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A B S T R A C T   

This paper describes the scientific achievements of a collaboration between a research group and the waste 
management division of a company. While these results might be the basis for several practical or commercial 
developments, we here focus on a novel scientific contribution: a methodology to automatically generate geo- 
located waste container maps. It is based on the use of Computer Vision algorithms to detect waste containers 
and identify their geographic location and dimensions. Algorithms analyze a video sequence and provide an 
automatic discrimination between images with and without containers. More precisely, two state-of-the-art 
object detectors based on deep learning techniques have been selected for testing, according to their perfor-
mance and to their adaptability to an on-board real-time environment: EfficientDet and YOLOv5. Experimental 
results indicate that the proposed visual model for waste container detection is able to effectively operate with 
consistent performance disregarding the container type (organic waste, plastic, glass and paper recycling,…) and 
the city layout, which has been assessed by evaluating it on eleven different Spanish cities that vary in terms of 
size, climate, urban layout and containers’ appearance.   

1. Introduction 

Waste management—together with stimulating innovation in recy-
cling and limiting the use of landfilling, is one of the three main ob-
jectives of European Union (EU) waste policy for protecting the 
environment and the human health while promoting its transition to a 
circular economy (European Comision, 2022). In this region with over 
447 million inhabitants representing around 16% of the world’s gross 
domestic product, waste management is a challenging task. For instance, 
in 2018 the total waste generated in the EU by all households added up 
to 698 million tonnes, an enormous amount which collection and 
management involves enormous costs not only economic, but also in 
terms of human resources, time and environmental impact. 

Efficient and effective urban planning and infrastructure monitoring 
are key stages for the adequate management of urban infrastructures. 
The former aims to ensure that all users and maintenance services have 
convenient and safe access to and through infrastructure at the smallest 
cost in time and resources, whereas the latter refers to the continuous 

assessment of the infrastructure status for its adequate maintenance. 
Generally, the planning of waste collection infrastructure follows 

solid and well-established premises to place and locate containers in 
cities. However, situations such as the replacement of old infrastructure 
by a new one with different capabilities, human interaction processes, or 
changes in urban regulation or scope may lead to outdated plannings, 
resulting in under or over availability of containers. Similarly, the cost in 
time and resources of continuous human-monitoring is considerable 
and, generally, underestimated in the service budget, leading to an 
ineffective management process and to a late (or absent) reaction to 
infrastructure harm or deterioration. In any case, a preliminary waste 
container location and monitoring protocol is an unavoidable step for 
the effective management and efficient collection planning of waste. 

Nowadays, many cities have opted to digitally transform themselves 
in response to some of the greatest global challenges of our time: pop-
ulation growth, pollution, scarcity of resources, water management, and 
energy efficiency. To that aim, they rely on Information and Commu-
nication Technologies and Big Data Analytics to aid managing of urban 
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services: from transport services to energy generation and water supply. 
Their goal: to effectively and sustanibly manage cities while reducing 
energy consumption and CO2 emissions and increasing the well-being of 
their inhabitants. 

Following this spirit, this work proposes a methodology to auto-
matically generate geo-located waste container maps. Its main novelty 
relies on the use of computer vision algorithms to identify the 
geographic localization and dimensions of waste containers. The ad-
vantages gained from the use of computer vision algorithms over sys-
tems such as receptive antennas or Radio Frequency Identification 
(RFID) are that they are easier to implement, require a much simpler 
infrastructure and do not require significant maintenance (Gu et al., 
2017). RFID technologies use tags attached to objects that emit radio 
waves to track and identify them. This involves higher economic costs, 
including the costs for adding tags to containers, their maintenance, and 
the RFID readers (Wen et al., 2018). 

Ideally, the location of waste containers in urban areas should not 
vary, especially without the knowledge of the companies in charge of 
garbage collection. However, in many situations this is not the case. The 
automatic collection of the location of waste containers responds, then, 
to several factors. For instance, in the case of public authorities that 
outsource waste management to private companies and want to verify 
that the agreed requirements are met, by obtaining the current locations 
of the containers. Another example comes from the updating of out-of- 
date maps, through the inclusion of additional waste container de-
ployments or container renovations. Likewise, in the case of waste 
collection companies that aspire to establish a new deployment in a city 
whose container locations have not been provided. In addition, the 
proposed methodology provides the basis for exploring container clas-
sifications, which would allow, among other things, to identify of the 
current condition of the containers. This procedure is also useful, for 
instance, when conducting audits on compliance with the agreed col-
lections (full/empty container), on the replacement of damaged con-
tainers, the differentiation between diverse types of waste, etc. In small 
population areas with less urban development and events, the proposed 
method presents more limitations than in most densely populated cities. 
Large urban centers are subject to different factors that alter the location 
of the containers, such as continuous growth, new needs and legislation 
(e.g. on recycling), competition by comparison between neighboring 
areas regulated by different waste collection services, cases of loss or 
vandalism, etc. Below are presented some practical cases in which the 
proposal would solve the need to know the location of waste containers. 
(Salazar-Adams, 2021 and Bel and Sebo, 2021) discuss the need of audits 
and evaluation of the waste collection service by an external company. 
(Salazar-Adams, 2021) focuses on the evaluation of the management on 
waste sector performance in Mexico, with the motivation of determine 
the collection companies more efficient; on the other hand, (Bel and 
Sebo, 2021) analyses the competition by comparing quality in neigh-
boring areas of Barcelona administered by different waste management 
companies. Another example is (Slavík et al., 2021), an study on the 
importance of the continuous optimization of waste container distribu-
tion related to the needs of households, like changing the density of 
containers, the distance between the address point and the container, 
and selecting container locations that respect the habits of households in 
order to decrease the total collection costs; Lastly, different cities pro-
vide users with applications to report if their containers have been stolen 
or damaged (Seattle government, 2022), or to request new collection 
points (Miami government, 2022), something that our application could 
detect without depending on the arbitrary predisposition of individuals. 

Towards this goal, it is required the training and setup of an auto-
matic localization method for the identification of the geographical 
location of waste containers via technological means—usually referred 
as geo-positioning. For the training of such method, this work has access 
to enormous amounts of geo-positioned images: from public-accessible 
images available in tools such as Google Street View to user images 
uploaded to their social networks profiles. These huge databases can be 

automatically indexed using Application Programming Interfaces 
(APIs), cover practically every inhabited place on the planet, allow 
remote exploration on a global scale, and constitute one of the largest 
annotated databases of our time. However, for the adequate deployment 
of an automatic system for the automatic location of containers, training 
the detection system using these geo-positioned worldwide databases is 
discouraged for several reasons. Firstly, captured containers are not 
homogeneously distributed: the most populated areas, those with a 
higher socioeconomic level and those with easier access, usually have a 
greater number of samples than the rest. In addition, the temporal 
coverage of these databases is limited, as the extent of the covered space 
makes the continuous acquisition of images from the same place 
impractical, resulting in outdated captures: the containers may change 
in position, appearance, and state, while their acquired reference images 
in the database remain unchanged, obsolete, as the continuous updating 
of the databases is unattainable by the acquisition systems of these 
world-scale geo-positioned databases. 

Alternatively, for the effective training of an automatic localization 
method, the controlled capture of containers using specific resources 
that permit covering the environments of interest with greater spatial 
and temporal density is often preferred. One of the prototypical exam-
ples of such approaches is the use of cameras placed in geo-positioned 
cars. Waste containers captured by these cameras can be approxi-
mately geo-positioned by transitivity using the geo-position of the 
vehicle. Ideally, updated versions of the containers can be obtained by 
simply passing by them and capturing their updated appearances using 
the camera-equipped and geo-positioned vehicle. However, even in local 
environments such as medium-size cities, the exploration of all the im-
ages captured by such vehicles and the manual annotation of the video- 
captured containers is an arduous task, with enormous economic and 
temporal costs. 

To dramatically reduce these costs, it is proposed an automatic 
container localization method that provides containers’ geo-positions by 
detecting the containers in images captured by a geo-positioned vehicle. 
The proposed method provides an automatic division into locations with 
and without containers by solely analysing geo-located visual informa-
tion, i.e., the caputerd images. An example of the method output and of 
its accuracy compared against human-annotations is provided in Fig. 1. 
This Figure shows that the division between locations with and without 
containers enables establishing optimal waste collection routes. Like-
wise, it allows to implement several other applications, such as the 
identification of unbalanced container distributions when contrasted 
with the city census, or the evaluation of containers status or level of 
deterioration. To the best of our knowledge, This proposal is the first 
that describes an automatic localization of containers in waste man-
agement scenarios. Moreover, through experiments conducted in eleven 
Spanish cities that vary in terms of size, climate, urban layout and 
containers’ appearance, the learning model that supports the proposed 
container detector has proven successful operation with consistent 
performance regardless of the type of container (organic waste, plastic, 
glass and paper recycling, etc) and of the urban framework. 

The contribution presented in this work is a novel methodology to 
automatically generate geo-located waste container maps. To this aim, 
ConvNets object detectors from the literature with high performances in 
terms of precision and inference speed are trained for the container 
detection task using images captured in a known Global Positioning 
System (GPS) position. This allows the container characterization by its 
dimension, localization in the image, GPS coordinates or visual feature. 
With this information the waste container maps are described, allowing 
for a large number of possible future applications. 

The rest of the paper is organized as follows. Firstly, Section 2 re-
views the related state of the art. Then, Section 3 describes the proposed 
system. Afterwards, the experimental results are analysed in Section 4, 
and finally, Section 5 concludes the paper. 
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2. Literature review 

2.1. Automatic object detection in visual signals 

Automatic object detection in visual signals is the task of assigning a 
label and a position to objects that appear in an image or in a video 
sequence. Label assignment is a classification problem (a score is 
assigned to each object according to the considered object classes) and 
the position assignment, also called location, is a regression problem 
(locations in the image are usually represented with rectangles, 
commonly name Bounding Boxes -BBs-). Through this process, valuable 
information for the conceptual understanding of images and videos is 

provided, enabling a wide range of higher abstraction applications, 
including robot vision (Bai et al., 2020), autonomous driving (Arnold 
et al., 2019), human–computer interaction (Chakraborty et al., 2017), 
content-based image retrieval (Dubey, 2021), security/monitoring/ 
video surveillance (Raghunandan et al., 2018), or augmented reality 
(Rana and Patel, 2019). 

Among existing object detection methods, those based on convolu-
tional neural networks (ConvNets)—the preferred tool for Deep 
Learning in Computer Vision, represent the current state-of-the-art. In 
fact, ConvNets-based object detection has become a dominant topic in 
computer vision according to the number of researchers and works in 
the field. The majority of ConvNets state-of-the-art methods can be 

Fig. 1. Automatic container localization in the city of Benidorm, Spain. Top: Vehicle geo-positioned trajectory (in blue), human-annotated camera-captured con-
tainers (in red) and three examples of container appearances (surrounding blobs). Bottom: Automatically generated division between geo-positioned locations with 
(green) and without (red) containers for the proposed method. Note how the automatic localization of containers provided by the method highly correlates with 
human annotations. Furthermore, the method also proves to have high portability potential, as to avoid over-fitting to the target city, it was not trained using human 
annotations of this city but from ten other Spanish cities. 
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categorized into two main genres (Jiao et al., 2019; Zhao et al., 2019; Liu 
et al., 2020): one-stage object detectors (e.g. Single Shot MultiBox De-
tector (SSD) (Liu et al., 2016), You Only Look Once (YOLO) v1-v5 
(Redmon et al., 2016; Redmon et al., 2017; Redmon and Farhadi, 
2018; Bochkovskiy et al., 2020; Jocher et al., 2020), Efficient Detector 
(EfficientDet) (Tan et al., 2020), Retina Network (RetinaNet) (Lin et al., 
2020)) and two-stage object detectors (e.g. Region-Based Convolutional 
Neural Network (R-CNN) (Girshick et al., 2014), Fast R-CNN (Girshick, 
2015), Faster R-CNN (Ren et al., 2017), Cascade R-CNN (Cai and Vas-
concelos, 2018)). Whereas two-stage object detectors aim to improve the 
detection accuracy, one-stage object detection methods have been 
developed in an attempt to balance the trade-off between performance 
(in terms of accuracy) and inference speed; hence, they are getting more 
attraction due to their applicability to real-world problems that demand 
efficient solutions. 

2.2. Aiding waste management using Deep Learning 

The huge development of Deep Learning, unprecedented in the field 
of Computer Vision, is taking place in many fields. In the scope of 
managing systems in smart cities, recent applications of this technology 
include automatic control of intelligent street lights (Yaman and Kar-
akose, 2019) or roadside occupation surveillance systems (Ho et al., 
2019). Several Computer Vision and Deep Learning techniques have also 
been explored for waste management, waste planning and waste pro-
cessing applications. In (Nowakowski and Pamula, 2020), authors pro-
pose an image recognition system for the identification and 
classification of the electrical and electronic equipment waste (specif-
ically, refrigerators, washing machines and monitors), using pictures 
carefully taken by users of the collection system. According to the 
category of the waste, e-waste collection companies are then able to 
deploy a tailored collection plan. Likewise, (Wang et al., 2021) describes 
an image-based waste classifier focused on reducing the cost of waste 
classification, monitoring and collection. To facilitate the subsequent 
waste disposal, the waste is classified into nine categories (kitchen waste, 
other waste, hazardous waste, plastic, glass, paper or cardboard, metal, 
fabric and other recyclable waste) before to garbage collection. A similar 
approach is presented in (Mao et al., 2021) where six different waste 
categories (cardboard, glass, metal, paper, plastic, and trash) are classified 
using adapted or customized ConvNets. The adaptation techniques 
include data augmentation and the use of genetic algorithms to auto-
matically set-up the hyper-parameters of the final fully-connected layer 
used for object classification. Another interesting approach (Ramírez 
et al., 2020) describes a method for dumpster classification into seven 
categories using ConvNets. There, the evaluation dataset compiles 
cropped versions of labeled images of dumpsters. 

Building on top of these methods, there is a small group of ap-
proaches that focus on the combined detection and recognition of spe-
cific waste for its costumed collection and manipulation. Among them, 
(Mehendale et al., 2021) proposes an automatic medical waste separator 
that detects it and categorizes waste into one of the four considered 
categories (gloves, mask, syringe and cotton). Alike, (Wang et al., 2019) 
proposes a vision-based robot, in this case intended for the recycling of 
construction waste. The robot is able to detect scattered nails and screws 
in real time, so that it can automatically collect them and promote the 
site’s construction safety while reducing the squandering of construction 
material. Meanwhile, (Aitken et al., 2018) presents a vision-based ro-
botic arm for nuclear waste management. 

This paper proposes a novel approach for the localization of waste 
containers. The proposed method leverages detection results from 
ConvNets object detectors trained on top of deep learned features. This 
detectors are those from the literature that have been shown to give 
good results in terms of precision and processing speed, in particular 
YOLOv5 or EfficientDet. One-stage object detection is used to localize 
waste containers in images captured in a known GPS position. The final 
result is the automatic generation of container maps in smart cities 

scenarios. 

3. Materials and methods 

3.1. A conceptual approach for the route collection planning of waste 
containers 

The workflow of the envisioned waste management planning system, 
including stages for the image-based container detection, the container 
localization and the container characterization, is shown in Fig. 2. 
During a preliminary non-optimal schedule of the waste collection 
routes, an on-board camera positioned in the geo-located truck is 
capturing video frames (temporally correlated consecutive images). 

This work proposes a methodology to process these images in an 
online server using a previously trained image recognition software that 
localizes the containers. Depending on the on-board capabilities, this 
system could also work as an on-board application. Once the containers 
are detected in the images, and thanks to the collected geo-located visual 
information from on-board cameras, it is possible to obtain the con-
tainers localization in terms of GPS coordinates. The data obtained in 
these two stages, such as the container’s dimension, its location in the 
image, its GPS coordinate and its visual features, lead to the container 
characterization. 

After the geo-positioning and image-based characterization of every 
container, a plethora of additional applications could benefit from this. 
For instance the optimization of waste collection routes, actualization of 
out-of date maps, audits by municipal government of waste manage-
ment companies, new developments in non-annotated cities, etc. 

3.2. Container detection based on Deep Learning 

Given that the method proposed in this paper includes object 
detection techniques to localize waste containers in geo-positioned im-
ages, this section summarizes the fundamentals of object detectors based 
on Deep Learning. ConvNets translate pixels of an image into learnable 
features at different granularity levels. As aforementioned, detectors can 
be classified into two main categories: one-stage and two-stage de-
tectors. Two-stage architectures include a feature extraction network 
followed by a Region Proposal Network (RPN). The outcome of the 
feature extraction network is a set of Regions of Interest (RoI) which are 
usually processed by applying RoI pooling to obtain the feature related 
to the proposals. The objects classification and localization stages are 
applied on these processed features to yield the final detections. The 
RPN module is highly computational demanding and rarely operates in 
real time. However, as their main advantage, two-stage detectors usually 
present high accuracy in classification and localization. Differently, one- 
stage detectors predict BBs straightly from input images without a re-
gion proposal step. This offers faster processing speed, allowing appli-
cations to run in real time. Regarding existing one-stage detectors, 
EfficientDet (Tan et al., 2020) and YOLOv5 (Jocher et al., 2020) are 
among the top performing ones in terms of precision and Frames Per 
Second (FPS), allowing the use in on-line systems. Their use in the core 
of the proposed approach is compared in Section 4.3. 

EfficientDet attemps to addres the low accuracy limitation present in 
one-stage systems compared to two-stage ones by studying various ar-
chitecture design options. It includes an EfficientNet backbone pre-
trained using ImageNet (Russakovsky et al., 2015), a weighted bi- 
directional feature pyramid network (BiFPN) (Tan et al., 2020) and a 
localization prediction network. The BiFPN is used to avoid the problem 
of aggregating features at different resolutions (low-level and high-level 
features). 

YOLOv5 is based on the evolution of the YOLO family. This version 
includes a Cross Stage Partial Network (CSPNet) (Wang et al., 2020) 
backbone and relies on path-aggregation neck (PANet) (Liu et al., 2018). 
YOLOv5 is fully implemented in Pytorch from scratch instead of being a 
modification of the original Darknet from previous YOLO versions. It 
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includes mosaic data augmentation and auto learning BBs anchors to 
improve both the speed and accuracy of previous versions. 

3.3. Dataset 

The dataset used in this work is composed of images taken from a 
camera mounted on a vehicle in different cities in Spain. These images 
contain cars, buildings, traffic signs, vegetation, sidewalks and other 
urban objects but, for the purpose of this work, only waste containers are 
considered. 

3.3.1. Annotation of video frames including containers 
For each sequence, images containing at least one Container have 

been manually annotated. All the containers in the video have been 

annotated at least but only once, i.e., if the same container appears in 
several images, only one of them is assigned to the positive set or 
Container-set. Therefore, there are several images with containers that 
may have been assigned to the Not-Container or negative set. To reduce 
the impact of this annotation noise in the training and validation pro-
cesses, frames close to a positive one in the evaluation of the methods’ 
performances are ignored. Towards this goal, an uncertainty spatial area 
of 100-meters around each frame in the Container set is defined. Video 
frames with GPS coordinates in this area are assigned an Uncertainty 
label, finally creating a three-sets partition: Container, Not-Container and 
Uncertainty (see Fig. 3 for an example of each set). Fig. 3 (c) and (d) are 
Uncertainty images where containers are present, so they cannot be 
included in the Not-Container set, but due to the distance to the camera, 
they cannot be included in the Container set either, as noise would be 

Fig. 2. Computer vision contributions as part of the potential applications in intelligent waste collection planning systems.  

Fig. 3. Example of dataset sets: Not-Container (a), Container (b), Uncertainty (c), same Uncertainty example with zoom in the containers area (d). First row are images 
from Benidorm, second row from Los Alcázares and third row are images from Soria. 
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introduced during the model training process. In order to see clearly the 
container, a zoom-in has been applied from (c) to (d). Only frames of the 
two first sets are used for the training and performance assessment of the 
evaluated video object detection methods. 

3.3.2. Annotation of the containers in the video frames 
The spatial location of containers in frames of the Container set has 

been manually annotated using the online tool Alpha Make Sense 
(Skalski, 2019). For object annotation, the workflow within the tool 
consists of: images uploading; definition of the list of labels/ classes in 
the corpus (in this case the only label will be Container); then, for each 
image, the waste containers that appear can be annotated by drawing a 
BBs enclosing each waste container and the coordinates of the two 
vertices of each drawn BBs are stored in local files; finally, the files with 
the annotations are exported following a YOLO (Redmon et al., 2016), 
Extensible Markup Language (XML) or Comma-Separated Values (CSV) 
format according to user preferences. 

3.3.3. Dataset of waste containers 
The dataset consists of video frames or images from 11 cities, sum-

ming up a total of 147,160 images divided into 135,192 images in the 
Not-Container set and 11,968 images in the Container set. 31,499 con-
tainers have been annotated in images of the Container set, resulting in 
an average of 2.6 containers per image in the Container set. 

The distribution of images and annotations per city are collected in 
Table 1 whereas captured examples of 4 of the cities are included in 
Fig. 4. 

4. Experimental Results 

4.1. Experimental setup 

Two tasks are used to evaluate the performance of the proposed 
system: container detection and containers geo-positioning. For the 
former complete and representative data is available for the quantitative 
evaluation, whereas for the latter there is no annotation for several 
images with containers so that the visual determination of whether a 
container is present in an image or not may be controversial; hence, this 
work proposes to generate only qualitative results in the shape of 
container maps such as the one depicted in Fig. 1. 

The EfficientDet detector is trained using 2 as coefficient for the 
compound scaling method. The backbone is pre-trained on Common 
Objects in Context (COCO) dataset (Lin et al., 2014), and is then trained 
for waste container detection during 50 epochs using a learning rate of 
0.001 and a batch size of 8 images. An Adamw optimizer (Loshchilov 
and Hutter, 2017) with a weight decay coefficient of 0.01 is used. For 
data augmentation, just horizontal flips and normalization operations 
are applied. 

The YOLOv5 detector, the CSPNet backbone (Wang et al., 2020) and 

the PANet (Liu et al., 2018) for feature extraction are fully trained from 
scratch using regular Stochastic Gradient Descend with Momentum 
(SGD) as the optimizer function and 16-samples batches. Then, it is 
included an initial linear warm-up stage for the first 3 epochs with a 
starting learning rate of 0.01 and ending in 0.2, the learning rate for 
training that is decayed every 10 epochs by 0.0005. For data augmen-
tation padding, random crop, horizontal flips, Hue Saturation Value 
(HSV) color and normalization operations are used. 

The models training and evaluation stage have been conducted using 
PyTorch 1.7.0 DL framework ((Paszke et al., 2017)) running on a Per-
sonal Computer using an 8 Cores Central Processing Unit (CPU), 60 
GigaBytes (GB) of Random Access Memory (RAM) and a NVIDIA TITAN 
RTX 24 GB Graphics Processing Unit (GPU). 

For estimating the performance of container detection, a Leave-One- 
Out Cross-Validation procedure is followed. For each target city a model 
is trained and validated using the data (images and container annota-
tions) from all the other cities (80% for the Train Set and 20% for the 
Validation Set). The so trained model is tested on the target city data 
(Test Set). Therefore, the trained model has not been fed the target data 
during training, so it is possible to evaluate the extrapolation capacity of 
a model trained on ten other cities, yielding a reliable and unbiased 
estimate of the performance. Thereby, eleven models are trained. The 
per-city results are averaged for a global performance considering all the 
cities. Training in all cities except the one to be used as a test set serves to 
get the expected result of how the final system trained in all cities will 
work when used in a new city without annotations. 

4.2. Evaluation metrics 

The performance of detection algorithms is usually evaluated in 
terms of their efficiency and their effectiveness (Liu et al., 2020). Effi-
ciency is usually measured through detection speed in FPS, whereas for 
effectiveness two factors need to be considered: the detection perfor-
mance or goodness of the detections—in terms of correctness and 
completeness, and their spatial accuracy—area enclosed by the BBs with 
respect to that annotated for the object. Spatial accuracy is usually 
measured in terms of the overlapping ratio between ground truth (bg)
and detected BBs (b) using Intersection over Union (IoU) as stated in Eq. 
1. 

IoU(b, bg) =
area(b ∩ bg)

area(b ∪ bg)
(1)  

Regarding detection performance, as every detection of the explored 
detection algorithms is associated a confidence score, performance 
needs to be assessed under different confidence values which define a 
detection ranking: those assigned a larger confidence are those with a 
highest (expected) likelihood to be correct. 

Establishing a confidence threshold is equivalent to selecting a subset 

Table 1 
Dataset and EfficientDet vs YOLOv5 results.      

EfficientDet YOLOv5 

City #Not-Container set #Container set #Containers FPS Validation Set (AP) Test Set (AP) FPS Validation Set (AP) Test Set (AP) 

Benidorm 8,926 1,095 2,764 16.4 0.89 0.91 61.3 0.98 0.94 
Brunete 5,051 391 1,394 16.6 0.89 0.89 69.4 0.98 0.94 
Burela 3,553 1,251 3,276 16.3 0.91 0.66 63.7 0.99 0.71 
Burgos 19,588 2,890 6,900 16.3 0.92 0.73 63.3 0.98 0.78 
Cadiz 7,981 891 2,752 16.0 0.90 0.85 76.9 0.98 0.94 
Cercedilla 9,448 428 1,347 15.8 0.89 0.90 70.4 0.98 0.94 
Los Alcazares 5,132 1,197 2,614 15.7 0.88 0.90 62.1 0.98 0.96 
Sant Feliu 15,054 955 3,203 16.4 0.89 0.77 62.1 0.98 0.79 
Segovia 4,645 959 2,386 15.8 0.89 0.92 74.6 0.98 0.96 
Soria 15,814 1,111 3,054 16.2 0.87 0.90 61.7 0.98 0.96 
Toledo 40,000 800 1,809 16.6 0.89 0.77 74.6 0.99 0.91 

Total/ Average 135,192 11,968 31,499 16.2 0.89 0.84 67.3 0.98 0.89  
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of the ranked detections as correct. For a given threshold, a set of de-
tections is obtained and by comparing this set with the (fixed) set of 
ground truth BBs, one can define correct object instances (True Positive, 
TP, or True Negative, TN), missed object instances (False Negative, FN) 
and false positive instances (False Positive, FP). According to the car-
dinal number of these sets, classical performance measures such as 
Precision (P)—the fraction of all examples which are from the positive 
class, and Recall (R)—the fraction of all positive examples that are 
successfully classified, can be obtained. 

4.3. Results for container detection 

As for different confidence score hypothesis the values of P and R 
may change, the overall detection performance of a detector is usually 
measured considering performance curves or graphs and it is usually 
condensed into a single scalar value using one of the existing global 
abstractions measures. Among them, the most commonly used metric to 
assess detectors performance is the Average Precision (AP), which is 
obtained by finding the area under the precision-recall curve (Russa-
kovsky et al., 2015). 

Table 1 compiles efficiency and effectiveness performance of the 11 

Fig. 4. Visual examples of the cities and of intra- and inter-city container design variation. From left to right: Benidorm (a), Soria (b), Burgos (c) and Los 
Alcázares (d). 

Fig. 5. Precision-recall curves for the 11 trained YOLOv5 models (one for each city). Better viewed in color.  
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trained EfficientDet and YOLOv5 container detection models. AP is 
extracted from precision-recall curves (see Fig. 5 for YOLOv5 models) 
after filtering out all detections with an IoU < 0.5 to their closest ground 
truth one. From Table 1, one can observe that YOLOv5 is not only faster, 
but also more accurate than EfficientDet. Moreover, AP for the Valida-
tion Set of all cities is over 0.87 for EfficientDet and over 0.98 for 
YOLOv5. Even though the validation examples were not observed dur-
ing training, the domain and appearances of the containers in the 
Validation set are the same as those used for training. Regarding the Test 
set—containing images of the target city, the performance of both de-
tectors is consistent. For EfficientDet, AP ranges between 0.66 and 0.92 
with an average AP value of 0.8 and a median AP value of 0.89. As 
aforementioned, the YOLOv5 detector performs better: the precision- 
recall curves in Fig. 5 indicate stable and highly accurate container 
detection for 8 of the cities, with false positive detections being more 
common for images from Burgos and Burela, and Burela’s and Sant 
Feliu’s containers being harder to detect than those in the rest of the 
cities, resulting in a higher number of false negative detections; hence 
yielding lower recall values. In any case, the areas under these curves 
result in top performing AP values ranging between 0.71 and 0.96, with 
an average AP value of 0.89 and a median AP value of 0.94. 

For both detectors, the cities that result in worst transferred perfor-
mance are Burela and Burgos, which may be caused by the different 
appearance of the containers of these cities with respect to those in the 
rest. Besides this domain gap, the rest of the causes for container miss- 
detection are mainly caused by strong occlusions (see EfficienDet 
qualitative results for Los Alcázares in Fig. 6), or illumination artifacts in 
the image. An example of this type of failure can be observed in the 
qualitative results obtained for Benidorm in Fig. 6, where both detectors 
fail. Regarding false detections, they mainly emerge from the back of 
some cars, as in EfficienDet detection in Los Alcázares (see Fig. 6). 

4.4. Results for containers geo-positioning 

As containers are only annotated once and the video is captured at a 
regular frame rate, the presence of containers in a considerable part of 
the Uncertainty set of images of the sequence is ensured (see Section 
3.3.1). Although results at container level suggest high performance also 
in the detection of container images, the lack of a complete set of an-
notations for all the images precludes an exhaustive image-wise quan-
titative evaluation of the method. Fully annotating a city may be also 
controversial—besides extremely resource demanding, as for some 
cases, it may be visually questionable to determine whether a container 
is present in an image or not. For this reason, the frames classification in 
Container and Not-Container sets is evaluated only qualitatively by 
providing container maps for some of the analyzed cities. 

Fig. 1 and Fig. 7 show automatically generated container maps for 
Benidorm, Toledo and Cercedilla cities. Top maps of the Figures present 
the vehicle geo-positioned trajectory and the containers’ human- 
provided annotations. The bottom part of the Figures include the auto-
matically generated container maps that present the areas with and 
without containers. 

At first glance, comparing the automatically obtained container 
areas with the manually annotated positions, it can be observed that 
there is a container area for every human-annotated container position. 
The extent of these container areas is an indicator of the visibility of the 
container which usually starts several frames before the human anno-
tated position and ends several frames after. 

From the automatically generated container maps useful information 
can be obtained for different applications. For instance, in the case of 
Toledo containers are concentrated in two areas, and that there is a large 
extension without containers (see Table 1 where the Not-Container set 
has 40,000 images against the 800 of the Container-set). Therefore, a 
future application can use this information to define optimal waste 
collection routes taking into account this information and avoiding this 
container-free areas. Furthermore, these maps can be also used to define 

Fig. 6. Qualitative examples of detections of EfficienDet (second row), YOLOv5 (third row) and associated ground-truth (first row). From left to right: Benidorm (a), 
Soria (b), Burgos (C) and Los Alcázares (d). 
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optimal collection waste routes, to identify hot spots for vandalism 
surveillance and to detect uneven distributions of containers. 

5. Conclusions 

Many cities are opting for using visual analysis technologies based on 
Deep Learning to manage in an efficient and sustainable way, while 
reducing energy consumption and emissions of greenhouse gases and 
increasing the well-being of their inhabitants. In this vein, this paper 
presents a method for the automatic localization of waste containers in 
street video sequences captured by a moving vehicle. It allows to 
generate an automatic division into locations with and without con-
tainers from geo-located visual information, leading to geo-located 
container maps at city scale. These geo-positioned maps enable 
different applications for the management, collection planning and 
monitoring of urban waste. 

In the core of the proposed method lies a state-of-the-art object 
detection method to locate containers in images. To select the optimal 
one for this purpose, the performance of two recent top-performing one- 
stage object detector methods based on Deep Learning are compared: 
YOLOv5 and EfficientDet. Reported results indicate that the YOLOv5 
detector is the best performing one both in terms of accuracy and effi-
ciency. On average, YOLOv5 obtains an average precision value of 0.89 
and a detection speed of 67.3 frames per second. The representativeness 
of the experiments is guaranteed by the diversity of the analyzed sce-
narios, covering sequences of eleven Spanish cities that vary in size, 
number of inhabitants, urban architecture, climate and container’s 
design and appearance. The obtained results indicate stable and accu-
rate containers’ detection and prove that the proposed method is ex-
pected to operate similarly in new cities, as they have been obtained 

using ten cities to train it and a different eleventh one to test it. 
Further research might extend the system by differentiating between 

existing types of containers according to the collected waste nature. This 
would refine the generated container maps allowing to optimize the 
waste routes for waste-specific trucks. In addition, different applications 
could also be developed, such as the evaluation of the state or level of 
deterioration of the containers, or the identification of unbalanced dis-
tributions of containers, contrasted with the city census. 
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