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By using a nonlocal, quantum mechanical response function we study graphene plasmons in a one-
dimensional superlattice (SL) potential V0 cosG0x. The SL introduces a quantum energy scale EG ∼
ℏvFG0 associated with electronic subband transitions. At energies lower than EG, the plasmon dispersion is
highly anisotropic; plasmons propagate perpendicularly to the SL axis, but become damped by electronic
transitions along the SL direction. These results question the validity of semiclassical approximations for
describing low energy plasmons in periodic structures. At higher energies, the dispersion becomes isotropic
and Drude-like with effective Drude weights related to the average of the absolute value of the local
chemical potential. Full quantum mechanical treatment of the kinetic energy thus introduces nonlocal
effects that delocalize the plasmons in the SL, making the system behave as a metamaterial even near
singular points where the charge density vanishes.
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Introduction.—Graphene plasmons [1–3] have attracted
much attention due to their long propagation lengths [4],
strong confinement [5], and high gate and frequency
tunability [6–17]. Plasmons in pristine graphene are well
described by the random phase approximation [18–20], and
in the long wavelength limit, the dispersion reads

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
D
2ϵϵ0

q

s

; ð1Þ

where D is the Drude weight, q the wave vector, and
ϵ the dielectric constant of the surrounding medium.
Equation (1) can be derived from a hydrodynamic approach
and thus holds for all two-dimensional (2D) systems [21].
For graphene and also for parabolic bands [22],D → D0 ¼
ðe2=ℏ2ÞðjEFj=πÞ, thus in Dirac systems the plasmon fre-
quency depends on the carrier density as n1=4 [20,23–25].
Exciting plasmons by incident radiation is not possible in

pristine graphene because plasmons are strongly confined
and energy and momentum conservation prevents their
coupling. The coupling can be achieved, though, by
superimposing a superlattice (SL) on graphene via external
or thermal grating [5,26,27], patterning [28–30], or grow-
ing graphene on vicinal surfaces [31]. The SL periodicity

induces a folding of the plasmon dispersion, and plasmon
subbands appear in the SL Brillouin zone. At the center of
the Brillouin zone, the second plasmon subband has its
origin in the folding of unperturbed plasmonic modes with
momentum �G0, where G0 is the SL reciprocal lattice
vector. This plasmon, of finite energy, at the center of the
Brillouin zone is inside the light cone and can couple to
incident light.
Graphene plasmons in a SL are conventionally discussed

within a semiclassical (SC) and local approximation that
assumes that the system responds solely to local external
fields at each point in space [6,32–37]. This approach is
equivalent to assuming that the optical conductivity at each
point in space is determined by the Fermi energy at that point
which in turn is obtained from the local charge density using
the Thomas-Fermi approximation, σðrÞ ¼ σLðEF½nðrÞ�Þ. In
these calculations, the main effect of the optical conductivity
modulation is the localization of plasmons in the regions of
smaller conductivity. Recently, it has been estimated by SC
approximations that nonlocal effects are important near
regions in which the optical conductivity is strongly sup-
pressed [38]. However, those are the regions where SC
approximations are expected to break down, making it
necessary to develop a fully quantum-mechanical (QM)
approach.
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In this Letter, we study the collective excitations of
graphene in the presence of a one-dimensional superlattice
potentialVðxÞ ¼ V0 cosG0xwithin the linear randomphase
approximation that includes nonlocal and quantum-
mechanical effects (Q nonlocal). Throughout the Letter,
we contrast this approach with two widespread approxima-
tions: the local quantum mechanical approximation which
reduces the full response matrix to a function (Q local), and
the semiclassical, local approximation which introduces a
local Fermi energy in the response function (SC local).
Our main results can be summarized by the following

points: (i) absence of Klein tunneling for the motion of
plasmons; (ii) at low frequencies, plasmons moving along
the SL axis are damped by electronic SL subband excita-
tions; (iii) near singular points, nonlocal effects associated
with electron kinetic energy delocalizes the plasmons in the
SL unit cell and make the system behave as a metamaterial;
(iv) plasmonic excitations in modulated graphene can be
related to an effective Drude weight even for vanishing
charge density.
Hamiltonian.—The massless Dirac Hamiltonian for one

valley and one spin projection in the presence of an external
potential is given by

H ¼ ℏvFð−iσx∂x − iσy∂yÞ þ VðxÞI ; ð2Þ

where σx and σy are the Pauli matrices, vF is the Fermi
velocity, and I is the identitymatrix. Unless otherwise stated,
results in this Letter will be presented for an exemplary period
of L ¼ 2π=G0 ¼ 600a with a ¼ 2.46 Å. This leads to the
energy scale EG ¼ ℏvFG0 ∼ 25 meV which is related to the
SL interband electronic transitions. For details on the band
structure and further discussion, see the Supplemental
Material (SM) [39], in particular the inset of Fig. 1(b).
Plasmonic response.—Plasmonic excitations are the

response to an infinitesimal external potential with wave
number q. However, the induced charge density contains
not only the incoming mode q, but all higher harmonics
qþ G with G ¼ nG0. The SL potential defines a reduced
Brillouin zone where the plasmon subbands are defined.
The optical conductivity in the ν direction thus becomes a
matrix of the form σννG;G0 ðq;ωÞ, and the following discussion
is based on the energy loss obtained from the largest
eigenvalues of the dielectric response and their respective
eigenvectors. See the SM for how these quantities are
computed [39].
Another quantity of interest will be the Drude weight,

which is the static limit of the reactive conductivity, and
thus related to electronic intraband transitions. The con-
ductivity also has contributions from electronic interband
transitions and plasmons are often characterized by the
electronic transitions they are composed of [54,55]. In
pristine graphene, plasmons are usually Drude-like and
have no contributions from the interband conductivity.
However, a SL potential creates both low energy electronic

subbands and spectral weight transfer from electronic
intraband to electronic interband transitions. This is a
QM effect that is not included in SC calculations, in which
the electronic subbands of the SL are not taken into account
and all the plasmons are intrabandlike.
In the following we will consider two regimes. First, we

fix the Fermi energy to EF ¼ 0.1 eV (EF ≫ EG) and then
vary the superlattice potential V0 from zero (uniform limit)
up to EF where the electron density becomes zero at
discrete locations, so-called singular points [38]. By this,
we analyze how the collective excitations change as the
system becomes more and more inhomogeneous. Second,
we analyze a system with average zero density (EF ≪ EG)
where the SL potential creates alternating p- and n-doped
regions. In each of these regimes, we will analyze the
dispersion of the first plasmonic subband and the plas-
monic resonance that appears in the second subband at the
center of the Brillouin zone. This zero momentum plasmon
can be probed in optical transmittance and reflectance
measurements.
Finite EF: First plasmonic subband. Let us first discuss

the loss function for collective excitations with momentum
qy. We observe a well-defined low energy branch that
disperses as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD0=2ϵϵ0Þqy
p

with the same Drude weight as
obtained from pristine graphene. This part agrees with the
SC approximation.
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FIG. 1. Intraband plasmon dispersion (energy loss) with (left)
and without (middle) nonlocal effects for a superlattice with
period L ¼ 600a and different values of V0, as obtained in the
quantum mechanical calculation. The right panels show the local
semiclassical results. The comparison along the y direction is
omitted since the Drude weight does not depend on V0.
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On the contrary, the Drude weight in the direction of the
superlattice is reduced for increasing V0 due to transfer of
spectral weight from interband to intraband transitions [39].
This is also manifested in the loss function which is shown
in the left column of Fig. 1 for various amplitudes V0=EF.
Increasing the modulation V0 renders the plasmons ill
defined below an energy threshold which we identify
as EG.
A large dissipative plasmonic response at low energies is

also seen in metallic structures with nanogap features
[56,57]. However, the Q-local and semiclassical Thomas-
Fermi approximations fail to predict this threshold energy
EG, as shown in the center and right panels of Fig. 1.
The vanishing of the loss function is the result of new

decay channels that develop due to electronic band folding
that allows for electron-hole transitions at energies
ℏω≲ EG. An equivalent viewpoint is that umklapp proc-
esses scatter the plasmonic excitations with q ∼ 0 into the
particle-hole continuum of intraband transitions where they
decay due to strong Landau damping. This is only possible
for ℏω≲ EG and a purely nonlocal and quantum-mechani-
cal effect since plasmonic band folding is only encoded in
σννG;G withG ≠ 0. It is thus even absent in the quantum-local
approximation σννG;G0 → σννG−G0;0. For energies E≳ EG, the
loss function becomes isotropic, Figs. 2(a) and 2(b), and
displays a well-defined Drude-like dispersion, with a Drude

weight value equal to the intraband Drude weight in the y
direction.
Remarkably, the anisotropy in the plasmon dispersion is

opposite to that occurring in the electronic band structure of
the SL [39–44], where, due to Klein tunneling the velocity
of the electrons moving along the SL axis is not modified,
whereas it is strongly reduced in the perpendicular direc-
tion. The reason is that plasmons are collective excitations
which even if characterized by a wave vector parallel to the
superlattice are composed by electrons and holes moving in
a range of directions. Plasmons are thus hardly affected by
the Klein paradox.
Finite EF: Second plasmonic subband. In Figs. 2(a)

and 2(b), we plot the energy loss function at the center of
the Brillouin zone for a SL with V0 ¼ EF=2. In fact, the
loss function presents a double peak structure, see inset of
Fig. 2(a), which widens and becomes less intense for
increasing V0. The double peak structure reflects the
folding onto q ¼ 0 of two states with momentum �G0.
These states interact between them presenting a small
energy splitting proportional to V0, as can be seen in the
inset of Fig. 2 and also in the SM [39].
The modes in the second plasmon subband have a strong

contribution from electronic interband transitions generated
by the SL potential. This contribution increases as the SL
perturbation V0 increases. Nevertheless, the energy of the
second plasmonic subband is very close to ℏωpðG0Þ, i.e.,
related to theDrudeweight evaluated at theFermi energy. The
energy difference with respect to Eq. (1) can be explained by
nonlocal effects of the conductivity [18,20], see SM [39].
In Fig. 2(c), we plot the x̂ component of the electric field

corresponding to the two eigenmodes that appear in the
inset of Fig. 2(a). The electric fields have the form of sine
and cosine functions and thus correspond to the combina-
tion of the folded states with momentum�G0, showing that
the plasmon modes can be obtained from folding of the
unperturbed plasmons, even in this case of large amplitude
of the perturbation. The length scale of the interband
plasmons is given by the period of the superlattice, i.e.,
L ∼ 1=G0, and are thus not confined. In Fig. 2(d), we plot
the electric fields corresponding to the double peaks that
appear in the Q-local approximation. Again, the two
dielectric modes correspond to even and odd functions,
but the electric fields are localized in the region of low
density as the SC local approximation also predicts [38].
Hence, nonlocal effects allow plasmons to explore all

spatial regions and become extended over the whole
system, making the SL behave as a metamaterial displaying
a homogeneous optical response even in the presence of
singular points where the electron density vanishes. This
contrasts with the results obtained in local approximations
(both SC and quantum) which are especially drastic near
singular points.
EF ¼ 0: Neutral plasmons. For neutral graphene, we

have D0 ¼ 0 at zero temperature, signaling the lack of

FIG. 2. Quantum nonlocal energy loss as function of (a) qx and
(b) qy for a SL of period L ¼ 600a, Fermi energy EF ¼ 0.1 eV,
and amplitude V0 ¼ 0.05 eV. In the inset of panel (a), we plot the
idealized illustration of the folding mechanism for the emergence
of the second plasmonic subband. In the inset of panel (b), we
plot the energy loss for q ¼ 0. Panel (c) shows the real (full lines)
and imaginary (dashed lines) part of the electric fields, respec-
tively, of the two strongest subband dielectric eigenmodes at
q ¼ 0. In panel (d), we plot the same as in panel (c), but for the
eigenmodes obtained in the Q-local approximation.

PHYSICAL REVIEW LETTERS 124, 257401 (2020)

257401-3



plasmons. However, at finite temperature there is an
effective Drude weight and plasmons can be defined
[58–60]. In thiswork,we show that in neutral, butmodulated
graphene, band folding leads to the appearance of plasmon
subbands forV0 ≳ EG. Since for undoped samples, electron-
hole symmetrywith respect to the chemical potential implies
that the system responds just to the absolute value of the SL
potential, there is a halving of the periodicity of the
modulation, shown to be an exact symmetry in the SM
[39]. Therefore, the electronic subband energy scale is in this
case related to EG → 2ℏvFG0. In the first plasmonic sub-
band, the dispersion shows a strong anisotropy: as in the case
of finite doping, we find a plasmonic gap in the x direction,
whereas unperturbed intraband plasmons in the y direction,
see Fig. 4 in the SM [39].
At the center of the Brillouin zone, we find that for large

values of the modulation V0, the loss function displays a
clear maximum that indicates the existence of well defined
plasmonic resonances, see Fig. 8 of the SM [39]. When
decreasing V0, the energy of the plasmon is redshifted, the
peak broadens and a continuous background appears at
high energies, eventually signaling the absence of plas-
mons. In Fig. 3, we plot the energy of this resonance as a
function of the folded momentum 2G0 in units of the
effective Fermi energy ĒF ¼ ð2=πÞV0 and effective Fermi
wave vector k̄F ¼ ðĒF=ℏvFÞ, respectively. The red dots
thus correspond to peak positions for different values of V0

and follow the Drude dispersion of pristine graphene of
Eq. (1) evaluated at ĒF (blue dashed line).
The same behavior can be seen for different periodicities

L ¼ 900a (magenta dots) and L ¼ 300a (green dots)
which demonstrates that electronic interband transitions
in fact mimic an effective classical Drude weight D ∼ V0.
However, as shown in the inset of Fig. 3, the effective

classical Drude weight is redshifted by quantum effects
associated with interband transitions and are related to EG.
For a more detailed discussion, see the SM [39].
We finally note that one-dimensional edge plasmons

have been predicted to exist at the interface of a p-n
junction which show an unusual q1=4 dispersion [61]. We
do not observe this effect, because their existence requires
wavelengths much larger than the width of the junction,
while here we have addressed the opposite limit.
Summary of different Drude regimes.—As noted above,

the zero momentum finite energy plasmonic excitations
can be described by Eq. (1), albeit with an effective wave
number G and effective Drude weight D. The actual values
depend on the ratio between the Fermi energy EF, the
modulation V0, and the quantum electronic subband energy
EG ¼ ℏvFG. For EF > V0, the wave vector G coincides
with the SL reciprocal lattice vector G0 whereas for
EF ≪ V0, a periodicity halving occurs [62] and the relevant
wave vector is G ¼ 2G0.
The different Drude regimes are illustrated in Fig. 4 and

defined in the following way:
(i) For ℏω < EG, the Drude weight in the ν direction is

given by [63]

Dν ¼ lim
ω→0

ωImσννG¼0;G¼0ðq ¼ 0;ωÞ: ð3Þ

In the limit V0 → EF, the Drude weight becomes highly
anisotropic and the plasmons ill defined in the direction
parallel to the SL, Dx ∼ 0.
(ii) For ℏω > EG, the isotropic Drude weight is given by

D ¼ e2

ℏ2

jEF þ VðxÞj
π

; ð4Þ

where the average over one unit cell of the superlattice is
implied. Moreover, the plasmon dispersion is isotropic,
D ∼Dx ∼Dy and the Drude weight agrees well with
Eq. (3) in the ŷ direction. For EF ≪ EG, a redshift ∼EG
needs to be included in Eq. (4), see inset of Fig. 3.

FIG. 3. Second subband plasmonic energies for SL potentials
with period L ¼ 900a (magenta), L ¼ 600a (red), and L ¼ 300a
(green) for different values of V0 ≤ 0.2 eV. The grey regions
indicate the existence of electron hole damping by intra- or
interband (electronic) excitations. The dashed lines are the
corresponding fits to Eq. (1) extracting the effective Drude
weight D. Inset: The effective Drude weight as function of the
reciprocal lattice vector.

(a) (b)

FIG. 4. Schematic map of the Drude weights for (a) EF ≪ EG
and (b) EF ≫ EG. All lines indicate crossover behavior. We
assume electron doping with EF > 0 and nonlocal or lattice
corrections are not included.
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Conclusions.—We have analyzed the plasmonic proper-
ties of graphene dressed by a one-dimensional superlattice
potential. Even though the superlattice potential leads to the
emergence of multiple electronic subbands, the character of
the plasmonic excitations is not changed, i.e., they remain
Drude-like charge-density oscillations where only the
charge stiffness enters as an effective parameter. In contrast
to what both SC and Q-local approximations predict, only
minor corrections related to V0 are observed when the
modulation potential reaches the singular-point regime,
V0 ∼ EF. In the case of a neutral SL formed by periodically
alternating n- and p-doped regions, we observe a halving of
the periodicity, indicating that plasmons are insensitive to
the sign of its carriers, in agreement with exact results [39].
More interestingly, we again find Drude-like behavior of
the subband resonances related to ωpð2G0Þ.
We find that quantum electronic intersubband transitions

damp the propagation of plasmon excitations along the SL
axis, questioning the use of semiclassical calculations for
this low frequency regime. The classical approach is valid
whenever the external grating does not induce a sufficiently
large modulation of the “local" Fermi energy. In a quantum
mechanical treatment, the Fermi energy is constant over the
whole sample and the electronic density becomes inhomo-
geneous, instead. This variation can be controlled by bring-
ing, e.g., the metal gratings closer to the graphene layer in
order to enhance the screening effects and thus the local
depletion of the electronic density. A rough estimate would
be given by V0=EF ∼ 0.1. Another scale to contrast the
classical approach is given by EG which is entirely due to
band folding. Thus, reducing the periodicity will eventually
lead to deviations and a rough estimate is givenbyL ∼ 1 μm.
In the case of plasmons with wavelengths of the order of the
SL period, nonlocal effects reflected by the wave nature of
the electrons delocalize the plasmons in the SL unit cell,
making it possible to describe the system as metamaterial.
Finally, let us point out that the collective excitations

show an opposite behavior to that of single-particle Dirac
excitations, i.e., plasmons are largely unaffected by the
superlattice in the direction perpendicular to the modula-
tion, but strongly modified in the parallel direction. Klein
tunneling thus has no or very little effect on the plasmon
propagation, contrary to several claims in the literature.
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