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We show that the correct dual hydrodynamic description of homogeneous holographic models with 
spontaneously broken translations must include the so-called “strain pressure” – a novel transport 
coefficient proposed recently. Taking this new ingredient into account, we investigate the near-
equilibrium dynamics of a large class of holographic models and faithfully reproduce all the hydrodynamic 
modes present in the quasinormal mode spectrum. Moreover, while strain pressure is characteristic of 
equilibrium configurations which do not minimise the free energy, we argue and show that it also affects 
models with no background strain, through its temperature derivatives. In summary, we provide a first 
complete matching between the holographic models with spontaneously broken translations and their 
effective hydrodynamic description.
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1. Introduction

Models with broken translational invariance have attracted a 
great deal of interest in the holographic community in recent 
years, especially in relation to their hydrodynamic description [1–
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9] and their possible relevance for strange metal phenomenology 
[10–13]. Particular emphasis has been given to the so-called homo-
geneous models, e.g. massive gravity [14–17]; Q-lattices [18,19]; 
and helical lattices [20,21], due to their appealing simplicity.

Despite the sustained activity in the field, there still remain 
a number of open questions. For instance, it has been unclear 
what hydrodynamic framework appropriately describes the near-
equilibrium dynamics of field theories dual to these models. The 
authors of [3] wrote down a generic theory of linearised hydrody-
namics with broken translations (see also [22,2]), which has been 
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widely used in holography [23,24,8,9,19,11,10,25,26]. However, the 
first indication that something was amiss came from [9], in the 
form of a disagreement between the holographic results and the 
hydrodynamic predictions of [3] regarding the longitudinal diffu-
sion mode. Similarly, [6] found inconsistencies between the hy-
drodynamic theory of [3] and the quasinormal perturbations of a 
bulk model with explicitly broken translations. Considering these 
results, it became clear that the understanding of hydrodynamics 
was lacking some fundamental details needed in order to capture 
the holographic results.

Recently, a new fully non-linear hydrodynamic theory for vis-
coelasticity was proposed in [5]. At the linear level, this formu-
lation differs from previous formulations of viscoelastic hydrody-
namics due to the presence of an additional transport coefficient, 
P , called the lattice- or strain pressure. Physically, P is the dif-
ference between the thermodynamic and mechanical pressures; 
intuitively, P can be understood as an additional contribution to 
the mechanical pressure as a result of working around a uniformly 
strained equilibrium state. In this sense the strain pressure is anal-
ogous to the magnetisation pressure which appears in the pres-
ence of an external magnetic field [27,28]. P is non-zero in the 
holographic models mentioned above and, as we illustrate in this 
paper, is fundamental in order to match the holographic results to 
hydrodynamics.

It is misleading, however, to dismiss this new coefficient purely 
as an artifact of background strain. P certainly vanishes in an un-
strained equilibrium state that minimises the free energy (as dis-
cussed in [29]), but as we will illustrate in this paper, its tempera-
ture dependence still carries vital physical information and affects 
various modes through P ′ = ∂TP . For instance, in scale invari-
ant theories this leads to a non-zero bulk modulus B = −TP ′/2. 
Hence, the preceding hydrodynamic frameworks would still fall 
short in capturing the near-equilibrium behaviour of holographic 
models without background strain.

In this paper, we consider the most general isotropic Lorentz 
violating massive gravity theories in two spatial dimensions [17]. 
The dual field theories correspond to isotropic, conformal, and 
generically strained viscoelastic systems with spontaneously bro-
ken translations. By carefully studying the quasinormal modes in 
these systems, we illustrate that they are perfectly described by 
the hydrodynamic framework of [5]. We also build a new thermo-
dynamically stable holographic model with zero background strain. 
Using this unstrained model, we show that the effects of P ′ are 
still present when P vanishes in equilibrium.

2. Viscoelastic hydrodynamics

Let us briefly review the formulation of viscoelastic hydrody-
namics from [5]; we will start with the generic constitutive rela-
tions for an isotropic viscoelastic fluid, including strain pressure, 
and write down the linear modes predicted by the hydrodynamic 
framework. We further extend the work of [5] by discussing ther-
modynamically stable configurations with zero strain pressure in 
equilibrium, but with nonzero temperature derivatives, and draw a 
comparison with the previously known results of [3]. We work in 
d = 2 spatial dimensions for simplicity.

2.1. Constitutive relations

The fundamental ingredients in the theory are the fluid veloc-
ity uμ , temperature T , and translation Goldstone bosons �I . We 
define eI

μ = ∂μ�I , which is used to further define hI J = eI
μe Jμ , 

eIμ = h−1
I J e J

μ , hμν = h−1
I J eI

μe J
ν , and the strain tensor uμν = 1

2 (h−1
I J −

δI J /α
2)eI

μe J
ν , for some constant α. The constitutive relations of an 
isotropic neutral viscoelastic system, written in a small strain ex-
pansion, are given as [5]

T μν = (
ε + p + TP ′uλ

λ

)
uμuν + (

p +Puλ
λ

)
ημν +Phμν

−ησμν − ζ Pμν∂ρuρ − 2G uμν − (B − G) uλ
λhμν , (1a)

with the thermodynamic identities dp = s dT , ε = T s − p and 
Pμν = ημν = uμuν . Here p and P are the thermodynamic and 
strain pressures respectively; ε and s are energy and entropy 
densities; and G and B are the shear and bulk moduli. σμν =
2Pρ(μ Pν)σ ∂ρuσ − Pμν∂ρuρ is the fluid shear tensor, while η and 
ζ are shear and bulk viscosities. All the coefficients appearing here 
are functions of T ; prime denotes derivative with respect to T
for fixed α. Dynamical evolution of uμ and T is governed by the 
energy-momentum conservation equation ∂μT μν = 0; these are 
accompanied by the configuration (Josephson) equations for the 
Goldstones

uμeI
μ = hI J

σ
∂μ

(
Peμ

J − (B−G)uλ
λeμ

J −2Guμνe Jν

)
, (1b)

where σ is a dissipative coefficient characteristic of spontaneously 
broken translations.

2.2. Linear modes

The P dependent terms in (1) have important consequences 
for the low energy dispersion relation of the hydrodynamic modes. 
In summary, around an equilibrium state with uμ = δ

μ
t , T = T0, 

and �I = α xI , we find two pairs of sound modes, one each in 
longitudinal and transverse sectors, and a diffusion mode in the 
longitudinal sector

ω = ±v‖,⊥k − i

2
�‖,⊥k2 + . . . , ω = −iD‖k2 + . . . . (2)

The sound velocities v‖,⊥ , attenuation constants �‖,⊥ , and diffu-
sion constant D‖ are given as

v2⊥ = G

χππ
, v2‖ = (s +P ′)2

s′χππ
+ B + G −P

χππ
,

�⊥ = η

χππ
+ G

σ

s2T 2

χ2
ππ

, D‖ = s2

σ s′
B + G −P
χππ v2‖

,

�‖ = η + ζ

χππ
+ T 2s2 v2‖

σχππ

(
1 − s +P ′

T s′v2‖

)2

. (3)

Here χππ = ε + p +P is the momentum susceptibility1; all func-
tions are evaluated at T = T0. Note that the pair of transverse 
sound modes are not present when G = 0; instead, they are re-
placed by a single shear diffusion mode ω = −iD⊥k2 with D⊥ =
η/χππ .2 We can obtain formulas for various coefficients appear-
ing in (1) in terms of the free-energy density �, stress-tensor 
one-point function, and (up to contact-terms) retarded two point 
functions

ε = 〈T tt〉 , p = −�, P = 〈T xx〉 + �,

χππ v2‖ = lim
ω→0

lim
k→0

Re G R
T xx T xx ,

1 The observation that χππ 	= ε + p in generic holographic models of viscoelastic-
ity (i.e. that the thermodynamic and mechanical pressures are not necessarily equal) 
was first made in [24].

2 The limit G → 0 is subtle and must be performed at the level of the transverse 
sector dispersion relations, ω2sT + (

1 + ωT s
iσ

) (
ω2P − k2G

) + iωk2η = 0.
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G = χππ v2⊥ = lim
ω→0

lim
k→0

Re G R
T xy T xy ,

η = − lim
ω→0

lim
k→0

1

ω
Im G R

T xy T xy ,

(ε + p)2

σχ2
ππ

= lim
ω→0

lim
k→0

ω Im G R
�x�x . (4)

The bulk modulus B can be obtained indirectly using the v2‖ Kubo 
formula. In the equations in the first line above, the relation be-
tween the strain pressure P , thermodynamic pressure p, and the 
mechanical pressure 〈T xx〉, is manifest.

For our application to holography we shall, in the following, be 
interested in scale-invariant viscoelastic fluids, wherein T μ

μ = 0. 
This leads to a set of identities

ε = 2(p +P) , TP ′ = 3P − 2 B , ζ = 0 . (5)

Taking derivative of the first relation, we also find the specific heat 
cv = T s′ = 2(s + P ′). Using the above equations, we can derive 
a relation between sound velocities, i.e. v2‖ = 1/2 + v2⊥ [30]. For 
scale-invariant theories v⊥ and �⊥ stay the same as in (3), how-
ever the expressions for the longitudinal sector simplify to

�‖ = η

χππ
+ T 2s2G2

σχ3
ππ v2‖

, D‖ = T s2/σ

s +P ′
B + G −P
χππ + 2G

. (6)

Interestingly, apart from the implicit dependence in χππ , in a 
scale-invariant viscoelastic fluid only D‖ depends explicitly on P
and P ′ , which explains the discrepancy reported in the diffusion 
mode in [9]. Note that using (5), the bulk modulus can be rewrit-
ten as B = (3P− TP ′)/2. Consequently, a scale-invariant viscoelas-
tic system only responds to bulk stress if P, P ′ 	= 0.3

2.3. Unstrained equilibrium configurations

Let us now extend the analysis of [5] by considering equi-
librium states without background strain, i.e. states where the 
equilibrium strain pressure is zero, P(T0) = 0. In such a setup 
the temperature derivative of the strain pressure need not van-
ish, hence P ′(T0) 	= 0.4 Nevertheless, the momentum susceptibility 
reduces to a familiar expression χππ = ε + p. For generic scale-
non-invariant theories, we arrive at the modes

v2⊥ = G

T s
, v2‖ = (s +P ′)2

T ss′ + B + G

T s
, �⊥ = η

T s
+ G

σ
,

D‖ = s

σ T s′
B + G

v2‖
, �‖ = η + ζ

T s
+ T sv2‖

σ

(
1 − s +P ′

T s′v2‖

)2

. (7)

In the scale-invariant limit, the longitudinal modes further simplify 
to v2‖ = 1/2 + v2⊥ along with

�‖ = η

T s
+ 2G2/σ

T s + 2G
, D‖ = T s2/σ

s +P ′
B + G

T s + 2G
. (8)

The appearance of P ′ in the denominator of D‖ suggests that 
the temperature dependence of strain pressure still plays an im-
portant role in an unstrained equilibrium configuration. Indeed, 
P ′ is crucial for thermodynamically stable holographic models, as 

3 Nevertheless, the compressibility β ≡ (−1/V ) ∂Txx/∂V is finite even in the ab-
sence of the strain pressure, and in the scale-invariant case it is given by β−1 =
(3/4)ε [31]. It is possible to show that in terms of the compressibility the longitu-
dinal speed can be written as v2‖ = (β−1 + G)/χππ [9,23].

4 We will return to this point in further detail below.
we illustrate below. In the absence of scale invariance, the ef-
fects of P ′ will also contaminate the expression for the longitu-
dinal sound mode. Other signatures of strain pressure in a scale-
invariant viscoelastic system include non-canonical specific heat, 
cv = 2(s +P ′) 	= 2s, and nonzero bulk modulus B = −TP ′/2 	= 0.5

Comparing our results to [3], we find that (7) matches the ex-
pressions derived using the hydrodynamic framework of [3] for 
neutral relativistic viscoelastic fluids only if we further set P ′ = 0. 
As a consequence, the results of [3] do not apply to general un-
strained viscoelastic systems with nonzero P ′ . Notably, the anal-
ysis of [3] can be extended to include certain couplings in the 
free-energy density that have been switched off therein (see (A.7) 
of [3]). We find that such couplings are indeed important and 
precisely capture the effects of nonzero P ′ via the mapping b =
−P ′/s′ .

3. Holographic framework

3.1. Holographic massive gravity

We will consider a simple holographic model with (d + 2)-
dimensional Einstein-AdS gravity coupled to d copies of Stückel-
berg scalars φ I

Sbulk =
∫

dd+2x
√−g

(
R

2
+ d(d+1)

2�2
−m2 V (I I J )

)
, (9)

where I I J = gab∂aφ
I∂bφ

J is the kinetic matrix; � is the AdS-radius, 
which we set to one in the following; and m is a parameter related 
to the graviton mass. We have set 8πG N/c4 = 1. For the isotropic 
case in d = 2, we can generically take V (I I J ) = V (X, Z) where 
X = 1

2 trI and Z = detI [16,17,23]. The scalars φ I are dual to the 
boundary operators �I and break the translational invariance of 
the dual field theory (see [32] and [17] for the specifics of the sym-
metry breaking pattern). Depending on the boundary conditions 
imposed on φ I , this breaking can either be explicit, spontaneous, 
or pseudo-spontaneous [15,33,8,23,5]. Presently, we shall be inter-
ested in models with spontaneously broken translations leading to 
phonon dynamics in the dual field theory [24,9,23,34,31].

We consider a black brane solution of (9) in Eddington-
Finkelstein (EF) coordinates with the metric

ds2 = 1

u2

(
− f (u)dt2 − 2 dt du + dx2 + dy2

)
, (10)

and a radially constant profile for the scalars, φ I = α xI , for 
some constant α. The radial coordinate u ∈ [0, uh] spans from the 
boundary u = 0 to the horizon u = uh . The emblackening factor 
f (u) takes a simple form

f (u) = 1 − u3

u3
h

− u3

uh∫
u

m2

ℵ4
V (α2 ℵ2,α4 ℵ4)dℵ . (11)

Linear perturbations around the black brane geometry capture 
near-equilibrium finite temperature fluctuations in the boundary 
field theory [35,36,23,31,37].

Temperature and entropy density in the boundary field theory 
are identified with the Hawking temperature and area of the black 
brane, respectively

T = − f ′(uh)

4π
= 3 − m2 Vh

4π uh
, s = 2π

u2
h

, (12)

5 Note that [5] assumes P ′ to also vanish in theories with zero strain pressure, 
leading to zero bulk modulus in scale invariant unstrained theories.
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Fig. 1. �‖ and D‖ for V (X, Z) = X N models for N = 3, 4, 5 (from top to bottom) as functions of the dimensionless parameter m/T , alongside their hydrodynamic predictions 
from (3) (solid lines).
with Vh = V (u2
hα

2, u4
hα

4). The free energy density is defined as 
the renormalised euclidean on-shell action [38]. The expectation 
value 〈T μν〉 can be read off using the leading fall-off of the met-
ric at the boundary. Using the first row of (4), this leads to the 
thermodynamic quantities

p = 1

2u3
h

− m2

u3
h

(
1

2
Vh − Uh

)
,

ε = 1

u3
h

− m2

u3
h

Uh , P = m2

u3
h

(
1

2
Vh − 3

2
Uh

)
. (13)

We have defined Uh = −u3
h

∫ uh
0 ℵ−4 V (α2ℵ2, α4ℵ4)dℵ, assuming 

V (X, Z) to fall off faster than ∼ u3 at the boundary.6 Details of 
holographic renormalisation for these models have been given in 
Appendix A. Using the expressions in (13) together with (5), we 
can find the bulk modulus

B = m2

4u3
h

(
3Vh −9Uh + uh∂uhVh(m2 Vh − 3)

m2
(

Vh − uh∂uhVh
) − 3

)
, (14)

Finally, using the results of [11,8,4], we can derive a horizon for-
mula for σ , which reads

σ = m2

2α2u3
h

∂Vh

∂uh
, (15)

and agrees well with the numerical results obtained with the Kubo 
formula in (4). The remaining coefficients, G and η, must be ob-
tained numerically.

The non-trivial expression for P in (13) indicates the presence 
of background strain in these holographic models. This is associ-
ated with the equilibrium state φ I = α xI not being a minimum 
of free energy [39,19,24]. To wit, using (13) one can check that 
d�/dα|T = −dp/dα|T = 0 leads to P = 0. However, as is evident 
from (3), the presence of P by itself does not lead to any linear 
instability or superluminality [24,9,23]. Setting P = 0 in (13), we 
can find a thermodynamically favoured state α = α0 as a non-zero 
solution of Vh = 3Uh . Notice that P ′|α=α0 	= 0, which means that 
strain pressure still plays a crucial role in the dual hydrodynam-
ics through its temperature derivatives, as discussed around (8). In 
particular, these models can have non-zero bulk modulus despite 
being scale invariant.

Simple monomial models considered previously in the litera-
ture [23,17,24,36,31,37], such as V (X, Z) = X N , Z M , do not admit 

6 For potentials that fall of slower than ∼ u3 near the boundary, such as 
V (X) = X N with N < 3/2, this integral is divergent. Nevertheless, perform-
ing holographic renormalisation carefully (see Appendix A), the thermodynamic 
quantities above can be computed explicitly and amounts to defining Uh =
u3

h

∫ ∞
u ℵ−4 V (α2ℵ2, α4ℵ4)dℵ instead.
h

P = 0 states with non-zero α.7 The simplest models admitting 
states with P = 0 have polynomial potentials such as V (X, Z) =
X + λX2. Unfortunately, this naive model is plagued by linear in-
stabilities. Nevertheless, it can be used as a toy model to illustrate 
the importance of P ′ 	= 0; we return to the details of this model 
below.

3.2. Strained holographic models

Let us first specialize to the strained models with V (X, Z) =
X N , Z M and N > 5/2, M > 5/4 to numerically obtain G and η, 
and test the agreement between quasinormal modes and the hy-
drodynamic predictions. We can compute the full spectrum of 
quasinormal modes, in both the transverse and longitudinal sec-
tors, using pseudo-spectral methods following [9,23,24,40,41]. As 
we discussed around (6), the strain pressure does not appear ex-
plicitly in the transverse sound modes, leading to the same pre-
dictions by [3] and [5], modulo the definition of χππ . Since the 
discrepancy in χππ has already been identified and tested against 
holographic results [24,23], here we only focus on the longitudinal 
sector.

We start with V (X, Z) = X N models. Note that Vh = α2N u2N
h

and Uh = α2N u2N
h /(3 − 2N). Using (12)-(15), we can explicitly find

T = 3 − m2 Vh

4π uh
, s = 2π

u2
h

. p = 1

2u3
h

(
1 − 2N − 1

2N − 3
m2 Vh

)
,

ε = 1

u3
h

(
1 + m2 Vh

2N − 3

)
, P = N

2N − 3

m2 Vh

u3
h

,

P ′ = −4π

u2
h

Nm2 Vh

3 + (2N − 1)m2 Vh
,

B = Nm2 Vh

2u3
h

(
3

2N − 3
+ 3 − m2 Vh

3 + (2N − 1)m2 Vh

)
, σ = Nm2 Vh

α2u4
h

,

cv = 4π

u2
h

3 − m2 Vh

3 + (2N − 1)m2 Vh
. (16)

Computing G and η numerically using (4), we can compare the 
hydrodynamic prediction for the longitudinal attenuation constant 
�‖ and diffusion constant D‖ in (3) with the numerical results ob-
tained for the quasinormal modes in the holographic model. The 
results are shown in Fig. 1. The agreement is extremely good and 
is valid independent of N . We no longer see a discrepancy in the 
diffusion mode.

7 However, the would-be preferred state α = 0 is not a good vacuum of the the-
ory, since the model is strongly coupled around that background [24]. Therefore, in 
these theories, it is incorrect to compare free energies of states with α 	= 0 against 
the state α = 0.
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Fig. 2. �‖ and D‖ for the model V (X, Z) = Z 2, as a function of the dimensionless parameter m/T , and the hydrodynamic prediction from (3).

Fig. 3. Left: v2⊥ for V (X) = X + X2/2 model with P = 0 alongside the hydrodynamic predictions (solid lines). We have chosen uh = 1 setting α = 1. Right: D‖ for V (X) =
X + X2/2 model with P = 0 alongside the hydrodynamic predictions (solid lines). We have chosen uh = 1 setting α = 1.
Let us now consider models V (X, Z) = Z M . In this case, Vh =
α4M u4M

h and Uh = α4M u4M
h /(3 − 4M). The expressions for thermo-

dynamic quantities remain the same as in (16) but with N → 2M .
Generically, X-independent potentials V (X, Z) = V (Z) enjoy a 

larger symmetry group – the dual field theory is invariant under 
volume preserving diffeomorphisms, modelling a fluid. These mod-
els have G = 0, leading to the absence of transverse phonons [17], 
and η saturating the Kovtun-Son-Starinets bound [35]. In Fig. 2
we show a comparison between the hydrodynamic prediction and 
numerical results for quasinormal modes for V (X, Z) = Z 2. The ex-
cellent agreement confirms that the hydrodynamic framework of 
[5] is valid for a general class of viscoelastic models with non-zero 
strain pressure.

3.3. Unstrained holographic models

In this section, we consider holographic models with zero strain 
pressure in equilibrium. These are thermodynamically favourable 
models which admit translationally broken phases that minimise 
free energy. We will illustrate that even for such models, the strain 
pressure plays a crucial role in the dual hydrodynamics through its 
temperature derivatives and hence the hydrodynamic modes are 
governed by the expressions in eq. (8).

Let us consider the simplest model V (X, Z) = X +λX2. As men-
tioned above, this model is unstable: (I) the shear modulus is 
negative, (II) the speed of transverse sound is imaginary, and (III) 
the longitudinal diffusion constant becomes negative at large m/T . 
It can be verified that all the models V (X, Z) = X N1 + λX N2 with 
spontaneous breaking of translations and P = 0 suffer from such 
linear instabilities, or have ghostly excitations in the bulk.8 Clearly, 
the model V (X, Z) = X + λX2 cannot describe a stable physical 
system, but it can be used as a toy example to illustrate the im-
portance of strain pressure. We find that Vh = α2u2

h + λα4u4
h and 

8 More precisely, for models with N1 < 3/2 the shear modulus is negative; see 
appendix of [24] for formulae. Hence, also the model considered in [5] is dynami-
cally unstable.
Uh = α2u2
h − λα4u4

h . Setting P in (13) to zero, we find the pre-
ferred value of α 	= 0 to be

α2 = 1

2λu2
h

, (17)

which matches the result of [19] in the zero charge density limit 
ρ = 0.9

We obtain the hydrodynamic parameters

T = 3

4πuh

(
1 − m2

4λ

)
, s = 2π

u2
h

, p = 1

2u3
h

(
1 − m2

4λ

)
,

ε = 1

u3
h

(
1 − m2

4λ

)
, P ′ = −4π

3u2
h

m2

λ + 5m2/12
,

B = m2

2λu3
h

λ − m2/4

λ + 5m2/12
,

σ = 2m2

u2
h

, cv = 4π

u2
h

λ − m2/4

λ + 5m2/12
. (18)

Notice that the potential behaves as ∼u2 near the boundary, so 
the alternate definition of Uh given in footnote 6 has to be used 
in formulas (13)-(14). G and η have to be found numerically using 
(4). We see that P ′ 	= 0 leading to B 	= 0 and cv 	= 2s in these 
models, as discussed above.

We can also compute the quasinormal modes for this system 
numerically and compare them against the hydrodynamic predic-
tions presented in eq. (8), and that of [3] without P ′ . We see in 
Fig. 3 that the transverse speed of sound v⊥ is imaginary due to 
negative shear modulus G; nevertheless the prediction from hy-
drodynamics matches perfectly. We again find a discrepancy in D‖
similar to [9] compared to [3], which is resolved by including P ′
contributions, as in eq. (8); see Fig. 3.

9 The notational relationships are α ≡ k and λ ≡ λ2, where the right-hand sides of 
the identifications are the notation of [19]. Notice also that eq. (45) in [19] contains 
typos; it should read k2 IY1 (0) + 2 λ2k4 IY2 (0) − λ1 ρ2 k2 I Z2 (0) = 0.
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Despite the simplicity and linear instability of this model, it 
shares various features of interest with similar holographic models 
without background strain, such as the one discussed in [19]. Simi-
lar models can also be constructed in the frameworks of [42,43,19,
20,44]. The requirement of thermodynamic stability for isotropic 
models can be implemented as � = −〈T xx〉 [29], which according 
to (4) is precisely P = 0. Irrespective of the particular model at 
play, while we might be able to set P = 0 by judiciously choos-
ing α in the equilibrium state, we will generically be left with a 
non-zero P ′ , which must be taken into account in the dual hydro-
dynamic theory.10

At this stage, we are not aware of any massive gravity or Q-
lattices models which are both thermodynamically and dynami-
cally stable.11

4. Conclusions

In this paper we illustrated that the theory of viscoelastic hy-
drodynamics formulated in [5] is the appropriate hydrodynamic 
description for the (strained) homogeneous holographic models 
of [17] with spontaneously broken translations. We showed that 
the theory faithfully predicts all the transport coefficients and 
the behaviour of the low-energy quasinormal modes in the holo-
graphic setup. Moreover, it resolves the tensions between the pre-
vious hydrodynamic framework of [3] and the holographic results 
reported in [9].

Moreover, we extended the analysis beyond [5] and argued that 
the effects of the temperature derivative of the strain pressure are 
present even in unstrained equilibrium configurations. We con-
structed a thermodynamically stable holographic model, analysed 
its low-lying QNMs, and found agreement with the expressions in 
equation (8). We have also noted issues (dynamical instabilities) 
with the physicality of this thermodynamically favoured model 
(and other similar setups [5,19]).

Generally, we expect that the hydrodynamic formulation of [5], 
with the addition of the results and discussions presented in this 
paper, will continue to work for all homogeneous holographic 
models with spontaneously broken translations [19,7,6,20], due to 
the same symmetry-breaking pattern.

The analysis in this paper opens up the stage for various inter-
esting future explorations. An immediate goal would be to inspect 
various holographic models of viscoelasticity in the literature, with 
zero background strain, and identify the role of non-zero P ′ on 
the quasinormal spectrum. In particular, the relation between dy-
namic instability and the absence of strain pressure, which has 
been presented in this work, is worthy of further investigations. 
Furthermore, another interesting direction is to better understand 
the role of strain pressure, and its temperature derivative, in phys-
ical systems (see e.g. [46]).

The addition of a small explicit breaking of translations to the 
hydrodynamic framework of [5] could also provide an understand-
ing of the universal phase relaxation relation � ∼ M

2 /σ (with �
the Goldstone phase relaxation rate; M the mass of the pseudo-
Goldstone mode). This relation was proposed in [11] and was later 
verified for the models presented in this paper in [8]. It could 
also provide an explanation for the complex dynamics found in 
the pseudo-spontaneous limit in [23]. Furthermore, � seems to 
be tightly connected to the presence of global bulk symmetries, 
which are not expected to appear in proper inhomogeneous peri-
odic lattice structures. The physical interpretation of these global 

10 See also [6] for a bulk analysis.
11 Preliminary results suggest that the model in section II-B of [19] is dynamically 

unstable as well [45]. This is somewhat expected given the similarities with our 
V (X) = X + λX2 model.
structures has recently been discussed in [47], and still represents 
an important puzzle in the field.

One may also consider the viscoelastic hydrodynamic theory of 
[5] beyond linear response in order to explore the full rheology 
of the holographic models considered in this work, as initiated in 
[37].

In conclusion, this work marks an important development in 
understanding the nature of the field theories dual to the widely 
used holographic models with spontaneously broken translational 
invariance, and provides another robust bridge between hologra-
phy, hydrodynamics (in its generalised viscoelastic form) and ef-
fective field theory.
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Appendix A. Holographic renormalisation

In this appendix we give some details regarding the holographic 
renormalisation underlying the models discussed in the main text. 
The bulk action (9) has to be supplemented with appropriate 
boundary counter terms to have a well-defined variational prin-
ciple

Scounter =
∫

u=ε

dd+1x
√−γ

(
K − d

�
+m2 V̄ (Ī I J )

)
, (A.1)

where γμν = limu→ε gμν is the induced metric at the boundary, K
is the extrinsic curvature, and Ī I J = γ μν∂μφ I∂νφ J . V̄ (Ī I J ) is an 
appropriate boundary potential fixed by requiring that the on-shell 
action of the black brane solution (10) to be finite. For instance, 
in d = 2, for V (X) = X N models with N > 3/2 we have V̄ ( X̄) = 0, 
while for N < 3/2 we get V̄ ( X̄) = X̄/(3 − 2N), where X̄ = 1

2 tr Ī . 
For V (X) = X + λX2, we instead find V̄ ( X̄) = X̄ .

Due to its novelty, we will in the remainder of this section 
mainly focus on holographic renormalisation for V (X) = X + λX2.

To implement spontaneous symmetry breaking for models 
whose boundary behaviour goes as V (X, Z) ∼ X N , Z M with N <

5/2, M < 5/4, one needs to apply alternative quantisation for the 
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scalars.12 More precisely, one needs to deform the boundary the-
ory with a term

Salt =
∫

u=ε

dd+1x
√−γ �Iφ

I , (A.2)

where

�I = 1√−γ

δ(S + Scounter)

δφ I

= δI J

(
V ′(X)na∂aφ

J + ∇μ
(γ )

(
V̄ ′( X̄)∂μφ J

))
. (A.3)

∇(γ )
μ is the covariant derivative associated with γμν and na is the 

outward pointing normal vector at the boundary. The (A.2) term in 
the action turns �I at the boundary into the dynamical operator, 
while the associated source is now given by the boundary value of 
�I . We are interested in dual hydrodynamic models in the absence 
of sources for the scalars. Hence, in alternative quantisation we 
impose the boundary conditions

lim
ε→0

1

εd+1
�I = 0 . (A.4)

Finally, for the metric we always impose the standard boundary 
conditions

lim
ε→0

ε2γμν = ημν . (A.5)

Note that in the alternative quantisation scheme the background 
profile for the scalars, φ I = αxI , is no longer an external source 
providing the explicit breaking of translations. This is the funda-
mental reason why models like V (X) = X + . . . , using alternative 
quantisation [5], realize the spontaneous (and not explicit [15]) 
breaking of translations.
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