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Abstract: The photocatalytic activity of silver-based catalysts containing different amounts of molyb-
denum disulfide (MoS2; 5, 10 and 20 wt.%) was evaluated by the degradation of the antibiotic
ciprofloxacin and the production of hydrogen via water splitting. All the silver (Ag)-based catalysts
degraded more than 70% of the antibiotic in 60 min. The catalyst that exhibited the best result was
5%Ag@TiO2-P25-5%MoS2, with ca. 91% of degradation. The control experiments and stability tests
showed that photocatalysis was the degradation pathway and the selected silver-based catalysts
were stable after seven cycles, with less than 2% loss of efficiency per cycle and less than 7% after
seven cycles. The catalyst with the highest hydrogen production was 5%Ag@TiO2 NWs-20%MoS2,
1792 µmol/hg, at a wavelength of 400 nm. This amount was ca. 32 times greater than that obtained
by the pristine titanium oxide nanowires catalyst. The enhancement was attributed to the high
surface area of the catalysts, along with the synergism created by the silver nanoparticles and MoS2.
All the catalysts were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction
(XRD), Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), high-resolution
transmission electron microscopy (HRTEM), Brunauer–Emmett–Teller (BET) surface area analysis
and energy dispersive X-ray spectroscopy (EDS).

Keywords: photocatalysis; Ag NPs; MoS2; ciprofloxacin; hydrogen production

1. Introduction

Industrial development, together with energy shortages and overpopulation of the
planet, is perhaps among the most relevant factors affecting the environment and the future
sustainable development of society [1–7]. Serious environmental pollution problems, which
are ultimately responsible for global warming, are becoming increasingly important [3].
However, despite the fact that the current situation of the planet was already predicted
a few decades ago, we are very far from any reversal of the problems generated by economic
and social development.
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Chemical catalysis was a pioneer in addressing the development of new eco-friendly
alternatives to solve the shortage of energy resources and, at the same time, enable the
development of advanced methods to fight environmental pollution [1,8,9]. In this re-
gard, chemical compounds that emulate the same mechanism as nature can be a realistic
alternative that allows for solving a large part of these problems [9]. Hydrogen produc-
tion by electrochemical water splitting is considered a simple and sustainable method
of obtaining clean hydrogen, as energy carrier, through a hydrogen evolution reaction
(HER) [4,5,10–13]. Until now, the most effective materials for catalyzing HER have been
the metals of the platinum (Pt) group [5,12,14]. Current research is based on developing
new high-performance and cost-effective catalysts that can be easily synthesized and that
reduce enormous production costs (e.g., nanoparticles and nanocrystals, transition metal
chalcogenides, metal carbides or hydroxides, among others) [1,5,15].

To date, titanium oxide (TiO2) has been one of the most widely used photocatalysts,
due to its stability, resistance to corrosion, availability in nature and low cost [7,16]. How-
ever, the great limitation of TiO2 is due to its wide bandgap, which makes its practical
use difficult [7,16]. As a solution to this problem, TiO2 can be synthesized in different
crystalline structures and forms and modified by adding noble metals to reduce the band
gap and optimize the use of sunlight [7]. The incorporation of silver (Ag) nanoparticles on
the surface of TiO2 makes it possible to change the properties of the semiconductor and
diminish the rapid recombination of the photogenerated charge carriers in the process,
shifting the radiation absorption threshold to the visible region [17]. The reason for this
behavior is the surface plasmon resonance effect and charge separation by the displacement
of photoexcited electrons from the metal nanoparticles to the conduction band (CB) of
TiO2 [17]. Molybdenum disulfide (MoS2) is considered a promising HER catalyst due
to its high catalytic activity, high abundance, and low cost [6,12,18]. There are different
experimental procedures that allow for synthesizing MoS2 in a simple way, although its
use is certainly limited by the intrinsic semiconductor behavior and the number of active
sites [4,6,19]. To improve this behavior, and in the same way that has been addressed with
TiO2, different strategies have been developed to modify morphology, specific surface and
even the presence of structural defects induced by metal doping (e.g., Pt, Cr, Mn, V) [1,7,11].

In the case of TiO2, morphology and crystallographic structure are determining factors
to regulate its applicability to different processes [7,16]. TiO2 nanowires (TiO2NWs), with a
rutile-type crystalline structure, have shown high catalytic activity, which could later be
improved by doping with appropriate metals [1,7,8,16]. In the case of two-dimensional
materials such as MoS2, the different synthesis procedures produce crystals formed by the
adhesion of a large number of layers [20]. Opening these 2D materials is an effective way
to alter the physical and chemical properties, such as the conductivity or band gap and, of
course, its catalytic activity [3,20].

In the present research we synthesized different catalysts based on silver nanoparticles
on TiO2NWs with a rutile structure, to which MoS2 (5, 10, 20 wt.%) was added. These
rutile nanowire-based catalysts were also compared with other catalysts synthesized from
commercial TiO2 (TiO2-P25). The main objective has been to combine some of the materials
that have shown adequate catalytic behavior in order to obtain adducts with improved
properties. To the best of our knowledge, the hybrid materials prepared in this research
are novel and, as is described later, they can be used efficiently in catalytic environmental
decontamination processes and in photocatalytic hydrogen production by water splitting.

2. Results and Discussion
2.1. Characterization of the Catalysts

The morphology of the as-synthesized titanium oxide nanowire (TiO2NW) and its
commercial form (TiO2-P25) was studied by field-emission scanning electron microscopy
(FE-SEM), and the results are shown in Figure 1. As it can be seen, the TiO2NWs (Figure 1a,b)
consisted of nanowires with different lengths and diameters. At a higher magnification
(Figure 1c) it can be noticed that the nanowires have a square-like form with different
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domains and sizes. A BET analysis (see Table 1) found that the nanowires had a high surface
of 403 m2g−1, which can be explained by the highly branched structures of the wires. This
high surface area could increase the catalytic properties of the composite. Figure 1d shows
the FE-SEM micrograph of the titanium oxide commercial form (TiO2-P25), and, as can
be seen there, this catalyst consists of aggregates of irregular sphere-like particles with
diameters ranging from ca. 50 to 75 nm.
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Figure 1. FE-SEM micrographs of TiO2NW (a–c) and its commercial form (TiO2-P25) (d), at
different magnifications.

Table 1. Brunauer, Emmett and Teller (BET) surface area of catalysts containing silver and MoS2 *.

Catalyst TiO2-P25 (m2g−1) TiO2NWs (m2g−1)

0% (Unmodified) 53 403
5% MoS2 98 429

10% MoS2 129 443
20% MoS2 172 491

* All the catalysts have a silver loading of 5 wt.%.

Figure 2 shows the FE-SEM and energy dispersive X-ray spectroscopy (EDS) of the
5%Ag@TiO2NWs-5%MoS2 catalyst. As can be seen in Figure 2a,b, the TiO2NWs varies
in length and width, which is attributed to the catalyst synthesis parameters, and the
incorporation of silver nanoparticles (AgNPs) and molybdenum disulfide (MoS2). The
incorporation of AgNPs and MoS2 onto the TiO2NWs was non-homogenous, and the
particles presented different sizes and shapes. The EDS mapping of the catalyst showed the
presence of titanium (Figure 2c; green), silver (Figure 2d; blue), molybdenum (Figure 2e;
orange), and sulfur (Figure 2f; red) with sufficient dispersion, although some aggregates of
MoS2 were observed. The rest of the catalysts (not shown) presented a similar trend.
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Figure 2. FE-SEM (a) and EDS images (b–f) of the 5Ag%TiO2NWs-5%MoS2 catalyst.

Figure 3 shows the high-resolution transmission electron microscopy (HRTEM) micro-
graphs of 5%Ag@TiO2NWs-5%MoS2 and 5%Ag@TiO2-P25-5%MoS2. As can be seen, the
distribution of titanium oxide (TiO2; yellow arrows), silver nanoparticles (AgNPs; white
arrows) and MoS2 (red arrows) is quite homogeneous. A spacing may be observed in
Figure 3c of ca. 0.290 nm for the TiO2 NWs, which corresponds to the (110) plane of the
rutile crystalline phase of the nanowires, and a spacing of ca. 0.234 nm between adjacent
lattice planes in the AgNPs, with particle diameters of less than 10 nm. Huerta-Aguilar
and group [21] assigned the spacing measured to the (111) plane of the Ag lattice. Previous
works [16,22–25] reported similar results when sodium borohydride (NaBH4) was used as
a reducing agent. The MoS2 (see Figure 3d) presented a spacing of ca. 0.274 nm and has
been attributed to the (100) plane [18].

Table 1 shows the BET surface area of the composites containing silver and MoS2
(5, 10 and 20 wt.%). As can be seen, the surface area of the unmodified catalysts (53 m2g−1

for TiO2-P25, and 403 m2g−1 for TiO2 NWs) increased with the incorporation of silver and
MoS2. The highest surface area was reported to be 491 m2g−1 and was obtained with the
5%Ag@TiO2 NWs-20%MoS2 catalyst. For the commercial catalyst, the highest surface area
(172 m2g−1) was also obtained with the catalysts containing a MoS2 loading of 20 wt.%
(5%Ag@TiO2-P25-20%MoS2). Previous works [16,22–25] have shown a direct relationship
between the surface area and the amount of hydrogen produced.



Catalysts 2022, 12, 267 5 of 19Catalysts 2022, 11, x FOR PEER REVIEW 5 of 21 
 

 

 
Figure 3. High-resolution transmission electron microscopy (HRTEM) micrographs of 5Ag%TiO2-
P25-5%MoS2 (a), and 5Ag%TiO2NWs-5%MoS2 (b). Figure 2c shows a magnification of AgNPs with 
a lattice spacing of ca. 0.234 nm, and the lattice spacing of the TiO2 NWs. Figure 3 (d) presents the 
spacing lattice of MoS2. The white, red, and yellow arrows show the AgNPs, MoS2, and TiO2, re-
spectively. 

Table 1 shows the BET surface area of the composites containing silver and MoS2 (5, 
10 and 20 wt.%). As can be seen, the surface area of the unmodified catalysts (53 m2g−1 for 
TiO2-P25, and 403 m2g−1 for TiO2 NWs) increased with the incorporation of silver and 
MoS2. The highest surface area was reported to be 491 m2g−1 and was obtained with the 
5%Ag@TiO2 NWs-20%MoS2 catalyst. For the commercial catalyst, the highest surface area 
(172 m2g−1) was also obtained with the catalysts containing a MoS2 loading of 20 wt.% 
(5%Ag@TiO2-P25-20%MoS2). Previous works [16,22–25] have shown a direct relationship 
between the surface area and the amount of hydrogen produced. 

The catalysts were also characterized by X-ray photoelectron spectroscopy (XPS). 
Figure 4 shows the most relevant transitions considering the catalyst with the highest 
MoS2 load (5%Ag@TiO2NWs-20%MoS2). Figure 4a shows the transition corresponding to 
Ti2p. As can be seen, two components are shown that were ascribed to the Ti2p3/2 and 
Ti2p1/2 transitions. Each transition was deconvolved to two peaks. In the case of Ti2p3/2, 
the most intense peak is shown at 458.3 eV, and it was unambiguously assigned to Ti4+ in 
TiO2 [24,26,27]. Additionally, another less intense peak is shown at 458.9 eV that was as-
signed to the Ti species with oxygen vacancies, which suggests the presence of Ti3+ [26,27]. 
The same behavior observed in the Ti2p3/2 transition is observed in Ti2p1/2, with a 5.8 eV 
spin-orbit splitting. Figure 4b shows the transition corresponding to O1s. As can be seen, 
the transition is clearly asymmetric and was deconvolved to two components at ca. 529.8 
and 531 eV. The most intense peak was assigned to oxygen in the TiO2 network, while the 
component observed at 531 eV was assigned to oxygen vacancies in the TiO2 network or 
to non-lattice oxygen [28,29]. These results are in agreement with those obtained for Ti2p. 
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spacing of ca. 0.234 nm, and the lattice spacing of the TiO2 NWs. (d) presents the spacing lattice of
MoS2. The white, red, and yellow arrows show the AgNPs, MoS2, and TiO2, respectively.

The catalysts were also characterized by X-ray photoelectron spectroscopy (XPS).
Figure 4 shows the most relevant transitions considering the catalyst with the highest
MoS2 load (5%Ag@TiO2NWs-20%MoS2). Figure 4a shows the transition corresponding
to Ti2p. As can be seen, two components are shown that were ascribed to the Ti2p3/2
and Ti2p1/2 transitions. Each transition was deconvolved to two peaks. In the case of
Ti2p3/2, the most intense peak is shown at 458.3 eV, and it was unambiguously assigned
to Ti4+ in TiO2 [24,26,27]. Additionally, another less intense peak is shown at 458.9 eV
that was assigned to the Ti species with oxygen vacancies, which suggests the presence of
Ti3+ [26,27]. The same behavior observed in the Ti2p3/2 transition is observed in Ti2p1/2,
with a 5.8 eV spin-orbit splitting. Figure 4b shows the transition corresponding to O1s. As
can be seen, the transition is clearly asymmetric and was deconvolved to two components
at ca. 529.8 and 531 eV. The most intense peak was assigned to oxygen in the TiO2 network,
while the component observed at 531 eV was assigned to oxygen vacancies in the TiO2
network or to non-lattice oxygen [28,29]. These results are in agreement with those obtained
for Ti2p. Figure 4c represents the transition of Ag3d, with peaks at 374 and 368.1 eV, and a
characteristic spin-orbit splitting of ca. 6.0 eV, which were clearly assigned to the presence
of metallic Ag [26,27]. The Mo3d core level peak region of the MoS2 is shown in Figure 4d.
The Mo3d shows two peaks at 228.9 and 232 eV, which were attributed to the doublet
Mo3d5/2 and Mo3d3/2, respectively, characteristic of the Mo4+ state in MoS2 [30]. The
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shoulder observed at 226.4 eV was assigned to S2s, typical of MoS2. The width and
symmetry of the peaks is consistent with the absence of additional oxidation states for Mo.
The region corresponding to S2p is shown in Figure 4e. As can be seen, the peak shows a
clear asymmetry that has allowed it to be decomposed into the two typical components of
spin-orbit splitting at 161.6 eV and 162.9 eV (S2p3/2 and S2p1/2, respectively), characteristic
of S2− in MoS2 [31].
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Figure 4. XPS spectra of Ti 2p (a), O 1s (b), Ag3d (c), Mo3d (d), and S2p (e) from 5%Ag@TiO2

NW-20%MoS2.

The X-ray diffraction patterns of the silver-based catalysts with different MoS2 load-
ings are shown in Figure 5. 5%Ag@TiO2-P25-X%MoS2 (Figure 5a), shows intense peaks
at 25◦ (101), 38◦ (004), 48◦ (220), 54◦ (105) and 55◦ (211), which were assigned to the crys-
talline phase of TiO2 anatase [24,32]. Additionally, other peaks were observed at 27◦ (110),
36◦ (101), 41◦ (111) and 54◦ (211), assigned to the rutile TiO2 crystalline phase [24,32]. The
MoS2 characteristic peaks can be seen at 33◦ (100), 39◦ (103), 50◦ (105) and 57◦ (110) [33–35].
In the case of AgNPs, a small but distinguishable peak was observed at 46◦ (200) [24,32].
The peak associated with silver (111) was not detected due to the overlap with a charac-
teristic peak of anatase at the same angle (38◦). The diffraction patterns corresponding to
the 5%Ag@TiO2NWs-X%MoS2 composites are shown in Figure 5b. The peaks observed
at 27◦, 36◦ and 55◦ were assigned to the (110), (101) and (211) planes, respectively, of the
rutile crystalline phase of TiO2. The most characteristic peaks of MoS2 were also observed
at 33◦ (100), 39◦ (103) and 60◦ (110) [33–35]. The presence of AgNPs was evidenced by
two peaks at 38◦ and 46◦, corresponding to the crystallographic planes (111) and (200),
respectively [24,32].
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The Raman spectroscopy results of the silver-based catalysts can be seen in Figure 6.
5%Ag@TiO2-P25-X%MoS2 shows the typical bands of the anatase phase at 150, 395, 510
and 630 cm−1, corresponding to the active vibrational modes of Eg(1), B1g(1), A1g + B1g(2),
and Eg(2), respectively [24,36]. MoS2 has characteristics bands at 383 and 408 cm−1 [34]
that were not visible due to overlap with the TiO2-P25 bands at 395 and 410 cm−1. In the
case of AgNPs, no bands were detected, mainly due to their small diameters (less than
10 nm) and the low concentrations of silver in the composites [37–39]. 5%Ag@TiO2 NWs-
X%MoS2 (Figure 6b) showed characteristics bands at 254, 410 and 607 cm−1, corresponding
to the B1g, Eg and A1g vibrational modes of the rutile crystalline phase of TiO2 [24,37]. As
mentioned before, the MoS2 bands at 383 and 408 cm−1 were also not detected due to
overlap with bands of TiO2NWs. As seen with the TiO2-P25 catalysts, no bands due to
silver were observed.
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2.2. Photodegradation of Ciprofloxacin

The degradation efficiency of the photocatalysts was studied based on 60 min time-
frame experiments, and considering sample aliquots every 10 min (see Figure 7). The differ-
ent combinations employed (pristine TiO2NWs, 5%Ag@TiO2NWs and 5%Ag@TiO2NWs-
X%MoS2) showed a continuous degradation through the time (Figure 7a) with no noticeable
saturation effect. Moreover, from the five combinations or treatments employed, the three
most active catalysts were obtained when MoS2 was incorporated. These results are in
agreement with those from previous studies that demonstrated the improvement of the
photocatalytic activity of TiO2 when MoS2 is incorporated [40]. The pristine nanowires
showed the lower degradation with ca. 70% while the most efficiency combination was
5%AgTiO2NWs-5%MoS2. At higher MoS2 loadings, the degradation decreases, which can
be attributed to a saturation of the nanoparticles in the aqueous media causing a light
scattering of the radiation (see Table 2). Similar results are observed when TiO2-P25 is em-
ployed as the TiO2 source. As shown in Figure 7b, all the TiO2-P25 combinations produced
degradation rates of at least 82%. This process has been proved to be cost-effective since it
was demonstrated to degrade a persistent organic pollutant at a higher rate in less time
compared to similar research [41,42]. When the TiO2NWs and TiO2-P25 combinations are
compared, it is observed that TiO2-P25 composites showed better photocatalytic activity
despite the fact that TiO2NWs showed a higher surface area. This might be due to the fact
that TiO2-P25 is primarily composed of anatase phase (+70%), which traditionally has been
recognized to be favorable for photocatalytic activity due to a lower recombination rate [43].
To investigate the kinetic behavior of ciprofloxacin photodegradation, pseudo-first-order
kinetics was studied by plotting −ln(C/Co) against irradiation time. The results obtained
are shown in Table 3, indicating that the apparent rate constant of the catalysts depends on
the percentage of MoS2 on the catalyst surface.
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Table 2. Degradation percentages of ciprofloxacin using silver-based catalysts with different MoS2 loadings.

Catalyst Ag Loading (wt.%) MoS2 Loading
(wt.%) Degradation (%) *

TiO2-P25 5

0 87
5 91
10 90
20 83

TiO2NWs 5

0 75
5 87
10 82
20 79
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Table 2. Cont.

Catalyst Ag Loading (wt.%) MoS2 Loading
(wt.%) Degradation (%) *

TiO2-P25
(pristine) - - 86

TiO2NWs
(pristine) - - 70

* Estimated error is ca. 5%.

Table 3. The pseudo-first-order kinetics constants for the photodegradation of ciprofloxacin using
TiO2NW- and TiO2-P25-based catalysts.

Catalyst Apparent Rate 1 R2

TiO2NWs 0.019 0.99
5%Ag@TiO2NWs 0.022 0.98

5%Ag@TiO2NWs-5%MoS2 0.029 0.96
5%Ag@TiO2NWs-10%MoS2 0.027 0.99
5%Ag@TiO2NWs-20%MoS2 0.023 0.98

TiO2-P25 0.030 0.98
5%Ag@TiO2-P25 0.032 0.99

5%Ag@TiO2-P25-5%MoS2 0.036 0.99
5%Ag@TiO2-P25-10%MoS2 0.034 0.98
5%Ag@TiO2-P25-20%MoS2 0.027 0.99

1 (k, min−1).

2.3. Stability Tests

The relevance of these photocatalysts is that ciprofloxacin, as a persistent organic
compound, does not degrade under normal conditions, as shown in Figure 8a,b. For both
types of catalysts (TiO2-P25 and TiO2 NWs), it is shown that the main degradation pathway
is the photocatalysis. The contribution of the photolysis or catalysis pathway (without
catalyst or without irradiation, respectively) represents less than 7% in any case.
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Figure 8. Control experiments and stability tests for 5%Ag@TiO2NWs-5%MoS2 (a,c), and
5%Ag@TiO2-P25-5%MoS2 (b,d) catalysts.
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As shown in Figure 8, in all cases the last 10 min of the reaction produced only less
than 10% degradation. This lack of degradation of the parent compound is due to the
production of organic by-products during the photocatalytic process. This is confirmed by
the stability studies in which it was demonstrated that after several cycles the photocatalyst
is still viable for use since in any case less than 7% of efficiency is lost (see Figure 8c,d).
Furthermore, it was demonstrated that, after 420 min of the reaction, the catalyst is able to
degrade persistent organic pollutants by 80%. Furthermore, at any given cycle, catalysts
can degrade more than 50% of the initial parent compound within the first 30 min of the
reaction, demonstrating the stability and recyclability of the photocatalysts [44]. Table 4
shows the percentages of degradation and difference of the 5%Ag@TiO2NWs-5%MoS2 and
5%Ag@TiO2-P25-5%MoS2 catalysts after seven reaction cycles.

Table 4. Degradation and difference percentages of the 5%Ag@TiO2NWs-5%MoS2 and 5%Ag@TiO2-
P25-5%MoS2 catalysts after seven cycles.

Catalyst. Cycle Degradation (%) Difference (%)

5%Ag@TiO2 NWs-5%MoS2
1 86.87

6.347 81.69

5%Ag@TiO2-P25-5%MoS2
1 90.72

2.837 88.22

2.4. Hydrogen Production by Water Splitting

Figure 9 shows the hydrogen production by water splitting under irradiation at 320,
400, 500 and 600 nm. Table 5 shows the results corresponding to the highest hydrogen
production from modified and unmodified silver-based catalysts. As can be seen, the
catalysts with a MoS2 loading of 20 wt.% produced the highest amount of hydrogen.
Different studies [11–13] report that MoS2 is a very active catalyst for hydrogen production,
which, together with its low cost and abundance, makes it a relevant additive for different
applications. Furthermore, experimental results together with density functional theory
(DFT) simulations have shown that the catalytic activity of MoS2 is due to unsaturated
Mo-S sites along the edges [11–13] that can be designed for specific applications. When the
H2 production of the TiO2 NWs catalysts is compared with those of TiO2-P25, a significant
difference is observed. This difference is mainly attributed to the difference of surface areas
of the catalysts (see Table 1). In fact, previous works [16,22–25] have documented a direct
relationship between hydrogen production and catalyst surface area. This behavior has
been justified on the basis that higher surface areas provide charge separation in the form
of trapping sites for photo-generated charge carriers [16,25].

At 320 nm (Figure 9a), the highest hydrogen production was obtained with the
5%Ag@TiO2 NWs-20%MoS2 catalyst (1480 µmol/hg). This amount represented a dif-
ference of 1424 µmol/hg, and was 26 times greater than the amount of hydrogen produced
with the pristine TiO2 NWs catalyst (56 µmol/hg). In the case of TiO2-P25 catalysts, the
highest hydrogen production was also obtained with the catalyst with a MoS2 loading
of 20 wt.% (5%Ag@TiO2-P25-20%MoS2; 1245 µmol/hg). This amount represented a differ-
ence of 1142 µmol/hg when compared to the pristine TiO2-P25 (103 µmol/hg), and it was
12 times greater. Since no reduction in the hydrogen production was observed in any of the
catalysts with increasing MoS2 loadings, it is possible that higher amounts of hydrogen
could be produced by incorporating loadings greater than 20 wt.%. Figure 9b shows the
amount of hydrogen produced by the silver-based catalysts under irradiation at 400 nm.
The catalysts with the highest hydrogen production were those with MoS2 loadings of
20 wt.% (5%Ag@TiO2 NWs-20%MoS2, 5%Ag@TiO2-P25-20%MoS2) and highest surface
areas. As was shown in the P25-based catalysts, the fact that no saturation in hydrogen
production was observed indicates that an increase in MoS2 loading could lead to even
higher hydrogen productions than those observed. When irradiated with visible light
(λ > 400 nm), the electrons of the AgNPs are excited due to the plasmon resonance and
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injected into the CB of the TiO2 [17], producing holes in the AgNPs that serve as oxidation
agents that could lead to oxygen production or to their being quenched by a sacrificial
electron donor [25]. The electrons that were injected to the conduction band of TiO2 are
gained by the water molecules, and hydrogen is produced. The maximum production of the
5%Ag@TiO2 NWs-20%MoS2 and 5%Ag@TiO2-P25-20%MoS2 catalysts was 1792 µmol/hg
and 1344 µmol/hg, respectively, being ca. 32 % and 13 % greater than the amount obtained
by the pristine TiO2NWs (56 µmol/hg) and TiO2-P25 catalysts (103 µmol/hg), respectively.
At 500 nm (Figure 9c), 5%Ag@TiO2 NWs-20%MoS2 produced the maximum amount of
hydrogen (1744 µmol/hg), which represents a difference of 1688 µmol/hg compared to the
pristine TiO2 NWs catalyst, being ca. 31 times higher. The amount of hydrogen produced
by 5%Ag@TiO2-P25-20%MoS2 (1527 µmol/hg) was the maximum amount obtained by
the TiO2-P25 catalysts, and it was ca. 15 times greater than the pristine catalyst. As was
observed under irradiation at other wavelengths, the hydrogen production depends on the
surface area of the catalyst (the higher the surface area, the higher the hydrogen production),
and the synergism created by the combination of the AgNPs and MoS2. Figure 9d dis-
plays the amount of hydrogen produced by the silver-based catalysts with different MoS2
loadings, under irradiation at 600 nm. The maximum amount of hydrogen was obtained
again with the 20 wt.% MoS2 loading, for both the TiO2NWs (5%Ag@TiO2 NWs-20%MoS2;
1501 µmol/hg) and the TiO2-P25 (5%Ag@TiO2-P25-20%MoS2; 1057 µmol/hg) catalysts.
These amounts represented a difference of 1445 µmol/hg and 954 µmol/hg, respectively,
when compared to the pristine TiO2 catalysts, and were ca. 27 times and 10 times higher.
The fact that the as-synthesized catalysts produce high amounts of hydrogen under low
energy irradiation indicates a synergism among AgNPs, MoS2 and the semiconductors,
with a greater ability to use visible light.
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Table 5. Maximum hydrogen production of the unmodified and modified TiO2-based catalysts,
under irradiation at different wavelengths.

Catalyst Maximum H2 Production
(Unmodified Catalyst, µmol/hg) **

Maximum H2 Production by the Modified
Catalysts at Different Wavelengths (µmol/hg)

320 nm 400 nm 500 nm 600 nm

5%Ag@TiO2NWs-20%MoS2 56; TiO2NWs 1480 1792 1744 1501
5%Ag@TiO2-P25-20%MoS2 103; TiO2-P25 1245 1344 1527 1057

** Under irradiation at 320 nm.

The use of cut-off filters at different wavelengths made it possible to correlate the
efficiency of the process with the ability to absorb radiation of different energy. As has been
observed (Figure 9), the efficiency is maximized under irradiation at 400 nm, although the
hydrogen production values at 500 nm are very similar, which indicates the extraordinary
capacity of these catalysts for future applications using direct solar radiation. The results of
recent studies on the production of hydrogen by water splitting using AgNPs and/or MoS2
are shown in Table 6. As can be seen there, the amount of hydrogen reported by this study
is one of the highest. However, a direct comparison with the other investigations cannot
be made due to the fact that the experimental conditions, such as reaction time, crystal
structures, reaction mixture, Ag and MoS2 loadings, among others, are not the same.

Table 6. Recent research on photocatalytic hydrogen production using catalysts containing AgNPs
or MoS2.

Reference H2 Production
(µmol/gh) Source (nm) Irradiation

Time (h)
Crystal Structure

of TiO2 * Reaction Mixture Ag or MoS2
(% wt.)

[45] 810 λ > 400 3 A:R Water: Ethanol 1.5 (Ag)

[46] 23496 λ = 254 6 A:R Water: 0.1N Na2S + 0.1Na2SO3 1.5 (Ag)

[25] 1119 λ = 500 2 R Water : 0.5M Na2S +
0.03M Na2SO3

10 (Ag)

[47] 1600 λ = 280–700 4 A Water: 0.35 M Na2S and 0.25 M
Na2SO3

50 (MoS2)

[48] 713.15 λ = 250 4 A/R Water: TEOA 16 (MoS2)

This work 1744 λ = 400 2 R Water : 0.5M Na2S and
0.03M Na2SO3

5 (Ag)
20 (MoS2)

This work 1527 λ = 500 2 A:R Water : 0.5M Na2S and
0.03M Na2SO3

5 (Ag)
20 (MoS2)

* A = Anatase, R = Rutile.

2.5. Mechanisms for the Degradation of Ciprofloxacin and the Production of Hydrogen

The possible mechanism of the photocatalytic degradation of ciprofloxacin by the
Ag@TiO2-MoS2 catalysts is shown in Figure 10. Under ultraviolet light irradiation (λ < 400;
Figure 10a), the electrons of the valence band of TiO2 absorb the light and migrate to the con-
duction band of the semiconductor, leaving a hole in the valence band [49]. The hole created
acts as oxidizing agent promoting the oxidation and degradation of ciprofloxacin [49]. The
electrons that were promoted to the conduction band of the semiconductor could be gained
by the AgNPs or the MoS2, acting as electron buffers [49]. These electrons can interact
with adsorbed oxygen molecules and create superoxide anions, which in turn can oxidize
ciprofloxacin or react with water molecules to form hydroxyl radicals. These free radicals
are very strong oxidizing agents; they can thus promote the degradation of the antibiotic.
When irradiated with visible light (λ > 400, Figure 10b), the light does not have enough
energy to promote an electron from the conduction band of TiO2 due to its high band gap
(3.20 eV for anatase, 3.0 eV for rutile); however, free electrons in AgNPs are stimulated
by the plasmon resonance mechanism. These electrons can be injected in the conduction
band of TiO2 or into the surface of MoS2 [50], giving rise to an interface between the Ag
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NPs and the semiconductor, generating a Schottky barrier and a new Fermi level [51].
The electrons injected in the conduction band or into the surface of MoS2 can react with
adsorbed oxygen molecules, creating superoxide anions or hydroxyl radicals if they react
with water molecules. Once the radicals are created, they can oxidize ciprofloxacin and
thereby promote its degradation.
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Figure 11 shows the possible mechanism involved in the production of hydrogen by
Ag@TiO2-MoS2 catalysts under ultraviolet and visible light. When irradiated with UV
light (see Figure 11a), the electrons from the valence band of TiO2 are photoexcited to the
conduction band of the semiconductor [16,22]. As was described previously, these electrons
can go to the MoS2 or AgNPs. Once there, the electrons serve as catalytic sites for the
production of hydrogen [25,50,51]. The holes that were created in the conduction band of
the semiconductor act as oxidizing agents, producing oxygen. If sacrificing electron donors
like SO3

2−/SO4
2− are used, then the holes will be quenched by them. This would decrease

the possibility of recombination of the photoexcited electrons. When irradiated with visible
light (Figure 11b), the AgNPs will produce the photoexcited electrons due to the surface
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plasmon resonance effect. The electrons will be injected into the conduction band of the
semiconductor and/or the surface of the MoS2 [50,51]. These electrons have enough energy
to reduce hydrogen ions and produce molecular hydrogen. The holes produced in the
AgNPs, due to the injection of electrons to the conduction band of TiO2 or into the surface
of MoS2, will be quenched by the sacrificing electron donors [50,51].
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3. Materials and Methods
3.1. Materials

All the reagents were used as received, without further purification. All the solutions
were prepared using deionized water (Milli-Q water, 18.2 MΩcm−1 at 25 ◦C). TiCl4 (+99.9%),
HCl 37% (ACS Reagent), Ethanol (95%), Acetone (HPLC plus, ≥99.9%), Ciprofloxacin
(C17H18FN3O3, +98%) and Isopropyl alcohol (FCC, FG, +99.7%) were provided by Sigma
Aldrich (Milwaukee, WI, USA). Silicon p-type boron-doped substrates (Si <100>), were
provided by El-CAT (Ridgefield Park, NJ, USA). Sodium borohydride (NaBH4, +99.9%),
silver nitrate (AgNO3, 99.99+%, trace metal basis), Na2S (+99.9%), Na2SO3 (+98%) and
MoS2 (nanopowder, 90 nm diameter) were provided by Acros Chemical (Newark, NJ, USA).
A total of 0.45 µm syringe filters were provided by Fisher Scientific (Pittsburgh, PA, USA).
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3.2. Synthesis of Titanium Oxide Nanowires (TiO2 NWs)

The synthesis of the titanium oxide nanowires (TiO2 NWs) has been reported else-
where [52]. In a typical synthesis, a 1:1 solution of water and HCl (37% solution) were mixed
for ten minutes. After that, TiCl4 (3 mL for each 100 mL solution) was added dropwise and
left to mix for ten additional minutes. Then the solution was transferred to Teflon-lined
autoclaves and silicon substrates, and Si<100> was incorporated into the solution. Once
sealed, the autoclaves were transferred to an oven and heated at a temperature of 180 ◦C
for 24 h. After that, the TiO2 NWs grown on the Si substrates were separated from the
support and thoroughly washed with deionized water. Subsequently, the material obtained
was dried at 60 ◦C for two hours and stored in vials that were sealed until later use.

3.3. Incorporation of Ag NPs on TiO2NWs and TiO2-P25

The deposition of AgNPs on the surface of TiO2 NWs and TiO2-P25 is based on
the method described by Naldoni and group [53]. In a typical synthesis, 500 mg of the
support (TiO2 NWs or TiO2-P25) is dispersed in water and stirred for 30 min. After
that, the desired amount of silver precursor (AgNO3) is added to the solution and stirred
for 10 additional minutes. Then a solution of sodium borohydride (10 mg in 10 mL
of water) is added dropwise to the solution and left to react for 30 min. The product
(5%Ag@TiO2NWs or 5%Ag@TiO2-P25) is centrifuged, washed with deionized water, and
dried over night at 60 ◦C.

3.4. Incorporation of MoS2 on 5%Ag@TiO2 NWs and 5%Ag@TiO2-P25

The incorporation of MoS2 on the silver-based catalysts consisted in dispersing
500 mg of the desired catalyst (5%Ag@TiO2NWs or 5%Ag@TiO2-P25) in 100 mL of wa-
ter, and subsequent stirring for 30 min. After that, different amounts of MoS2 (5, 10,
20 wt.%) were added to the solution and stirred for 1 h. Then the final product was
centrifuged, washed, collected and dried for 3 h at 60 ◦C. The catalysts were identified
as 5%Ag@TiO2NWs-5%MoS2, 5%Au@TiO2NWs-10%MoS2, 5%Au@TiO2NWs-20%MoS2,
5%Au@TiO2-P25-5%MoS2, 5%Au@TiO2-P25-10%MoS2 and 5%Au@TiO2-P25-20%MoS2.

3.5. Characterization of the Catalysts

XPS measurements were carried out on an ESCALAB 220i-XL spectrometer, using the
non-monochromated Mg Kα (1253.6 eV) radiation of a twin-anode, operating at 20 mA and
12 kV in the constant analyzer energy mode, with a PE of 40 eV. The crystalline phase of
the catalysts was studied by X-ray diffraction (XRD), using a Bruker D8 Advance X-Ray
diffractometer operating at 40 kV and 40 mA (Billerica, MA, USA) and Raman spectroscopy
(DXR Thermo Raman Microscope, 532 nm laser source at 5 mW power with a resolution of
5 cm−1 (Waltham, MA, USA). The surface area of the composites was studied through the
Brunauer–Emmett–Teller (BET) method using a Micromeritics ASAP 2020, according to N2
adsorption isotherms at 77 K (Norcross, GA, USA). The morphology of the catalysts was
studied by field-emission scanning electron microscopy coupled with energy-dispersive
spectroscopy (FE-SEM; Philips XL30 S-FEG; Chatsworth, CA, USA) and high-resolution
transmission electron microscopy (HRTEM, JEOL 3000F; Peabody, MA, USA).

3.6. Photocatalytic Experiments

To study the photodegradation of ciprofloxacin, a solution of 1 × 10−5 M of ciprofloxacin
was prepared and mixed with the desired catalyst. After that, the pH was adjusted to 7
using a diluted solution of HCl or NaOH, and the solution was kept in the dark for 30 min
under constant stirring. Then, 3 mL of a 0.005% H2O2 solution was added, and the reaction
mixture was subjected to constant air bubbling to homogenize the solution and guarantee
the presence of oxygen. The next step was to surround the solution with a solar simulator
composed of two white light bulbs (60 watts), generating an illuminance of ca. 52000 lx.
After the solar simulator was switched on, the reaction was monitored at 22 ◦C for 60 min,
taking 5 mL aliquots every ten minutes. Before proceeding to the measurement of these
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aliquots, the catalyst was removed from the solution using 0.45 µm membrane filters. The
degradation of the antibiotic was studied using a Shimadzu UV-1800PC spectrophotometer.

The experimental setup to study the production of hydrogen via water splitting
consisted in mixing 50 mg of the desired catalyst with 100 mL of deionized water in a
250 mL quartz reactor. Then, sacrificial electron donor solutions (Na2SO3, 0.02M; Na2S,
0.4M) were added, and the reaction mixture was kept at 20 ◦C and purged with nitrogen
(N2) for 30 min. After that, the reaction mixture was irradiated using a solar simulator
whose irradiation power in the absence of filters was 100 mWcm−2. To demonstrate the
influence of irradiation energy on the water splitting reaction, different cut-off filters at
320 nm, 400 nm, 500 nm and 600 nm were used and the reaction was followed for two
hours. The hydrogen produced was collected and quantified using a gas chromatograph
coupled with a thermal conductivity detector (GC–TCD, Perkin-Elmer Clarus 600).

4. Conclusions

Silver-TiO2-based catalysts with different amounts of MoS2 loadings (5, 10, 20 wt.%) were
synthesized to study their photocatalytic activity by degrading the antibiotic ciprofloxacin
in aqueous solution and the production of hydrogen via water splitting. All the modified
catalysts were able to degrade more than 75% ciprofloxacin, with 5%Ag@TiO2-P25-5%MoS2
being the catalyst that obtained the highest degradation (ca. 91%). The TiO2NW-based
catalyst that showed the highest percentage of degradation was 5%Ag@TiO2NWs-5%MoS2,
with an efficiency of ca. 87% in 60 min. The difference in degradation between TiO2NWs
and commercial TiO2 (TiO2-P25) is attributed to the morphology of the catalysts and their
contact and interaction with the antibiotic. The route of degradation was proved to be
photocatalysis, and the stability tests showed a loss of activity after seven cycles of ca. 3%
and 6% for 5%Ag@TiO2-P25-5%MoS2 and 5%Ag@TiO2 NWs-5%MoS2, respectively. These
results anticipate that these catalysts could have relevance for use in decontamination
processes, especially of ciprofloxacin in aqueous solution. Currently, research with these
catalysts is being extended to other fluoroquinolones whose impact on the environment is
certainly worrying.

In terms of hydrogen production, the incorporation of AgNPs and MoS2 allowed the
catalysts to produce hydrogen under both ultraviolet and visible light. The 5%Ag@TiO2
NWs-20%MoS2 catalyst obtained the highest hydrogen production (1736 µmol/ hg), under
irradiation at 400 nm. This amount was 32 times greater than the production of the pristine
TiO2 NWs (56 µmol/hg). For TiO2-P25-based catalysts, the highest hydrogen production
was produced by 5%Ag@TiO2-P25-20%MoS2 (1527 µmol/hg) under irradiation at 500 nm,
being ca. 15 times greater than the amount obtained by the pristine TiO2-P25 (103 µmol/hg).
The high catalytic activity in the production of hydrogen was attributed to the synergism
among AgNPs, MoS2 and the high surface area of the catalysts. Since no reduction in the
hydrogen production was observed with the increase in MoS2 loadings, it could be possible
that at higher MoS2 loadings, higher production of hydrogen could be obtained.

As previously shown, the most efficient catalysts in the ciprofloxacin photodegradation
process are less efficient in the hydrogen production reaction by water splitting. This
behavior indicates that the reaction mechanisms of the catalysts for both processes are
clearly different, which can be conveniently explained in future studies in which scavengers
are used for both reactions, and the intermediate compounds generated are analyzed.

The catalysts synthesized in the present investigation showed a relevant photocatalytic
activity. These catalysts are easy to prepare, friendly to the environment and have a very
low economic cost; they could therefore be the starting point for the development of
increasingly efficient catalysts that can be widely used for these applications.
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