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This paper proposes the minimization of α-divergences for approximate inference in the 
context of deep Gaussian processes (DGPs). The proposed method can be considered 
as a generalization of variational inference (VI) and expectation propagation (EP), two 
previously used methods for approximate inference in DGPs. Both VI and EP are based 
on the minimization of the Kullback-Leibler divergence. The proposed method is based on 
a scalable version of power expectation propagation, a method that introduces an extra 
parameter α that specifies the targeted α-divergence to be optimized. In particular, such 
a method can recover the VI solution when α → 0 and the EP solution when α → 1. 
An exhaustive experimental evaluation shows that the minimization of α-divergences via 
the proposed method is feasible in DGPs and that choosing intermediate values of the α
parameter between 0 and 1 can give better results in some problems. This means that 
one can improve the results of VI and EP when training DGPs. Importantly, the proposed 
method allows for stochastic optimization techniques, making it able to address datasets 
with several millions of instances.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Neural Networks (NNs) have become very popular recently due to the good results obtained in a wide variety of prob-
lems. These models, trained via back-propagation, have significantly improved the state-of-the-art in supervised learning 
tasks [1]. Moreover, they have been specifically designed to take advantage of underlying structure on the input data. This 
is the case, e.g., of convolutional NNs or long-short term memory NNs [2,3]. These models can also be trained on GPUs, 
which significantly reduces the total training time. Nevertheless, in spite of these advantages, NNs have drawbacks, such as 
over-fitting due to the high number of parameters, or the lack of a confidence estimate on the predicted outputs given the 
input data [4]. More precisely, standard NNs only generate point-estimate predictions and do not give any information about 
the certainty of such outcome. Critically, there are applications in which such uncertainty estimates are required including, 
e.g., computer vision or health related prediction [4].

Gaussian processes (GPs) are, on the other hand, non-parametric machine learning models that have the advantage of 
outputting a predictive distribution [5]. In other words, they provide an estimation of the uncertainty associated to each 
prediction. GPs can also be seen as NNs with an infinite number of hidden units [6]. A main limitation of GPs is, however, 
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that they do not scale well with the number of training points. More precisely, they have a cost that is in O(N3), where 
N is the size of the training set. Popular techniques that allow GPs to scale to larger datasets include the use of a set of 
M � N inducing points that summarize the observed data [7,8]. When these techniques are used, the computational cost is 
reduced to O(N M2). Moreover, in this case, GPs can also be trained efficiently using stochastic optimization techniques that 
allow to address datasets with millions of data-points [9]. Another limitation of GPs is, however, that their expressiveness 
strongly depends on the kernel or covariance function [5]. Some authors have addressed this limitation by building more 
complex covariance functions, e.g., by combining several kernels [10,11] or by using a deep neural network to encode the 
covariance function [12,13].

An alternative to increase the flexibility of GPs is to consider a model given by the concatenation of several GPs, in the 
same spirit as a deep NN, where the output of one layer is used as the input of the next layer. Such a model is known in the 
literature as a deep GP [14]. Deep GPs are a generalization of GPs that maintain their main interesting properties such as 
having good generalization performance and producing accurate predictive distributions that account for output uncertainty 
[15–18]. These models are more flexible than standard GPs and can, e.g., model functions with different levels of smoothness 
in the input space, input dependent noise, or provide non-Gaussian predictive distributions [16,19]. Furthermore, there is 
evidence showing that they provide superior empirical results to those of GPs and to those of Bayesian treatments of NNs to 
account for prediction uncertainty [16,17]. Nevertheless, in spite of these advantages, inference is more challenging in deep 
GPs than in GPs. More precisely, in the second and following layers of the deep GP the inputs are random variables specified 
by the predictive distribution of the previous layer. It is well-known that the output distribution of a GP with random inputs 
is no-longer Gaussian [16]. Therefore, the consequence is that the output distribution in the second and following layers 
of the deep GP is no longer Gaussian. To overcome these difficulties several approaches for approximate inference in deep 
GPs have been proposed in the literature, some of them based on variational inference (VI) [14,15,17] and some based on 
expectation propagation (EP) [16,19].

VI and EP minimize the Kullback-Leibler (KL) divergence between the posterior distribution of the model’s latent vari-
ables p and an approximate posterior distribution q [20]. There has been, however, recent work in the literature showing 
that one can obtain better approximate predictive distributions by optimizing a generalization of the KL-divergence known 
as the α-divergence [21]. For this, a modification of the power expectation propagation algorithm has been considered [22]. 
The α-divergence has an extra parameter, α ∈ (0, 1), that interpolates between the direct KL-divergence used in VI, i.e., 
KL(q||p), retrieved when α → 0, and the reversed KL-divergence used in EP, i.e., KL(p||q), obtained when α → 1. Impor-
tantly, several results in the literature show that one can obtain more accurate predictive distributions in the context of 
standard (swallow) GPs using intermediate values of alpha, e.g., α = 0.5 [23,24]. These results motivate the minimization of 
α-divergences in the context of deep GPs, a natural generalization of GPs. Specifically, the minimization of α-divergences 
for approximate inference may lead to more accurate predictive distributions, which becomes crucial in some specific ap-
plications related, for example, with health-care or computer vision [4]. Accurate predictive distributions can also be useful 
in the context of active learning, where one chooses the data instance to label and introduce in the training set that is 
expected to improve the most the model’s performance. Those are precisely the instances about whose target value the 
current model is more uncertain about [24,25].

In this work, we propose to optimize α-divergences in the context of deep GPs, for approximate inference. This is 
a very challenging task since a deep GP is a complex model composed of several layers of stochastic processes. These 
processes have an intractable predictive distribution due to the randomness in the inputs of the second and following layers. 
However, with the aforementioned goal, we describe an efficient algorithm based on power EP that allows for stochastic 
optimization and hence can handle datasets with millions of training instances. We evaluate such algorithm in several 
experiments, considering different architectures for the deep GP network. The results obtained show that the optimization 
of α-divergences is feasible in the context of deep GPs and that varying the value of α can lead sometimes to better results 
than when using EP of VI, the most common methods for approximate inference with deep GPs. Summing up, the main 
contributions of our paper are:

1. The first feasible algorithm to train deep GPs by optimizing α-divergences. This method generalizes VI and EP, the two 
most popular approaches for training these models until now [16,17,19].

2. An exhaustive experimental evaluation that analyzes the influence of the α parameter on the performance of deep GPs. 
This evaluation considers regression, binary classification and multi-class problems.

3. We give empirical evidence that supports that in some situations one can obtain better results than those of VI or EP 
when training deep GPs using our proposed method. This is important for the community since deep GPs trained via 
VI often provide state-of-the-art prediction results [17].

2. Gaussian processes

We define a supervised learning problem as a training set of N d-dimensional data points X = {xi}N
i=1 and their associated 

output values y = (y1, . . . , yN)T. If we let yi ∈ R, we deal with regression problems, while for classification problems we 
consider that yi can take values from a set of different categories [26]. Let us focus on regression for simplicity and consider 
that yi is a function of the inputs plus some additive Gaussian noise, i.e., yi = f (xi) + εi . That is, εi ∼ N (0, σ 2), with 
N (0, σ 2) a Gaussian distribution with zero mean and σ 2 variance.
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A Gaussian process (GP) model tries to infer f (·) using a Bayesian approach. For that, it defines a GP prior p(f) =
N (f|m(X), k(X, X)), where N (·|μ, �) denotes the p.d.f. of a multivariate Gaussian distribution with mean μ, and covariance 
matrix �; f = ( f (x1), . . . , f (xN ))T is a vector with the process values at each point in X; m(X) ∈ RN is the result of applying 
m(·) to each point in X; k(X, X) ∈ RN×N is the result of applying k(·, ·) to each pair of points in X; finally, m(·) and k(·, ·)
are the mean and covariance function of the GP, respectively [5]. Since we assume that the observations are contaminated 
with independent additive Gaussian noise, we set a Gaussian likelihood p(y|f) = ∏N

i=1 p(yi | f i) that factorizes over the 
inputs, where f i = f (xi ) and p(yi | f i) = N (yi | f i, σ 2), with σ 2 the variance of the additive noise εi associated to each data 
instance.

We can then apply Bayes rule to obtain a posterior distribution [5]

p(f|y) = p(f)p(y|f)
p(y)

. (1)

The quantity in the denominator is a normalization constant called the marginal likelihood that can be maximized in 
order to find good values for the model hyper-parameters. These include often the variance of the additive noise and the 
parameters of the covariance function k(·, ·) such as the amplitude and the length-scales. See [5] for further details. The 
predictive distribution for y� associated to a new point x� is

p(y�|y) =
∫
D

p(y�| f�)p( f�|f)p(f|y)dfdf� = N (y�|m�, v�) , (2)

where f� = f (x�), D = (−∞, ∞) and

m� = kT
�

(
K + σ 2I

)−1
y , v� = k� − kT

�

(
K + σ 2I

)−1
k� + σ 2 , (3)

with k� = k(x�, x�), kT
� = (k(x�, x1), . . . , k(x�, xN ))T and K a matrix with entries Ki, j = k(xi, x j). This is the standard predic-

tive distribution of a GP. See [5] for further details.
In classification problems, however p(yi | f i) is non-Gaussian, making exact inference infeasible [5]. In particular, the 

posterior (1) is no longer Gaussian since the likelihood factors are non-Gaussian. The consequence is that the marginal 
likelihood p(y) is intractable to compute and hence also (1). Therefore, methods for approximate inference will be needed 
for classification, such as the Laplace approximation [27], expectation propagation [28] or variational inference [29]. In 
general, these methods provide a Gaussian approximation for (1), which can then be used in (2). All these methods have a 
cost that is in O(N3), where N is the size of the training set, since they need to invert the covariance matrix K.

2.1. Sparse Gaussian processes

As described before, the cost of GPs is in O(N3), which means that in practice GPs can only address problems with a few 
thousand data instances [5]. In order to reduce this cost, a typical approach is to use the so-called sparse approximations. 
These approximations rely on a new set M � N of inducing points Z = {zm}M

m=1, located on the same space as the observed 
data, and their corresponding output process values u = ( f (z1), . . . , f (zM))T that summarize the observed data [8]. The GP 
prior for u is p(u) =N (u|m(Z), k(Z, Z)).

There are two popular approaches for making inference in sparse GPs. The first one assumes that p(f|u) factorizes over 
the data instances, i.e., p(f|u) = ∏N

i=1 p( f i |u). This can be shown to be equivalent to using an approximate GP prior for f. 
Namely, p(f) = ∫

p(f|u)p(u)du ≈ ∫ ∏N
i=1 p( f i |u)p(u)du = N (f|m(X), Q), where Q has some structure that can be exploited 

for fast matrix inversion. This approximation is called the Fully Independent Training Conditional (FITC) and results in a 
training cost in O(N M2). See [30] for further details.

The other approach consists in carrying out variational inference in the GP model assuming a constrained approximation 
for the posterior p(f, u|y), q(f, u). Specifically, q(f, u) = p(f|u)q(u), where p(f|u) is fixed and given by the GP predictive 
distribution and q(u) is a tunable multivariate Gaussian whose parameters are adjusted by maximizing a lower bound on 
the marginal likelihood [7]. In this case, no factorization assumption is made about p(f|u). Again, the computational cost of 
this method is in O(N M2).

For prediction, in both cases, one carries out approximate inference about u to obtain an approximate distribution q(u)

targeting p(u|y). Given q(u) = N (u|m, S) the predictive distribution for the value y� associated to a new instance x� is 
given by:

p(y�|y) =
∫
D

p(y�| f�)p( f�|u)q(u)dudf� = N (y�|m�, v�) , (4)

where D = (−∞, ∞) and

m� = kT
f�,uK−1

u,um , v� = k f�, f� − kT
f�,uK−1

u,u

(
Ku,u − S

)
K−1

u,uk f�,u + σ 2 , (5)
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Fig. 1. Deep GP architecture with two hidden fully connected layers and Hl hidden units at each layer. In this case, we assume that the problem is regression 
or binary classification. Hence, there is a single GP in the last layer.

with k f�, f� = k(x�, x�), k f�,u a vector with the covariances between f� and u and Ku,u a matrix with the covariances among 
each entry in u. See [7] for further details.

In both approaches the locations of the inducing points Z are optimized during training by maximizing an estimate of 
the marginal likelihood. This method works well in practice and only a few inducing points are needed to provide similar 
results to those of the full GP [7,8]. Furthermore, both methods can be used in the context of classification problems. In this 
case, expectation propagation is used in combination of the FITC approximation [31]. The variational approach can handle 
classification problems using one-dimensional quadratures [32].

Finally, even though the variational approach seems better since it does not rely on an independence assumption on 
p(f|u), both approaches are found to perform similarly empirically. In particular, the variational objective, although better, 
is prone to bad local optima and is more difficult to optimize, which means that in practice it gives similar results to those 
of the FITC approximation [33].

3. Deep Gaussian processes

Deep Gaussian Processes (DGPs) are defined as a composition of GPs, where the output of a GP in one hidden layer is 
set to be the input of the GPs in the next layer [14]. See Fig. 1 for a DGP architecture example with two hidden layers and 
three layers in total. Typically, the last layer has dimension equal to one and hence only contains one GP. This is the case, 
e.g., for binary and regression problems. However, if multi-output regression problems or multi-class classification problems 
are considered, several GPs can be included in this last layer. Fully connected architectures are often used in a DGP network.

Let L denote the number of layers and Hl the number of hidden units at the l-th layer. If L = 1 and H1 = 1, we are 
back to the single GP model. Independence among GPs of the same layer is often assumed to simplify and speed-up the 
computations. Furthermore, for scalability reasons, sparse GP approximations are considered for each GP of the DGP network 
[16,17]. Let fl

h be the vector of process values at layer l and unit h associated to the training instances. Therefore, fl
h ∈ RN . 

Similarly, let ul
h be the process values at layer l and unit h associated to the inducing points of that layer and unit, Zl

h . In 
this case, ul

h ∈ RM . Consider the joint distribution of the targets y, the outputs of the GPs of each layer fl = (fl
1, . . . , f

l
Hl

), 
and the inducing outputs associated to each GP of each layer ul = (ul

1, . . . , u
l
Hl

), for l = 1, . . . , L. This distribution is:

p(y, {fl,ul}L
l=1) =

⎡
⎣ L∏

l=1

Hl∏
h=1

p(fl
h|ul

h, fl−1)p(ul
h)

⎤
⎦ N∏

i=1

p(yi |fL
i ) , (6)

where f0 = X and fL
i is the vector of process values at the last layer corresponding to the i-th instance. Therefore, fL

i ∈
RHL . Note that in (6) we have two types of factors. Namely, the likelihood factor 

∏N
i=1 p(yi |fL

i ) and the DGP prior factor ∏L
l=1

∏Hl
h=1 p(fl

h|ul
h; fl−1)p(ul

h) [17].
Critically, in order to compute the predictive distribution at layer l, i.e., p( f l

h|ul
h, fl−1) we require the marginalization of 

the inputs to that layer, fl−1, given by the predictive distribution for fl−1 specified by the previous layer. The predictive 
distribution of the previous layer is deterministic only for the input data, i.e., f0 = X. Therefore, exact inference is infeasible 
in a DGP model for L > 1, even for regression problems. In consequence, approximate inference is needed and, importantly, 
it is significantly more challenging to carry out than in other models including, e.g., standard GPs with tractable Gaussian 
predictive distributions.

There are several methods for approximate inference in DGPs that have been proposed in the literature. These include 
using approximate expectation propagation (EP) [16,19] or variational inference (VI) [14,17]. Both EP and VI find an approx-
imate posterior distribution q({fl, ul}L ) that looks as similar as possible as the true posterior p({fl, ul}L |y), obtained by 
l=1 l=1
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Fig. 2. Illustration of the resulting approximate distribution q shown in red, obtained by minimizing the corresponding α-divergence with respect to a 
target distribution p that is a mixture of two Gaussians, shown in blue. Both distributions are unnormalized probability distributions. Reproduced from 
[34]. Best seen in color. (For interpretation of the colors in the figures, the reader is referred to the web version of this article.)

normalizing the joint distribution of the observed and latent variables of the model, (6). VI maximizes a lower bound of the 
log-marginal likelihood of the model. This is equivalent to minimizing the global Kullback-Leibler (KL) divergence between 
q and the exact posterior. EP, on the other hand, replaces the likelihood factors of the model by approximate factors that 
are constrained to be Gaussian [16,19,28,34]. The product of these approximate factors and the prior distribution results in 
the posterior approximation q. Generally speaking, EP iteratively tunes q by locally minimizing the reversed KL-divergence 
between each tilted distribution (i.e., the approximate distribution q where we have removed the influence of an approxi-
mate likelihood factor and incorporated the corresponding exact likelihood factor) and the approximate distribution q, until 
convergence.

In this paper we will focus on a variant of EP called Power Expectation Propagation (PEP) that allows for the minimiza-
tion of a more general family of divergences known as the α-divergences [22,35]. The α-divergence includes a parameter 
α ∈ (0, 1) that can be adjusted leading to different divergences between probability distributions. Since the α-divergence 
includes as particular cases the KL-divergences used by VI and EP, we expect to obtain better results than when these two 
methods are used. The next section describes how to minimize α-divergences in the context of DGPs, which is a challenging 
task.

4. Alpha-divergence minimization for DGPs

As we have introduced in the previous section, in this paper we are interested in the minimization of the α-divergence, 
as described in [35]. This is a family of divergences that generalize the KL divergence [34]. The considered α-divergence 
between a target probability distributions p and an approximate distribution q of a random variable θ is defined as:

Dα[p ‖ q] = 1

α(1 − α)

(
1 −

∫
p(θ)αq(θ)1−αdθ

)
, (7)

where α ∈ R\{0, 1}. This is the definition given in [35]. Note that there are other definitions of the α-divergence, such as 
the one introduced in [36]. We can obtain such another definition from (7) simply by replacing α with (1 − α)/2. We have 
decided to use the definition given in [35] because it is the one often used in the context of approximate Bayesian inference 
[21,37,38].

Interestingly, it can be shown that D0[p ‖ q] = lim
α→0

Dα[p ‖ q] = KL[q ‖ p], which is the divergence that we are effectively 

minimizing in VI, and D1[p ‖ q] = lim
α→1

Dα[p ‖ q] = KL[p ‖ q], which is the divergence minimized in each of the EP updates 
of the approximate factors. Thus, we can alternate between these two inference schemes by varying the value of α. Another 
case worth mentioning is when α = 0.5, which is the only α-divergence that is symmetric in p and q and it is called the 
Hellinger distance [21]. In particular, it is possible to show that D0.5[p ‖ q] = 2 

∫ (√
p(θ) − √

q(θ)
)2

dθ [34].
The value of the α parameter in the α-divergence has potentially a strong impact on the resulting approximate distri-

bution q. More precisely, for α ≤ 0, the a-divergence enforces q to have low density wherever p has low density (hence, it 
could be considered as zero-forcing). On the other hand, when α ≥ 1, it can be said that the divergence is inclusive, as indi-
cated in [39]. In this case, the divergence enforces q > 0 wherever p > 0, hence avoiding zero probability density in regions 
of the space in which p has high density. See Fig. 2 for an illustration where the distribution need not be normalized.

When α takes values in the interval (0, 1), the resulting q distribution is intermediate between the two extreme pos-
sibilities that we have seen so far. In particular, when α → 0, we should expect that the approximate distribution q is 
more centered in the main mode of p. By contrast, when a → 1, q is expected to cover the target distribution p more and 
capture more modes. This is illustrated in Fig. 3. This figure shows the results obtained when approximating a target Gaus-
sian distribution p with strong dependencies using a factorizing Gaussian q. We can observe that the results obtained for 
α → 0 (zero-forcing) and for α → 1 (inclusive behavior) look very different. These results would correspond to VI and EP, 
respectively. Note that optimizing D1[p||q] = KL[p||q] results in q having high density where p has high density (inclusive 
behavior). By contrast, optimizing D0[p||q] = KL[q||p] results in q having low density where p has low density (zero-forcing). 
Therefore, by adjusting the α parameter we expect to find the best compromise between zero-forcing and more inclusive 
approximate distributions. Appendix A has the results obtained when minimizing the α-divergence for intermediate values 
of α. There it is shown that one can interpolate between the zero-forcing and the inclusive behavior simply by choosing α
in (0, 1). Importantly, intermediate values of α in (0, 1) may try to capture multiple modes, but will ignore those modes 
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Fig. 3. Level curves of the p.d.f. that results when approximating a Gaussian distribution with strong dependencies using a factorizing Gaussian. (left) 
Optimization of KL[p||q], obtained when α → 1. (right) Optimization of KL[q||p], obtained when α → 0. We can observe that KL[p||q] results in q having 
high density where p has high density. By contrast, KL[q||p] results in q having low density where p has low density. Reproduced from [20]. Best seen in 
color.

that are too far away from the main mass of the target distribution p. How far, will depend on the value of α. Therefore, 
the minimization of α-divergences brings extra flexibility to the problem of approximate inference and may be useful to 
better capture the properties of the posterior distribution than EP or VI.

In the following subsection we will introduce the power expectation propagation algorithm (PEP), and how to apply it in 
the context of DGPs for minimizing α-divergences. Next, we will explain the specific details that are needed for a feasible 
and efficient implementation of PEP that can address problems with a large number of instances. Importantly, applying PEP 
in the context of DGPs is not trivial and requires specific modifications for making it feasible. A direct application of PEP 
will fail due to several intractabilities. We carefully address them to obtain a feasible PEP algorithm in the context of DGPs.

4.1. Power expectation propagation for DGPs

As we mentioned in Section 3, exact inference in the context of DGPs is intractable. Therefore, we have to rely on ap-
proximate inference techniques to approximate the posterior distribution that results from normalizing the joint distribution 
of the observed and latent variables of the model, given in (6). A popular method for this task is power expectation propa-
gation (PEP) [22]. In the context of DGPs, PEP works by replacing each likelihood factor, that may have a complicated form, 
by a corresponding parametric factor that belongs to the exponential family. Namely, a distribution of the form

p(x|θ) = exp(θTs(x) − g(θ)) , (8)

g(θ) = log
∫

exp(θTs(x))dx , (9)

where θ are the natural parameters, s(x) is a vector of sufficient statistics and g(θ) is the log partition function [40]. See 
[16,19] for further details about similar approximations in the context of expectation propagation (EP) [28]. More precisely, 
in PEP for DGPs we consider an approximate distribution q targeting the exact posterior, p({fl, ul}L

l=1|y), that is similar to 
the one used in [17]. That is,

q({fl,ul}L
l=1) =

L∏
l=1

Hl∏
h=1

p(fl
h|ul

h, fl−1)q(ul
h) , (10)

where L is the number of layers of the DGP and Hl , the number of units of each layer. Furthermore, q(ul
h) ∝

p(ul
h) 

∏N
i=1 φ̃i(ul

h) with p(ul
h) =N (ul

h|m(Z), k(Z, Z)) the corresponding GP prior for the process values at the inducing points 
Z (note that we have eliminated the dependence of Z on the layer and the unit to simplify the notation). Importantly, 
the factors p(fl |ul , fl−1) in (10) are fixed. Only each q(ul ) will be updated. Therefore, the PEP approximate distribution 
h h h
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q is obtained by replacing each likelihood factor p(yi |fL
i ) by a product of approximate factors 

∏L
l=1

∏Hl
h=1 φ̃i(ul

h), where 
φ̃i(ul

h) ∝ N (ul
h|μl

h, �l
h), with μl

h and �l
h tunable parameters. PEP will iteratively refine the parameters of each of these ap-

proximate factors φ̃i so that their influence on {ul}L
l=1 is similar to that of the corresponding exact likelihood factor p(yi |fL). 

With that goal, first, for each hidden layer l and hidden unit hl , PEP defines a cavity distribution, q\i(ul
h), by removing the 

i-th approximate factor from q(ul
h) to the power of α:

q\i(ul
h) ∝ q(ul

h)

φ̃i(ul
h)

α
, (11)

where ∝ means proportional to and we use the super index \i to denote the cavity distribution. Because all factors are 
Gaussian, the cavity distribution is also Gaussian. Later it incorporates the true likelihood factor to the power of α to obtain 
the tilted distribution for the i-th data instance:

p̂i({fl,ul}L
l=1) = Z−1

i p(yi|fL
i )

α
L∏

l=1

Hl∏
h=1

p(fl
h|ul

h, fl−1)q\i(ul
h) , (12)

where Zi is just a normalization constant. The refined approximate factor to the power of α will be obtained by min-
imizing the KL-divergence between the tilted distribution and q, i.e. KL[p̂i({fl, ul}L

l=1) ‖ q({fl, ul}L
l=1)]. As we assume a 

particular form for q, where only each q(ul
h) can be adjusted, and we are working with distributions in the exponen-

tial family, this is done by matching their moments [23,28,40]. Let qnew(ul
h) be the updated posterior approximation for 

each hidden layer l and hidden unit h. The parameters of the corresponding approximate factors are obtained simply as ∏L
l=1

∏Hl
h=1 φ̃i(ul

h)α = Zi
∏L

l=1
∏Hl

h=1 qnew(ul
h)/ 

∏L
l=1

∏Hl

h=1 q\i(ul
h). Hence, because both qnew(ul

h) and q\i(ul
h) are Gaussian 

distributions, the approximate factors are un-normalized Gaussian distributions.
Importantly, the PEP update equations effectively minimize locally the α-divergence between the tilted distribution p̂�

i
defined as

p̂�
i ({fl,ul}L

l=1) ∝ p(yi |fL
i )

L∏
l=1

Hl∏
h=1

p(fl
h|ul

h, fl−1)
q(ul

h)

φ̃i(ul
h)

, (13)

and the approximate distribution q, i.e., Dα[p̂�
i ||q] [34]. To see this, let λq be the natural parameters of q. For a distribution 

q in the exponential family:

∇λq Dα[p̂�
i ||q] = − 1

α

∫
(p̂�

i (z))αq(z)1−α∇λq log q(z)dz

= Z p̃

α
(Eq[s(z)] −Ep̃i

[s(z)]) ∝ ∇λq KL[p̃i ||q] , (14)

where z = {fl, ul}L
l=1, and where we have defined p̃i ∝ (p̂�

i )
αq1−α with normalization constant Z p̃ , α �= 0, and s(z) is the 

vector of sufficient statistics of q. Therefore, p̃i = p̂i , where p̂i is the tilted distribution of PEP, defined in (12). At the 
minimum both gradients must be equal to zero and the moments of q and p̃i must match, which means that minimizing 
KL[p̃i ||q] or equivalently KL[p̂i ||q] by matching the moments of both distributions is effectively minimizing Dα [p̂�

i ||q].
In summary, the PEP algorithm consists in applying the steps described below to every approximate factor∏L

l=1
∏Hl

h=1 φ̃i(ul
h) and repeat until all approximate factors have converged. That is,

1. Remove an approximate factor to the power of α from the posterior q to compute the cavity distribution q\i as in (11)
for each l and h.

2. Include the true factor φi to the power of α to compute the tilted distribution p̂i as in (12).
3. Project onto the approximating family by matching moments.

qnew({fl,ul}L
l=1) = arg min

q∗∈Q
KL[p̂i({fl,ul}L

l=1) ‖ q∗({fl,ul}L
l=1)] ,

with Q the set of q∗({fl, ul}L
l=1) allowed by (10).

4. Update the approximate factor.

L∏
l=1

Hl∏
h=1

φ̃i(ul
h)

α = Zi

L∏
l=1

Hl∏
h=1

qnew(ul
h)/

L∏
l=1

Hl∏
h=1

q\i(ul
h) ,

where Zi is the normalization constant of p̂i . See (17).
5. Reconstruct the approximate distribution q using the updated factor and (10).
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Note that in step 3, we assume a particular form for q, described before, where only each q(ul
h) can be adjusted. 

Moreover, we are working with distributions in the exponential family. The consequence is that the minimization in step 3 
is done by matching the moments of the two distributions over each ul

h , where the other variables {fl}L
l=1 are marginalized 

out [23,28,40].
At convergence, when the approximate factors do not change any more and (14) is equal to zero for each approximate 

factor, PEP minimizes the α-divergences between the tilted distributions, defined in (13), and q. This minimization is local 
and in general will be different from minimizing the α-divergence between the target posterior and the approximate dis-
tribution q. Such a local minimization is, however, expected to be similar to the global minimization, which is in general 
intractable [34]. It can be shown, that it becomes a global divergence minimization (between the target posterior and q) 
only when α → 0 [34]. In this case, the α-divergence tends to the KL-divergence employed in VI. Therefore, by letting 
α → 0 we retrieve the same optimization problem (and solution) as in VI.

Importantly, PEP gives as well an approximation to the log marginal likelihood. This estimate, log Zq , is simply obtained 
by normalizing the approximate joint distribution, in which each likelihood factor has been replaced by the product of the 
corresponding approximate factors φ̃i(ul

h). That is, the un-normalized approximate distribution q. Namely,

log Zq = g(θ) − g(θprior) + 1

α

N∑
i=1

log Z̃ i , (15)

log Z̃ i = log Zi + g(θ\i) − g(θ) , (16)

where θ , θ\i and θprior are the natural parameters of 
∏L

l=1
∏Hl

h=1 q(ul
h), the natural parameters of the cavity distribution ∏L

l=1
∏Hl

h=1 q\i(ul
h) and the natural parameters of the prior distribution 

∏L
l=1

∏Hl

h=1 p(ul
h), respectively. Furthermore, g(θ) is 

the log-normalizer of a Gaussian distribution with natural parameters θ , and

log Zi = log
∫
D

p(yi |fL
i )

α
L∏

l=1

Hl∏
h=1

p( f l
h,i |ul

h, fl−1
i )q\i(ul

h)dul
hdf l

h,i , (17)

where D = (−∞, ∞) and f l
h,i is the process value at layer l and unit h corresponding to the i-th data instance. Similarly, 

fl−1
i is the vector of process values at layer l − 1 corresponding to the i-th data instance. Thus, fl−1

i ∈RHl .
Critically, if PEP converges, it will converge to a stationary point of (15), i.e. a point in which the gradient of (15) w.r.t. 

the parameters of q and each approximate factor is equal to zero. This means that instead of running the PEP updates until 
convergence, one can aim at optimizing such an objective directly [41]. The problem is that the corresponding optimization 
problem is a max-min problem, in which one minimizes with respect to the parameters of the approximate factors and 
maximizes with respect to the parameters of the approximate distribution q. This optimization problem can be solved using 
a double-loop algorithm, which is computationally very expensive, and most of the times the PEP updates are faster for 
finding such a stationary point [41]. Nevertheless, in the following section we show how these difficulties and others can 
be alleviated.

4.2. Making power expectation propagation in DGPs feasible

The algorithm described above cannot be implemented in practice due to several intractabilities. These are addressed 
here to obtain a feasible PEP algorithm in the context of DGPs. In particular, the integral in (17) cannot be computed 
in an exact way w.r.t. each f l

h,i when L > 1. This prevents the exact computation of the objective (15), which needs to be 
approximated. The work in [16] proposes to approximate a similar predictive distribution for fl

h when l ≤ 2 using a Gaussian 
distribution with the same moments as the true distribution. Nevertheless, it is often the case that this distribution does 
not look similar to a Gaussian and hence this can be a poor choice. The reason for such a deviation from the Gaussianity 
assumption is the non-linear transformation of the input performed by each GP of the DGP. To overcome this problem, 
one can follow [19] and approximate the integrals in (17) w.r.t. each f l

h,i using Monte Carlo samples. The resulting noisy 
estimates and its gradients could be used in combination with stochastic optimization techniques to optimize the target 
objective (15). For this, each ul

h is first marginalized out, which can be done analytically, since their distribution is Gaussian:

Zi =
∫
D

p(yi|fL
i )

α
L∏

l=1

Hl∏
h=1

q( f l
h,i|fl−1

i )df l
h,i

=
∫
D

p(yi|fL
i )

α
L∏

l=1

Hl∏
h=1

N ( f l
h,i|ml

h,i, vl
h,i + σ l

h
2
)df l

h,i , (18)
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where D = (−∞, ∞). In particular, if μ\i
h,l and �

\i
h,l are respectively the mean and covariance of q\i(ul

h), then ml
h,i =

kfl
h,i ,u

l
h
K−1

ul
h,ul

h
μ\i

h,l and vl
h,i = k f l

h,i , f l
h,i

+ k f l
h,i ,u

l
h
K−1

ul
h,ul

h
(�

\i
h,l − Kul

h,ul
h
)K−1

ul
h,ul

h
kul

h, f l
h,i

, where σ l
h

2
is the variance of the Gaussian 

noise at the output of layer l and unit h. See [17] for further details.
Note that in (18) one can generate samples from the predictive distribution of each layer and unit using the re-

parameterization trick, as in [17]. Moreover, if we do that, we have deterministic inputs at each unit and layer f̂l−1
·,i and 

hence, the conditional distribution of f l
h,i is simply a Gaussian whose parameters can be computed analytically. Namely, 

q( f l
h,i|f̂l−1

·,i ) = N (fl
h,i |ml

h,i, v
l
h,i + σ l

h
2
). All the generated samples can then be propagated through the GP layers and the 

approximation to Zi is simply:

Zi ≈ Ẑ i = 1

S

S∑
s=1

p(yi|f̂L
i,s)

α , (19)

where S is the number of samples and f̂L
i,s is the s-th sample propagated to the last layer of the DGP. In the case of 

regression and binary classification, the dimensionality of the last layer is simply H L = 1. Note that as a consequence of 
using a finite number of samples, the approximation, log Ẑ i , will have some bias. More precisely, E[log Ẑ i] �= log Zi , as 
a consequence of the non-linearity of the log(·) function. In spite of this, however, a similar approximation has shown 
good empirical results [19], and the bias can be simply reduced by increasing S , the number of samples. According to our 
experiments a small value for S (e.g., 20 samples) is enough to get good results.

An additional approximation can be introduced in the power expectation propagation algorithm to avoid having to use 
a double loop optimization algorithm to maximize the objective in (15). This approximation is called stochastic expectation 
propagation (SEP) [42]. In SEP, all the approximate factors are tied (constrained to have the same parameters) and we only 
keep in memory their product, i.e., φ̃(ul

h) = ∏N
i=1 φ̃i(ul

h). This only affects the way of computing the cavity distribution 
q\i ∝ q/φ̃

α
N , which now is the same for all likelihood factors. The posterior approximation q(ul

h) is then defined as q(ul
h) ∝

p(ul
h)φ̃(ul

h). This approximation has shown to give almost the same results in the expectation propagation algorithm, which 
is equivalent to PEP for α → 1 [42], and it greatly simplifies the PEP algorithm.

Critically, if all the approximate factors are the same and we have a single global factor, there is a one-to-one relation 
between the global factor and the posterior approximation q. The consequence is that under this approximation, we can 
directly find an optimal global factor φ̃ by maximizing log Zq in (15) with standard optimization techniques, and get rid of 
the pesky PEP updates, and the double loop optimization algorithm described previously. On top of that, we only have to 
save the global factor, reducing the amount of memory needed to store all the approximate factors (which increases with 
the number of data points). This is also the approach followed in [16,19], for training DGPs using expectation propagation. 
The result is a method that can be used for training DGPs that will find the approximate distribution by approximately 
minimizing α-divergences. Of course the estimate (19) will be noisy and also its gradients. However, these can be used in 
combination with a stochastic optimization algorithm to approximately optimize the target objective in (15). When α = 1, 
such a method is equivalent to the one described in [19] for training DGPs using approximate EP and Monte Carlo methods. 
When α → 0 such a method leads to the same objective and solution as the method described in [17] for training DGPs 
using VI. We expect that intermediate values of α may lead to better results. Note also that the objective in (15) is suitable 
for mini-batch training since the sum across the training points can be approximated using a mini-batch. This allows to 
scale to very large datasets. All model hyper-parameters can also be tuned by maximizing the estimate of the marginal 
likelihood, as in [16,17,19].

Once the model has been trained and q has been estimated, the predictive distribution for a new test point xnew can be 
approximated by Monte Carlo sampling, as it is done in the computation of Zi in (19). We only have to set α = 1 and work 
with the actual posterior approximation q instead of the cavity distribution.

5. Related work

Previous works in the literature have addressed the minimization of α-divergences in the context of GPs [23,24]. In [23]
they propose to use PEP as a unifying framework for GP regression and classification as it can recover the objectives that 
are optimized with EP and VI, which are the most commonly used approximations. They perform an extensive experimental 
analysis of this method in both regression and binary classification problems, showing that using values of α between 0
and 1 can give better results as an alternative to EP of VI solutions. The work in [24] extends these results to the specific 
case of multi-class classification with GPs, and compares several approximations to minimize α-divergences. These are also 
based on PEP. Although the techniques described in Section 4 are similar to the ones employed in [23,24], here we consider 
a different model. Namely, a DGPs, which can be considered as a generalization of the single layer models employed in 
[23,24]. Importantly, approximate inference in DGPs is significantly more challenging than in a standard GP since one has to 
face the problem that computing the predictive distribution is intractable. This requires extra approximations that are not 
needed in [23,24].

In [21] it is proposed a black-box algorithm to approximately minimize α-divergences in arbitrarily complex probabilistic 
graphical models. They also use PEP with tied approximate factors, and the objective that they consider is:
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E[θ , θprior] = g(θprior) − g(θpost) + 1

α

N∑
i=1

logEq

[(
p(yi|fi)

φ̃

)α]
, (20)

where θprior and θpost are the natural parameters of the prior and the approximate posterior q; g(θprior) and g(θpost) are 
their log-normalizers; θ = (θpost −θprior)/N are the parameters of the global factor φ̃ . The authors evaluate their approach on 
probit regression and on Bayesian neural networks using a Gaussian approximate distribution that assumes independence. 
Such a method could be also used in principle in the context of DGPs. However, since it is a black-box method it cannot not 
use particular properties of the model considered nor the particular approximate distribution q we employ in (10). Moreover, 
to evaluate the objective it requires generating samples from the approximate distribution q. The approach described in Sec-
tion 4 uses the fact that the latent variables {ul

h}, for l = 1, . . . , L and h = 1, . . . , Hl , can be marginalized analytically. By con-
trast, the method described in [21] would generate samples for these variables to evaluate the objective. This is expected to 
lead to higher variances in the estimation of the objective and its gradients, resulting in a less efficient optimization process.

In the context of DGP models, the work in [17] uses the same approximate distribution q as in this work (which is the 
same as the one considered in [19] too). However, q is found using variational inference. For this, the VI lower bound on 
the marginal likelihood is maximized w.r.t. the parameters of q and the model hyper-parameters:

log p(y) ≥ L =
N∑

i=1

Eq[log p(yi|fL
i )] −

L∑
l=1

Hl∑
h=1

KL[q(ul
h) ‖ p(ul

h)] . (21)

The required expectations in this objective are intractable, but they can be approximated by Monte Carlo as well by propa-
gating samples as explained in Section 4. In this case, however, the Monte Carlo estimate and its gradients will be unbiased. 
When α → 0 the objective of our proposed method in (15) converges to this lower bound [22]. Therefore, our proposed 
method can be seen as a generalization of this approach. A difference between the approach in [17] and this work is that 
they consider shared inducing points within the same layer, and in our case each GP in a layer has an independent set of in-
ducing points. Another difference is that they absorb the noise between layers in the kernel, and we explicitly parameterize 
these variables separately from the outputs of the GPs.

In [16] it was first proposed to use EP for approximate inference in the context of DGPs. That work also faces the 
problem of computing the predictive distribution at each layer of the DGP. They use a Gaussian approximation. In particular, 
they approximate the output of each GP from the second layer and beyond, using a Gaussian with the same mean and 
variance as the actual distribution (assuming a Gaussian input random variable to each GP). The approximation considered 
in Section 4 based on Monte Carlo samples is expected to be more accurate, since it will be able to capture multi-modal 
patters in the predictive distribution. This is confirmed in [19], where such an approximate predictive distribution is used. 
The EP objective in [19] is equivalent to the PEP objective we suggested in (15) when α = 1. In [19] the authors use shared 
inducing points within layers and parameterize the noise between layers separating these variables from the outputs of the 
GPs.

Although not directly related to the minimization of α-divergences, other works in the literature have tried to improve 
the computational cost and accuracy of GP and DGP models using these units as the main building block. For example, 
in [43] they introduce SOLVE-GP, an alternative formulation of the VI objective that introduces an extra set of inducing 
points. This adds more flexibility to each GP model at a smaller computational cost than simply increasing the number of 
inducing points. Such a method has been evaluated in the context of DGPs. Also related with this approach, the decoupled 
inducing points methods considered in [44,45] define as well a different inducing points sets to parameterize the mean and 
covariance of the GP. All these works are orthogonal to ours and can be included in the PEP framework to further increase 
the flexibility of the model and reduce the associated computational cost.

Importance-weighed VI [46] has been proposed as a more accurate alternative to VI in the context of DGPs. That method 
receives the noise as an input in the form of latent covariates. These covariates allow to capture complex patterns in the 
predictive distribution. It requires, however, the inclusion of extra data-dependent latent input attributes in the model and 
the computation of an approximate posterior distribution for each of them, with different parameters for each data point 
in the training set. We show in the experiments that our method can also capture complex patterns in the predictive 
distribution (e.g., several modes or heteroscedastic noise) without the extra cost of including the latent covariates.

In all the methods described, q is assumed to have a parametric form, e.g. Gaussian. In [18] they propose to use Hamil-
tonian Monte Carlo to draw samples from the target distribution allowing more flexible approximations to q. Nevertheless, 
that method has the difficulty of tuning the model’s hyper-parameters (covariance hyper-parameters and inducing points 
locations) since it does not have an objective function to adjust them. The authors of that paper propose a moving window 
algorithm with that goal.

Following this idea of having a more flexible approximate distribution q, in [47] it is considered VI in the context of 
DGPs with an implicit distribution for q, i.e., a distribution from which we can easily generate samples but that lacks a 
closed-form density expression. Such a distribution can be obtained simply by letting a source of white noise go through a
deep neural network. Implicit distributions, however, make difficult evaluating the KL term between q and the prior, in the 
VI lower bound. To address this problem, the authors of that paper propose to train a discriminator (i.e., a classifier) whose 
expected output approximates the KL term. Of course, this adds the extra cost of training such a classifier at the same time 
as the DGP model. The method we propose in Section 4 does not have this problem.
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Fig. 4. Training data for each synthetic problem. In red the target function. (left) Bimodal dataset. (right) Dataset with heteroscedastic noise. Best seen in 
color. (For interpretation of the colors in the figures, the reader is referred to the web version of this article.)

Finally, in the context of Bayesian neural networks, some works have addressed the minimization of α-divergences 
as well, using non-Gaussian approximate distributions [37,38]. In particular, in [37] it is considered, as the approximate 
distribution, a mixture between two points of probability mass, one located a zero and another one located at some tunable 
location. The work in [38] considers also an implicit distribution for q and also relies on training a classifier to approximate 
the objective. Importantly, while q is not constrained to belong to the exponential family in these two works, the PEP 
objective described in (15) is further approximated there. The approximation suggested is only expected to be accurate for 
small values of α or large values of N , i.e., the size of the training set.

The use of probabilistic methods in the context of convolutional neural networks has been recently proposed in [48]. 
These authors suggest using a GP embedded channel attention (GPCA) module for effective performance improvement in 
these networks. Specifically, a GP is used to model the correlations among different channels. The GP could be replaced by 
a deep GPs which could be trained by minimizing α-divergences using the proposed method. This could result in a better 
predictive distribution and a better over-all performance.

The minimization of α-divergences for approximate inference with deep GPs has potential applications in the context of 
active learning [49]. Here, one is interested in introducing into the training set the most useful data instances for improving 
overall prediction performance, after a labeling process. For this, the predictive distribution is critical since it indicates which 
instances are expected to be most useful for learning. Essentially those are the data instances for which the model is most 
uncertain about. Therefore, a better predictive distribution should be translated into better active learning results.

Deep GPs also have potential applications in the context of multi-view representation learning [50]. In this setting, a 
multi-output deep GP is used to learn a non-linear mapping from latent variables to observed variables. The deep GP can 
exploit similarities in the latent representation of each instance, for each different view. The minimization of α-divergences 
could be explored in that context. Specifically, a better predictive distribution is expected to lead to a better generative 
model, and hence to a better latent feature representation.

6. Experiments

In this section we evaluate the performance of the proposed approach for training DGPs using the approximate minimiza-
tion of α-divergences in several experiments. The method has been implemented in Tensorflow [51].1 In all the experiments 
we use ADAM as the stochastic optimizer with the default parameters [52] and a learning rate of 0.001 except when indi-
cated otherwise. We also use the RBF kernel with automatic relevance determination in all GP layers except when indicated 
otherwise. The initial noise variance in the intermediate noise layers is equal to 10−5 and the likelihood noise parameter is 
initialized to a small value. Namely, σ 2 = 0.01, except when indicated otherwise.

6.1. Predictive distribution

The first experiment aims to explore the properties of the predictive distribution of the DGPs using PEP for different 
values of α. For that, we generate synthetic data as in [53] and [19]. In Fig. 4 we plot the training data for the two datasets 
considered, along with the true function to be predicted. The first problem has a bimodal predictive distribution for y and 

1 Code available at https://github .com /cvillacampa /dgps _pep.
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Fig. 5. Samples from the predictive distribution of a DGP trained using different values of α, as indicated on each figure. The top row corresponds to 
the bimodal problem. The bottom row corresponds to the heteroscedastic problem. The values of alpha considered are 0.001, 0.5 and 1.0. The Appendix 
contains similar figures for other values of the α parameter.

Table 1
Test RMSE and test log-likelihood for each synthetic datasets.

Problem α RMSE Log-likelihood

Bimodal distribution 10−3 5.203 -3.070
0.5 5.136 -3.055
1 5.110 -2.138

Heteroscedastic noise 10−3 1.870 -2.065
0.5 1.876 -2.016
1 1.892 -1.639

the second one has heteroscedastic noise, i.e., the variance of the noise depends on the input location x. Both datasets have 
1, 000 data points for training and 500 for test. We train a DGP model with 4 layers and 3 hidden units. The number of 
inducing points is set to M = 10. We choose a mini-batch size of 50 and the number of samples to propagate through the 
DGP equal to 50. Similar results are obtained for other numbers of layers and units. In both problems, the DGP is trained 
for 500 epochs. The learning rate for the first problem has been set to 0.01 and for the second problem to 0.002.

Fig. 5 shows the predictive distribution obtained for different values of α, i.e., α = {10−3, 0.5, 1}. We observe that choos-
ing a value of α → 0 makes the model unable to capture the complex properties predictive distributions in the datasets, 
i.e., bimodality and heteroscedastic noise, and as we increase α these properties are better captured. This agrees with the 
results previously reported in [19], as expected because α → 0 retrieves the VI approach of [17] and α → 1 the EP objective 
of [19]. Also, it explains why when evaluating the method on the test set, we get similar results in terms of the RMSE 
but the log-likelihood improves as we increase α, as we can see in Table 1. In Appendix C.1 we have included the results 
for more values of α between 0 and 1. This indicates that higher values of α seem to produce more accurate predictive 
distributions. In terms of the root mean squared error (RMSE) all values of α seem to provide similar results.

6.2. Performance on UCI datasets

We evaluate the proposed approach on several datasets from the UCI repository [54]. Namely, 8 regression datasets, 7
binary classification datasets and 8 multi-class classification datasets (see Appendix B for the datasets’ details). We use 90%
of the data for training and 10% for testing. For the multi-class problems we follow [24,55] and we choose 20% for training 
and 80% for test for Satellite, in Vowel we consider only the points belonging to the 6 first classes and finally, for Waveform
(synthetic) we generate 1, 000 instances and split them in 30% for training and 70% for testing. We consider DGP models 
with an increasing number of layers, i.e., L = {2, 3, 4, 5}. The number of hidden units is the minimum between the problem 
dimension and 30, as in [17,19]. We assume a linear mean function for each GP (except for the last layer) as in [17,19]. 
150



All datasets have been trained for 20, 000 iterations with a mini-batch size of 100. The number of inducing points is set to 
M = 100. We report averages over 20 different splits of the data into training and testing. The values of α considered range 
from α → 0 to α = 1 with steps of size 0.1. The number of Monte Carlo samples S is 20.

Fig. 6 shows the average rank, across datasets and data splits, of each method in terms of the test RMSE and the average 
test log-likelihood, for each value of the number of layers L and value of α for the UCI regression datasets. Fig. 7 and 8
show similar results for the binary and the multi-class classification UCI problems, respectively. The rank of each method 
for a particular data split is computed as follows. The best method according to the considered metric (e.g., RMSE or test 
log-likelihood) gets rank 1. The second best method gets rank 2, and so on. Therefore, the smallest rank value the better the 
method performs. We then report average ranks, for a fixed number of GP layers, for each value of α, across datasets and 
splits. This provides an estimate of how well each method performs over-all for each value of α. Appendix C.2 has extra 
results with the average error and test log-likelihood for each method on each UCI dataset considered.

We observe that if we care about the performance in terms of the negative test log-likelihood, it is in general better 
to choose a value of α closer to 1, in regression, binary and multi-class classification problems. This makes sense since 
the data-dependent term of the objective of the PEP algorithm, defined in (17), becomes closer to the log-likelihood of the 
training data for α = 1. Moreover, this is also compatible with the results of the previous section that showed that the 
most accurate predictive distribution is obtained when α is close to 1. In terms of the classification error and RMSE, we 
observe that intermediate values of α, i.e., values of α closer to 0.5, can lead to better results in regression problems. This 
is particularly the case when the number of layers L is small. This is compatible with the findings of [23] for single-layer 
GP models. In the case of binary and multi-class classification problems, the differences are not that clear when considering 
the prediction error. In binary classification it seems that values of α closer to 0.5 seem to give slightly better prediction 
error results. However, in this case many values of α give similar prediction error. In multi-class classification values of α
closer to 1.0 seem to give slightly better prediction error results when L = 2. For larger number of layers, α values close to 
0.5 also perform well in terms of the prediction error.

Importantly, we do not know a priori which is the optimal value of α, and in the small UCI datasets considered it could 
be the case that the DGP model is already enough flexible to see any notable differences in performance, specially if the 
number of layers L is high. However, a smart choice would be to start exploring the solutions around α = 0.5 and lower the 
value of α slightly if we care about the RMSE and prediction error, in regression and binary classification, respectively. We 
should choose α closer to 1 if we care about the prediction error in multi-class problems, and if we care about the quality 
of the predictive distribution in general, as we have also observed in the experiments of Section 6.1.

A similar dependence of the model’s performance with respect to the different values of α has already been reported 
in the literature in previous works for other models [19,23,24,55,56]. Again, the behavior observed can be explained by 
noting that the objective that we are optimizing gets more similar to the log-likelihood as we choose values of α closer to 
1. That is, a term similar to logEq[p(yi |fi)

L], the data log-likelihood, appears in (17), but where q is replaced by the cavity 
distribution. These terms contribute to the PEP objective in (15), which is maximized.

Finally, in terms of the number of layers, the results obtained do not vary much. A similar dependence of the results 
on α is observed, although the differences are less clear in regression problems. Only in multi-class classification problems, 
reported in Fig. 8, we observe that larger values of α clearly favor better prediction errors for L = 2. When the number of 
layers L grows, values of α close to 0.5 also seem to give good prediction errors in these problems.

6.3. Performance on bigger datasets

In the last experiments, we compare the performance of the DGP methods, trained for different values of α, as a function 
of the training time. Again, we consider different number of GP layers L in each model. The experimental setup considered 
is the same as in the UCI experiments. All models have trained for a maximum training time of 5 days. This includes also 
the time used for computing the performance on the test set.

In these experiments, we choose bigger datasets to show that the method is scalable. Table B.5 in the appendix shows the 
characteristics of the datasets considered. These datasets are very big with up to several million data instances. Therefore, 
we report the performance in only one split of the data into training and test. Appendix B has the details of the splits 
considered. Figs. 9, 10 and 11 show the results for the Year, HIGGS and MNIST datasets, respectively. These figures show the 
test log-likelihood and the prediction error (the RMSE in the case of the Year dataset since it is a regression problem) as a 
function of the computational time. We show results for each number of layers L considered.

The Year dataset is a regression dataset, and we observe in Fig. 9 that for all values of the number of layers the values 
of α that converge to a better solution in terms of the negative log-likelihood are values closer to 1. In terms of the test 
RMSE, intermediate values of α that are closer to 0 seem to lead to better solutions, but the differences are small. These 
results are compatible with the ones obtained in the previous section. The behavior described is similar for each value of 
the number of layers L considered.

The HIGGS dataset is a binary classification dataset. Fig. 10 shows that the differences in performance both in terms 
of the test error and negative test log-likelihood are not very big. However, higher values of α, i.e., that are closer to 1, 
lead to better solutions in terms of both metrics. This is particularly the case when the number of layers L is small. When 
the number of layer is large, the differences are less clear and intermediate values of α seem to perform slightly better. 
Nevertheless, the differences are very small.
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Fig. 6. Average rank for each number of layers and value of α, across datasets and data splits, in terms of the test RMSE (left-column) and the negative test 
log-likelihood (right-column). Results are shown for the UCI regression datasets.
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Fig. 7. Average rank for each number of layers and value of α, across datasets and data splits, in terms of the test error (left-column) and the negative test 
log-likelihood (right-column). Results are shown for the UCI binary classification datasets.
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Fig. 8. Average rank for each number of layers and value of α, across datasets and data splits, in terms of the test error (left-column) and the negative test 
log-likelihood (right-column). Results are shown for the UCI multi-class classification datasets.
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Fig. 9. Test RMSE (left) and negative test log-likelihood (right) as a function of training time in seconds on the Year dataset. Best seen in color. (For 
interpretation of the colors in the figures, the reader is referred to the web version of this article.)
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Fig. 10. Test error (left) and negative test log-likelihood (right) as a function of training time in seconds on the HIGGS dataset. Best seen in color. (For 
interpretation of the colors in the figures, the reader is referred to the web version of this article.)
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Fig. 11. Test error (left) and negative test log-likelihood (right) as a function of training time in seconds on the MNIST dataset. Best seen in color. (For 
interpretation of the colors in the figures, the reader is referred to the web version of this article.)
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Finally, the MNIST is a multi-class classification dataset. In the MNIST experiments we use in the first layer a 9-degree 
polynomial kernel with automatic relevance determination as there is previous evidence that it works better with this 
dataset [25,57]. Fig. 11 shows the results obtained. We observe that values of α closer to 1 lead to better results in terms of 
the test log-likelihood. In terms of the prediction error all values of α give similar results. The results obtained are similar 
for each number of layers L considered.

We have extra results on large problems in Appendix C.3. There, we also include a table showing the final performance 
for each method on each large-scale dataset considered.

7. Conclusions

The optimization of α-divergences allows to interpolate between approximate inference methods that are closer to VI 
when α → 0 or EP as α → 1. Previous works in the literature had already considered the optimization of these divergences 
for approximate inference in the context of Gaussian processes [23,24] or in the context of Bayesian neural networks [21,37]. 
In this work, we have focused on the minimization of α-divergences in the context of deep Gaussian processes (DPGs) [14]. 
This is a very challenging task due to the complexity of these models. In particular, the predictive distribution of a DGP 
is intractable. The reason is that in the second and following layers the inputs are random variables coming from the 
predictions of the previous layer. We have proposed here a novel method for training DGPs by minimizing α-divergences 
that is based on the power expectation propagation (PEP) algorithm [22]. Critically, a naive implementation of PEP in the 
context of DGPs fails due to several intractabilities. We have carefully addressed them providing a fully functional algorithm. 
The proposed method is also memory efficient and suitable for stochastic optimization that allows to tackle big datasets 
with up to several millions of data instances. Importantly, instead of carrying out the PEP updates of the approximate 
factors, as in the original PEP formulation, we directly optimize the approximation to the marginal likelihood to find a good 
approximate distribution q.

We have shown that optimizing α-divergences in the context of DGPs is an alternative that is worth of being considered 
as it can provide better results by varying the parameter α of the algorithm in some situations. We have carried out 
several experiments in different problems including regression, binary and multi-class classification for different values of 
α to assess this. The results of the experiments suggest that in regression, binary and multi-class problems, in general, the 
performance in terms of the test log-likelihood gets better as we increase the value of α to values close to 1. In regression 
problems, however, the performance in terms of the RMSE is better for intermediate values of α between (0 and 0.5). This 
means that one can obtain better results in the context of DGPs, in terms of this metric, by optimizing a different divergence 
than the one considered in VI or EP.

In binary classification problems, the differences are not that clear. In any case, values of α between (0 and 0.5) seem to 
provide slightly better results in terms of the prediction error, on average. In the case of multi-class problems, higher values 
of α, i.e., those that are close to 1 seem to provide better results in terms of the prediction error.

The findings obtained agree with previous works on GPs and the minimization of α-divergences [23,24]. Also, as we 
increase the flexibility of the DGP model by increasing the number of layers we have observed that the differences between 
values of α reduce.

In general, finding the optimal value of α for a specific model and learning problem is a difficult task. Our suggestion is 
to do a grid-search combined with cross validation to estimate the associated performance metric to see what value of α
performs best.
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Appendix A. Level curves for the approximate Gaussian distribution q using different α-divergences

In Fig. A.12 of this section, we show the resulting level curves of the p.d.f. that approximates a factorizing Gaussian 
obtained by minimizing the α-divergence for different values of α. We observe that the results for α → 0 and α → 1
coincide with those of Fig. 3, as expected. We also observe that an intermediate value of α provides an approximate 
solution that balances zero-forcing (α → 0) and inclusive behaviors (α → 1).
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Fig. A.12. Level curves of the p.d.f. that results when approximating a Gaussian distribution p with strong dependencies using a factorizing Gaussian for 
different values of α. Best seen in color.
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Table B.2
Characteristics of the regression datasets 
from the UCI Repository.

Dataset #Instances #Attributes

Boston 506 13
Concrete 1,030 8
Energy 768 8
Kin8 8,191 8
Naval 11,934 16
Power 9,568 4
Protein 45,730 9
Wine 1,599 11

Table B.3
Characteristics of the binary classification 
datasets from the UCI Repository.

Dataset #Instances #Attributes

Australian 690 14
Breast 683 10
Crabs 200 7
Ionosphere 351 34
Pima 768 8
Sonar 208 60
Banknote 1,372 4

Table B.4
Characteristics of the multi-class classification datasets 
from the UCI Repository.

Dataset #Instances #Attributes #Classes

Glass 214 9 6
New-thyroid 215 5 3
Satellite 6435 36 6
Svmguide2 391 20 3
Vehicle 846 18 4
Vowel 540 10 6
Waveform 1000 21 3
Wine 178 13 3

Table B.5
Characteristics of the big datasets.

Dataset #Instances #Attributes #Classes

Year 515,345 90 –
HIGGS 11,000,000 28 2
MNIST 70,000 784 10

Appendix B. Details of the datasets

Tables B.2, B.3 and B.4 show the characteristics of the regression, binary and multi-class classification datasets considered 
from the UCI repository in the main document. These tables show, for each problem, the number of samples, the number 
of attributes and the number of class labels (for the multi-class problems).

Table B.5 summarizes the characteristics of the big datasets of Section 6.3. The number of instances is the sum of the 
training and test instances. In the experiments we choose 10,000 instances for testing and the rest for training, except in 
MNIST, which comes already with a training-test partition with 60, 000 instances for training and 10, 000 for testing.

Appendix C. Extra experimental results

C.1. Performance of the predictive distribution

See Figs. C.13, C.14 and Table C.6.
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Fig. C.13. Samples from the bimodal predictive distribution using different values of α.

C.2. Performance on the UCI datasets

See Tables C.7–C.12.

C.3. Performance on bigger datasets

See Tables C.13 and C.14.
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α = 0.8 α = 0.9 α = 1

0.05 -2.25 ± 0.04 -2.26 ± 0.04 -2.29 ± 0.04
0.01 -2.81 ± 0.01 -2.8 ± 0.01 -2.76 ± 0.01
0.03 -2.93 ± 0.03 -2.91 ± 0.03 -2.89 ± 0.03
0.01 -0.74 ± 0.02 -0.71 ± 0.02 -0.68 ± 0.02
0 1.33 ± 0 1.34 ± 0 1.36 ± 0.01
0.02 6.66 ± 0.02 6.69 ± 0.01 6.63 ± 0.03
0.02 -0.94 ± 0.01 -0.94 ± 0.02 0.19 ± 0.09
0.02 -0.41 ± 0.02 -0.36 ± 0.02 -0.31 ± 0.02

0.07 -2.32 ± 0.05 -2.3 ± 0.05 -2.3 ± 0.05
0.01 -2.79 ± 0.01 -2.77 ± 0.01 -2.73 ± 0.01
0.04 -2.97 ± 0.04 -3.01 ± 0.06 -3.08 ± 0.08
0.02 -0.68 ± 0.03 -0.65 ± 0.03 -0.62 ± 0.04
0.01 1.33 ± 0.01 1.34 ± 0.01 1.35 ± 0.01
0.05 6.52 ± 0.04 6.44 ± 0.07 6.48 ± 0.05
0.01 -0.96 ± 0.02 -0.96 ± 0.02 1.04 ± 0.08
0.03 -0.26 ± 0.03 -0.22 ± 0.04 -0.2 ± 0.03

0.04 -2.29 ± 0.04 -2.29 ± 0.05 -2.31 ± 0.06
0.01 -2.78 ± 0.01 -2.77 ± 0.01 -2.74 ± 0.01
0.04 -2.99 ± 0.05 -3.05 ± 0.05 -2.98 ± 0.06
0.02 -0.67 ± 0.02 -0.65 ± 0.02 -0.62 ± 0.02
0.01 1.33 ± 0.01 1.34 ± 0 1.35 ± 0.01
0.08 6.4 ± 0.08 6.34 ± 0.09 6.49 ± 0.07
0.01 -0.94 ± 0.02 -0.94 ± 0.01 0.92 ± 0.05
0.03 -0.25 ± 0.02 -0.24 ± 0.03 -0.23 ± 0.03

0.06 -2.46 ± 0.04 -2.37 ± 0.04 -2.31 ± 0.05
0.01 -2.79 ± 0.01 -2.77 ± 0.01 -2.74 ± 0.01
0.04 -2.96 ± 0.03 -2.95 ± 0.04 -2.97 ± 0.04
0.02 -0.77 ± 0.02 -0.76 ± 0.02 -0.72 ± 0.02
0.01 1.34 ± 0.01 1.35 ± 0.01 1.35 ± 0.01
0.06 6.37 ± 0.03 6.24 ± 0.08 6.4 ± 0.05
0.01 -0.94 ± 0.01 -0.94 ± 0.01 1.12 ± 0.03
0.03 -0.3 ± 0.02 -0.29 ± 0.02 -0.28 ± 0.03
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Table C.7
Regression test log-likelihood (the higher the better) results for UCI datasets. Averages over 20 splits and standard errors.

Problem α → 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7

L = 2 BOSTON -2.4 ± 0.05 -2.38 ± 0.05 -2.38 ± 0.05 -2.34 ± 0.05 -2.33 ± 0.05 -2.3 ± 0.05 -2.29 ± 0.04 -2.27 ±
POWER -2.83 ± 0.01 -2.83 ± 0.01 -2.83 ± 0.01 -2.82 ± 0.01 -2.82 ± 0.01 -2.82 ± 0.01 -2.82 ± 0.01 -2.81 ±
CONCRETE -3.02 ± 0.01 -3.01 ± 0.02 -3.01 ± 0.02 -3.0 ± 0.02 -3.0 ± 0.02 -2.98 ± 0.02 -2.97 ± 0.02 -2.96 ±
ENERGY -0.94 ± 0.01 -0.9 ± 0.01 -0.88 ± 0.01 -0.86 ± 0.01 -0.84 ± 0.01 -0.82 ± 0.01 -0.8 ± 0.01 -0.78 ±
KIN8NM 1.23 ± 0 1.25 ± 0 1.26 ± 0 1.27 ± 0 1.28 ± 0 1.29 ± 0 1.3 ± 0 1.31 ±
NAVAL 6.37 ± 0.01 6.39 ± 0.02 6.45 ± 0.02 6.49 ± 0.01 6.53 ± 0.02 6.58 ± 0.01 6.6 ± 0.01 6.64 ±
WINE RED -0.96 ± 0.01 -0.96 ± 0.01 -0.96 ± 0.02 -0.95 ± 0.01 -0.95 ± 0.01 -0.95 ± 0.01 -0.95 ± 0.01 -0.95 ±
YACHT -1.04 ± 0.01 -0.93 ± 0.02 -0.81 ± 0.02 -0.73 ± 0.02 -0.66 ± 0.02 -0.59 ± 0.02 -0.52 ± 0.02 -0.46 ±

L = 3 BOSTON -2.45 ± 0.09 -2.4 ± 0.05 -2.45 ± 0.08 -2.41 ± 0.07 -2.33 ± 0.06 -2.33 ± 0.07 -2.34 ± 0.05 -2.33 ±
POWER -2.82 ± 0.01 -2.82 ± 0.01 -2.82 ± 0.01 -2.81 ± 0.01 -2.81 ± 0.01 -2.81 ± 0.01 -2.81 ± 0.01 -2.8 ±
CONCRETE -2.98 ± 0.03 -2.97 ± 0.03 -2.97 ± 0.03 -2.96 ± 0.03 -2.97 ± 0.03 -2.96 ± 0.04 -2.93 ± 0.04 -2.94 ±
ENERGY -0.83 ± 0.02 -0.81 ± 0.01 -0.81 ± 0.02 -0.79 ± 0.02 -0.77 ± 0.02 -0.75 ± 0.02 -0.72 ± 0.02 -0.7 ±
KIN8NM 1.29 ± 0 1.3 ± 0 1.31 ± 0 1.31 ± 0 1.31 ± 0 1.32 ± 0 1.32 ± 0 1.32 ±
NAVAL 6.35 ± 0.02 6.31 ± 0.07 6.37 ± 0.03 6.46 ± 0.02 6.47 ± 0.05 6.48 ± 0.06 6.48 ± 0.05 6.47 ±
WINE RED -0.98 ± 0.02 -0.98 ± 0.02 -0.98 ± 0.02 -0.97 ± 0.02 -0.98 ± 0.02 -0.98 ± 0.02 -0.97 ± 0.02 -0.96 ±
YACHT -0.76 ± 0.02 -0.64 ± 0.02 -0.53 ± 0.02 -0.47 ± 0.02 -0.41 ± 0.03 -0.36 ± 0.03 -0.33 ± 0.04 -0.3 ±

L = 4 BOSTON -2.37 ± 0.07 -2.38 ± 0.06 -2.41 ± 0.05 -2.42 ± 0.06 -2.38 ± 0.04 -2.34 ± 0.04 -2.32 ± 0.05 -2.3 ±
POWER -2.82 ± 0.01 -2.82 ± 0.01 -2.82 ± 0.01 -2.81 ± 0.01 -2.81 ± 0.01 -2.81 ± 0.01 -2.8 ± 0.01 -2.79 ±
CONCRETE -3.0 ± 0.03 -3.02 ± 0.02 -3.01 ± 0.03 -3.0 ± 0.03 -3.01 ± 0.03 -2.99 ± 0.03 -3.0 ± 0.04 -2.97 ±
ENERGY -0.82 ± 0.01 -0.82 ± 0.01 -0.81 ± 0.02 -0.79 ± 0.02 -0.74 ± 0.02 -0.74 ± 0.02 -0.73 ± 0.02 -0.71 ±
KIN8NM 1.3 ± 0.01 1.31 ± 0 1.31 ± 0.01 1.32 ± 0.01 1.32 ± 0 1.32 ± 0.01 1.32 ± 0.01 1.33 ±
NAVAL 6.18 ± 0.05 6.15 ± 0.08 6.25 ± 0.04 6.29 ± 0.06 6.26 ± 0.06 6.26 ± 0.06 6.2 ± 0.09 6.35 ±
WINE RED -0.98 ± 0.02 -0.97 ± 0.02 -0.98 ± 0.02 -0.96 ± 0.01 -0.96 ± 0.01 -0.95 ± 0.01 -0.95 ± 0.01 -0.95 ±
YACHT -0.78 ± 0.02 -0.66 ± 0.02 -0.6 ± 0.03 -0.51 ± 0.02 -0.45 ± 0.02 -0.39 ± 0.02 -0.34 ± 0.03 -0.28 ±

L = 5 BOSTON -2.34 ± 0.06 -2.68 ± 0.06 -2.74 ± 0.07 -2.77 ± 0.09 -2.79 ± 0.09 -2.77 ± 0.08 -2.68 ± 0.08 -2.59 ±
POWER -2.83 ± 0.01 -2.82 ± 0.01 -2.82 ± 0.01 -2.81 ± 0.01 -2.81 ± 0.01 -2.81 ± 0.01 -2.8 ± 0.01 -2.79 ±
CONCRETE -3.01 ± 0.04 -3.02 ± 0.03 -3.02 ± 0.03 -3.02 ± 0.03 -2.98 ± 0.03 -3.0 ± 0.03 -2.97 ± 0.04 -2.96 ±
ENERGY -0.83 ± 0.02 -0.84 ± 0.01 -0.82 ± 0.01 -0.81 ± 0.02 -0.79 ± 0.02 -0.79 ± 0.02 -0.79 ± 0.01 -0.79 ±
KIN8NM 1.31 ± 0.01 1.32 ± 0.01 1.32 ± 0 1.32 ± 0.01 1.32 ± 0.01 1.32 ± 0.01 1.33 ± 0 1.33 ±
NAVAL 6.08 ± 0.06 6.25 ± 0.03 6.29 ± 0.02 6.25 ± 0.04 6.28 ± 0.03 6.28 ± 0.03 6.21 ± 0.07 6.27 ±
WINE RED -1.0 ± 0.02 -0.97 ± 0.01 -0.97 ± 0.01 -0.95 ± 0.01 -0.96 ± 0.01 -0.96 ± 0.01 -0.95 ± 0.01 -0.95 ±
YACHT -0.86 ± 0.04 -0.71 ± 0.02 -0.62 ± 0.02 -0.53 ± 0.02 -0.46 ± 0.02 -0.4 ± 0.02 -0.36 ± 0.02 -0.33 ±
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.7 α = 0.8 α = 0.9 α = 1

0.2 2.72 ± 0.1 2.69 ± 0.2 2.78 ± 0.2
0.04 4.03 ± 0.03 4.03 ± 0.04 4.03 ± 0.03
0.1 4.91 ± 0.1 4.92 ± 0.1 4.98 ± 0.1
0.01 0.49 ± 0.01 0.49 ± 0.01 0.49 ± 0.01
0 0.07 ± 0 0.07 ± 0 0.07 ± 0
0 0.0 ± 0 0.0 ± 0 0.0 ± 0
0.01 0.63 ± 0.01 0.63 ± 0.01 0.67 ± 0.01
0.03 0.56 ± 0.04 0.56 ± 0.04 0.57 ± 0.04

0.2 2.9 ± 0.2 2.91 ± 0.2 2.86 ± 0.2
0.04 4.03 ± 0.03 4.02 ± 0.03 4.03 ± 0.04
0.1 5.13 ± 0.1 5.15 ± 0.1 5.26 ± 0.2
0.02 0.48 ± 0.02 0.48 ± 0.02 0.49 ± 0.02
0 0.07 ± 0 0.07 ± 0 0.07 ± 0
0 0.0 ± 0 0.0 ± 0 0.0 ± 0
0.01 0.64 ± 0.01 0.64 ± 0.01 0.68 ± 0.01
0.05 0.58 ± 0.05 0.6 ± 0.05 0.64 ± 0.05

0.2 2.94 ± 0.2 2.95 ± 0.2 2.99 ± 0.2
0.03 4.03 ± 0.03 4.03 ± 0.04 4.04 ± 0.03
0.1 5.16 ± 0.1 5.2 ± 0.2 5.32 ± 0.1
0.02 0.48 ± 0.01 0.49 ± 0.01 0.49 ± 0.01
0 0.07 ± 0 0.07 ± 0 0.07 ± 0
0 0.0 ± 0 0.0 ± 0 0.0 ± 0
0.01 0.63 ± 0.01 0.63 ± 0.01 0.68 ± 0.01
0.04 0.56 ± 0.04 0.6 ± 0.06 0.62 ± 0.06

0.3 3.37 ± 0.2 3.25 ± 0.2 3.04 ± 0.2
0.03 4.04 ± 0.04 4.05 ± 0.04 4.06 ± 0.04
0.1 5.15 ± 0.1 5.17 ± 0.1 5.32 ± 0.1
0.01 0.53 ± 0.02 0.56 ± 0.02 0.57 ± 0.02
0 0.07 ± 0 0.07 ± 0 0.07 ± 0
0 0.0 ± 0 0.0 ± 0 0.0 ± 0
0.01 0.63 ± 0.01 0.63 ± 0.01 0.68 ± 0.01
0.04 0.55 ± 0.04 0.59 ± 0.04 0.59 ± 0.04
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Table C.8
Regression RMSE (the lower the better) results for UCI datasets. Averages over 20 splits and standard errors.

Problem α → 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0

L = 2 BOSTON 2.81 ± 0.2 2.81 ± 0.2 2.85 ± 0.2 2.77 ± 0.2 2.8 ± 0.2 2.71 ± 0.1 2.7 ± 0.1 2.64 ±
POWER 4.07 ± 0.04 4.06 ± 0.04 4.06 ± 0.04 4.06 ± 0.04 4.05 ± 0.04 4.04 ± 0.04 4.04 ± 0.03 4.03 ±
CONCRETE 4.98 ± 0.1 4.98 ± 0.1 4.99 ± 0.09 4.94 ± 0.1 4.96 ± 0.1 4.94 ± 0.1 4.93 ± 0.1 4.91 ±
ENERGY 0.51 ± 0.02 0.51 ± 0.01 0.5 ± 0.01 0.51 ± 0.01 0.5 ± 0.01 0.5 ± 0.01 0.5 ± 0.01 0.5 ±
KIN8NM 0.07 ± 0 0.07 ± 0 0.07 ± 0 0.07 ± 0 0.07 ± 0 0.07 ± 0 0.07 ± 0 0.07 ±
NAVAL 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ±
WINE RED 0.63 ± 0.01 0.63 ± 0.01 0.63 ± 0.01 0.63 ± 0.01 0.63 ± 0.01 0.63 ± 0.01 0.63 ± 0.01 0.63 ±
YACHT 0.52 ± 0.02 0.49 ± 0.03 0.52 ± 0.03 0.53 ± 0.03 0.53 ± 0.04 0.53 ± 0.03 0.55 ± 0.04 0.55 ±

L = 3 BOSTON 2.81 ± 0.2 2.92 ± 0.2 2.86 ± 0.2 2.84 ± 0.2 2.78 ± 0.2 2.71 ± 0.1 2.72 ± 0.1 2.92 ±
POWER 4.06 ± 0.04 4.04 ± 0.03 4.04 ± 0.03 4.04 ± 0.04 4.03 ± 0.04 4.03 ± 0.04 4.03 ± 0.03 4.03 ±
CONCRETE 4.87 ± 0.2 4.74 ± 0.2 4.81 ± 0.2 4.79 ± 0.1 4.87 ± 0.1 4.91 ± 0.1 4.91 ± 0.1 5.04 ±
ENERGY 0.51 ± 0.02 0.5 ± 0.01 0.5 ± 0.01 0.49 ± 0.02 0.49 ± 0.02 0.49 ± 0.02 0.48 ± 0.02 0.48 ±
KIN8NM 0.07 ± 0 0.07 ± 0 0.07 ± 0 0.07 ± 0 0.07 ± 0 0.07 ± 0 0.07 ± 0 0.07 ±
NAVAL 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ±
WINE RED 0.64 ± 0.01 0.64 ± 0.01 0.64 ± 0.01 0.64 ± 0.01 0.64 ± 0.01 0.65 ± 0.01 0.64 ± 0.01 0.64 ±
YACHT 0.48 ± 0.03 0.46 ± 0.04 0.46 ± 0.03 0.46 ± 0.04 0.46 ± 0.04 0.45 ± 0.04 0.49 ± 0.04 0.54 ±

L = 4 BOSTON 2.67 ± 0.1 2.74 ± 0.1 2.76 ± 0.1 3.04 ± 0.3 2.99 ± 0.2 2.94 ± 0.2 2.93 ± 0.2 2.92 ±
POWER 4.07 ± 0.04 4.06 ± 0.04 4.05 ± 0.04 4.05 ± 0.03 4.04 ± 0.04 4.03 ± 0.03 4.03 ± 0.04 4.03 ±
CONCRETE 5.04 ± 0.1 4.96 ± 0.1 4.98 ± 0.1 4.91 ± 0.1 5.02 ± 0.1 4.97 ± 0.1 5.11 ± 0.1 5.09 ±
ENERGY 0.5 ± 0.02 0.5 ± 0.01 0.51 ± 0.02 0.5 ± 0.01 0.48 ± 0.01 0.49 ± 0.01 0.49 ± 0.01 0.49 ±
KIN8NM 0.07 ± 0 0.07 ± 0 0.07 ± 0 0.07 ± 0 0.07 ± 0 0.07 ± 0 0.07 ± 0 0.07 ±
NAVAL 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ±
WINE RED 0.64 ± 0.01 0.64 ± 0.01 0.64 ± 0.01 0.63 ± 0.01 0.63 ± 0.01 0.63 ± 0.01 0.63 ± 0.01 0.63 ±
YACHT 0.47 ± 0.03 0.48 ± 0.03 0.48 ± 0.02 0.48 ± 0.03 0.48 ± 0.03 0.49 ± 0.03 0.49 ± 0.04 0.5 ±

L = 5 BOSTON 2.71 ± 0.1 3.67 ± 0.3 3.98 ± 0.3 4.04 ± 0.4 4.29 ± 0.4 4.23 ± 0.4 3.98 ± 0.3 3.71 ±
POWER 4.09 ± 0.04 4.05 ± 0.04 4.05 ± 0.04 4.05 ± 0.04 4.05 ± 0.03 4.04 ± 0.04 4.06 ± 0.04 4.05 ±
CONCRETE 5.01 ± 0.1 4.92 ± 0.1 5.01 ± 0.2 5.04 ± 0.2 4.97 ± 0.1 5.07 ± 0.1 5.02 ± 0.1 5.12 ±
ENERGY 0.51 ± 0.02 0.5 ± 0.01 0.5 ± 0.01 0.51 ± 0.01 0.5 ± 0.01 0.51 ± 0.02 0.53 ± 0.01 0.55 ±
KIN8NM 0.07 ± 0 0.07 ± 0 0.07 ± 0 0.06 ± 0 0.07 ± 0 0.07 ± 0 0.07 ± 0 0.07 ±
NAVAL 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ±
WINE RED 0.65 ± 0.01 0.64 ± 0.01 0.64 ± 0.01 0.63 ± 0.01 0.63 ± 0.01 0.63 ± 0.01 0.63 ± 0.01 0.63 ±
YACHT 0.56 ± 0.07 0.48 ± 0.03 0.47 ± 0.03 0.46 ± 0.03 0.46 ± 0.03 0.46 ± 0.04 0.48 ± 0.03 0.5 ±
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± 0.01 -0.64 ± 0.01 -0.64 ± 0.01 -0.65 ± 0.01
± 0.02 -0.19 ± 0.02 -0.19 ± 0.02 -0.19 ± 0.02
± 0.01 -0.46 ± 0.01 -0.47 ± 0.01 -0.47 ± 0.01
± 0.05 -0.49 ± 0.05 -0.49 ± 0.04 -0.49 ± 0.05
± 0.01 -0.1 ± 0.01 -0.1 ± 0.01 -0.1 ± 0.01
± 0 -0.01 ± 0 -0.01 ± 0 -0.01 ± 0

± 0.01 -0.63 ± 0.01 -0.64 ± 0.01 -0.65 ± 0.01
± 0.01 -0.17 ± 0.02 -0.17 ± 0.01 -0.17 ± 0.02
± 0.01 -0.48 ± 0.01 -0.49 ± 0.02 -0.49 ± 0.01
± 0.04 -0.51 ± 0.04 -0.5 ± 0.04 -0.49 ± 0.04
± 0.01 -0.11 ± 0.01 -0.11 ± 0.01 -0.11 ± 0.01
± 0 -0.01 ± 0 -0.01 ± 0 -0.01 ± 0

± 0.01 -0.62 ± 0.01 -0.63 ± 0.01 -0.64 ± 0.01
± 0.02 -0.22 ± 0.02 -0.21 ± 0.02 -0.21 ± 0.02
± 0.02 -0.53 ± 0.05 -0.48 ± 0.02 -0.48 ± 0.01
± 0.04 -0.42 ± 0.05 -0.42 ± 0.04 -0.41 ± 0.04
± 0.01 -0.1 ± 0.01 -0.1 ± 0.01 -0.1 ± 0.01
± 0 -0.01 ± 0 -0.01 ± 0 -0.01 ± 0

± 0.01 -0.62 ± 0.01 -0.62 ± 0.01 -0.63 ± 0.01
± 0.02 -0.22 ± 0.03 -0.2 ± 0.02 -0.21 ± 0.02
± 0.02 -0.48 ± 0.02 -0.49 ± 0.02 -0.51 ± 0.02
± 0.05 -0.41 ± 0.04 -0.42 ± 0.04 -0.41 ± 0.04
± 0.01 -0.1 ± 0.01 -0.1 ± 0.01 -0.1 ± 0.01
± 0 -0.01 ± 0 -0.01 ± 0 -0.01 ± 0
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Table C.9
Binary classification test log-likelihood (the higher the better) results for UCI datasets. Averages over 20 splits and standard errors.

Problem α → 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0

L = 2 AUSTRALIAN -0.62 ± 0.01 -0.62 ± 0.01 -0.62 ± 0.01 -0.62 ± 0.01 -0.62 ± 0.01 -0.63 ± 0.01 -0.63 ± 0.01 -0.63
IONO -0.19 ± 0.02 -0.2 ± 0.02 -0.2 ± 0.02 -0.2 ± 0.02 -0.2 ± 0.02 -0.2 ± 0.02 -0.2 ± 0.02 -0.2
PIMA -0.46 ± 0.01 -0.46 ± 0.01 -0.46 ± 0.01 -0.46 ± 0.01 -0.46 ± 0.01 -0.46 ± 0.01 -0.46 ± 0.01 -0.46
SONAR -0.48 ± 0.05 -0.47 ± 0.04 -0.46 ± 0.05 -0.48 ± 0.04 -0.49 ± 0.04 -0.5 ± 0.05 -0.5 ± 0.05 -0.5
BREAST -0.1 ± 0.01 -0.1 ± 0.01 -0.1 ± 0.01 -0.1 ± 0.01 -0.1 ± 0.01 -0.1 ± 0.01 -0.1 ± 0.01 -0.1
CRABS -0.0 ± 0 -0.0 ± 0 -0.0 ± 0 -0.0 ± 0 -0.0 ± 0 -0.0 ± 0 -0.01 ± 0 -0.01

L = 3 AUSTRALIAN -0.62 ± 0.01 -0.62 ± 0.01 -0.62 ± 0.01 -0.62 ± 0.01 -0.62 ± 0.01 -0.62 ± 0.01 -0.62 ± 0.01 -0.63
IONO -0.18 ± 0.02 -0.18 ± 0.01 -0.18 ± 0.01 -0.18 ± 0.02 -0.18 ± 0.01 -0.18 ± 0.01 -0.17 ± 0.01 -0.17
PIMA -0.48 ± 0.01 -0.48 ± 0.01 -0.48 ± 0.01 -0.47 ± 0.01 -0.48 ± 0.01 -0.48 ± 0.01 -0.48 ± 0.01 -0.48
SONAR -0.49 ± 0.04 -0.51 ± 0.03 -0.49 ± 0.03 -0.51 ± 0.05 -0.5 ± 0.04 -0.49 ± 0.04 -0.51 ± 0.04 -0.51
BREAST -0.1 ± 0.01 -0.1 ± 0.01 -0.1 ± 0.01 -0.1 ± 0.01 -0.1 ± 0.01 -0.1 ± 0.01 -0.1 ± 0.01 -0.1
CRABS -0.01 ± 0 -0.01 ± 0 -0.01 ± 0 -0.01 ± 0 -0.01 ± 0 -0.01 ± 0 -0.01 ± 0 -0.01

L = 4 AUSTRALIAN -0.62 ± 0.01 -0.62 ± 0.01 -0.62 ± 0.01 -0.62 ± 0.01 -0.62 ± 0.01 -0.62 ± 0.01 -0.62 ± 0.01 -0.62
IONO -0.2 ± 0.02 -0.2 ± 0.02 -0.2 ± 0.02 -0.2 ± 0.02 -0.2 ± 0.02 -0.2 ± 0.02 -0.21 ± 0.02 -0.22
PIMA -0.51 ± 0.02 -0.53 ± 0.02 -0.52 ± 0.02 -0.54 ± 0.02 -0.51 ± 0.02 -0.56 ± 0.06 -0.49 ± 0.02 -0.49
SONAR -0.44 ± 0.05 -0.43 ± 0.06 -0.43 ± 0.04 -0.43 ± 0.05 -0.43 ± 0.05 -0.43 ± 0.05 -0.42 ± 0.05 -0.42
BREAST -0.1 ± 0.01 -0.1 ± 0.01 -0.1 ± 0.01 -0.1 ± 0.01 -0.1 ± 0.01 -0.1 ± 0.01 -0.1 ± 0.01 -0.1
CRABS -0.01 ± 0 -0.01 ± 0 -0.01 ± 0 -0.01 ± 0 -0.01 ± 0 -0.01 ± 0 -0.01 ± 0 -0.01

L = 5 AUSTRALIAN -0.62 ± 0.01 -0.62 ± 0.01 -0.62 ± 0.01 -0.62 ± 0.01 -0.62 ± 0.01 -0.62 ± 0.01 -0.62 ± 0.01 -0.62
IONO -0.19 ± 0.01 -0.19 ± 0.02 -0.2 ± 0.02 -0.21 ± 0.02 -0.2 ± 0.02 -0.2 ± 0.02 -0.2 ± 0.02 -0.21
PIMA -0.5 ± 0.03 -0.5 ± 0.03 -0.5 ± 0.03 -0.5 ± 0.04 -0.47 ± 0.02 -0.47 ± 0.02 -0.47 ± 0.02 -0.48
SONAR -0.46 ± 0.06 -0.45 ± 0.06 -0.45 ± 0.05 -0.43 ± 0.05 -0.41 ± 0.04 -0.4 ± 0.05 -0.41 ± 0.04 -0.41
BREAST -0.09 ± 0.01 -0.09 ± 0.01 -0.09 ± 0.01 -0.09 ± 0.01 -0.1 ± 0.01 -0.1 ± 0.01 -0.1 ± 0.01 -0.1
CRABS -0.01 ± 0 -0.01 ± 0 -0.01 ± 0 -0.01 ± 0 -0.01 ± 0 -0.01 ± 0 -0.01 ± 0 -0.01
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.7 α = 0.8 α = 0.9 α = 1

0.01 0.35 ± 0.01 0.36 ± 0.01 0.37 ± 0.01
0.01 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01
0.01 0.23 ± 0.01 0.23 ± 0.01 0.23 ± 0.01
0.02 0.19 ± 0.02 0.2 ± 0.02 0.21 ± 0.02
0 0.03 ± 0 0.03 ± 0 0.03 ± 0
0 0.0 ± 0 0.0 ± 0 0.0 ± 0

0.01 0.35 ± 0.01 0.35 ± 0.01 0.36 ± 0.01
0.01 0.06 ± 0.01 0.07 ± 0.01 0.07 ± 0.01
0.01 0.24 ± 0.01 0.24 ± 0.01 0.22 ± 0.01
0.02 0.2 ± 0.01 0.21 ± 0.01 0.2 ± 0.01
0 0.03 ± 0 0.03 ± 0 0.03 ± 0
0 0.0 ± 0 0.0 ± 0 0.0 ± 0

0.01 0.33 ± 0.02 0.34 ± 0.01 0.36 ± 0.01
0.01 0.06 ± 0.01 0.07 ± 0.01 0.07 ± 0.01
0.01 0.24 ± 0.01 0.24 ± 0.01 0.23 ± 0.01
0.02 0.17 ± 0.02 0.17 ± 0.02 0.17 ± 0.02
0 0.04 ± 0 0.04 ± 0 0.04 ± 0
0 0.0 ± 0 0.0 ± 0 0.0 ± 0

0.01 0.34 ± 0.01 0.33 ± 0.01 0.35 ± 0.01
0.01 0.08 ± 0.01 0.08 ± 0.01 0.07 ± 0.01
0.01 0.24 ± 0.01 0.23 ± 0.01 0.24 ± 0.01
0.01 0.17 ± 0.01 0.17 ± 0.02 0.18 ± 0.01
0 0.03 ± 0 0.03 ± 0 0.03 ± 0
0 0.0 ± 0 0.0 ± 0 0.0 ± 0

167
Table C.10
Binary classification test error (the lower the better) results for UCI datasets. Averages over 20 splits and standard errors.

Problem α → 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0

L = 2 AUSTRALIAN 0.34 ± 0.01 0.34 ± 0.01 0.34 ± 0.01 0.34 ± 0.01 0.33 ± 0.01 0.34 ± 0.01 0.34 ± 0.01 0.34 ±
IONO 0.06 ± 0.01 0.07 ± 0.01 0.06 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.06 ± 0.01 0.06 ±
PIMA 0.23 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.23 ±
SONAR 0.19 ± 0.02 0.19 ± 0.02 0.19 ± 0.02 0.19 ± 0.02 0.18 ± 0.02 0.18 ± 0.02 0.18 ± 0.02 0.19 ±
BREAST 0.03 ± 0 0.03 ± 0 0.03 ± 0 0.03 ± 0 0.03 ± 0 0.03 ± 0 0.03 ± 0 0.03 ±
CRABS 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ±

L = 3 AUSTRALIAN 0.33 ± 0.01 0.34 ± 0.01 0.34 ± 0.01 0.34 ± 0.01 0.34 ± 0.01 0.34 ± 0.01 0.34 ± 0.01 0.34 ±
IONO 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.06 ±
PIMA 0.23 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.24 ± 0.01 0.24 ± 0.01 0.24 ± 0.01 0.24 ±
SONAR 0.22 ± 0.02 0.23 ± 0.02 0.23 ± 0.02 0.23 ± 0.02 0.22 ± 0.02 0.21 ± 0.02 0.21 ± 0.02 0.21 ±
BREAST 0.04 ± 0 0.03 ± 0 0.03 ± 0 0.03 ± 0 0.03 ± 0 0.03 ± 0 0.03 ± 0 0.03 ±
CRABS 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ±

L = 4 AUSTRALIAN 0.33 ± 0.01 0.33 ± 0.02 0.33 ± 0.01 0.34 ± 0.01 0.34 ± 0.01 0.33 ± 0.01 0.34 ± 0.01 0.34 ±
IONO 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.06 ±
PIMA 0.24 ± 0.01 0.25 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.24 ± 0.01 0.24 ± 0.01 0.24 ±
SONAR 0.15 ± 0.02 0.15 ± 0.02 0.15 ± 0.02 0.16 ± 0.02 0.17 ± 0.02 0.17 ± 0.02 0.17 ± 0.01 0.17 ±
BREAST 0.03 ± 0 0.04 ± 0 0.03 ± 0 0.03 ± 0 0.03 ± 0 0.03 ± 0 0.03 ± 0 0.03 ±
CRABS 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ±

L = 5 AUSTRALIAN 0.32 ± 0.01 0.32 ± 0.01 0.32 ± 0.01 0.32 ± 0.01 0.32 ± 0.01 0.33 ± 0.01 0.34 ± 0.01 0.34 ±
IONO 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.08 ± 0.01 0.08 ± 0.01 0.07 ± 0.01 0.08 ± 0.01 0.07 ±
PIMA 0.23 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.24 ±
SONAR 0.16 ± 0.02 0.16 ± 0.01 0.16 ± 0.01 0.15 ± 0.01 0.15 ± 0.02 0.16 ± 0.02 0.16 ± 0.02 0.17 ±
BREAST 0.03 ± 0 0.03 ± 0 0.03 ± 0 0.03 ± 0 0.03 ± 0 0.03 ± 0 0.03 ± 0 0.03 ±
CRABS 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ± 0 0.0 ±
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± 0.1 -1.12 ± 0.08 -1.08 ± 0.07 -1.04 ± 0.06
± 0.08 -0.33 ± 0.07 -0.32 ± 0.07 -0.3 ± 0.07
± 0.05 -0.67 ± 0.05 -0.66 ± 0.05 -0.65 ± 0.05
± 0.00 -0.34 ± 0.00 -0.34 ± 0.00 -0.34 ± 0.00
± 0.02 -0.38 ± 0.02 -0.38 ± 0.02 -0.38 ± 0.02
± 0.03 -0.29 ± 0.02 -0.31 ± 0.03 -0.32 ± 0.03
± 0.01 -0.41 ± 0.01 -0.4 ± 0.01 -0.39 ± 0.01
± 0.06 -0.25 ± 0.05 -0.24 ± 0.05 -0.23 ± 0.05

± 0.09 -1.1 ± 0.09 -1.06 ± 0.07 -1.04 ± 0.07
± 0.08 -0.32 ± 0.06 -0.31 ± 0.07 -0.29 ± 0.06
± 0.06 -0.68 ± 0.05 -0.66 ± 0.06 -0.67 ± 0.05
± 0.00 -0.34 ± 0.00 -0.34 ± 0.00 -0.34 ± 0.00
± 0.03 -0.38 ± 0.02 -0.38 ± 0.02 -0.38 ± 0.02
± 0.03 -0.31 ± 0.03 -0.32 ± 0.03 -0.32 ± 0.03
± 0.01 -0.41 ± 0.01 -0.4 ± 0.01 -0.39 ± 0.01
± 0.06 -0.24 ± 0.06 -0.24 ± 0.05 -0.23 ± 0.05

± 0.09 -1.09 ± 0.07 -1.05 ± 0.08 -1.03 ± 0.07
± 0.07 -0.31 ± 0.08 -0.3 ± 0.07 -0.29 ± 0.06
± 0.06 -0.68 ± 0.05 -0.68 ± 0.05 -0.67 ± 0.06
± 0.00 -0.34 ± 0.00 -0.34 ± 0.00 -0.34 ± 0.00
± 0.02 -0.37 ± 0.02 -0.37 ± 0.02 -0.37 ± 0.02
± 0.02 -0.3 ± 0.02 -0.31 ± 0.02 -0.32 ± 0.03
± 0.01 -0.41 ± 0.01 -0.4 ± 0.01 -0.39 ± 0.01
± 0.06 -0.24 ± 0.05 -0.23 ± 0.05 -0.23 ± 0.04

± 0.08 -1.1 ± 0.07 -1.07 ± 0.07 -1.04 ± 0.07
± 0.09 -0.43 ± 0.08 -0.41 ± 0.07 -0.31 ± 0.06
± 0.06 -0.7 ± 0.06 -0.69 ± 0.06 -0.69 ± 0.06
± 0.00 -0.34 ± 0.00 -0.34 ± 0.00 -0.34 ± 0.00
± 0.03 -0.38 ± 0.02 -0.39 ± 0.02 -0.38 ± 0.02
± 0.02 -0.3 ± 0.03 -0.3 ± 0.02 -0.31 ± 0.02
± 0.01 -0.41 ± 0.01 -0.4 ± 0.01 -0.39 ± 0.01
± 0.06 -0.24 ± 0.05 -0.23 ± 0.05 -0.23 ± 0.04
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Table C.11
Multi-class classification test log-likelihood (the higher the better) results for UCI datasets. Averages over 20 splits and standard errors.

Problem α → 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0

L = 2 GLASS -2.31 ± 0.2 -2.11 ± 0.2 -1.62 ± 0.1 -1.63 ± 0.1 -1.58 ± 0.1 -1.47 ± 0.1 -1.31 ± 0.1 -1.2
NEW-THYROID -0.66 ± 0.1 -0.64 ± 0.1 -0.6 ± 0.2 -0.63 ± 0.2 -0.54 ± 0.1 -0.48 ± 0.1 -0.43 ± 0.1 -0.38
SVMGUIDE2 -1.02 ± 0.09 -0.97 ± 0.08 -0.87 ± 0.08 -0.8 ± 0.07 -0.76 ± 0.07 -0.75 ± 0.06 -0.69 ± 0.06 -0.67
SATELLITE -0.69 ± 0.02 -0.6 ± 0.01 -0.51 ± 0.01 -0.44 ± 0.01 -0.38 ± 0.01 -0.36 ± 0.00 -0.35 ± 0.00 -0.34
VEHICLE -0.83 ± 0.06 -0.69 ± 0.05 -0.56 ± 0.04 -0.5 ± 0.03 -0.44 ± 0.03 -0.42 ± 0.03 -0.41 ± 0.03 -0.4
VOWEL -0.39 ± 0.05 -0.37 ± 0.04 -0.3 ± 0.04 -0.27 ± 0.03 -0.28 ± 0.03 -0.26 ± 0.03 -0.26 ± 0.03 -0.28
WAVEFORM -0.86 ± 0.01 -0.79 ± 0.02 -0.71 ± 0.02 -0.6 ± 0.02 -0.53 ± 0.02 -0.48 ± 0.02 -0.45 ± 0.01 -0.43
WINE -0.32 ± 0.07 -0.31 ± 0.07 -0.31 ± 0.07 -0.29 ± 0.07 -0.28 ± 0.05 -0.28 ± 0.06 -0.27 ± 0.06 -0.26

L = 3 GLASS -2.36 ± 0.2 -2.37 ± 0.2 -1.73 ± 0.2 -1.61 ± 0.1 -1.49 ± 0.1 -1.29 ± 0.1 -1.19 ± 0.1 -1.16
NEW-THYROID -0.6 ± 0.1 -0.65 ± 0.1 -0.75 ± 0.2 -0.61 ± 0.1 -0.46 ± 0.1 -0.4 ± 0.1 -0.36 ± 0.09 -0.34
SVMGUIDE2 -1.01 ± 0.1 -0.98 ± 0.07 -0.88 ± 0.07 -0.78 ± 0.07 -0.78 ± 0.07 -0.75 ± 0.07 -0.71 ± 0.06 -0.7
SATELLITE -0.72 ± 0.03 -0.59 ± 0.01 -0.51 ± 0.01 -0.42 ± 0.01 -0.38 ± 0.01 -0.36 ± 0.01 -0.35 ± 0.00 -0.34
VEHICLE -0.81 ± 0.05 -0.71 ± 0.05 -0.57 ± 0.04 -0.49 ± 0.03 -0.46 ± 0.03 -0.44 ± 0.03 -0.41 ± 0.02 -0.39
VOWEL -0.42 ± 0.04 -0.37 ± 0.05 -0.32 ± 0.04 -0.29 ± 0.04 -0.28 ± 0.03 -0.26 ± 0.03 -0.27 ± 0.03 -0.3
WAVEFORM -0.88 ± 0.01 -0.8 ± 0.01 -0.7 ± 0.02 -0.59 ± 0.02 -0.52 ± 0.02 -0.47 ± 0.01 -0.45 ± 0.01 -0.43
WINE -0.33 ± 0.08 -0.32 ± 0.08 -0.31 ± 0.07 -0.29 ± 0.07 -0.28 ± 0.06 -0.27 ± 0.07 -0.26 ± 0.05 -0.25

L = 4 GLASS -2.59 ± 0.2 -2.38 ± 0.2 -1.62 ± 0.1 -1.83 ± 0.2 -1.5 ± 0.1 -1.28 ± 0.1 -1.2 ± 0.1 -1.14
NEW-THYROID -0.56 ± 0.1 -0.62 ± 0.2 -0.64 ± 0.1 -0.65 ± 0.2 -0.48 ± 0.1 -0.42 ± 0.1 -0.4 ± 0.09 -0.34
SVMGUIDE2 -1.04 ± 0.09 -0.97 ± 0.09 -0.89 ± 0.07 -0.81 ± 0.07 -0.78 ± 0.08 -0.75 ± 0.07 -0.71 ± 0.06 -0.69
SATELLITE -0.72 ± 0.03 -0.57 ± 0.01 -0.51 ± 0.01 -0.43 ± 0.01 -0.38 ± 0.00 -0.36 ± 0.00 -0.35 ± 0.01 -0.34
VEHICLE -0.93 ± 0.06 -0.83 ± 0.06 -0.62 ± 0.04 -0.53 ± 0.04 -0.49 ± 0.04 -0.44 ± 0.03 -0.4 ± 0.02 -0.38
VOWEL -0.43 ± 0.05 -0.34 ± 0.04 -0.31 ± 0.04 -0.28 ± 0.04 -0.26 ± 0.03 -0.27 ± 0.03 -0.29 ± 0.03 -0.29
WAVEFORM -0.9 ± 0.02 -0.82 ± 0.02 -0.7 ± 0.01 -0.59 ± 0.02 -0.52 ± 0.02 -0.47 ± 0.01 -0.44 ± 0.01 -0.43
WINE -0.31 ± 0.07 -0.31 ± 0.06 -0.31 ± 0.08 -0.29 ± 0.07 -0.27 ± 0.06 -0.27 ± 0.06 -0.26 ± 0.06 -0.25

L = 5 GLASS -2.75 ± 0.2 -2.83 ± 0.2 -1.92 ± 0.2 -1.58 ± 0.1 -1.36 ± 0.1 -1.25 ± 0.09 -1.21 ± 0.09 -1.13
NEW-THYROID -0.69 ± 0.1 -0.64 ± 0.1 -0.61 ± 0.1 -0.62 ± 0.1 -0.49 ± 0.1 -0.58 ± 0.1 -0.54 ± 0.1 -0.45
SVMGUIDE2 -1.1 ± 0.08 -1.03 ± 0.1 -0.91 ± 0.08 -0.82 ± 0.07 -0.79 ± 0.06 -0.75 ± 0.07 -0.71 ± 0.06 -0.7
SATELLITE -0.79 ± 0.03 -0.6 ± 0.01 -0.51 ± 0.01 -0.44 ± 0.01 -0.38 ± 0.01 -0.36 ± 0.00 -0.35 ± 0.00 -0.34
VEHICLE -0.96 ± 0.06 -0.93 ± 0.07 -0.86 ± 0.07 -0.75 ± 0.06 -0.59 ± 0.05 -0.54 ± 0.04 -0.39 ± 0.03 -0.4
VOWEL -0.47 ± 0.07 -0.38 ± 0.05 -0.33 ± 0.05 -0.28 ± 0.04 -0.27 ± 0.03 -0.29 ± 0.03 -0.28 ± 0.03 -0.28
WAVEFORM -0.94 ± 0.02 -0.82 ± 0.02 -0.72 ± 0.02 -0.59 ± 0.02 -0.51 ± 0.02 -0.47 ± 0.02 -0.44 ± 0.01 -0.42
WINE -0.31 ± 0.07 -0.31 ± 0.08 -0.3 ± 0.06 -0.29 ± 0.07 -0.27 ± 0.06 -0.27 ± 0.06 -0.26 ± 0.06 -0.25



C.Villacam
pa-Calvo,G

.H
ernández-M

uñoz
and

D
.H

ernández-Lobato
InternationalJournalofA

pproxim
ate

Reasoning
150

(2022)
139–171

0.7 α = 0.8 α = 0.9 α = 1

± 0.03 0.43 ± 0.03 0.4 ± 0.03 0.4 ± 0.03
± 0.03 0.09 ± 0.02 0.09 ± 0.02 0.09 ± 0.02
± 0.01 0.2 ± 0.01 0.2 ± 0.01 0.19 ± 0.01
± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00
± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.18 ± 0.01
± 0.01 0.09 ± 0.01 0.11 ± 0.01 0.11 ± 0.01
± 0.00 0.16 ± 0.00 0.16 ± 0.00 0.16 ± 0.00
± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.06 ± 0.01

± 0.04 0.43 ± 0.03 0.4 ± 0.03 0.4 ± 0.03
± 0.02 0.09 ± 0.02 0.09 ± 0.02 0.09 ± 0.02
± 0.01 0.2 ± 0.01 0.2 ± 0.01 0.2 ± 0.01
± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.13 ± 0.00
± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.18 ± 0.01
± 0.01 0.11 ± 0.01 0.11 ± 0.01 0.12 ± 0.01
± 0.00 0.16 ± 0.00 0.16 ± 0.00 0.16 ± 0.00
± 0.01 0.07 ± 0.01 0.06 ± 0.01 0.06 ± 0.01

± 0.03 0.41 ± 0.03 0.4 ± 0.03 0.41 ± 0.03
± 0.02 0.1 ± 0.02 0.09 ± 0.02 0.09 ± 0.02
± 0.01 0.21 ± 0.01 0.2 ± 0.02 0.2 ± 0.01
± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.13 ± 0.00
± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.18 ± 0.01
± 0.01 0.1 ± 0.01 0.11 ± 0.01 0.12 ± 0.01
± 0.00 0.16 ± 0.00 0.16 ± 0.00 0.16 ± 0.00
± 0.02 0.07 ± 0.01 0.06 ± 0.01 0.06 ± 0.01

± 0.04 0.42 ± 0.03 0.42 ± 0.04 0.41 ± 0.03
± 0.03 0.14 ± 0.03 0.13 ± 0.03 0.09 ± 0.02
± 0.01 0.21 ± 0.01 0.21 ± 0.01 0.2 ± 0.01
± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.13 ± 0.00
± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.18 ± 0.01
± 0.01 0.1 ± 0.01 0.1 ± 0.01 0.11 ± 0.01
± 0.00 0.16 ± 0.00 0.16 ± 0.00 0.16 ± 0.00
± 0.01 0.07 ± 0.01 0.06 ± 0.01 0.06 ± 0.01
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Table C.12
Multi-class classification test error (the lower the better) results for UCI datasets. Averages over 20 splits and standard errors.

Problem α → 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α =
L = 2 GLASS 0.43 ± 0.03 0.41 ± 0.03 0.48 ± 0.04 0.45 ± 0.02 0.46 ± 0.03 0.45 ± 0.03 0.47 ± 0.04 0.45

NEW-THYROID 0.11 ± 0.02 0.12 ± 0.02 0.13 ± 0.03 0.14 ± 0.03 0.13 ± 0.03 0.13 ± 0.03 0.13 ± 0.03 0.12
SVMGUIDE2 0.19 ± 0.02 0.2 ± 0.01 0.19 ± 0.02 0.2 ± 0.01 0.2 ± 0.01 0.21 ± 0.01 0.21 ± 0.01 0.2
SATELLITE 0.13 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12
VEHICLE 0.18 ± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.17 ± 0.01 0.17 ± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.18
VOWEL 0.1 ± 0.01 0.1 ± 0.01 0.1 ± 0.01 0.09 ± 0.01 0.09 ± 0.01 0.09 ± 0.01 0.09 ± 0.01 0.1
WAVEFORM 0.19 ± 0.00 0.19 ± 0.00 0.19 ± 0.00 0.18 ± 0.00 0.18 ± 0.00 0.17 ± 0.00 0.17 ± 0.00 0.17
WINE 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.06

L = 3 GLASS 0.39 ± 0.02 0.46 ± 0.03 0.48 ± 0.03 0.46 ± 0.02 0.46 ± 0.03 0.49 ± 0.04 0.45 ± 0.04 0.45
NEW-THYROID 0.13 ± 0.02 0.13 ± 0.02 0.15 ± 0.04 0.14 ± 0.03 0.11 ± 0.02 0.11 ± 0.03 0.1 ± 0.03 0.1
SVMGUIDE2 0.2 ± 0.02 0.2 ± 0.01 0.2 ± 0.01 0.19 ± 0.01 0.2 ± 0.01 0.2 ± 0.02 0.21 ± 0.01 0.2
SATELLITE 0.13 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12
VEHICLE 0.19 ± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.18
VOWEL 0.11 ± 0.01 0.09 ± 0.01 0.1 ± 0.01 0.09 ± 0.01 0.09 ± 0.02 0.09 ± 0.01 0.09 ± 0.01 0.1
WAVEFORM 0.19 ± 0.00 0.19 ± 0.00 0.18 ± 0.00 0.18 ± 0.00 0.18 ± 0.00 0.17 ± 0.00 0.17 ± 0.00 0.17
WINE 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.06

L = 4 GLASS 0.44 ± 0.02 0.47 ± 0.03 0.45 ± 0.02 0.49 ± 0.03 0.46 ± 0.02 0.45 ± 0.03 0.47 ± 0.03 0.44
NEW-THYROID 0.13 ± 0.02 0.14 ± 0.03 0.13 ± 0.02 0.15 ± 0.03 0.12 ± 0.02 0.11 ± 0.02 0.12 ± 0.03 0.1
SVMGUIDE2 0.2 ± 0.01 0.21 ± 0.02 0.21 ± 0.01 0.2 ± 0.02 0.19 ± 0.01 0.2 ± 0.01 0.2 ± 0.01 0.2
SATELLITE 0.13 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12
VEHICLE 0.19 ± 0.01 0.19 ± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.17 ± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.18
VOWEL 0.11 ± 0.01 0.09 ± 0.01 0.1 ± 0.01 0.09 ± 0.01 0.09 ± 0.01 0.09 ± 0.01 0.1 ± 0.01 0.1
WAVEFORM 0.19 ± 0.00 0.19 ± 0.00 0.19 ± 0.00 0.18 ± 0.00 0.18 ± 0.00 0.17 ± 0.00 0.17 ± 0.00 0.17
WINE 0.06 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.06 ± 0.01 0.06

L = 5 GLASS 0.46 ± 0.03 0.51 ± 0.03 0.46 ± 0.02 0.44 ± 0.02 0.46 ± 0.03 0.48 ± 0.04 0.45 ± 0.03 0.43
NEW-THYROID 0.15 ± 0.03 0.15 ± 0.03 0.16 ± 0.04 0.16 ± 0.04 0.14 ± 0.03 0.16 ± 0.03 0.15 ± 0.03 0.12
SVMGUIDE2 0.21 ± 0.01 0.21 ± 0.01 0.2 ± 0.02 0.2 ± 0.01 0.19 ± 0.01 0.2 ± 0.01 0.2 ± 0.01 0.21
SATELLITE 0.14 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12
VEHICLE 0.19 ± 0.01 0.2 ± 0.02 0.19 ± 0.01 0.2 ± 0.01 0.19 ± 0.01 0.19 ± 0.01 0.18 ± 0.01 0.19
VOWEL 0.11 ± 0.01 0.11 ± 0.01 0.1 ± 0.01 0.09 ± 0.01 0.09 ± 0.01 0.1 ± 0.01 0.09 ± 0.01 0.1
WAVEFORM 0.19 ± 0.00 0.19 ± 0.00 0.19 ± 0.00 0.18 ± 0.00 0.17 ± 0.00 0.17 ± 0.00 0.17 ± 0.00 0.16
WINE 0.06 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.06 ± 0.01 0.06
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Table C.13
Negative test log-likelihood (the lower the better) results for the big datasets.

Problem α → 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1

L = 2 YEAR 3.62 3.62 3.61 3.57 3.56 3.51 3.49 3.49 3.43 3.39 3.35
HIGGS 0.52 0.52 0.52 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.51
MNIST 0.14 0.12 0.11 0.11 0.1 0.09 0.09 0.09 0.08 0.09 0.1

L = 3 YEAR 3.63 3.65 3.58 3.56 3.54 3.49 3.46 3.44 3.40 3.37 3.35
HIGGS 0.51 0.51 0.51 0.51 0.51 0.5 0.51 0.51 0.51 0.51 0.5
MNIST 0.13 0.12 0.1 0.1 0.11 0.1 0.1 0.1 0.09 0.09 0.09

L = 4 YEAR 3.64 3.61 3.61 3.56 3.52 3.52 3.47 3.45 3.42 3.38 3.37
HIGGS 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51
MNIST 0.13 0.13 0.12 0.11 0.11 0.12 0.11 0.11 0.09 0.08 0.1

L = 5 YEAR 3.61 3.62 3.60 3.57 3.56 3.51 3.47 3.45 3.43 3.39 3.36
HIGGS 0.51 0.51 0.51 0.51 0.51 0.52 0.51 0.52 0.52 0.52 0.51
MNIST 0.11 0.12 0.12 0.1 0.1 0.09 0.12 0.1 0.09 0.09 0.09

Table C.14
Test error (the lower the better) results for the big datasets. RMSE is reported for Year and classification error for the rest.

Problem α → 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1

L = 2 YEAR 9.42 9.47 9.49 10.08 9.76 10.12 9.97 10.14 9.87 9.67 10.15
HIGGS 0.269 0.269 0.266 0.267 0.262 0.262 0.261 0.262 0.264 0.256 0.256
MNIST 0.025 0.022 0.024 0.022 0.021 0.021 0.022 0.023 0.02 0.02 0.023

L = 3 YEAR 9.29 9.94 9.13 9.11 10.10 9.24 9.63 9.52 9.55 9.56 9.78
HIGGS 0.257 0.256 0.258 0.258 0.262 0.255 0.261 0.257 0.257 0.256 0.251
MNIST 0.023 0.023 0.02 0.019 0.02 0.024 0.023 0.023 0.02 0.022 0.023

L = 4 YEAR 9.59 9.19 9.97 9.71 9.50 9.92 9.36 9.69 9.96 10.06 10.14
HIGGS 0.262 0.258 0.264 0.261 0.258 0.261 0.264 0.258 0.258 0.262 0.259
MNIST 0.022 0.023 0.023 0.022 0.021 0.027 0.028 0.025 0.021 0.021 0.024

L = 5 YEAR 9.13 9.69 9.68 9.83 10.00 10.02 9.40 9.55 10.15 9.88 10.16
HIGGS 0.261 0.26 0.263 0.257 0.262 0.268 0.26 0.266 0.264 0.265 0.258
MNIST 0.02 0.023 0.024 0.021 0.023 0.022 0.028 0.024 0.022 0.023 0.021
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