L2 trM2
(n) = L2M2

n dn = 14Dn−1,10 . (7.104)

In the last step, we have made use of the definition (??) as a shorthand for the

resulting 8th degree polynomial in n. Similarly, for the N = 2 SU(3)×U(1)c

solution, we have [143]

L2 trM2
(n) = L2

n∑
r=0

n−r∑
p=0

p+r∑
`=p

M2
n,p,`,r dn,p,`,r = 56

3 Dn−1,10 . (7.105)

Proceeding similarly, we compute the quantities L2 trM2
(n), n = 1, 2, . . ., for

the KK graviton spectra summarised in table 7.4 for D = 11 AdS4 solutions

that uplift from critical points of D = 4 N = 8 SO(8) supergravity with at
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least SU(3) symmetry. We obtain:

N = 8 , SO(8) : L2 trM2
(n) = 14Dn−1,10 ,

N = 2 , SU(3)×U(1)c : L2 trM2
(n) = 56

3 Dn−1,10 ,

N = 1 , G2 : L2 trM2
(n) = 35

2 Dn−1,10 ,

N = 0 , SO(7)v : L2 trM2
(n) = 84

5 Dn−1,10 ,

N = 0 , SO(7)c : L2 trM2
(n) = 84

5 Dn−1,10 ,

N = 0 , SU(4)c : L2 trM2
(n) = 39

2 Dn−1,10 .

(7.106)

In particular, the two SO(7)-invariant solutions have their residual symmetry

embedded differently into the SO(8) gauge group as SO(7)v and SO(7)c.

They have the same mass spectrum within D = 4 N = 8 SO(8) supergravity,

according to table 7.7. Their KK graviton spectra are different, though,

according to table 7.4. But as can be seen from equation (7.106), the quantity

L2 trM2
(n) is the same for both solutions for all n.

The quantities L2 trM2
(k) for the KK gravitons of massive IIA solutions

with at least SU(3) symmetry that uplift from critical points of dyonic ISO(7)

supergravity were computed similarly, for k = 1, 2, . . ., in [143]:

N = 2 , SU(3)×U(1)v : L2 trM2
(k) = 56

3 Dk−1, 9 ,

N = 1 , G2 : L2 trM2
(k) = 35

2 Dk−1, 9 ,

N = 1 , SU(3) : L2 trM2
(k) = 65

3 Dk−1, 9 ,

N = 0 , SO(7)v : L2 trM2
(k) = 84

5 Dk−1, 9 ,

N = 0 , SO(6)v : L2 trM2
(k) = 39

2 Dk−1, 9 ,

N = 0 , G2 : L2 trM2
(k) = 21Dk−1, 9 .

(7.107)

Here, we have again made use of the notation Dk,N defined in (7.81) as a

shorthand for the degree-7 polynomial in k that apparears in the r.h.s.’s.

Now, recall from (6.37) that k and n can respectively be regarded as the

KK levels in massive IIA and D = 11. At first KK level, the quantities

L2 trM2
n=1 in (7.106) and L2 trM2

k=1 in (7.107) can be checked to match, by

virtue of the first relation in (7.82), for solutions with the same symmetry

group regardless of the embedding of the latter within the corresponding

gauge group. For example, for the D = 11 SU(3)×U(1)c solution [31] and the

massive IIA SU(3)×U(1)v solution [26], [L2 trM2
(1)]11D = [L2 trM2

(1)]IIA = 56
3 ,
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at n = k = 1, as already noted in [143]. Inspection of (7.106) and (7.107)

confirms that similar matches occur at KK level one, n = k = 1, for the

D = 11 and massive IIA solutions with common (super)symmetry N = 1,

G2, and N = 0, SO(7), and N = 0, SU(4) ∼ SO(6).

Further, there is still matching at higher KK levels n > 1 in D = 11 and

k > 1 in massive IIA, provided a prescription is adopted to relate n and k.

This prescription is precisely (6.14), so that the D = 11 KK level n formally

contains all IIA KK levels k = 0, 1, . . . , n. Using this, it follows from (7.106)

and (7.107) that

n∑
k=0

[L2 trM2
(k)]IIA = [L2 trM2

(n)]11D , n = 0, 1, 2, . . . , (7.108)

for all the solutions that we are considering with the same symmetry and

supersymmetry in massive IIA and D = 11. Here, L2 trM2
(0) ≡ 0 corresponds

to the massless graviton, for both the D = 11 and type IIA cases, as well

as for the IIB cases below. These sums are related to the mass matrices

in section 6.1, as we will discuss momentarily. To see this, it is convenient

to further add different SO(8) levels in (7.108) à la (6.13). It immediately

follows that

[m2 ]∑
s=0

m−2s∑
k=0

[L2 trM2
(k)]IIA =

[m2 ]∑
s=0

[L2 trM2
(m−2s)]11D , m = 0, 1, 2, . . . ,

(7.109)

again for all solutions with the same (super)symmetry. The sums in (7.109)

obviously run over repeated number of states, both in IIA and in D = 11.

In (7.108), there are no repeated D = 11 states on the r.h.s., but the sum in

the l.h.s. does run as well over repeated states in IIA. These overcounting

issues can be avoided by subtracting two adjacent KK levels as in (6.15) or,

using the identity (7.83),

[L2 trM2
(n)]IIA = [L2 trM2

(n)]11D − [L2 trM2
(n−1)]11D , n = 1, 2, . . . ,

(7.110)

for solutions with the same (super)symmetry. This relation was already

shown to hold in [143] for the N = 2 SU(3)×U(1) invariant solutions. Here,

we have extended this result to all other AdS solutions in the SU(3)-invariant

sectors of SO(8) and ISO(7) gauged supergravities with the same symmetry

and supersymmetry.
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The situation is similar, though slightly different, for the type IIB AdS4

S-fold solutions that uplift from D = 4 N = 8
(
SO(6) × SO(1, 1)

)
n R12-

gauged supergravity. According to table 7.7, this supergravity also has

critical points with the same symmetry G ⊃ SU(3) and supersymmetry

as other critical points of the SO(8) and ISO(7) gauging: N = 0 SO(6),

N = 1 SU(3) and N = 0 SU(3). The former two have the same spectrum

within their corresponding D = 4 supergravities, while the latter does not.

For this reason, we will only be interested in the former two vacua. Both

for the N = 1 SU(3) and the N = 0 SO(6) ∼ SU(4) solutions there are

combinations, [L2 tr M̃2
(n)]IIB, of the eigenvalues in table 7.6 that match the

quantities [L2 trM2
(k)]IIA and [L2 trM2

(n)]11D for the solutions with the same

symmetry for a certain choice of the period T . The tilde in [L2 tr M̃2
(n)]IIB

is taken to signify that, in this case, the combinations also involve negative

weightings. More concretely, consider the following quantities for the type

IIB solutions with the quantum numbers fixed as indicated:

N = 1, SU(3) : tr M̃2
(1) ≡

[∑̀
p=0

M2
`,p,nd`,p,n

]∣∣
`=1,
n=0

−
[
M2
`,p,nd`,p,n

]∣∣
`=p=0,
n=−1

−
[
M2
`,p,nd`,p,n

]∣∣
`=p=0,
n=+1

,

N = 0, SO(6)v : tr M̃2
(1) ≡

[
M2
`,nd`,n

]∣∣
`=1,
n=0

−
[
M2
`,nd`,n

]∣∣
`=0,
n=−1

−
[
M2
`,nd`,n

]∣∣
`=0,
n=+1

.

(7.111)

These quantities involve sums of mass eigenvalues, weighted with their

degeneracies as given in table 7.6, and affected by a + or a − sign depending

on whether n = 0 or n 6= 0. Plugging in the expressions given in the

table, the quantity L2 tr M̃2
(1) for the N = 1, SU(3) solution evaluates to

65
3 if T = 2π, matching the quantity L2 trM2

(1) for its counterpart type IIA

solution at KK level k = 1, given in (7.107). Similarly, L2 tr M̃2
(1) for the

N = 0, SO(6)v solution evaluated using the expressions given in table 7.6

gives 39
2 for T = 2π. This again matches the quantity L2 trM2

(1) at KK level

k = 1 given in (7.107) for the N = 0, SO(6)v solution of massive IIA. It also

matches L2 trM2
(1) at KK level n = 1 given in (7.106) for the D = 11 N = 0,

SU(4)c solution. Although it is not as clear cut in the type IIB case, it will

be argued that the states that enter the sums in (7.111) also belong to KK

level m = 1 in an SL(8)-covariant sense. The formal analytic continuation

n′ = in, with i2 = −1, removes the minus signs in (7.111). Under this
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analytic continuation, relations similar to (7.108) and (7.109) relate these

formal sums at higher KK levels for these type IIB solutions to their D = 11

and type IIA counterparts.

The covariant mass matrix perspective

As discussed above, the graviton states that enter the sums defining the

universal traces correspond to the decompositions of SL(8,R) representations

in (6.13) and (6.14) for the solutions in M-theory and massive type IIA. The

trace of the SL(8,R) level m = 1 graviton mass matrix (6.10),

trM2
(1) = −g2MMN ΘM

A
B ΘN

B
A , (7.112)

thus reproduces the KK level-one traces discussed in (7.106) and (7.107).

Particularising (7.112) to each specific critical point with at least SU(3)

symmetry of the SO(8) and ISO(7) gaugings, making use of the relevant

embedding tensors, and again trading g2 for L2, all the r.h.s.’s of (7.106)

and (7.107) with n = 1 and k = 1 are reproduced. For example, using

the appropriate embedding tensors and vevs, we find that (7.112) evaluates

to 56
3 , both for the SU(3) × U(1)c point of the SO(8) gauging and for the

SU(3) × U(1)v point of the ISO(7) gauging, once that g2 is replaced with

the relevant L2. The trace relation (7.109) is a direct consequence of (7.112)

and the overcounting feature mentioned in section 6.1.

Interestingly, the mass matrix (6.9)-(6.12) also reproduces the KK gravi-

ton spectrum of the SO(4) solution of section 7.2 and the ones in table

7.6 for type IIB S-folds with period T = 2π that uplift from vacua of the(
SO(6)×SO(1, 1)

)
nR12 gauging, provided the U(1)η quantum number n is an-

alytically continued as n′ = in, with i2 = −1. The origin of this analytic con-

tinuation can be put down to the fact that the SL(8)-covariant graviton mass

matrix formula (6.9)-(6.12) actually sees the compactified U(1)η as the non-

compact SO(1, 1) factor in the D = 4 gauge group
(
SO(6)× SO(1, 1)

)
nR12.

From a IIB perspective, this factor is associated to a hyperboloid uplift [28].

In any case, the (analytically continued) spectra of the type IIB S-folds can

be also organised in SL(8,R) KK levels m = 0, 1, . . . through the branching

[m, 0, 0, 0, 0, 0, 0]SL(8)
SO(6)×SO(1,1)−→

[
m
2

]∑
s=0

m−2s∑
`=0

m−2s−`∑
p=0

[`, 0, 0]m−2s−`−2p .

(7.113)
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This approach contains redundant states that can be projected out as dis-

cussed below (6.13). It would be interesting to determine if (6.9)-(6.12) can

be modified in such a way that the KK graviton spectra of vacua of the

SO(8) and ISO(7) gauging are still obtained, and the physical spectra of the

compactified S-folds is recovered as well.

The mass matrices for the lower-spin fields, (6.48) and (6.51), rendered

by ExFT allow to extend these considerations to fields other than massive

gravitons. Table 7.7 shows that at lowest level n = k = 0 the spectra for all

modes tend to coincide, and we have checked that whenever this happens, the

milder universality of sums like the ones relevant for the gravitons remains

higher up in the tower modulo some provisos relating different gaugings that

will be discussed in future work.
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Conclusion and outlook

This thesis has addressed the relevance of the Kaluza-Klein problem in

string theory, focusing on new methods applied to consistent truncations and

Kaluza-Klein spectroscopy. For the dimensional reductions, we have seen in

chapter 2 that, in line with the recently proved [44] conjecture of [32], for

every N = 2 AdS4 solution of M-theory, there exists a consistent truncation

to minimal N = 2 gauged supergravity in D = 4 such that the lower-

dimensional supergravity fields enter the eleven-dimensional configuration

coupled to the G-structure tensors which control the undeformed geometry.

For the general class of solutions in [17], consistency has been checked in

all detail in section 2.3, including Einstein’s equations and supersymmetry

variations. See appendix A for further details.

These supersymmetric AdS configurations have a clear holographic sig-

nificance, and their construction has sometimes been anticipated out of field

theory intuition based on RG flows. This was precisely the case for the

cubic deformation of ABJM, whose IR fixed point is dual to the GMPS

solution reviewed in section 2.2. The operator spectrum of this strongly

coupled SCFT was studied in chapter 5 by means of the dual KK towers.

The analysis of the spectrum of massive gravitons and N = 2 supermultiplets

around this solution has exhibited some of its non-trivial global properties,

as the fact that its metric cannot be isometrically embedded in R8.

Besides supersymmetry, the other main resource to study consistent

truncations and spectroscopy is U-duality. This has been the main focus

of chapter 3, where the notions of tensor and duality hierarchies have been

introduced and used to study both four-dimensional maximal supergravity

and its gaugings, and how these can be oxidised into higher-dimensional

theories. Chapters 6 and 7 have then followed this route with in introduction

of Exceptional Field Theory, which reformulates the full higher-dimensional
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theories in a duality-covariant way. Apart from the insight that this re-

formulation has granted on string duality itself, from the practical side it

has sourced major breakthroughs in the construction of consistent trunca-

tions via Scherk-Schwarz factorisations, and the more recent obtention of

KK spectra on warped inhomogeneous compactifications with fluxes even

on configurations with little or none preserved (super)symmetry or even

non-geometrically patched. This last topic was until very recently unap-

proachable, and some of the works during the graduate research that has

culminated in this dissertation can be counted among the first to develop

and employ this approach [C, E–G].

The methods discussed in this thesis will doubtlessly provide new tools to

address a variety of problems currently under inspection by the high-energy

physics community. Some of these problems lie in the framework of the

Swampland Conjectures [189–191] (see [192, 193] for recent reviews). Among

this complex net of conjectures, there are a few that have been already

directly tackled using the new KK exceptional machinery. As mentioned in

section 7.2, the absence of a free CFT point in the N = 2 conformal manifold

dual to the S-fold solutions can be seen from the fact that at no point in this

locus all operators carry rational conformal dimensions (see e.g. (7.31) for

the complete spectrum at levels (`, n) = (0, n), and (7.36) for the gravitons

at levels (`, n) = (1, n)). Moreover, from the Zamolodchikov metric (7.7)

and the range of the scalars in (7.9), it follows that this conformal manifold

is non-compact. Both of these facts are in tension with the CFT distance

conjecture [194], which claims that every conformal manifold in string theory

should be compact and always contain a free point. Other ideas that have

been fruitfully informed by spectroscopy results are the conjectured absence

of scale separation in string theory [195], and the non-susy AdS conjecture

[196]. Both of them can be understood as inducing bounds on the spectra of

string theory configurations. The first can be stated as saying that for every

configuration of string theory there are modes in the KK spectrum such that

LM ∼ O(1) .

This is indeed the case for all the solutions addressed in this dissertation.

Regarding the stability of non-supersymmetric AdS vacua, one of the first

uses of the ExFT tools showed that the KK spectrum of scalar modes up in

the tower can contain tachyonic modes even if there are none in the lower-

dimensional truncation [135]. However, there are also non-supersymmetric
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solutions in massive type IIA and type IIB uplifting from the maximal

supergravities in figure 3.1 whose perturbative spectrum is completely free

from instabilities [138, 141]. The lack of tachyonic modes does not guarantee

the absence of non-perturbative decay channels such as bubble nucleations

[197, 198] or brane-jet instabilities [174, 199]. However, some of these channels

have also been discarded for a few of them [141, 174].

Some of our results can also find application beyond high-energy physics.

The consistent truncations studied in Part I allow for holographic under-

standing of systems which can be of interest in theoretical condensed matter

(CMT) via the AdS/CMT correspondence (see e.g. [200–203]). Some novel

directions in this context include Janus solutions describing interfaces in CFT

[178, 204–206], and Q-lattice and susy-Q [207, 208] constructions breaking

Lorentz invariance. The latter have been employed to construct RG flows

of boomerang type [209, 210] such that the field theories in the UV and

IR coincide, posing a conundrum about the counting of degrees of freedom

from a Wilsonian perspective. Another interesting holographic application

of these consistent truncations related to counting of degrees of freedom in

RG flows are the flows across dimensions constructed in [60, 211, 212].

There are a number of questions left open by our results. In order to

keep these conclusions as concise as possible, let me focus on only two of

them. Regarding the N = 2 configuration of chapters 2 and 5, the fact that

the GMPS vacuum is only known as a numerical solution and that only its

spin-2 spectrum has been addressed is clearly unsatisfactory and deserves

further attention. A humble step in this direction would be obtaining the

precise way in which the space invaders arrange themselves to from N = 2

supermultiplets. A most promising tool to achieve this are the fugacities

briefly mentioned in appendix E, as they provide an organised way of keeping

track of which states need to be subtracted for multiplet completion or

(super)Higgsing.

The second point concerns the universality properties discussed in sec-

tion 7.3. Despite already observed in a sizeable number of examples so as to

regard it as a robust phenomenon, it completely lacks understanding from both

the supergravity and the field theory sides. It would therefore be desirable to

extend this analysis to solutions of other (possibly non-maximal) gaugings,

and figure out what distinguishes the solutions in table 7.7 which exhibit

universality from the ones which do not, such as the N = 0 SU(3)-invariant

points of dyonic ISO(7) [74] and
(
SO(6) × SO(1, 1)

)
n R12 supergravities
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[156], who do not have the same spectrum within the D = 4 supergravities

nor the universal traces higher up in the graviton KK tower.

From both these questions, it is manifest that a natural direction for the

near future is how to extend the results that apply to maximal supergravity to

non-maximal theories. This has already been done for a class of half-maximal

D = 3 theories that can be embedded into half-maximal supergravity in six

dimensions [G], where an entire family of non-supersymmetric AdS3 solutions

were found which are completely stable at the perturbative level. These

methods are also being extended to other dimensions and supergravities with

varying amounts of supersymmetry, such as the f(4) solution [213–215] in

D = 6 [J]. Another interesting direction to pursue in the near future would

be the inclusion of α′ corrections in the computation of the KK spectra,

which would be relevant to further assess stability issues or the properties of

the conformal manifolds dual to the S-fold familes of section 7.2.

In the longer term, one might hope that these exceptional formulations

shed light in how to achieve a non-perturbative definition of M-theory. Some

proposals in this direction have appeared in [216–222].
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Conclusiones y perspectiva

Esta tesis ha abordado la relevancia del problema de Kaluza-Klein en teoŕıa

de cuerdas, centrándose en nuevos métodos aplicados a truncamientos consis-

tentes y espectroscoṕıa de Kaluza-Klein. Para las reducciones dimensionales,

hemos visto en el caṕıtulo 2 que, de acuerdo con la recientemente probada

[44] conjetura de [32], para cada solución N = 2 AdS4 de la teoŕıa M, existe

un truncamiento consistente a supergravedad gauge N = 2 mı́nima en D = 4

tal que los campos de la supergravedad en dimensión inferior entran en la

configuración once-dimensional acoplados a los tensores de G-estructura que

controlan la geometŕıa no deformada. Para la clase general de soluciones

en [17], la consistencia se ha verificado con todo detalle en la sección 2.3,

incluidas las ecuaciones de Einstein y las variaciones de supersimetŕıa. Véase

el apéndice A para más detalles.

Estas configuraciones AdS supersimétricas tienen una clara relevancia

en holograf́ıa, y su construcción ha sido en algunos casos anticipada por la

intuición de teoŕıa de campos basada en flujos de renormalización. Este fue

precisamente el caso para la deformación cúbica de ABJM, cuyo punto fijo

en el infrarrojo es dual a la solución GMPS recapitulada en la sección 2.2. El

espectro de operadores de esta SCFT fuertemente acoplada se ha estudiado

en el caṕıtulo 5 mediante las torres KK duales. El análisis del espectro de

gravitones masivos y supermultipletes N = 2 en torno a esta solución ha

sacado a descubierto algunas de sus propiedades globales no triviales, como

el hecho de que la métrica no puede ser embebida isométricamente en R8.

Aparte de supersimetŕıa, el otro recurso fundamental para estudiar trun-

camientos consistentes y espectroscoṕıa es U-dualidad. Este ha sido el foco

del caṕıtulo 3, donde las nociones de jerarqúıas tensoriales y jerarqúıas de

dualidades se han introducido y han sido utilizadas para estudiar tanto

supergravidad maximal en D = 4 como sus posibles gaugings, y cómo es-

tos se pueden oxidar a teoŕıas con más dimensiones. Los caṕıtulos 6 y 7

siguen esta ruta con la introducción de Exceptional Field Theory, que es

una reformulación de las teoŕıas con dimensiones extra al completo de una

guisa covariante bajo dualidades. Además de haber ahondado nuestro en-

tendimiento de las dualidades en teoŕıa de cuerdas per se, desde un punto de

vista práctico, esta reformulación ha tráıdo consigo grandes avances en la

construcción de truncamientos consistentes via la factorización de Scherk-

Schwarz, y más recientemente la obtención de espectros KK sobre soluciones

161



Coda

inhomogéneas, con warping y flujos, e incluso en los casos en los que poca o

ninguna (super)simetŕıa es preservada o la solución está construida mediante

parcheamientos no-geométricos. Esto último era impensable hasta hace muy

poco, y algunos de los trabajos durante la investigación predoctoral que ha

culminado en esta disertación se cuentan entre los primeros en desarrollar y

emplear este acercamiento [C, E–G].

Los métodos discutidos en en esta tesis van sin lugar a dudas a pro-

porcionar nuevas herramientas con que afrontar multitud de problemas

actualmente en el punto de mira de la comunidad de f́ısica de altas enerǵıas.

Algunos de estos problemas se circunscriben al campo de las Conjeturas de

Ciénaga [189–191] (véanse también las reseñas [192, 193]). Dentro de esta

compleja red de conjeturas, algunas han sido ya directamente abordadas

usando la nueva maquinaria excepcional de espectroscoṕıa KK. Como se

mencionó en la sección 7.2, la ausencia de una CFT libre dentro de la var-

iedad conforme N = 2 dual a las soluciones S-fold se sigue del hecho de

que no hay ningún punto dentro de este locus tal que todos los operadores

tengan dimensiones conformes racionales (véanse, e.g. (7.31) para el espectro

completo a niveles (`, n) = (0, n), y (7.36) para el espectro de gravitones a

niveles (`, n) = (1, n)). Además, de la métrica de Zamolodchikov (7.7) y el

rango de valores de los escalares en (7.9), se sigue también que esta variedad

conforme es no compacta. Estos dos hechos están en tensión con la CFT

distance conjecture [194], que afirma que toda variedad conforme en teoŕıa de

cuerdas debe ser compacta y siempre contener un punto libre. Otras ideas

que han sido fruct́ıferamente informadas por resultados en espectroscoṕıa

son la conjeturada ausencia de separación de escalas en teoŕıa de cuerdas

[195], y la non-susy AdS conjecture [196]. Ambas conjeturas inducen ĺımites

en los espectros de las compactificaciones de teoŕıa de cuerdas. La primera

puede ser formulada como la afirmación de que para toda configuración de

teoŕıa de cuerdas existen modos en el espectro KK que cumplen

LM ∼ O(1) .

Esto es desde luego cierto en todas las soluciones estudiadas en esta dis-

ertación.

En cuanto a la estabilidad de vaćıos AdS no supersimétricos, uno de los

primeros ejemplos de uso de las herramientas de ExFT mostró que el espectro

de modos escalares en las torres KK puede contener modos taquiónicos incluso

si estos no aparecen en el truncamiento dimensional [135]. Sin embargo,
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también existen otras soluciones no supersimétricas en tipo IIA masiva y tipo

IIB que originan de las supergravedades maximales en la figura 3.1 cuyos

espectros perturbativos están completamente libres de inestabilidades [138,

141]. La ausencia de modos taquiónicos no garantiza la ausencia de canales

de decaimiento no perturbativos como la formación de burbujas [197, 198] o

las inestabilidades brane-jet [174, 199]. No obstante, algunos de estos canales

también han sido descartados para algunas de estas soluciones [141, 174].

La aplicación de algunos de nuestros resultados puede trascender la f́ısica

de altas enerǵıas. Los truncamientos consistentes estudiados en la Parte I

permiten comprender holográficamente sistemas que pueden ser de interés

en f́ısica teórica de la materia condensada (CMT) via la correspondencia

AdS/CMT (véase e.g. [200–203]). Algunas nuevas ĺıneas en este contexto

incluyen las soluciones de tipo Jano que describen interfaces en una CFT

[178, 204–206], y construcciones de tipo Q-lattice y susy-Q [207, 208] que

rompen la invarianza Lorentz. Estas últimas han sido empleadas en la

construcción de flujos de renormalización de tipo boomerang [209, 210] tales

que las teoŕıas de campos en el UV y el IR coinciden, generando un enigma

sobre el conteo de grados de libertad desde una perspectiva Wilsoniana. Otra

aplicación holográfica interesante de estos truncamientos consistentes también

relacionada con el conteo de grados de libertad en flujos de renormalización

son los flujos entre dimensiones de [60, 211, 212].

Nuestros resultados dejan algunas cuestiones abiertas. Con objeto de

mantener estas conclusiones concisas, me centraré en sólo dos de ellas. Re-

specto a las configuraciones N = 2 de los caṕıtulos 2 y 5, el hecho de que la

solución GMPS sólo se conozca numéricamente y sólo su espectro de modos

de esṕın-2 haya podido ser abordado hasta el momento es claramente insat-

isfactorio y merece atención futura. Un humilde paso en esta dirección seŕıa

obtener de manera precisa el modo en que los space invaders se organizan

para formar supermultipletes N = 2. Una herramienta prometedora para

este propósito son las fugacidades mencionadas brevemente en el apéndice E,

ya que proporcionan una manera organizada de llevar la cuenta de qué

estados necesitan ser empleados en formar multipletes of participar en el

(super)Higgsing.

El segundo punto se refiere a las propiedades de universalidad discu-

tidas en la sección 7.3. A pesar de que han sido observadas en un buen

número de ejemplos y pueden por tanto ser consideradas como un fenómeno

robusto, carecen completamente de comprensión tanto desde el punto de
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vista gravitatorio como desde la teoŕıa de campos. Seŕıa por ende deseable

extender nuestro análisis a soluciones de otros gaugings (posiblemente no

maximales), y desentrañar qué distingue a las soluciones en la tabla 7.7 que

exhiben universalidad de las que no, como es el caso de los puntos N = 0

SU(3)-invariantes de las supergravedades gauge con gaugings ISO(7) diónico

[74] y
(
SO(6)× SO(1, 1)

)
nR12 [156], que no comparten el mismo espectro

ni dentro de la supergravedad D = 4 ni las trazas arriba en la torre KK.

Ambas cuestiones sugieren que una dirección natural para el futuro

próximo es extender nuestros resultados para supergravedades maximales

a teoŕıas con menor supersimetŕıa. Esto se ha llevado a cabo ya para una

clase de teoŕıas semi-maximales en D = 3 que pueden ser embebidas en

supergravedad semi-maximal en seis dimensiones [G], lo que ha llevado al

descubrimiento de una familia entera de soluciones AdS3 no supersimétricas

completamente estables a nivel perturbativo. Estos métodos también se están

extendiendo a otras dimensiones y supergravedades con distinta cantidad de

supersimetŕıa, como la solución f(4) [213–215] en D = 6 [J]. Otra dirección

interesante para emprender en el futuro próximo es la inclusión de correcciones

α′ en el cálculo es espectros KK, que podŕıa ser relevante para escudriñar

más a fondo las cuestiones de estabilidad o las propiedades de las variedades

conformes duales a las familias de soluciones de tipo S-fold de las sección 7.2.

A largo plazo, cabe esperar que estas reformulaciones excepcionales

arrojen luz en cómo obtener una definición no perturbativa de Teoŕıa M.

Algunas propuestas en esta dirección incluyen [216–222].
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Appendix A

Consistency of the
truncation in chapter 2

A.1 Consistency of Equations of motion

Assuming that the background geometry (2.10) satisfies the D = 11 field

equations (I.1) and imposing their D = 4 counterparts (2.34), the KK ansatz

(2.37) also solves the D = 11 field equations provided the unknown forms X,

Y on the background geometry obey the restrictions (2.40)–(2.44). Equation

(2.42) must in turn yield the D = 4 Einstein equation. Let us derive these

equations and show that X and Y given in (2.45) solve them.

In order to do this, it is convenient to split the hatted form F̂(4) in (2.39)

into a background contribution, F(4) in (2.10), plus a D = 4 graviphoton

contribution using iξE1 = ‖ξ‖:

F̂(4) = F(4) −
g

4
Ā ∧ iξF(4) . (A.1)

The unknown forms X and Y can be similarly split. For calculation purposes,

however, it is more convenient to sweep the ‖ξ‖ factors under the rug and

write

X = ê ∧ iê∗X + X̃ , Y = ê ∧ iê∗Y + Ỹ , with iê∗X̃ = iê∗ Ỹ = 0 ,

(A.2)

where ε̂ ≡ dψ + A − gĀ and ê∗ is the dual vector such that iê∗ ε̂ = 1. We

thus have

dX = (dA− gF̄ ) ∧ iê∗X − ê ∧ d iê∗X + dX̃ , (A.3)

and similarly for dY . With these definitions, it is now straightforward to see

167



Appendix A – Consistency of the truncation in chapter 2

that G(4) in (2.37) obeys

dG(4) = −g
4
F̄ ∧ iξF(4) −

g

4
Ā ∧ d iξF(4)

− gF̄ ∧
[
(dA− gF̄ ) ∧ iê∗X − ê ∧ d iê∗X + dX̃

]
− g ?4 F̄ ∧

[
(dA− gF̄ ) ∧ iê∗Y − ê ∧ d iê∗Y + dỸ

]
, (A.4)

on the D = 4 field equations (2.34) for F̄ . Imposing dG(4) = 0 and requiring

that the terms linear and quadratic in F̄ and ?4F̄ separately vanish, we arrive

at (2.40). These equations imply X = X̃, Y = Ỹ , which we set henceforth.

We next move on to the four-form equation of motion. We fix the

orientation such that vol11 = e11∆ vol4 ∧ vol7, with vol4 = e0 ∧ e1 ∧ e2 ∧ e3

and [17]

vol7 = −e4 ∧ · · · ∧ e10 = −E1 ∧ E2 ∧ E3 ∧ vol(gSU(2)) , (A.5)

in terms of the frame introduced in footnote (2) with g4 taking the rôle of

gAdS4 . In the following, the Hodge operators ?11, ?4, ?7 are understood to be

associated to the volume forms corresponding to g11, g4 and g7, with g4 the

metric in (2.37) and g7 as in the vacuum solution. With these conventions,

using the torsion conditions (2.19)–(2.21) and the D = 4 field equations

(2.34) of the graviphoton, we compute

d ?11 G(4) = vol4 ∧d (e3∆ ?7 F(4))− gF̄ ∧
(m

4
‖ξ‖e3∆ vol(gSU(2)) ∧ E2 ∧ E3

)
− g

4
?4 F̄ ∧

[
(dA− gF̄ )e3∆ ∧ iξ ?7 X − ê ∧ d (e3∆ ∧ iξ ?7 X)

]
+
g

4
F̄ ∧

[
(dA− gF̄ )e3∆ ∧ iξ ?7 Y − ê ∧ d (e3∆ ∧ iξ ?7 Y )

]
.

(A.6)

We also find

G(4) ∧G(4) = 2m vol4 ∧ F(4) − 2gF̂(4) ∧ (F̄ ∧X + ?4F̄ ∧ Y )

+ 2g2F̄ ∧ ?4F̄ ∧X ∧ Y + g2F̄ ∧ F̄ ∧ (X ∧X − Y ∧ Y ) .
(A.7)

Putting (A.6) and (A.7) together, we obtain the set of equations in (2.41).

Finally, we deal with the Einstein equation. In a frame {ẽA} for the

metric in (2.37), g11 = ηAB ẽ
A ⊗ ẽB, we obtain the following components of

the Ricci tensor:

R̃icαβ = e−2∆

{
Ricαβ −

g2

32
‖ξ‖2F̄αγF̄ βγ − 9(∂a∆∂

a∆ +∇a∇a∆)ηαβ

}
,

R̃icαb = e−2∆
{
−g

8
‖ξ‖δ8b∇γF̄αγ

}
,
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R̃icab = e−2∆
{

Ricab +
g2

64
‖ξ‖2δ8aδ8bF̄γδF̄

γδ

+ 9
[
∂a∆∂b∆−∇a∇b∆− (∂c∆∂

c∆−∇c∇c∆)δab
]}

, (A.8)

where we have split the global indices A = (α, a) with α = 0, . . . , 3 and

a = 4, . . . , 10. In these expressions, Ricαβ and Ricab are the external and

internal Ricci tensors in tangent space. In the same frame, the components

of the four-form in (2.37) can be read off to be

Gαβγδ = me−4∆εαβγδ , Gabcd = e−4∆Fabcd ,

Gαβab = −ge−4∆
[
F̄αβXab + 1

2εαβγδF̄
γδYab

]
,

(A.9)

with ε0123 = 1. The tangent space components of the right-hand-side of the

Einstein equation follow from the trace-reversed stress-energy tensor

TAB ≡
1

12

(
GACDEGB

CDE − 1

12
ηABG

2

)
, (A.10)

where T = TAB ẽ
A ⊗ ẽB, and read

e8∆Tαβ = −1

3
m2ηαβ +

g2

4
(X2 + Y 2)F̄αγF̄β

γ − g2

24
ηαβF̄

2(X2 + 2Y 2)

− g2

4
F̄γ(αεβ)

γµνF̄µν XcdY
cd − g2

24
ηαβεµνρσF̄

µνF̄ ρσXcdY
cd ,

e8∆Tαb = 0 ,

e8∆Tab =
1

2

[
FacdeFb

cde − 1

12
ηabF

2

]
+
g2

24
F̄ 2
[
6(XacXb

c − YacYbc)− ηab(X2 − Y 2)
]

+
g2

24
εµνρσF̄

µνF̄ ρσ
[
3(XacYb

c + YacXb
c)− ηabXcdY

cd
]

+
1

2
m2 ηab .

(A.11)

Equating (A.8) and (A.11) we obtain equations (2.42)–(2.44) of the main

text.

We have thus shown that the system of equations (2.40)–(2.44) is equiva-

lent to the D = 11 Bianchi identities and equations of motion (I.1) evaluated

on the KK ansatz (2.37), when the D = 4 graviphoton’s field equations in

(2.34) are imposed. Let us now verify that X and Y given in (2.45) solve

these equations and that, for this choice, (2.42) reduces to the D = 4 Einstein
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equation written in (2.34). The contribution in (2.40) that is linear in F̄ ,

combined with the fact that X̃ = X, implies

dX = −1

4
iξF(4) = −1

4
d
(
e3∆
√

1− ‖ξ‖2J1

)
, (A.12)

where we have used (2.22) to compute the inner product with ξ. Thus,

X = −1

4
e3∆
√

1− ‖ξ‖2 J1 + δ , (A.13)

for a closed two-form δ. As for Y , we see from the torsion condition (2.19)

that a natural ansatz for it that is free from legs along E1 and is closed (in

fact, exact), is

Y = k e3∆ (J3 − ‖ξ‖E2 ∧ E3) , (A.14)

for some constant k. The forms X, Y in (A.13), (A.14) solve, for all closed

δ and k, the conditions (2.40) coming from the D = 11 Bianchi identity.

The four-form equations of motion, (2.41), fix δ and k. First, the seven-

dimensional Hodge duals of (A.13), (A.14) need to be worked out. We

get

iξ ?7 X =
‖ξ‖
4
e3∆
√

1− ‖ξ‖2J1 ∧ E2 ∧ E3 + iξ ?7 δ ,

iξ ?7 Y = −k‖ξ‖e3∆ (E2 ∧ E3 − ‖ξ‖J3) ∧ J3 .

(A.15)

Using (A.13)–(A.15), and (2.23) for dA, the set of equations (2.41) becomes,

after some rearrangement,

e6∆

{
k‖ξ‖

4
(1 + 4k)J3 ∧ E2 ∧ E3 +

[‖ξ‖2
32

(1 + 4k) +
1

2

(
k2 − 1

16

)]
J1 ∧ J1

}
+

1

2
δ ∧

(
δ − 1

2
e3∆
√

1− ‖ξ‖2J1

)
= 0 ,

(A.16)

1

4

(
k +

1

4

)
e6∆‖ξ‖

√
1− ‖ξ‖2J1 ∧ E2 ∧ E3

+e3∆

[
1

4
iξ ?7 δ + k(J3 − ‖ξ‖E2 ∧ E3) ∧ δ

]
= 0 ,

(A.17)

me3∆

[
−‖ξ‖

(
k

2
+

1

8

)
+

1

‖ξ‖

(
k +

1

4

)]
J3 ∧ J3 ∧ E2 ∧ E3 − δ ∧ F̂(4)

−1

8

(
k +

1

4

)
ê ∧ d

[
e6∆(1− ‖ξ‖2)J1 ∧ J1

]
= 0 ,

(A.18)
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m

3‖ξ‖2 iξ ?7 δ ∧
[
J3 +

(
3‖ξ‖ − 4

‖ξ‖

)
E2 ∧ E3

]
− 1

4
ê ∧ d

(
e3∆iξ ?7 δ

)
= 0 .

(A.19)

It is now easy to see that all these equations are satisfied for the (very

possibly, unique) choice

δ = 0 , k = −1
4 . (A.20)

The expressions (2.45) for X and Y that we brought to the main text

correspond to (A.13), (A.14) with (A.20). At this point we have shown

that X and Y thus defined solve the equations (2.40), (2.41) implied by the

Bianchi identity and equation of motion for the D = 11 four-form. Let us

see that these are also compatible with the restrictions (2.42), (2.44) implied

by the D = 11 Einstein equation. These equations can be further simplified

by noting the following relation between m, ∆ and the AdS4 cosmological

constant:

9(∂a∆∂
a∆ +∇a∇a∆)− 1

3e
−6∆m2 = −12 . (A.21)

Next, reading off the tangent space components of X, Y in (2.45), we can

compute the following contractions

XacYb
c = − 1

16

√
1− ‖ξ‖2e6∆

[
δ6
aδ

5
b − δ7

aδ
4
b + δ4

aδ
7
b − δ5

aδ
6
b

]
,

XacX
bc =

1

16
(1− ‖ξ‖2)e6∆

[
δ4
aδ
b
4 + δ5

aδ
b
5 + δ6

aδ
b
6 + δ7

aδ
b
7

]
, (A.22)

YacY
bc =

1

16
e6∆

[
δ4
aδ
b
4 + δ5

aδ
b
5 + δ6

aδ
b
6 + δ7

aδ
b
7 + ‖ξ‖2(δ9

aδ
b
9 + δ10

a δ
b
10)
]
.

Using these expressions, and assuming that the undeformed internal Einstein

equations hold, we find that the internal components (2.44) of the Einstein

equation vanish automatically for all values of the graviphoton F̄ . Similarly,

the external components (2.42) of the D = 11 Einstein equation become

Ricαβ + 12 ηαβ =
g2

8

(
F̄αγF̄β

γ − 1

4
ηαβF̄

2

)
. (A.23)

This coincides with the Einstein equation that derives from the D = 4 N = 2

gauged supergravity Lagrangian after a rescaling,

ḡ4 = 4g−2 g4 , (A.24)

of the four-dimensional metric.
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A.2 Consistency of Supersymmetry variations

As discussed in the main text, for the ansatz (2.46) the internal components

of the D = 11 gravitino variation (I.3) under supersymmetry identically

vanish on the KK ansatz (2.37), and the external components reduce to the

supersymmetry variations for the D = 4 N = 2 gravitino, (2.36).

Let us first address the internal components. Using the gamma matrix

decomposition (1.7) and the G(4) components (A.9), some calculation allows

us to write

δΨa = δ0Ψa − g e−∆/2

{
F̄βγ(ρβγ ⊗ 1)

[
−1

8
kaψ̄i ⊗ χi −

1

8
ka(ψ̄i)

c ⊗ χci

+
e−3∆

48
Xdeψ̄i ⊗ γadeχi −

e−3∆

48
Xde(ψ̄i)

c ⊗ γadeχci

−e
−3∆

12
Xaeψ̄i ⊗ γeχi +

e−3∆

12
Xae(ψ̄i)

c ⊗ γeχci
]

+ F̄ ∗βγ(ρβγ ⊗ 1)

[
e−3∆

48
Ydeψ̄i ⊗ γadeχi −

e−3∆

48
Yde(ψ̄i)

c ⊗ γadeχci

−e
−3∆

12
Yaeψ̄i ⊗ γeχi +

e−3∆

12
Yae(ψ̄i)

c ⊗ γeχci
]}

, (A.25)

where we have defined F̄ ∗δε ≡ 1
2εδεκλF̄

κλ and ka = 1
4ξa = 1

4‖ξ‖δa8. Here, δ0Ψa

is the tensor product of ψ̄i with the left-hand-side of the first equation in

(2.14), and thus vanishes. In the following, it is useful to note that

εαβγδρ
δ = −iραβγρ5 , εαβγδρ

γδ = −2iραβρ5 , εαβγδρ
βγδ = 6iραρ5 ,

(A.26)

and

ρα
δε = ρδερα − 2ρ[δδε]α . (A.27)

Using these relations, equation (A.25) can be further simplified into

δΨa = −g e−∆/2F̄βγ(ρβγ ⊗ 1)

[
−1

8
kaψ̄i ⊗ χi −

1

8
ka(ψ̄i)

c ⊗ χci

+
e−3∆

48
Xdeψ̄i ⊗ γadeχi −

e−3∆

48
Xde(ψ̄i)

c ⊗ γadeχci

− e−3∆

12
Xaeψ̄i ⊗ γeχi +

e−3∆

12
Xae(ψ̄i)

c ⊗ γeχci

− ie−3∆

48
Ydeψ̄i ⊗ γadeχi −

ie−3∆

48
Yde(ψ̄i)

c⊗?γa
deχci

+
ie−3∆

12
Yaeψ̄i ⊗ γeχi +

ie−3∆

12
Yae(ψ̄i)

c ⊗ γeχci
]
. (A.28)
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A.2 Consistency of Supersymmetry variations

Acting with P± = 1
2(1 ± ρ5) ⊗ 1, we get that δΨa = 0 if, and only if, the

following projection holds,(
− 6ka + e−3∆(Xde − iYde)(γade − 4δdaγ

e)
)
χi = 0 , (A.29)

independently for i = 1, 2. Introducing the explicit expressions (2.45) for X

and Y , some algebra allows us to massage the relation (A.29), for a = 8, into

(2.47) and, for a 6= 8, into (2.48) of the main text. These projections can

be checked to be fully compatible with the SU(2)–structure that defines the

background geometry, without giving independent restrictions on the Killing

spinors χi. As an instance of how this works, the projector (2.47) gives rise

to a bilinear

χ̄c+

[
‖ξ‖(3γ8 + iγ910) +

√
1− ‖ξ‖2(γ46 − γ57)− i(γ45 + γ67)

]
χ−

= ‖ξ‖
(

3(−i‖ξ‖) + i‖ξ‖
)

+
√

1− ‖ξ‖2
(
− 2i

√
1− ‖ξ‖2

)
− i(−2) ,

(A.30)

with χ± = 1√
2
(χ1 ± iχ2), and where we have used (B.2), (B.3) of [17]. This

vanishes identically.

Next, we turn to the external variations of the gravitino. Particularising

(I.3) to external indices, employing the basis (1.7) for the Dirac matrices,

and extensively using the underformed Killing spinor equations (2.14), we

can write

δΨµ = e∆/2

{
∇µψ̄i ⊗ χi − ρµψ̄i ⊗ χci −

g‖ξ‖
16

F̄µβρ
βψ̄i ⊗ γ8χi

+
g

4
∇bkcĀµψ̄i ⊗ γbcχi +

g‖ξ‖
4

Āµψ̄i ⊗∇8χi

− g2‖ξ‖2
128

ĀµF̄βγρ
βγψ̄i ⊗ χi −

ge−3∆

48

(
F̄δεXbc + F̄ ∗δεYbc

)
ρµ

δεψ̄i ⊗ γbcχi

+
g2‖ξ‖e−3∆

192
Āµ
(
F̄δεXbc + F̄ ∗δεYbc

)
ρδεψ̄i ⊗ γ8

bcχi

+
ge−3∆

12

(
F̄µγXde + F̄ ∗µγYde

)
ργψ̄i ⊗ γdeχi

}
+m.c.

(A.31)

From (2.24) of [17] and Lξχ = ∇ξχ + 1
4∇aξbγabχ (see [223]), we find that

Lξχ1 = −2χ2 and Lξχ2 = 2χ1, so that

‖ξ‖∇8χ1 +∇akbγabχ1 = −2χ2 , ‖ξ‖∇8χ2 +∇akbγabχ2 = 2χ1 . (A.32)
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Appendix A – Consistency of the truncation in chapter 2

Bringing these relations to (A.31) and using the D = 4 Dirac matrix relations

(A.26), (A.27) to get rid of the F̄ ∗δε terms, we obtain

δΨµ = e∆/2

{
∇µψ̄i ⊗ χi − ρµ(ψ̄i)

c ⊗ χi −
g‖ξ‖
16

F̄µβρ
βψ̄i ⊗ γ8χi

− ig

2
εijĀµψ̄i ⊗ χj −

ge−3∆

48
F̄δε

[
Xbc

(
ρδερµ + 2ρδeεµ

)
ψ̄i

+2iYbc
(
ρδερµ − ρδeεµ

)
ψ̄i

]
⊗ γbcχi

}
+m.c. , (A.33)

where eεµ are the frame components. We can now use the G-structure

compatible projections (2.47), (2.48) to further simplify the result. Using

them, (A.33) becomes

δΨµ = e∆/2

{
∇µψ̄i ⊗ χi − ρµ(ψ̄i)

c ⊗ χi −
ig

2
εijĀµψ̄i ⊗ χj

+
ig

16
F̄δε ρ

δερµ ψ̄i ⊗ γ45χi

}
+m.c. (A.34)

At this point, we recognise one more projection, (2.49) of the main text, that

may be imposed to relate the internal spinors χi to their charge conjugates

χci . This projection is, again, fully compatible with the original Killing spinor

equations (2.14) and does not constrain the background geometry any further.

Using (2.49) along with (χci )
c = χi and (ρ(n)ψ̄i)

c = ρ(n)(ψ̄i)
c, equation (A.34)

finally yields

δΨµ = e∆/2
{
∇µψ̄i − ρµ(ψ̄i)

c + ig
2 εijĀµψ

+
j + g

16 F̄δε ρ
δερµ εij(ψ̄j)

c
}
⊗χi+m.c.

(A.35)

If the external components Ψµ of the D = 11 gravitino and the D = 4

gravitini ψ+
iµ are related as in equation (2.50) of the main text, then (A.35)

reproduces the supersymmetry variations (2.36) for the gravitini of D = 4

N = 2 supergravity, after the metric rescaling (A.24) is taken into account.
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Appendix B

SU(3) subsector of maximal
SO(8)-supergravity

In chapter 3 we focused on the truncation of the D = 4 N = 8 SO(8)-gauged

supergravity and the corresponding class of solutions in D = 11 supergravity

to the subsector invariant under

SU(3) ⊂ SO(8) ⊂ E7(7) . (B.1)

In the SL(8,R) basis, the generators of this E7(7) can be given as tA
B

and tABCD, with tA
A = 0 and tABCD = t[ABCD]. In the fundamental

representation broken into 28⊕ 28′ pieces, they take the form

[tA
B]CD

EF = 4
(
δB[Cδ

EF
D]A +

1

8
δABδ

EF
CD

)
, [tA

B]CDEF = −[tA
B]EF

CD ,

[tABCD]EFGH = 1
12εABCDEFGH , [tABCD]EFGH = 2δEFGHABCD .

(B.2)

The hatted generators of chapter 6 are defined in exactly the same way.

The generators of the SO(8) ⊂ SL(8,R) ⊂ E7(7) subgroup can be taken

only out of the tA
B. They can be chosen as

TAB ≡ 2 t[A
CδB]C . (B.3)

The generators of SU(3) ⊂ SO(8) can then be taken to be λ̃α̃, α̃ = 1, . . . , 8,

defined as

λ̃1 = T14 − T23 , λ̃2 = −T13 − T24 , λ̃3 = T12 − T34 ,

λ̃4 = T16 − T25 , λ̃5 = −T15 − T26 , λ̃6 = T36 − T45 ,

λ̃7 = −T35 − T46 , λ̃8 = 1√
3

(
T12 + T34 − 2T56

)
. (B.4)
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Appendix B – SU(3) subsector of maximal SO(8)-supergravity

These generators indeed close into the SU(3) commutation relations

[λ̃α̃, λ̃β̃ ] = 2fα̃β̃γ̃ λ̃γ̃ , (B.5)

with fα̃β̃γ̃ = f[α̃β̃γ̃] Gell-Mann’s structure constants,

f123 = 1 , f458 = f678 =
√

3
2 ,

f147 = f165 = f246 = f257 = f345 = f376 = 1
2 .

(B.6)

Inside E7(7), the SU(3) generated by (B.4) commutes with SL(2,R) ×
SU(2, 1), with the first factor generated by

H0 = −1
2

(
ti
i − 3ta

a
)
, E0 = 3 J (6)ijεab tijab , F0 = 3

2 J
(6)ijJ (6)kh tijkh ,

(B.7)

and the second factor by

H1 = −t77 + t8
8 , H2 = J (6)

j
i ti

j ,

E11 = −
√

2 Im Ω(6)ijk tijk8 , E12 = −
√

2 Re Ω(6)ijk tijk8 , E2 = −
√

2 t8
7 ,

F11 =
√

2 Re Ω(6)ijk tijk7 , F12 = −
√

2 Im Ω(6)ijk tijk7 , F2 = −
√

2 t7
8 .

(B.8)

These are the numerator groups in the scalar manifold (3.53). In (B.7)

and (B.8) we have split the indices as I = (i, a), with i = 1, . . . , 6 in the

fundamental of SO(6)v and a = 7, 8, by effectively identifying the fundamental

of SL(8,R) with the 8v of SO(8). We have employed the SU(3)–invariant

Calabi-Yau (1, 1) and (3, 0) forms

J (6) = e12 + e34 + e56 , Ω(6) = (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6) , (B.9)

on R6 ⊂ R8, with e12 ≡ dx1 ∧ dx2, etc, and xi the R6 Cartesian coordinates.

We have also introduced the Levi-Civita tensor εab in the R2 ⊂ R8 plane

spanned by the 7, 8 directions. Indices i, j and a, b are raised and lowered

with δij and δab. The generators (B.7) and (B.8) indeed commute with each

other and respectively close into the SL(2,R),

[H0, E0] = 2E0 , [H0, F0] = −2F0 , [E0, F0] = H0 , (B.10)

and SU(2, 1) commutation relations,

[H1, H2] = [H2, E2] = [H2, F2] = [F1i, F2] = [E1i, E2] = 0,

[H1, E1i] = E1i, [H2, E1i] = −3εijE1j , [H1, E2] = 2E2,

[H1, F1i] = −E1i, [H2, F1i] = −3εijF1j , [H1, F2] = −2F2,

[E11, E12] = −
√

2E2, [F11, F12] =
√

2E2, [E2, F2] = 2H1 ,

[E1i, F1j ] = δijH1 + εijH2, [E1i, F2] =
√

2εijF1j , [E2, F1i] =
√

2εijE1j ,
(B.11)
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with, here and only here, i = 1, 2. The generators of the maximal compact

subgroup of SU(2, 1) are

K0 ≡ E2 − F2 −
√

2

3
H2 , K1 ≡ 1√

8

(
E11 − F11

)
,

K2 ≡ 1√
8

(
E12 − F12

)
, K3 ≡ − 1

4
√

2

(
E2 − F2

)
− 1

4 H2 ,
(B.12)

and close into the SU(2)×U(1) commutation relations

[K0,Kx] = 0 , [Kx,Ky] = εxyzKz , x = 1, 2, 3 . (B.13)

It is also interesting to note that the three different U(1)’s with which

SU(3) commutes inside the SO(8) subgroups SO(6)v, SU(4)c and SU(4)s are

respectively generated by

U(1)v : −J (6)

j
i ti

j , (B.14)

U(1)c : −J (6)

j
i ti

j + 3 εb
a ta

b , (B.15)

U(1)s : −λJ (6)

j
i ti

j + 3 εb
a ta

b , withλ ∈ R , λ 6= 1 . (B.16)

With these details, the SU(3)–invariant bosonic field content and its

interactions described in section 3.1.2 can be constructed from the parent

N = 8 supergravity. Per the analysis above, the SU(3)–invariant scalar

manifold is (3.53). A coset representative is

V = e−χE0e−
1
2
ϕH0e

1√
2

(aE2−ζE11−ζ̃E12)
e−φH1 , (B.17)

and the quadratic scalar matrix that enters the bosonic Lagrangian is M =

VVT. The metric on (3.53) that determines the scalar kinetic terms in

the Lagrangian (3.54) is then reproduced through − 1
48DM∧ ∗DM−1. For

reference, the SL(2,R)× SU(2, 1) Killing vectors of this metric, normalised

to obey the commutation relations (B.10), (B.11), are

k[H0] = 2∂ϕ − 2χ∂χ , k[E0] = ∂χ , k[F0] = 2χ∂ϕ + (e−2ϕ − χ2)∂χ ,

(B.18)
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and

k[H1] = ∂φ − 2a∂a − ζ∂ζ − ζ̃∂ζ̃ , k[H2] = 3ζ̃∂ζ − 3ζ∂ζ̃ ,

k[E11] = 1√
2
(ζ̃∂a − 2∂ζ) , k[E12] = 1√

2
(ζ∂a + 2∂ζ̃) , k[E2] =

√
2∂a ,

k[F2] =
√

2
(
a∂φ − e−4φ(Z2 − Y 2)∂a − (aζ − e−2φζ̃Y )∂ζ − e−2φ(ζ̃Z + ζY )∂ζ̃

)
,

k[F11] = 1√
2

(
−ζ∂φ + (aζ − e−2φζ̃Y )∂a − 1

2 (4e−2φ − ζ2 + 3ζ̃2)∂ζ + 2(a+ ζζ̃)∂ζ̃

)
,

k[F12] = 1√
2

(
ζ̃∂φ − (aζ̃ + e−2φζY )∂a + 2(a− ζζ̃)∂ζ + 1

2 (4e−2φ + 3ζ2 − ζ̃2)∂ζ̃

)
.

(B.19)

Moving on, we need to specify how the SU(3)–invariant tensor fields in

(3.52) are embedded into their N = 8 counterparts. As detailed in (3.47),

the restricted N = 8 tensor hierarchy contains 28′ electric vectors AAB,

28 magnetic vectors ÃAB, 63 two-forms BAB and 36 three-forms CAB, in

representations of SL(8,R) [30]. In order to determine the embedding of the

SU(3)–invariant vectors AΛ, ÃΛ, Λ = 0, 1, into their N = 8 counterparts, we

note that SU(3) commutes inside SO(8) ⊂ E7(7) with the U(1)2 generated, in

the notation of (B.8), by (E2 − F2) and H2 or, equivalently, by K0 and K3

defined in (B.12). These are the Cartan generators of the maximal compact

subgroup SU(2)×U(1) of the hypermultiplet scalar manifold. Splitting again

the N = 8 index as below (B.8), A = (i, a), and fixing the normalisations

for convenience we have the following embedding into the N = 8 vectors,

Aij = A1J (6)ij , Aab = εabA0 , Ãij = 1
3Ã1J(6)ij , Ãab = Ã0 εab .

(B.20)

Similarly, for the two-form potentials we define

Bij = − 1
12 Ba

a δi
j + 1

3 B
2 J (6)

i
j , Bab = 1

2 Ba
b − 1

2 B
0 εa

b , (B.21)

and for the three-form potentials,

Cij = C1 δij , Cab = Cab . (B.22)

Additionally, the gauge covariant derivative acting on the scalars reduces

to D = d+ 1√
2
g(k[E2]− k[F2])A0 − g k[H2]A1, and this in turn reproduces

(3.55) upon use of the relevant Killing vectors in (B.19).
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Geometric structures on S7

There are various sets of intrinsic coordinates that prove useful to understand

the symmetries of the different M-theory configurations in section 3.2, each

of them adapted to different geometric structures on S7. The expressions

below have been used to particularise the general SU(3)-invariant consistent

embedding formulae (3.119)-(3.122) to the further subsectors and AdS4

solutions discussed in section 3.2.2.

C.1 S7 as the join of S1 and a Sasaki-Einstein S5

The first set of coordinates solves the constraint (3.106) by splitting µA,

A = 1, . . . , 8, as

µi = cosα µ̃i , i = 1, . . . , 6 , µ7 = sinα cosψ , µ8 = sinα sinψ ,

(C.1)

with 0 ≤ α ≤ π/2, 0 ≤ ψ < 2π, and µ̃i, i = 1, . . . , 6, defining in turn an S5,

i.e. subject to the constraint δijµ̃
iµ̃j = 1. The intrinsic coordinates (C.1) are

adapted to the topological description of S7 as the join of S5 and S1, for

which the round, Einstein, SO(8)–invariant metric,

ds2(S7) = δAB dµ
AdµB , (C.2)

on S7 displays only a manifest SO(6)v × SO(2) symmetry,

ds2(S7) = dα2 + cos2 αds2(S5) + sin2 αdψ2 , (C.3)

with ds2(S5) = δij dµ̃
idµ̃j the round, Einstein metric on S5 normalised so

that the Ricci tensor equals four times the metric. This S5 comes naturally

equipped with the Sasaki-Einstein structure (η(5), J (5), Ω(5)) endowed upon it
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from the Calabi-Yau forms J (6), Ω(6), (B.9), on the R6 factor of R8 = R6×R2

in which S5 is embedded,

η(5) = J (6)

ij µ̃
idµ̃j , J (5) = 1

2J
(6)

ij dµ̃
i ∧ dµ̃j , Ω(5) = 1

2 Ω(6)

ijk µ̃
idµ̃j ∧ dµ̃k .

(C.4)

These satisfy

J (5)∧Ω(5) = 0 , 1
2 J

(5)∧J (5)∧η(5) = 1
4Ω(5)∧Ω̄(5)∧η(5) = vol(S5) , (C.5)

and

dη(5) = 2J (5) , dΩ(5) = 3iη(5) ∧Ω(5) . (C.6)

It is also useful to relate the Calabi-Yau forms J (6) and Ω(6) written in terms

of constrained R8 coordinates µA = (µi, µa), i = 1, . . . , , 6, a = 7, 8, to the

intrinsic S7 coordinate α in (C.1) and Sasaki-Einstein forms (C.4):

J (6)

ij µ
idµj = cos2αη(5) ,

1
2 J

(6)

ij dµ
i ∧ dµj = cos2αJ (5) − sinα cosαdα ∧ η(5) ,

1
2 Ω(6)

ijkµ
idµj ∧ dµk = cos3αΩ(5) ,

1
6 Ω(6)

ijkdµ
i ∧ dµj ∧ dµk = i cos3αΩ(5) ∧ η(5) − sinα cos2αdα ∧Ω(5) . (C.7)

The round metric ds2(S5) in (C.3) naturally adapts itself to the Sasaki-

Einstein structure (C.4) when written as

ds2(S5) = ds2(CP2) + (dτ + σ)2 , (C.8)

with ds2(CP2) the Fubini-Study metric on the complex projective plane,

normalised so that the Ricci tensor equals six times the metric, 0 ≤ τ < 2π

an angle on the S5 Hopf fiber, and σ a one-form on CP2 such that dσ = 2J (4)

with J (4) the Kähler form on CP2, so that η(5) ≡ dτ + σ and J (5) ≡ J (4). For

completeness, we note that ds2(CP2) can be written in terms of complex

projective coordinates ξi, i = 1, 2, as

ds2(CP2) =
dξ̄i dξ

i

1 + ξ̄kξk
− (ξ̄idξ

i)(ξjdξ̄j)

(1 + ξ̄kξk)2
, (C.9)

by introducing complex coordinates on R6 = C3 through

µ̃1+iµ̃2 = 1√
1+ξ̄iξi

eiτξ1 , µ̃3+iµ̃4 = 1√
1+ξ̄iξi

eiτξ2 , µ̃5+iµ̃6 = 1√
1+ξ̄iξi

eiτ .

(C.10)

In these coordinates, the one-form σ in (C.8) reads

σ =
i

2

ξidξ̄i − ξ̄idξi
1 + ξ̄kξk

. (C.11)

180



C.2 S7 as a homogeneous Sasaki-Einstein space

C.2 S7 as a homogeneous Sasaki-Einstein space

A second set of intrinsic coordinates on S7 can be chosen that adapt them-

selves to its two natural, homogeneous seven-dimensional Sasaki-Einstein

structures. These descend on S7 from the Calabi-Yau forms J (8)

± , Ω(8)

± on R8,

J (8)

± = J (6) ± e78 = e12 + e34 + e56 ± e78 ,

Ω(8)

± = Ω(6) ∧ (e7 ± ie8) = (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6) ∧ (e7 ± ie8),
(C.12)

that are invariant under SU(4)c for the + sign and SU(4)s for the − sign. In

terms of the constrained coordinates µA, A = 1, . . . , 8, that define S7 as the

locus (3.106) in R8, the Sasaki-Einstein structure forms induced on S7 are

η(7)

± = J (8)

±AB µ
AdµB , J (7)

± = 1
2J

(8)

±AB dµ
A ∧ dµB ,

Ω(7)

± = 1
6 Ω(8)

±ABCD µ
AdµB ∧ dµC ∧ dµD .

(C.13)

These are subject to

J (7)

± ∧Ω(7)

± = 0 , J (7)

± ∧J (7)

± ∧J (7)

± ∧η(7)

± = 3i
4 Ω(7)

± ∧Ω̄(7)

± ∧η(7)

± = ∓6 vol(S7) ,

(C.14)

and

dη(7)

± = 2J (7)

± , dΩ(7)

± = 4iη(7)

± ∧Ω(7)

± . (C.15)

The seven-dimensional Sasaki-Einstein structure (C.13) is related to its

five-dimensional counterpart (C.4) and the angles (C.1) through

η(7)

± = cos2αη(5) ± sin2αdψ ,

J (7)

± = cos2αJ (5) ± sinα cosαdα ∧ (dψ ∓ η(5)) ,

Ω(7)

± = e±iψ cos2α
[
dα± i cosα sinα(dψ ∓ η(5))

]
∧Ω(5) . (C.16)

The round metric on S7 adapted to seven-dimensional Sasaki-Einstein

structure reads, similarly to (C.8),

ds2(S7) = ds2(CP3
±) +

(
dψ± + σ±

)2
, (C.17)

where ds2(CP3
±) is the Fubini-Study metric, normalised so that the Ricci

tensor equals eight times the metric. The ± refers to two different embeddings

of CP3 into S7, with isometry group SU(4)c ⊂ SO(8) for the + sign and

SU(4)s ⊂ SO(8) for the − sign. The angles ψ± have period 2π and the

one-forms σ± in (C.17) obey dσ± = 2J (7)

± so that η(7)

± ≡ dψ± + σ±. It is also
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useful to make manifest the CP2 that resides inside CP3
±, which is equipped

with the complex projective coordinates ξi, i = 1, 2, that appear in (C.10)

and the metric (C.9). This can be achieved by writing

µ1 + iµ2 =
cosα√
1 + ξ̄iξi

ei(ψ±+τ±) ξ1 , µ3 + iµ4 =
cosα√
1 + ξ̄iξi

ei(ψ±+τ±) ξ2 ,

µ5 + iµ6 =
cosα√
1 + ξ̄iξi

ei(ψ±+τ±) , µ7 + iµ8 = sinα e±iψ± , (C.18)

where τ± are angles of period 2π. The metrics ds2(CP3
±) and one-forms σ±

inside the round S7 metric (C.17) can be written in terms of the coordinates

(C.18) as

ds2(CP3
±) = dα2 + cos2 αds2(CP2) + cos2 α sin2 α (dτ± + σ)2 , (C.19)

and

σ± = cos2 α (dτ± + σ) , (C.20)

with ds2(CP2) and σ respectively given by (C.9) and (C.11). The round S7

metrics (C.3) with (C.8) and (C.17) with (C.19) are of course diffeomorphic:

they are brought into each other by the change of coordinates

ψ = ±ψ± , τ = τ± + ψ± . (C.21)

C.3 S7 as the sine-cone over a nearly-Kähler S6

A third and final set of intrinsic angles on S7 is better suited to describe

the solutions with at least G2 symmetry. First split the µA, A = 1, . . . , 8, as

µA = (µI, µ8), with I = 1, . . . , 7, and then let

µI = sinβ ν̃I , µ8 = cosβ , (C.22)

where 0 ≤ β ≤ π, and ν̃I, I = 1, . . . , 7, define an S6 through the constraint

δIJν̃
Iν̃J = 1. In these coordinates, the round metric (C.2) takes on the local

sine-cone form

ds2(S7) = dβ2 + sin2 β ds2(S6) , (C.23)

where ds2(S6) = δIJ dν̃
Idν̃J is the round, Einstein metric on S6 normalised

so that the Ricci tensor equals five times the metric. This S6 is naturally

endowed with the homogeneous nearly-Kähler structure1 (J ,Ω) inherited

1The typography we use for the nearly-Kähler forms on S6 differentiates them from the
Calabi-Yau forms (B.9) on R6. For that reason, we omit labels (6) for the former. Similarly,
we omit labels (7) for the associative and co-associative forms on R7.
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from the closed associative and co-associative forms,

ψ = e127 + e347 + e567 + e135 − e146 − e236 − e245 ,

ψ̃ = e1234 + e1256 + e3456 + e1367 + e1457 + e2357 − e2467 ,
(C.24)

on the R7 factor of R8 = R7 × R in which S6 is embedded:

J = 1
2 ψIJK ν̃

Idν̃J ∧ dν̃K ,
Ω = 1

6

(
ψJKL − i ψ̃IJKL ν̃

I
)
dν̃J ∧ dν̃K ∧ dν̃L .

(C.25)

The nearly-Kähler forms are subject to

J ∧Ω = 0 , Ω ∧ Ω̄ = −4i
3 J ∧ J ∧ J = −8i vol(S6) , (C.26)

and

dJ = 3 ReΩ , d ImΩ = −2J ∧ J . (C.27)

It is also useful to note the following relations between the associative and co-

associative forms ψ, ψ̃ written in constrained R8 coordinates µA = (µI, µ8),

the S7 coordinate β in (C.22), and the nearly-Kähler forms (C.25):

1
2ψIJKµ

IdµJ ∧ dµK ∧ dµ8 = − sin4β J ∧ dβ ,
1
6ψIJKdµ

I ∧ dµJ ∧ dµK = sin3βReΩ + sin2β cosβ J ∧ dβ ,
1
6 ψ̃IJKLµ

IdµJ ∧ dµK ∧ dµL = − sin4β ImΩ ,

1
24 ψ̃IJKLdµ

I ∧ dµJ ∧ dµK ∧ dµL = 1
2 sin4β J ∧ J + sin3β cosβ ImΩ ∧ dβ .

(C.28)

Finally, the following relations hold between the associative and co-associative

forms on R8 = R7 × R and the Calabi-Yau forms R8 = R6 × R2:

1
2ψIJKµ

IdµJ ∧ dµK = J (6)

ij µ
i dµj ∧ dµ7 + 1

2

(
J (6)

jk µ
7 + Re Ω(6)

ijk µ
i
)
dµj ∧ dµk ,

1
6ψIJKdµ

I ∧ dµJ ∧ dµK = 1
6Re Ω(6)

ijk dµ
i ∧ dµj ∧ dµk + 1

2J
(6)

ij dµ
i ∧ dµj ∧ dµ7 ,

1
6 ψ̃IJKLµ

IdµJ ∧ dµK ∧ dµL = 1
2J

(6)

ij J
(6)

kl µ
i dµj ∧ dµk ∧ dµl

+ 1
2 Im Ω(6)

ijk

(
µi dµ7 − 1

3 µ
7dµi

)
∧ dµj ∧ dµk .

(C.29)

These expressions come handy to derive the G2–invariant consistent uplifting

formulae (3.137)-(3.139) from the general expressions (3.119)-(3.122). They

are also useful to rewrite the solutions (3.147)-(3.151) with at least G2

symmetry in the form (D.6)-(D.12), in order to verify that they satisfy the

equations of motion.
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Appendix D

Checks on D = 11 field
equations in the SU(3) sector

In this appendix we provide a detailed account of the consistency of the

minimal N = 2 truncation and the AdS4 solutions presented in section 3.2.2.

D.1 Consistency of the minimal N = 2 truncation

We have explicitly verified at the level of the D = 4 field equations that the

restrictions (3.93)-(3.98) define a consistent truncation of the SU(3)–invariant

theory (3.54) to minimal N = 2 gauged supergravity (2.35). In turn, the

consistency of the D = 11 embedding of the entire SU(3) sector described

in section 3.2.2 guarantees the consistency of the new uplift of minimal

N = 2 supergravity given in (3.142)-(3.145). We have nevertheless checked

consistency explicitly at the level of the Bianchi identity and the equation of

motion of the D = 11 four-form F̂(4) = dÂ(3),

dF̂(4) = 0 , d ∗̂ F̂(4) + 1
2 F̂(4) ∧ F̂(4) = 0 . (D.1)

The configuration (3.142), (3.145) does solve the D = 11 field equations

(D.1) provided the Bianchi identity and the Maxwell equation for the D = 4

graviphoton,

dF̄ = 0 , d ∗̄ F̄ = 0 , (D.2)

are imposed.

It is straightforward to see that the D = 11 Bianchi identity is satisfied.

Hitting (3.145) with the differential operator we obtain, after using (D.1)

and the algebraic and differential conditions for the local five-dimensional
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Sasaki-Einstein structure (3.141) (that is, (C.5), (C.6) written for the primed

forms η′, J ′ and Ω′),

dF̂(4) = g−3

√
3

[
cos2α(7− 10 cos 2α+ cos 4α)(

1 + 2 sin2α
)2 dα ∧

(
g
2 F̄ ∧ Re Ω′ + 3Dψ′ ∧ Im Ω′ ∧ η′

)
+6 ∂α

(
sinα cos3α

1 + 2 sin2α

)
dα ∧Dψ′ ∧ η′ ∧ Im Ω′ + g

3 sinα cos3α

1 + 2 sin2α
F̄ ∧ η′ ∧ Im Ω′

]
+
g−2

2
√

3

[
2 ∂α

(
sinα cos3 α

1 + 2 sin2 α

)
dα ∧ F̄ ∧ Re Ω′ − 6 sinα cos3 α

1 + 2 sin2 α
F̄ ∧ Im Ω′ ∧ η′

]
.

(D.3)

Terms with the same form dependence cancel each other, thus leading to

dF̂(4) = 0.

Moving on to the equation of motion, we find it useful for the calculation

to introduce the obvious frame that can be read off from (3.142),

êα =

(
1 + 2 sin2 α

)1/3
21/3
√

3
ēα, with ēα a vierbein for ds̄2

4 ,

êp =
21/6 cosα

g
(
1 + 2 sin2 α

)1/6 ep, with ep a vierbein for ds2(CP2) ,

ê8 =
21/6

(
1 + 2 sin2 α

)1/3
√

3 g
dα ,

ê9 =
21/6
√

3 sinα cosα
(
1 + 2 sin2 α

)1/3
g
(
1 + 8 sin4 α

)1/2 η′ ,

ê10 =

(
1 + 8 sin4 α

)1/2
21/3
√

3 g
(
1 + 2 sin2 α

)2/3(Dψ′ − 3 cos2 α

1 + 8 sin4 α
η′
)
,

(D.4)

with α = 0, 1, 2, 3 and p = 4, 5, 6, 7. Using this frame, the Hodge dual of

F̂(4) reads

∗̂ F̂(4) = − 3
3
2 g−3 cos4α

(1 + 2 sin2 α)2
ê8910 ∧ J ′ ∧ J ′

− 2−
1
6 · 3− 3

2 g−1
(
1 + 2 sin2α

)2/3
cos2 α vol4 ∧ ê8 ∧ Im Ω′

+
2−

7
6 · 3− 3

2 g−1 cos2 α (7− 10 cos 2α+ cos 4α)(
1 + 2 sin2 α

)1/3 (
1 + 8 sin4 α

)1/2 vol4 ∧ ê9 ∧ Re Ω′
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− 3−
3
2 · 2− 5

3 g−1 cos3α (7− 10 cos 2α+ cos 4α)

sinα
(
1 + 2 sin2 α

)4/3 (
1 + 8 sin4 α

)1/2 vol4 ∧ ê10 ∧ Re Ω′

+
g−2 sinα cos3α√
3
(
1 + 2 sin2 α

) ∗̄ F̄ ∧ ê8910 ∧ Re Ω′ − g−2 cos2α

2
√

3
F̄ ∧ ê8910 ∧ J ′

+
2−

5
3 · 3− 1

2 g−4
(
1 + 8 sin4 α

)1/2
cos4α(

1 + 2 sin2 α
)4/3 F̄ ∧ ê10 ∧ J ′ ∧ J ′ , (D.5)

where ê8910 = ê8 ∧ ê9 ∧ ê10. Computing the differential of (D.5) with the

help of the Sasaki-Einstein conditions satisfied by η′, J ′ and Ω′, as well as

F̂(4) ∧ F̂(4) from (3.145) and putting everything together, we find that the

D = 11 equation of motion in (D.1) is indeed satisfied on the D = 4 field

equations (D.2).

D.2 D = 11 field equations on the AdS4 solutions

The AdS4 solutions that we brought to section 3.2.2 are obtained from the

consistent uplifting formulae (3.119)-(3.122) by turning off the relevant tensor

hierarchy fields, fixing the D = 4 scalars to the vevs recorded in table 3.2, and

fixing the R8 embedding coordinates µA, A = 1, . . . , 8, in terms of various

sets of intrinsic angles on S7 discussed in appendix C. The particular choice

of intrinsic coordinates for each solution was made on a case-by-case basis,

as specific sets of coordinates are more suitable than others to highlight the

specific symmetry of a solution. While this is obviously the best approach

for the sake of presentation, it is definitely inconvenient to check the D = 11

equations of motion, as one would also need to proceed on a case-by-case

basis for each solution.

In order to check that the D = 11 equations of motion hold it is more con-

venient to proceed differently. Firstly, leave the D = 4 scalars as temporarily

unfixed constants, and make a choice of intrinsic S7 coordinates (regardless

of whether they would be well adapted to specific sectors). For this purpose,

we have chosen the intrinsic coordinates (C.1). The D = 11 metric and

four-form then get expanded in terms of the global five-dimensional Sasaki-

Einstein structure η(5), J (5), Ω(5) specified in appendix C, with coefficients

that depend on the D = 4 scalars along with the S7 angles α and ψ. Secondly,

plug these expressions into the D = 11 field equations (D.1) and obtain, with

the help of the Sasaki-Einstein relations (C.5), (C.6), the set of equations

that the coefficients must obey for the D = 11 equations to hold. Finally,
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verify that these equations are satisfied when the D = 4 scalars are fixed to

the critical points recorded in table 3.2.

Proceeding this way, we find that the D = 11 metric (3.119) can be

written in terms of the intrinsic angles (C.1) as

dŝ2
11 = ∆−1ds2

4 + ds2
7 ,

ds2
7 = −2(G1 dα+G2 dψ)η(5) + (G3 +G4) (η(5))2 +G4 ds

2(CP2)

+G5 dα
2 + 2G6 dα dψ +G7 dψ

2 , (D.6)

where both the warp factor,

∆−1 ≡ e−ϕX1/3∆
2/3
1 , (D.7)

given by ∆1 in (3.118) with (C.1), and the coefficients of the internal metric

ds2
7 depend on the S7 angles α, ψ and the D = 4 scalars:

G1 = ∆2

g2

[
− 1

2e
−2φ sinα cos3α (X − Y )

(
2ae4φ cos 2ψ − sin 2ψ(−Y 2 − Z2 + e4φ)

) ]
,

G2 = ∆2

g2

[
e−2φ sin2α cos2α (X − Y )

(
ae4φ sin 2ψ + sin2ψ(Y 2 + Z2) + e4φ cos2ψ

) ]
,

G3 = ∆2

g2

[
Y cos4α (Y −X)

]
,

G4 = ∆2

g2

[
X2 sin2α cos2α e−2(ϕ+φ)

(
ae4φ sin 2ψ + sin2ψ (Y 2 + Z2) + e4φ cos2ψ

)
+XY cos4α

]
,

G5 = ∆2

g2

{
XY sin2α cos2α − 1

64 sin2 2α
(
e2φ(ζ2 + ζ̃2) + 4

)(
e2φ(ζ2 + ζ̃2)− 4e2ϕχ2

)
+X2 sin4α e−2(ϕ+φ)

(
ae4φ sin 2ψ + sin2ψ (Y 2 + Z2) + e4φ cos2ψ

)
+ e−4φ cos2α

[
− 2ae4φ sinψ cosψ + cos2ψ (Y 2 + Z2) + e4φ sin2ψ

]
×
[

sin2α
(
ae4φ sin 2ψ + sin2ψ (Y 2 + Z2) + e4φ cos2ψ

)
+ cos2α e2(ϕ+φ)

]}
,

G6 = ∆2

g2

[
e−4φ sinα cosα

(
− ae4φ cos 2ψ + sinψ cosψ (−Y 2 − Z2 + e4φ)

)]
×
[

sin2α
(
ae4φ sin 2ψ + sin2ψ

(
Y 2 + Z2

)
+ e4φ cos2ψ

)
+ cos2α e2(ϕ+φ)

]
,

G7 = ∆2

g2

[
e−4φ sin2α

(
ae4φ sin 2ψ + sin2ψ (Y 2 + Z2) + e4φ cos2ψ

)]
×
[

sin2α
(
ae4φ sin 2ψ + sin2ψ

(
Y 2 + Z2

)
+ e4φ cos2ψ

)
+ cos2α e2(ϕ+φ)

]
.

(D.8)

Turning off the D = 4 tensor hierarchy fields (except for the local three-

form CFR ≡ C1 = C77 = C88 whose rôle is merely to serve as a local potential
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for the Freund-Rubin term) in the three form (3.121), its pull-back on S7

induced by (C.1) reads

Â(3) = CFR + L1 dα ∧ dψ ∧ η(5) + (L2 dα+ L3 dψ) ∧ J (5)

+ (L4 dα+ L5 dψ) ∧ Re Ω(5) + (L6 dα+ L7 dψ) ∧ Im Ω(5)

+
(
L8 Im Ω(5) + L9 Re Ω(5) + L10 J

(5)
)
∧ η(5) . (D.9)

The coefficients here are given by

L1 = ∆3

16g χ sinα cos2α e−ϕ−4φ
[
e4φ cos2ψ

+ sinα sin 2α (X − Y )e2(ϕ+φ)
(
e2ϕχ2 − Y + 1

) (
ae4φ sin 2ψ + sin2ψ

(
Y 2 + Z2

) )
− 2

(
X2 sin2α

(
ae4φ sin 2ψ + sin2ψ

(
Y 2 + Z2

)
+ e4φ cos2ψ

)
+ Y 2 cos2α e2(ϕ+φ)

)
×
(

cosα e2(ϕ+φ) + sinα tanα
(
sin2ψ

(
Y 2 + Z2

)
+ Ze2φ sin 2ψ + e4φ cos2ψ

) )]
,

L2 = ∆3

g3

[
− χe−ϕ−4φX sinα cos3α

(
sinψ cosψ

(
−Y 2 − Z2 + e4φ

)
− Ze2φ cos 2ψ

)]
×
[
X sin2α

(
ae4φ sin 2ψ + sin2ψ

(
Y 2 + Z2

)
+ e4φ cos2ψ

)
+ Y cos2α e2(ϕ+φ)

]
,

L3 = − tanα sinψ
(
Y 2 + Z2 + 2Ze2φ cotψ + e4φ cot2ψ

)
Ze2φ cos 2ψ − sinψ cosψ (−Y 2 − Z2 + e4φ)

L2 ,

L4 = ∆3

2g3 X cos2α e−3ϕ−2φ
[
X sin2α

(
ζe2φ cosψ + sinψ (ζ̃Y + ζZ)

)
+ e2ϕ cos2α

(
ζ̃e2φ sinψ + cosψ (ζY − ζ̃Z)

)]
×
[
X sin2α

(
ae4φ sin 2ψ + sin2ψ

(
Y 2 + Z2

)
+ e4φ cos2ψ

)
+ Y cos2α e2(ϕ+φ)

]
L5 = − e2φ

(
ζ̃e2φ cosψ + sinψ (ζ̃Z − ζY )

)
χ (sin 2ψ (−Y 2 − Z2 + e4φ)− 2Ze2φ cos 2ψ)

L2 ,

L6 =
2

sin 2α

e−2ϕX sin2α+
cos2α

(
cosψ (ζ̃Y + ζZ)− ζe2φ sinψ

)
ζ̃e2φ cosψ + sinψ (ζ̃Z − ζY )

 L5 ,

L7 = −ζe
2φ cosψ + ζ̃Y sinψ + ζZ sinψ

ζ̃e2φ cosψ − ζY sinψ + ζ̃Z sinψ
L5 ,

L8 = −e−2ϕX L7 ,

L9 = −e−2ϕX L5 ,

L10 = ∆3

g3

(
− eϕχY cos2α

)[
XY cos4α

+X2 sin2α cos2α e−2(ϕ+φ)
(
ae4φ sin 2ψ + sin2ψ

(
Y 2 + Z2

)
+ e4φ cos2ψ

) ]
.

(D.10)
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Finally, the D = 11 four-form F̂(4) = dÂ(3) is

F̂(4) = U vol4 + dα ∧ dψ ∧
(
f1 J

(5) + f2 Re Ω(5) + f3 Im Ω(5)
)

+
(
f4 dα+ f5 dψ

)
∧ Re Ω(5) ∧ η(5) +

(
f6 dα+ f7 dψ

)
∧ Im Ω(5) ∧ η(5)

+
(
f8 dα+ f9 dψ

)
∧ J (5) ∧ η(5) + f10 J

(5) ∧ J (5) , (D.11)

where the Freund Rubin term is given by Uvol4 = H1
(4)µiµ

i + Hab
(4)µaµb

evaluated on (C.1) and on the D = 4 dualisation conditions (3.69). The

functional coefficients in (D.11) can be written in terms of the coefficients

(D.10) of the three form (D.9) as

f1 = 2L1 + ∂αL3 − ∂ψL2 , f6 = 3L4 + ∂αL8 ,

f2 = ∂αL5 − ∂ψL4 , f7 = 3L5 + ∂ψL8 ,

f3 = ∂αL7 − ∂ψL6 , f8 = ∂αL10 ,

f4 = −3L6 + ∂αL9 , f9 = ∂ψL10 ,

f5 = −3L7 + ∂ψL9 , f10 = 2L10 .

The Bianchi identity dF̂(4) = 0 amounts to the following relations:

3f3 + ∂αf5 − ∂ψf4 = 0 , −3f2 + ∂αf7 − ∂ψf6 = 0 ,

∂αf10 − 2f8 = 0 , ∂αf9 − ∂ψf8 = 0 , ∂ψf10 − 2f9 = 0 .
(D.12)

Of course, these conditions are automatically satisfied by construction for all

values of the D = 4 scalars upon using (D.12).

We next compute the Hodge dual of the F̂(4) given in (D.11) with respect

to the D = 11 metric (D.6). We obtain

∗̂ F̂(4) = ∆2 vol7 +∆−2 vol4 ∧[
(p1 dα+ p2 dψ + p3 η

(5)) ∧ J (5) + (p4 dα+ p5 dψ + p6 η
(5)) ∧ Re Ω(5)

+ (p7 dα+ p8 dψ + p9 η
(5)) ∧ Im Ω(5) + p10 dα ∧ dψ ∧ η(5)

]
, (D.13)

with coefficients

p1 = ∆−2

GV

[
f1G1 − f9G5 + f8G6

]
, p6 = ∆−2

GV

[
f5G1 − f4G2 − f2G3 − f2G4

]
,

p2 = ∆−2

GV

[
f1G2 − f9G6 + f8G7

]
, p7 = ∆−2

GV

[
f3G1 − f7G5 + f6G6

]
,

p3 = ∆−2

GV

[
f9G1 − f8G2 − f1G3 − f1G4

]
, p8 = ∆−2

GV

[
f3G2 − f7G6 + f6G7

]
,

p4 = ∆−2

GV

[
f2G1 − f5G5 + f4G6

]
, p9 = ∆−2

GV

[
f7G1 − f6G2 − f3G3 − f3G4

]
,

p5 = ∆−2

GV

[
f2G2 − f5G6 + f4G7

]
, p10 = −2

GV G
2
4

∆2 f10 .

(D.14)
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Here,

GV =
√
−G7G2

1 + 2G2G6G1 −G3G2
6 −G4G2

6 −G2
2G5 +G3G5G7 +G4G5G7

(D.15)

is related to the volume element corresponding to the internal metric ds2
7 in

(D.6). With these definitions, the equation of motion in (D.1) for the D = 11

four-form becomes equivalent to the following conditions:

Uf1 + ∂αp2 − ∂ψp1 + 2p10 = 0 , Uf6 + ∂αp9 + 3p4 = 0 ,

Uf2 + ∂αp5 − ∂ψp4 = 0 , Uf7 + ∂ψp9 + 3p5 = 0 ,

Uf3 + ∂αp8 − ∂ψp7 = 0 , Uf8 + ∂αp3 = 0 ,

Uf4 + ∂αp6 − 3p7 = 0 , Uf9 + ∂ψp3 = 0 ,

Uf5 + ∂ψp6 − 3p8 = 0 , Uf10 + 2p3 = 0 . (D.16)

We have verified that equations (D.16) hold when the D = 4 scalars are

evaluated at any of the critical points collected in table 3.2. We have also

checked that all the metric and four-forms for the explicit AdS4 solutions

written in section 3.2.2 can be brought to the form (D.6)-(D.12), with the help

of the relations given in appendix C. Thus, the explicit AdS4 configurations

of section 3.2.2 do indeed solve the D = 11 field equations (D.1).
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Appendix E

Group theory compendium

E.1 Structure of the KK spectra from N = 8

The KK spectra of the solutions of M-theory, massive IIA and type IIB which

include a topological S7, S6, or S5×S1 can be respectively organised in terms

of quantum numbers of SO(8), SO(7) or SO(6)v × SO(2) following (6.37).

We denote these groups here as Ground and note that it is not necessary that

the equations of motion enjoy a solution preserving that much symmetry,

but only that such a point exists in the scalar manifold (e.g. at the scalar

origin in an adequate parametrisation).

The individual states of definite spin in these spectra come in representa-

tions of the symmetry group G ⊂ Ground of the actual solution. The modes

lying at the bottom of the KK towers correspond to the linearisation of the

D = 4 N = 8 gauged supergravity fields. In particular, the G representations

present at this level are obtained by branching the D = 4 N = 8 fields under

SU(8) ⊃ SO(8) ⊃ Ground ⊃ G. In this appendix we record the intermediate

Ground representations that appear in this branching.

In general, the algebraic structure of the spectrum at higher KK levels is

obtained by the following two-step process. Firstly, tensor representations of

the gauged supergravity fields (tables E.1 (left), E.2 (left), and E.3 (upper)

below) with the symmetric-traceless representation in (6.37) that the massive

gravitons furnish and remove Goldstones and Goldstini. The resulting

representation content is summarised for convenience in tables E.1 (right),

E.2 (right), and E.3 (lower) below. Secondly, branch under G ⊂ Ground. This

algorithm has already been applied in different instances e.g. [105, 134, 140],

and tables E.1 and E.2 are taken from [24] and [134].
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E.1.1 SO(8) towers

In the M-theory case, the spectra are labelled by a single independent KK

level n ranging as

n = 0, 1, 2, . . . (E.1)

spin SO(8) irrep SO(8) Dynkin labels

2 1 [0, 0, 0, 0]
3
2 8s [0, 0, 0, 1]

1 28 [0, 1, 0, 0]
1
2 56s [1, 0, 1, 0]

0+ 35v [2, 0, 0, 0]

0− 35c [0, 0, 2, 0]

spin SO(8) Dynkin labels

2 [n, 0, 0, 0]

3
2 [n, 0, 0, 1]⊕ [n− 1, 0, 1, 0]

1 [n, 1, 0, 0]⊕ [n− 1, 0, 1, 1]⊕ [n− 2, 1, 0, 0]
1
2 [n+ 1, 0, 1, 0]⊕ [n− 1, 1, 1, 0]⊕ [n− 2, 1, 0, 1]⊕ [n− 2, 0, 0, 1]

0+ [n+ 2, 0, 0, 0]⊕ [n− 2, 2, 0, 0]⊕ [n− 2, 0, 0, 0]

0− [n, 0, 2, 0]⊕ [n− 2, 0, 0, 2]

Table E.1: States in SO(8) representations at KK levels n = 0 (left) and n = 1, 2, . . .

(right) in the KK towers for AdS4 solutions of M-theory that uplift from D = 4 N = 8

electrically SO(8)-gauged supergravity. Representations with negative Dynkin labels are

absent and need to be crossed out. Taken from [24].

E.1.2 SO(7) towers

In the massive type IIA case, the spectra are labelled by a single independent

KK level k ranging as

k = 0, 1, 2, . . . (E.2)

spin SO(7) irrep SO(7) Dynkin labels

2 1 [0, 0, 0]
3
2 8 [0, 0, 1]

1 21 + 7 [0, 1, 0] + [1, 0, 0]
1
2 48 + 8 [1, 0, 1] + [0, 0, 1]

0+ 27 + 1 [2, 0, 0] + [0, 0, 0]

0− 35 [0, 0, 2]

spin SO(7) Dynkin labels

2 [k, 0, 0]
3
2 [k, 0, 1] + [k − 1, 0, 1]

1 [k, 1, 0] + [k − 1, 0, 2] + [k − 2, 1, 0] + [k + 1, 0, 0] + [k − 1, 1, 0] + [k − 1, 0, 0]
1
2 [k + 1, 0, 1] + [k − 1, 1, 1] + [k − 2, 1, 1] + [k − 2, 0, 1] + [k, 0, 1] + [k − 1, 0, 1]

0+ [k + 2, 0, 0] + [k, 0, 0] + [k − 2, 2, 0] + [k − 2, 0, 0]

0− [k, 0, 2] + [k − 1, 1, 0] + [k − 2, 0, 2]

Table E.2: States in SO(7) representations at KK level k = 0 (left) and k = 1, 2, . . .

(right) that compose the KK towers for AdS4 solutions of massive IIA that uplift from

ISO(7) supergravity. Representations with negative Dynkin labels are absent. The tables

exclude some 0+ states of D = 4 supergravity that are always Higgsed away. Taken from

[134].

E.1.3 SO(6)v × SO(2) towers

In the type IIB case, the spectra are labelled by two independent KK levels

` and n ranging as

` = 0, 1, 2 . . . , n = 0,±1,±2, . . . . (E.3)
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spin SO(6)v×SO(2) irrep SO(6)v×SO(2) Dynkin labels

2 10 [0, 0, 0]0
3
2 41 + 4̄−1 [1, 0, 0]1 + [0, 0, 1]−1

1 150 + 10 + 62 + 6−2 [1, 0, 1]0 + [0, 0, 0]0 + [0, 1, 0]2 + [0, 1, 0]−2

1
2 2̄0−1 + 201 + 41 + 4−3 + 4̄3 + 4̄−1 [1, 1, 0]−1 + [0, 1, 1]1 + [1, 0, 0]1 + [1, 0, 0]−3 + [0, 0, 1]3 + [0, 0, 1]−1

0+ 20′
0 + 14 + 10 + 1−4 [0, 2, 0]0 + [0, 0, 0]4 + [0, 0, 0]0 + [0, 0, 0]−4

0− 150 + 10−2 + 1̄02 [1, 0, 1]0 + [2, 0, 0]−2 + [0, 0, 2]2

spin SO(6)v×SO(2) Dynkin labels

2 [0, `, 0]2n
3
2 [1, `, 0]2n+1 + [0, `− 1, 1]2n+1 + [0, `, 1]2n−1 + [1, `− 1, 0]2n−1

1 [1, `, 1]2n + [2, `− 1, 0]2n + [0, `− 1, 2]2n + [1, `− 2, 1]2n + [0, `, 0]2n

+[0, `+ 1, 0]2n+2 + [1, `− 1, 1]2n+2 + [0, `− 1, 0]2n+2 + [0, `+ 1, 0]2n−2 + [1, `− 1, 1]2n−2 + [0, `− 1, 0]2n+2

1
2 [1, `+ 1, 0]2n−1 + [0, `, 1]2n−1 + [2, `− 1, 1]2n−1 + [1, `− 1, 0]2n−1 + [1, `− 2, 2]2n−1 + [0, `− 2, 1]2n−1

+ [0, `+ 1, 1]2n+1 + [1, `, 0]2n+1 + [1, `− 1, 2]2n+1 + [0, `− 1, 1]2n+1 + [2, `− 2, 1]2n+1 + [1, `− 2, 0]2n+1

+ [1, `, 0]2n−3 + [0, `− 1, 1]2n−3 + [0, `, 1]2n+3 + [1, `− 1, 0]2n+3

0+ [0, `+ 2, 0]2n + [1, `, 1]2n + [0, `, 0]2n + [2, `− 2, 2]2n + [1, `− 2, 1]2n + [0, `− 2, 0]2n + [0, `, 0]2n+4 + [0, `, 0]2n−4

0− [2, `, 0]2n−2 + [1, `− 1, 1]2n−2 + [0, `− 2, 2]2n−2 + [0, `, 2]2n+2 + [1, `− 1, 1]2n+2 + [2, `− 2, 0]2n+2

Table E.3: States in SO(6)v×SO(2) representations at KK levels (`, n) = (0, 0) (above)

and ` = 0, 1, 2, . . ., n ∈ Z (below) in the KK towers for AdS4 solutions of type IIB that uplift

from D = 4 N = 8 [SO(6)× SO(1, 1)] n R12–gauged supergravity. SO(6)v representations

are given in terms of SU(4) Dynkin labels, and SO(2) charges are given as subscripts.

Representations with negative Dynkin labels are absent and need to be crossed out. The

tables exclude some 0+ states of D = 4 supergravity that are always Higgsed away.

E.2 Embedding SU(3)×U(1)p into SO(8)

The internal bosonic symmetry group SU(3)×U(1)p, with p = 2 for CPW

and p = 3 for GMPS, is embedded into SO(8) via

SO(8) ⊃ SO(6)v×SO(2) ⊃
[
SU(3)×U(1)

]
×SO(2) ⊃ SU(3)×U(1)p . (E.4)

Under the first two steps in the branching (E.4), the three basic irreps of

SO(8) split as

8v −→ 60 + 11 + 1−1−→ 3(− 2
3
, 0) + 3( 2

3
, 0) + 1(0, +1) + 1(0, −1) ,

8s −→ 4 1
2

+ 4− 1
2
−→ 3( 1

3
, 1
2

) + 3(− 1
3
, − 1

2
) + 1(−1, 1

2
) + 1(+1, − 1

2
),

8c −→ 4− 1
2

+ 4 1
2
−→ 3( 1

3
, − 1

2
) + 3(− 1

3
, 1
2

) + 1(−1, − 1
2

) + 1(+1, 1
2

).

(E.5)

The IR R-symmetry group U(1)p is the combination of the U(1) that com-

mutes with SU(3) inside SO(6)v and the SO(2) that commutes with SO(6)v

inside SO(8) which leads to the allocation of R-charges (5.8) for p = 3 and

(5.7) for p = 2. Assigning the transverse M2-brane coordinates to the 8v, we
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thus require that, under the third and final step in the branching (E.4),

8v −→ 3R1 + 3−R1 + 1R2 + 1−R2 , (E.6)

with

R1 =
2p− 2

3p
, R2 =

2

p
. (E.7)

For completeness, we note that

8s −→ 31
2 (−R1+R2)

+ 31
2 (R1−R2)

+ 11
2 (3R1+R2)

+ 1
−1

2 (3R1+R2)
,

8c −→ 3
−1

2 (R1+R2)
+ 31

2 (R1+R2)
+ 11

2 (3R1−R2)
+ 11

2 (−3R1+R2)
. (E.8)

Taking tensor products and (anti)symmetrisations of (E.6), (E.8), an

arduous calculation allows us to find the branching under SU(3)×U(1)p of

the SO(8) representations (5.26) that characterise the KK spectrum at the

N = 8 point. We obtain1

Gn = [n, 0, 0, 0]

SU(3)×U(1)R−−−−−−−−→
n⊕
`=0

n−⊕̀
t=0

⊕̀
p=0

[p, `− p]−R1(`−2p)+R2(n−`−2t) , (E.9)

Gn = [n, 0, 0, 1]⊕ [n− 1, 0, 1, 0]

SU(3)×U(1)R−−−−−−−−→
n⊕
`=0

n−⊕̀
t=0

⊕̀
p=0

1⊕
k=0

1−k⊕
a=0

k⊕
b=0

[p+ 1− k − a, `− p+ k − b]−R1(`−2p−k−2a+2b+ 1
2

)

+R2(n−`−2t−k+ 1
2

)

⊕
n−1⊕
`=0

n−1−`⊕
t=0

⊕̀
p=0

1⊕
k=0

1−k⊕
a=0

k⊕
b=0

[p+ 1− k − a, `− p+ k − b]−R1(`−2p−k−2a+2b+ 1
2

)

+R2(n−`−2t+k− 3
2

)

,

(E.10)

Vn = [n, 1, 0, 0]⊕ [n− 1, 0, 1, 1]⊕ [n− 2, 1, 0, 0]

SU(3)×U(1)R−−−−−−−−→
1In (A.6)–(A.11) we have renamed SU(3)×U(1)p as SU(3)×U(1)R in order to avoid

confusion with the Dynkin label p.
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n⊕
`=0

n−⊕̀
t=0

⊕̀
p=0

1⊕
a,b=0

[p+ a, `− p+ b]−R1(`−2p+2a−2b)
+R2(n−`−2t)

⊕
n⊕
`=0

n−⊕̀
t=0

`+1⊕
p=0

1⊕
k=0

[p, `− p+ 1] −R1(`−2p+1)
+R2(n−`−2t−2k+1)

⊕
n⊕
`=0

[0, 0]R2(n−2`)

⊕
n−1⊕
`=0

n−1−`⊕
t=0

⊕̀
p=0

1⊕
a,b=0

2−a−b⊕
c=0

a+b⊕
d=0

[p+ c, `− p+ d]−R1(`−2p+3a+3b+2c−2d−3)
+R2(n−`−2t+a−b−1)

⊕
n−1⊕
`=0

n−1−`⊕
t=0

`+1⊕
p=0

[p, `− p+ 1] −R1(`−2p+1)
+R2(n−`−2t−1)

⊕
n−2⊕
`=0

n−2−`⊕
t=0

⊕̀
p=0

1⊕
a,b=0

[p+ a, `− p+ b]−R1(`−2p+2a−2b)
+R2(n−`−2t−2)

⊕
n−2⊕
`=0

n−2−`⊕
t=0

`+1⊕
p=0

1⊕
k=0

[p, `− p+ 1] −R1(`−2p+1)
+R2(n−`−2t−2k−1)

⊕
n−2⊕
`=0

[0, 0]R2(n−2`−2) ,

(E.11)

Fn = [n+ 1, 0, 1, 0]⊕ [n− 1, 1, 1, 0]⊕ [n− 2, 1, 0, 1]⊕ [n− 2, 0, 0, 1]

SU(3)×U(1)R−−−−−−−−→
n+1⊕
`=0

n+1−`⊕
t=0

⊕̀
p=0

1⊕
k=0

1−k⊕
a=0

k⊕
b=0

[p+ 1− k − a, `− p+ k − b]−R1(`−2p−k−2a+2b+ 1
2

)

+R2(n−`−2t+k+ 1
2

)

⊕
n−1⊕
`=0

n−1−`⊕
t=0

1⊕
q=0

⊕̀
p=0

q+1⊕
a=0

2−q⊕
b=0

[p+ a, `− p+ b]−R1(`−2p−3q+2a−2b+ 3
2

)

+R2(n−`−2t−q− 1
2

)

⊕
n−1⊕
`=0

n−1−`⊕
t=0

1⊕
k,q=0

`+1⊕
p=0

q⊕
a=0

1−q⊕
b=0

[p+ a, `+ 1− p+ b]−R1(`−2p−3q+2a−2b+ 5
2

)

+R2(n−`−2t−2k−q+ 1
2

)

⊕
n−1⊕
`=0

1⊕
q=0

q⊕
a=0

1−q⊕
b=0

[a, b]−R1( 3
2
−3q+2a−2b)+R2(n−2`−q− 1

2
)

⊕
n−2⊕
`=0

n−2−`⊕
t=0

1⊕
q=0

⊕̀
p=0

q+1⊕
a=0

2−q⊕
b=0

[p+ a, `− p+ b]−R1(`−2p−3q+2a−2b+ 3
2

)

+R2(n−`−2t+q− 5
2

)

⊕
n−2⊕
`=0

n−2−`⊕
t=0

1⊕
k,q=0

`+1⊕
p=0

q⊕
a=0

1−q⊕
b=0

[p+ a, `+ 1− p+ b]−R1(`−2p−3q+2a−2b+ 5
2

)

+R2(n−`−2t+2k+q− 7
2

)
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⊕
n−2⊕
`=0

1⊕
q=0

q⊕
a=0

1−q⊕
b=0

[a, b]−R1( 3
2
−3q+2a−2b)+R2(n−2`+q− 5

2
)

⊕
n−2⊕
`=0

n−2−`⊕
t=0

⊕̀
p=0

1⊕
k=0

1−k⊕
a=0

k⊕
b=0

[p+ 1− k − a, `− p+ k − b]−R1(`−2p−k−2a+2b+ 1
2

)

+R2(n−`−2t−k− 3
2

)

,

(E.12)

S+
n = [n+ 2, 0, 0, 0]⊕ [n− 2, 2, 0, 0]⊕ [n− 2, 0, 0, 0]

SU(3)×U(1)R−−−−−−−−→
n+2⊕
`=0

n+2−`⊕
t=0

⊕̀
p=0

[p, `− p]−R1(`−2p)+R2(n−`−2t+2)

⊕
n−2⊕
`

n−2−`⊕
t=0

2⊕
q=0

q⊕
k=0

`+q⊕
p=0

2−q⊕
a,b=0

[p+ a, `+ q − p+ b] −R1(`+q−2p+2a−2b)
+R2(n−`−2t+q−2k−2)

⊕
n−2⊕
`

1⊕
k=0

k⊕
a,b=0

[a, b] −2R1(a−b)
+R2(n−2`−2)

⊕
n−2⊕
`

1⊕
k,p=0

[p, 1− p] −R1(1−2p)
+R2(n−2`−2k−1)

⊕
n−2⊕
`=0

n−2−`⊕
t=0

⊕̀
p=0

[p, `− p]−R1(`−2p)+R2(n−`−2t−2) , (E.13)

S−n = [n, 0, 2, 0]⊕ [n− 2, 0, 0, 2]

SU(3)×U(1)R−−−−−−−−→
n⊕
`=0

n−⊕̀
t=0

2⊕
k=0

⊕̀
p=0

2−k⊕
a=0

k⊕
b=0

[p+ a, `− p+ b]−R1(`−2p+3k+2a−2b−3)
+R2(n−`−2t+k−1)

⊕
n−2⊕
`=0

n−2−`⊕
t=0

2⊕
k=0

⊕̀
p=0

2−k⊕
a=0

k⊕
b=0

[p+ a, `− p+ b]−R1(`−2p+3k+2a−2b−3)
+R2(n−`−2t−k−1)

.

(E.14)

E.3 N = 4 supermultiplets

As explained in section 7.2.1, the algebraic structure of the KK spectrum

across the holographic CM (7.9) is inherited from that at the N = 4 point.

Thus, it is useful to collect some aspects of OSp(4|4) representation theory.

More concretely, in this appendix we give the explicit state content of
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the multiplets present in the N = 4 spectrum. We also give some relevant

shortening conditions and branching rules under (7.23) into N = 2 multiplets.

The general representation theory of OSp(4|4) has been laid out in [224].

The states that compose a given2 MULT4 representation of OSp(4|4) carry

definite SO(4) R-charges. In our conventions, these are labelled with half-

integer Dynkin labels (`1, `2). Unfortunately, the generic expressions for

the OSp(4|4) multiplet contents given in [224] do not work well for scalar

superconformal primaries or low values of (`1, `2), where many states are

actually absent and need to be sieved out. These are the cases relevant to

our analysis. Here, we will determine the state content of the OSp(4|4) long

graviton multiplet (7.19) for all possible values of the Dynkin labels on a

case-by-case basis. Only multiplets with integer (`1, `2) enter the KK spectra

of interest in this paper. Once we got down to business though, it only took

a finite amount of additional pain to get the strictly half-integer cases as

well. Similar remarks apply to the OSp(3|4) representation theory contained

in [224]: see appendix B of [134] for complete listings.

It is useful to start by listing the possible Lorentz spins, [s] = 0, 1
2 , 1,

3
2 , 2,

and SO(4) Dynkin labels, (`1, `2), that subsequent powers Qp, p = 0, 1, . . . , 8,

of the OSp(4|4) supercharge Q may have. The result is:

1 & Q8 : [0] (0, 0) ,

Q & Q7 : [1
2 ]

(
1
2 ,

1
2

)
,

Q2 & Q6 :

{
[1] (1, 0) + (0, 1) ,

[0] (1, 1) + (0, 0) ,

Q3 & Q5 :

{
[3
2 ]

(
1
2 ,

1
2

)
,

[1
2 ]

(
3
2 ,

1
2

)
+
(

1
2 ,

3
2

)
+
(

1
2 ,

1
2

)
,

(E.15)

Q4 :


[2] (0, 0) ,

[1] (1, 1) + (1, 0) + (0, 1) ,

[0] (2, 0) + (0, 2) + (1, 1) + (0, 0) .

Together with the fact that the action with Q increases the conformal

2As in the main text, we use the acronym MULT4 to refer to a generic multiplet of
OSp(4|4). We specifically denote long and short graviton and short gravitino multiplets as
LGRAV4, SGRAV4 and SGINO4. These respectively correspond to the multiplets denoted
in [224] as L (with jthere = 0), A2 and B1. Graviton and gravitino OSp(4|4) multiplets have
scalar, s0 = 0, superconformal primaries, and gravitino multiplets are necessarilyshort.
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dimension by 1
2 , the information summarised in (E.15) is the basic building

block to find out the state content of the long graviton multiplets (7.19) of

OSp(4|4). For a (scalar) superconformal primary with Lorentz and SO(4)

spins s0 = 0 and (`1, `2) and dimension E0, the descendants have all possible

Lorentz spins [s] shown in (E.15), and lie in the SO(4) representations that

result from tensoring row by row the representations listed in (E.15) with

(`1, `2). Finally, the dimension of the p-th descendant is E0 + p
2 .

For easy reference, the outcome of this exercise for all (`1, `2), with `1 ≥ `2
without loss of generality, is listed in tables E.4–E.13. The table entries show

the spin and SO(4) charges, in the format [s](`
′
1, `
′
2), of each possible state in

the multiplet. The corresponding dimensions ∆ are given next to each entry,

and these are grouped as descendants of the superconformal primary at the

top of each table. An entry of the form [s](`1±a,`2±b) denotes four states in

total (this differs from the convention adopted, in a different context, in the

main text: see below (7.43)). Also, negative Dynkin labels are not allowed,

and the corresponding states must be removed as they are actually absent.

These spurious states only occur in tables E.10–E.13. Table E.13 is valid

at face value for all `1, `2 ≥ 2, with all entries therein present. The same

table is also valid for `i = 3
2 for either or both i = 1, 2, but the states at level

Q4 with negative Dynkin labels need to be discarded. Similar comments

apply to tables E.10–E.12. Tables E.4–E.12 involve fewer states compared to

table E.13 and, without going through the constructive algorithm specified

above, it is not obvious which states must be crossed out in table E.13 to

recover tables E.4–E.12. Only tables E.4, E.7, E.9, E.10, E.12 and E.13

play a role in the KK spectra described in this paper. The remaining tables

necessarily involve strictly half-integer SO(4) labels for the superconformal

primary and are only included for completeness.

The dimensions E0 and Dynkin labels (`1, `2) of the (superconformal

primary of the) OSp(4|4) multiplets constructed with the above algorithm

must respect the unitarity bound

E0 ≥ s0 + `1 + `2 + 1 , (E.16)

with s0 = 0 for the graviton multiplets listed in the tables. The multiplets

undergo shortening when the bound is saturated, in which case they split
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into short graviton and gravitino multiplets as:

LGRAV4[`1 + `2 + 1, `1, `2]

→ SGRAV4[`1 + `2 + 1, `1, `2] + SGINO4[`1 + `2 + 3, `1 + 1, `2 + 1] .
(E.17)

See [224] for the state contents of these N = 4 short multiplets for specific

values of (`1, `2).

It is also useful to give the splitting of the above N = 4 graviton multiplets

under the supergroup embedding (7.23) into N = 2 multiplets of definite

U(1)F flavour charge. The U(1)R R-symmetry group of OSp(2|4) and U(1)F

are the subgroups of the SO(4) R-symmetry of OSp(4|4) specified in (7.10)

and below that equation. Branching accordingly the SO(4) representations

of the states in tables E.4–E.13, recombining them into OSp(2|4) multiplets

using the N = 2 tables of appendix A of [82], and keeping track of the flavour

charges, we obtain

LGRAV4

[
E0, `1, `2

]
=

`1⊕
m1=−`1

`2⊕
m2=−`2

{
LGRAV2

[
E0 + 1, ym1m2 ; fm1m2

]
⊕ LGINO2

[
E0 + 1

2 , ym1m2 ; fm1m2 + 1
]
⊕ LGINO2

[
E0 + 1

2 , ym1m2 ; fm1m2 − 1
]

⊕ LGINO2

[
E0 + 3

2 , ym1m2 ; fm1m2 + 1
]
⊕ LGINO2

[
E0 + 3

2 , ym1m2 ; fm1m2 − 1
]

⊕ LVEC2

[
E0, ym1m2 ; fm1m2

]
⊕ LVEC2

[
E0 + 1, ym1m2 ; fm1m2 + 2

]
⊕ LVEC2

[
E0 + 1, ym1m2 ; fm1m2

]
⊕ LVEC2

[
E0 + 1, ym1m2 ; fm1m2 − 2

]
⊕ LVEC2

[
E0 + 2, ym1m2 ; fm1m2

]}
,

(E.18)

with ym1m2 and fm1m2 given in (7.25). When E0 saturates the N = 4

unitarity bound (E.16), the N = 4 multiplet on the l.h.s. of (E.18) becomes

short as in (E.17), and the underlined N = 2 multiplets on the r.h.s. at

(m1 = −`1,m2 = −`2) and (m1 = `1,m2 = `2) shorten as well. The case of

interest to this paper has, in particular, `1 and `2 further restricted to be

equal, as in (7.22), in the short multiplets. With this further restriction, the

relevant N = 2 multiplets in (E.18) that undergo shortening are thus

LGRAV2

[
`+ 2 + ε,±`; 0

]
(E.19)
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→ SGRAV2

[
`+ 2,±`; 0

]
⊕ SGINO2

[
`+ 5

2 ,±(`+ 1); 0
]
,

LGINO2

[
`+ 3

2 + ε,±`; +1
]

(E.20)

→ SGINO2

[
`+ 3

2 ,±`; +1
]
⊕ SVEC2

[
`+ 2,±(`+ 1); +1

]
,

LGINO2

[
`+ 3

2 + ε,±`;−1
]

(E.21)

→ SGINO2

[
`+ 3

2 ,±`;−1
]
⊕ SVEC2

[
`+ 2,±(`+ 1);−1

]
,

LVEC2

[
`+ 1 + ε,±`; 0

]
(E.22)

→ SVEC2

[
`+ 1,±`; 0

]
⊕HYP2

[
`+ 2,±(`+ 2); 0

]
, (E.23)

as in (7.26). Only the flavour-neutral short multiplets here make it to the list

of protected multiplets in table 7.2. The short flavoured multiplets appear

accidentally in the spectra of the SO(4) and SU(2)F points, joining other

multiplets into SO(4) and SU(2)F representations. An extreme case of the

shortening conditions occurs when the graviton becomes massless. In this

case, we have the following splitting of a massless N = 4 graviton multiplet

into N = 2 massless ones:

MGRAV4[1, 0, 0] = MGRAV2[2, 0; 0]⊕MGINO2[3
2 , 0;±1]⊕MVEC2[1, 0; 0] .

(E.24)

We conclude with the observation that the multiplicities, the (supercon-

formal primary) U(1)R charge, and the (overall) U(1)F flavour charge of the

N = 2 multiplets that compose LGRAV4

[
E0, `1, `2

]
according to (E.18) can

be also retrieved in the following manner. Introducing fugacites u and x

for U(1)R and U(1)F , define for each multiplet on the r.h.s. of (E.18) the

functions

νE0+1
LGRAV2

= νE0
LVEC2

= νE0+2
LVEC2

=

[
1−

(
ux
)2`1+1][

1−
(
u
x

)2`2+1](
ux
)`1(u

x

)`2(1− ux)(1− u
x

) ,

ν
E0+ 1

2
LGINO2

= ν
E0+ 3

2
LGINO2

=
(x+ 1)

x

[
1−

(
ux
)2`1+1][

1−
(
u
x

)2`2+1](
ux
)`1(u

x

)`2(1− ux)(1− u
x

) ,

νE0+1
LVEC2

=
(x2 + x+ 1)

x

[
1−

(
ux
)2`1+1][

1−
(
u
x

)2`2+1](
ux
)`1(u

x

)`2(1− ux)(1− u
x

) , (E.25)

with νE0+1
LGRAV2

corresponding to the LGRAV2’s with dimension E0 + 1, etc.

Expanding these functions at fixed `1 and `2 in powers of u and x, the
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E.3 N = 4 supermultiplets

multiplicity m, R-charge y0 and flavour charge f of a multiplet can be read

off from the term muy0xf in the expansion of its associated function ν.

E0 [0](0, 0)

Q E0 + 1
2 [1

2 ]

(
1
2 ,

1
2

)
Q2 E0 + 1 [1](1, 0) + [1](0, 1)

[0](1, 1)+[0](0, 0)

Q3 E0 + 3
2 [3

2 ]

(
1
2 ,

1
2

)
[1
2 ]

(
3
2 ,

1
2

)
+[1

2 ]

(
1
2 ,

3
2

)
+[1

2 ]

(
1
2 ,

1
2

)
Q4 E0 + 2 [2](0, 0)

[1](1, 1)+ [1](1, 0)+[1](0, 1)

[0](2, 0)+ [0](0, 2)+[0](1, 1)+[0](0, 0)

Q5 E0 + 5
2 [3

2 ]

(
1
2 ,

1
2

)
[1
2 ]

(
3
2 ,

1
2

)
+[1

2 ]

(
1
2 ,

3
2

)
+[1

2 ]

(
1
2 ,

1
2

)
Q6 E0 + 3 [1](1, 0) + [1](0, 1)

[0](1, 1)+[0](0, 0)

Q7 E0 + 7
2 [1

2 ]

(
1
2 ,

1
2

)
Q8 E0 + 4 [0](0, 0)

Table E.4: States in the long graviton supermultiplet LGRAV4[E0, 0, 0].
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E0 [0]

(
1
2 , 0
)

Q E0 + 1
2 [1

2 ]

(
1,

1
2

)
+[1

2 ]

(
0,

1
2

)
Q2 E0 + 1 [1]

(
3
2 , 0
)
+[1]

(
1
2 , 0
)
+ [1]

(
1
2 , 1
)

[0]

(
3
2 , 1
)
+[0]

(
1
2 , 1
)
+[0]

(
1
2 , 0
)

Q3 E0 + 3
2 [3

2 ]

(
1,

1
2

)
+[3

2 ]

(
0,

1
2

)
[1
2 ]

(
2,

1
2

)
+2 [1

2 ]

(
1,

1
2

)
+[1

2 ]

(
1,

3
2

)
+[1

2 ]

(
0,

3
2

)
+[1

2 ]

(
0,

1
2

)
Q4 E0 + 2 [2]

(
1
2 , 0
)

[1]

(
3
2 , 1
)
+2 [1]

(
1
2 , 1
)
+[1]

(
3
2 , 0
)
+[1]

(
1
2 , 0
)

[0]

(
5
2 , 0
)
+ [0]

(
3
2 , 0
)
+[0]

(
1
2 , 2
)
+[0]

(
3
2 , 1
)
+[0]

(
1
2 , 1
)
+[0]

(
1
2 , 0
)

Q5 E0 + 5
2 [3

2 ]

(
1,

1
2

)
+[3

2 ]

(
0,

1
2

)
[1
2 ]

(
2,

1
2

)
+2 [1

2 ]

(
1,

1
2

)
+[1

2 ]

(
1,

3
2

)
+[1

2 ]

(
0,

3
2

)
+[1

2 ]

(
0,

1
2

)
Q6 E0 + 3 [1]

(
3
2 , 0
)
+[1]

(
1
2 , 0
)
+ [1]

(
1
2 , 1
)

[0]

(
3
2 , 1
)
+[0]

(
1
2 , 1
)
+[0]

(
1
2 , 0
)

Q7 E0 + 7
2 [1

2 ]

(
1,

1
2

)
+[1

2 ]

(
0,

1
2

)
Q8 E0 + 4 [0]

(
1
2 , 0
)

Table E.5: States in the long graviton supermultiplet LGRAV4[E0,
1
2
, 0].
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E0 [0]

(
1
2 ,

1
2

)
Q E0 + 1

2 [1
2 ](1, 1)+[1

2 ](1, 0)+[1
2 ](0, 1)+[1

2 ](0, 0)

Q2 E0 + 1 [1]

(
3
2 ,

1
2

)
+ [1]

(
1
2 ,

3
2

)
+ 2 [1]

(
1
2 ,

1
2

)
[0]

(
3
2 ,

3
2

)
+[0]

(
3
2 ,

1
2

)
+ [0]

(
1
2 ,

3
2

)
+ 2 [0]

(
1
2 ,

1
2

)
Q3 E0 + 3

2 [3
2 ](1, 1)+[3

2 ](1, 0)+[3
2 ](0, 1)+[3

2 ](0, 0)

[1
2 ](2, 1)+[1

2 ](1, 2)+[1
2 ](2, 0)+[1

2 ](0, 2)+ 3[1
2 ](1, 1)+2[1

2 ](1, 0)+2[1
2 ](0, 1)+[1

2 ](0, 0)

Q4 E0 + 2 [2]

(
1
2 ,

1
2

)
[1]

(
3
2 ,

3
2

)
+2 [1]

(
3
2 ,

1
2

)
+ 2 [1]

(
1
2 ,

3
2

)
+ 3 [1]

(
1
2 ,

1
2

)
[0]

(
5
2 ,

1
2

)
+ [0]

(
1
2 ,

5
2

)
+[0]

(
3
2 ,

3
2

)
+2 [0]

(
3
2 ,

1
2

)
+ 2 [0]

(
1
2 ,

3
2

)
+ 2 [0]

(
1
2 ,

1
2

)
Q5 E0 + 5

2 [3
2 ](1, 1)+[3

2 ](1, 0)+[3
2 ](0, 1)+[3

2 ](0, 0)

[1
2 ](2, 1)+[1

2 ](1, 2)+[1
2 ](2, 0)+[1

2 ](0, 2)+ 3[1
2 ](1, 1)+2[1

2 ](1, 0)+2[1
2 ](0, 1)+[1

2 ](0, 0)

Q6 E0 + 3 [1]

(
3
2 ,

1
2

)
+ [1]

(
1
2 ,

3
2

)
+ 2 [1]

(
1
2 ,

1
2

)
[0]

(
3
2 ,

3
2

)
+[0]

(
3
2 ,

1
2

)
+ [0]

(
1
2 ,

3
2

)
+ 2 [0]

(
1
2 ,

1
2

)
Q7 E0 + 7

2 [1
2 ](1, 1)+[1

2 ](1, 0)+[1
2 ](0, 1)+[1

2 ](0, 0)

Q8 E0 + 4 [0]

(
1
2 ,

1
2

)
Table E.6: States in the long graviton supermultiplet LGRAV4[E0,

1
2
, 1

2
].
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E0 [0](1, 0)

Q E0 + 1
2 [1

2 ]

(
3
2 ,

1
2

)
+ [1

2 ]

(
1
2 ,

1
2

)
Q2 E0 + 1 [1](2, 0) + [1](1, 1) + [1](1, 0) + [1](0, 0)

[0](2, 1) + [1](1, 1) + [1](1, 0) + [1](0, 1)

Q3 E0 + 3
2 [3

2 ]

(
3
2 ,

1
2

)
+ [3

2 ]

(
1
2 ,

1
2

)
[1
2 ]

(
5
2 ,

1
2

)
+ [1

2 ]

(
3
2 ,

3
2

)
+ 2 [1

2 ]

(
3
2 ,

1
2

)
+ [1

2 ]

(
1
2 ,

3
2

)
+ 2 [1

2 ]

(
1
2 ,

1
2

)
Q4 E0 + 2 [2](1, 0)

[1](2, 1) + [1](2, 0) + 2 [1](1, 1) + [1](1, 0) + [1](0, 1) + [1](0, 0)

[0](3, 0) + [0](2, 1) + [0](2, 0) + [0](1, 2) + [0](1, 1) + 2 [0](1, 0) + [0](0, 1)

Q5 E0 + 5
2 [3

2 ]

(
3
2 ,

1
2

)
+ [3

2 ]

(
1
2 ,

1
2

)
[1
2 ]

(
5
2 ,

1
2

)
+ [1

2 ]

(
3
2 ,

3
2

)
+ 2 [1

2 ]

(
3
2 ,

1
2

)
+ [1

2 ]

(
1
2 ,

3
2

)
+ 2 [1

2 ]

(
1
2 ,

1
2

)
Q6 E0 + 3 [1](2, 0) + [1](1, 1) + [1](1, 0) + [1](0, 0)

[0](2, 1) + [1](1, 1) + [1](1, 0) + [1](0, 1)

Q7 E0 + 7
2 [1

2 ]

(
3
2 ,

1
2

)
+ [1

2 ]

(
1
2 ,

1
2

)
Q8 E0 + 4 [0](1, 0)

Table E.7: States in the long graviton supermultiplet LGRAV4[E0, 1, 0].
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E0 [0]

(
1,

1
2

)
Q E0 + 1

2 [1
2 ]

(
3
2 , 1
)

+ [1
2 ]

(
3
2 , 0
)

+ [1
2 ]

(
1
2 , 1
)

+ [1
2 ]

(
1
2 , 0
)

Q2 E0 + 1 [1]

(
2,

1
2

)
+ [1]

(
1,

3
2

)
+ 2 [1]

(
1,

1
2

)
+ [1]

(
0,

1
2

)
[0]

(
2,

3
2

)
+ [0]

(
2,

1
2

)
+ [0]

(
1,

3
2

)
+ 2 [0]

(
1,

1
2

)
+ [0]

(
0,

3
2

)
+ [0]

(
0,

1
2

)
Q3 E0 + 3

2 [3
2 ]

(
3
2 , 1
)

+ [3
2 ]

(
3
2 , 0
)

+ [3
2 ]

(
1
2 , 1
)

+ [3
2 ]

(
1
2 , 0
)

[1
2 ]

(
5
2 , 1
)

+ [1
2 ]

(
5
2 , 0
)

+ [1
2 ]

(
3
2 , 2
)

+ 3 [1
2 ]

(
3
2 , 1
)

+ 2 [1
2 ]

(
3
2 , 0
)

+ [1
2 ]

(
1
2 , 2
)

+ 3 [1
2 ]

(
1
2 , 1
)

+ 2 [1
2 ]

(
1
2 , 0
)

Q4 E0 + 2 [2]

(
1,

1
2

)
[1]

(
2,

3
2

)
+ 2 [1]

(
2,

1
2

)
+ 2 [1]

(
1,

3
2

)
+ 3 [1]

(
1,

1
2

)
+ [1]

(
0,

3
2

)
+ 2 [1]

(
0,

1
2

)
[0]

(
3,

3
2

)
+ [0]

(
2,

3
2

)
+ 2 [0]

(
2,

1
2

)
+ [0]

(
1,

5
2

)
+ 2 [0]

(
1,

3
2

)
+ 3 [0]

(
1,

1
2

)
+ [0]

(
0,

3
2

)
+ [0]

(
0,

1
2

)
Q5 E0 + 5

2 [1
2 ]

(
5
2 , 1
)

+ [1
2 ]

(
5
2 , 0
)

+ [1
2 ]

(
3
2 , 2
)

+ 3 [1
2 ]

(
3
2 , 1
)

+ 2 [1
2 ]

(
3
2 , 0
)

+ [1
2 ]

(
1
2 , 2
)

+ 3 [1
2 ]

(
1
2 , 1
)

+ 2 [1
2 ]

(
1
2 , 0
)

Q6 E0 + 3 [1]

(
2,

1
2

)
+ [1]

(
1,

3
2

)
+ 2 [1]

(
1,

1
2

)
+ [1]

(
0,

1
2

)
[0]

(
2,

3
2

)
+ [0]

(
2,

1
2

)
+ [0]

(
1,

3
2

)
+ 2 [0]

(
1,

1
2

)
+ [0]

(
0,

3
2

)
+ [0]

(
0,

1
2

)
Q7 E0 + 7

2 [1
2 ]

(
3
2 , 1
)

+ [1
2 ]

(
3
2 , 0
)

+ [1
2 ]

(
1
2 , 1
)

+ [1
2 ]

(
1
2 , 0
)

Q8 E0 + 4 [0]

(
1,

1
2

)
Table E.8: States in the long graviton supermultiplet LGRAV4[E0, 1,

1
2
].
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E0 [0](1, 1)

Q E0 + 1
2 [1

2 ]

(
3
2 ,

3
2

)
+ [1

2 ]

(
3
2 ,

1
2

)
+ [1

2 ]

(
1
2 ,

3
2

)
+ [1

2 ]

(
1
2 ,

1
2

)
Q2 E0 + 1 [1](2, 1) + [1](1, 2) + 2 [1](1, 1) + [1](1, 0) + [1](0, 1)

[0](2, 2) + [0](2, 1) + [0](2, 0) + [0](1, 2) + 2 [0](1, 1) + [0](1, 0)

+ [0](0, 2)+ [0](0, 1)+ [0](0, 0)

Q3 E0 + 3
2 [3

2 ]

(
3
2 ,

3
2

)
+ [3

2 ]

(
3
2 ,

1
2

)
+ [3

2 ]

(
1
2 ,

3
2

)
+ [3

2 ]

(
1
2 ,

1
2

)
[1
2 ]

(
5
2 ,

3
2

)
+ [1

2 ]

(
5
2 ,

1
2

)
+ [1

2 ]

(
3
2 ,

5
2

)
+ 3 [1

2 ]

(
3
2 ,

3
2

)
+ 3 [1

2 ]

(
3
2 ,

1
2

)
+ [1

2 ]

(
1
2 ,

5
2

)
+ 3 [1

2 ]

(
3
2 ,

1
2

)
+ [1

2 ]

(
1
2 ,

1
2

)
Q4 E0 + 2 [2](1, 1)

[1](2, 2) + 2 [1](2, 1) + [1](2, 0) + 2 [1](1, 2) + 3 [1](1, 1) + 2 [1](1, 0)

+ [1](0, 2) + 2 [1](0, 1) + [1](0, 0)

[0](3, 1) + [0](2, 2) + 2 [0](2, 1) + [0](2, 0) + [0](1, 3) + 2 [0](1, 2) + 4 [0](1, 1)

+ [0](1, 0) + [0](0, 2) + [0](0, 1) + [0](0, 0)

Q5 E0 + 5
2 [3

2 ]

(
3
2 ,

3
2

)
+ [3

2 ]

(
3
2 ,

1
2

)
+ [3

2 ]

(
1
2 ,

3
2

)
+ [3

2 ]

(
1
2 ,

1
2

)
[1
2 ]

(
5
2 ,

3
2

)
+ [1

2 ]

(
5
2 ,

1
2

)
+ [1

2 ]

(
3
2 ,

5
2

)
+ 3 [1

2 ]

(
3
2 ,

3
2

)
+ 3 [1

2 ]

(
3
2 ,

1
2

)
+ [1

2 ]

(
1
2 ,

5
2

)
+ 3 [1

2 ]

(
3
2 ,

1
2

)
+ [1

2 ]

(
1
2 ,

1
2

)
Q6 E0 + 3 [1](2, 1) + [1](1, 2) + 2 [1](1, 1) + [1](1, 0) + [1](0, 1)

[0](2, 2) + [0](2, 1) + [0](2, 0) + [0](1, 2) + 2 [0](1, 1) + [0](1, 0)

+ [0](0, 2)+ [0](0, 1)+ [0](0, 0)

Q7 E0 + 7
2 [1

2 ]

(
3
2 ,

3
2

)
+ [1

2 ]

(
3
2 ,

1
2

)
+ [1

2 ]

(
1
2 ,

3
2

)
+ [1

2 ]

(
1
2 ,

1
2

)
Q8 E0 + 4 [0](1, 1)

Table E.9: States in the long graviton supermultiplet LGRAV4[E0, 1, 1].
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E.3 N = 4 supermultiplets

E0 [0](`1, 0)

Q E0 + 1
2 [1

2 ]

(
`1±1

2 ,
1
2

)
Q2 E0 + 1 [1](`1±1, 0) + [1](`1, 1) + [0](`1, 0)

[0](`1±1, 1) + [0](`1, 1) + [0](`1, 0)

Q3 E0 + 3
2 [3

2 ]

(
`1±1

2 ,
1
2

)
[1
2 ]

(
`1±3

2 ,
1
2

)
+ [1

2 ]

(
`1±1

2 ,
3
2

)
+ 2 [1

2 ]

(
`1±1

2 ,
1
2

)
Q4 E0 + 2 [2](`1, 0)

[1](`1±1, 1) + [1](`1±1, 0) + 2 [1](`1, 1) + [1](`1, 0)

[0](`1±2, 0) + [0](`1±1, 1) + [0](`1±1, 0) + [0](`1, 2) + [0](`1, 1) + 2 [0](`1, 0)

Q5 E0 + 5
2 [3

2 ]

(
`1±1

2 ,
1
2

)
[1
2 ]

(
`1±3

2 ,
1
2

)
+ [1

2 ]

(
`1±1

2 ,
3
2

)
+ 2 [1

2 ]

(
`1±1

2 ,
1
2

)
Q6 E0 + 3 [1](`1±1, 0) + [1](`1, 1) + [0](`1, 0)

[0](`1±1, 1) + [0](`1, 1) + [0](`1, 0)

Q7 E0 + 7
2 [1

2 ]

(
`1±1

2 ,
1
2

)
Q8 E0 + 4 [0](`1, 0)

Table E.10: States in the long graviton supermultiplet LGRAV4[E0, `1, 0], with `1 ≥ 3
2
.

For `1 = 3
2
, the negative Dynkin label at the Q4 level is absent.
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Appendix E – Group theory compendium

E0 [0]

(
`1,

1
2

)
Q E0 + 1

2 [1
2 ]

(
`1±1

2 , 1
)

+ [1
2 ]

(
`1±1

2 , 0
)

Q2 E0 + 1 [1]

(
`1±1,

1
2

)
+ [1]

(
`1,

3
2

)
+ 2 [1]

(
`1,

1
2

)
[0]

(
`1±1,

3
2

)
+ [0]

(
`1±1,

1
2

)
+ [0]

(
`1,

3
2

)
+ 2 [0]

(
`1,

1
2

)
Q3 E0 + 3

2 [3
2 ]

(
`1±1

2 , 1
)

+ [3
2 ]

(
`1±1

2 , 0
)

[1
2 ]

(
`1±3

2 , 1
)

+ [1
2 ]

(
`1±3

2 , 0
)

+ [1
2 ]

(
`1±1

2 , 2
)

+ 3 [1
2 ]

(
`1±1

2 , 1
)

+ [1
2 ]

(
`1±1

2 , 0
)

Q4 E0 + 2 [2]

(
`1,

1
2

)
[1]

(
`1±1,

3
2

)
+ [1]

(
`1±1,

1
2

)
+ 2 [1]

(
`1,

3
2

)
+ 3 [1]

(
`1,

1
2

)
[0]

(
`1±2,

1
2

)
+ [0]

(
`1±1,

3
2

)
+ 2 [0]

(
`1±1,

1
2

)
+ [0]

(
`1,

5
2

)
+ 2 [0]

(
`1,

3
2

)
+ 3 [0]

(
`1,

1
2

)
Q5 E0 + 5

2 [3
2 ]

(
`1±1

2 , 1
)

+ [3
2 ]

(
`1±1

2 , 0
)

[1
2 ]

(
`1±3

2 , 1
)

+ [1
2 ]

(
`1±3

2 , 0
)

+ [1
2 ]

(
`1±1

2 , 2
)

+ 3 [1
2 ]

(
`1±1

2 , 1
)

+ [1
2 ]

(
`1±1

2 , 0
)

Q6 E0 + 3 [1]

(
`1±1,

1
2

)
+ [1]

(
`1,

3
2

)
+ 2 [1]

(
`1,

1
2

)
[0]

(
`1±1,

3
2

)
+ [0]

(
`1±1,

1
2

)
+ [0]

(
`1,

3
2

)
+ 2 [0]

(
`1,

1
2

)
Q7 E0 + 7

2 [1
2 ]

(
`1±1

2 , 1
)

+ [1
2 ]

(
`1±1

2 , 0
)

Q8 E0 + 4 [0]

(
`1,

1
2

)
Table E.11: States in the long graviton supermultiplet LGRAV4[E0, `1,

1
2
], with `1 ≥ 3

2
.

For `1 = 3
2
, the negative Dynkin label at the Q4 level is absent.
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E.3 N = 4 supermultiplets

E0 [0](`1, 1)

Q E0 + 1
2 [1

2 ]

(
`1±1

2 ,
3
2

)
+ [1

2 ]

(
`1±1

2 ,
1
2

)
Q2 E0 + 1 [1](`1±1, 1) + [1](`1, 2) + 2 [1](`1, 1) + [1](`1, 0)

[0](`1±1, 2) + [0](`1±1, 1) + [0](`1±1, 0) + [0](`1, 2) + 2 [0](`1, 1) + [0](`1, 0)

Q3 E0 + 3
2 [3

2 ]

(
`1±1

2 ,
3
2

)
+ [3

2 ]

(
`1±1

2 ,
1
2

)
[1
2 ]

(
`1±3

2 ,
3
2

)
+ [1

2 ]

(
`1±3

2 ,
1
2

)
+ [1

2 ]

(
`1±1

2 ,
5
2

)
+ 3 [1

2 ]

(
`1±1

2 ,
3
2

)
+ 2 [1

2 ]

(
`1±1

2 ,
1
2

)
Q4 E0 + 2 [2](`1, 1)

[1](`1±2, 1) + 2 [1](`1±1, 1) + [1](`1±1, 0) + 2 [1](`1, 2) + 3 [1](`1, 1) + 2 [1](`1, 0)

[0](`1±2, 1) + [0](`1±1, 2) + 2 [0](`1±1, 1) + [0](`1±1, 0) + [0](`1, 3) + 2 [0](`1, 2)

+ 4 [0](`1, 1) + [0](`1, 0)

Q5 E0 + 5
2 [3

2 ]

(
`1±1

2 ,
3
2

)
+ [3

2 ]

(
`1±1

2 ,
1
2

)
[1
2 ]

(
`1±3

2 ,
3
2

)
+ [1

2 ]

(
`1±3

2 ,
1
2

)
+ [1

2 ]

(
`1±1

2 ,
5
2

)
+ 3 [1

2 ]

(
`1±1

2 ,
3
2

)
+ 2 [1

2 ]

(
`1±1

2 ,
1
2

)
Q6 E0 + 3 [1](`1±1, 1) + [1](`1, 2) + 2 [1](`1, 1) + [1](`1, 0)

[0](`1±1, 2) + [0](`1±1, 1) + [0](`1±1, 0) + [0](`1, 2) + 2 [0](`1, 1) + [0](`1, 0)

Q7 E0 + 7
2 [1

2 ]

(
`1±1

2 ,
3
2

)
+ [1

2 ]

(
`1±1

2 ,
1
2

)
Q8 E0 + 4 [0](`1, 1)

Table E.12: States in the long graviton supermultiplet LGRAV4[E0, `1, 1], with `1 ≥ 3
2
.

For `1 = 3
2
, the negative Dynkin label at the Q4 level is absent.
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Appendix E – Group theory compendium

E0 [0](`1, `2)

Q E0 + 1
2 [1

2 ]

(
`1±1

2 , `2±
1
2

)
Q2 E0 + 1 [1](`1±1, `2) + [1](`1, `2±1)+ 2 [1](`1, `2)

[0](`1±1, `2±1)+[0](`1±1, `2)+ [0](`1, `2±1)+ 2 [0](`1, `2)

Q3 E0 + 3
2 [3

2 ]

(
`1±1

2 , `2±
1
2

)
[1
2 ]

(
`1±3

2 , `2±
1
2

)
+[1

2 ]

(
`1±1

2 , `2±
3
2

)
+3 [1

2 ]

(
`1±1

2 , `2±
1
2

)
Q4 E0 + 2 [2](`1, `2)

[1](`1±1, `2±1)+2 [1](`1±1, `2)+ 2 [1](`1, `2±1)+ 3 [1](`1, `2)

[0](`1±2, `2)+ [0](`1, `2±2)+[0](`1±1, `2±1)+2 [0](`1±1, `2)+ 2 [0](`1, `2±1)+ 4 [0](`1, `2)

Q5 E0 + 5
2 [3

2 ]

(
`1±1

2 , `2±
1
2

)
[1
2 ]

(
`1±3

2 , `2±
1
2

)
+[1

2 ]

(
`1±1

2 , `2±
3
2

)
+3 [1

2 ]

(
`1±1

2 , `2±
1
2

)
Q6 E0 + 3 [1](`1±1, `2) + [1](`1, `2±1)+ 2 [1](`1, `2)

[0](`1±1, `2±1)+[0](`1±1, `2)+ [0](`1, `2±1)+ 2 [0](`1, `2)

Q7 E0 + 7
2 [1

2 ]

(
`1±1

2 , `2±
1
2

)
Q8 E0 + 4 [0](`1, `2)

Table E.13: States in the long graviton supermultiplet LGRAV4[E0, `1, `2], with `1, `2 ≥
3
2
. For `i = 3

2
, negative Dynkin labels at the Q4 level are absent.
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