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Abstract
In this work we explore enhancing performance of reinforcement learning algorithms in
video game environments by feeding it better, more relevant data. For this purpose, we use
semantic segmentation to transform the images that would be used as input for the rein-
forcement learning algorithm from their original domain to a simplified semantic domain
with just silhouettes and class labels instead of textures and colors, and then we train the
reinforcement learning algorithm with these simplified images. We have conducted differ-
ent experiments to study multiple aspects: feasibility of our proposal, and potential benefits
to model generalization and transfer learning. Experiments have been performed with the
Super Mario Bros video game as the testing environment. Our results show multiple advan-
tages for this method. First, it proves that using semantic segmentation enables reaching
higher performance than the baseline reinforcement learning algorithm without modify-
ing the actual algorithm, and in fewer episodes; second, it shows noticeable performance
improvements when training on multiple levels at the same time; and finally, it allows to
apply transfer learning for models trained on visually different environments. We conclude
that using semantic segmentation can certainly help reinforcement learning algorithms that
work with visual data, by refining it. Our results also suggest that other computer vision
techniques may also be beneficial for data prepossessing. Models and code will be available
on github upon acceptance.
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1 Introduction

Oftentimes, when humans try to solve problems, they usually think of similar situations that
they have faced before, and in many cases, problems are more an issue of association of
already known situations and possible solutions. For example, when playing a videogame
we may reach a new level, with a completely different appearance for the environment and
enemies we may find, but we can still understand the environment and what are the enemies,
and therefore we are able to complete it.

In some way, we could say that we semantically understand the environment in a higher
or more abstract level. The texture and appearance variability is not really useful except to
identify the class of the element in the screen: enemies, obstacles, coins, etc. And then, we
perform an action or another using this knowledge. Therefore, if we only used this semantic
information from the game, without textures, we should be able to beat it normally. This
is not the case for many AI models: as they learn how to play the game based on images
from the video game, when presented with a different scenario, although it may vary only
visually, features do not activate in the same way, so the AI model is not able to complete it.

Computer vision is a field of AI that focuses on gaining high-level understanding from
images and videos. This high-level understanding can then be used for different purposes,
such as image classification, object detection or tracking, semantic segmentation, scene
understanding, etc. If we apply computer vision techniques to the frames from a video game,
we can retrieve additional information from them, like for example the semantic labels for
each pixel, element localization or level recognition. Our main objective is boosting the
performance of an AI model that plays a video game by feeding it with complementary
information obtained using computer vision, instead of by enhancing the AI model.

In this work, we use semantic segmentation as an image processing technique, in order to
make different environments from a video game look the same for a reinforcement learning
AI model that learns how to play the video game. We have performed our tests using the
Super Mario Bros video game. As we will show later, using semantically segmented images
offers some advantages in comparison to using the normal images as input when training
the AI model. Our results show that semantic segmentation helps the tested reinforcement
learning models to converge faster, learning to complete game-levels in less episodes and
obtaining a higher average reward. It also enables transfer learning between game-levels
with different appearance, and training in multiple levels at the same time.

To establish the framework for our tests, we have first prepared the model that would
perform the semantic segmentation of the video game frames. As the video game has no
ground truth for semantic segmentation, we have built a synthetic frame generator, which
we then use to create a semantic segmentation dataset. The semantic segmentation model is
trained using this dataset of synthetic video game frames. Afterwards, we prepare an envi-
ronment to train our reinforcement learning agent that learns how to play the Super Mario
Bros video game. Finally, we include the segmentation model on the image processing part
of the pipeline, so the AI model receives segmented images as input.

The paper is organized as follows. In Section 2 on Related Work, we present a review of
different algorithms used for semantic segmentation and reinforcement learning, as well as
information about synthetic datasets and data generation techniques used in the literature. In
Section 3 we explain our framework, the different parts it is composed of, and the training
and validation methodology and settings used. Finally, in the Results Section, we present
our results, and our testing methodology.
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2 Related work

In this work, we combine three different topics in AI research: Semantic Segmentation,
Synthetic Data generation, and model-free Reinforcement Learning. Our objective is to
increase the performance of a model-free reinforcement learning algorithm, not by changing
this algorithm, but instead by using semantic segmentation to provide better, more rele-
vant data for the reinforcement learning model to work with. Specifically, we simplify the
input images to a semantic domain where all game-levels look the same, regardless of how
they were in the natural RGB domain. For this purpose, we generate a synthetic semantic
segmentation dataset to train our semantic segmentation model.

2.1 Semantic segmentation

A semantic segmentation of an image consists of a new image of the same size in which
every pixel is assigned a value or a label that indicates the semantic class (e.g., ground, sky,
grass) of that pixel in the original image. The applications of semantic segmentation are
wide, from aerial imaging [22], to autonomous driving [24], brain tumor segmentation [33],
and many more. In our work, we will use the semantic segmentation as an image-processing
tool to obtain a simplified image from a videogame frame. In Fig. 1, we show an example of
semantic segmentation, in this case using an image that resembles a frame from the Super
Mario Bros videogame.

Fully Connected Networks supposed a breakthrough for semantic segmentation [17],
greatly improving performance over hand-crafted methods, and since then, different deep-
learning approaches have been proposed to build more accurate semantic segmentation
models. For this purpose, some methods try to better utilize contextual information, like
DeepLabV3 [5], a semantic segmentation model that relies on atrous convolutions [4] to
control the receptive field of the network without requiring additional parameters. This
model also includes what the authors called an Atrous Spatial Pyramid Pooling (ASPP)
module to extract the information from different scale atrous convolutions. This informa-
tion is then concatenated and fed to a 1x1 convolution, whose output is upsampled to the

Fig. 1 Semantic Segmentation over a Super Mario Frame. In this image we have 5 different labels:
Background, Enemy, Mario, Floor and Brick



Multimedia Tools and Applications

required resolution. A different approach to building semantic segmentation models relies
on self-attention modules to improve long-range dependencies in semantic segmentation.
For example, DANet [12] presents an approach to improve semantic segmentation models
by using two different attention branches after the feature extraction network, to capture
information in the spatial and channel dimensions respectively. Then, features from the two
branches are aggregated to produce the output. Another example of attention-based net-
works in semantic segmentation but in this case for RGBD images, is ACNET [14], in
which the authors present what they call an Attention Complementary Module, that extracts
weighted features from RGB and depth branches by using channel attention, and enables
their fusion. Other attention-based methods, such as CCNet [15], use what the authors
call Criss-Cross Attention Module that collects contextual information in both the hori-
zontal and vertical directions to enhance pixel-wise representative capability; or ResNeSt
[38] which applies channel-wise attention on different network branches to better capture
cross-feature interactions and learn more diverse representations. A new approach to seman-
tic segmentation surged after checking how well transformer-based approaches worked for
image recognition with ViT [10], with models such as SETR [40], which uses the previ-
ously mentioned ViT with extra CNN decoders to enlarge feature resolution, or SegFormer
[36] which performs even better than SETR while being faster and less memory intensive,
by using a hierarchical architecture on the encoder capable of capturing high-resolution
coarse and low-resolution fine features, and with a more compact and lightweight MLP
decoder than SETR. Transformer for Transparency [39] is another example of a transformer-
based semantic segmentation model which obtains state-of-the-art accuracy while being
a lightweight transformer-based architecture that can be run on portable devices. Other
semantic segmentation models are based on relational context approaches, such as OCR
[37] which relies on an Object-Contextual Representation module, where they exploit the
representation of object classes to characterize pixels.

In our work, we have decided to use the DeepLabV3 [5] model for our experiments, as
it is easily available through Pytorch [27], and has been proved to perform well on differ-
ent semantic segmentation tasks, such as Unsupervised Video Object Segmentation with
COSNet [19] or Zero-Shot Video Object [20] detection. While we have also considered
video-based semantic segmentation models that establish relationships between frames,
such as [21] or [18], we decided to settle on segmentation of individual frames for simplicity.

2.2 Synthetic datasets for semantic segmentation

One of the problems of semantic segmentation is that the image labeling process required
to generate ground-truth data for training is a highly time-consuming task, as it requires to
manually label each pixel. For this reason, semantic segmentation datasets usually have a
limited amount of images. For example, Cityscapes [7] is one of the most common semantic
segmentation datasets, which consists of images from an urban environment taken from
a vehicle, but only includes 5000 images. The amount of time required to manually label
images for a semantic segmentation dataset has inspired the creation of synthetic datasets,
that rely on simulations or even videogames to generate synthetic images and their semantic-
segmentation ground truth, i.e., class labels. The advantages of these datasets is that they
could, depending on the implementation and purpose, generate images taken from any point
in the simulation, and looking at any other point in the simulation, so the amount of labeled
images available is much higher, and can be programmed to be generated without human
intervention. As a comparison, in the same style of scenarios included in the Cityscapes
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dataset, two of the most common synthetic datasets are Synthia [29] and GTAV [28], which
contain 9400 and 24966 images respectively, twice and five times the size of Cityscapes.

While in this paper we focus on using synthetic data for semantic segmentation, syn-
thetic data can also be useful for other tasks. For example, Carla [11] is a simulator with
maps that resemble real world environments, and its main purpose is the development, train-
ing and validation of autonomous driving systems, but it is also used to generate synthetic
datasets for aerial semantic segmentation like BEVSEG-Carla [25], for LiDAR imaging and
semantic segmentation like in Paris-CARLA-3D [9] (which includes both real and synthetic
LiDAR scans) or for vehicle tracking and detection [26]. OmniScape [32] is another dataset
that has omnidirectional images for two and four wheeled vehicles, with different modali-
ties, and it was created using the previously mentioned Carla simulator and also the GTAV
video game. There are other synthetic datasets that are not generated using simulators, such
as Fishyscapes [1], which is a benchmark for anomaly detection in semantic segmenta-
tion using urban images that was generated by randomly overlying objects from classes not
included in Cityscapes dataset over images from the validation set of Cityscapes, applying
some image processing techniques to the added objects (like changes in illumination and
coloring) so they look more like other objects in Cityscapes images and blend in better.

The main drawback of synthetic datasets is that there exists usually a significant domain
gap between the synthetic and real images, and therefore, a model trained only with syn-
thetic images will not be able to maintain the same level of performance on real images.
Moreover, it has been proved that combining synthetic and real data together in training can
be beneficial for a model, hence reaching better performance on real test images than that
obtained just training with real images [3].

2.3 Reinforcement learning

Reinforcement learning is the third paradigm of machine learning, the other two being
supervised and unsupervised learning. While supervised and unsupervised learning rely on
using data, in reinforcement learning, models are trained using experiences. In general, rein-
forcement learning models are referred to as agents, and they learn how to behave in an
environment by performing random actions, and after every action, a reward is received.
The agent then learns how to maximize this reward, by performing the best action in each
situation.

The problem with reinforcement learning algorithms is that the environment has to be
set up in order to decide how rewards are going to be distributed to the agent, and this is not
easy to perform outside of a simulated environment. On the other hand, many videogames
are very easily modifiable to be used as environments to train and test reinforcement learn-
ing algorithms on. For this work, the environment used was the Super Mario Bros game,
originally developed for the Nintendo Entertainment System, and using the library OpenAi
gym [2], which has support for games of many different platforms.

We can distinguish between two different types of reinforcement learning algorithms:
first, those that rely on expected future reward (or a distribution of future rewards) to decide
what action to take, which are called model-based algorithms; some examples of these type
of algorithms are PPO [31] or MuZero [30]. Second, those that only use a single prediction
of the next reward to decide what action to perform; these are called model-free, like Q-
Learning [35], Double Deep Q-Learning [34] and Implicit Quantile Networks [8] among
others. In this work, we have decided to use model-free algorithms better than model-based
ones as they require less computation resources.
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Q-Learning [35] acts like a function that receives an action-state pair as input, and the
output is the expected Q-value for each action-state pair, with this Q-value being an indicator
of how good the action at that given state is. Then, the algorithm selects the pair with higher
Q-value. The original algorithm (that did not rely on neural networks) implemented this
with a table, which grew bigger every time a new state-action pair was discovered, and for
big games could be unbearably big to explore and maintain in memory. This table is now
replaced by a function approximator based on a neural network (Deep Q-Learning [23]),
as it requires less memory, and does not have to perform a table search. Double Deep Q-
Learning is the Deep variant of the Double Q-Learning algorithm [13], which improved
the original Q-Learning algorithm by reducing the value overestimation of some actions at
a given state. For this, it uses one Q-function to select the action performed and another
Q-function to evaluate the state-action pair, with the former being updated normally, and
the evaluation function being updated after a given number of episodes, with each episode
being a execution of the environment until it ends (in our case, either when the game-level
is completed or Mario dies).

Implicit Quantile Networks (IQN) [8] is similar to Deep Q-Learning, as both have a
feature extraction network (a convolutional network in our case), but while in Deep Q-
Learning we feed these convolutional features to a fully connected network that returns
the Q-Values for each action, in IQN we feed the features to a deterministic parametric
function trained to parametrize samples from these convolutional features V using a quantile
threshold τ ∈ (0, 1), with the objective of obtaining the quantile of a target distribution at
τ , for each V . During inference, the algorithm uses a fixed amount of different values for
τ , computes the quantiles of the features according to them, and the action with the higher
average quantiles is used.

3 Framework

Our framework is composed of three different subsystems (see Fig. 2): a synthetic dataset
generator, a semantic segmentation model, and the reinforcement learning agent.

We have decided to use the Super Mario Bros video game for the reinforcement learning
environment. With our dataset generator, we obtain synthetic frames that are very similar to
screenshots from the actual Super Mario Bros video game, but that also have their semantic
segmentation ground-truth. With this dataset we train a semantic segmentation model which
is then used to transform the frames from the actual videogame to semantically segmented
frames, which are then used as input for a reinforcement learning agent.

3.1 Dataset generator

To generate the synthetic frames, we have used sprites from the original Super Mario Bros
game. Sprites are cutouts of the different elements that appear in the game, like enemies,
Mario, blocks, etc. We have programmed a method to fill images by combining these sprites,
so the images look like frames taken from the videogame. We have included some logic
to the appearance and positions of the elements that may appear on the image, and then
we placed them randomly within these restrictions. Additionally, we randomly select the
appearance of the sprites, as there are different possible game-levels styles, such as day,
night, underground or underwater game-levels, among others, and the style of the levels
affects the color palette of the sprites. Finally, we generate the semantically segmented
image by directly assigning each image pixel to one of the six identified abstract classes:
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Fig. 2 Framework including a semantic segmentation dataset generator, a model for semantic segmentation,
and the reinforcement learning pipeline

immutable objects (floor, pipes, and hard blocks), brick, question mark box, Mario, enemy,
and background.

One of the advantages of this approach is that, as we are using cutouts of elements that
appear in the video game, the domain gap between our synthetic images and the frames from
the video game is very small, so model performance differences between real and synthetic
frames would be reduced.

With this generator, we created a single semantic segmentation dataset for the Super
Mario Bros game composed by 20.000 images of 256 by 240 pixels, that combines images
in different styles to resemble the look of multiple game-levels. In Fig. 3, we display some
examples of the generated synthetic frames.

Both, the dataset generator and the dataset used in our tests are available in the project
github.

3.2 Semantic segmentationmodel

We have decided to use a DeepLabV3 [5] model to semantically segment frames from the
videogame, as it shows a good balance between segmentation performance and computa-
tional efficiency, and could additionally be trained in a reasonable amount of time. For the
implementation of the semantic segmentation model, we used the DeepLabV3 implementa-
tion available in PyTorch’s [27] torchvision module. In all our semantic segmentation tests,
models were trained for 45 epochs, using 18000 images for training and 2000 images for
validation. We used an SGD (Stochastic Gradient Descent) optimizer with momentum, and
a multi-step learning rate, which decayed by a factor of 0.1 at epochs 37 and 42. All the
hyper-parameters and settings for the training process are listed on Table 1.



Multimedia Tools and Applications

Fig. 3 Examples of synthetic frames created with our dataset generator

The DeepLabV3 model we used has three different options for the backbone: ResNet-
50, ResNet-101 and MobileNetV3. In Table 2, we compare frames-per-second and mean
Intersection over Union (mIoU) for all three backbones. From our results, ResNet-101
achieves the same accuracy in comparison to ResNet-50, but ResNet-50 is able to pro-
cess 60.8% more frames-per-second. If we now compare the ResNet-50 backbone with the
MobileNetV3 one, we find out that the latter one produces 20% more frames per second
but has a 16% worse mIoU than ResNet-50. We believe the ResNet-50 backbone provides
the best balance between computation efficiency and accuracy, and therefore we used this
backbone in the rest of our experiments.

PyTorch’s DeepLabV3 model can also be used with weights pre-trained on the
COCO2017training dataset [16]. In order to decide whether to use these pre-trained weights
or training from scratch, we have conducted a performance comparison. The model with

Table 1 Training hyperparameters and settings for the Semantic Segmentation model

Training Hyperparameters Value

Learning Rate 0.001

Epochs 45

LR Decay at Epochs 37 and 42

LR Decay Factor 0.1

Optimizer Settings Value

Momentum 0.9

Decay 10−4

Other Settings Value

Batch Size 16

Seed 271828
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Table 2 Efficiency and Performance comparison between DeepLabV3 backbones on our Synthetic Dataset

Backbone Fps mIoU (%)

MobileNetV3 66.7 70.98

ResNet-50 55.5 87.88

ResNet-101 34.5 87.63

pre-trained weights only uses them as an starting point, and during training, no model
parameters are frozen. From our testing, we conclude that the model that uses pre-trained
weights is able to outperform the model that was trained from scratch by about 2.5% mIoU
(from 85.24% to 87.88%), and therefore we decided to train using pre-trained weights as
our starting point.

From the results obtained in these tests, we have decided to use DeepLabV3 with the
ResNet-50 backbone and with pretrained weights as our final model. In Table 3, we show
per-class performance of the final model in the evaluation portion of our synthetic dataset.
To test our Semantic Segmentation model we have used real Super Mario Bros frames. But,
as we do not have a ground truth for real frames, we performed a visual qualitative test to
assert the model performance on real frames. We have selected the game-levels where the
segmentation performed better to use them in our experiments, namely, game-levels 1-1,
4-1 and 6-1. In Fig. 7, we show some examples of images from the videogame and their
semantically segmented counterparts for the three game-levels used in our tests.

3.3 Reinforcement learning

We have used OpenAI Gym [2] to set up our game environment. OpenAI Gym is a package
that supports emulation for different video game consoles, and provides functionalities to
interact with the games, like memory reading or editing or input simulation for the game.
We have set up the input for the reinforcement learning model so the network receives a 6
channel image, with each channel containing a grayscale frame from the last 6 instants of
time, and with a resolution of 84 by 84 pixels. The input frames for the baseline tests have
been converted to grayscale, and for the segmented frames we have normalized the class
label values between 0 and 255.

For the reinforcement learning algorithms we decided to use Double Deep Q-Learning
[34] and IQN [8]. These reinforcement learning algorithms learn how to play the game by
experience. Initially, the models perform random actions to explore in the video game envi-
ronment, and store in a buffer all the input images, the actions performed and the rewards
obtained during this random exploration process. This buffer is then used as the dataset to
train the models, and it is updated constantly during the training process with new samples.
The amount of random exploration decays as the training advances, in our case to a mini-
mum of 2% of random action probability. During evaluation, the random action probability

Table 3 Performance Evaluation of the Semantic Segmentation model

Image IoU (%)

Type Background Floor Bricks ? Blocks Enemies Mario Mean

Synthetic 99.4 99.3 94.4 90.8 75.2 68.0 87.8
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Table 4 Training hyperparameters and settings for the Reinforcement Learning model

Common Hyperparameters Value

Learning Rate 0.00025

Batch Size 16

Gamma 0.90

Max exploration rate 1.0

Min exploration rate 0.02

Exploration decay 0.99

Buffer Size 4000

IQN Hyperparameters Value

Tau 10−2

is set to 0%. We have set common parameters for Double Deep Q-Learning and IQN to
be equal, and the parameters exclusive to IQN have been set to the default values used by
the original authors. Training episodes were set to 5000 for Reward Evolution and Repeata-
bility Test experiments, to 9999 for the Learning in Multiple Levels experiment, and to
2500 for the Transfer Learning experiments. In Table 4 we list all parameters used by the
reinforcement learning agents.

4 Results

We have performed different tests to evaluate how simplifying the input image with seman-
tic segmentation affects the training process and the model behavior. In all tests, we denote
as baseline the default algorithm that receives grayscale real frames as input, and as
segmented our method that uses the simplified images with labels as input.

We have performed four different experiments, in order to test different aspects. First, we
have evaluated the reward evolution during the training of a Double Deep Q-Learning algo-
rithm, for both the baseline and segmented models to measure how our method improves the
training process. Second, we have performed the same test using a different reinforcement
learning algorithm IQN, to ensure repeatability across different reinforcement learning algo-
rithms. Then, we have evaluated other advantages that our proposal provides, such as the
possibility of training in multiple game-levels at the same time, and finally the ease of use
for previously trained models to perform transfer learning on new game-levels, exploiting
the domain change that semantic segmentation provides.

4.1 Reward evolution

We have first evaluated the average reward per training episode, using Double Deep Q-
Learning [34] with both the baseline and the segmented models. We have trained both
algorithms five times, for 5000 episodes, and to smooth the rewards per episode we have
used an exponentially weighted mean.

The darker line represents the mean and the colored region represents a 95% confidence
interval for the rewards.

As observed in Fig. 4, our method reaches an average reward of 2000 in about 1500
episodes, half the episodes required by the baseline (about 3000), and our method also



Multimedia Tools and Applications

Fig. 4 Reward averages during training on game-level 1-1 using Double Deep Q-Learning [34]

reaches a higher maximum reward, about 2450 compared to the baseline which reaches
2150. These results clearly suggest that the segmented image is beneficial for the rein-
forcement learning algorithm, helping to train in less episodes and to achieve higher
performance.

To measure the contribution of each semantic class, we have repeated this experiment by
modifying the output of the semantic segmentation model so that it only includes elements
of given class, re-labeling the other classes as background, in order to evaluate the impact
of each class on the learning capabilities of the system.

In Fig. 5 we can see how the different classes impact performance, and it is clear that the
model is not able to complete the level using isolated classes, although we can see how the
Mario class reaches a higher performance level than the rest of the classes, followed by the
class Floor, while the model seems to be unable to progress in the game-level at all with the
rest of the isolated classes.

Fig. 5 Reward averages during training with isolated semantic classes. Trained on game-level 1-1
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Fig. 6 Reward averages during training on game-level 1-1 using IQN [8]

4.2 Repeatability test

In order to assess repeatability of the results with other algorithms, we have also trained
the models using Implicit Quantile Networks [8], in the same conditions established in the
previous test.

As we can see in Fig. 6, results show the same pattern using IQN too. So, we can conclude
that the visual simplification performed by the semantic segmentation does indeed help
reinforcement learning models to train faster and better. Again, in Fig. 6, the darker line
represents the mean and the colored region represents a 95% confidence interval for the
rewards.

4.3 Training inmultiple game-levels

Another advantage of using semantically simplified input images for training is that it acts
as a domain adaptation method: after performing the segmentation, all images are in the
same domain. Independently of how the game-level looked originally, they all share the
same appearance for the network, as represented in Fig. 7.

We have performed some tests training on multiple game-levels at the same time, with
the objective of obtaining a more general model. For this purpose, levels 1-1, 4-1 and 6-
1 were used. Levels 1-1 and 4-1 have a similar visual style (same background, and object
textures) but with different enemies and obstacles, and level 6-1 has a different background,
layout, and obstacles, but shares object textures (see Fig. 7 for details).

For this test, we have trained the baseline and segmented models for 9.999 episodes each.
To ensure every level was played by the models the same amount of times, we have used a
round-robin approach, were on every episode a different level was played in order. So for
example, in episode 1, game-level 1-1 was played; in episode 2, game-level 4-1 was played;
in episode 3, game-level 6-1 was played; in episode 4, level 1-1 was played once again, and
the cycle repeated during the training cycle. After the training, we have evaluated how well
the model generalized, and the average rewards for each game-level.

First, we have quantified how each model performed when evaluated on both the levels
used for training and on new unseen ones, to evaluate the model capability to generalize.
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Fig. 7 Semantic Segmentation acts like a domain adaptation. Example images from game-levels 1-1, 4-1 and
6-1

Table 5 indicates that the baseline model is not able to learn how to play the three game-
levels at the same time, while the model that uses semantically segmented images as input
is able to complete them successfully (reaches 100% normalized reward on each game-
level). This suggests that the changes in appearance between levels is a layer of additional
complexity not required by the model to complete the task, but it seems to hinder its ability
to learn.

Another conclusion we can extract from this experiment is that, as expected, only three
game-levels are not enough for a reinforcement learning model to learn how to general-
ize well enough to complete unseen game-levels [6], and this is also the case while using
semantic segmentation to simplify the game appearance. We believe this is for two reasons:
firstly, three game-levels do not show enough variability to help the agent generalize prop-
erly, as in this game we find obstacles and challenges that are exclusive to each game-level,
so the agent will not be able to learn how to solve them without specific training; secondly,
in the unseen game-levels, the performance of the semantic segmentation model was not as
good as on the ones it was trained on, so the artifacts generated during the segmentation
may also have an impact on the agent performance.

Table 5 Generalization results, evaluated on training game-levels and new game-levels

Model Normalized Reward Normalized Reward

On Training Levels (%) On Unseen Levels (%)

baseline 46.97 12.58

segmented 100 15.17
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Fig. 8 Normalized per-game-level rewards while training on three levels simultaneously for the baseline
configuration. Horizontal lines represent the average values for each level

Although our method is not enough to make a model generalize with three levels, we can
see other interesting results from the reward graphs during the training process by perform-
ing evaluation runs every 50 episodes on the three different game-levels. First, we see the
performance for the baseline agent, using grayscale real images as input.

In Fig. 8, we can see how the normalized reward increases at a different pace for each
game-level, the 4-1 being the one that consistently gets a better average reward, higher than
that of the other two levels. In this case, it seems like the agent is in some way overfitting to
the 4-1 level, while the performance is noticeably worse for levels 1-1 and 6-1.

In Fig. 9, we have the same reward per-game-level curves but using the segmented input
agent, with a much different result. In this case, the evaluation performance on each game-
level increases at the same rate for all three game-levels, and the mean normalized reward is
close for all of them, in contrast to the baseline. In Table 6, we can see how the rewards for
the baseline model are in the range of 37.12 to 59.05%, while the rewards for the segmented

Fig. 9 Normalized per-game-level rewards while training on three levels simultaneously for the segmented
configuration. Horizontal lines represent the average values for each level



Multimedia Tools and Applications

Table 6 Normalized Reward Mean for each level during multi training

Normalized Reward Mean (%)

Model Level 1-1 Level 4-1 Level 6-1 Average

baseline 37.12 59.05 47.13 47.76

segmented 60.33 63.54 61.47 61.78

one are in the 60.33 to 63.54% range. This suggests that our approach helps the network by
preventing it to overfit to a specific level, as it seems to be happening for the baseline model.

4.4 Transfer learning

Finally, we have performed an additional study of the training process for reinforcement
learning models that have been previously trained on a different game-level. For this purpose
we have performed two types of experiments: transfer learning between similar looking
levels and transfer learning between levels with different visuals. We have used the game-
levels from the previous test: 1-1, 4-1 and 6-1 (see Fig. 7).

In Fig. 10, we compare the evolution of the reward during training in game-level 4-1
using a model previously trained on game-level 1-1. Both levels are similar in appearance,
but game-level 4-1 has two new enemies (piranha plants and a flying enemy that drops
shells). We can clearly see how the model trained using semantically segmented input with
finetuning learns much faster and to a higher average reward than the other ones, reaching
2500 average reward around episode 550, while the baseline method with finetuning reaches
it at episode 1500. In this experiment we can also see how the baseline model with finetuning
reaches a higher average reward than our segmented approach trained from scratch.

In Fig. 11, we show the results of a similar experiment but now the models are pre-trained
on the game-level 4-1, and then trained on the game-level 1-1. Here the pre-trained baseline
model is also outperformed by the pre-trained segmentation model, and by episode 1000 it
is also outperformed by the segmentation model trained from scratch. Here, our approach
trained from scratch outperforms the baseline model with finetuning around episode 1000.

Fig. 10 Transfer learning between game-levels with similar appearance: rewards evolution training on 4-1 a
model pre-trained on 1-1
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Fig. 11 Transfer learning between game-levels with similar appearance: rewards evolution training on 1-1 a
model pre-trained on 4-1

Finally, we have performed the same experiment but in game-level 6-1, using reinforce-
ment learning models previously trained on level 1-1, and trained from scratch. Levels 6-1
and 1-1 are different in appearance, as the background color changes, and so does the type
of floor blocks and obstacles that appear in the level.

Figure 12, shows how using pre-trained weights for the baseline model does not give
us any real advantage, as while it starts with a higher average reward by a small margin,
around episode 1500 it reaches the same performance as the baseline trained from scratch,
and the reward increases at a similar rate for both of them from that point on. On the other
hand, the pre-trained segmented model is able to obtain the level of performance of the other
three models in five times fewer episodes (about 750 instead of 2500), and reaches a higher
average reward.

Fig. 12 Transfer learning between game-levels with different appearance: rewards evolution training on 6-1
a model pre-trained on 1-1
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In the first two transfer learning experiments, while our approach with pre-trained
weights is still on top, the baseline model with pre-trained weights has a similar perfor-
mance to our approach trained from scratch. We believe this result is due to the similarities
in appearance between the different game-levels, as shown in Fig. 7, and the results from
the transfer learning test on game-level 6-1 support this reasoning, as with more visual dif-
ferences the baseline with pre-trained weights does not improve the baseline trained from
scratch.

We conclude that our approach enables transfer learning between environments that have
different visual domains, allowing to train models for specific game-levels faster compared
to training from scratch, while the baseline does not offer any advantage with transfer
learning compared to training from scratch, unless game-levels are in the same visual
domain.

5 Conclusions

Semantic Segmentation can be used as a tool to visually simplify the input of reinforce-
ment learning agents to a simpler semantic-based representation which has been proved to
offer multiple advantages: training in fewer episodes, reaching higher performance levels,
preventing over-fitting to a specific level, and enabling transfer learning for reinforce-
ment learning agents on environments with different visual domains. These results could
potentially open new ways to optimize reinforcement learning pipelines, by just adding an
image-processing step without any algorithm modifications. In a future, we plan to explore
how changing the segmentation model affects reinforcement learning training, how loss
weighting and importance-aware loss functions can improve the performance of the most
relevant classes, and using the environment proposed by [6] with semantic segmentation to
further explore model generalization.

Our method also has some limitations: as it requires images as input so they can be
segmented, it can’t be used on virtual environments that produce other type of data (like
a chess environment, where the board status is available as an information matrix). Other
disadvantages of this method include the requirement of a semantic segmentation dataset to
train the segmentation model on, and the computation time taken by this model to perform
the semantic segmentation, although as semantic segmentation models become better and
faster, these two last disadvantages might be solved in a near future, so our results might be
applicable to other environments and problems.
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