
Exploring strategies to improve FPGA
design with higher levels of abstraction

By

TOBÍAS ALONSO PUGLIESE

PH.D. THESIS

UNIVERSIDAD AUTÓNOMA DE MADRID

ESCUELA POLITÉCNICA SUPERIOR

Departamento de Tecnología Electrónica y de las Comunicaciones

Ph.D. Advisors:
Dr. Gustavo Sutter Capristo

Dr. Jorge E. López de Vergara Méndez

MADRID, MAY 2022

A mi Luky, quien todos estos años ha estado siempre a mi lado.

i

ABSTRACT

While our data processing needs continue to grow at a fast pace, the capacity of

general purpose hardware to increase their compute power is decreasing with each

successive technology generation. Then, it becomes more important to resort to other

means to improve performance. Custom designed hardware, in particular, implemented

in FPGAs, has been a vital tool in many application areas and, under the current

circumstances, it might be essential to push performance forward. In this context, this

thesis explores strategies that can be used in the different hardware design stages

to enhance performance of custom-designed solutions using FPGAs and the ability of

hardware designers to tackle larger hardware design problems. The work is focused

on three application areas, image processing, network packet processing and artificial

intelligence, where system requirements and design challenges are analyzed, and later

addressed, proposing solutions.

In the area of image processing, we tackle compression under stringent constraints,

like those faced in satellite and drone sensing. Given that available image compression

algorithms do not properly address the problems in these scenarios, an algorithm-

hardware co-design approach was followed. We proposed a series of enhancements to

the JPEG-LS standard, aimed at improving its coding efficiency at a low computational

overhead, and later, developed an FPGA implementation of the encoder. As a result, a

low latency near-lossless compressor with the highest pixel rate and highest compression

ratio was achieved, outperforming existing implementations.

In the area of network packet processing, we focus on the problem of offloading the

flow metering process for 100 Gbit Ethernet. Although for slower link rates a high-

level synthesis implementation can provide a solution, for the target link and relevant

applications that require managing large memories, this route was insufficient. For this

reason, an alternative architecture was designed to address the problem of implementing

high-throughput and complex read-update processes dealing with significant propagation

delays associated with the memory system. This allowed to implement in an FPGA a

TCP flow metering system supporting 100GbE packet rate and achieving over a 50%

ii

offload of the computational load. We also demonstrate that using arrays of the developed

cores enable the use of larger flow tables, increasing the offloading capabilities, while

still supporting the maximum packet rate.

In addition, we studied a complementary throughput optimization for read-update

processes, the conditional stalling technique. We concluded that, with efficient implemen-

tations, its utilization will not have frequency penalties for most designs and that few

extra resources are required. Also, we examined the performance of the technique as a

function of input data and architecture characteristics, showing that, even in adverse

cases, it can significantly enhance performance. However, we demonstrated that to opti-

mize throughput, we must take into account both the memory address statistics and the

evolution of frequency as the pipeline is deepened.

In the area of artificial intelligence, we deal with a set of related implementation

problems that arise when scaling up convolutional neural network dataflow accelerators,

in particular in non-monolithic (multi-SLR) FPGAs. To tackle them, we developed a

partitioning and resource balancing optimization tool. This tool addresses the control

signals connection of large designs in multi-SLR FPGAs, and balances multiple resources

across FPGA regions and/or chips, while it minimizes the communication cost among

them. The tool natively maps systems to a multi-node implementation if it does not

fit in a single FPGA, and supports different multi-node paradigms. The application

of this optimization significantly enhanced performance of the accelerators. Targeting

multi-node platforms led to further compute density, latency and power improvements.

Finally, from the experience obtained in the development of these applications, we

identified key methodological aspects that led us to a successful hardware implementa-

tion using high-level synthesis (HLS). In particular, we observed that HLS can achieve

great quality of results, leveraging wider algorithmic exploration and function specializa-

tion. Also, we identify the benefits of modular partitioning and refinement, and using a

hardware oriented development mentality.

iii

RESUMEN

Mientras nuestras necesidades de procesamiento de datos siguen creciendo a gran

velocidad, la capacidad del hardware de propósito general para aumentar su potencia de

cálculo va disminuyendo con cada generación tecnológica sucesiva. Entonces, se hace más

importante recurrir a otros medios para mejorar el rendimiento. El hardware diseñado a

medida, en particular, implementado en FPGAs, ha sido una herramienta vital en muchas

áreas de aplicación y, en las circunstancias actuales, puede ser esencial para impulsar el

rendimiento. En este contexto, esta tesis explora las estrategias que se pueden utilizar

en las diferentes etapas de diseño de hardware para mejorar el rendimiento de las

soluciones diseñadas a medida utilizando FPGAs y la capacidad de los diseñadores de

hardware para abordar problemas de diseño de hardware más grandes. El trabajo se

centra en tres áreas de aplicación, el procesamiento de imágenes, el procesamiento de

paquetes de red y la inteligencia artificial, donde se analizan los requisitos del sistema y

los retos de diseño, para posteriormente abordarlos, proponiendo soluciones.

En el área de procesamiento de imágenes, abordamos la compresión bajo estrictas

restricciones, como las que se plantean en la exploración de satélites y drones. Dado que

los algoritmos de compresión de imágenes disponibles no abordan adecuadamente los

problemas en estos escenarios, se siguió un enfoque de codiseño algoritmo-hardware.

Propusimos una serie de mejoras en el estándar JPEG-LS, destinadas a mejorar su

eficiencia de codificación con una baja sobrecarga computacional, y luego, desarrollamos

una implementación FPGA del codificador. Como resultado, se consiguió un compresor de

baja latencia y con pérdidas matemáticamente acotas (near-lossless) con la mayor tasa de

píxeles y la mayor relación de compresión, superando las implementaciones existentes.

En el área del procesamiento de paquetes de red, nos centramos en el problema

de descargar el proceso de medición de flujos para 100 Gbit Ethernet. Aunque para

velocidades de enlace más lentas una implementación de síntesis de alto nivel es capaz

de proporcionar una solución, para el enlace objetivo y aplicaciones relevantes que

requieren la gestión de grandes memorias, esta vía fue insuficiente. Por este motivo, se

diseñó una arquitectura alternativa para abordar el problema de la implementación de

iv

procesos de lectura-actualización complejos y de alto rendimiento que se enfrentan a

importantes retardos de propagación asociados al sistema de memoria. Esto permitió

implementar en una FPGA un sistema de medición de flujos TCP capaz de soportar

la tasa máxima de paquetes de 100 GbE y logrando una descarga de más del 50% de

la carga computacional. También demostramos que el uso de arreglos de los módulos

desarrollados permite utilizar tablas de flujos más grandes, lo que aumenta la capacidad

de descarga, sin dejar de soportar la tasa máxima de paquetes.

Además, estudiamos una optimización de rendimiento complementaria para los proce-

sos de lectura-actualización, la técnica de bloqueo condicional. Llegamos a la conclusión

de que, con implementaciones eficientes, su utilización no tendrá penalizaciones de

frecuencia para la mayoría de los diseños y que se requieren pocos recursos adicionales.

Además, examinamos el rendimiento de la técnica en función de las características de

los datos de entrada y de la arquitectura, mostrando que, incluso en casos adversos,

puede mejorar significativamente el rendimiento. Sin embargo, demostramos que, para

optimizar el rendimiento, hay que tener en cuenta tanto las estadísticas de direcciones de

memoria, como la evolución de la frecuencia a medida que se incrementa la segmentación.

En el área de la inteligencia artificial, abordamos un conjunto de problemas de

implementación relacionados que surgen al escalar aceleradores de redes neuronales

convoluciones segmentados, en particular, en FPGAs no monolíticas (multi-SLR). Para

abordarlos, desarrollamos una herramienta de optimización de particionamiento y bal-

anceo de recursos. Esta herramienta determina la conexión de las señales de control de

grandes diseños en FPGAs multi-SLR, y equilibra múltiples recursos a lo largo de las

regiones y/o FPGAs, al tiempo que minimiza el coste de comunicación entre ellas. La

herramienta mapea de forma nativa a una implementación multi-nodo si el diseño no

cabe en una sola FPGA, y soporta diferentes paradigmas multi-nodo. Esta optimización

mejoró significativamente el rendimiento de los aceleradores. La utilización de platafor-

mas multi-nodo permitió mejorar la densidad de cálculo, la latencia y el consumo de

energía.

Por último, a partir de la experiencia obtenida en el desarrollo de estas aplicaciones,

identificamos aspectos metodológicos clave que nos condujeron a una exitosa imple-

mentación de hardware utilizando la síntesis de alto nivel (HLS, por sus siglas en inglés).

En particular, observamos que HLS puede lograr muy buenos resultados, aprovechando

una mayor exploración algorítmica y especialización de funciones. Además, identificamos

las ventajas del particionamiento y refinamiento modular, y de la utilización de una

mentalidad de desarrollo orientada al hardware.

v

AGRADECIMIENTOS

Esta tesis refleja el trabajo de poco más de cuatro años de mi vida. Claro es que si

tuviese que nombrar a todas aquellas personas que lo influenciaron, el largo de la misma

se duplicaría. Cuantas conversaciones afectaron mi forma de pensar, muchas con gente

que nunca conocí. Dicho esto, hay personas que no puedo dejar de mencionar.

En primer lugar, quiero que agradecer a mi compañera en la vida, Luky, quien

siempre estuvo al lado mío para luchar las más difíciles batallas. Sin ella, no veo como

podría hoy estar cantando victoria. En estas batallas, nunca faltó mi familia. Mi mamá,

Silvia, mi papá, Julio, y mi hermana, Tami. A quienes se sumaron mi nueva familia

Melián. Aún a la distancia, a un centímetro de mí cuando los necesité.

En el campo, en Madrid, Alberto, Silvia, Rafa, Moni y Franco. Gracias por su amistad,

sus consejos y los buenos momentos. En especial, menciono a Mario, gran amigo y

compañero de laboratorio. Gracias por los consejos, discusiones, charlas y compañía en el

laboratorio, en Madrid, en Argentina y en Dublín. Un miembro especial de mi equipo es

Noela, a quien agradezco profundamente por prestarme su oído y ayudarme a crecer.

También, doy las gracias a Gustavo y a Jorge, mis directores, por todo lo que me

enseñaron, por la oportunidad de trabajar con ellos y por la ayuda en el camino de llegar

a ser doctor. Ya sea por charlas espontáneas o por el tiempo que me dedicaron, mis

trabajos se beneficiaron de los miembros de HPCN. En particular, agradezco a Sergio,

por su crítica constructiva y honesta. Durante estos años en el laboratorio, tuve grandes

compañeros con quienes intercambié ideas, frustraciones, problemas, y soluciones. Por

esto quiero agradecer a Angel, Dani, David, Edu, Guille, Jesus, Jose Fernando, Rafa y

Sergio. Adicionalmente, agradezco a aquellos profesores de la Facultad de Ingeniería de

la UNSJ que me dieron herramientas para enfrentar este desafío.

Last, but not least, I want to thank the Xilinx Research Labs team in Ireland for the

great experience that I had working with them. In particular, thanks to Jakoba, Yaman,

Guilio, Alina, Ela, Nick, and Michaela, for the help and jokes that made the job easy.

Specially, I would like to thank Lucian, who guided me in my work. Thanks for all that

he taught me, and for both the pragmatic and the idealistic discussions we had.

vi

LIST OF CONTENTS

Page

List of Tables xiii

List of Figures xv

List of Algorithms xviii

I Introduction & Background 1

1 Introduction 2
1.1 Context & Motivation of the Thesis . 2

1.1.1 Trends of Data Processing Requirements 2

1.1.2 Trends of General Purpose Hardware Performance 3

1.1.3 Trends of Custom Designed Hardware and FPGAs 5

1.2 Objectives & Methodology of the Thesis . 6

1.2.1 Objectives . 6

1.2.2 Methodology . 7

1.3 Structure of the Thesis . 9

2 Introducción 10
2.1 Contexto y Motivación de la Tesis . 10

2.1.1 Tendencias de los Requerimientos de Procesamiento 10

2.1.2 Tendencias del Desempeño del Hardware de Propósito General . . 11

2.1.3 Tendencias del Hardware Diseñado a Medida y las FPGA 13

2.2 Objetivos & Metodología de la Tesis . 15

2.2.1 Objetivos . 15

2.2.2 Metodología . 16

2.3 Estructura de la Tesis . 18

vii

LIST OF CONTENTS

3 Background 19
3.1 Electronic Circuit Technology . 19

3.2 Design Languages . 23

II Case Studies and Challenges Presentation 25

4 Image Processing: Compression in Constrained Scenarios 26
4.1 Introduction . 26

4.2 JPEG-LS . 28

4.2.1 JPEG-LS Baseline Algorithm . 28

4.2.2 JPEG-LS Extension . 29

4.2.3 JPEG-LS Hardware Implementations 29

4.3 Asymmetric Numeral Systems . 30

4.3.1 tANS Operation . 31

4.3.2 Coding Efficiency . 32

4.4 Problem Analysis . 32

4.4.1 Test Image Dataset . 32

4.4.2 JPEG-LS Optimization Potential . 32

4.5 Research & Development Goals . 36

5 Computer Networks: 100 GbE Flow Metering 37
5.1 Introduction . 37

5.2 Flow Monitoring . 38

5.3 State-of-the-Art . 39

5.4 Problem Analysis . 41

5.4.1 Scenario . 41

5.4.2 System Constraints . 42

5.4.3 Required Hardware . 44

5.5 Research & Development Goals . 45

6 AI: Implementation of Large CNN Accelerators 46
6.1 Introduction . 46

6.2 Background . 48

6.2.1 The FINN Compiler . 48

6.2.2 Scaling Up CCN Performance . 49

6.3 Challenges in Scaling Up Dataflow Architecture Performance 51

viii

LIST OF CONTENTS

6.3.1 Considerations for Large FPGA Designs 51

6.3.2 Maximizing Compute Density . 52

6.4 Research & Development Goals . 54

III Addressing the Challenges 55

7 LOCO-ANS Image Codec: Algorithm 56
7.1 Introduction . 57

7.2 LOCO-ANS Overview . 58

7.2.1 High-Level Description . 58

7.2.2 Encoding Algorithm Summary . 60

7.3 An ANS-based Coder for TSG Sources . 60

7.3.1 Adaptive Bernoulli Coder . 61

7.3.2 Basic Geometric Coder . 61

7.3.3 Codification Order for ANS . 62

7.3.4 Geometric Coder Iterations . 64

7.3.5 Limitation of Coder Iterations and Symbol Expansion 66

7.4 Distribution Parameters Estimation . 69

7.4.1 p Parameter Estimation . 69

7.4.2 θ Parameter Estimation . 71

7.4.3 Resets . 73

7.5 Selection of Coder Parameters . 74

7.5.1 ANS Tables Limitations and Generation 74

7.5.2 Selection Methodology . 76

7.5.3 Tuning the Coder Parameters . 78

7.6 Experimental Results . 79

7.6.1 Analysis of LOCO-ANS Configurations Performance 81

7.6.2 Experimental System Efficiency . 83

7.6.3 Software Performance Comparison 86

7.6.4 Discussion . 91

7.7 Conclusion . 92

8 LOCO-ANS Image Codec: Hardware Implementation 93
8.1 Introduction . 94

8.2 Encoder Architecture . 94

ix

LIST OF CONTENTS

8.2.1 Pixel Decorrelation . 95

8.2.2 TSG Coder . 100

8.3 Results . 104

8.3.1 Test Platform and Encoder Configurations Description 104

8.3.2 Implementation Results . 106

8.3.3 Results Evaluation . 106

8.4 Discussion . 109

8.4.1 Related work . 109

8.4.2 Comparison Considerations . 112

8.4.3 Lossless-only Encoders Comparison 115

8.4.4 Near-lossless Encoders Comparison 116

8.5 Conclusions . 117

9 100GbE Flow Metering & Dual Read-Update Architectures 119
9.1 Introduction . 120

9.2 Architectures for the Flow Metering Core 120

9.2.1 Sequential Design . 122

9.2.2 Double-Frequency Multi-Cycle Architecture 123

9.3 Flow Metering System Implementation . 126

9.3.1 System Description . 126

9.3.2 Implementation . 130

9.4 Application of the Architecture for Other Systems with the Read-Update

Pattern . 133

9.5 Architecture Improvements . 134

9.5.1 Arrays of Flow Metering Cores . 134

9.5.2 Double Frequency Architecture with Increased Pipelining 136

9.6 Conclusion . 137

10 Study of the Conditional Stalling Technique 139
10.1 Introduction . 139

10.2 Implementation of Conditional Stalling . 142

10.3 Modeling Conditional Stalling . 143

10.3.1 IIsys Distribution for DD = 1 . 144

10.3.2 Hidden Markov Model for DD ≥ 1 . 144

10.3.3 A Simple IIsys Approximation . 146

10.4 Performance Analysis . 147

x

LIST OF CONTENTS

10.4.1 IIsys Improvement for a given Processing Latency 147

10.4.2 Increasing Throughout Optimizing Pipeline Depth 148

10.4.3 Trade-off Between IIsys and Area . 149

10.5 Application to 100 GbE Flow Metering . 150

10.6 Discussion . 151

10.7 Conclusion . 152

11 Automatic Partitioning and Resource Balancing 153
11.1 Introduction . 154

11.2 Partitioning and Resource Balancing Tool . 154

11.2.1 Implementation Flow . 154

11.2.2 Tool Capabilities . 155

11.2.3 ILP Formulation . 157

11.2.4 Partitioner Implementation . 160

11.2.5 FINN Integration . 160

11.3 Tool Evaluation . 161

11.3.1 Experimental and Implementation Setup 161

11.3.2 Effect of Partitioning on Operating Frequency 163

11.3.3 Effect on Compute Density . 164

11.3.4 Effect of Scale-Out Alternatives on Latency and Power 166

11.4 Discussion . 168

11.4.1 Designer’s Productivity . 168

11.4.2 Tool Scalability . 169

11.4.3 Design Methodology . 170

11.5 Related work . 170

11.5.1 Multi-SLR FPGA Partitioning and Optimization 170

11.5.2 Multi-node FPGA DNN Partitioning 171

11.6 Conclusion . 173

IV Putting All Together 174

12 Lessons Learned Designing with HLS 175
12.1 Introduction . 175

12.2 Incorporating HLS for Better Productivity 176

12.2.1 How HLS Improves Productivity . 176

xi

LIST OF CONTENTS

12.2.2 Software vs Hardware Development 179

12.2.3 Desired Methodology Characteristics 179

12.3 Key Methodological Aspects . 180

12.3.1 Modular Design and Refinement . 180

12.3.2 Architecture Design . 183

12.3.3 Interface Design . 186

12.3.4 Analysis of Compilation Results . 187

12.4 Summary . 188

12.5 Conclusion . 189

13 Conclusions 190
13.1 Main Contributions . 190

13.2 Future Work . 194

14 Conclusiones 196
14.1 Principales Contribuciones . 196

14.2 Trabajo Futuro . 200

A List of publications 202
A.1 Publications Included in the Contents of this Thesis 202

A.1.1 Journals & Magazines . 202

A.1.2 International Conferences . 203

A.2 Other Publications Related to this Thesis . 204

A.2.1 International Conferences . 204

A.2.2 Other Communications . 205

B LOCO-ANS compression examples 206

Bibliography 209

xii

LIST OF TABLES

TABLE Page

3.1 Example assembly program. 21

4.1 Rawzor 8-bit gray dataset description . 33

4.2 JPEG-LS bpp vs TSG models estimated entropy. 35

6.1 Neural networks accelerated in this work . 49

6.2 Vivado resource utilization guidelines to avoid frequency penalties 53

7.1 Notation for LOCO-ANS description and analysis 57

7.2 Performance of 2-symbol tANS tuned to the minimum symbol probability . . 76

7.3 Prototype configurations used in the experiments 80

7.5 Mean bpp for dataset photographic images for a set of prototype configurations 82

7.6 Number of images of the dataset that JPEG-LS achieves a lower bpp 83

7.7 Codec configurations used in the tests . 88

7.8 Encoder/Decoder speed comparison for lossless compression 89

8.1 Characteristics of target parts used in this work. 105

8.2 Codec configurations used in the experiments 105

8.3 LOCO-ANS Encoder implementation metrics 106

8.4 Comparison with other codec implementations. 111

8.5 Example of FPGA propagation and set-up times 115

9.1 Notation used in the architectures analysis . 121

9.2 Flow metering system implementation results 132

10.1 Stall stage HLS implementation performance comparison 142

11.1 Fmax of baseline and partitioned single-node DNN accelerators 163

11.2 Comparison of compute density achieved by the ILP tool against baseline . . 164

xiii

LIST OF TABLES

11.3 Implemented ResNet-50 inference on two Alveo U280s at XACC 167

12.1 QoR impact due to alternative algorithm to reconstruct pixel 177

xiv

LIST OF FIGURES

FIGURE Page

1.1 Processor performance evolution . 3

1.2 SPEC2017int speed results for Q1 2018-2022 . 4

1.3 Thesis methodology . 9

2.1 Evolución del desempeño de los procesadores . 11

2.2 Resultados de velocidad para SPEC2017int para Q1 de 2018 a 2022 13

2.3 Metodología de la tesis . 18

3.1 Finite state machine structure . 20

3.2 Two equivalent implementations of a simple FSM 20

3.3 Block diagram of a simple processor . 21

4.1 High-level JPEG-LS encoder block diagram . 28

5.1 Typical flow monitoring system. 39

5.2 Flow metering system high-level diagram . 41

5.3 Performance of 100 GbE TCP flow metering with on-chip memory 44

6.1 FINN Compiler Flow . 48

6.2 FINN parallelism dimensions for dense convolutions 50

6.3 Data- and Model-Parallelism for multi-node implementations 50

6.4 Bad design decisions for large accelerators on multi-SLR FPGAs 52

6.5 Resource utilization as a function of folding . 53

7.1 LOCO-ANS block diagram. 58

7.2 Geometric coder mean iterations as a function of St 65

7.3 St Histogram for Rawzor dataset for different NEAR 65

7.4 Coding inefficiency caused by the iteration limitation mechanism using 68

7.5 KLD result of the p̂ quantization . 71

xv

LIST OF FIGURES

7.6 Coding inefficiency due to the quantization of St 72

7.7 KLD of 2-symbol tANS tuned to the minimum symbol probability 75

7.8 Mean bpp using the prototype configurations with NI=7 and JPEG-LS. 81

7.9 KLD due to distribution parameter estimation inefficiencies 84

7.10 KLD due to coder inefficiencies . 86

7.11 Average encoder MiPixels/s versus average bpp for software comparison . . . 88

7.12 Average decoder MiPixels/s versus average bpp for software comparison . . . 89

8.1 LOCO-ANS hardware high-level block diagram 95

8.2 Pixel decorrelator pipeline. 96

8.3 LOCO-ANS quantization processes . 99

8.4 High-level block diagram of the double lane TSG coder. 100

8.5 Input Buffer block diagram, showing its operation for block size N. 101

8.6 Subsymbol Generator block diagram and data transformations within it. . . . 102

8.7 tANS coder block diagram . 103

8.8 Block diagram of the test system. 104

8.9 D-R plane for JPEG-LS, JPEG-LS without run mode and LOCO-ANS 113

9.1 Sequential flow metering architecture . 121

9.2 Double-frequency multi-cycle architecture block diagram. 123

9.3 Double-frequency multi-cycle architecture timing. 124

9.4 High-level diagram of flow metering system . 126

9.5 SDNet parser code snippet . 127

9.6 Double-process histogram computation using the proposed architecture . . . 134

9.7 Implementation of four 64K flow probes in two SLRs running at 300MHz . . 135

9.8 Double frequency architecture with increased pipelining block diagram. . . . 137

9.9 Double frequency architecture with increased pipelining timing. 137

10.1 Stalling stage HLS code. 141

10.2 Hidden Markov model example for DD = 3 and C ≥ 3. 145

10.3 Relative error of Eq. 10.2 with IIlim = 1.35 for random distributions. 146

10.4 Mean IIsys violin plots for blocks of 1000 packets for uniformly and Zipf . . . 147

10.5 Throughput estimation as a function of the processing module pipelining . . . 148

10.6 Performance comparison of RTL and HLS design with and without CS. 150

11.1 Alternative system partitioning strategies . 156

11.2 Model parallelism alternatives . 157

xvi

LIST OF FIGURES

11.3 Integration of the ILP partitioner into FINN . 161

11.4 Partition of 3xMN in 2xU280 (DP+TMP) . 164

11.5 Partition of dual-version 2xMN in 1xU280 . 165

11.6 Resources per SLR for partitioning of dual-version 2xMN in 1xU280 166

B.1 Example picture 1 (reference) . 207

B.2 Example picture 1 (compressed with LOCO-ANS, NEAR=3) 207

B.3 Example picture 2 (reference) . 208

B.4 Example picture 2 (compressed with LOCO-ANS, NEAR=3) 208

xvii

LIST OF ALGORITHMS

ALGORITHM Page

7.1 Codification procedure of a geometrically distributed symbol using tANS. . 64

7.2 Codification of single z limiting the iterations. 67

7.3 Estimation procedure of the p Bernoulli parameter for a given context. . . 70

7.4 Halved constant ratio quantizer procedure for θ̂q 73

8.1 Pixel loop algorithm structure . 96

8.2 Coarse grained θ quantization function (Qθ) 97

8.3 Error quantization and modulo reduction . 98

12.1 Codification procedure of a geometrically distributed symbol using tANS. . 181

12.2 Algorithm 12.1 after loop splitting. 182

12.3 Efficient HLS implementation of Module 2 of algorithm 12.2 184

xviii

Part I

Introduction & Background

1

C
H

A
P

T
E

R

1
INTRODUCTION

I
n this chapter, we detail the motivations and context of this thesis. This establishes
the challenges we face and, therefore, the starting point upon which we set the
objectives, and then, determine the methodology to achieve them. Finally, we
outline the structure of the rest of the thesis.

1.1 Context & Motivation of the Thesis

1.1.1 Trends of Data Processing Requirements

In many application areas, it is possible to see a continuous push towards higher

performance systems in terms of bandwidth, latency, functionality, energy efficiency,

among others. In the image and video processing area, the amount of data grows steadily

as sensors and solutions target higher resolutions, number of colors, and frame rates.

Other applications prioritize the improvement of different metrics, such as in the trans-

mission of first-person view video for drone telecommand, where very low latencies have

to be achieved. A generalization of this case are closed-loop control systems with video

feedback, where increased latencies in the loop decrease the system’s stability.

In computer networks, a similar trend is present. Connection bandwidth offered by

Internet service providers has been growing at an exponential rate (approx. 50% per

2

CHAPTER 1. INTRODUCTION

year) over the last decades, which is known as the Nielsen’s law of Internet bandwidth [1].

Greater data rates bring many challenges, not only for the information delivery systems,

but also for the mechanisms to analyze in real-time the health of this infrastructure.

Another example is found in the artificial intelligence area, where the great success of

their algorithms, and, in particular, of artificial neural networks, in addressing problems

that a few years ago were considered to be, in practice, out of reach for computers, im-

pulsed a considerable number of applications that make use of this technology [2]. These

range from high-throughput datacenter accelerated inference applications to critical

embedded systems like advanced driver assistance systems (ADAS) and autonomous

vehicles (AV). These applications, tend not only to consume big amounts of information,

but also are very compute intensive.

1.1.2 Trends of General Purpose Hardware Performance

Contrasting with this increase in the data processing needs, the capacity of the

leading technology (silicon semiconductors) to keep pushing performance forward is

decreasing with each successive generation. Fig. 1.1 shows the performance evolution of

general purpose processors over the last decades, measured by the SPECint benchmark

and power. Until about 2004, new process nodes not only allowed doubling the transistor

1970 1980 1990 2000 2010 2020
Date

100

101

102

103

104

105
SPECint score
Frequency(MHz)
Typical Power(W)

Figure 1.1: Processor performance evolution. Data source: [3]

3

CHAPTER 1. INTRODUCTION

count per chip approx. every two years (Moore’s Law [4]), but also increasing operation

frequency while keeping power per unit area constant, which was accomplished using

what is known as Dennard scaling [5]. This explains most of the performance increase

shown in the figure until that year. After this, although higher transistor densities could

be achieved, frequencies plateau and power started limiting performance.

For this reason, chip companies moved towards multicore architectures to keep

increasing the work performed per unit of time. However, for a fix size problem, the

speed-up experienced using parallelization faces diminishing returns, which is a function

of the sequential portion of the procedures, as dictated by Amdahl’s law [6]. Gustafson

argued that as more compute power was available, the sizes of the problems we would

try to tackle would increase, and with that, their parallel portion, resulting in an

alternative formula for the speed-up accomplished by multicore systems, Gustafson’s

law [7]. Although this latter law is applicable to many problems, latency improvements

are still governed by Amdahl’s law, and power, chip area, among other constraints often

limit the number of processing units that can be added. What is more, the increasing

percentage of dark silicon (underutilized transistors) each new process node brings

(caused by power dissipation issues derived from the end of Dennard scaling) does not

allow multiplying the number of running cores (at peak performance) by the same factor

the number of transistors grows [8]. In addition, other factors, like the memory system

structure, also limits performance of general purpose hardware.

2018 2019 2020 2021 2022
Year

4

6

8

10

12

14

16

Sc
or

e

Figure 1.2: Violin plots showing SPEC2017int speed scores for the first quartile of each
year. Minimum, median, and maximum values are marked. Data source: [9]

4

CHAPTER 1. INTRODUCTION

To observe in more detail what the trend has been over the last few years, we

can analyze the published results of the SPEC2017int speed benchmark [9]. Fig. 1.2

shows the distribution of these results for the first quarter of each year. Although they

correspond to high-end datacenter servers, the inter-annual performance rates, taking

the maximum score as a reference, were 14.4%, 8.0%, 18.2%, and 11.2%, resulting in

an average 12.9% increase per year (doubling performance every 5.7 years), which is a

modest growth compared to what we have enjoyed in the previous decades. The median

results have been growing slower at an average 8.2% inter-annual rate.

1.1.3 Trends of Custom Designed Hardware and FPGAs

Considering these trends, at the present, it is increasingly necessary to resort to

other means to improve performance. Leiserson et al. [10], foreseeing a potential stall

in the miniaturization process for both physical and economic reasons, identified three

areas that can push computer capacities forward: software performance engineering,

algorithms, and hardware architecture. In particular, for the last two, they stress the

importance of algorithm-hardware co-design and hardware specialization, which is inline

with other works [11, 12].

Custom hardware has been a vital tool in many application areas, given that it can

exceed the performance of other technologies, leveraging custom memory hierarchies,

avoiding instruction fetch and decode logic, using custom operators, improving data

reuse, among others. Also, nowadays, this alternative has become more profitable, given

that general purpose hardware would take longer than in the past to reach the same level

of performance. Yet, Application-Specific Circuit Technologies (ASICs) have high non-

recurring engineering cost (which are increasing), then these are normally only justified

for high-volume production. Conversely, these costs are low for field programmable gate

arrays (FPGA), thus enabling the use of custom-designed hardware in lower-volume

applications. At the same time, FPGAs provide a greater flexibility, given the possibility

of updating the implemented hardware, which, in turn, lowers development costs further

as errors are easier to fix.

Nevertheless, FPGA have to compete against other specialized technologies like

digital signal processors (DSP), graphic processing units (GPU) and application specific

standard products (ASSP). Given their ease of use, flexibility and price, CPUs are,

normally, the default target device. If system constraints cannot be met with them, for

the same reasons, DSPs, GPUs and ASSPs tend to be the next devices to be considered.

FPGAs are generally taken into account only if the previous options are not suitable for

5

CHAPTER 1. INTRODUCTION

the task, as they are harder to program, so they have longer time-to-market and higher

development costs. Because of this, the FPGA engineer normally confronts problems

with stringent constraints in terms of latency, throughput, or power. Therefore, and

considering that FPGAs achieve slower clock frequencies, efficient implementations are

required, not only because of the hard nature of the problems they normally face, but

also to fit the solution in smaller, cheaper chips to better compete in prices.

As a response to this situation, and to enable designers to develop larger systems,

FPGA vendors, electronic design automation (EDA) companies and the academia are

pushing towards easier FPGA programmability, and, in general, faster digital hardware

design. For this, it is sought to move away from register transfer level (RTL) languages,

like Verilog and VHDL, which require a more detailed specification and in-depth un-

derstanding of hardware and its design. As an alternative, researchers have worked in

increasing the abstraction level, among other means, developing compilers to generate

RTL from untimed languages, like C, C++ or Scala [13]. Although many of these tools

have matured for more than a decade, their use still tends to imply a significant trade-

off between quality of results (QoR) and development time [14], which, as previously

indicated, the FPGA designer cannot often afford.

1.2 Objectives & Methodology of the Thesis

1.2.1 Objectives

In this context, we consider fundamental to increase the hardware designer produc-

tivity, understood as the achieved performance per unit of developer time. In other words,

our main objective is to reduce the time the designer needs to achieve a satisfactory

system. To reach this objective, we take a holistic approach, targeting all the hardware

design stages. That is, we aim to:

• Automate design tasks: Task automation is key to enable greater productivity,

not only because the designer is freed from the task, at least partially, but also be-

cause computers are generally better at optimizing large high-dimensional spaces,

so both development time and QoR can be improved simultaneously. Automating

is particularly impactful when it is applied to error-prone processes, and also can

enable less experienced designers to obtain expert-level QoR.

• Obtain better architectures for common algorithm patterns: For a given

problem, architectures constitute different points in the design space, that is,

6

CHAPTER 1. INTRODUCTION

different trade-offs between latency, throughput, area, power, determinism, among

others. For HLS to increase productivity in the sense stated above, it needs to be

able to achieve not just a functionally correct system, but one that satisfies the

often stringent constraints of FPGA applications. It is therefore important for HLS

tools to have at their disposal a set of Pareto optimal architectures to implement

different algorithm patterns.

• Obtain better algorithms for hardware implementation: Algorithms estab-

lish fundamental limitations to what can be achieved, and yet most algorithms

were designed targeting the random-access machine [15]. As previously noted,

algorithm-hardware co-design can be a key enabler of greater performance. For ex-

ample, QuickSort [16] is a widely used and efficient sorting algorithm, but Bitonic

sorting [17] may be preferred in GPU or FPGA implementations, despite being

slower if run sequentially. This is because of its lower latency when run in parallel.

• Improve the hardware design methodology using high-level synthesis:
misusing a good tool will lead us to poor results. Good methodologies allow us

to get better results and in a reduced amount of time. It is therefore important

to understand how to better use HLS and how to incorporate it in the hardware

design process.

1.2.2 Methodology

To achieve the objectives, we explore difficult problems in relevant areas, studying the

systems requirements and identifying the design challenges. Although these may emerge

from specific problems, we aim to provide solutions to a wider range of applications.

The selected areas and problems are the following:

• Network packet processing: In this area, we address the challenge of network

flow metering offloading of 100 Gigabit Ethernet (GbE) links. Extensive work has

been done to offload stateless network packet processing like filtering and routing,

and these applications have even influenced how FPGA fabric is designed [18]. Yet,

when it is necessary to keep a state, dependencies are established, which, added to

the required high throughput that 100 GbE demands, constitutes a hard problem

to face. Dependencies are common in many application areas, then strategies to

ease them in one area, may be applied in others.

• Image processing: In this area, we address the problem of image lossless and

near-lossless compression in highly constraint scenarios. Given the large amount

7

CHAPTER 1. INTRODUCTION

of data sensors are capable of producing, compression is often mandatory not

only because of throughput limitations but also for power limitations, as data

transmission is often the main contributor and harder to optimize process in

terms of power [11]. On top of this, many applications also require low latency.

Developments for this application may also be applied to other data compression

algorithms, easing the power consumption problems faced from the embedded

systems to datacenters.

• Artificial intelligence: In this area, we aim to implement large Convolutional

Neural Networks (CNN) for datacenter application acceleration. This application is

compute-intensive and highly parallelizable, thus suitable for FPGA acceleration.

Although GPUs are also very suitable for CNN acceleration, CNN implemented as

dataflows (all layers running concurrently in a large pipeline) in FPGAs allow larger

accelerators to simultaneously increase throughput and decrease latency. Thus,

these FPGA scaled up implementations may allow pushing the Pareto Frontier

forward. However, the main challenge here is to face the problems that arise

when these accelerators require spanning over the whole FPGA (specially for non-

monolithic FPGAs) and even several FPGAs. Developments for this application

may also be applied to other large-scale systems, which we will almost certainly

face as data processing needs and the FPGA designer productivity continue to rise.

Notice that these applications cover a wide range of target devices, from small

and generally cost and power optimized ones for image compression, passing through

high-end medium/large FPGAs for 100 GbE flow metering, and finally, to large FPGA

acceleration cards or clusters of them for CNN acceleration. For each of these problems,

we first analyze the suitability of using higher level languages and tools to address

them. If this leads to a successful development, we aim to identify those methodological

components considered to be key contributors to the design success. When the higher-

level approach is deemed insufficient, we aim to understand why the tools do not address

the problem efficiently, and to propose improvements to these tools or complementary

ones. In some cases, we may observe opportunities to enhance available algorithms for

their implementation in hardware, in those cases, we will also aim at improving them.

Finally, through this process, solutions to the specific problems were be developed, which

are also be considered contributions of this thesis.

Fig. 1.3 serves as a summary, illustrating the relationship among the different

components of this thesis.

8

CHAPTER 1. INTRODUCTION

Motivation Need of efficient hardware Need of large & fast developments

Objectives Improve hardware designer's productivity (performance/time)

Thesis Methodology

Application

Design
Challenge

Proposed
Solution/

Contribution

100 GbE IP Flow MeteringImage Compression in
constrained scenarios

Implementation of large
CNNs

Resource Balancing

Frequency penalities
for multi-SLR designs

Partitioning designs
across multiple chips

Two parallel read-update
processes operating on
memories with large
propagation latencies

Stringent time constraints

Need for more efficient
image encoders

Read-update processes

High-performance architecture
for dual read-update processes

Conditional stalling

Hardware design using HLS Methodology

Efficient image
compression algorithm and
hardware implementation

Partitioner & resource
balancing tool

Figure 1.3: Thesis methodology

1.3 Structure of the Thesis

This work is structured in four parts. The first one, Introduction & Background,

includes this chapter and an additional one providing general background about FPGA

design and high-level synthesis. Then, Case Studies and Challenges Presentation part

is constituted by three chapters (one per application area), each of which introduces

the application, providing specific background and analyses of the problems at hand,

concluding with the determination of the specific research and development goals. After

that, Addressing the Challenges part, includes a series of chapters, each of which provides

solutions to the challenges identified in the previous part. Finally, the last Putting All
Together part, presents key methodological aspects that led us to a successful hardware

implementation using high-level synthesis and provides a summary of the contributions

of this thesis. A brief abstract can be found at the beginning of each chapter.

9

C
H

A
P

T
E

R

2
INTRODUCCIÓN

E
n este capítulo detallamos las motivaciones y el contexto de esta tesis. En

él se establecen los retos a los que nos enfrentamos y, por tanto, el punto de
partida sobre el cual fijamos los objetivos y, a continuación, determinamos la
metodología para alcanzarlos. Por último, esbozamos la estructura del resto

de la tesis.

2.1 Contexto y Motivación de la Tesis

2.1.1 Tendencias de los Requerimientos de Procesamiento

En muchas áreas de aplicación, se observa un avance continuo hacia sistemas de

mayor rendimiento en términos de ancho de banda, latencia, funcionalidad y eficiencia

energética, entre otros. En el área de procesamiento de imágenes y vídeo, la cantidad

de datos crece constantemente a medida que los sensores y las soluciones se orientan

hacia mayores resoluciones, número de colores y velocidad de fotogramas. Otras apli-

caciones priorizan la mejora de otras métricas, como en la transmisión de vídeo en

primera persona para el telecontrol de drones, donde hay que conseguir latencias muy

bajas. Una generalización de este caso son los sistemas de control de bucle cerrado con

retroalimentación de vídeo, donde el aumento de las latencias en el bucle disminuye la

10

CHAPTER 2. INTRODUCCIÓN

estabilidad del sistema.

En las redes de ordenadores se da una tendencia similar. El ancho de banda ofrecido

por los proveedores de Internet ha crecido a un ritmo exponencial (aprox. 50% al año)

durante las últimas décadas, lo que se conoce como la ley de Nielsen del ancho de banda

de Internet [1]. Mayores tasas de datos conllevan muchos desafíos, no solo para los

sistemas de entrega de información, sino también para los mecanismos de análisis en

tiempo real de la salud de esta infraestructura.

Otro ejemplo lo encontramos en el área de la inteligencia artificial, donde el gran

éxito de sus algoritmos y, en particular, de las redes neuronales artificiales, para abordar

problemas que hace unos años se consideraban, en la práctica, fuera del alcance de los

ordenadores, impulsó un número considerable de aplicaciones que hacen uso de esta

tecnología [2]. Estas van desde aplicaciones de inferencia acelerada en centros de datos

de alto rendimiento hasta sistemas integrados críticos como los sistemas avanzados

de asistencia al conductor y los vehículos autónomos. Estas aplicaciones, además de

consumir grandes cantidades de información, suelen ser muy intensivas en computación.

2.1.2 Tendencias del Desempeño del Hardware de Propósito
General

1970 1980 1990 2000 2010 2020
Date

100

101

102

103

104

105
SPECint score
Frequency(MHz)
Typical Power(W)

Figure 2.1: Evolución del desempeño de los procesadores. Fuente de los datos: [3]

11

CHAPTER 2. INTRODUCCIÓN

En contraste con este aumento de las necesidades de procesamiento de datos, la

capacidad de la tecnología de punta (semiconductores de silicio) para seguir impulsando

el rendimiento disminuye con cada generación sucesiva. La Fig. 2.1 muestra la evolución

del rendimiento de los procesadores de propósito general en las últimas décadas, medido

por el benchmark SPECint y la potencia consumida. Hasta aproximadamente 2004,

los nuevos nodos de proceso no solo permitían duplicar el número de transistores por

chip cada dos años aproximadamente (Ley de Moore [4]), sino también aumentar la

frecuencia de funcionamiento manteniendo constante la disipación de energía por unidad

de superficie, lo que se conseguía utilizando lo que se conoce como escalado de Dennard [5].

Esto explica la mayor parte del aumento de rendimiento mostrado en la figura hasta ese

año. Después de esto, aunque se pudieron lograr mayores densidades de transistores, las

frecuencias se estancaron y la disipación de energía comenzó a limitar el rendimiento.

Por esta razón, las empresas de chips se han movido hacia arquitecturas de múltiples

núcleos para seguir aumentando el trabajo realizado por unidad de tiempo. Sin embargo,

para un problema de tamaño fijo, el aumento de velocidad experimentado mediante

la paralelización se enfrenta a rendimientos decrecientes, lo que es una función de la

parte secuencial de los procedimientos, según dicta la ley de Amdahl [6]. Gustafson

argumentó que, a medida que se dispusiera de más potencia de cálculo, aumentaría

el tamaño de los problemas que intentáramos abordar y, con ello, su parte paralela, lo

que dio lugar a una fórmula alternativa para el aumento de velocidad logrado por los

sistemas multi-núcleo, la ley de Gustafson [7]. Aunque esta última ley es aplicable a

muchos problemas, las mejoras de latencia siguen rigiéndose por la ley de Amdahl, y la

potencia, el área del chip, entre otras restricciones, suelen limitar el número de unidades

de procesamiento que pueden añadirse. Es más, el creciente porcentaje de silicio oscuro

(transistores infrautilizados) que trae consigo cada nuevo nodo de proceso (provocado

por los problemas de disipación de energía derivados del fin del escalado de Dennard) no

permite multiplicar el número de núcleos en funcionamiento (a máximo rendimiento)

por el mismo factor por el que crece el número de transistores [8]. Además, otros factores,

como la estructura del sistema de memoria, también limitan el rendimiento del hardware

de propósito general.

Para observar con más detalle cuál ha sido la tendencia en los últimos años, podemos

analizar los resultados publicados del benchmark de velocidad SPEC2017int [9]. La

Fig. 2.2 muestra la distribución de estos resultados para el primer trimestre de cada

año. Aunque corresponden a servidores de centros de datos de gama alta, las tasas de

rendimiento interanuales, tomando como referencia la puntuación máxima, han sido

12

CHAPTER 2. INTRODUCCIÓN

2018 2019 2020 2021 2022
Year

4

6

8

10

12

14

16

Sc
or

e

Figure 2.2: Gráficos de violín que muestran las puntuaciones de velocidad de
SPEC2017int para el primer cuartil de cada año. Se han marcado los valores mín-
imo, mediano y máximo. Fuente de los datos: [9]

del 14,4%, 8,0%, 18,2% y 11,2%, lo que supone un incremento medio del 12,9% por

año (duplicando el rendimiento cada 5,7 años), lo que supone un crecimiento modesto

comparado con el que hemos disfrutado en las décadas anteriores. La mediana de los

resultados ha crecido más lentamente, a un ritmo medio del 8,2% interanual.

2.1.3 Tendencias del Hardware Diseñado a Medida y las FPGA

Teniendo en cuenta estas tendencias, en la actualidad es cada vez más necesario

recurrir a otros medios para aumentar el rendimiento. Leiserson et al. [10], previendo

un posible estancamiento en el proceso de miniaturización por razones tanto físicas como

económicas, identificaron tres áreas que pueden impulsar la capacidad de los ordenadores:

ingeniería de desempeño de software, algoritmos y arquitecturas de hardware. En partic-

ular, para las dos últimas, destacan la importancia del co-diseño algoritmo-hardware y

la especialización del hardware, lo que coincide con otros trabajos [11, 12].

El hardware a medida ha sido una herramienta vital en muchas áreas de aplicación,

dado que puede superar el rendimiento de otras tecnologías, aprovechando jerarquías

de memoria adaptadas, evitando la lógica de lectura y decodificación de instrucciones,

utilizando operadores a medida, mejorando la reutilización de datos, entre otros. Además,

hoy en día, esta alternativa es más rentable, dado que el hardware de propósito general

tardaría más que en el pasado en alcanzar el mismo nivel de rendimiento. Sin embargo,

las tecnologías de circuitos específicos para aplicaciones (ASIC, por sus siglas en inglés)

13

CHAPTER 2. INTRODUCCIÓN

tienen un alto coste de ingeniería no recurrente (que va en aumento), por lo que normal-

mente solo se justifican para la producción de grandes volúmenes. Por el contrario, estos

costes son bajos en el caso de las matrices de puertas lógicas programables en campo

(FPGA, por sus siglas en inglés), lo que permite el uso de hardware diseñado a medida

en aplicaciones de menor volumen. Al mismo tiempo, las FPGA proporcionan una mayor

flexibilidad, dada la posibilidad de actualizar el hardware implementado, lo que, a su vez,

reduce aún más los costes de desarrollo, ya que los errores son más fáciles de corregir.

No obstante, las FPGA tienen que competir con otras tecnologías especializadas, como

los procesadores de señales digitales (DSP, por sus siglas en inglés), las unidades de

procesamiento gráfico (GPU, por sus siglas en inglés) y los productos estándar para aplica-

ciones específicas (ASSP, por sus siglas en inglés). Dada su facilidad de uso, flexibilidad y

precio, las CPU son, normalmente, el dispositivo objetivo por defecto. Si las restricciones

del sistema no pueden cumplirse con ellas, por las mismas razones, los DSP, las GPU

y los ASSP suelen ser los siguientes dispositivos a tener en cuenta. Las FPGA suelen

tenerse en cuenta solo si las opciones anteriores no son adecuadas para la tarea, ya que

son más difíciles de programar, por lo que tienen un tiempo de comercialización más

largo y unos costes de desarrollo más elevados. Por ello, el ingeniero de la FPGA suele

enfrentarse a problemas con estrictas restricciones en términos de latencia, rendimiento

o potencia. Por lo tanto, y teniendo en cuenta que las FPGAs alcanzan frecuencias de

reloj más lentas, se requieren implementaciones eficientes, no solo por la dificultad de los

problemas a los que normalmente se enfrentan, sino también para ser capaz de utilizar

chips más pequeños y baratos para competir mejor en precios.

Como respuesta a esta situación, y para que los diseñadores puedan desarrollar sis-

temas más grandes, los proveedores de FPGA, las empresas de automatización del diseño

electrónico (EDA, por sus siglas en inglés) y el mundo académico están impulsando una

programabilidad más sencilla de las FPGA, y en general, del diseño de hardware digital.

Para eso se busca alejarse de los lenguajes de nivel de transferencia de registros (RTL,

por sus siglas en inglés), como Verilog y VHDL, que requieren una especificación más

detallada y un conocimiento más profundo del hardware y su diseño. Como alternativa,

los investigadores han trabajado en aumentar el nivel de abstracción, entre otros medios,

desarrollando compiladores para generar RTL a partir de lenguajes no temporizados,

como C, C++ o Scala [13]. Aunque muchas de estas herramientas han madurado desde

hace más de una década, su uso todavía tiende a implicar un importante intercambio

entre calidad de resultados (QoR, por sus siglas en inglés) y tiempo de desarrollo [14],

que, como se ha indicado anteriormente, el diseñador de FPGAs a menudo no puede

14

CHAPTER 2. INTRODUCCIÓN

permitirse.

2.2 Objetivos & Metodología de la Tesis

2.2.1 Objetivos

En este contexto, consideramos fundamental aumentar la productividad del dis-

eñador de hardware, entendida como el rendimiento alcanzado por unidad de tiempo del

desarrollador. En otras palabras, nuestro principal objetivo es reducir el tiempo que el

diseñador necesita para conseguir un sistema satisfactorio. Para alcanzar este objetivo,

adoptamos un enfoque holístico, dirigido a todas las etapas del diseño de hardware. Es

decir, buscamos:

• Automatiza tareas de diseño: La automatización de tareas es clave para permi-

tir una mayor productividad, no solo porque el diseñador se libera de la tarea, al

menos parcialmente, sino también porque los ordenadores suelen ser mejores opti-

mizadores de grandes espacios y de elevadas dimensiones, por lo que tanto el tiempo

de desarrollo como la calidad de los resultados pueden mejorarse simultáneamente.

La automatización es especialmente útil cuando se aplica a procesos propensos a

errores, y también puede permitir a los diseñadores menos experimentados obtener

resultados de calidad a nivel de experto.

• Obtener mejores arquitecturas para patrones de algoritmos comunes:
Para un problema determinado, las arquitecturas constituyen diferentes puntos en

el espacio de diseño, es decir, diferentes compromisos entre latencia, rendimiento,

área, potencia, determinismo, entre otros. Para que HLS aumente la productividad

en el sentido indicado, tiene que ser capaz de conseguir no solo un sistema fun-

cionalmente correcto, sino uno que satisfaga las restricciones, a menudo estrictas,

de las aplicaciones de las FPGA. Por lo tanto, es importante que las herramientas

HLS tengan a su disposición un conjunto de arquitecturas pareto-óptimas para

implementar diferentes patrones de algoritmos.

• Obtener mejores algoritmos para la implementación en hardware: Los

algoritmos establecen limitaciones fundamentales a lo que se puede conseguir, y,

sin embargo, la mayoría de los algoritmos se diseñaron pensando en la máquina de

acceso aleatorio [15]. Como se ha señalado anteriormente, el co-diseño de algoritmos

y hardware puede ser un factor clave para lograr un mayor rendimiento. Por

15

CHAPTER 2. INTRODUCCIÓN

ejemplo, QuickSort [16] es un algoritmo de ordenación muy utilizado y eficiente,

pero la ordenación bitónica [17] puede ser preferible en implementaciones de GPU

o FPGA, a pesar de ser más lenta si se ejecuta secuencialmente. Esto es debido a

su menor latencia cuando se ejecuta en paralelo.

• Mejorar la metodología de diseño de hardware utilizando la síntesis de
alto nivel: un mal uso de una buena herramienta nos llevará a resultados pobres.

Buenas metodologías nos permiten obtener mejores resultados y en un tiempo

reducido. Por lo tanto, es importante entender cómo utilizar mejor HLS y cómo

incorporarlo en el proceso de diseño de hardware.

2.2.2 Metodología

Para lograr los objetivos, exploramos problemas difíciles en áreas relevantes, estu-

diando los requisitos de los sistemas e identificando los retos de diseño. Aunque estos

surjan de problemas específicos, buscamos aportar soluciones a una gama más amplia de

aplicaciones.

Las áreas y problemas seleccionados son los siguientes:

• Procesamiento de paquetes de red: En esta área, abordamos el reto de la

descarga de la medición de flujos de red de los enlaces de 100 Gigabit Ethernet

(GbE). Se ha realizado un amplio trabajo para descargar el procesamiento de

paquetes de red sin estado, como el filtrado y el enrutamiento, y estas aplicaciones

han influido incluso en la forma en que se diseña el tejido FPGA [18]. Sin embargo,

cuando es necesario mantener un estado, se establecen dependencias que, sumadas

al alto rendimiento requerido que exige 100 GbE, constituyen un problema difícil

de afrontar. Las dependencias son comunes en muchas áreas de aplicación, luego

las estrategias para aliviarlas en un área, pueden aplicarse en otras.

• Procesamiento de imágenes: En esta área, abordamos el problema de la com-

presión de imágenes sin pérdidas y casi sin pérdidas en escenarios con estrictas

restricciones. Dada la gran cantidad de datos que los sensores son capaces de pro-

ducir, la compresión es a menudo obligatoria no solo por las limitaciones de ancho

de banda, sino también por las de potencia, ya que la transmisión de datos es a

menudo el principal contribuyente y el proceso más difícil de optimizar en términos

de consumo de potencia [11]. Además, muchas aplicaciones también requieren una

baja latencia. Los desarrollos para esta aplicación también pueden aplicarse a otros

16

CHAPTER 2. INTRODUCCIÓN

algoritmos de compresión de datos, aliviando los problemas de consumo de energía

a los que se enfrentan desde los sistemas embebidos hasta los centros de datos.

• Inteligencia artificial: En esta área, nuestro objetivo es implementar grandes

redes neuronales convolucionales (CNN, por sus siglas en inglés). Esta aplicación

requiere una gran cantidad de cálculos y es altamente paralelizable, por lo que es

adecuada para la aceleración mediante FPGA. Aunque las GPU también son muy

adecuadas para la aceleración de CNN, las CNN implementadas como flujos de

datos (todas las capas se ejecutan simultáneamente usando circuitos segmentados

con una gran cantidad de etapas) en FPGA permiten que los aceleradores más

grandes aumenten el rendimiento y reduzcan la latencia simultáneamente. Por

lo tanto, estas implementaciones escaladas en FPGAs pueden permitir que se

empuje la frontera de Pareto. Sin embargo, el principal reto aquí es hacer frente

a los problemas que surgen cuando estos aceleradores requieren abarcar toda la

FPGA (especialmente en el caso de las FPGAs no monolíticas) e incluso utilizar

varias FPGAs. Los desarrollos para esta aplicación también pueden aplicarse a

otros sistemas a gran escala, a los que nos enfrentaremos casi con toda seguridad a

medida que las necesidades de procesamiento de datos y la productividad de los

diseñadores de FPGA sigan aumentando.

Nótese que estas aplicaciones cubren una amplia gama de dispositivos objetivo, desde

los pequeños y generalmente optimizados en coste y potencia para la compresión de

imágenes, pasando por FPGAs de gama media/grande para la medición de flujo de 100

GbE, y finalmente, hasta grandes tarjetas de aceleración FPGA o conjunto de ellas para la

aceleración de CNN. Para cada uno de estos problemas, analizamos primero la idoneidad

de utilizar lenguajes y herramientas de alto nivel para abordarlos. Si esto conduce

a un desarrollo exitoso, pretendemos identificar aquellos componentes metodológicos

que se consideran clave para el éxito del diseño. Cuando el enfoque de mayor nivel de

abstracción se considera insuficiente, pretendemos entender por qué las herramientas

no abordan el problema de forma eficiente, y proponer mejoras a las mismas u otras

complementarias. En algunos casos, podemos observar oportunidades para mejorar los

algoritmos disponibles para su implementación en hardware, en esos casos, también

nos propondremos mejorarlos. Finalmente, a través de este proceso, se desarrollarán

soluciones a los problemas concretos, que también se considerarán contribuciones de esta

tesis.

La Fig. 2.3 sirve de resumen, ilustrando la relación entre los diferentes componentes

de esta tesis.

17

CHAPTER 2. INTRODUCCIÓN

Motivation Need of efficient hardware Need of large & fast developments

Objectives Improve hardware designer's productivity (performance/time)

Thesis Methodology

Application

Design
Challenge

Proposed
Solution/

Contribution

100 GbE IP Flow MeteringImage Compression in
constrained scenarios

Implementation of large
CNNs

Resource Balancing

Frequency penalities
for multi-SLR designs

Partitioning designs
across multiple chips

Two parallel read-update
processes operating on
memories with large
propagation latencies

Stringent time constraints

Need for more efficient
image encoders

Read-update processes

High-performance architecture
for dual read-update processes

Conditional stalling

Hardware design using HLS Methodology

Efficient image
compression algorithm and
hardware implementation

Partitioner & resource
balancing tool

Figure 2.3: Metodología de la tesis

2.3 Estructura de la Tesis

Este trabajo está estructurado en cuatro partes. La primera, Introduction & Back-
ground, incluye este capítulo y uno adicional que proporciona antecedentes generales

sobre el diseño FPGA y la síntesis de alto nivel. A continuación, la parte Case Studies
and Challenges Presentation está constituida por tres capítulos (uno por área de apli-

cación), cada uno de los cuales introduce la aplicación, proporcionando antecedentes

específicos y análisis de los problemas en cuestión, concluyendo con la determinación

de los objetivos específicos de investigación y desarrollo. A continuación, la parte Ad-
dressing the Challenges, incluye una serie de capítulos, cada uno de los cuales aporta

soluciones a los desafíos identificados en la parte anterior. Finalmente, la última parte

Putting All Together, presenta los aspectos metodológicos clave que nos han llevado a

una implementación hardware exitosa utilizando síntesis de alto nivel y proporciona un

resumen de las contribuciones de esta tesis. Un resumen breve se encuentra al comienzo

de cada capítulo.

18

C
H

A
P

T
E

R

3
BACKGROUND

I
n this chapter, general background is provided, defining important terms and
systems related to FPGA design, from electronic circuits to languages to digital
hardware. Application-specific background is introduced in part II of the thesis.

3.1 Electronic Circuit Technology

Electronic Circuits Given its dimensions, compute power, energy efficiency, and

robustness, our main data processing technology is electronic circuits based on silicon

semiconductors. Electronic circuits are systems (machines) that manipulate electric

signals for a given purpose. When these signals vary continuously (represented by a real

number), we say the circuit is analog. For example, we can transform a sound wave into

an electric signal using a microphone, amplify it, and finally, convert it back to sound

with a speaker. In reality, all circuits are technically analog, but we use the term digital
circuits for those that can be modeled (think about them) as systems that can be only in

a finite set of states.

Finite-State Machines Within digital circuits, there is a subset that uses a special

signal, a clock, that tell the systems when it may change its state. These are synchronous
digital systems. Normally, we describe them as finite-state machines (FSM), whose

19

CHAPTER 3. BACKGROUND

Next State
Logic

Output
Logic

Present
State

FF

state
next
state outputs

Combinational
Logic

Combinational
Logic

Sequential
Logic

Inputs

clk

Figure 3.1: Finite state machine structure

structure is presented in fig.3.1. As observed, they have sequential logic, which store

the state of the system, and combinational logic, that manipulates digital signals to

determine the next state (state assumed by the sequential logic after the clock ticks

again) and the outputs of the system.

Logic Sequential logic is normally composed by flip-flips (FF), circuits that store a 0

(low voltage) or a 1 (high voltage) and that only change this state when the clock ticks,

and thus are a form of memory. Combinational logic are circuits that react instantly

to their inputs, changing their output accordingly after a propagation delay (the time

it takes for the signal to traverse the circuit). Combinational logic can be constructed

in many ways, for example, fig. 3.2 shows two equivalent circuits, one using logic gates
and the other using look-up tables (LUTs). Logic gates are circuits that are designed to

implement a particular binary function. For example, in fig. 3.2(a) we observe an OR gate,

which outputs a 1 if any of its inputs is 1, else it outputs a 0. LUTs are memories that are

configured to return the result of a given function when addressed by the input variables

of that function. For example, in fig. 3.2(b), the LUT implements an OR function.

FF

OR

Output Logic

Present
State

Next State
 LogicB

Clk

A
O

((a)) Simple FSM using gate

FF

Output Logic

Present
State

Next State
 LogicB

Clk

A
O

LUT
I0

I1

I0 I1 O
0
0
1
1

0
1
0
1

0
1
1
1

O

((b)) Simple FSM using LUT

Figure 3.2: Two equivalent implementations of a simple FSM

20

CHAPTER 3. BACKGROUND

PC

+

4

Address

Instructions

Instruction
memory

Data memory

Address

Write
data

Read
data

Read
address 1

Read
address 2

Write
address

Write
data

Read
data 1

Read
data 2

Sign
extend

ALU

M
u
x

M
u
x

Registers

Figure 3.3: Block diagram of a simple processor

Microprocessors With these resources, we can build complex systems. We can group

FFs to create registers(one-dimensional array of memory cells) or memories (two-

dimensional array of memory cells). Also, we can design combinational logic to do

compute numerous arithmetic operations (an arithmetic logic unit (ALU)). In this way,

combining simpler systems to great bigger ones, we can build a microprocessor (µP), like

the one depicted in fig. 3.3. This is the most prominent example of a synchronous digital

circuit (although they do not need to be synchronous). The behavior of the µP can be

generally described as follows: They can access to memory (circuit that allows to store

digital information for later access) where they store data and instructions. The µP reads

the memory to get instructions and execute them. These instructions, if crafted correctly,

will manipulate the data until the desired outputs are computed.

Software & Hardware Table 3.1 shows a simple program that reads two operands

from memory, adds them, and then stores them back to memory. Instructions are stored

in memory as what is called machine code, while we usually analyze this code in assembly
language, which has a one-on-one equivalence to machine code. The circuits are what we

call hardware, while the set of instructions are what we call software. Note that what

the system does depends on both hardware and software.

Table 3.1: Example assembly program.

Instruction description Assembly Machine code

Read memory address 0 and store it in reg. 1 lw $r1, 0($zero) 8c000000
Read memory address 4 and store it in reg. 2 lw $r2, 4($zero) 8c000004
Add reg. 1 and 2, and store the result in reg. 3 add $r3, $r1, $r2 00000020
Store the value of reg. 3 in address 8 sw $r3, 8($zero) ac000008

21

CHAPTER 3. BACKGROUND

General-Purpose Hardware The main characteristic of a µP is its instruction set
architecture (ISA), which tells the software programmer how to use it. It includes, for

example, what instructions it can execute. The hardware is harder to design and build,

but the software can be changed easily, and in general, as many times as we want. Then,

it is interesting to a µP with an ISA that makes it useful for a wide range of applications.

Thus, do the hard work once, and then, build many copies of the same circuit, so it can

serve multiple applications. These µPs are what we call general-purpose hardware.

Abstracting Complexity An algorithm is the recipe (list of instructions) that indicates

how to manipulate data to obtain the desired results. A great thing about µPs is that

they decouple circuit design from algorithm design. The ISA abstracts (hides) the details

of the circuit and how it is built, as this information is not needed for programming the

µP. In addition, given that general-purpose hardware is useful for many people, we can

afford to build tools to make their usage even easier. For example, instead of writing a

software in assembly language, which needs to specify a very detailed description of what

the µP has to do, we may create a tool that translates a simpler language (a high-level
language (HLL), closer to human language) to machine code that can be then executed.

This tool is called a compiler. In this way, the compiler rises the abstraction level, that is,

the level of detail needed to describe the algorithm.

Specific-Purpose Hardware However, a specifically designed circuit will be more

efficient for a given problem compared to general-purpose hardware. For example, graphic
processing units (GPU), which are main designed to operate with images, are capable

of processing them at a much higher rate. Also, we may design a circuit for even more

specific cases, when extra efficiency is required. These circuits are what we usually call

application-specific integrated circuits (ASIC) 1.

Reconfigurable Hardware Yet, as suggested before, building an ASIC is expensive

and time-consuming. An alternative is to use reconfigurable hardware. Reconfigurable

hardware are circuits that have a special type of software, the firmware, that determines

how it behaves. This firmware is not made of instructions, but configurations that make

it emulate a given circuit. For example, by modify the contents of the LUT in fig. 3.2(b),

we may make it behave as an AND gate, instead of an OR gate. Then, the contents of the

LUT is firmware.

1Note, that technically, all circuits are ASICs, even µP.

22

CHAPTER 3. BACKGROUND

FPGAs Among reconfigurable hardware, field-programmable gate arrays (FPGA) have

attracted a particular interest given the performance-flexibility-cost trade-off they offer.

These are constituted of large arrays of LUTs and FFs connected through configurable

nets, providing them the ability of emulating any circuit. In addition, they have resources

to interface with many other systems supporting a wide range of communication stan-

dards (e.g. DDR memories or PCIe buses). Then, although we still have to design the

circuits (lower level of abstraction that instructions), with FPGAs we do not have to

incur the ASIC fabrication costs. What is more, with time, FPGAs have acquired more

resources (special purpose circuit modules) that enable the FPGA designer to create

more efficient systems. Nowadays, for example, they have random-access memory blocks
(BRAMs) or circuits specialized for signal processing, digital signal processors (DSPs).

For a more detailed evolution of the FPGA through the decades, refer to [18].

3.2 Design Languages

RTL Traditionally, in the last decades, digital circuits are described using register-
transfer-level languages, like Very High-Speed Integrated Circuit (VHSIC) Hardware
Description Language (VHDL) and Verilog. As the name suggests, these languages define

the systems in a detailed manner, creating registers, specifying combinational logic

and connecting them using wires. RTL is later translated to a netlist (wires and basic

elements of the target technology) by a process called RTL synthesis. Then, to obtain

the FPGA firmware (called bitstream), the netlist is then mapped to specific elements of

the FPGA through a group of processes normally named as implementation. The more

relevant processes are placement and routing, and thus, implementation is sometimes

referred to as place and route (P&R). Throughout these stages, optimizations towards

certain goals are applied to the netlist, for example, to obtain a circuit that needs fewer

resources (lower area) or higher performance (being able to use higher frequency clocks).

High-Level Synthesis Describing a circuit with an RTL language involves, among

others, to perform the scheduling of the circuit (to determine when an operation will

happen) and, to some degree, the binding (to determine which resource will perform

an operation). Conversely, because of the abstraction that the ISA creates, software

programmers do not generally deal with these details, which enables them to build

larger applications and faster. For this reason, FPGA vendors, EDA companies and the

academia are pushing towards abstracting complexities of designing circuits. The idea is

23

CHAPTER 3. BACKGROUND

to describe systems with high-level languages, which are then translated into circuits.

This process is called high-level synthesis, and it is implemented by an HLS compiler.

HLS compilers In the past decades, many commercial and academic HLS tools have

emerged. Apart from the compiler, these tools generally include mechanisms to analyze

and test the designed systems. These tools vary in their chosen source languages (from

which these generate the RTL), targets technologies, target applications, among others.

Yet, nowadays, commercial HLS tools have mainly converged to SystemC [19] (a set of

C++ libraries and macros) or a subset of C/C++ as the source languages. We refer to [13],

where a detailed survey on these tools can be found.

HLS directives Given the resources available, in this thesis we have used Vitis HLS

(previously Vivado HLS) using C++ as the source language. Apart from the C/C++ code,

directives (special instructions for the compiler) are used to guide the tool towards the

desired architecture (the structure of the circuit). These directives, for example, can

establish the initial interval (II), the number of clock cycles required for a module to be

ready to consume a new input. Another common use of directives if to determine the

structure of memories and select a specific resource for their implementation.

HLS pros and cons Designing hardware using C++ (plus directives) allows obtaining

a working system faster, main because:

• The compiler performs the scheduling and biding process, while the user still can

have control over them.

• The code can be validated much faster using a C/C++ program instead of an RTL

simulator.

• Directives allow a wide design-space exploration, while using the same algorithmic

description.

• After code verification and RTL generation, the output system can be automatically

validated using the C/C++ test to perform an RTL simulation.

• The source code is less technology-dependent, then favors code reusability.

However, even though HLS compilers have been improving, their use still tends to

establish a trade-off between design time and quality of results (performance and/or

footprint) [14].

24

Part II

Case Studies and Challenges
Presentation

25

C
H

A
P

T
E

R

4
IMAGE PROCESSING: COMPRESSION IN CONSTRAINED

SCENARIOS

T
his chapter explores the problem of improving image compression when strin-

gent restrictions on errors, bandwidth, latency and/or power are imposed. An
introduction of JPEG-LS lossless and near-lossless image compression stan-
dard and asymmetric numeral systems is provided, and later, possible areas of

improvement of the former are studied. Although JPEG-LS has proved to be very suitable
for these scenarios, the results show that its compression can be significantly increased,
and tANS is a good candidate to achieve this with a low computational overhead.

4.1 Introduction

Information compressors allow the reduction of bandwidth requirements and, given

that data transmission systems tend to demand much more power than computing

systems, they are useful as well when energy or dissipation capabilities is limited. For the

This chapter is based on the works published in [20] and [21]: Alonso, T., Sutter, G., & López de
Vergara, J. E. (2021). LOCO-ANS: An optimization of JPEG-LS using an efficient and low complexity coder
based on ANS, in IEEE Access, vol. 9, pp. 106606- 106626, 2021, doi: 10.1109/ACCESS.2021.3100747. and
Alonso, T., Sutter, G.,& López de Vergara, J. E. (2021). An FPGA-Based LOCO-ANS Implementation for
Lossless and Near-Lossless Image Compression Using High-Level Synthesis. Electronics, 10(23), 2934.

26

CHAPTER 4. IMAGE PROCESSING: COMPRESSION IN CONSTRAINED SCENARIOS

case of images or videos, apart from lossless compression, we may also introduce errors in

a controlled manner to improve the compressibility of the data. A particularly convenient

way to perform this is to use near-lossless compression, which is a generalization of

lossless compression, where the codec user can set the maximum absolute difference (the

error tolerance) between the values of an original pixel and the decoded one (in the space

domain). When this limit is set to zero, lossless compression is obtained.

These codecs are particularly useful when the data to compress contains very valuable

information or, given the nature of the application, a minimum quality must be ensured.

Satellite image acquisition is a prominent application of these systems, which have

pushed the development of many algorithms and hardware implementations [22, 23].

Additionally, we can find medical applications such as capsule endoscopy [24–28] or

portable image devices [29].

New applications emerge in scenarios where traditionally raw (uncompressed) data

was transmitted. Given the rapid increase in the data volume generated, image codecs

can reduce costs and development time by leveraging already available transmission

infrastructure and standards. An example of this in the video broadcasting industry

is the use of intermediate codecs (mezzanine codecs), used between initial acquisition

and final distribution [30]. In addition, for the manufacturing industry, we can find high

frame per second (FPS) infrared cameras [31] producing information that is subsequently

processed by an algorithm that may require limitations on the quantization errors to

ensure proper operation. Sometimes these are part of closed-loop control systems, which

will additionally demand latency limitations to ensure control loop stability.

Particularly for the more demanding applications (low energy, high throughput, low

latency), hardware implementations can be needed to better compete with other products

in the market or just to meet requirements while achieving real-time compression of the

data stream [32–36]. This tends to be particularly true for the encoder side, as in the

case of remote sensing, like satellite applications or portable devices.

A codec well suited for these applications is JPEG-LS [37], based on the LOCO-

I (Low Complexity Lossless Compression for Images) algorithm, which is known for

its great trade-off between complexity and coding efficiency and amenable hardware

implementation [38, 39]. This led to the development of multiple hardware architec-

tures [23, 27, 40–45] and the utilization of an adapted version in the Mars Rover mission

(NASA) [22]. An extension of the standard was developed [46], mainly, to improve the

compression rate when coding lower entropy distributions like those that arise when

the error tolerance is greater than 0. However, this came at the expense of increased

27

CHAPTER 4. IMAGE PROCESSING: COMPRESSION IN CONSTRAINED SCENARIOS

complexity, among other reasons, because it uses an arithmetic coder.

After the inclusion of the JPEG-LS standard extension, a new coding scheme was

developed, Asymmetric Numeral Systems (ANS) [47], which presents a coding efficiency

that rivals the arithmetic coder, but capable of achieving compression speeds of Huff-

man coders for both hardware and software implementations [48, 49]. This new coding

technology opens a door towards more efficient compression and low complexity com-

pression. For this reason, and given the observation of an increasing need for better

codecs, we studied whether, based on the JPEG-LS standard, increased compression at

low computational complexity could be achieved employing ANS.

4.2 JPEG-LS

4.2.1 JPEG-LS Baseline Algorithm

JPEG-LS was designed mainly for lossless compression with low complexity in

mind and the objective to supersede the previous algorithms like the lossless mode of

JPEG [50] and PNG [51]. Fig. 4.1 shows a high-level block diagram of the JPEG-LS

encoder algorithm, which is based in LOCO-I [39, 52].

Figure 4.1: High-level JPEG-LS encoder block diagram. Source: Adapted from figure 1 of
[52]).

It can be appreciated that it processes image samples using one of two modes, the

regular and the run mode. In the regular mode, a prediction is computed and then

corrected with an adaptive mechanism, resulting in a prediction error. This error is

then quantized using a uniform mid-tread quantizer with a bin size δ= 2∗NEAR+1,

28

CHAPTER 4. IMAGE PROCESSING: COMPRESSION IN CONSTRAINED SCENARIOS

where NEAR is a parameter chosen by the user, which is equal to the maximum possible

error of a pixel value in the decoded image. The quantized error is then coded by a low

complexity adaptive block coder based on Golomb codes [53], which the authors call

Golomb-power-of-2 () codes.

As the GPO2 coder does not perform well when symbols come from a low entropy

source, an adaptive run-length coder is used when smooth surfaces are detected by the

gradients surrounding the current image sample. In the run mode, the run-length count

is incremented when |a− x| ≤ NEAR, where a is the pixel value when the count started

and x is the new pixel. It is easy to see that, in both modes, lossless compression is

obtained when NEAR is set to 0.

To adapt the codes, contexts are used to keep prediction error statistics, which select

coder parameters. These contexts are gradient defined. Gradients surrounding the new

image sample are computed and then quantized separately, obtaining a vector of integers.

The resulting vector is mapped to an identifier, which is used to access and update

context statistics. In [52] a detailed description of the codec procedures can be found.

4.2.2 JPEG-LS Extension

An extension of the standard [46] was proposed, based on LOCO-A (presented in [39]),

changing the GPO2 and run-length coder used in LOCO-I by a single arithmetic coder

and adapting the error distribution estimation procedures. These modifications closed

most of the existing gap with CALIC image coder1 [54, 55] at the cost of increasing the

complexity of the system. This extension comes from the authors’ recognition of the

limitations of the original coder when dealing with low entropy distributions, as those

that occur in near-lossless operation. In general, the higher error tolerance (parameter

NEAR in JPEG-LS), the lower the entropy of the resulting quantized error distributions.

4.2.3 JPEG-LS Hardware Implementations

Several hardware architectures for JPEG-LS have been published [23, 27, 40, 42–45],

but only a few are standard compliant. One of the main reasons for the lack of compliance

is not supporting the run mode (which many deem as optional, although it is not [37]).

In general, this is done to further simplify the hardware implementation. In [45] it

1CALIC was one of the proposed algorithms for JPEG-LS. Although it has a slightly higher compression
ratio when employing an arithmetic coder, LOCO-I was finally selected for the standard given its better
complexity-efficiency trade-off. with has a slightly higher compression ratio, at the cost of higher complexity

29

CHAPTER 4. IMAGE PROCESSING: COMPRESSION IN CONSTRAINED SCENARIOS

was found complex to implement, while others noted the run mode is rarely used when

losslessly compressing images coming from sensors, so decided not to implement it.

Although this is generally true for lossless coding, long runs can arise, for example,

when sensor saturation occurs. In satellite images, clouds tend to produce this effect.

For near-lossless operation, not supporting the run mode greatly impacts compression

rates, as this mode is particularly important to complement the main weakness of prefix

codes used in JPEG-LS when it comes to low entropy distributions (not able to produce

an average code length below 1 bit for any symbol).

Another reason why the implementations did not adhere to the standard was the

introduction of algorithm modifications to increase system throughput. Hardware imple-

mentations face mainly two bottlenecks: the context update, and the pixel quantization

(and reconstruction) procedures. The latter only applies to near-lossless compression.

Most implementations try to cope with these limitations by modifying the original algo-

rithm and/or not supporting near-lossless compression (and thus avoiding the second

bottleneck). Often, these modifications reduce the compression ratio.

Only two of the mentioned implementations support near-lossless compression [23,

40], but neither is standard compliant. In [23], several modifications are presented to the

decorrelation and entropy coding stages, chiefly, the error tolerance (NEAR parameter) is

modified within an image according to custom logic and only the GPO2 coder is employed,

using a new adaptation algorithm. A close to standard compliant implementation is

presented in [40], but it does not support the run-length coder. Although the performance

of these two implementations cannot be directly compared, given the great difference

in the technologies used in the experiments (0.22 µm process Xilinx XQR4062 in the

former versus 40 nm process Xilinx Virtex 6 in the latter), the highest performing

implementation supporting near lossless in the literature is the latter (51.68 Mpixels

per second).

4.3 Asymmetric Numeral Systems

ANS is a new series of low complexity alternatives to arithmetic coding, initially

introduced in [47], and later extended and compared to state-of-the-art compression

algorithms, such as Huffman and arithmetic coding, in [48, 49].

ANS provides several possible algorithmic alternatives to implement coders. Particu-

larly, tabled ANS (tANS) has the following properties:

• Suitability for high cardinality symbol sources.

30

CHAPTER 4. IMAGE PROCESSING: COMPRESSION IN CONSTRAINED SCENARIOS

• Capable of being used in adaptive coding settings.

• Able to match arithmetic coder [56] coding efficiencies (having an efficiency-memory

resources trade-off).

• Moderate memory resource requirements.

• Has high-throughput implementations. For Field Programmable Gate Arrays

(FPGA), encoder architectures were studied in [57] and decoder in [58], which can

outperform Huffman decoding [59].

4.3.1 tANS Operation

From a black box perspective, tANS works as a Finite state machine (FSM) where

the symbol to encode is the input and the current state is an integer, the ANS state,

where ANS stores fractional bits of information. The output of the FSM ROM has the

next state and the number of bits to take from the least significant part of the current

state, which are then stored in the output bit file. From its design, tANS is meant to be

implemented as a microcoded FSM (at least partially), and the FSM ROM is referred to

as the tANS table. After a block of symbols is finished, the final state needs to be stored

in the output bit file.

For the decodification, the binary bits are appended to the ANS state2, until it is in

a certain range (determined by the configuration of ANS). Then, this state is used to

address the decoding table, obtaining the encoded symbol and the previous state. As

implied by the decodification process, an ANS state is directly matched with a source

symbol. Modifying the assignment of states to symbols changes the average number of

bits ANS is going to generate for each of the source symbols.

tANS can be used to implement an adaptive coder, given that switching to a different

table changes the distribution ANS is tuned to. Using a particular table is referred to as

an ANS mode. Of course, the decoder has to have the means to choose the same ANS

mode that the encoder chose for each symbol. However, more attention has to be paid

when using ANS in an adaptive manner, given that symbols are decoded in the opposite

order they were coded (the last symbol coded is the first symbol that is decoded).

For more in depth explanation of the ANS algorithm and hardware implementations,

refer to [48, 57, 58].

2state ← (state << 1) |new_bit

31

CHAPTER 4. IMAGE PROCESSING: COMPRESSION IN CONSTRAINED SCENARIOS

4.3.2 Coding Efficiency

In general, the more bits used for the state, the more precisely the coder can be tuned

to the desired distribution, which leads to a more efficient compression. Fig. 11 of [48]

shows simulation results to understand the relationship between the number of ANS

states used, the symbol alphabet size and the Kullback–Leibler divergence (KLD), also

presenting the approximation KLD ≈ 0.5/(k)2 with k = |S|/|A| , where S is the set of

states (in this work, it is generally assumed to be 2state_bits), A is the set of symbols and

| · | denotes the cardinality of the set. Eq. 4.1 summarizes our experience using the simple

non-fine-tuning heuristic algorithm provided in the original work to create the tANS

tables.

(4.1) 0.05/k2 ⪅ KLDtANS ⪅ 0.5/k2

Increasing precision comes at the cost of increasing memory requirements for the

FSM ROM. However, the impact of this increment depends on the actual implementation

and, as shown in [57], efficient architectures exist for large table configurations.

4.4 Problem Analysis

4.4.1 Test Image Dataset

For this analysis, the 8-bit gray image dataset maintained by Rawzor [60] was used.

A description of the dataset images can be found in table 4.1, where the entropy was

computed using a slightly modified version of the JPEG-LS baseline model (described in

section 4.4.2).

4.4.2 JPEG-LS Optimization Potential

The aim of this section is to establish a theoretical limit on improved compression

due to the optimization of the prediction error coder for JPEG-LS given its statistical

model.

4.4.2.1 Theoretical Limit of Coder Optimization

To understand the impact that a new coder could have, the average bits per pixel,

bpp, obtained by JPEG-LS coder (using the official reference implementation in [61]) was

32

CHAPTER 4. IMAGE PROCESSING: COMPRESSION IN CONSTRAINED SCENARIOS

Table 4.1: Rawzor 8-bit gray dataset [60] description. Entropy estimation based on a
modified version of the JPEG-LS baseline model (described in section 4.4.2)

Image Height x Width Entropy Type
artificial 2048 x 3072 0.7625 Synthetic

big_building 5412 x 7216 3.5437 Photographic
big_tree 4550 x 6088 3.6886 Photographic
bridge 4049 x 2749 4.1222 Photographic

cathedral 3008 x 2000 3.5343 Photographic
deer 2641 x 4043 4.6033 Photographic

fireworks 2352 x 3136 1.4218 Photographic
flower_foveon 1512 x 2268 1.9737 Photographic

hdr 2048 x 3072 2.1015 Photographic
leaves_iso_1600 2000 x 3008 4.4505 Photographic
leaves_iso_200 2000 x 3008 3.7648 Photographic

nightshot_iso_100 2352 x 3136 2.0217 Photographic
nightshot_iso_1600 2352 x 3136 3.9333 Photographic

spider_web 2848 x 4256 1.6722 Photographic
zone_plate 2000 x 3000 7.3368 Synthetic

compared against the average symbol entropy using the statistical model employed in

the standard to estimate the prediction error probabilities (coder symbols).

Although the average symbol entropy would not consider the effect of the compressed

image header file size, this does not have noticeable impact, particularly for the image

sizes of the used dataset. In JPEG-LS, the context with all its quantized gradients equal

to 0 is handled differently as it is coded using the run-length coder, but in this analysis,

given that the same statistical model is used for all contexts, it is treated as the rest.

In the standard, the error, ϵ, probabilities are estimated using a two-sided geometric

distribution (TSG) as follows:

(4.2) P(θ, s)(ϵ)= C(θ, s)θ|ϵ−s|,ϵ= 0,±1,±2, ...,

where θ and s are the distribution parameters and C(θ, s) = (1− θ)/(θ1+s + θ−s) is a

normalization factor. θ ∈ (0,1) controls the rate of decay of the probabilities and s ∈ (−1,0]

is the fractional bias (the sign of s is inverted compared to [52]).

In JPEG-LS baseline, s was decided to be in (−1,0] given that it was beneficial for

their coding procedures. However, when computing the average symbol entropy, the

bias cancellation procedure was configured so that s ∈ (−0.5,0.5], like in the standard

extension. For this reason, the error sign flip applied when s > 0 was introduced, also

33

CHAPTER 4. IMAGE PROCESSING: COMPRESSION IN CONSTRAINED SCENARIOS

employed in the standard extension. Additionally, the alternative model and estimators

for the TSG proposed in [62] were used. This change does not imply a modification in

the distribution, but just a re-parametrization that simplifies the sequential parameter

estimation. In this alternative model, each integer ϵ is mapped to a tuple (y, z), where:

(4.3) y= y(ϵ)≜

0, ϵ≥ 0

1, ϵ< 0

and

(4.4) z = z(ϵ)≜ |ϵ|− y(ϵ)

Then, if ϵ ∼ TSG(θ, s), the variable y ∼ Bernulli(p) (where p = (θ1+s)/(θ1−|s|+θ|s|))
and the variable z ∼Geometric(θ) with the same θ as ϵ. For sample t+1, p is estimated

(using Beta(1/2,1/2) as a prior) as follows:

p̂ = Nt +1/2
t+1

, where Nt =
t∑

i=1
yi(4.5)

In [62] an optimal estimator of the probabilities of zt+1 is provided. However, the

following estimator was used:

θ̂ = St +α

St + t+α+β
(4.6)

where α and β are the parameters of the Beta(α,β) function used as a prior probability

distribution. This last estimator, as noted by the authors of the model, is suboptimal,

but, in our experiments, it performed almost as well as the optimal one when using the

same priors, with the advantage of being computationally simpler. To reflect the fact

that as NEAR increases, θ decreases, Beta(.5/(1+NEAR/2), .5) was the prior used in the

experiments.

The results can be seen in table 4.2, where the column labeled as "Entropy_orig_ctx"

was obtained using this model.

It can be seen that the larger the error tolerance, the less efficient JPEG-LS tends to

be, having an inefficiency ranging from 1.7% for lossless compression to 9% for an error

tolerance of 10.

34

CHAPTER 4. IMAGE PROCESSING: COMPRESSION IN CONSTRAINED SCENARIOS

Table 4.2: JPEG-LS bpp vs TSG models estimated entropy.

Error JPEG-LS Entropy_orig_ctx Entropy_fix_ctx
0 3.32 3.26 (1.7%) 3.26 (1.7%)
1 2.12 2.09 (1.1%) 2.01 (5.1%)
2 1.65 1.63 (1.4%) 1.51 (8.1%)
3 1.40 1.35 (3.2%) 1.24 (11.1%)
4 1.23 1.16 (5.4%) 1.06 (14.3%)
5 1.11 1.03 (6.8%) 0.92 (17.1%)
6 1.01 0.93 (7.9%) 0.81 (19.4%)
7 0.92 0.84 (8.5%) 0.72 (21.1%)
8 0.84 0.77 (8.3%) 0.65 (22.2%)
9 0.79 0.72 (8.4%) 0.6 (24%)

10 0.73 0.67 (9%) 0.55 (25.6%)

4.4.2.2 Optimization by Fixing Gradient Quantization

In JPEG-LS, gradient quantization is a function of the NEAR parameter. As a result,

the central quantization bin is expanded and the rest are scaled proportionally. Probably,

the quantizer was designed in this manner to be able to use the run-length coder in this

lower entropy scenario, but it was not considered necessary for a coder capable of handling

low entropy distributions. For this reason, the quantization thresholds were fixed to

those computed using NEAR = 0. As a result, the column labeled as "Entropy_fix_ctx" in

table 4.2 was obtained. As it can be seen in the table, this change would allow getting

better compression ratios as the error tolerance increases. As expected, although this

change reduced the estimated symbol entropy, it worsens the performance of JPEG-LS.

Additionally, a hardware implementation of the codec that supports multiple values

of NEAR is slightly simplified, resulting in smaller and faster logic for the gradient

quantization. Thus, the pixel reconstruction bottleneck is alleviated.

It is worth noting that the changes introduced to the model, particularly to the

gradient quantization, did not always result in an improvement in the estimated entropy.

For example, the fixed gradient quantization worsens the entropy estimation of the

synthetic image "zone plate" for all NEAR > 0. However, the changes resulted in reduced

entropy estimations in most cases, particularly for the photographic images, which

are more relevant given the applications of low complexity lossless and near-lossless

compression.

35

CHAPTER 4. IMAGE PROCESSING: COMPRESSION IN CONSTRAINED SCENARIOS

4.5 Research & Development Goals

Many applications push towards higher resolution and higher FPS, but because of

link bandwidth, current infrastructure, cost and/or energy limitations they often require

more efficient image codecs. Although, new hardware architectures may enable the

implementation of more complex compression methods in highly constraint scenarios,

the possible performance and resource requirement improvements are bounded by the

underlying algorithms.

ANS can match arithmetic coder efficiencies, and it can provide practical increases in

compression compared to block coding, particularly in the case of very skewed probabili-

ties (like prediction errors in image compression) [63]. Given the significant JPEG-LS

optimization potential and the appearance of this new entropy encoding method, it

was considered worth exploring whether an improved codec could be obtained through

algorithm-hardware co-design.

LOCO-ANS (Low Complexity Lossless Compression with Asymmetric Numeral Sys-

tems) codec emerged as a result of this research and development. Chapter 7 delves deep

in the algorithmic description, configuration and evaluation, while in chapter 8 an FPGA

implementation is presented and analyzed.

36

C
H

A
P

T
E

R

5
COMPUTER NETWORKS: 100 GBE FLOW METERING

T
his chapter explores the problem of implementing a flow metering system for
100 Gbps Ethernet (GbE) links in FPGAs. An introduction of IP flow metering
and general background on the topic is provided. Additionally, the problem
constraints are analyzed, where the main issue is identified, consisting in the

implementation of high-throughput and complex read-update processes dealing with
significant propagation delays associated with the memory system.

5.1 Introduction

Network traffic monitoring is required for performance assessment, traffic classi-

fication and the detection of problems, such as congested or broken links, as well as

Denial-of-Service (DoS) attacks. This information, in turn, is used in the high-level

management of the network infrastructure (routers, antivirus, firewalls). Yet, given that

the link bandwidth has increased faster than the performance of µP, complex real-time

analyses using them have become inviable. Then, to be able to deal with increasing

This chapter is based on the work published in [64]: Alonso, T., Ruiz, M., Sutter, G., López-Buedo,
S., & López de Vergara, J. E. (2019, April). Towards 100 GbE FPGA-Based Flow Monitoring. In 2019 X
Southern Conference on Programmable Logic (SPL), Buenos Aires, Argentina (pp. 9-16). © 2019, IEEE

37

CHAPTER 5. COMPUTER NETWORKS: 100 GBE FLOW METERING

amounts of data, these analyses have been moving away from packet level and towards

IP flow level.
According to the IPFIX standard [65], a flow is defined as “a set of packets or frames

passing an observation point in the network during a certain time interval. All packets
belonging to a particular flow have a set of common properties”. Typically, IP addresses,

layer 4 ports and transport protocol are chosen, conforming a tuple that identifies a

flow. This is how Netflow v5 defined it [66], the first widespread protocol for flow export,

although since 2013 IPFIX has become the Internet standard for this purpose.

For each flow, statistics are collected, creating a flow record. From these records,

it is possible to know information such as the status of connections, their bandwidth

utilization, round-trip time or detect attacks on a server [67–69]. Flow metering, at the

expense of losing per packet information, has the advantage of requiring considerably

less compute and memory resources. Yet, after detecting an anomaly, for example, a

system might proceed to filter the desired traffic for in-depth investigation.

However, to create flows records in high-speed links, we still need to have great

computational power and high-performance memory, given that packet level processing

is required. For this reason, commodity off-the-shelf servers struggle to deal with this

task and, considering current trends, the situation is likely to worsen. What is more,

multicore architectures are not very effective to increase the processing power, as in

these scenarios the workload balance across cores cannot be assured [70].

In this light, and considering that flexibility is an important factor to be able to

incorporate new protocols, we studied the use of FPGAs to offload the flow metering task.

5.2 Flow Monitoring

A flow monitoring system consist of three components, which are shown in Fig. 5.1.

The flow exporter creates flow records from the traffic going through the observation point

and then sends these records to one or more flow collectors, where they are stored and

processed. Finally, an analysis application inquiries the collectors and analyzes the data.

Probes can be placed in different nodes of the network, and normally high-aggregation

links are chosen.

The flow table is the memory that contains the records of active flows in the exporter.

Every time a packet is received from a new flow, an entry is created in the table, which

will be released when the flow record is transmitted, that is, the flow is exported. Most

commonly, flows are exported for the following reasons [71]:

38

CHAPTER 5. COMPUTER NETWORKS: 100 GBE FLOW METERING

Figure 5.1: Typical flow monitoring system. Source: [64]. © 2019, IEEE

• Inactive timeout: A flow is said to be active if at least one packet belonging to it

was received in the last Ti seconds. When a flow turns inactive, it is exported. Ti is

usually set by default to 15 seconds.

• Active timeout: If a flow remains active for more than Ta seconds, it is exported.

When setting this parameter, it is important to consider that larger active timeouts

favor greater information aggregation, but also reduces the analysis resolution.

The flow collector will then be blind of troublesome flows for Ta seconds.

• Resource constraints: For example, if a new flow entry needs to be created and there

is no place in the memory to store it, one of the flows that generate the conflict is

exported. This situation is called a collision.

• TCP flow control: According to RST or FIN TCP flags the flow may be exported,

sometimes, after a waiting period.

For an in-depth discussion on the topic, refer to the tutorial by Hofstede et al. [72].

5.3 State-of-the-Art

The aggregation of traffic in flows is usually carried out in routers and switches, tak-

ing advantage of the resources already available in them, as is the case of Cisco’s NetFlow

[73]. However, they usually use packet-sampling techniques, which are a function of their

level of congestion. Although there are ways to mitigate it [74], this inevitably leads to

data loss. 10 Gbps networks (and beyond) are becoming more frequent, especially in data

39

CHAPTER 5. COMPUTER NETWORKS: 100 GBE FLOW METERING

centers, making this task even more challenging. Therefore, if a great precision in the

analysis is desired, other alternatives have to be considered. Several implementations

of flow exporters have been proposed using CPUs, GPUs, FPGAs and hybrid versions,

distributing the load of the system in different ways among these devices.

Miravals et al. [75] proposed light-weight approximate algorithms to detect TCP

retransmissions in a software flow probe using custom driver to capture incoming

packets. The system was tested using a high-end E5-2630 processor and stressed using

10Gbit traces, achieving 1.6 million packets per second (Mpps) with a single core. Paula

Roquero et al. in [76] proposed a CPU-GPU flow exporter for 10 GbE links capable of

obtaining complex information related to the TCP protocol, such as the detection of

retransmissions with memory at the packet level, achieving a processing rate of up

to 4.4 Mpps. Marco Forconesi et al. [77] presented an architecture to export flows in

10 GbE networks based on the NetFPGA-10G platform, which is capable of handling

the maximum packet rate, 14.88 Mpps without sampling and up to 786,432 concurrent

flows using an SRAM memory for the flow cache. Viktor Puš et al. in [78] deployed

an exporter running on a 20-core server with a custom FPGA (Virtex-7 H580T) based

Network Interface Card (NIC), capable of supporting the export of flows from 100 GbE

links. Here, according to the result of a hash function applied to header fields of the

packets, the NIC injects the packets into 16 queues allocated in main memory (64 GB

DDR4) of the two E5-2660v3 CPUs, which implement the flow exporter.

In the latter case, the services provided by FPGA enables the system to support

100GbE, but the CPU continues doing most of the processing, requiring the FPGA to

move to main memory information at the packet level, thus utilizing a large PCIe bus

bandwidth (approx 22% of PCIe Gen3 x16 considering 23 bytes per packet, as in the TCP

session exporter application introduced in section 5.4). Also, a very high-performance

hardware (processor, memories, motherboard) is needed to keep up the processing pace.

In this line, notice that either a somewhat uniform distribution of packets per core

or over-dimensioned CPU cores are required. However, as the mentioned before, for

online traffic analyzes the workload balance across cores cannot be assured [70]. This

particularly applies when IP address fields are used in the flow definition, given that

these addresses tend to be distributed according to a quasi-Zipf law [79], and an even

skewer quasi-Zipf fitted the packet per flow distribution in [75] (TCP packets only and

using IPs and ports to define the flow). This situation can be exacerbated under situations

like some Denial-of-service where a flood of short packets towards a specific IP is sent,

which may cause all these to go to a single core.

40

CHAPTER 5. COMPUTER NETWORKS: 100 GBE FLOW METERING

Hence, it was decided to understand the challenges of offloading part or the whole

100 GbE flow aggregation process within an FPGA. The main goal of the system is to

thin down the amount of information forwarded to either a host CPU or the net (network

attached and host detached deployment). This also favors a more energy-efficient solution

given that, in general, most of the energy is expended in the data movements, at the

same time, preventing possible bottlenecks in this area. Notice that, from its definition,

a flow can include either all the packets in the observation point (very low memory

requirement, high aggregation), just a few packets (very high memory requirement, low

aggregation) and everything in between. Then, depending on the number of concurrent

flows and the available memory, the metering process is either partly or fully offloaded.

This work is also envisioned to pave the way towards flow metering of higher link speeds.

5.4 Problem Analysis

5.4.1 Scenario

Hash
Parse &

Filter

Pre-processing Flow Metering

Flow update &
timeout check

Output
processing

External memory
controler

Flow Cache

DMA controler
Output

packet interface

To IPFIX
To Software

Format

Flow StorageInput
packet

Interface

Output Handler

Amenable for

HLS implementation

Dynamic configuration

Packets
bypass

Flow Filter

Expoted
Flows

Figure 5.2: Flow metering system high-level diagram.

Fig. 5.2 shows a generic block diagram of a hardware system for flow metering

offloading. The Pre-Processing modules include packet level operations like extracting

the required packet fields, while Flow Metering ones create flows records, storing them

in the flow table. Optionally, flow inspection and filtering might take place before they

are sent to the output (exported). The FPGA be a stand-alone network probe exporting

flows over the network, or alternatively, it can work as a NIC attached through PCIe to a

host machine, which would post-process the exported flows.

41

CHAPTER 5. COMPUTER NETWORKS: 100 GBE FLOW METERING

In particular, we are going to consider two flow metering applications:

• TCP flows with retransmission detection: This case evaluates a somewhat

typical flow metering scenario, very similar to [75]. The focus is on the number of

TCP retransmissions per flow as the principal Key Performance Indicator (KPI),

which is related to packet losses, or increased network and devices latency. To detect

retransmissions, the Out-of-Order heuristic algorithm is used [75]. Additionally,

for each flow, other volumetry measures are taken.

• VPN volumetry: This application was developed as a prototype for an internet

service provider, who had its network divided into up to 212 = 4096(4K) VPNs, and

required to gather statistics for each of them in a highly aggregated node of the

network using 100GbE links. Packet and byte counters per EtherType and per

layer 4 protocol are kept, and also, packet counters for different combinations of

TCP flags. Optionally, histograms of packet size and packet inter-arrival times

might be desired. These records need to be exported every 1s.

5.4.2 System Constraints

Independently of the definition of a flow, the system has to be able to read and update

the flow records every 6.72 ns to fulfill the maximum packet rate requirement. Conversely,

the capacity of the memory system, it is dependent on the flow definition. However, for a

given timeout setting, there is an upper bound on the number of concurrent flows. For

example, for the typical 15s inactive timeout and 30 min. active timeout, there are up

to 2.23 Giga concurrent flows. This corresponds to the case when all the packets in the

link have the minimum size and all of them belong to different flow. Depending on the

definition of the flow, this bound may be lowered.

5.4.2.1 Memory for TCP Flows

For the TCP flows application, TCP packets are filtered and flows are defined using a

4-tuple: IP addresses (source and destination) and layer 4 ports (source and destination).

Given the number of possible 4-tuples and the timeouts used in the practice, the mathe-

matical upper bound on the number of flows will be determined by the timeouts. However,

according to the study presented in [80], for 100GbE TCP traffic, the first and third

quartiles of the distribution of concurrent flows are 10 Mega and 36 Mega flows (Mflows).

Although they indicate the concurrent flows could be above 100 Mflows, they recognize

their results tend to overestimate flows in highly aggregated traffic (Multi-Gbps).

42

CHAPTER 5. COMPUTER NETWORKS: 100 GBE FLOW METERING

According to these numbers, the memory system capacity should be in the GB

range. DDR3-4 memories can provide the required capacities, but they would struggle to

achieve the required bandwidth without a memory hierarchy. In addition, the latency

of these memories plus that of the memory controller is in the order of hundreds of

nanoseconds according to our benchmarks. Then, in this application, we may aim at

partially offloading the task with on-chip memories or use latency masking techniques,

like caches and prefetching, to deal with external memories.

To assess the impact of using on-chip memories, we conducted simulations for memory

sizes ranging from 8 KiFlows (213 flows) to 1 MiFlows (maximum cache size of Cisco’s

Netflow [81] at the time of doing the experiments). The memory was implemented as a

hash table with 1 to 16 ways (typical µP cache). For each new flow, an entry is created in

the cache. If there is no slot available (collision), one of the flows in the table is expired

to make room for the new one. The selection of which flow to expire is based on the

RST/FIN TCP flags and the timestamp of the last packet (the oldest flows are expired).

Then, for each collision, the system would either export a flow (partial offload scenario)

or store it in the external memory (full offload scenario).

Output bandwidth was estimated using 3 output packet structures: single packet flow

(23 bytes), less than 40 packets in the flow (31 bytes) and the rest (37 bytes). Notice that

using different output packet structures allows eliminating the possibility of bandwidth

overhead, as in the worst case where all packet create collisions, the output of the system

would be as if no offloading module were in place. As a result, the upper bound for both

the output packet rate and bandwidth, are those of the system without any offloading.

As we did not have access to any 100 GbE trace, we created one by merging ten traces

provided by CAIDA, captured during 2018 from a 10 GbE link [82]. Timestamps were

edited so that the captures started at the same time, and thus, bandwidth and packet

rate would add up. This trace should result to be a hard 100 GbE case as the number of

concurrent flows would also add up, and present a 10 times worse temporal flow locality,

lowering the memory hit rate. The number of estimated concurrent flows in the trace

was in the order of 30 Mflows, which is in the previously suggested range, but clearly

above the median value (supporting that the used trace could be considered a hard case).

Fig. 5.3 shows the results of the simulations, where it can be appreciated that

significant reduction on output packet rate and bandwidth is achieved with table sizes

that can be implemented with on-chip memories of Xilinx’s Ultrascale+ devices. Also,

using associativity levels greater than 2 (probably better in the 4-8 range) allow making

the most out of this limited resource.

43

CHAPTER 5. COMPUTER NETWORKS: 100 GBE FLOW METERING

214 216 218 220

Flow table size

20

30

40

50

O
u

tp
u

t
/

in
p

u
t

ra
te

 (
%

)

1 way

2 ways

4 ways

8 ways

16 ways

((a)) Output vs Input packet rate

214 216 218 220

Flow table size

20

30

40

50

60

O
u

tp
u

t
/

in
p

u
t

B
W

 (
%

)

1 way

2 ways

4 ways

8 ways

16 ways

((b)) Output vs Input Bandwidth

Figure 5.3: Performance of 100 GbE TCP flow metering with on-chip memory as a
function of memory size and associativity simulation results

With these results and using DDR memories with the tested controller, the mean

supported packet rate would be in the 10 to 40 Mpps. Although this is clearly below the

maximum packet rate, the average packet rate (≈ 16 Mpps) falls within the range. To

further improve this rate and the capacity to support short packet bursts, other latency

masking techniques, such as pre-fetching and out-of-order processing, could be used.

5.4.2.2 Memory for the VPN Volumetry Application

A fundamentally different scenario in terms of required memory capacity is presented

in the VPN volumetry application. In this case, the on-chip memory is enough to hold all

the flow records (212 flows), requiring a maximum memory capacity of ≈ 600 KB. Notice

that in this case, although the task is clearly suitable for a complete offloading on an

FPGA, supporting high packet rates might still be a challenge to CPU implementations.

For this application, given the small output information volume, a medium-sized chip,

like Xilinx ZU5EG, could be suitable to completely offload the application, using the

ARM cores for further processing and communication.

5.4.3 Required Hardware

Most of the modules of the system can be implemented with feed-forward logic (no

feedback paths), which can be heavily pipelined to support higher link rates. Yet, this is

not the case for the core flow metering processes, as they have read-after-write (RAW)

44

CHAPTER 5. COMPUTER NETWORKS: 100 GBE FLOW METERING

dependencies. As previously explained, the system has to perform up to 148.8 million

table updates per second, while, at the same time, it has to scan the table to expire flows.

In addition, big on-chip memories are needed, so large propagation delays are expected

given that FPGA memory blocks are distributed in the chip. Therefore, and considering

the frequency limitations of FPGAs, an efficient architecture is required. What is more,

for TCP flows, multi-way caches are desirable, but this increases logic complexity, which

stresses the need for an efficient architecture.

Trying to optimize the productivity measure, we assessed the suitability of HLS to im-

plement the hardware components. This was evaluated through algorithm analysis and

the use of proof-of-concepts, and, as a result, many modules were considered amenable

for HLS implementation, as illustrated by fig. 5.2. Using HLS, however, it would be a real

challenge to develop the modules that handle the flow table, and even not possible (given

that target frequency) for the cases requiring complex operations and multi-way caches.

This is because of the presence of the mentioned data dependencies within and among

processes, which can limit frequency if the used architecture is not properly optimized.

5.5 Research & Development Goals

In general, the read-update pattern required to handle the flow table and the increas-

ing need for larger memories is present in other applications, like sorting algorithms,

heavy-heater estimation or context-based compression. Also, these may require or benefit

from having more than one process doing these read-update operations, as in the case of

the flow metering problem. We therefore consider it worth exploring how to best imple-

ment these high-throughput and complex read-update systems that need to handle large

memories. For this reason, chapter 9 studies, in particular, the capabilities of FPGAs to

offload the flow metering task for 100 GbE links and, in general, architectures to better

handle processes with RAW dependencies using medium to large on-chip memories, that

is, from a few BRAMs to a significant fraction of the available memories.

In addition, the need for larger memories and more complex systems can inevitably

lead to increased latencies in the read-update cycle, affecting performance. Therefore,

latency masking techniques might be key to keep up with the processing need’s pace.

Taking this into account, chapter 10 analyzes the conditional stalling technique and

how to employ it to increase performance when RAW dependencies are present. As that

chapter shows, this dynamic scheduling technique, not present in current commercial

HLS compilers, is well suited to the flow metering problem.

45

C
H

A
P

T
E

R

6
AI: IMPLEMENTATION OF LARGE CNN ACCELERATORS

T
his chapter explores the problem of implementing large CNN accelerators in
FPGA accelerator cards. Background on the topic is provided, introducing
the application and the employed framework. Finally, it presents the design
challenges of maximizing the performance and scalability of such accelerators,

particularly for implementations using non-monolithic FPGAs. The most relevant are the
need of considering coarse level placement of modules for control signal connection and
balancing resources across FPGA regions.

6.1 Introduction

One of the first real-life applications of CNNs was demonstrated by LeCun et al.
using their LeNet-5 for optical character recognition [84]. Since then, CNNs have been

utilized for a myriad of applications in different fields, like advanced driver assistance

systems and self-driving cars [85, 86], robotics [87, 88], search engines and ecommerce

This chapter is based on the work published in [83]: Alonso, T., Petrica, L., Ruiz, M., Petri-Koenig J.,
Umuroglu Y., Stamelos I., Koromilas E., Blott, M. & Vissers K. (2021). Elastic-DF: Scaling Performance of
DNN Inference in FPGA Clouds through Automatic Partitioning. ACM Trans. Reconfigurable Technol.
Syst. 15, 2, Article 15 (June 2022), 34 pages. https://doi.org/10.1145/3470567. © 2021 Association for
Computing Machinery . This project was done in collaboration with the Xilinx Research Labs in Ireland,
working as a research intern and later as a visiting scholar

46

CHAPTER 6. AI: IMPLEMENTATION OF LARGE CNN ACCELERATORS

using content-based image retrieval query (reverse image search) [89–92], computer-

aided medical diagnosis [93, 94], , astronomical image processing [95–97] , high-Energy

Physics [98–100] and civil engineering [101, 102].

These applications rely on the CNNs capacity to do classification, detection and

segmentation of images (understood as N-dimensional arrays of data). Artificial neural

networks, and in particular CNNs, have become very popular, not only for achieving the

best (or among the best) results in these tasks, but also because of the development of

methods to automate the learning process, for example using back propagation [103].

Due to the high compute and memory intensity of high-accuracy CNN, combined

with the high-throughput and even real-time and tight power constraints that many

applications have, hardware acceleration is often sought. GPUs are a popular alternative

for both training and inference. A well-known example of this is AlexNet [104]. Some

companies have gone further, developing ASICs of their own for this task, like Google’s

tensor processing unit (TPU), achieving not only greater throughput than GPUs but also

are more energy efficient, thus reducing operational costs [105]. FPGAs are also used

for CNN acceleration given their customization capabilities, leading (sometimes jointly

with other technologies) in solution size, interfacing capacity, performance per cost,

performance per watt and inference latency [93, 100]. Considering recent advancements

in FPGAs and CNN architecture, FPGA are major contestants toward being the main

CNN acceleration technology in the near future [2, 106].

Matrix of processing engines (MPE), an architecture often employed by ASIC CNN

accelerators, is a popular alternative among FPGA implementations [107–110]. However,

they can also leverage their reconfigurability to capitalize the streaming nature of CNNs

using a feed forward dataflow, like fpgaConvNet [111], FINN [112], and ReBNet [113]. A

dataflow accelerator (DFA) implements all the CNN layers in parallel, thus able to run

them concurrently. As the implemented hardware for a given layer is not shared, logic

can be customized to the particular characteristics of the layer. Additionally, given that in

these architectures CNN weights are usually stored using on-chip memory (OCM) close to

the layer logic, external memory operations are considerably reduced or eliminated. This

favors energy efficiency, as external memory transactions tend to consume two orders of

magnitude more energy than compute units [114]. What is more, when increasing the

DFA throughput, latency is reduced proportionally, whereas GPUs or MPE often resort

to increased batch sizes to trade latency in favor of higher throughput.

However, the sources of the DFA’s strengths also determine their limitations. As they

tend to rely on OCM, their capacity and count restricts the size of the implementable

47

CHAPTER 6. AI: IMPLEMENTATION OF LARGE CNN ACCELERATORS

CNNs (measured by the bits required by weight parameters). To ease the problem,

implementations may resort to an off-chip memory, but generally only a few layers could

use it to avoid memory bottlenecks and frequency penalties. In additional, to be able to

adapt timely, DFAs need to be automatically generated from CNN high-level language

descriptions, like Pytorch, given that a custom pipeline is implemented for each instance.

One of such generator systems, is the open-source framework FINN compiler [115]

provided by Xilinx. However, compared to MPE implementations (often using expert

handcrafted RTL), the generated hardware tends to be less optimized, and thus achieving

lower operating frequencies. This is particularly relevant for large multi-die FPGAs, as

physical constraints have a greater impact.

Given the great performance potentiality of DFAs and with the final goal of finding

solutions to them, we explored how to implement large DFAs more efficiently and to

target larger networks.

6.2 Background

6.2.1 The FINN Compiler

Frontend

Neural Network
Description in

PyTorch/Brevitas

Optimizations &
Transformations
(potential sequence)

Streamline HLS
Conversion Folding

Resource
Estimation Backend

Synthesis using
Vivado and Vitis

for different
target devices

ONNX

Customized hardware
solution with runtime

environment

Figure 6.1: FINN Compiler Flow. Source [83]

From PyTorch to FPGA bitstream To create the DFAs the FINN compiler was used.

Fig. 6.1 illustrates the stages of FINN flow to reach a DFA FPGA implementation. The

process starts with a PyTorch description using the Brevitas library for quantization-

aware training [116]. The trained network is exported to the ONNX format, which the

FINN compiler uses as the intermediate representation. This graph is first optimized in

the streamline phase, for example merging operations, minimizing operator size, and

removing floating-point computations without changing functionality, and then it is

translated to hardware layers. Most of these layers are implemented with HLS using

the FINN hlslib [117], but RTL designs may also be employed. Based on the user’s

48

CHAPTER 6. AI: IMPLEMENTATION OF LARGE CNN ACCELERATORS

Table 6.1: Neural Networks accelerated in this work. Source [83]

Topology Precision∗ Model Size (MB) % Top-1 Accu. GOps FINN Nodes

ResNet-50 (RN-50) W1A2 11.25 67.27 6.8 277
MobileNetV1 (MN) W4A4 2.1 70.39 1.1 115
∗ WxAy indicates quantization: x-bit weights, y-bit activations.

target throughput, the parameters of the hardware layers are tuned to adjust the level

of parallelism in a process called folding in the FINN framework. In addition, these

hardware modules often allow customizations like whether to use DSPs or LUTs for

operations, or using LUTRAM, BRAM, or URAM for storage. Finally, the modules are

connected either as IPs in Vivado IP integrator or as kernels connected using Vitis,

followed by the RTL synthesis and P&R stages to create the FPGA configuration file.

ImageNet Classification support As part of this project, support within the FINN

compiler for MobileNetV1 (MN) [118] and ResNet-50-v1.5 (RN-50) [119] was added.

Quantized versions of these networks were described and trained using Brevitas, result-

ing in the CNNs summarized by table 6.1 and available from [120]. We consider these

CNNs relevant because of their widespread use in modern AI applications. Additionally,

these large networks, the largest implemented by the FINN compiler to date of develop-

ment, allow us to explore the designed challenges previously stated. Finally, notice that

unlike MN, RN-50 has a non-linear topology, adding some additional complexity to its

graph manipulation and implementation.

6.2.2 Scaling Up CCN Performance

6.2.2.1 Adjusting the Accelerator Parallelism

CNNs are highly parallelizable, as there are normally several dimensions of indepen-

dent operations. Unlike MPEs, which time-multiplex layers, DFA execute them all in

parallel. Given its pipeline architecture, the throughput of the DFA is determined by the

throughput of the slowest layer, and thus it is important to balance them not to waste

resources. To achieve this, a DFA tunes the level of parallelism of the other dimensions,

illustrated in fig. 6.2 for dense convolutions as supported by FINN. Each MMV compute

an output pixel, each PE (MMV component) compute different channels of a given pixel,

and each PE performs SIMD multiplications in parallel. As previously mentioned, al-

49

CHAPTER 6. AI: IMPLEMENTATION OF LARGE CNN ACCELERATORS

layer 1 layer 2 layer L
...

MMV 1

MMV 2
...

PE 1

MMV M

...
PE 2

PE P

* * *

+

+

SIMD

...
1 2 S

((a)) Hardware structure.

foreach layer: # L-parallel (all)
 foreach output_pixel: # M-parallel
 foreach output_channel: # P-parallel
 foreach input_channel: # S-parallel
 MAC(input, weights)

((b)) Pseudocode view.

Figure 6.2: FINN parallelism dimensions for dense convolutions. Source [83]

though compute resources may be scaled, memory requirements for parameters stay

relatively constant, and thus limiting the CNNs implementable in a given FPGA.

6.2.2.2 Scaling Out

When resources within a chip do not allow us to scale-up (or even to implement) a

DFA, we may distribute the compute load among different chips. Although there are

several ways of doing this [121], here we consider the two basic alternatives shown in

fig. 6.3, data- and model-parallelism.

Data-parallelism simply replicates the single node solution on several other nodes,

requiring a server to distribute the inputs among the nodes, which execute a whole

instance of the CNN, and then, the server gathers all the outputs. From the hardware

design point of view, this option is simple, as the same configuration is used in all nodes,

and for software, it is also convenient as the interface is always the same. If n nodes are

used, this solution increases throughput by n, keeping latency relatively constant.

Conversely, model-parallelism distributes a single CNN instance among different

nodes, allowing to use scaled-up versions of the DFA. The system feeds the accelerator

layer 1

layer 2

compute node 1

data 1 result 1

layer 3

layer 4

layer 1

layer 2

compute node 2

data 2 result 2

layer 3

layer 4

((a)) Data parallelism.

layer 1

layer 2

compute
node

1

data result

layer 3

layer 4

compute
node

2

((b)) Model parallelism.

Figure 6.3: Two types of parallelism to scale out systems. Source [83]

50

CHAPTER 6. AI: IMPLEMENTATION OF LARGE CNN ACCELERATORS

through a single input, intermediate results are transmitted between nodes, and outputs

are gathered from a single interface. Despite implying a more complex hardware design

process, the scaled-up DFAs allowed by this alternative reduce latency and distribute

weight parameters among different nodes, relaxing the memory requirements, and

thus allowing larger nets to be implemented. Depending on how it is implemented,

this option may also require adapting the software that controls the accelerators as

the interface may change (e.g., providing inputs through one card and getting outputs

through another). Although, performance improvements are harder to estimate in this

case, which eventually saturate, for n nodes (a few), throughput may approx. increase by

n and latency be reduced by n.

6.3 Challenges in Scaling Up Dataflow Architecture
Performance

To maximize the implementation efficiency, we aim to maximize operating frequency,

while also maximizing parallelism. In this section, we describe the main obstacles found

when striving to those goals.

6.3.1 Considerations for Large FPGA Designs

The larger high-performance Xilinx FPGAs are composed of multiple silicon dies

(called super logic regions, SLRs), mainly to optimize production cost, as yield1 decreases

fast with the chip size [122]. Multiple connections between SLRs exist, but these are

more limited and slower compared to the routing within an SLR. Therefore, special

attention has to be paid to these SLR crossings to achieve a high frequency. In particular,

we highlight the following:

• Critical path determined by high fan-out control signals: it is well known

that high fan-out nets can limit clock frequency in synchronous digital circuits

[123]. This matter is worsened when these go through SLR crossings, given the

large delay they suffer. Fig. 6.4(a) illustrates a monolithic IP accelerator that

requires multiple SLRs to be implemented, and as a consequence, the reset nets

need to go through one or more SLR crossing, which in our implementations,

1fraction of dies produced without defects

51

CHAPTER 6. AI: IMPLEMENTATION OF LARGE CNN ACCELERATORS

DDRCTRL

SHELL

RSTC AXILite

ACCL

DDR

LONG RESET

SLR0 SLR1 SLR2

((a)) Frequency penalties due to long resets

DDRCTRL

SHELL

SLR0

RSTC AXILite

ACCL (1/2)

DDR

DDRCTRL

RSTC AXILite

ACCL (1/2)
LONG ROUTE

MORE
LOGIC

DDR

SLR1 SLR2

((b)) Frequency and area penalties due to
bad floorplaning

Figure 6.4: Bad design decisions for large accelerators on multi-SLR FPGAs. Source [83]

limits the maximum frequency. Therefore, this matter needs to be considered when

implementing large DFA in these devices.

• Data SLR crossings: Not only long fan-out needs may be affected by SLR cross-

ings. In general, to avoid frequency penalties, it is good practice to limit the width

of the buses crossing SLRs and to optimize these crossings using the registers

available for this purpose [124].

• Logic placement: Fig. 6.4(b), illustrates potential pitfalls when placing accelerator

modules. To address the previously mentioned problems, we may partition the

accelerator in several modules to allocate them in different SLRs. When doing so, it

is important to avoid nets to go through multiple SLR crossings (or pipeline them

appropriately). Additionally, to avoid redundant logic, we should try to place in the

same SLR the modules that require access to a particular resource, like external

memory.

6.3.2 Maximizing Compute Density

6.3.2.1 Resource Balancing

As opposed to ASICs, which only implement what has been designed (determining

the silicon area), FPGAs chips have a fixed amount of any given resource. Then, a heavily

used resource degrade the utilization efficiency of the device. However, in FPGAs, a given

functionality may be implemented with different resources. For example, multiplications

can be implemented with LUTs, DSPs, BRAMs (using them as look-up tables) or a mix

of them. Employing only DSPs for multiplication may limit DFA throughput, even when

LUTs are under-utilized. Therefore, through resource balancing, increased parallelism

can be achieved.

52

CHAPTER 6. AI: IMPLEMENTATION OF LARGE CNN ACCELERATORS

Table 6.2: Vivado resource utilization guidelines to avoid frequency penalties

Resource LUT FF BRAM URAM DSP Avg. of DSP, BRAM, URAM

Guideline (%) 70 50 80 80 80 70

In addition, over-utilization of a given resource can lead to frequency penalties, given

that it hinders an appropriate placement and routing. Thus, balancing resources also

allows maximizing the operating frequency. Although some designs may allow higher

utilization rates while still accomplishing high frequencies, Xilinx recommends not

surpassing the rates shown in table 6.2 to avoid frequency penalties. In the past, the

resource balancing and the partitioning processes have been performed separately [125],

doing the balancing as a fine-tuning step, but we notice that these should be optimized

together to have a significant effect on performance given their interdependency. In

general, partitioning would avoid surpassing utilization rates that cause frequency

penalties. Given that reducing the utilization of a resource below these limits has

little impact on frequency (confirmed by our experiments with DFAs), the usefulness of

performing resource balancing after partitioning is limited. Also, in this way, potential

reduction in the number of required SLRs would not be exploited.

6.3.2.2 Resource Efficiency as a Function of Accelerator Scale

Although the level of parallelism can be scaled, the performance per area metric

is not constant for DFAs. Fig. 6.5 show the resource utilization rates required by MN

and RN-50, using 3 different folding solutions: Baseline, Fold 2x (2× the II of Baseline),

and Fold 4x (4× the II of Baseline). It is possible to observe that most resources are not

scaled down by the same factor FPS are decreased. This is particularly true for memory

resources, as previously noticed and thus, larger DFA are more resource efficient. Yet, this

R
el

at
iv

e
U

til
iz

at
io

n
of

 A
lv

eo
 U

28
0

0.0

0.2

0.4

0.6

LUTs URAM DSP Blocks RAMB18

Baseline Fold 2x Fold 4x

((a)) MN Profile

R
el

at
iv

e
U

til
iz

at
io

n
of

 A
lv

eo
 U

25
0

0.0

0.2

0.4

0.6

LUTs URAM DSP Blocks RAMB18

Baseline Fold 2x Fold 4x

((b)) RN-50 Profile

Figure 6.5: Resource utilization as a function of folding. Source [83]

53

CHAPTER 6. AI: IMPLEMENTATION OF LARGE CNN ACCELERATORS

may require more resources than what is available in the FPGA chip. To deal with this,

we may resort to model-parallelism. However, and most importantly for DFAs which are

custom-built implementations for a particular network, this accelerator partitioning task

should be automated to enable an easier deployment and improve designer’s productivity.

6.3.2.3 Folding Limitations

When scaling-up any accelerator, there exist limitations to granularity of the level

of parallelism steps, and also we will eventually reach upper bounds on parallelism.

These limitations are dictated by the algorithm itself, or the chosen architecture or

framework. For example, FINN is able of a somewhat coarse-grained folding, as it forces

that resources allocated for a given dimension must be an integer factor of the dimension

cardinality (see section 6.2.2.1). For example, if a convolution has 64 output channels,

FINN only allows 2i PEs, where i is an integer.

These limitations will tend to avoid the system designed to achieve the desired level

of device utilization. To deal with this issue, we may use data-parallelism to increase

the computational density of a device, instantiating an additional DFA (with a possibly

different folding). What is more, this idea can be generalized for multi-FPGA deployments,

allowing the combination of unused logic of different devices to implement more and/or

larger (thus efficient) DFAs. As a result, the average FPS/FPGA will increase.

6.4 Research & Development Goals

Addressing the design challenges outlined requires physical considerations in the

accelerator design. Partitioning the accelerator for non-monolithic FPGAs, dividing an

accelerator among different FPGAs, placing partitions, and balancing resources need

to be addressed globally to optimize efficiency. Although the focus here is on large CNN

dataflow accelerators, these challenges are, in general, not application specific, but result

from designing large systems and/or aiming at maximizing the performance that can be

extracted from a given FPGA chip. Yet, this task is NP-hard, and thus, it rapidly gets

out of reach for humans, and eventually, also for classical computers. For this reason, in

chapter 11 we present a tool to efficiently perform this optimization task automatically.

54

Part III

Addressing the Challenges

55

C
H

A
P

T
E

R

7
LOCO-ANS IMAGE CODEC: ALGORITHM

I
n this chapter, we present enhancements to the JPEG-LS standard, aimed at
improving its coding efficiency at a low computational overhead, particularly
for hardware implementations. The main contribution is a low complexity and
efficient coder, based on Tabled Asymmetric Numeral Systems (tANS), well suited

for a wide range of entropy sources and with simple hardware implementation. This coder
enables further optimizations, obtaining LOCO-ANS. Targeting photographic images, the
codec achieves up to 1.6%, 6%, and 37.6% better compression compared to JPEG-LS, for
error tolerances of 0, 1, and 10, respectively. Allowing an increase in the context size and
image tiling, a 2.3% lower bandwidth is obtained for lossless compression, also improving
near-lossless compression. The results also show that our proposal compares favorably
against state-of-the-art codecs like JPEG-XL and WebP, particularly in near-lossless,
where it achieves higher compression ratios with a faster coding speed.

This chapter is based on the work published in [20]: Alonso, T., Sutter, G., & López de Vergara, J. E.
(2021). LOCO-ANS: An optimization of JPEG-LS using an efficient and low complexity coder based on
ANS, in IEEE Access, vol. 9, pp. 106606- 106626, 2021, doi: 10.1109/ACCESS.2021.3100747.

56

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

7.1 Introduction

As presented in chapter 4, JPEG-LS standard has a significant optimization potential.

In particular, we showed that that entropy encoder subsystem (composed of a GPO2 and

a run coder) generated up to 9% larger compressed output streams than the minimum

established by the statistical model. However, this subsystem imposed other restrictions

on the codec, like how to quantize context gradients. When this limitation is lifted, greater

compression is unlocked, increasing the coding inefficiency to up to 25%, which grow

further if only considering photographic images (more relevant to the target applications).

To improve JPEG-LS, we first developed an efficient and low complexity adaptive

coder for sources with a geometrical distribution, which uses Tabled Asymmetric Nu-

meral Systems (tANS) as the underlying technology [47], with a complexity similar to a

Huffman coder but with efficiencies that closely approach to the model’s entropy [48, 49].

This coder is a key part of the adaptive system to code sources with a two-sided geomet-

rical distribution, that is, to code the prediction residual.

JPEG-LS codec was adapted to work with the designed coder allowing a better com-

Table 7.1: Notation for LOCO-ANS description and analysis

Notation Description

NEAR
Codec input that determines maximum absolute difference between
the original pixel and the decoded one.

ϵ Two-sided geometrically distributed variable (prediction error)
z Geometrically distributed component of the prediction error
y Bernoulli distributed component of the prediction error
s Fractional bias of the Two-sided geometric distribution
θ Shape parameter of geometric and Two-sided geometric distribution
p Bernoulli distribution parameter
θ̂q Quantized estimation of θ

p̂q Quantized estimation of p
Qθ θ quantization function
Qp p quantization function
C Symbol alphabet cardinality of an ANS table, given a θ̂q
St Accumulator storing

∑t
i=1 zi

St Mean of the z geometric variable (
∑t

i=1 zi/t)
Nt Accumulator storing

∑t
i=1 yi

Stp Number of fractional bits used by St
Ntp Number of fractional bits used by Nt
NI Geometric coder maximum number of iterations

57

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

pression, particularly, for lower entropy distributions, more common in near-lossless

operation. A key aspect of this integration resides in the distribution parameter esti-

mation, where low complexity and more precise quantizers were studied and developed.

The resulting LOCO-ANS codec is capable of diverse trade-offs between resources and

compression and was evaluated in depth to understand the sources of inefficiencies and

how these relate to the coder parameters, resulting in a methodology to tune them. And,

what is more, from their conception, the proposed coder and modifications are amenable

for hardware implementation. The system prototype plus auxiliary code to create tables

and run experiments are open sourced to the community [126].

As a reference, table 7.1 contains the notation used in this chapter to describe and

analyze LOCO-ANS.

7.2 LOCO-ANS Overview

Pixel Decorrelator

Figure 7.1: LOCO-ANS block diagram.

7.2.1 High-Level Description

Fig. 7.1 shows the LOCO-ANS algorithm block diagram, where two main subsystems

can be appreciated, the Pixel Decorrelator and the TSG Coder, which substitutes the

GPO2 and run coders used in JPEG-LS. The former processes the input pixels with

the aim to turn them into a stream of statistically independent symbols along with

their estimated distribution parameters, which the latter will code. These symbols are

errors made by the adaptive predictor, which are then quantized according to the error

tolerance (NEAR parameter) as shown by equation 7.1. This quantization ensures that

the absolute difference between the original value of a pixel and the decoded one is less

58

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

or equal to NEAR. Note that if NEAR = 0, then lossless compression is obtained. Other

reversible operations are then applied to ϵq to improve compression.

(7.1) ϵq = round(ϵ/(2∗NEAR+1))

The adaptive predictor is composed of a fixed predictor plus an adaptive bias correc-

tion. The adaptive correction is computed for each context, which is a function of the

gradients surrounding the pixel currently processed. To obtain the context, gradients are

first quantized, and given the results obtained in chapter 4, gradient quantization was

modified to use a fixed quantizer function (thresholds computed using NEAR = 0).

Prediction errors are modeled using the Two-Sided Geometric (TSG) distribution,

that is, an error ϵq is assumed to have the following probabilities:

(7.2) P(θ, s)(ϵq)= C(θ, s) ·θ|ϵq−s|,ϵq = 0,±1,±2, ...,

where θ and s are the distribution parameters and C(θ, s) = (1− θ)/(θ1+s + θ−s) is a

normalization factor. As in the standard extension, the adaptive predictor is configured

so that the fractional bias, s, tends to stay in (−0.5,0.5]. However, to simplify the modeling

and coding of this error, the alternative TSG model is used:

(7.3) y= y(ϵq)≜

0, ϵq ≥ 0

1, ϵq < 0
∼ Bernoulli(p)

and

(7.4) z = z(ϵq)≜ |ϵq|− y(ϵq) ∼Geometric(θ)

where p = (θ1+s)/(θ1−|s|+θ|s|) and θ is the same parameter as in eq. 7.2 [62]. These distri-

bution parameters are estimated by the Context Modeler for each context, generating

the estimated quantized versions, θ̂q and p̂q.

As seen in the block diagram, the TSG coder uses two different coders to handle y
and z, both based on tANS. As mentioned, ANS output bitstream acts as a LIFO, but the

decoder needs to obtain the errors in the same order the decorrelator processed them, to

be able to mimic the model adaptations. For this reason, the Block Buffer groups symbols

in blocks and inverts their order. The output bits of a block are packed in the Binary

Stack and stored in the inverse order, so the decoder can recover pixels in the same order

the encoder processed them without additional metadata.

59

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

7.2.2 Encoding Algorithm Summary

The encoder algorithm can be summarized as follows, where (*) denotes a modified or

new procedure with respect to JPEG-LS and (†) one taken from the standard extension.

Scanning the image (with an ibits pixel depth) sequentially from left to right and

from top to bottom:

1. Read the first pixel and store it directly, also updating the row buffer (*).

2. Read a new pixel.

3. Compute the gradients, quantize them (*) and obtain the pixel context.

4. Compute the fixed prediction.

5. Get the prediction bias and the TSG quantized parameters estimations, p̂q and θ̂q

for the context (*).

6. Correct the prediction using the bias and compute the prediction error.

7. Invert the sign of the prediction error if either the context is negative or s > 0 (†).

8. Obtain the quantized error using the NEAR parameter and reduce it modulo α,

where α= 2ibits if NEAR = 0 else α= (2ibits −1+2∗NEAR)/(2∗NEAR+1).

9. Compute z and y and store it in the coder input buffer with their distribution

parameters (*).

10. Check if the symbol block is complete, and if so, use the coder presented in sec-

tion 7.3 to process the whole block and append the resulting binary stack to output

bit stream (*).

11. Reconstruct the pixel and store it in the row buffer.

12. Update the prediction bias (†) and the TSG parameters estimations (*).

13. If there are more pixels in the image, return to step 2.

Although presented as an ordered list, notice that some of these steps can be done

completely or partially in parallel.

7.3 An ANS-based Coder for TSG Sources

To use tANS in an adaptive setting, in general, one table per symbol distribution is

required, so there is a trade-off between table resources and KLD. Additionally, more

tables can also imply a reduction in the coder throughput.

60

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

To simplify the parameter estimation procedures and the coding efficiency of ANS,

the proposed system encodes the (y, z) tuple components separately, instead of the ϵ TSG

distributed error. Notice that choosing to code the (y, z) tuple components independently,

allows having tables tuned to the distributions of each component instead of tuned to the

tuple join distributions, which is needed if using the TSG model described by eq. 7.2. In

this way, the number of required tables is equal to |{θ̂q}|+ |{p̂q}| instead of |{θ̂q}| · |{p̂q}|
tables, where |{θ̂q}| and |{p̂q}| are the number of reconstruction values supported for θ

and p, respectively.

In this section, the codification procedures for y and z variables are presented. For a

more clear explanation and given that most algorithms do not strictly depend on ANS, it

is first assumed that the encode and decode order are the same (which is not true for

ANS), addressing the codification order required by ANS later on.

7.3.1 Adaptive Bernoulli Coder

Coding the y binary variable with tANS is simple. Given a quantized estimation of

the Bernoulli parameter p̂q =Qp(p̂), where Qp is the chosen quantization function for

the p parameter, a unique index is assigned to it, which is used to select the ANS table

tuned to p̂q. To half the number of required tables, if p̂q > 0.5, then y is inverted and p̂q

is set to 1− p̂q. On the decoder side, when p̂q > 0.5, then p̂q ← 1− p̂q is used to select the

decodification table, and the obtained symbol is inverted. Note that assuming the TSG

distribution hypothesis holds and that the bias cancellation procedure works well, and

given that p = (θ1+s)/(θ1−|s|+θ|s|) and s ∈ (−0.5,0.5] then p ∈ [θ/2,0.5]. In practice, using

the Rawzor dataset, limiting the p̂ to that range does not increase the bpp, except for the

"zone plate" artificial image.

7.3.2 Basic Geometric Coder

Given a symbol z coming from an infinite alphabet source with a geometric dis-

tribution and a quantized parameter estimation θ̂q = Qθ(θ̂), where Qθ is the chosen

quantization for the θ parameter, the probabilities of z are computed as:

(7.5) P(θ̂q)(z)= (1− θ̂q) · θ̂q
z

To code this type of symbol source using tANS, one main challenge had to be over-

come. Taking into account the maximum possible value of z for the image compressing

application, the cardinality of the symbol source is large, which leads to high resource

61

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

requirements for the tANS tables. Additionally, eq. 7.5 shows that the probabilities of z
can decrease very fast. So, as seen in section 7.5.1.2, ANS would require an impossibly

large state to cover the whole z range, which, in turn, exponentially increases the mem-

ory requirements. This could be addressed with binarization, but there is an alternative

enabled by the memoryless property of geometric distribution, which allows a simpler,

scalable and generally higher throughput system.

Both the large cardinality and high probability precision problems can be addressed

by using conditional probabilities when the symbol z is larger than an implementation

defined threshold. Symbols in the range [0..(C−1)] are coded directly, choosing the ANS

mode (ANS table computed for a certain distribution) according to the provided θ̂q, which

also determines the C constant. For larger symbols, the coder inserts C, which stands

for "z ≥ C". Applying the memoryless property, it can be seen that the distribution of

(z−C) given that z ≥ C is the same as z. For this to be strictly true, z should come from

an infinite set not a constrained one, as in the case of error residuals, but the set is large

enough, so there is no significant difference, at least, for the θ̂ seen in practice. Then,

using the same ANS mode (as they have the same distribution), the system tries to code

(z−C) and, again, if it is greater or equal to C, it inserts C. This process is repeated until

a symbol different that C is coded.

Notice that in this way, without the need of deriving probabilities for the decomposed

symbols or any additional statistics gathering process, and using a stateless coder

with C+1 symbols, any number originated from an infinite alphabet source with the

memoryless property can be optimally encoded. In this way, for each supported θ̂q, just

one tANS table tuned to a C+1 symbol source is required.

7.3.3 Codification Order for ANS

If ANS is used to code the symbols, then for the bitstream to be decodable, the

codification order must be inverted.

7.3.3.1 Symbol Block Codification Order

As mentioned before, the ANS output binary acts as a Last In, First Out (LIFO) mem-

ory, so prior to coding, the symbols are stored with the necessary adaptation parameters

and coded in reverse order, as proposed in [48]. In this case, θ̂q and p̂q parameters should

be stored alongside the (y, z) tuple. In some cases, it is not possible or desirable (added

latency) to store these variables for the whole image, so smaller blocks can be used at

62

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

the cost of some additional bits (the final ANS state needs to be sent after each block

and small inefficiencies can arise due to word alignment) effecting slightly the overall

coding efficiency. The decoder needs to know the block size, which can be included in the

compressed image header.

In general, the additional bits per symbol due to the need of transmitting the final

ANS state at the end of each block and the requirement of aligning a new block to a

certain word size will be, on average:

(7.6) KLD = (state_bits+ (word_bits−1)/2)/block_size

For example, for a 6 bit ANS state, aligning binary blocks to bytes and using a block

size of 2048 pixels, KLD = (6+ (8−1)/2)/2048 = 0.0046 bits/pixel.
As suggested in [48], the initial state of the ANS coder can be used to carry informa-

tion, but, in the system prototypes, the initial ANS state is used as a sanity check of each

block. That is, the encoder always sets the initial state to 0 (actually to 2state_bits), and

the decoder checks after each block that the final ANS state is 0 (corresponding to the

first in the encoder side).

In hardware implementations, to avoid stalls, a ping-pong buffer should be used. In

this manner, a block can be processed, while the next one is being generated.

7.3.3.2 Sub-Symbol Codification Order

If y is coded before z, then z is decoded before y. Additionally, for each symbol z,

the order of operations described in section 7.3.2 is as the decoder would see them.

The encoder should proceed in the reverse order, inserting first the last sub-symbol the

decoder should see. It is not hard to see that the value of that sub-symbol is z mod C
(trivial to implement if C is chosen to be a power of 2). After, if required, it inserts a

sequence of n C sub-symbols, where n = (z− (z mod C))/C.

Finally, the codification of a single z symbol could be implemented as seen in alg. 7.1.

There, store_in_binary_stack function call deals directly with the output binary and

its arguments are an integer variable with the bits to store and the number of bits to

take starting from the least significant bits. The ANS tables are stored in the array

ANS_table, which is addressed by the quantized distribution parameter ID, the current

state of the ANS coder and the new symbol to encode. Each element of the table is a

structure with the number of bits that should be sent to the output and the next ANS

state. Note that ANS operation can be implemented differently [49, 57].

63

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

Algorithm 7.1: Codification procedure of a geometrically distributed symbol
using tANS.

Require: z
Require: param

1: c ← get_cardinality(param)
2: remaining_sym ← z
3: subsym ← z mod c
4: repeat
5: remaining_sym ← remaining_sym− subsym

// tANS coding
6: obits ← ANS_table[param][state][subsym].bits
7: store_in_binary_stack(state, obits)
8: state ← ANS_table[param][state][subsym].nx_st
9: subsym ← c

10: until remaining_sym = 0

7.3.3.3 Binary Store Order

As the decoder reads the binary bits in the inverse order, the encoder generates them

and to avoid the need of appending a header to each binary block, bits should be stored

in the reverse order as they are produced. This can be easily implemented storing coder

output bits in a stack, and then copying the whole binary block below the previous binary

block.

7.3.4 Geometric Coder Iterations

Although this algorithm may appear to be slow for its iterative nature, even with

small C ∈ [1,16] and for the θ observed in 8-bit images, it is not. This can be appreciated

in fig. 7.2, where the expected iterations per symbol (i) were plotted, which is computed

as follows:

(7.7) i = 1
1−θC

Note that the equation can be approximated with i ≈ St/C +1 for high St/C, where

St = ∑
zi/t = θ/(1−θ). As a reference, fig. 7.3 shows the distribution of St for different

values of NEAR for the Rawzor dataset.

Notice that the larger St, the smaller rate at which P(z) decreases. Additionally, C
can be a function of θ̂q. So, in general, although i increases almost linearly with St, the

maximum C value for a given an ANS state size tends to increase with St. Of course,

64

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

2 3 2 1 21 23 25

_
St

1

2

3

4

5

6

7

8

M
ea

n
ite

ra
tio

ns

C=1
C=2
C=4
C=8
C=16
Rice bin length

Figure 7.2: Geometric coder mean iterations as a function of St compared to number
of iterations resulting from a Rice-based binarization strategy. The approximations are
shown with dashed lines

the state size has to be large enough to be able to code θ and (1−θ) (the two symbols for

C = 1).

An alternative strategy to the one presented in alg. 7.1 would be to binarize the symbol

and then proceed with a binary coder. Instead of a trivial binarization, this procedure

could consist in using Rice-codes [127] for the symbol, which is a similar method to

the one employed in the JPEG-LS standard extension. Fig. 7.2 allows comparing the

iterations required by the proposed method with the average number of bits (and thus

iterations of the binary coder) resulting from a Rice coding binarization strategy. There,

the k rice parameter was chosen as the closest integer to −log2(−log2(θ)). It can be seen

< 2 ¹ 2 ¹² 2 ¹ 2 2 2 2 ² 2 2² 2 2
0

5

10

15

20

25

%

NEAR=0

NEAR=2

NEAR=4

NEAR=6

NEAR=8

NEAR=10

St

Figure 7.3: St Histogram for Rawzor dataset using different NEAR parameters. Bins
bounds are placed at (2x,2x+1) with 2x representing the bin.

65

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

that in range of interest, with small values of C, the proposed method requires fewer

iterations. Moreover, no binarization or bit probability modeling is required.

Although the coder can be configured so that i stays within some desired bounds, the

maximum possible iterations are higher, which can lead to data loss if buffers are not

correctly sized. Given that there are many situations in which buffer sizes and/or latency

are highly constrained, this issue is addressed in the next section.

7.3.5 Limitation of Coder Iterations and Symbol Expansion

One of the concerns that arises when analyzing the proposed coding algorithm is the

possibility of bursts of symbols requiring many cycles to code them and, particularly for

the smaller θ, the possibility of local expansion. Both burst of long iterations and expan-

sions have to be considered when sizing buffers before and after the coder, respectively.

For this reason, it would be desirable to have a direct mechanism to limit them.

A way of limiting both the expansion and the number of iterations would be the

following: The maximum number of iterations (NI) is chosen. Then, NI consecutive

sub-symbols C will act as an escape mechanism, after which z is stored directly using

z_bits = ⌈log2(max(z)+1)⌉. Given the modulo reduction applied to the prediction error

in JPEG-LS, z can be coded with (ibits−1) bits, where ibits is the pixel depth of the

input image.

Alternatively, the residual (z−NI ·C) could be stored, which in some configurations

might require fewer bits to code. What is more, the GPO2 coder could be used to code this

residual, selecting k from a small array indexed by the distribution parameter. These

codes are more efficient for high θ geometric distributions, which at the same time are

the most likely to require this mechanism for a given C.

For an ANS implementation of the coder, the order is reversed. If z ≥ NI×C, then z (or

the residual) is coded and, after that, NI consecutive C sub-symbols are coded using the

ANS encoder as usual. On the receiver side, upon seeing NI C sub-symbols, it will get out

of the loop and proceed to get z directly (or through the Golomb decoder). Note that, as

before, if C is chosen to be a power of 2, NI ×C is just a binary shift. Alternatively, those

values can be stored, and then, retrieved using the parameter distribution identifier.

Finally, for the simpler case where the GPO2 coder is not used to code the residual, the

algorithm can be expressed as in alg. 7.2, where a new input is required, z_bits.

66

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

Algorithm 7.2: Codification of single z limiting the iterations.
Require: z
Require: param
Require: z_bits

1: c ← get_cardinality(param)
2: remaining_sym ← z
3: subsym ← mod(z, c)
4: if z ≥ NI ∗ c then
5: store_in_binary(z, z_bits)
6: remaining_sym ← NI ∗ c
7: subsym ← c
8: end if

// code z or escape symbol with tANS
9: repeat

10: remaining_sym ← remaining_sym− subsym
// tANS coding

11: obits ← ANS_table[param][state][subsym].bits
12: store_in_binary_stack(state, obits)
13: state ← ANS_table[param][state][subsym].nx_st
14: subsym ← c
15: until remaining_sym = 0

7.3.5.1 Implications on Coding Efficiency

The implementation of this iteration limitation mechanism will tend to decrease the

coding efficiency of the coder. In its simpler version, it forces all symbols equal or above

NI ×C to be coded using a fixed number of bits (z_bits). The KLD can be obtained as:

KLD(L,θ)=
θL · (z_bits−Entropy(z|z ≤ max(residual)

)(7.8)

where L = NI ·C.

The code inefficiency (KLD/Entropy) due to the use of the simple coding of z or its

residual can be observed in fig. 7.4, setting NI to 7 and using small values of C, for St in

the range observed in dataset. As it can be seen, KLD can be relatively small even for

the simplest codification and using small numbers of C.

7.3.5.2 Upper Bound on the Code Length

As mentioned before, apart from limiting the iterations, it would be useful to obtain

an upper limit on the code length. For each θ̂q, if Max(z)≥ NI×C, there are two symbols

67

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

2 2 20 22 24 26

_
St

0

5

10

15

20

25

C
od

in
g

in
ef

fic
ie

nc
y

(%
) C=1

C=2
C=4
C=8
C=16
C=16(residual)

Figure 7.4: Coding inefficiency (KLD/Entropy) caused by the iteration limitation mech-
anism using the direct z codification after the escape mechanism. Curves for NI = 7

that could have the maximum code length. These are either z ≥ NI ×C (all symbols in

this set are coded with the same length) or z = NI×C−1. Then, if NI > 0, an upper limit

for a single symbol and a given θ̂q would be:

Max code length ≤max
state

(tANSθ̂q
[C]) · (NI −1)+

max
(
max
state

(tANSθ̂q
[C])+ z_bits, max

state
(tANSθ̂q

[C−1])
)

≤ ANS_state_bits ·NI + z_bits

(7.9)

Here, tANSθ̂q
is the ANS table for θ̂q storing the number of bits to send to the

output, which is addressed by the symbol and ANS state (omitted in the equation). This

is an upper bound as, after an ANS symbol is coded, only a subset of the state domain

is possible. To have the exact maximum code length for a given θ̂q, the sub-symbol

sequences used in eq. 7.9 can be coded, iterating over the state domain to set the initial

state.

However, upper bounds on long sequences of symbols (like the coder block size) are

more useful to size the output buffer. Then, if the ANS tables are already generated,

using a simulation, the buffer could be computed such that there is no possibility of

exceeding its size. A complete block of the symbol that produces the maximum code

length should be coded for each θ̂q, taking the largest binary block to size the output

buffer. Compared to eq. 7.9, this procedure would produce tighter upper bounds.

If the ANS tables are not yet generated, the worst case could be assumed, in which all

68

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

the max functions applied over tableANS in eq. 7.9 are equal to the ANS state number

of bits. This would be accurate if the entropy of the C sub-symbol, is close to the state

bits. If that is not the case, entropy values plus safety margins (see section 4.3) could be

used instead of the max
state

(tANSθ̂q
[][]) functions to do the estimation.

7.3.5.3 Interactions Between the Coder and the Rest of the System

Something that should be noticed is that there is a negative feedback loop in place.

Code expansion and long iterations are due to a large z given the estimated θ̂q for the

context and C = f (θ̂q). If this situation persists, the large errors are going to drive θ̂q

up, and subsequent large z that belong to this context would produce fewer bits, and

fewer iterations as, in general, C can be increased with θ̂q for a given ANS state size. If

C is not increased, as it might be limited for resource requirement reasons, the number

of iterations would remain the same, but maximum code length will tend to decrease

with increasing θ̂q estimations, as the number of bits used to code the sub-symbol C
decreases.

For this reason, the actual largest binary output depends on the relative values of

the block size, context domain size (number of context defined by surrounding quantized

gradients), context θ̂q parameter estimation inertia, NI, C for each θ̂q. The smaller

the block size, the bigger context domain size, and the higher θ̂q parameter estimation

inertia, the closer it gets to the limit established by eq. 7.9.

7.4 Distribution Parameters Estimation

To integrate the presented coder with JPEG-LS, the parameter estimation procedures

to obtain θ̂q and p̂q need to be introduced. These procedures not only estimate the

distribution parameters, but also define the Qp and Qθ parameter quantization functions.

7.4.1 p Parameter Estimation

An approximation of eq. 4.5 can be used to obtain p̂q. For this, the Nt sum is kept for

each context and the bias cancellation procedure with some minor modifications can be

employed, implementing a quantizer with uniform bin sizes. The reconstruction values

can be chosen to minimize the KLD within each bin.

In alg. 7.3, N is the context counter also used for the bias cancellation and pid is p̂q

ID number, which is also kept for each context. The parameters of this algorithm are

69

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

Algorithm 7.3: Estimation procedure of the p Bernoulli parameter for a given
context.

Require: y, Nt, N, pid
1: N ← N +1
2: Nt ← Nt − pid + (y<< Ntp)
3: Li ← f i(N)
4: Ls ← f s(N)
5: if (Li > Nt) then
6: pid ← pid −1
7: Nt ← Nt +N
8: else if (Nt >= Ls) then
9: pid ← pid +1

10: Nt ← Nt −N
11: end if

Ntp and the bound functions, f i(N) and f s(N). Ntp determines the number of fractional

bits stored in the Nt register and, as a consequence, the size of each quantization bin is

2−Ntp and Ls −L i = f s(N)− f i(N)= N.

There are several ways (L i,Ls) can be set. The extreme cases are analyzed, that is,

the case (−N/2, N/2) (where pid/2Ntp is centered within bin bounds) and (0, N) (where

pid/2Ntp is not centered, but equal to the lower bound). Fig. 7.5 shows the KLD for each

of these cases for p ∈ [0,0.5] and Ntp = 4. Here, the reconstruction values were chosen to

be in the center of the bin, except for bin 0 of the centered case, where the reconstruction

is computed taking p = 0 as the lower bound.

Although slightly more complex, choosing the (−N/2, N/2) bounds allows a lower

KLD for a given precision as it has a smaller bin (half the size) in the lower end of the p
range, where the KLD is more sensitive. This comes at the cost of an additional bin in

the p ∈ [0,0.5] range (resulting in 2Ntp−1+1 bins). However, the optimal reconstruction

value of the upper bin (bin 2Ntp−1) is p = 0.5, so the tANS coder can be bypassed as y
does not need to be coded (entropy = 1). Then, the number of tables required for both

configurations is 2Ntp−1. It has to be noticed that low p̂ ranges are used for low θ, so the

impact of choosing one or the other would be appreciated for lower entropy cases (high

NEAR and/or images that are accurately predicted, like smooth surfaces).

For photographic images, as forcing p̂q <= 0.5 does not increase the bpp, the condition

pid < (2Ntp−1−1) can be added to the else if (alg. 7.3), avoiding the need to implement

the logic to code y for the rare cases when p̂q > 0.5 (as indicated in section 7.3.1).

70

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

0.0 0.1 0.2 0.3 0.4 0.5
p

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

KL
D

centered(1.8e-03)
Not centered(2.3e-03)

Figure 7.5: KL Divergence result of the quantization of the p̂ estimated parameter
for "centered" bin bounds ((id −1/2)/2N tp, (id +1/2)/2N tp) and "not centered" bounds
(id/2Ntp , (id+1)/2Ntp) using Ntp = 4 (accumulator precision). The average KLD, in bits,
are shown between parentheses

7.4.2 θ Parameter Estimation

Unlike the GPO2 coder used in LOCO-I, where the quantization of the TSG distri-

bution parameters has to be adapted, particularly, to the k Rice parameter, with the

proposed coder any quantization can be chosen. However, it is necessary to find a good

trade-off between coding efficiency and coder resources.

An approximation of equation 4.6 is used to estimate θ. To implement it, a St sum

register is stored for each context. Then, St needs to be computed and quantized, obtain-

ing indexes which can be directly mapped to θ using eq. 4.6 with α and β set to 0. Given

this direct relationship between St and θ, these two terms are used interchangeably.

7.4.2.1 Constant Ratio Quantizer

The constant ratio quantizer, CRQ, is defined here as having the lower and upper

bounds of each bin computed as (Li,Ls)= (Stx∗ r,Stx/r), where Stx is the reconstruction

value of the bin x and r ∈ (0,1) is a constant the regulates the size of the bins. This

quantizer tends to keep the average KLD per bin constant when it is applied to St . Once

St0 and r are set, all bins bounds and reconstruction values can be determined. The bin

bounds can be placed at 2i, i ∈Z, to obtain the quantization function used in LOCO-I for

71

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

2 3 2 1 21 23 25

_
St

0.0

0.5

1.0

1.5

2.0

Co
nd

in
g

in
ef

fic
ie

nc
y

(%
)

Constant ratio
Halved constant ratio

Figure 7.6: Coding inefficiency due to the quantization of St for two simple quantizers

the average absolute error. However, as the presented coder can handle lower entropy

distributions, the precision of the St register can be increased (as it was done for the

Nt register) to support the quantization of St < 1, which has more impact as NEAR
increases.

The inefficiency (KLD/Entropy) due to the quantization of St can be observed in

fig. 7.6, where θ is computed as St/(St +1) and reconstruction values are computed using

the rule stated above. Although those are not the optimal reconstruction values, they are

close to them. Assuming a uniform distribution of St in the observed range, this simple

quantization has on average inefficiency of 0.48%.

The division and quantization procedures can be carried out in several ways. LOCO-I

presents an iterative method, implemented with a one-line for loop. Alternatively, the

procedure in alg. 7.3 can be adapted to accomplish the same quantization. For this, L i is

set to 0, Li = N << f (θid,Stp) (where Stp is the precision of the St register) and in line

2, instead of subtracting θid, the bin lower bound is computed based on θid and Stp.

These two procedures will not always output the same result, as the latter can only

produce a decrement/increment of θid of 1 with respect to the previous ID (this can be

extended at the cost of more logic). In addition, this method requires storing θid in the

context, although the size of the St register will be small as it will contain only the

division residual.

In a software implementation, particularly a single thread one, this procedure will

tend to be faster compared to the iterative one. However, from the hardware perspective,

72

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

despite its iterative nature, the first alternative is appealing as it can be carried out

outside the error quantization loop, and then the system throughput will tend to be

higher. In this case, St and N are sent to the next stage where a possibly highly pipelined

module obtains θid, while the context is being updated and a new sample is processed by

the image quantizer. Whereas for the second alternative, the quantization procedure and

update of the St index in the context needs to be completed to continue with next image

sample.

7.4.2.2 Finer Grain Quantizers

If higher coding efficiency is required, maintaining a simple quantization logic, the

previously obtained quantization bins can be uniformly divided. This can be implemented

in several ways, for example, see alg. 7.4. This algorithm halves each bin, generating

the inefficiency curve labeled "Half constant ratio" in fig. 7.6 when using optimal recon-

struction values. It achieves an average inefficiency of 0.12% at the cost of doubling the

number of required tables for a given St range.

Algorithm 7.4: Procedure to obtain the quantized estimation parameter of the
geometric distribution, θ̂q, using the halved constant ratio quantizer.

Require: St
Require: N
Ensure: θid

1: St ← St + (z << Stp) // In the update phase
2: θid ← 0
3: l ← N
4: while St > l do
5: θid ← θid +2
6: l ← l << 1
7: end while
8: if St > l− ((l+2)>> 2) then
9: θid ← θid +1

10: end if

7.4.3 Resets

As done in JPEG-LS, the context count N and accumulators (in this case St and Nt)

are halved when N reaches N0 = 2i, i ∈ N to limit the size of the registers and better

adapt to changes in the context statistics.

73

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

7.5 Selection of Coder Parameters

Different scenarios might need different trade-offs between resources, code efficiency,

throughput and latency, and requiring support for a variable set of NEAR settings

and types of images. However, it is not an easy task to establish the best configuration

because of the strong coupling between the parameters of the coder.

These parameters are:

• The ANS state size, which sets limits to the ranges of possible θ̂q and p̂q values, as

well as, the maximum C for a given θ̂q.

• The precision of the St accumulator, Stp, which sets a lower bound to the θ̂q values.

If Stp is such that the lower bound it sets is equal or below the one set by the ANS

state size, increasing Stp has almost not impact. The only effect it would have is

that the accumulator will have an additional memory of past errors.

• The maximum θ̂q value.

• The Qθ quantization function

• The precision of the Nt accumulator, Ntp, which sets a lower bound on the p̂q

range. If only considering the centered uniform quantizer presented in section 7.4.1,

Ntp also determines the Qp quantization function.

• The ANS table cardinality, C, for each θ̂q.

• The code block size.

• The geometric coder maximum number of iterations, NI.

All system performance measures are effected by all or most of the above parameters.

7.5.1 ANS Tables Limitations and Generation

To select the coder parameters, it is necessary to keep in mind some considerations

regarding tANS.

7.5.1.1 Algorithm to Create the ANS Tables

To create the ANS tables, a slightly modified version of the heuristic algorithm

(mentioned in section 4.3) was used. The goal of this modification is to ensure that the

resulting table is a valid one, given the cardinality of the symbol source. This is done

detecting if the original algorithm fails to assign at least 1 state to each symbol and

74

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

then forcing it. In these cases, the KLD is expected to be higher than what eq. 4.1 states,

given that the tuning of the table to the set of symbols probabilities would tend to be

worst. These tables are referred to as suboptimal tables. Note that this table generation

algorithm can be improved.

7.5.1.2 ANS State Size and Small Symbol Probabilities

In general, the tANS tables can be fine-tuned to obtain better results than the

heuristic algorithm. However, there is a minimum symbol probability below which the

table cannot be tuned to, and that minimum is achieved by the suboptimal tables,

although, in general, these do not need to be suboptimal. In the case of 2-symbol sources,

these tables are constructed by assigning to the higher probability symbol the first

2state_bits −1 states and the last state to the other symbol.

10 5 10 4 10 3 10 2 10 1

p

10 4

10 3

10 2

10 1

KL
D bits = 2

bits = 3
bits = 4
bits = 5
bits = 6
bits = 7
bits = 8
bits = 9
bits = 10

Figure 7.7: KL Divergence of 2-symbol tANS tuned to the minimum symbol probability
as a function of the P(0)= p probability for several ANS state bits.

Figure 7.7 shows the KLD achieved by 2-symbol suboptimal tables as a function of the

p Bernoulli distribution parameter for different ANS state sizes. Notice that 2-symbol

sources would minimize the KLD for a given state size (see eq. 4.1). From these curves,

table 7.2 was obtained, which shows the minimum KLD achieved and at which p symbol

probability.

This has to be considered when sizing the state size of the coder. For example, in

an adaptive codification of a Bernoulli source, trying to tune tables to a p parameter

equal or below the minimum probability observed in table 7.2 will always result in the

75

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

Table 7.2: Performance of 2-symbol tANS tuned to the minimum symbol probability as a
function of ANS state bits.

Address size min KLD arg minp KLD min prob/(1/|S|)
2 5.7273e-03 2.0750e-01 0.8300
3 2.9764e-03 9.2050e-02 0.7364
4 1.3537e-03 4.3425e-02 0.6948
5 6.2724e-04 2.1112e-02 0.6756
6 2.9950e-04 1.0406e-02 0.6660
7 1.4602e-04 5.1631e-03 0.6609
8 7.2063e-05 2.5766e-03 0.6596
9 3.5799e-05 1.2883e-03 0.6596
10 1.7833e-05 6.4114e-04 0.6565

minimum entropy table. Then, adding more than one of these tables would not improve

the coding efficiency, thus wasting resources.

7.5.2 Selection Methodology

7.5.2.1 Preliminary Considerations

A design methodology was derived from the mentioned relationships between coder

parameters and the experience obtained when creating the prototype configurations for

the experiments. For them, given an ANS state size, the main objective was to obtain

configurations for a wide range of prediction error entropy. That is, to aim at a wide

range of images and NEAR values. Additionally, for each ANS state size, a good trade-off

between code efficiency and resources was sought. Then, the methodology intends to

support the widest range of θ̂ and p̂ for a given state size.

In addition, Ntp is set so that it does not limit the range of p̂, but not increasing it

beyond that point as the impact on efficiency tends to be minimal while the number of

tables doubles for each additional bit of precision (if the quantizer is configured to obtain

the maximum number of quantization bins given the selected precision). Also, by default,

the constant ratio quantizer is used for St and the centered uniform quantizer for p.

The maximum θ̂ that has practical implications to code efficiency is affected by the

minimum NEAR supported, the pixel depth and the type of images to encode (classifying

them according to their entropy, given the chosen model). Assuming that the actual z
distribution as a geometric conditioned with the maximum possible value (2ibits−1−1),

then as θ tends to 1, then St will tend to (2ibits−1−1)/2 (half of the range). Fig. 7.3 shows

that for the 8-bit gray images of the dataset, some pixels reach this maximum (less than

76

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

0.4% of them). However, if only photographic images are considered, just 0.16% of the

pixels reach a St > 16. Then, to achieve high coding efficiency, the maximum θ̂q should

correspond to a quantization bin that covers or is above St = 32, in the general case,

and St = 16 for photographic images. If the minimum NEAR > 0, these values would be

approximately scaled down by δ= 2 ·min(NEAR)+1.

7.5.2.2 Methodology

The methodology is as follows:

1. Choose the ANS state bits.

2. Set Stp and Ntp such that they do not increase the lower bound on the range of the

distribution parameter estimations they affect (θ̂ and p̂, resp.), given the selected

ANS state size. For this, start with small precision, for example, set both Stp and

Ntp to 0. Then, using C = 1, try to generate the ANS tables for the first bin of

each quantizer (smallest θ̂q and p̂q). If it succeeds, increment the corresponding

accumulator precision. If it returns a suboptimal table, stop.

3. Set the maximum θ̂q. Choose the minimum θ̂q between the maximum one that has

practical implications to compression and the maximum supported by the ANS

state size. To check this latter maximum, proceed similarly to step 2, iterating

over the order set of θ̂q until a suboptimal table is returned. Particularly for

hardware implementations where ANS tables would be stored in on-chip memory,

using a number of St quantization bins different from a power of 2 will result in

unused resources. Then, if the ANS state size allows it, increasing the number of

St quantization bins up to a power of 2 might provide some additional compression

without requiring more resources.

4. For each θ̂q, choose the maximum allowed C. For this, proceed similarly to step 2,

but in this case, start with C = 1 and iterate over power of 2. In the experiments,

the maximum allowed C (8) was not big enough to have a significant intrinsic

ANS KLD (see eq. 4.1). However, depending on the implementation, the maximum

used C can significantly affect memory resources and, particularly in the case of

hardware implementations, coder throughput. For this reason, an upper limit to C
may be set using the ANS state bits and the number of required ANS tables to do

resource and performance estimations.

77

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

Initially, to choose the ANS state bits, it can be assessed the number of bits that can

be afforded given the memory resources and performance requirements. This should be

done assuming that 16-64 ANS tables would be employed. For FPGA implementations,

the results in [57] can be used as a guide to understand the impact of resources on

performance.

7.5.2.3 Setting the Code Block Size and NI

The code block size is relatively decoupled from the rest of parameters. The larger it is

set, the better compression ratio achieved. However, if the binary is aligned to bytes and

the ANS state bits is below 10, no significant improvement will result increasing the code

block size above the tens of thousands of symbols. Increasing its size comes at the cost of

more memory resources and some impact on latency, although, in practical scenarios,

this does not represent a major problem to achieve high efficiency and low latency. For

most of the experiments, presented in section 7.6, the block size was set to 2048 as it

results, on average, in a KLD of 0.005 bits or less when binary blocks are aligned to bytes

(ANS state bits ∈ [4..7]). Moreover, for an FPGA implementation processing 8-bit images

and using 32 p̂q tables and 32 θ̂q tables, one block of symbols with their distribution

parameter estimations can be stored in 1 Xilinx 36K BRAM or 2 Intel M20K.

Regarding NI, a larger value tends to reduce the bpp. However, as in the case of the

code block size, increasing NI has diminishing returns. Also, the worst-case throughput

worsens linearly (initially) with NI. Most test were run with NI set to 7, the number of

bits required to represent z variable for 8-bit images. Then, the worst-case throughput is

the same as the resulting from a coder using trivial binarization. Using this value, little

negative impact on compression is seen in general, and almost no impact for photographic

images.

7.5.3 Tuning the Coder Parameters

If the application needs to support a limited number of NEAR values and/or type of

images, then better trade-offs between code efficiency and resources could be obtained.

Using the halved constant ratio quantizer for St (doubling the number of bins covering

the same range) can have a greater impact on code efficiency than increasing the ANS

state bits, while in former equal or less memory resources are required. This effect can

be observed in the experimental results shown in the following section.

78

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

Similarly, for p̂, changing the centered uniform quantizer with the non-centered one

and incrementing Ntp in one, would result in the same minimum p̂q, but the rest of the

p̂ range would have bins that are half the size, resulting in a smaller KLD.

If performance models and resource restrictions are available, the optimization task

could be handled algorithmically.

7.6 Experimental Results

A prototype of LOCO-ANS was implemented using C++, which was tested with a

set of different configurations with the goal of exploring the design space. The tested

configurations can be seen in table 7.3. The name of the configurations indicates the

most relevant parameter settings, following the format:

Nt{Ntp}_St{Qθ}{Stp}_ANS{State bits}

, where Qθ is "cg" for the (coarse grain) constant ratio quantizer or "fg" for the (finer

grain) halved constant ratio quantizer described in section 7.4.2. In all cases, N0 was

set to 64 (JPEG-LS default), the centered uniform quantizer was used to quantize the

distribution parameter estimation p̂ and the maximum C was set to 8.

Apart from the configuration parameters, table 7.3 shows the total number of rows

(total number of tables by the number of states), which provides a measure of the memory

resources required by each configuration (the actual memory utilization depends on the

implementation).

79

C
H

A
P

T
E

R
7.

L
O

C
O

-A
N

S
IM

A
G

E
C

O
D

E
C

:A
L

G
O

R
IT

H
M

Table 7.3: Prototype configurations used in the experiments
.

Conf. name State bits Stp Max Stq(θ̂q) Qθ Ntp C range # of θ tables # of p tables total # of rows
Nt4_Stcg5_ANS4 4 5 22.63 (0.958) CG 4 1-8 11 8 304
Nt5_Stcg6_ANS5 5 6 90.51 (0.989) CG 5 1-8 14 16 960
Nt5_Stfg6_ANS5 5 6 55.62 (0.982) FG 5 1-8 26 16 1344
Nt6_Stcg7_ANS6 6 7 90.51 (0.989) CG 6 1-8 15 32 3008
Nt6_Stcg8_ANS7 7 8 90.51 (0.989) CG 6 1-8 16 32 6144
Nt6_Stfg8_ANS7 7 8 111.24 (0.991) FG 6 1-8 32 32 8192

Table 7.4: Mean bpp and iterations using the prototype configurations with NI=7.

Nt4_Stcg5_ANS4 Nt5_Stcg6_ANS5 Nt5_Stfg6_ANS5 Nt6_Stcg7_ANS6 Nt6_Stcg8_ANS7 Nt6_Stfg8_ANS7
Error1 bpp 2 i bpp 2 i bpp 2 i bpp 2 i bpp 2 i bpp 2 i

0 3.41 (-2.8) 1.3 3.31 (0.4) 1.3 3.3 (0.7) 1.3 3.29 (0.9) 1.3 3.29 (0.9) 1.3 3.28 (1.2) 1.3
1 2.04 (3.5) 1.2 2.03 (4.2) 1.2 2.02 (4.5) 1.1 2.02 (4.4) 1.1 2.02 (4.5) 1.1 2.01 (4.8) 1.1
2 1.55 (5.9) 1.1 1.53 (7) 1.1 1.53 (7.2) 1.1 1.53 (7.3) 1.1 1.53 (7.4) 1.1 1.52 (7.7) 1.1
3 1.28 (8.4) 1.1 1.26 (9.9) 1.1 1.26 (10.1) 1.1 1.25 (10.4) 1.1 1.25 (10.4) 1.1 1.25 (10.7) 1.0
4 1.1 (10.9) 1.1 1.07 (12.8) 1.1 1.07 (13) 1.1 1.07 (13.5) 1.0 1.06 (13.5) 1.0 1.06 (13.8) 1.0
5 0.96 (13.2) 1.1 0.94 (15.4) 1.1 0.94 (15.6) 1.1 0.93 (16.3) 1.0 0.93 (16.4) 1.0 0.92 (16.6) 1.0
6 0.86 (14.8) 1.1 0.83 (17.4) 1.1 0.83 (17.6) 1.1 0.82 (18.4) 1.0 0.82 (18.6) 1.0 0.82 (18.9) 1.0
7 0.77 (15.9) 1.0 0.75 (18.9) 1.0 0.74 (19.1) 1.0 0.73 (20.1) 1.0 0.73 (20.3) 1.0 0.73 (20.5) 1.0
8 0.7 (16.6) 1.0 0.67 (19.7) 1.0 0.67 (20) 1.0 0.66 (21.1) 1.0 0.66 (21.4) 1.0 0.66 (21.7) 1.0
9 0.65 (17.5) 1.0 0.62 (21.3) 1.0 0.62 (21.6) 1.0 0.61 (22.9) 1.0 0.6 (23.2) 1.0 0.6 (23.4) 1.0

10 0.6 (18.2) 1.0 0.57 (22.7) 1.0 0.56 (23.1) 1.0 0.55 (24.5) 1.0 0.55 (24.8) 1.0 0.55 (25) 1.0
The results presented here were obtained averaging the bpp computed for each image so that all images have the same weight in the average.
Code block size set to 2048 symbols.

1 By definition, the maximum peak error is equal to the NEAR input parameter
2 The improvement percentage compared to JPEG-LS is shown between parentheses.

80

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

7.6.1 Analysis of LOCO-ANS Configurations Performance

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Bpp

0

2

4

6

8

10

Er
ro

r

Ntc4_Stcg5_ANS4
Ntc5_Stcg6_ANS5
Ntc5_Stfg6_ANS5
Ntc6_Stcg7_ANS6
Ntc6_Stcg8_ANS7
Ntc6_Stfg8_ANS7
JPEG_LS
Estim_entropy

Figure 7.8: Mean bpp using the prototype configurations with NI=7 and JPEG-LS.

The average compression results (over the whole dataset) can be seen in table 7.4

and plotted in fig. 7.8. Additionally, the entropy estimation (according to the model) is

shown in the figure to appreciate the efficiency of the configurations.

For these experiments, the code block size was set to 2048 and NI to 7. All config-

urations surpass JPEG-LS mean compression ratios for all the tested NEAR settings,

except for the Nt4_Stcg5_ANS4 configuration for lossless. The highest performing config-

uration, Nt6_Stfg8_ANS7, achieves a 1.2% mean bpp improvement for lossless, which

increases with NEAR. Interestingly, even the lighter version, Nt4_Stcg5_ANS4, can

obtain remarkable reductions of bpp for near-lossless compression, with improvements

ranging from 3.5% for NEAR = 1 to 18.2% for NEAR = 10. However, for NEAR > 10 the

improvement percentage for this particular configuration starts to decrease, as the lower

entropy distributions require larger ANS state sizes and higher precision estimations.

7.6.1.1 Compression of Photographic Images

It is worth noting that when only considering the photographic images of the dataset,

the bpp improvements are greater. In this case, as observed in table 7.5, even the

configuration using 4 bits for the ANS state size outperforms JPEG-LS for all the tested

NEAR values, including lossless.

7.6.1.2 Effect of Iterations Limitation

The results in table 7.4 and 7.5 correspond to configurations with NI = 7. When the

number of iterations of the geometric coder are not limited, the compression ratio slightly

81

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

Table 7.5: Mean bpp for dataset photographic images for a set of prototype configurations

Error JPEG_LS Nt4_Stcg5_ANS4 Nt6_Stfg8_ANS7
0 3.20 3.18 (0.5) 3.15 (1.4)
1 1.95 1.86 (4.9) 1.84 (5.8)
2 1.48 1.36 (8.0) 1.33 (9.7)
3 1.22 1.08 (11.5) 1.05 (13.9)
4 1.06 0.89 (15.5) 0.86 (18.6)
5 0.94 0.76 (18.9) 0.73 (22.7)
6 0.84 0.66 (21.6) 0.62 (26.1)
7 0.76 0.58 (23.9) 0.54 (29.1)
8 0.69 0.51 (25.6) 0.47 (31.7)
9 0.63 0.46 (26.9) 0.41 (34.1)
10 0.58 0.41 (28.2) 0.36 (36.8)

Results for NI=7. The improvement percentage compared to JPEG-
LS is shown between parentheses.

increases for lossless compression of the complete dataset, allowing the Nt6_Stfg8_ANS7

configuration to reach a 1.3% improvement over JPEG-LS. However, for near-lossless

compression or for the photographic images (including lossless), there is not a practical

difference in compression when setting NI = 7 compared to not limiting the iterations.

7.6.1.3 Analysis at the Image Level

A comparison at the image level is presented in table 7.6, which shows the number of

images of the dataset (and of the photographic image subset in parentheses) JPEG-LS

obtains better compression ratios for different error tolerances. The numbers observed

for NEAR = 5 repeat exactly up to NEAR = 12. From that point, configurations with

smaller ANS states start to struggle with lower entropy images, which can also be

appreciated in fig. 7.8.

The synthetic image "zone plate" is the hardest to compress (according to the model)

and the one where JPEG-LS tends to outperform LOCO-ANS. As mentioned in sec-

tion 4.4.2, because of the change in the gradient quantization function, the entropy

estimation for all NEAR > 0 worsens for this particular synthetic image. This results in

JPEG-LS obtaining a bpp below the estimated entropy, according to the modified model

for most NEAR > 0. For the best performing LOCO-ANS configuration in table 7.6,

this situation occurs for all the cases in which JPEG-LS obtained a better compression

ratio, except for one case where the average estimated entropy is 0.0001 bits lower than

JPEG-LS bpp. Then, in these cases, the problem lies in the statistical model (which is

82

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

better suited for photographic images) and not in the coder.

The best performing configuration introduced in table 7.6 has an increased block size

of 16384 symbols. This reduces the KLD due to the need of sending the final ANS state

at the end of a code block and aligning each new block to a word, in this case, to bytes

(eq. 7.6). For this reason, the configuration achieves a 1.5%,5% and 25.7% mean bpp

improvement for NEAR set to 0,1 and 10, respectively, when compressing the complete

dataset. These improvements increase to 1.6%,6% and 37.6% when only taking into

account photographic images.

Table 7.6: Number of images of the dataset that JPEG-LS achieves a lower bpp. Dataset
size: 14 images.

Error 0 1 1 2 3 4 5
Nt4_Stcg5_ANS4 8(6) 3(1) 3(1) 3(1) 3(1) 3(1)
Nt4_Stcg5_ANS4 2 8(6) 3(1) 3(1) 3(1) 3(1) 3(1)
Nt5_Stcg6_ANS5 4(3) 2(1) 1(0) 2(1) 1(0) 1(0)
Nt5_Stcg6_ANS5 2 5(3) 2(1) 1(0) 2(1) 1(0) 1(0)
Nt5_Stfg6_ANS5 1(0) 2(1) 1(0) 2(1) 1(0) 1(0)
Nt5_Stfg6_ANS5 2 2(0) 2(1) 1(0) 2(1) 1(0) 1(0)
Nt6_Stcg7_ANS6 1(0) 2(1) 1(0) 2(1) 1(0) 1(0)
Nt6_Stcg7_ANS6 2 0(0) 2(1) 1(0) 2(1) 1(0) 1(0)
Nt6_Stcg8_ANS7 1(0) 2(1) 1(0) 2(1) 1(0) 1(0)
Nt6_Stcg8_ANS7 2 0(0) 2(1) 1(0) 2(1) 1(0) 1(0)
Nt6_Stfg8_ANS7 1(0) 1(1) 1(0) 2(1) 1(0) 1(0)
Nt6_Stfg8_ANS7 2 0(0) 1(1) 1(0) 2(1) 1(0) 1(0)

Nt6_Stfg8_ANS7 2 3 0(0) 1(1) 1(0) 1(0) 1(0) 1(0)
By default, NI is set to 7 and block size to 2048.

1 The number of images, considering only photographic ones, is shown
between parentheses (total of photographic images is 12).

2 Configuration with unlimited iterations.
3 The configuration has a block size of 16384.

7.6.2 Experimental System Efficiency

To evaluate experimentally the sources of inefficiencies, given the chosen model, the

KLD resulting from parameter estimation procedures and from the coder were decoupled.

To accomplish this, for each image sample, a second average entropy computation was

performed, denoted as H(TSG(θ̂q, p̂q)), which estimates the bpp assuming an ideal

coder. This entropy was computed using the quantized estimations of the distribution

parameters (obtained with the procedures described in section 7.4), instead of using the

83

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

optimal estimators θ̂ and p̂ (computed using eq. 4.5 and 4.6). Then, the KLD due to

the distribution parameters estimation procedures was computed as H(TSG(θ̂q), p̂q))−
H(TSG(θ̂, p̂)) and the KLD due to the coder as bpp−H(TSG(θ̂q), p̂q)).

The resulting KLD, for all images and for NEAR ∈ [0..20], is shown in figs. 7.9 and

7.10. These were plotted as a function of H(TSG(θ̂, p̂)). A logarithmic scale is used for

the KLD axis, given that values in this axis range over 5 orders of magnitude. The

entropy and bpp resulting from the experiments were stored using 4 fractional digits, as

it was considered that increasing it would not provide any useful information. Because

of this, 10−4 is the smallest difference that can be appreciated in the log scale, smaller

values (zero or negative) are plotted with a KLD = 6 ·10−5. In addition, this explains the

patterns in the 10−4 ≤ KLD ≤ 10−3 range.

7.6.2.1 Parameter Estimation Efficiency

0 1 2 3 4 5 6 7
Estimated entropy

10 4

10 3

10 2

10 1

KL
D

Nt4_Stcg5_ANS4
Nt5_Stcg6_ANS5
Nt5_Stfg6_ANS5
Nt6_Stcg7_ANS6
Nt6_Stcg8_ANS7
Nt6_Stfg8_ANS7

Figure 7.9: KL Divergence due to distribution parameter estimation inefficiencies as a
function of the estimated entropy for dataset images and NEAR ∈ [0..20]. The divergence
results from using the quantized estimations of the distribution parameters (computed
as described in section 7.4) instead of the estimations obtained using eq. 4.5 and 4.6

In fig. 7.9, in general, it can be observed that high efficiencies are achieved by the

distribution parameter estimation procedures. For an image average entropy greater

than 1, the quantization of θ̂ (indirectly as St is quantized) dominates observed ineffi-

84

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

ciency. Here, a clear separation between prototypes using the coarse grain and the fine

grain quantizer for St can be seen. As a consequence of this effect, the Nt5_Stfg6_ANS5

configuration is capable of matching, and in some cases improving, the compression

ratios achieved by the Nt6_Stcg7_ANS6 configuration, whereas the latter requires about

twice the memory resources. The finer St quantization allows the former to be more

efficient for medium entropy.

However, when the average entropy diminishes below 1, the effect of having a mini-

mum θ̂q and a minimum p̂q starts to be noticeable (the entropy diminishes as θ→ 0 and

p moves away from .5). Here, the main parameter that separates the points of the plot is

the ANS state size, which determines these minimums. Additionally, the quantization of

p̂ contributes to the increase of the KLD, as it is less efficient in this zone (observed in

fig. 7.5).

On the other end of the range, for high entropy, the effect of having a maximum θ̂q

would also increase the KLD. This can only be observed for the prototype using a 4-bit

ANS state when losslessly coding the greatest entropy image (zone plate).

7.6.2.2 Coder Efficiency

In the case of the coder KLD, seen in fig. 7.10, the relevant parameters are the ANS

state size, the code block size and NI. For an entropy in the (1,5) range, the KLD is

basically flat, with a small positive slope, and it would mainly come from ANS intrinsic

KLD (eq. 4.1) and the code block size (eq. 7.6). The magnitude of the KLD due to the

latter can be appreciated comparing the Nt6_Stfg8_ANS7 prototype with block sizes

of 2048 and 16384 symbols (both with unlimited iterations). Note, however, that these

differences are not as big as the plot might suggest, given that the KLD is plotted on a

logarithmic scale. Additionally, notice that with a block size of 16384 symbols the coder

of this prototype achieves a practically null KLD.

The increase in the KLD observed for the lower entropy range is due to the use of the

suboptimal tables for the smaller θ̂q and p̂q (see the selection methodology in section

7.5). The lower the average entropy, the more probable it is to use these tables, then the

KLD increases. Although the use of these suboptimal tables increases the coder KLD,

including these smaller distribution parameters more than compensates, then, the final

effect is a reduction in the overall KLD.

As the entropy increases, the KLD can increase for several reasons: the limitation

of the geometrical coder iterations (eq. 7.8), the increase of C as θ̂q increases (which in

turn increases the intrinsic ANS KLD as indicated by eq. 4.1) and the increased average

85

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

0 1 2 3 4 5 6 7
Estimated entropy

10 4

10 3

10 2

10 1

100

KL
D

Nt4_Stcg5_ANS4
Nt5_Stcg6_ANS5
Nt5_Stfg6_ANS5
Nt6_Stcg7_ANS6
Nt6_Stcg8_ANS7
Nt6_Stfg8_ANS7
Nt6_Stfg8_ANS7¹
Nt6_Stfg8_ANS7²

Figure 7.10: KL Divergence due to coder inefficiencies as a function of the estimated
entropy for dataset images and NEAR ∈ [0..20]. Computed as the average bits produced
by the coder minus the average entropy, assuming the quantized estimations of the
distribution parameters are optimal.
Default configuration: NI=7 and code block size = 2048 symbols.
1 Configuration with unlimited iterations
2 Configuration with unlimited iterations and code block size = 16384 symbols

iterations (which make the coder incur in the ANS intrinsic KLD several times). The

effect of NI can be observed comparing the points corresponding to the Nt6_Stfg8_ANS7

prototype with NI = 7 and with unlimited iterations. For low and medium entropy, the

two configurations result in approximately the same KLD, while for higher ones the KLD

due to the escape mechanism can be appreciated. To understand the magnitude of the

effect of increasing C as θ̂q increases, the highest entropy cases were compressed with a

modified Nt6_Stfg8_ANS7 prototype, setting max(C)= 4. The resulting KLD (not shown

in the figure) went back to the (0.001- 0.008) range when the iterations were not limited.

For this modified configuration, the average iterations increased (nearly doubled).

7.6.3 Software Performance Comparison

In this section, we compare LOCO-ANS in terms of compression ratio and encoder/de-

coder speed against well-known and recently developed lossless and near-lossless codecs:

86

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

• JPEG-LS (implementation: [128]).

• CALIC (implementation: [129]).

• JPEG2000 Part 1 [130] (implementation: [131]) and JPEG2000 Part 15 High-

throughput JPEG2000 (HTJ2K) [132] (implementation: [133]) (none of them pro-

vide near-lossless compression).

• WebP [134] (implementation: [135]).

• WebP2, currently under development (implementation: [136]).

• JPEG-XL [137, 138] (although not yet a standard, it is currently under evaluation

and the reference software is available [139]).

The tests were carried out in a Raspberry Pi 3 Model B with 1 GB of RAM. This

platform was chosen because it better resembles, compared to an x86_64 system, the

memory and compute limitations that embedded systems tend to face, which is our

target. In addition, it is a widespread platform, facilitating the reproducibility of the

results here presented.

All tests were run using a single thread, given that most codec implementations

do not have multi-threading capabilities, although they could support it. For example,

images could be divided in tiles, like JPEG-XL or JPEG2000 can do. In the case of JPEG-

LS, although this is not part of the standard, this could be easily implemented, like in

the hardware implementation presented in [40]. This tiling, when performed dividing

the image vertically, not only allows for a higher level of parallelism but also tends to

benefit JPEG-LS statistical modeling, thus increasing compression (demonstrated by the

tests).

Additionally, to show other possible speed-compression trade-offs, a version of LOCO-

ANS using four gradients to define the context, as in the original LOCO-I and the

standard extension, was also included. Finally, the configurations used for the codecs

can be seen in table 7.7.

7.6.3.1 Dataset

Given the large memory requirements of JPEG-XL (even for the lower effort setting

"-s0"), it was not possible to process the largest images of the Rawzor dataset using

this codec in the chosen platform. For this reason and to obtain more robust results,

these tests were run using gray versions of a subset of the Challenge on Learned Image

Compression (CLIC) [140] training dataset (this subset was used in the evaluation of

87

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

Table 7.7: Codec configurations used in the tests

Codec configurations
LOCO-ANS (conf. 1) Nt6_Stcg8_ANS7, 3 grad 1

LOCO-ANS (conf. 2) Nt6_Stfg8_ANS7, 4 grad 1

CALIC Arithmetic coder
JPEG2000 lossless

HTJ2K lossless
WebP effort level(-z) =[1,2] 2

WebP2 effort level(-effort)=[1] 2

JPEG-XL num_threads=0, modular, speed(-s)=[2..5] 2

1 NI was set to 7, tables for p ∈ [0,0.5] and a block size of 16384
2 Other effort modes were supported, but they do not compare favorably against

the presented configurations of the same codec or encoder times were well over
an order of magnitude slower than LOCO-ANS

JPEG-XL lossless compression, and it is available in [141]). It contains 303 2048x1320

photographic images and was not used during the development of LOCO-ANS, so it is

also good for validation purposes.

7.6.3.2 Analysis

2.0 2.5 3.0 3.5 4.0

BPP

10 1

100

101

0

20
2

0
2

0
2

012

012

012 012

2 1 0

0

0

2 1

0

2 1

0

JPEG-XL (s2)

JPEG-XL (s3)

JPEG-XL (s4)

JPEG-XL (s5)

CALIC

JPEG-LS

LOCO-ANS (1)

LOCO-ANS (2)

WebP2 (effort_1)

HTJ2K

JPEG2000

WebP (z2)

WebP (z3)

E
n
c
o
d
e
r

p
p
s
 (

M
iP

ix
e
ls

/s
)

Figure 7.11: Average encoder MiPixels/s versus average bpp for software implementations
of different codecs. Numbers next to each point indicate the corresponding peak error.
Pareto frontier is drawn with a solid line for error tolerances ∈ {0,1,2}

The results for encoder and decoder procedures are presented in figs. 7.11 and 7.12,

respectively. In addition, table 7.8 summarizes the results for lossless compression,

where entries are sorted by bpp. As expected for software implementations, the increased

compression obtained by LOCO-ANS comes at the cost of a reduction in the encoder and

decoder speeds compared to JPEG-LS. Specifically, the tests show a 32% and 46% encoder

88

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

2.0 2.5 3.0 3.5 4.0
100

101

0 2

02
02
0

2 0
12

01
2

012
012

2 1 0

0

0

2 1 02 1 0

JPEG-XL (s2)

JPEG-XL (s3)

JPEG-XL (s4)

JPEG-XL (s5)

CALIC

JPEG-LS

LOCO-ANS (1)

LOCO-ANS (2)

WebP2 (effort_1)

HTJ2K

JPEG2000

WebP (z2)

WebP (z3)

BPP

D
e
c
o
d

e
r

p
p

s
 (

M
iP

ix
e
ls

/s
)

Figure 7.12: Average decoder MiPixels/s versus average bpp for software implementations
of different codecs. Numbers next to each point indicate the corresponding peak error.
Pareto frontier is drawn with a solid line for error tolerances ∈ {0,1,2}

speed reduction and a 42% and 54% decoder speed reduction for lossless compression. As

the peak error increases, both implementations run-times tend to decrease, although the

relative comparison favors JPEG-LS, which can be explained by the incremented use of

the run-length coder.

Despite this decrease in performance, given the codecs utilized in this comparison,

both of the LOCO-ANS configurations presented are on the Pareto frontier [142] of

encoder speed versus bpp and decoder speed versus bpp. When it comes to near-lossless

Table 7.8: Encoder/Decoder speed comparison for lossless compression

Codec bpp Encoder BW (MiPx/s) Decoder BW (MiPx/s)
JPEG-XL (s5) 3.62 0.20 1 1.58 2

JPEG-XL (s4) 3.62 0.25 1 1.58 2

CALIC 3.63 1.65 1 1.58
LOCO-ANS (2) 3.65 4.96 1 4.81 2

JPEG-XL (s3) 3.68 1.87 2.10
LOCO-ANS (1) 3.69 6.26 1 5.94 2

JPEG-LS 3.73 9.21 1 10.66 2

WebP2 (effort 1) 3.79 0.11 1.44
WebP (z2) 3.81 0.46 13.48 2

JPEG2000 3.82 1.76 2.13
WebP (z1) 3.88 0.65 13.59 2

JPEG-XL (s2) 3.98 3.22 4.00
HTJ2K 4.08 8.40 14.52 2

1 No other codec simultaneously encodes faster and achieves a lower bpp (in Pareto
frontier).

2 No other codec simultaneously decodes faster and achieves a lower bpp (in Pareto
frontier).

89

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

compression, most codecs do not perform so well. Particularly, in the case of JPEG-XL,

the near-lossless quantization is done as a preprocessing step that reduces the cardinality

of the prediction errors, not the range of these errors, and then, it is up to the entropy

encoder to detect and exploit the reduced error set cardinality. For this reason, the faster

compression modes not only fail to increase compression, but they decrease it. Conversely,

LOCO-ANS excels in this type of compression achieving the highest compression ratios

for a given peak error, in the presented order of magnitude of encoder speed, and it is

only surpassed in encoder speed by JPEG-LS and in decoder speed by JPEG-LS and

WebP.

Lastly, to show that tilling does not worsen LOCO-ANS performance and given

that the prototype supports it, tests were also run dividing the images in 4 columns

(number of cores available in the Raspberry Pi platform). As a result, 3.67 and 3.64 bpp

(2.3% improvement compared to JPEG-LS) were obtained for configurations 1 and 2,

respectively, compared to 3.69 and 3.65 bpp without tilling.

7.6.3.3 Comparison with Other ANS-based Approaches

Although JPEG-XL entropy encoder is also based on ANS and the implementation

used in the tests is highly optimized, it runs slower (in general several times) than

LOCO-ANS, even using low-effort modes. Moreover, CALIC compares favorably against

it.

JPEG-XL uses a modified version of Range ANS (rANS) to encode symbols given

clustered histograms. To perform this operation, all prediction residuals are computed

(that is, for the complete image) and then histograms for each context are generated. In

general, these contexts are dynamically determined (obtained at run-time). After that,

histograms can be clustered (context merging) and the final histograms are signaled

to the decoder. Look-up tables to speed up rANS (with a not trivial initialization) are

generated for each of these histograms (these tables are called Alias Tables, not to be

confused with tANS tables). Finally, residuals (or more generally, tokens), after going

through other numerical manipulations, are coded with rANS using a 32bit state. ANS

code blocks coincide with a tile (256x256 pixels).

To our understanding, JPEG-XL aims to be a general-purpose codec, although ori-

ented to web image delivery [143]. In this scenario, it is reasonable to allow higher

complexity (higher computation time and/or computation/memory resources), particu-

larly on the encoder side. This encoder vs decoder speed trade-off is also observed in

WebP and WebP2. However, the aim of our work was to improve image compression in sit-

90

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

uations with harder constraints (low resources, low-energy budget, high throughput). It

is easy to observe that, given their resource requirements, many of the sub-processes that

JPEG-XL performs to code the generated tokens are not well suited for high-performance

hardware nor embedded software implementation. This is also the case for other pro-

cedures that are part of the JPEG-XL codec, for example, those that require full image

scanning.

In contrast, LOCO-ANS approach, based on static tANS using parametric distribu-

tions (instead of rANS using clustered histograms) leads to higher throughput (illustrated

by figs. 7.11 and 7.12). Additionally, it is more suitable for a hardware implementation,

given that buffering is limited, simple arithmetic is used and tables are generated at

compile time, which allows both software and hardware optimizations, particularly in

the latter case.

7.6.4 Discussion

Given the obtained results, it is observed that the proposed TSG ANS coder is

particularly well suited for sources with an entropy in the (.15,4) range, approximately.

Even, the 4-bit ANS state configuration achieves a great efficiency with low memory

resources, and it is capable of high-throughput operation. Considering the strengths of

the GPO2 and the run-length coders, it would be interesting to combine these with the

proposed coder. The resulting system may achieve the best complexity-efficiency trade-off

for a vast range of applications.

Additionally, it is worth noticing that the TSG coder (or just the geometrical coder)

could also be used in other applications, such as audio compression. For example, in

the case of MPEG-4 ALS [144] or FLAC [145], the prediction error distribution could be

modeled as a two-sided geometric.

91

CHAPTER 7. LOCO-ANS IMAGE CODEC: ALGORITHM

7.7 Conclusion

Improved lossless and near-lossless compression was achieved through a series of

modifications of the JPEG-LS standard. Particularly, the development of an ANS-based

coder for two-sided geometric sources provides highly efficient and low complexity coding.

Additionally, this coder enabled the introduction of more precise distribution parameter

procedures and to quantize more effectively the gradient defined context space.

The system as a whole admits a wide range of configurations, providing the capability

to obtain different trade-offs between coding efficiency, resources and throughput, which

allows it to be used in a variety of applications. A prototype available to the community

was implemented and a set of experiments were run with different configurations to

explore the design space. These configurations range from a very low resource instance

that outperforms JPEG-LS in near-lossless compression to an instance using 64 tables

with a 7-bit ANS state that closely approaches the estimated entropy.

When compared to JPEG-LS baseline compressing photographic images, LOCO-

ANS, using the same context size, can achieve up to a 1.6%,6% and 37.6% mean bpp

improvement for an error tolerance set to 0,1 and 10, respectively.

Allowing an increase in the context size and image tiling, a 2.3% lower bpp is obtained

for lossless compression. Moreover, LOCO-ANS approaches lossless compression rates

of more complex encoders, even surpassing them in near-lossless compression, and

obtaining a much faster encoder speed.

In appendix B, examples of compressed images of the used datasets can be found.

92

C
H

A
P

T
E

R

8
LOCO-ANS IMAGE CODEC: HARDWARE

IMPLEMENTATION

I
n this chapter, we present and evaluate a High-Level Synthesis implementation
for the LOCO-ANS lossless and near-lossless image compressor, which is based
on JPEG-LS standard. The design is implemented in two FPGA generations,
evaluating its performance for different codec configurations. Compared to the

single thread LOCO-ANS software implementation running in a 1.2GHz Raspberry Pi
3B, each hardware lane achieves 6.5 times higher throughput, even when implemented
in an older and cost-optimized chip like the Zynq 7020. Results are also presented for
a lossless only version, which achieves a lower footprint and approximately 50% higher
performance than the version that supports both lossless and near-lossless. Moreover, the
implemented system is faster and achieves higher compression than the best previously
available near-lossless JPEG-LS hardware implementation. These results show that the
algorithm is very suitable for hardware implementation.

This chapter is based on the work published in [21]: Alonso, T., Sutter, G.,& López de Vergara, J. E.
(2021). An FPGA-Based LOCO-ANS Implementation for Lossless and Near-Lossless Image Compression
Using High-Level Synthesis. Electronics, 10(23), 2934.

93

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

8.1 Introduction

The final goal of the algorithmic development, presented in chapter 7, was to ob-

tain an image codec that surpassed the compression ratios of JPEG-LS while keeping

its good performance in hardware. For this reason, and given that the transmission

side is normally the one that faces more stringent conditions, and thus requiring hard-

ware implementations, a hardware LOCO-ANS encoder was developed. The system has

completely designed using High-Level Synthesis, allowing a faster development. The

architecture was analyzed and implementation results for two FPGA technologies and

for several encoder configurations were obtained to determine the performance and

understand the system bottlenecks. The complete set of sources required to reproduce

the systems here presented are open to the community through a publicly available

repository [126].

8.2 Encoder Architecture

The block diagram in fig. 8.1 shows the main modules composing the system: The

Pixel Decorrelator, St Quantizer, and TSG coder. Each of these modules is implemented

in C/C++ with compiler pragmas and transformed to RTL code using Vitis HLS.

The pixel decorrelator takes pixels as input and outputs a stream of symbols (y, z)

with metadata (p̂q, t,St). The last two variables are further processed by the St quantizer

to generate the θ̂q geometric distribution parameter, finally obtaining the TSG symbols

(y, z) with their distribution parameters (p̂q, θ̂q). The TSG coder transforms the y and z
streams in blocks of bits and, finally, the File Writer output these streams and header

information, issuing the appropriate DMA commands.

The TSG coder may need several cycles to code a symbol, but it is capable of much

faster operation than the Pixel Decorrelator, so to increase the encoder throughput, the

former module runs at a higher clock frequency. FIFO memories are inserted between

these modules to move data from one clock domain to the other.

Subsections below explain in more detail each module.

94

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

Pixel
Decorrelator

St
Quantizer TSG coder File Writer

Output
Driver

image
samples

Figure 8.1: LOCO-ANS hardware high-level block diagram. In blue, modules running at
the lower frequency, and in red, modules running at the higher frequency.

8.2.1 Pixel Decorrelation

Given the sequential nature of the pixel decorrelation algorithm, it is mainly imple-

mented by a single pipelined module, including a single line row buffer. It consists of

an initialization phase and the pixel loop. In the initialization phase, the first pixel is

read (which is not coded but included in the bitstream directly), context memories and

tables used in the pixel loop are initialized according to the NEAR parameter setting.

The operation takes about 512 clock cycles to complete. This could be optimized in many

ways, such as computing and storing several memory entries in a single cycle, or avoiding

the re-computation of tables when NEAR does not change. Additionally, ping-pong

memories could be used to achieve zero-throughput penalty, initializing these memories

in a previous pipeline stage, as done in [40]). However, the HLS compiler did not support

some constructions required to create that architecture. Although workarounds exist,

the potential benefit for HD and higher resolution images is negligible (less than 0.056%

performance improvement in the best case and assuming the same clock frequency is

achieved). What is more, particularly in high congestion implementations (i.e. FPGAs

with high usage ratio), this could even reduce the actual throughput, given that the

extra logic and use of additional memory ports can imply frequency penalties. For these

reasons, and given that other works have presented optimized architectures for this part

of the algorithm (changes to the JPEG-LS algorithm do not have important architectural

implications), these initialization time optimizations were not implemented.

Alg. 8.1 describes the pixel loop. This code structure allowed a deep pipeline (shown

in fig. 8.2), which reads the row buffer, computes the quantized gradients g1 and g2,

which do not depend on the previous pixel (after quantization), and starts to compute the

context ID before the previous pixel quantization is finished. To obtain the context ID

and sign, the value Q(g1) ·81+Q(g2) ·9+Q(g3) is computed, where only the g3 gradient

uses the previous pixel. Then, Q(g1) ·81+Q(g2) ·9 can be computed in an earlier stage,

which is what the pipeline does. Observe that the gradients order in the equation was

chosen such that the dependency between loop iterations is eased, as the component

95

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

Algorithm 8.1: Pixel loop algorithm structure
1: q_pixel ← f irst_px
2: for i ∈ [1, image_size) do
3: #pragma HLS PIPELINE II=2 // The lossless optimized version uses II=1

// Data stored in the row buffer does not establish dependencies
4: #pragma HLS DEPENDENCE variable=row_buffer intra false
5: #pragma HLS DEPENDENCE variable=row_buffer inter false
6: Store q_pixel in row buf f er
7: Read new pixel
8: Compute f ixed prediction, context id, and sign
9: Get context bias and statistics

10: Correct prediction and compute error
11: Per f orm error quantization and modulo reduction
12: Send symbol with metadata to the output
13: q_pixel ← Reconstruct the pixel
14: U pdate context statistics
15: end for

requiring g3 (which cannot be computed earlier) is not multiplied by any factor.

Additionally, to improve the performance (reducing the II), the updated context data

is forwarded to previous stages when two consecutive pixels have the same context.

Originally, this optimization was done explicitly in the code and using pragmas (to

inform the compiler of the false dependency), but newer versions of the HLS compiler

perform this optimization automatically.

Since the HLS compiler handles the scheduling of the operations, the number of

pipeline stages may change depending on the target frequency and FPGA. For the

tested technologies, aiming at the maximum performance, the pixel loop operations were

scheduled in five stages.

Generate row
buffer address

Calc.:
g1,g2
Q(g1)*81+Q(g2)*9

Update row buffer
Calc.: fix prediction
Get context id
Address context
mem.

Correct prediction
Calc. error
Correct error sign
Address
quantization LUTs

Output new symbol
Reconstruct pixel
(forward to stage 3)
Update context
(forward to stage 4)

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 8.2: Pixel decorrelator pipeline.

96

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

8.2.1.1 Obtaining the Distribution Parameter θ̂q

The decorrelator keeps for each context a register St =∑t
i=0 zi. The register and the

context counter t are then processed by the downstream module St Quantizer (fig. 8.1) to

obtain the quantized distribution parameter θ̂q. The implemented quantization proce-

dure is a generalization of the iterative method used in LOCO-I to obtain the k parameter

of the Golomb-power-of-2 coder [52] and it is described in detail in section 7.4.2. Alg. 8.2

shows the coarse-grained configuration of this quantization function.

Algorithm 8.2: Coarse grained θ quantization function (Qθ)
Require: St
Require: t
Ensure: θ̂q

1: #pragma HLS PIPELINE
2: θ̂q ← 0
3: for i ∈ [1, MAX_THET A_ID] do
4: if (St > (t << (i−1))) then
5: θ̂q ← i
6: end if
7: end for

Although this procedure could have been done within the decorrelator, it was decided

to keep it separated, to ease the scheduler job and ensure this operation extended the

pipeline without affecting the pixel loop performance. This operation can be compute-

intensive, but as there are no dependencies among consecutive symbols, the module can

be deeply pipelined, achieving high throughput.

8.2.1.2 Near-lossless Quantization and Error Reduction

To handle the quantization processes, a set of tables1 was designed to increase the

system performance, taking into account that even small FPGA have plenty of memory

blocks to implement these tables. The alg. 8.3 describes the error quantization (lines 1-5),

modulo reduction (lines 6-10), and re-scale (line 11) processes.

As suggested in [52], the error quantization can be easily implemented using a table.

However, here it was decided to store in the table the result after the modulo reduction

logic, as the memory resources are reduced, and it helps to speed up the context update,

which is one of the logical paths that limits the maximum frequency. A second table

1The term look-up table (LUT) is usually used to refer to these tables, but here it is avoided in order
not to confuse it with the FPGA resource also denominated LUT

97

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

Algorithm 8.3: Error quantization and modulo reduction
Require: ϵ // Input error
Ensure: ϵq // Output symbol
Ensure: ϵre // Re-scaled error, ysed to update context bias

// Uniform quantization
1: if ϵ> 0 then
2: ϵq ← (NEAR+ϵ)/(2∗NEAR+1)
3: else
4: ϵq ←−(NEAR−ϵ)/(2∗NEAR+1)
5: end if

// Reduction modulo α = f(NEAR, pixel depth)
6: if ϵq < MIN_ERROR then
7: ϵq ← ϵq +α

8: else if ϵq > MAX_ERROR then
9: ϵq−← ϵq −α

10: end if
11: ϵre ← ϵq ∗ (2∗NEAR+1)

contains the re-scaled error (ϵre), to avoid the general integer multiplication logic and

also to ease the sequential context dependency.

Additionally, a third table is used, in this case, to speed up the pixel reconstruction

process, which is the other important logical path that could limit the maximum fre-

quency. There are several ways to perform this, as is shown in fig. 8.3. To our knowledge,

previous implementations of the LOCO/JPEG-LS encoder reconstruct the pixel starting

from the quantized prediction error (as indicated in the ITU recommendation [37]) or

from the re-scaled error (e.g. [128]). Instead, we use the value of the exact prediction

error (only available on the encoder), to get the reconstructed pixel. Given a NEAR
value, each integer will have a quantization error, which can be pre-computed and stored

in a table. Then, the exact prediction error (before the sign correction) addresses the

table that provides the quantization error, and it is then added to the original value of the

pixel. As it can be appreciated in fig. 8.3, using this method greatly simplifies the compu-

tation and eases the path. This is one of the key ideas that enabled our high-throughput

implementation.

These tables could be implemented as ROMs, supporting a small set of NEAR values,

or implemented by RAMs, which are filled depending on the NEAR value currently

needed. In the presented design, the latter option was chosen, giving the system the

flexibility to use any practical NEAR value, using 3 tables with 2pixel depth+1 entries

each. The time required to fill these memories can be masked, as stated before. Although

98

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

Prediction Error

Multiply by sign

Uniform Quantization

Modulo Reduction

Reconstructed Px

x (2 x near + 1)

Get Quantization
Error

+ original px+ prediction

Detect and Correct
Modulo Reduction

Output symbol

+ prediction

Clamp

Multiply by sign Multiply by sign

x (2 x near + 1)

Re-scaled error
(for bias update)

Quantization
Error

Quantized
Prediction Error

(and context update)

Figure 8.3: Quantization processes. The operations performed by tables are indicated
with red ellipses.

the uniform quantization would require general integer division, the tables are filled

with simpler logic. It is easy to see that, if sweeping the error range sequentially (either

increasing or decreasing by 1) and starting from zero, almost trivial logic is required to

keep track of the division and remainder.

If a single clock and one edge of the clock are used, the minimum I I for the system

will be 2. To compute the prediction, the context memory is read (memory latency >= 1),

then the prediction error is obtained, which is needed to address the quantization tables

(also implemented with memories with a latency >= 1). The result of the quantization

process is used to address the next pixel context, producing a minimum I I = 2.

Within a module, Vitis HLS does not allow the designs with multiple clocks or using

different clock edges. However, in this case, a great improvement is not expected from

the implementation of these techniques, they will imply a much greater development

99

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

time and the result will tend to be more technology-dependent (given that the FPGA

fabric architecture and relative propagation times vary, affecting the pipeline tuning).

8.2.1.3 Decorrelator Optimized for Lossless Compression

A decorrelator optimized just for lossless compression operation was also imple-

mented. The removal of the quantization logic, plus the logic simplification that arises

from using only NEAR = 0, allows going from an I I = 2 to I I = 1 with approximately

a 25% frequency penalty in the tested technologies. That is about a 50% throughput

increase (see section 8.3). In this case, this pixel loop is implemented with a 4-stage

pipeline and the frequency bottleneck is established by the context update.

An interesting fact about this optimization is that going from the general decorrelator

to testing on hardware, a first lossless only version took less than one hour. Such fast

development was possible given that just a few lines of C++ code needed to be modified.

These simple modifications led to significant changes in the scheduling of the pipeline,

resulting in the stated performance, which would have been much more time-consuming

using HDL languages.

8.2.2 TSG Coder

Subsymbol
Generator ANS Coder Output Stack Input Buffer

Subsymbol
Generator ANS Coder Output Stack Input Buffer

tANS
Z

ROM

tANS
Y

ROM

Figure 8.4: High-level block diagram of the double lane TSG coder.

Fig. 8.4 shows the block diagram of the double lane TSG coder, which allows sharing

the tANS ROMs without clock cycle penalties, as double port memories are used and

each lane requires one port. This module can receive the output of two independent

Pixel Decorrelators and process them in parallel. In this way, it allows the compression

of images in vertical tiles, which improves compression for HD and higher resolution

images (see section 7.6.3).

100

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

The system was designed in a 2-level hierarchy because the basic data element

changes as we go downstream. The Input Buffer works with blocks of symbols, while

the Subsymbol Generator works at the symbol level, the ANS Coder at the sub-symbol

level, and the Output Stack with blocks of packed bits. This modularization allows

easily choosing the coding technique better suited for each module. The modules shown

in fig. 8.4 are instantiated in a dataflow region synchronized only by the input and

output interfaces, such that each module can run independently. In Vitis HLS, this is

accomplished with the following pragmas:

#pragma HLS INTERFACE ap_ctrl_none port=return

#pragma HLS DATAFLOW disable_start_propagation

8.2.2.1 Input Buffers

Write
Block

Buffer
0

Buffer
1

n Read
Block

 Block m Block m-1
m.N (m+1).N-1 (m-1).N m.N-1 n+1 n+2

Figure 8.5: Input Buffer block diagram, showing its operation for block size N.

The main function of the Input Buffer is to invert the symbol order to make the

adaptive coding with ANS practical (complex methods would be required otherwise).

However, to avoid the use of large memories, this module creates blocks of symbols, and

the order within each block is inverted (see fig. 8.5). The write and read pipelined func-

tions are instantiated in a dataflow region using a ping-pong buffer, given the required

non-sequential memory accesses. However, it is noted that there is an alternative with a

memory of one block, which comes at the cost of slightly more complex logic.

101

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

8.2.2.2 Subsymbol Generator

Get Z

Metadata
Z

Decompose mod(z,C(θq))
Send escape?

Decomposed in
n subsymbols

Figure 8.6: Subsymbol Generator block diagram and data transformations within it.

Fig. 8.6 depicts the Subsymbol Generator and how data is transformed as it goes

downstream. Its main function is to decompose z in a variable-length sequence of sub-

symbols z0, .., zn, which is one of the main processes of the Geometric coder.

For coding efficiency reasons, the cardinality of the symbol source modeled by the

z ANS ROM varies for each distribution parameter θq. Then, for a given θq tANS will

model a distribution of the symbols [0..C(θq)]. For this reason, z needs to be represented

in terms of these symbols, so it is decomposed as follows:
∑n

i=0 zi = z, where the first

sub-symbol z0 is equal to mod(z,C(θq)) and all the rest are set to C(θq). In this way, to

retrieve z, the decoder just needs to sum sub-symbols until it finds one (first encoded, but

last decoded) that is different from C(θq). As C(θq) is always an integer power of 2, this

process is simple. Finally, if it is detected that the length of this sequence will be greater

than a design parameter NI (which determines the maximum number of geometric

coder iterations) the sub-symbol sequence represents an escape symbol. Following this

sequence, the original z is inserted in the bitstream.

As described in section 7.3.2, this process is used to reduce the cardinality tANS

needs to handle, which translates into significantly lower memory requirements and

higher coding efficiency while keeping simple operation.

As it decomposes z and serializes the result with y (in the coupled coders version),

this module establishes the TSG coder bottleneck in terms of symbols per clock cycle

(not the frequency bottleneck, i.e., contains the critical path). Because of this, it was

fundamental to optimize this module to be able to output a new sub-symbol every clock

cycle. Pipelining the modules was not sufficient to accomplish this goal. As shown in

fig. 8.6, the z sub-symbol generation process was split into two modules, one to get the

required metadata and another one to decompose the symbol. Also, the Z Decompose

module was not described as a loop, as one normally would specify this procedure,

102

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

but instead, it was coded as a pipelined state machine, which allowed reaching the

desired performance. Finally, all these modules are instantiated in a dataflow region

synchronized only by the input and output interfaces.

8.2.2.3 ANS coder

tANS
code

tANS Y
ROM

tANS Z
ROM

code
nbits

ANS State

Serialize
Last State

code
nbits Pack bits

bytes

Figure 8.7: tANS coder block diagram showing the transformation of sub-symbols into
packed bytes.

As shown in fig. 8.7, the ANS coder is composed of three modules. For each sub-

symbol, the first one chooses the tANS table according to the symbol type (zi or y) and

the distribution parameter. This table is then used to obtain the variable-length code for

the sub-symbol. Thus, the module implements the Bernoulli Coder and the remaining

process of the Geometric Coder. However, they can be easily split, resulting in a simpler

module and the ROM memories would have weaker placement and routing constraints.

The module also accepts bypass symbols, which are used to insert z after the escape

symbol. After the last sub-symbol is coded, the second module inserts the last ANS state

as a new code. The last module packs these codes into compact bytes.

The ANS coder can accept a new input in every clock cycle. This was accomplished

by instantiating the modules in a dataflow region synchronized only by the input and

output interfaces and pipelining each of them with an II=1. This II was achieved by the

modularization of the process and by describing all three modules as state machines.

8.2.2.4 Output Stack

Finally, the Output Stack is in charge of reversing the order of the byte stream of

each block of symbols. For this, it uses a structure similar to the one employed in the

Input Buffer.

103

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

8.2.2.5 Increasing Coder Performance

Independent component coders As mentioned before, if y and z ANS coders (Bernoulli

and Geometric, resp.) are independent, the coder throughput would be increased by a

(î+1)/ î factor. As shown in section 7.6.1, î tends to be around 1.3 for lossless coding,

which is the worst case. Then, applying this value will result in a 1.77 times faster coder.

What is more, given that z and y coders will be decoupled and almost no additional

logic is required, it is expected that the maximum frequency would be at least the one

achieved for the coupled coders. To implement it, the Subsymbol Generator should not

serialize z and y, the tANS coder should be split in two (each with one tANS ROM) and

the bit packer should merge the two code streams.

Decreasing the maximum iterations limit In addition, the worst-case performance,

as well as the maximum code extension, can be controlled using the maximum geometric

coder parameter NI. This is particularly important for implementations with limited

buffering.

8.3 Results

This section presents how the designs were tested, as well as the achieved frequencies

and resource footprints. Finally, throughput and latency analyses are provided.

8.3.1 Test Platform and Encoder Configurations Description

Zynq
Processing

System
LOCO ANS

Encoder

LOCO ANS
Encoder

Input
DMA

Output
DMA

Input
DMA

Output
DMA

tANS Y
ROM

tANS Z
ROM

AXI4

AXI4 Stream

Figure 8.8: Block diagram of the test system.

104

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

To conduct the hardware verification, the system depicted in fig. 8.8 was implemented

in two different Xilinx FPGA technologies, described in table 8.1: Zynq 7 (cost-optimized,

Artix 7 based FPGA fabric) and Zynq UltraScale+ MPSoC. For all implementations,

although not optimal in terms of resources, two input and output DMAs were used to

simplify the hardware, as the objective was to verify the encoders building a demonstrator,

not a fully optimized system. Images were sent from the Zynq µP running a Linux to

the FPGA fabric using the input DMAs, which accessed the main memory and fed the

encoder using an AXI4 stream interface. As the encoder generates the compressed binary,

the Output DMA stores it in the main memory. The evaluation of the coding system was

carried out for the configurations in table 8.2.

Table 8.1: Characteristics of target parts used in this work.

Board FPGA Speed1 Node LUT FF BRAM DSP URAM

Pynq Z2 Z-7020 -1 1 28 nm 53K 106K 140 220 -
ZCU104 XCZU7EV -2 2 16 nm 230K 460K 312 1728 96

1 Speed Grade. For the chosen targets, speed grade ranges from 1 to 3, where 1 is the slowest. In
general, we include the speed grade as part of the device name using the format: {version} -{Speed}

Table 8.2: Codec configurations used in the experiments

of ANS tables
Configuration Rel. bpp1 State bits NI2 Block size C range for θ for p

LOCO-ANS4 -0.5/-5.0 4 7 2048 1-8 11 8
LOCO-ANS6 -1.1/-5.4 6 7 2048 1-8 15 32
LOCO-ANS7 -1.2/-5.6 7 7 2048 1-8 16 32

These configurations correspond to the Nt4_Stcg5_ANS4, Nt6_Stcg7_ANS6, and Nt6_Stcg8_ANS7
prototypes tested in section 7.6.

1 Bits per pixel relative to JPEG-LS baseline for NEAR = 0 and NEAR = 1. Data from fig. 8.9.
2 NI: Number of Geometric coder iterations.

105

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

8.3.2 Implementation Results

Table 8.3: LOCO-ANS Encoder implementation metrics for a series of configurations and
target parts

Part Coder config Clk0/1 (MHz)1 LUT FF BRAM DSP

Z-7020 LOCO-ANS4 79.4 / 180.4 4580 4992 19.5 4
Z-7020 LOCO-ANS6 81.1 / 182.2 4832 5160 24.0 4
Z-7020 LOCO-ANS7 79.5 / 167.3 5095 5240 32.0 4

XCZU7EV LOCO-ANS4 248.3 / 502.2 6580 5954 19.0 4
XCZU7EV LOCO-ANS6 246.7 / 442.0 6867 6027 23.5 4
XCZU7EV LOCO-ANS7 234.1 / 395.1 6019 5780 33.5 4

Z-7020 LOCO-ANS4-LS 65.0 / 183.1 3979 4160 16.5 2
Z-7020 LOCO-ANS6-LS 64.3 / 186.0 4248 4298 21.0 2
Z-7020 LOCO-ANS7-LS 62.8 / 166.6 4572 4373 29.0 2

XCZU7EV LOCO-ANS4-LS 188.4 / 500.5 4706 4949 19.0 2
XCZU7EV LOCO-ANS6-LS 187.1 / 447.0 4515 4225 21.0 2
XCZU7EV LOCO-ANS7-LS 185.2 / 387.5 5415 5329 31.5 2

The top half features implementations that support near-lossless compression (including
lossless), and the bottom half, lossless-only compression (with -LS suffix).
All the presented implementations have 2 lanes and support up to 8K wide images per lane

1 Clk0 is the low-frequency clock used for the pixel decorrelation process, while clk1 is the
high-frequency clock used for the coder. See fig. 8.1.

For the tested implementations and both technologies, the critical path of the low-

frequency clock domain is, in general, in the pixel reconstruction loop for the near-lossless

encoders and within the update logic of the adaptive bias correction for the lossless

version.

In the case of the high-frequency clock domain, the slowest paths of these implementa-

tions tend to be in the TSG coder and the output DMA for the Zynq 7020 implementation.

Within the TSG coder, the critical path is, in general, either in the tANS logic (from the

tANS ROM new state data output to the tANS ROM address, the new state) or in the Z

Decompose module. In the case of the Zynq MPSoC, the slowest paths tend all to be in

the tANS logic.

8.3.3 Results Evaluation

Results are analyzed in terms of throughput and latency, which are of paramount

importance for real-time image and video applications.

106

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

8.3.3.1 Throughput

The near-lossless decorrelator critical path is in the pixel reconstruction loop, which is

the same procedure used in the standard. This fact supports that the changes introduced

by LOCO-ANS in the decorrelator do not limit the system performance. In the case of the

lossless decorrelator, the bias context update logic limits the frequency. This procedure is

the same as in the JPEG-LS standard extension, which requires an additional conditional

sign inversion compared to the baseline. This tends to worsen the critical path, but it is

a minor operation compared to the complete logical path. Although it achieves a slower

clock, the lossless decorrelator throughput is about 50% higher than the near-lossless

decorrelator, given that it achieves an II=1 instead of II=2.

The presented implementations represent a wide range of trade-offs between perfor-

mance, compression, and resources (also cost, considering technology dimension). All of

them have the Bernoulli and Geometric coders coupled, then their mean throughput will

be clk1/2.3 MPixel/s for photographic images, where clk1 refers to the clock shown in

table 8.3. In this way, for a given configuration and target, the TSG coder will have in

the mean between 83% and 98% higher throughput than the near-lossless decorrelators

for the Zynq 7020 implementations and between 47% and 76% for the Zynq MPSoC. In

the case of the lossless optimized decorrelators, this performance gap is reduced to (15%,

26%) and (-10%, 16%), for Zynq 7020 and Zynq MPSoC respectively. From the presented

implementations, just one of them shows a lower TSG coder throughput. In this case,

the increased compression ratio comes at the cost of not only higher memory utilization

but also a throughput penalty.

However, it is observed that many possible optimizations of the TSG coder exist, and

particularly of the tANS procedures. The Z ROM memory layout can be enhanced to

significantly reduce the memory usage, which could have a positive impact on the maxi-

mum frequency, as table 8.3 suggests. Also, alternative hardware tANS implementations

exist [57], which may allow a wider range of performance/resources trade-offs.

The obtained results support the hypothesis that the use of the proposed TSG coder,

which has a compression efficiency higher than the methods used in JPEG-LS, will

not reduce the encoder throughput. This is observed in the hardware tests, where the

encoder pixel rate is determined by the decorrelators when photographic images are

compressed, except the lower TSG coder throughput case (LOCO-ANS7-LS in the Zynq

MPSoC). As expected, this is not the case for randomly generated images, as the coder

requires larger code words for them, and then, it is the TSG coder the one that limits

throughput, particularly for small images and lossless compression.

107

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

8.3.3.2 Latency

The implemented decorrelator latency is determined by the initialization time plus

the pixel loop pipeline depth, which results in 512+6 = 518 cycles. For the lossless

optimized version, this is reduced to 365+4= 369 cycles. In the case of the low-end device

implementation (Zynq 7020), this results in 6.3 µs and 5.8 µs latency, respectively. As

mentioned before, if required, the initialization time could be reduced or even completely

masked, but these optimizations were not implemented due to compiler limitations, and

the fact that it was considered that the potential benefits were low.

It is a bit more complicated to obtain the TSG coder latency, as it is data-dependent,

and the coder works with blocks of symbols. To determine the marginal latency (delay

added by the coder), we consider the time starting when the last symbol of the block is

provided to the coder until the moment the coded block is completely out of the module.

Then, avoiding the smaller pipeline delay terms, the TSG coder latency can be computed

as:

(8.1) (1+ subsym(z)) ·BS+⌈bpp/out_word_size⌉ ·BS clock cycles

Here, BS is the block size, subsym(z) is the mean sub-symbols z is decomposed

into, bpp is the mean bits per pixel within the block and out_word_size is the size (in

bits) of each element of the output stack. The latency is dominated by two modules: the

Subsymbol Generator (first term of the equation) and the Output Stack (second term).

This is because, as mentioned before, the former creates a bottleneck given that for each

input it consumes it outputs several through a single port and the latter buffers the

whole block of output bytes and outputs it in the inverse order.

To obtain a pessimistic mean latency, we assume a low compression rate of 2 (bpp = 4).

The block size is set to 2048, the output stack word size to 8, and subsym(z)≈ i = 1.3 (as

determined in section 7.6.1). Then, for the Zynq 7020 implementation, the mean TSG

coder latency is 31.9 µs.

To estimate a practical upper bound to this latency, the following image compression

case was analyzed:

• Image pixels equal to BS = 2048. In this way, we maximize the block used while

keeping the pixel count low, so the decorrelator’s capability to learn the statistics

of the image is reduced.

• Pixels independently generated using a uniform distribution (worst-case scenario)

108

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

and the errors model hurts compression (the prior knowledge is wrong).

• Image shape: 64x32 (cols x rows). This shape allows visiting many contexts, and

then, the adaptation of the distribution parameter θ̂ will be slower, thus increasing

the resulting bpp.

• NEAR = 0 (lossless compression): which maximizes the error range and bpp.

From a set of 100 images generated in this way, we took the lower compression

instance, where bbp = 9.844 and subsym(z) = 6.31. This code expansion is because

the prior knowledge embedded in the algorithm (coming from the feature analysis of

photographic images, such as the correlation between pixels) is wrong in this case and,

as the image is small, it does not have enough samples to correct this. Moreover, given

that the range of the θ distribution parameter was determined with photographic images,

additional θ tables may be needed for these abnormally high entropy sources. Then, using

the presented formulas, we obtain 97.2 µs as a practical upper bound on the encoder

latency for the Zynq 7020 implementation running at 180 MHz.

Although the presented system establishes a trade-off between latency and compres-

sion, the achieved latency is remarkably low and suitable for many real-time systems.

Moreover, it is possible to tune this trade-off by modifying the implementation parame-

ters.

8.4 Discussion

In this section, we evaluate the results presented in the previous section as well as

analyze them taking prior works into consideration.

8.4.1 Related work

There exists a large set of compression methods that achieve a vast range of compression-

resources-throughput trade-offs, but not all have an amenable hardware implementation.

The use of dynamic structures tends to make logic slower and require a higher footprint.

For example, JPEG-XL [138] can achieve better lossless compression ratios than JPEG-

LS, but for that, it needs very flexible contexts and non-trivial logic is used to optimize

their histograms and the rANS tables to code for these functions. Also, the use of large

memories, like in the case of inter-frame video compression, tends to require external

memories, which also contributes significantly to the system power requirements. Given

109

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

the fact that this work targets real-time and, in general, highly constrained applications

with bounds on the errors generated by the compression system and considering the

already mentioned features of the JPEG-LS codec that makes it very suitable for these

applications, the discussion is focused on JPEG-LS-like codecs, analyzing the trade-offs

within this subregion of the metrics space.

Table 8.4 shows key metrics of the most relevant hardware and, for performance com-

parison, software codecs implementations. In this section, to provide clearer explanations,

we focus on the balanced LOCO-ANS6 configuration.

110

C
H

A
P

T
E

R
8.

L
O

C
O

-A
N

S
IM

A
G

E
C

O
D

E
C

:H
A

R
D

W
A

R
E

IM
P

L
E

M
E

N
T

A
T

IO
N

Table 8.4: Comparison with other codec implementations.

Implementation Tech PR 1 Rel. bpp 2 Lanes Mem. bits Area

LOCO-ANS6 3 Zynq 7020 -1 40.6 -1.1/-5.4 2 442.4K 1042 Slices+ 2 DSP
LOCO-ANS6 3 Zynq US+ -2 123.4 -1.1/-5.4 2 433.2K 718.5 CLB + 2 DSP

Chen et al. [40] 6 Virtex 6 25.8 +6.4/+13.0> 2 131.4K 4177 Slices
LOCO-ANS6 7 Rasp. 3B 4 6.3 -1.1/-5.4 1

Fast JPEG-LS [128]5 Rasp. 3B 4 9.2 0/0 1

LOCO-ANS6 LS 3 Zynq 7020 -1 64.3 -1.1/– 2 387.0K 639 Slices + 1 DSP
LOCO-ANS6 LS 3 Zynq US+ -2 187.1 -1.1/– 2 387.0K 548 CLB + 1 DSP

Daryanavard et al. [146] Stratix 2 155 ≈ 0/– 1 9.5K + 1 row 573 ALUT
Murat [41] 5 Virtex 7 -2 207.8 0/– 1 NR 567 Slices

Kau et al. [42] 6 Cyclone II 113.0 +1.1>/– 1 12.8K + 1 row 2184 LE

The top half features implementations that support near-lossless compression (including lossless), and the bottom half, lossless-only
compression.
Memory bits and area are normalized by the number of lanes.
NR: indicates information not reported
When available, the speed grade is shown to the right of the device name with the "-{speed grade}" format

1 PR: Pixel Rate in MPixel/s/lane
2 Bits per pixel percentage decrease (if negative) or increase (if positive) relative to JPEG-LS baseline for NEAR = 0 and NEAR = 1.

Data from fig. 8.9. Lossless-only compression implementations can only provide NEAR = 0
3 Hardware version of the developed codec. Source found in [126].
4 Software implementations running in Raspberry 3B, with a single thread.
5 Standard-compliant JPEG-LS implementation
6 12-bit image support
7 Software version of the developed codec. Source found in [147].

111

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

8.4.2 Comparison Considerations

Before diving into the analysis of the presented work in light of other works in the

area, we examine what we consider the most relevant aspects of the comparison process

itself that condition it.

8.4.2.1 Compression Trade-Offs

The fact that most of these implementations use different algorithms complicates

performance comparisons, particularly because the compression ratios for a given dataset

are not available. Then, it is hard to analyze the trade-offs that each design implies.

Although many works claim to be standard-compliant, some present a design that it is

not, as they apply several changes to the algorithms, in general, to simplify and/or speed

up the implementation. Not supporting the run-mode is a common one.

In [42], for example, we note they introduced the following changes without assessing

the implications:

• Not using run-mode.

• Not clamping the corrected prediction (see A.4.2 ITU-T.87). Because of this, the

range of the prediction error is increased and, given that JPEG-LS uses limited-

length Golomb codes, the binary code after the escape code needs to be increased

by 1 bit.

• Error modulo reduction is applied after context bias update (see A.4.5 ITU-T.87).

• Not including the error sign correction required by the bias update (see A.4.3

ITU-T.87). Not applying the error sign correction will have a negative impact on

compression, as it is needed to perform the context merge.

• Not limiting the maximum bias correction (see A.6.2 ITU-T.87).

To quantify the impact on the throughput of these changes, we utilize the Vitis

HLS implementation feature, which instantiates the resulting HDL module in the

target device, performs RTL synthesis followed by place and route (P&R). In this way, it

allows obtaining a good estimation of the performance of a module in a non-congested

implementation. With these changes, the tool reports that the lossless only decorrelator

achieves 100 MHz in the Zynq 7020 (a 55.5% performance increase).

Of course, provided that the trade-offs are understood, changes to the algorithms that

improve performance can be useful. For example, in [146] the bias update mechanism was

112

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

1.0 1.5 2.0 2.5 3.0
BPP

0

1

2

3
M

a
x
 e

rr
o
r

(N
E
A

R
)

JPEG-LS

LOCO-ANS4

LOCO-ANS6 (2 lanes)

LOCO-ANS6

LOCO-ANS7

JPEG-LS (no run mode)

JPEG-LS (no run mode) 64x32

Figure 8.9: Mean bits per pixel (bpp) obtained by JPEG-LS, JPEG-LS without run mode
and LOCO-ANS

replaced by a more precise one, which also allowed a much more feed-forward pipeline,

resulting in a fasted encoder at the cost of resources. However, in this case, it is not clear

whether the presented results are implementation ones or just RTL synthesis.

To better compare the encoders we run compression experiments where, apart from

LOCO-ANS and JPEG-LS, we test JPEG-LS without run mode 2 and JPEG-LS without

run mode with 32x64 tilling (max tile size supported by [40]). Given the number of

changes, and the fact that it probably has issues, we do not attempt to reproduce the algo-

rithm implemented in [42]. In this experiment, we used the photographic (non-artificial)

images of the 8-bit gray image dataset maintained by Rawzor 3 for NEAR ∈ [0..3]. The

results are presented in fig. 8.9. As it can be appreciated, even when dealing with pho-

tographic images, the run-length coder does have a noticeable impact on compression.

While LOCO-ANS6 output file size is 1.1%, 5.4%, 9.2%, and 13.4% smaller than JPEG-LS

output (for NEAR ∈ [0..3], respectively), removing the run-length coder increases it by

1.1%, 6.8%, 14.4%, and 22.3%.

Moreover, we can appreciate the effect of different tile sizes. Diving the image in 2

columns (LOCO-ANS6, 2 lanes), which can be compressed in parallel, improves JPEG-LS

by 1.4%, 5.9%, 9.9%, and 14.2% for NEAR ∈ [0..3]. We estimate that this improvement

comes from the intuition that, for wide images, image statistics vary slower when scan-

ning an image in columns, so the model is more accurate and then, higher compression

2This codec was obtained through the modification of the reference libjpeg codec (https://github.
com/thorfdbg/libjpeg)

3http://imagecompression.info/test_images/

113

https://github.com/thorfdbg/libjpeg
https://github.com/thorfdbg/libjpeg
http://imagecompression.info/test_images/

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

is achieved. However, using small tiles, and particularly reducing the height, the encoder

model does not have enough samples to learn the image statistics, so it does not make

good estimations. As a result, JPEG-LS with no run mode with 64x32 tiles worsens

compression even further, increasing the output file size by 6.4%, 13.0%, 20.3%, and

28.0%, compared to JPEG-LS.

8.4.2.2 Implementation Technology

Another problem is how to normalize speed, considering the target technology. In

the literature, we find implementations in a wide range of devices, using different

technologies. Even within the Xilinx FPGAs, it is hard to make performance comparisons

as both programmable logic fabric architecture and manufacture node change. Although

FPGAs have increased their maximum clock frequency with time, differences between

subsequent releases vary and greater variability can exist within a release, considering

different architectures and speed grades. Additionally, the clock frequency of feed-forward

compute engines (without data dependencies) was able to increase much more with the

introduction of more pipeline stages within FPGA hard blocks, like on-chip memories

and DSPs. However, codecs with good compression ratios, and particularly JPEG-LS,

have feedback loops that cannot be easily sped up.

For a subset of the Xilinx FPGAs used for the hardware codecs works, table 8.5 shows

key times involved in the context update logic, which determines the clock frequency of

most of these implementations. Observe the relative magnitude of the BRAM clock to

output propagation time (without output register) compared to other metrics and that it

consumes a significant part of the respective clock periods. Of course, the information in

this table is not enough to have an accurate model that would allow fair comparisons

between technologies, among other reasons, because routing tends to be a major con-

tributor to the critical paths in FPGA implementations and there is no clear way to

compare different fabric architectures. However, this data does seem to explain, at least

in part, the frequency jump from Zynq 7020 -1 to Zynq UltraScale+ -2 that we observe in

table 8.3.

To overcome this, [41] implemented their architecture, which seems to be standard

compliant, in a set of devices used by previous works. As a result, the presented design

compared favorably both in terms of speed and resources. For this reason, this work,

which achieves 207.8 MPixel/s in a Virtex 7 speed grade 2 with JPEG-LS compression

rate, is taken as a reference point to analyze the proposed lossless encoder results. In

the near-lossless case, we compare to [40], which is the closest to standard-compliant

114

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

Table 8.5: Example of FPGA propagation and set-up times relevant to the critical paths
present in most implementations for different technologies

FPGA part Info Propagation time Set up
Device Speed Vcc* Year Node LUT FF BRAM (no reg) BRAM

Spartan 3 1 -5 1.2 2003 90 nm 530 630 2090 430
Spartan 3 1 -4 1.2 2003 90 nm 610 720 2400 490
Virtex 6 2 -1 1 2009 40 nm 90 390 2080 620
Virtex 6 2 -3 1 2009 40 nm 60 290 1600 470
Artix 7 3 -1 1 2010 28 nm 130 530 2460 570

Zynq 7020 4 -1 1 2011 28 nm 130 530 2460 570
Virtex 7 5 -2 1 2010 28 nm 50 270 1800 420

Zynq US+ 6,7 -2 0.85 2015 16 nm 35-50 80 979-1020 283

Propagation and setup times values expressed in picoseconds
* Recommended or middle of range internal device voltage in Volts
1 https://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
2 https://www.xilinx.com/support/documentation/data_sheets/ds152.pdf
3 https://www.xilinx.com/support/documentation/data_sheets/ds181_Artix_7_Data_
Sheet.pdf

4 https://www.xilinx.com/support/documentation/data_sheets/ds191-XC7Z030-XC7Z045-
data-sheet.pdf

5 https://www.xilinx.com/support/documentation/data_sheets/ds183_Virtex_7_Data_
Sheet.pdf

6 https://www.xilinx.com/support/documentation/data_sheets/ds925-zynq-ultrascale-
plus.pdf

7 Gathered from a subset of paths from implementations.

and faster design in the literature.

8.4.3 Lossless-only Encoders Comparison

The Vitis HLS implementation feature was used to estimate the clock frequency that

LOCO-ANS6 would achieve in a Virtex 7 -2, used by the lossless reference architecture.

Although the resulting pipeline of the lossless only decorrelator is very similar, the

maximum frequency obtained after P&R is 120 MHz. The performance gap probably

comes from the lower level optimizations applied to the context bias update path, as

described in [148] and later improved in [41], which is the frequency bottleneck of our

and their implementations.

At first glance, for lossless, LOCO-ANS6 achieves a compressed image 1.1% smaller

than JPEG-LS (see section 8.4.2.1), at the cost of throughput. However, the TSG coder

can achieve 288 MHz in that device for the 6 ANS configuration. That is, 1.39 times faster

than the reference design. Thus, if the Bernoulli and Geometric coder are decoupled

115

https://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds152.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds181_Artix_7_Data_Sheet.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds181_Artix_7_Data_Sheet.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds191-XC7Z030-XC7Z045-data-sheet.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds191-XC7Z030-XC7Z045-data-sheet.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds183_Virtex_7_Data_Sheet.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds183_Virtex_7_Data_Sheet.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds925-zynq-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds925-zynq-ultrascale-plus.pdf

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

(independent ANS states) and an optimized decorrelator is used, the TSG coder would

not be the system bottleneck as, on average, it requires running 1.3 times faster.

In practice, we may find symbol sequences that increase the local mean of Geometric

coder iterations, particularly with very noisy images, but this can be countered by de-

creasing the iterations limit (also limiting code expansion) and increasing the cardinality

of the tables (decreasing mean iterations). Additionally, increasing the block size (which

also improves compression) and using buffering between the decorrelator and the coder

can mitigate the eventual performance throttling.

Finally, note that these positive results arise from comparing an HLS coder imple-

mentation with the best performing and carefully designed HDL decorrelator.

8.4.4 Near-lossless Encoders Comparison

To analyze our near-lossless implementation, [40] is used as a reference point. Given

that this JPEG-LS encoder does not support the run coder and has a maximum tile

size of 32x64, the achieved compression ratio is considerably lower than the JPEG-LS

standard. The negative effect of not supporting the run-length coder increases with

the NEAR parameter, as lower entropy symbols are generated and the Golomb coder

becomes less and less efficient, which can be appreciated in fig. 8.9. LOCO-ANS exhibits

the opposite behavior, as the TSG coder is very well suited for near-lossless compression.

As a result, LOCO-ANS6 (single lane) achieves 7.0%, 16.2%, 24.5%, and 32.4% smaller

output size compared to the near-lossless reference implementation. Using the two lanes

in parallel to compress an image widens further this compression gap to 7.4%, 16.7%,

25.1%, and 33.0%.

Regarding performance, the reference implementation decorrelator has two lanes

with an I I = 2 running at 51.68 MHz (25.84 MPixel/s/lane) in a Virtex 6-75t. These

lanes share a single Golomb encoder with I I = 1 running at the same frequency. This

performance is surpassed by our implementation, also with two decorrelator lanes with

I I = 2 running at 81.1 MHz (40.55 MPixel/s/lane for photographic images of medium and

above size) in a Zynq 7020. However, this reference implementation was designed for 12-

bit images, which worsens the two feedback paths that can limit the encoder performance.

For this reason, to better compare these two designs, we run an implementation with

Vitis HLS, configuring our decorrelator to work with 12-bit images. As the newer tool

set starting from Vivado (almost 10 years old) does not support devices prior to the 7

series, the low-end Zynq 7020 (with the lowest speed grade) was targeted as opposed to

the higher end Virtex 6. Table 8.5 gives a hint supporting that this decision favors the

116

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

reference implementation, as all Virtex 6 timings are noticeably smaller than the chosen

target. The Virtex 6 speed grade used in that work is not reported, but this consideration

is still applicable to the slowest Virtex 6 as it can be appreciated in the table. As a result,

the 12-bit HLS decorrelator achieved a clock of 67.3 MHz after P&R, still a 30% higher

throughput.

We attribute this performance increase to the alternative method used to reconstruct

the quantized pixel (section 8.2.1.2) and the fixed gradient quantizer. The reference

implementation uses the multiplication by inverse trick to implement the division and

applies a compensation scheme to correct the errors derived from this technique while

using 15 bits for the fractional part. For very deep pixels, this might be more efficient,

but in the proposed architecture, using a table, we achieve a greater simplification and

reduction of the critical path. For deeper pixels, larger tables would indeed be required.

But the needed type of memories are abundant (see table 8.1), and for this case, targeting

up to 12-bit images, only 8 36K on-chip memories are required (in the case of Xilinx

devices). The performance increase comes at the cost of memory resources, but as it can

be observed comparing table 8.1 and 8.3, this resource is not the limiting factor.

Again, as mentioned before, these positive results were obtained comparing an HLS

implementation with carefully designed HDL ones. Additionally, as noted in section 8.2,

further optimizations are possible. However, for the purpose of this work, the presented

module was optimal enough to analyze the LOCO-ANS encoder performance.

8.5 Conclusions

A hardware architecture of LOCO-ANS encoder was described, as well as implemen-

tation results presented, analyzed, and compared against prior works in the area of

near-lossless real-time hardware image compression.

The presented encoder excels in near-lossless compression, achieving the fastest pixel

rate so far with up to 40.5 MPixel/s/lane for a low-end Zynq 7020 device and 124.15

MPixel/s/lane for Zynq Ultrascale+ MPSoC. At the same time, a balanced configuration

of the presented encoder can achieve 7.4%, 16.7%, 25.1%, and 33.0% better compression

than the previous fastest JPEG-LS near-lossless implementation (for an error tolerance

in [0..3], respectively).

In this way, the presented encoder can cope with higher image resolutions or FPS

than previous near-lossless encoders while achieving higher compression and keeping

encoding latency below 100 µs. Thus, it is a great tool for real-time video compression

117

CHAPTER 8. LOCO-ANS IMAGE CODEC: HARDWARE IMPLEMENTATION

and, in general, for highly constrained scenarios like many remote sensing applications.

These results are in part possible thanks to a new method to perform the pixel

reconstruction in the pixel decorrelator and the high-performance Two-Sided Geometric

coder, based on tANS, which increases the coding efficiency. Moreover, as mentioned

throughout the article, it is noted that further optimizations of the presented system are

possible. Finally, experiment results support that if used with the fastest lossless opti-

mized JPEG-LS decorrelators in the state-of-the-art, this coder will improve compression

without limiting the encoder throughput.

118

C
H

A
P

T
E

R

9
100GBE FLOW METERING & DUAL READ-UPDATE

ARCHITECTURES

I
n this chapter, we address the problem of designing an architecture to efficiently
carry out two read-update processes dealing with significant propagation de-
lays associated with the memory system. The resulting architecture enabled to
completely offload a 100 GbE VPN volumetry application. Also, it allowed to im-

plement a TCP flow metering system which reduces the output packet rate and bandwidth
to 40.6% and 45%, resp, using a single core. Arrays of these, increase performance further.
In this way, we demonstrated the FPGA capabilities for processing 100GbE traffic with
state (as opposed to stateless, packet-wise processing) and also proposed an architecture to
improve performance of systems with the read-update pattern, specially when numerous
on-chip memory blocks need to be cascaded.

This chapter is based on the work published in [64]: Alonso, T., Ruiz, M., Sutter, G., López-Buedo,
S., & López de Vergara, J. E. (2019, April). Towards 100 GbE FPGA-Based Flow Monitoring. In 2019 X
Southern Conference on Programmable Logic (SPL), Buenos Aires, Argentina (pp. 9-16). © 2019, IEEE

119

CHAPTER 9. 100GBE FLOW METERING & DUAL READ-UPDATE ARCHITECTURES

9.1 Introduction

As exposed in chapter 5, implementing the processes that handle the flow table in an

FPGA flow metering offload system for 100GbE presents a real design challenge. The

system needs to be able to perform up to 148.8 million flow table updates per second,

while, at the same time, it has to scan the table looking for expired flows. On top of this,

large propagation delays from and to the on-chip memories expected given their required

size (in the MB order), and the processing logic can be complex due to, not only the entry

update operations, but also the need of handling multi-way caches.

Although small compared to commercial memory chips, FPGA on-chip memories

(SRAM based) provide very high bandwidth and very low latency (one to a few cycles).

In general, these memories come in tens to hundreds Kbit blocks distributed inside the

FPGA chip, which can be combined to create larger memories. However, this combination

comes with performance penalties due to additional routing delays. Also, there are limits

on how to combine the memories, and in some cases, involves the use of FPGA fabric

(slower than dedicated resources, and thus increasing performance penalties). In addition,

given that these modules are distributed, when using large memories, larger data routing

delays to and from the data operators are experienced. Therefore, careful study of the

most suitable architectures is fundamental to maximize the system performance.

9.2 Architectures for the Flow Metering Core

Table 9.1 introduces notation for relevant FPGA logic times, along with their magni-

tudes for a high-end (target) and a low-end technology. The focus is on Xilinx devices as

our target platforms are the VCU118 and Alveo200, but these values are, in general, in

the same order of magnitude for equivalent resources of similar process technology.

Notice that flip-flop setup and output propagation times are (in particular the later)

significantly smaller than those of memories. In Virtex US+ (target), memories are more

than 10 times slower. Also, as previously mentioned, when cascading 1 memories, delays

are increased. The additional output delays are approximately 240·(N−2)+140 and 180·
(N −1) (in ps), for BRAM and URAM, resp., where N is the number of cascaded memory

blocks. URAMs also present additional input delays, which are ≈ 165 · (N −2)+215 ps.

Because of these penalties, although BRAMs have half the output propagation time,

cascading them to URAM equivalent size, would end-up with larger delays. So, even for
1The term cascading is used given that in the target device these memories are not connected in a

balanced tree structure but in a lineal chain

120

CHAPTER 9. 100GBE FLOW METERING & DUAL READ-UPDATE ARCHITECTURES

Table 9.1: Notation used in the architectures analysis

Magnitude (ps) 4,5,6

Symbol Meaning Virtex US+ -2 Artix 7 -1
TM p Memory output propagation time 3 ≈ 1000,≈ 2000 2460, -
TMs Memory data in setup time ≈ 270, ≈ 300 240, -
TFF p Flip-flop output propagation time 80 ≈ 465
TFFs Flip-flop setup time 25 ≈ 100
Tcomb Combinational logic propagation time Dep Dep
Tr Routing delay of the chosen path Dep Dep
Tmargin Clock skew1 + clock uncertainty2 Dep + (55-90) Dep + (55-90)

Dep: Dependent on logic and/or P&R
Memory values: left corresponds to BRAM and right to URAM. Artix 7 does not have URAM.

1 Clock skew: Difference between launch and capture clocks paths delays. Clock skew depends on
the implementation, and larger modules favor larger clock skew. Values in the 100 to 400 ps range
were common in the critical paths of the flow processor implementations.

2 Clock uncertainty: Clock jitter and phase error component, dependent on clock sources.
3 Without output register
4 https://docs.xilinx.com/v/u/en-US/ds181_Artix_7_Data_Sheet
5 https://docs.xilinx.com/v/u/en-US/ds923-virtex-ultrascale-plus
6 Gathered from a subset of paths from implementations.

the VPN volumetry application, where only 212 flows are to be stored, URAMs are the

best memory resource to implement the flow table. Because of this, in the rest of this

chapter, URAMs are used to implement the flow table, although most of the analyses are

applicable to any memory.

Both BRAMs and URAMs have additional dedicated pipeline registers that allow

higher operating frequency, at the cost of increased write/read latency. Due to the

presence of RAW dependencies, this additional latency will usually result in lower

system throughput. Then, whether to use these registers and how to use them has to be

carefully considered.

Packet info

Flow
Table

Update
logic

Timeout
logic

Time

Out flow

Updated
flow entry

Fw. reg

Write Port

Read Port
Input

Packet Logic

Expiration
Logic

Figure 9.1: Sequential flow metering architecture

121

https://docs.xilinx.com/v/u/en-US/ds181_Artix_7_Data_Sheet
https://docs.xilinx.com/v/u/en-US/ds923-virtex-ultrascale-plus

CHAPTER 9. 100GBE FLOW METERING & DUAL READ-UPDATE ARCHITECTURES

9.2.1 Sequential Design

The 10 GbE flow metering hardware in [149] (code available at [150]) runs the update

and timeout check processes sequentially. We implemented an optimized version from

scratch using Vitis HLS, illustrating in fig. 9.1 the implement architecture, which uses

data forwarding logic to achieve an II = 1 2. Here, every update operation is followed by

an expiration check. Assuming each of these operations takes one cycle (best case), II = 2,

and thus, the design needs to run at twice the input packet rate, 297.6 MHz.

(9.1) Clock period = T ≥ TM p +Tcomb +Tr +2 ·Tmux +TMs +Tmargin

To understand whether it is possible for it to achieve the target frequency, we analyzed

the critical path. Eq. 9.1 shows the generic clock period constraint, where Tcomb and

Tr can belong to either the update or expiration logic and Tmux is the additional delay

due to the multiplexers. Notice that, just TM p accounts for 60% of the time budget, and

therefore it is not likely that this architecture will achieve the target frequency.

9.2.1.1 Dynamically Scheduled Sequential Design

We may consider trading expiration accuracy in favor of a lower frequency require-

ment. We can employ non-blocking reads of the input packet stream and use time slots

without new packets to run timeout checks. The expiration accuracy degradation is not

fixed, but dynamic (function of the load level). This does not imply that the T.O. check

process would be starved, quite the opposite. E.g. if the design achieves 223.2 MHz, then

it is guarantied that at least 1 in 3 cycles would be used for T.O. checking. This provides

a new degree of flexibility to the design. Implementations requiring more complex logic

and larger memories would achieve lower frequencies, and thus, a higher tendency of

degrading expiration accuracy.

The VPN volumetry problem con be implemented in this way, given that only 4Ki

flow (212) are to be tracked and exported once a second, requiring the system to run

at ≈ 148.8MHz. For this application, to increase the measurements’ precision while

simplifying the module, an HLS implementation could run an update-only loop until the

timeout flag is asserted (every 1s), and then going to a memory flush loop, after which it

starts again3. Running at the min. frequency, a packet buffer of at least 4Ki is required.

2This architecture would not need the forwarding logic if the tool took advantage of the fact that if
using port A of the URAM to write, new data appears in the read port when an address collision occurs

3An example HLS implementation using this structure can be found in: https://github.com/hpcn-
uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/

122

https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43

CHAPTER 9. 100GBE FLOW METERING & DUAL READ-UPDATE ARCHITECTURES

Implementing the TCP flow metering core with this architecture is also possible,

but only for small memories and limited associativity. Our HLS prototype reached the

required frequency up to a memory of 16Ki flow and 4 ways. However, to be able to

use larger memories (achieving a greater offloading) and reach higher update rates, a

different architecture is required.

9.2.2 Double-Frequency Multi-Cycle Architecture

Fig. 9.2 shows the block diagram of an alternative, higher performance architecture,

while fig. 9.3 shows its temporization. It runs using a clock twice as fast as the required

packet rate, but most of the logic operates as if the frequency was two or three times

lower, as it uses multi-cycle paths. A register enable (EN) signal, switching at half the

clock frequency, synchronizes most of the sequential logic, so the core works as if two

clocks were used. Also, this signal indicates whether the memory can perform either a

read (EN = 0) or write (EN = 1) operation on its ports.

The update process has an II = 2 and is composed of two pipeline stages: memory

pre-fetch and execute. The core may accept new packets when EN is asserted, reading the

memory in the following cycle. After that, the memory data appears in the output, which

is then registered (EN = 1). This registered data is operated by the combinational update

logic, executing the write operation after two cycles. As the pre-fetch stage may have

accepted a new packet before writing the updated data back to memory, data forwarding

logic is implemented (see fig. 9.2).

The exporter logic performs the timeout checks are done using the remaining memory

port in parallel. Given that it is a less critical process, it does not pre-fetch the flow table,

so the process sequence is completed in 4 clock cycles (II = 4). First, the exporter control

Packet info

Flow
Table

Update
logic

Timeout
logic

Time

Out flow

Updated flow entry

Port AInput
Packet Logic

Exporter
Logic

Port B
Data

Data

Addr.

Addr.
Flow ID

Flow ID

Conflict

R/W

2-cycle
path

3-cycle
path

Figure 9.2: Double-frequency multi-cycle architecture block diagram.

Conditional_stalling_stage_implementation/core.cpp#L43

123

https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43
https://github.com/hpcn-uam/hls-conditional-stalling/blob/46ed2bc0d3d7e52ec514449465bb8e05078ed853/HLS/Conditional_stalling_stage_implementation/core.cpp#L43

CHAPTER 9. 100GBE FLOW METERING & DUAL READ-UPDATE ARCHITECTURES

Mem.
Port

Pkt.
Data

EN = WE

Mem.
out

Logic

Write
Port

Mem.
out &
logic

ID 1

Read 1 Write 0 Write 1

ID 2 ID 3

Read 2

Data 0 Data 1 Data 2

Data 0 Data 1

Read n Write n

Data n-1 Data n

2-cycle path

Write n-1

3-cycle path

E
x
p
o
rt
e
r

U
p
d
a
te
r

Figure 9.3: Double-frequency multi-cycle architecture timing.

logic addresses the memory (EN = 0), then the output data is directly operated using

combinatorial logic during the following 3 cycles. During the last cycle (EN = 1), if the

entry is expired, the logic clears the memory entry and outputs the flow record.

As the update and timeout check processes run in parallel, data corruption may occur

if both operate upon the same address. For this reason, the addresses in the update

process pipeline are available to the exporter control logic, which has two cycles to

compare them. If one of the addresses is equal to the exporter’s, the exporter sequence

is cancelled, and it stays in the reading state until the hazard disappears. Because

the processes share these signals, it is important that their read and write cycles are

synchronized (see fig. 9.3) so that conflict detection logic can make use of 2-cycle paths.

9.2.2.1 Critical Paths Analysis

The most critical paths are present in the update pipeline, either from the memory

data output to its register or from this register to the memory inputs. The clock period

constraints corresponding to these paths are shown by eqs. 9.2 and 9.3, resp.

(9.2) Clock period = T ≥ TM p +Tr +TFFs +Tmargin

(9.3) 2 ·Clock period = 2 ·T ≥ TFF p +Tmux +Tcomb +Tr +TMs +Tmargin

Although compared to the sequential design this architecture requires a clock twice

as fast, it allocates 3 clock periods for the update process. Notice that the memory output

124

CHAPTER 9. 100GBE FLOW METERING & DUAL READ-UPDATE ARCHITECTURES

pipeline registers split apart the large memory output propagation time and the update

logic delay. Data coming out of the memory is registered, thus masking TM p delay. There

are three positions where this register can be placed: inside the memory block (using

the dedicated registers), and using fabric registers before or after the data forwarding

multiplexer (fig. 9.2 shows the second option). The optimal position depends on the actual

implementation, should try to balance eqs. 9.2 and 9.3, to minimize T 4.

Independently of the memory configuration and logic, the time budget is increased

for a given packet rate. Consider the case where the memory data is registered inside

the memory block. With this configuration, the memories are capable of achieving very

high frequencies, and thus, it is not likely the path constrained by eq. 9.2 will limit the

operating frequency (for the target device, URAMs can reach 600 MHz and BRAMs 737

MHz). Then, comparing eq. 9.1 with eq. 9.3, we see that this alternative architecture

achieves more than twice the sequential design frequency. All the delays terms in these

equations are the same, except that eq. 9.1 contains TM p (≈ 2000ps for URAMs), while

eq. 9.3 has TFF p (≈ 680ps when the block memory register is used). For the TCP flow

metering application, having the register outside the memory and before the multiplexer

optimized the clock frequency as not only TM p was masked by the extra 1-cycle phase,

but also the memory output cascade delays (if present) and some routing delay towards

the update logic. Also, in this way, TFF p = 80ps, given that fabric registers are used.

In addition to this, for a given maximum packet rate, the architecture can perform

up to 50% more operations, as the timeout check process runs in parallel with the table

update one. The former process uses 3-cycle paths to detect expired flows, and decide

whether to clean the memory entry and output the records. This schedule allows the

more complex and time-critical update process to have preferential access to better nets

and resources, and thus, enabling further frequency increases.

9.2.2.2 Pipelined vs Multi-Cycle Logic

Instead of using multi-cycle paths, we could employ pipelining (option chosen by

Vitis-HLS when I I > 1). However, for statically scheduled logic5, multi-cycle paths are

preferred because:

• Pipelines are rarely perfectly balanced, penalizing the maximum allowed frequency.

• Each additional pipeline stage adds register’s setup and propagation times.

4The retiming netlist optimization moves registers to optimize a particular implementation
5As opposed to dynamically scheduled logic that may increase mean throughput at the cost of decreas-

ing worst-case throughput (see chapter 10)

125

CHAPTER 9. 100GBE FLOW METERING & DUAL READ-UPDATE ARCHITECTURES

• Clock skew harder to minimize as the number of sequential elements increases.

• Multi-cycle paths have lower resource requirements (no additional registers).

• Multi-cycle paths should consume less energy given its lower area and toggle rate.

• Multi-cycle paths may allow logic optimizations that would be otherwise hindered

by the pipeline registers, leading to further frequency and area improvements.

9.3 Flow Metering System Implementation

Ethernet
MAC

Parser Hash Data
Updater

Flow table Exporter

Output
interface

Time
Source

Ethernet
MAC

PCIE
DMA

AXI Stream

Memory port

Time data

Figure 9.4: High-level diagram of flow metering system

The system has a dataflow architecture to maximize the processing rate and take

advantage of FPGA capabilities. The first stage is the Parser, which filters packets and

extracts information from them. Then, the Hash function computes the address of the

flow table, where the records are stored. For each new packet, the Data Updater creates

or updates the corresponding flow entry. The Exporter continuously examines the table

for expired flows, which will be sent to the output interface.

9.3.1 System Description

9.3.1.1 Parser

The parsers have a 512-bit wide bus input, which provides aligned packets (each bus

transaction corresponds to only one packet). This is done to reduce the hardware complex-

ity, but carries the problem of bus underutilization, reducing the effective throughput.

To compensate this, the bus requires a higher transaction rate, resulting in a minimum

frequency of 294.1 MHz to support 100 GbE under all conditions.

For the TCP flow metering application, a pipelined RTL was designed while, for the

VPN volumetry application, the SDNet compiler was used [151] to contrast the two

approaches. With SDNet, the description of the parser is done using a specific C++-like

126

CHAPTER 9. 100GBE FLOW METERING & DUAL READ-UPDATE ARCHITECTURES

high-level language, which allows extending easily the system capabilities. Fig. 9.5

shows a code snippet, where the top-level module is defined and the parser described.

Although the SDNet parser had a higher footprint, it enabled to implement a more

sophisticated parser (regarding protocol support) in considerably less time. The extra

area was not impactful overall, given that other modules, like the 100 Gbps interfaces

and medium access control, have significantly larger resource requirements. Thus, given

that it achieved the required operating frequency with the first implementation, it greatly

increased our productivity. Conversely, given that the focus of this work was on the flow

Figure 9.5: SDNet parser code snippet showing the top-level module Parser_v0 and
parser engine specialization for the task, where it is defined how to handle the incoming
packets. As an example, the snippet show the code for the first layer protocol, Ethernet.

127

CHAPTER 9. 100GBE FLOW METERING & DUAL READ-UPDATE ARCHITECTURES

metering core, the finally implemented RTL parser had basic protocol support.

9.3.1.2 Flow Metering Processes

The double-frequency, multi-cycle architecture described in section 9.2 is used to

implement the processes that handle the flow table. The architecture structure and

timing is agnostic of the stored data and the update operations, thus from application to

application only the combinational logic that handles the data needs to be adapted (Up-

date logic and Timeout logic in fig. 9.6). This allowed to implement the VPN application

easily once the TCP system was developed.

9.3.1.3 Flow Table

For the VPN volumetry application, up to 212 flows, classified by the VLAN identifier

(VID) of the first VLAN tag, are to be tracked concurrently. Thus, the Hash module

(fig. 9.4) simply selects the VID as the table address. For the TCP flow metering ap-

plication, on-chip memory cannot store all the possible concurrent flow, and therefore

the Hash module computes a value within the address range based on the 4-tuple that

identifies the flow. Contrary to the VPN application where addresses contained the

records of a single flow, in this case, each memory address can store more than one flow

entry, distinguishing each entry by ways as an N-way associative cache memory. Thus,

the effective memory capacity increases, reducing the probability of flow collisions, as

it was observed in the simulations in section 5.4.2. Either BRAMs, URAM, LUTRAM

or a combination of these can be used to implement this memory, but in both tested

applications, URAMs were chosen given the capacity requirements. In both cases, 64

bytes entries were used, leaving room for more records.

9.3.1.4 Data Updater

To ease the implementation of N-way tables, the update logic is divided in two

modules: the entry data update and the decision logic.

Entry Updates The entry data update is replicated for each entry, producing an output

that assumes that the corresponding way is to be updated. That is, the logic checks if the

flow ID matches, and if it does, updates the records, and if not, creates a new flow entry.

To use all the 64 bytes of the entry and to stress the implementation further, bidirectional

TCP flows [152] are created in the table, comprised of those streams that connect the

128

CHAPTER 9. 100GBE FLOW METERING & DUAL READ-UPDATE ARCHITECTURES

same points but have opposite direction (IPs and port numbers inverted). For this, it was

necessary to select a hash function that generated the same address independently of

the packet direction.

Multi-Way tables decisions The decision logic determines which table way is written

(generates each way’s write enable signal, WE) and whether flow records are exported.

Regarding the VPN application, this module is not necessary, as there is a one-to-one

relationship between flows and addresses. For the TCP flows, if there is a flow ID match,

the entry is updated, if not, the logic checks whether empty slots are available. When, all

entries are full and there is no ID match, a flow collision is produced, so one of the stored

entries is removed and sent to the output.

Collision resolution policies The policy that produced the best results in terms of

output packet rate and bandwidth, previously described in section 5.4.2, first considered

TCP FIN and RST flags, and then, the timestamps of the last packet each entry received.

This decision is the function that requires the most logic levels, so the most susceptible

to be the slowest path of this stage. Notice that the aleatory export policy is not a good

option. Despite being fast, simulation shows a more than a 100% increase in the output

packet rate compared to the selected policy, i.e, for 65K and 8 ways, the input to output

ratio goes from 0.406 to 0.85. To detect the oldest entry, keeping them sorted could be an

option, but this implies a more complex data routing. In general, memory data outputs

of a given x way would need to be connected to the data inputs of ways 1, x and x+1,

where way 1 is where the new updated flow is stored. Although this simplifies both the

expiration and the collision resolution processes, each of these data buses (per way) have

a width in the order of 500 bits, requiring lots of routing resources to and from RAM

blocks and resulting in larger routing delays. Instead, the oldest timestamp is searched

using an all versus all logic, aiming at minimizing logic levels, requiring (N2 − N)/2

parallel comparisons. Given that increasing the ways above 8, does not significantly

reduce the collision probabilities, the number of operations is acceptable.

9.3.1.5 Exporter

This module scans the memory using the second port of the table, comparing the

timestamps against the current time, looking for expired flows and exporting them. Since

the timestamps will eventually overflow, the comparison for serial numbers defined in

the RFC 1982 section 3.2 was used [153]. The module registers the time source data, and

129

CHAPTER 9. 100GBE FLOW METERING & DUAL READ-UPDATE ARCHITECTURES

computes the two expiration times (the corresponding timestamps older than these, are

expired). The generated expiration times, are only registered in the clock edges where

a read operation takes place, therefore is registered when the enable signal is low (as

opposed to other registers). This is done so that the expiration detection process uses

3-cycle paths, as previously described when analyzing the architecture.

9.3.1.6 Output Interface

Merging the output streams When a collision is detected, all entries are sent to the

output plus the generated WE signal, so that the following stage selects the entry to

export based on it also using a 2-cycle path. Then, in the next stage, this stream of flow

records is merged with the one coming from the exporter.

Timestamp Extension The final stage allows using shorted timestamps internally

while exporting long ones, thus leaving more room for other flow data given an entry

size. This task of extending the timestamps can be performed provided that the internal

timestamp is not too small to confuse an expired flow (because of the active timeout)

with one that is not.

Flows destination In the case of the TCP flow metering application, the exported

flows were sent using a second 100 GbE link, while in the VPN one, the flows were sent

to the main memory of the host computer using the PCIe bus.

9.3.2 Implementation

9.3.2.1 Implementation of the Double Synchronous Clocks

The intention of the flow metering core design is that all logic, except for some memory

signals, run at the packet rate (low clock frequency). This is achieved using an enable

signal that toggles at half the frequency of the fast clock and multi-cycle paths, instead of

using two synchronous clocks, one at half the frequency of the other and with a 0° phase

difference. From the standpoint of the design and HDL description, these alternatives

are basically identical. Although the latter also has multi-cycle paths, constraining the

former requires more of these timing exceptions, given that synthesis tools do not detect

the multi-cycle paths, so it has to be explicitly indicated.

Yet, the former option was chosen for performance reasons. The use of the enable

signal could be considered problematic at first glance given that it controls numerous

130

CHAPTER 9. 100GBE FLOW METERING & DUAL READ-UPDATE ARCHITECTURES

flip-flips, resulting in a large spanning, high fan-out net, but this signal can be easily

replicated, solving these problems. Conversely, although the Ultrascale+ devices have

clock divider buffers that allow to efficiently obtain the two required clocks, this alterna-

tive results in a higher clock skew and uncertainty. In an implemented proof-of-concept

design using the double clock alternative, clock skew of the critical paths was in the

550ps order, and clock uncertainty in the 87ps, compared to the 300ps and 57ps, resp.,

of the final core implementation. The number of clock-crossing paths used in the proof-

of-concept was much lower to what the final system required. Given that clock skew

is harder to optimize as this number increases, further frequency penalties are to be

expected in a full design implementation. These time differences might seem small,

but they are above the 8% of the time budget of the maximum allowed period of the

high-frequency clock (3.333ns).

Finally, notice that, the enable signal alternative is, in fact, using two clocks, given

that, in the target device, flip-flip enable inputs do not act in the data input, but they

gate the clock, effectively creating the required half-frequency clock. Having the clock

gate at the input of the sequential elements, allow the launch and capture clock to share

a larger common path, and then, clock skew is reduced.

9.3.2.2 Deployment and Testing

The TCP flow metering system was implemented on the VCU118 Evaluation Board [154],

while the VPN volumetry one in the Alveo U200 acceleration card [155] (both using the

Xilinx VU9P FPGA, speed grade 2). To verify the correctness of the systems, simulations

and field tests were carried out both using synthetic traffic aiming to check specific parts

of the system, and then, a more realistic work regimen was tested using captured traces.

9.3.2.3 Results

Table 9.2 shows the implementation results for different system configurations. As it

can be appreciated, the design can support the maximum packet rate up to 64Ki flow

using 8 ways. Although, it did not meet the desired timing, the 128Ki flow implementation

achieved a significant performance (above 90% of the max. rate), which is very interesting

considering that the core is implemented in a single SLR using 80% of its URAMs.

Conversely, the HLS prototype using the sequential architecture reached the required

frequency up to 16Ki flow and 4 ways. What is more, for 64Ki and below, implementations

achieve frequencies significantly beyond the required 297.6 MHz. This supports the fact

131

CHAPTER 9. 100GBE FLOW METERING & DUAL READ-UPDATE ARCHITECTURES

Table 9.2: Flow metering system implementation results for both VPN and TCP metering
applications for a series of configurations

Flows Assoc. Freq. (Rate1 %) LUT (K) FF (K) BRAM URAM

4Ki 1 300 (101) 2 4 (90.1) 6.8 (154.8) 1 (265) 11 (11)
32Ki 4 352 (118) 9.5 (42.0) 10.5 (99.1) 0 (77) 64 (64)
32Ki 8 353 (119) 18.2 (50.8) 16.7 (105.3) 0 (77) 64 (64)
64Ki 4 313 (105) 9.6 (42.2) 10.6 (99.3) 0 (77) 128 (128)
64Ki 8 325 (108) 17.7 (50.3) 16.6 (105.2) 0 (77) 128 (128)
64Ki 16 285 (96) 43.6 (76.2) 21.1 (109.7) 0 (77) 128 (128)

128Ki 8 271 (91) 18.1 (50.6) 16.6 (105.3) 0 (77.0) 256 (256)
VU9P totals 1182 2364 2160 960

For a given table size, if there are multiple implementations, the best results are in bold.
Resource utilization is shown for the subsystem that performs parsing and flow metering, and in
parentheses, the implementation totals.

1 Maximum packet rate supported by the implementations, compared to the maximum 100GbE packet
rate (148.8 Mpps).

2 This implementation corresponds to the VPN application. Higher frequencies were not tested.

that the architecture is suitable for the implementation of a flow metering offloading

system using external memories.

Most of the critical paths were between the update logic memory data output and its

register (implemented using CLB flip-flips). Nonetheless, the 2-cycle path that generated

the WE signal (decision logic) was also problematic. Other positions of the memory

data register, that is, using URAM output registers or after the forwarding multiplexer,

produced lower performing implementations.

It is an interesting coincidence that, in general, using 8 ways resulted in the higher

frequency systems, at the same time that, in simulation, increasing the ways above

this number did not enable significantly higher offloading performance. The effect of

the number of ways on frequency is mainly explained by the way URAMs cascade to

create larger memories and the behavior of the decision logic. For a given table size,

fewer ways implies more cascading. As previously explained, this adds output and input

delays to wires going to and from the memory, which particularly affects the single cycle

paths towards the output data register. This is why, for the 64Ki flow configuration,

going from 4 ways to 8, increases frequency. However, as the number of ways increases,

the decision logic depth increases. The additional delay more than compensated the

decreased memory input delay (less cascading) when going from 8 to 16 ways for a 64Ki

flow table, as the critical path of the latter resided in the decision logic.

The table also shows resource utilization of the subsystem that takes packets and

132

CHAPTER 9. 100GBE FLOW METERING & DUAL READ-UPDATE ARCHITECTURES

outputs flows, and in parentheses, the implementation totals. URAM usage is directly

determined by the table size, but the rest of resources consumed by the subsystem are

mainly a function of the number of ways. Apart from the expected heavy URAM usage,

the flow metering subsystem requires a small percentage of the available resources in

the target platform, also shown in the table. The target resources are evenly divided in 3

SLRs, but even compared to the resources of a single SLR, footprint is low.

9.4 Application of the Architecture for Other Systems
with the Read-Update Pattern

Although the proposed architecture was presented in the context of flow metering,

it can be used in other streaming-data processing cores, and in general, loop-based

processes that have the read-update compute pattern. The presented results show that

the proposed architecture is adequate to for high-performance implementations of the

read-update pattern using complex logic, even with large memories.

Double-Process Histogram Computation An example of an algorithm that uses

the same pattern is histogram computation, which is also the base of other algorithms

like the Hough transform (used to detect lines in an image). Fig. 9.6 shows the proposed

architecture implementing it, with adapted forwarding logic, allowing to process in

parallel two input samples at a time when these differ in value from each other6. Given

the simplicity of the logic, in the illustration, the memory output data register are used,

which reduce the BRAM output latency from 1.02ns to 0.29ns.

LOCO-ANS LS Another example algorithm that can benefit from using the proposed

architecture is the presented lossless LOCO-ANS image encoder, whose performance

hardware implementation is throttled by the context update RAW dependency. The com-

piler implements the developed HLS encoder using the analyzed sequential architecture,

whose update path establishes the critical path. The utilization of the double frequency

multi-cycle architecture would not only enable higher operation frequencies, but also it

allows the use of the spare memory port for other processes. In this way, it is possible to

encode a second pixel in parallel when the context address differs (like in the previous

histogram example), further increasing the system’s pixel rate or to prepare the context

6Notice that if the samples have equal value, the update logic could be flagged and increment the
accumulator by 2 instead of by 1 using one of the processing branches

133

CHAPTER 9. 100GBE FLOW METERING & DUAL READ-UPDATE ARCHITECTURES

Incr.

Incr.
Wr. Addr. = Pixel B(n-1)

Wr. Addr. = Pixel A(n-1)

Read Addr. = Pixel B(n)

Read Addr. = Pixel A(n)

R/W Hist.
Mem.

Addr.

Addr.

Data

Data

Out. Reg. Enabled

Figure 9.6: Double-process histogram computation using the proposed architecture

memory for the next image block (using a ping-pong scheme within the block memory)

enabling continuous processing and reduced encoding latency.

Although, originally, we aimed at designing the flow metering system with HLLs, we

reached the conclusion that, due to the presence of the studied RAW dependency, the

flow metering core needed to be designed using at RTL. Based on the exposed results,

the incorporation of the presented architecture for high-performance implementations

of the common read-update pattern would increase the quality of results of C++ HLS

designed modules containing this pattern.

9.5 Architecture Improvements

Analyzing the implementation results, we observe a series of possible paths towards

achieving even greater performing architectures for FPGA flow metering, in particular,

and for the read-update pattern, in general.

9.5.1 Arrays of Flow Metering Cores

As observed in table 9.2, smaller tables allow higher operating frequencies and apart

from URAMs, the system has a low footprint. Then, for the TCP application instead

of having a single metering core, we may consider having several handling smaller

tables (URAM usage would be the same). Parsing would take place, then based on the

hash value, packet are distributed among the cores, and finally, their output flows are

merged into a single stream. This scheme simplifies routing and reduces the URAM

cascading, therefore enabling the use of larger memories at a given frequency. In the

134

CHAPTER 9. 100GBE FLOW METERING & DUAL READ-UPDATE ARCHITECTURES

128K implementation, routing latencies from memories were in the ≈ 2.3ns, then ≈ 70%

of the available time was spent in those routes, while these delays were in the 600ps
order for 64K implementations. In addition, it allows to more easily scale the system to

process higher link rates or multiple links.

This also interesting for implementing a flow metering solution using the HBM

memories recently available in FPGA chips, which have several ports to access it. Then,

a memory bank could be assigned to these smaller and faster metering cores, which

could access them independently. If one core stalls, waiting for memory data, the rest

may continue running, therefore increasing the average packet rate supported.

To test the idea, a couple of proof-of-concept were implemented using a 2x64Ki and

4

3

1

2

5

6

Figure 9.7: Implementation of four 64K flow probs in two SLRs running at 300MHz. The
highlighted resource areas 1 and 2 implement the 100GbE interfaces, while areas 3 to 6,
the metering cores.

135

CHAPTER 9. 100GBE FLOW METERING & DUAL READ-UPDATE ARCHITECTURES

4x64Ki configuration, both with 8 ways. As a result, the 2x64Ki implementation achieved

318 MHz, while the 4x64Ki, 300 MHz. Fig. 9.7 shows the implementation layout of

the latter. In both cases, a pair of these cores were assigned to a single SLR, then the

former used 1 SLR and the latter 2 of them, as observed in the figure. Compared to the

single 128Ki implementation, the 2x64Ki improves the processing rate by more than

17%. These results can be further improved given that neither the packet distribution

and flow merging structure, nor the SLR crossings, were fully optimized.

Finally, in the VPN application case, multiple cores allow supporting both several

parallel links and higher bandwidth ones. In the latter case, packets would be distributed

using round-robin scheduling and each metering core would have partial records of the

flow. These partial flows could be aggregated by a downstream module, which does not

need a table of its own, given that the application exports records every second, therefore

all the metering cores could synchronously emit the partial records of a given flow ID.

9.5.2 Double Frequency Architecture with Increased Pipelining

Analyzing the implemented systems, it is observed that the single cycle path from

the memory data output to its registers in the FPGA fabric establishes the frequency

bottleneck. Along with this, the WE signal also limited frequency, which was not only

due to the complexity of the decision logic, but also the cascade additional input delays

and the fact that the WE input has the double setup time that the memory data inputs.

Then, taking into account that LUT and flip-flop utilization is low given the available

resources of these devices, we consider pipelining the architecture further.

The design presented in fig. 9.8 addresses both the detected bottlenecks of the flow

metering core, showing the logic of only one port, and its timing diagram is shown in

fig. 9.9. As observed, the system can be described as working with two synchronous

in-phase clocks, one (clk signal) twice the frequency of the other (s signal), with only

the circuitry in orange (memory and logic controlling its inputs) working at the high-

frequency one. Compared to the previous architecture, the memory data output has

twice the time budget to be registered (if using BRAMs, these need to be configured in

no-change mode), and the update logic input/output signals come from/go to registers,

thus avoiding the larger output propagation/set-up times associated with memory blocks.

This comes at the cost of increased logic, particularly, a more complex data forwarding

unit (which bypasses updated values that have not yet been written to memory), but

the additional time budget should be more than enough to accommodate this additional

logic.

136

CHAPTER 9. 100GBE FLOW METERING & DUAL READ-UPDATE ARCHITECTURES

Addr.

Din

WE

Dout
Reg. 2

Reg. 1

Logic

F. muxEN

EN

New flow ID 0

1

Low Clk
(H. Clk/2)

High Clk

Figure 9.8: Double frequency architecture with increased pipelining block diagram.

Read 0 Read 1 Read 2

Data 0 Data 0 Data 1

Data 0 Data 1

Mem.
Port

EN = WE

Mem.
out

Reg. 1U
p
d
a
te
r

Data 0 Data 1

Data 2

Write 0 Read 3 Write 1

Data 2 Data 3

Reg. 2

Figure 9.9: Double frequency architecture with increased pipelining timing.

Finally, taking inspiration from the optimized sequential architecture, which dynami-

cally allocated timeout checks, this higher performing architecture could choose whether

to process 2 packets, or process 1 packet and do a timeout check. This decision would

depend on the availability of input packets and whether the packets need to access to

the same memory address or not.

9.6 Conclusion

This chapter presented a hardware implementation of a 100GbE flow metering

system for two applications with different memory capacity requirements and logic

complexity. For the simpler VPN volumetry application, the designed system can easily

meet timing in the target VUP9 FPGA, and it completely offloads the metering task.

For the more complex TCP flows application, the system is capable of supporting the

maximum 100GbE packet rate with a single core using up to 64Ki flow tables and 8-

ways. According to our experiments, this translates into a significant offload of the task,

reducing the output packet rate and bandwidth to 40.6% and 45%, resp., with respect

to the input packet rate and bandwidth after parsing (already reduced compared to the

137

CHAPTER 9. 100GBE FLOW METERING & DUAL READ-UPDATE ARCHITECTURES

link bandwidth).

We also presented preliminary results to pave the way towards higher link rate

support and systems using external memories. The implementations of an array of up to

4 of the developed cores in the target devices (2 per VU9P SLR) at 300 MHz show it is

possible to use even larger flow tables, increasing the offloading capabilities, while still

supporting the maximum packet rate.

These results were made possible by the proposed architecture for the flow metering

core, which addresses the problem of implementing a high-throughput and complex

read-update process that needs to handle a large memory. For slower link speeds, an

HLS implementation could handle maximum packet rates, but given that network links

bandwidth grow faster than silicon speed, we needed to implement this critical module

using an optimized architecture and RTL code. The presented architectures can be

used as general templates and incorporated into an HLS compiler, not only for flow

metering systems but to improve performance of systems with the read-update pattern,

particularly when many on-chip memories need to be cascaded and more than 2 memory

ports are needed.

138

C
H

A
P

T
E

R

10
STUDY OF THE CONDITIONAL STALLING TECHNIQUE

A
mbiguous read-after-Write (RAW) dependencies are omnipresent in multiple
streaming applications, establishing hard to optimize bottlenecks. Consider-
ing actual input data, these may rarely be true dependencies. However, the
increasingly used High-Level Synthesis (HLS) compilers must assume the

worst-case scenario, as they rely on static optimizations. Conditional stalling is a simple
yet impactful technique, useful even when conflicts are common. At the cost of a small
area penalty, it allows improving (in some cases, by several times) the mean throughput
of these systems. In this chapter, we describe a high-frequency HLS implementation of the
technique and examine its behavior as a function of input and architecture characteristics,
with the goal of understanding when to use it and how to optimize throughput.

10.1 Introduction

Data dependencies are omnipresent in very diverse applications. As these can be

major obstacles towards obtaining a high-throughput implementation, their detection

and optimization has been a subject of study for decades [156, 157]. Addresses may be

computed at runtime, so it might not be clear whether a memory operation is dependent

on another. Static analysis (at compile time) may confirm the presence or not of a conflict
—when the addresses of these operations are equal, so there is a dependency, limiting

139

CHAPTER 10. STUDY OF THE CONDITIONAL STALLING TECHNIQUE

parallelism—, and then, appropriate optimizations can be applied. Additionally, the

analysis may reveal conflicts in specific loop iterations. Here, several optimizations

have been proposed [158–161], e.g., varying the processing rate depending on induction-

variable-based runtime conflict checks.

However, some dependencies are ambiguous at compile-time, so if only relying on

static analysis, operations must be scheduled assuming the worst-case scenario. Thus,

if the dependency distance (DD) is maximum number of cycles separating the pair of

dependent operations that still violates the dependency in case of a conflict, then the

initiation interval (II) —number of clock cycles the logic needs to be ready to process

a new input or iteration— will be DD +1. We refer to this II as IIbase. In many cases,

these ambiguous dependencies do not occur very often, thus the hardware will have a

considerable amount of unnecessary idle cycles.

For half a century, different compile-time, runtime, and hybrid optimizations have

been proposed [157, 162–164]. Yet, most of these techniques have not been incorporated

in current High-Level Synthesis (HLS) compilers [165–167], so in recent years, many

works have focused on applying them to HLS design and tools. Bypasses from write to

read operations (data-forwarding) were proposed in [168] to improve scheduling when

Read-after-Write (RAW) dependencies were present. As a result, II can be reduced down

to the processing logic latency, eliminating the memory latencies from the equation.

Although useful for simple logic, it is not very effective for deeper pipelines.

In [169], a conditional stalling (CS) scheme, also incorporated in [170], was im-

plemented in a source-to-source compiler to improve loop pipelining. This technique,

inspired by µP architecture, consists in running a pipeline at full rate when no conflicts

are detected, while stalling the appropriate stages until those that appear are solved. In

this way, IIsys ≤ IIbase, where IIsys is the average II of the optimized system.

Squash and replay on top of data-forwarding was proposed in [171] to deal with

data dependencies. This technique, used in super-scalar µP, consists on speculatively

executing an operation and if a conflict is detected later, the dependent operations are

suppressed and the pipeline is restored to the stage it was when the violation occurred

to replay all operations. When there is a conflict, this technique incurs in penalty cycles,

which is not the case for CS, and also, it increases the complexity of the logic, which

favors frequency penalties.

We also notice that CS, though simple, is very suitable for stream processing applica-

tions, like network packet processing, data compression or data analytics, where high

throughput is generally sought, and RAW dependencies are common. Yet, in the work

140

CHAPTER 10. STUDY OF THE CONDITIONAL STALLING TECHNIQUE

in [169], previously mentioned, only a modest throughput improvement (approx. 7.5% on

average) was observed for the chosen applications over long input sequences, even show-

ing a performance decrease in some cases. Although these results are input dependent,

they are in part explained by a 23% (on average) increase in the clock period caused

by, as noticed in that work, the stalling control logic. Also, processing logic is pipelined

ignoring the input characteristics, resulting (as we will show) in lower throughput.

In this chapter, focusing on stream processing applications, we describe how to imple-

ment CS with no or negligible frequency penalties and low area overhead. In addition,

with the aim to generate results that can be extrapolated to other applications and imple-

mentations, we analyze the technique as a function of the data and logic characteristics,

rather than for particular cases. Finally, we provide models that could be employed by

compilers to take design decisions. Example systems, as well as the developed simulation

and mathematical models, are available through a public repository [172].

Figure 10.1: Stalling stage HLS code.

141

CHAPTER 10. STUDY OF THE CONDITIONAL STALLING TECHNIQUE

10.2 Implementation of Conditional Stalling

For stream processing pipelines, the dependency control logic can be implemented

as a preceding stage. Fig. 10.1 shows a C++ HLS description of such a stage. In the

following, we assume to be optimizing a RAW dependency, as they are more common

in these applications, but is also applicable to Write-after-Read ones. WaitList stores

in list the write addresses of the data units to process—namely, packets—sent to the

output in the last DD cycles. For each packet, to determine whether there is a conflict,

the stage checks if the read address matches any of the addresses in list. If there is

conflict, instead of sending it to the processing stage, the packet is kept until no conflict

is detected. During these cycles, bubble packets (flagging they must not be processed)

are sent to the output, ensuring proper synchronization with the processing stage even

if there is intermediate store between them. Alternatively, if there is a tight coupling

between these stages, the first stage may not produce any output (the second one must

use non-blocking reads).

Given that the stalling stage creates a dependency-free input pattern, the processing

module (logic to optimize) can be pipelined as if no dependencies exist, achieving a better

II, which we call IIp, ideally equal to 1 to maximize throughput. For HLS implementa-

tions, this only involves adding a compiler directive (or pragma), indicating that there

are no dependencies associated with the memory accesses.

To verify the performance of the stall stage, a float64 accumulation example was

developed using Vitis-HLS 2021.1 targeting Xilinx Z7020-1 and ZU7EV-2 chips for

different DD and address bit widths (AW). This example was chosen because it allows us

to test the technique for a deep, high-performance pipeline. Two versions of the system

were implemented, one with the conflict detection logic in a separated stage and the other

with the logic merged within the processing logic, as in [169]. Some implementation

Table 10.1: Stall stage HLS implementation performance comparison

Part
Max. freq DD = 8 AW=8 DD = 16 AW=16

BRAM Stage Merged Stage Merged
Z7020-1 400 200 1501 1651 1251

ZU7EV-2 637 635 4501 5751 3951

Frequencies are in MHz and rounded to the closest multi-
ple of 5.
BRAM were configured in read-first mode.

1 Conflict detection logic in critical path.

142

CHAPTER 10. STUDY OF THE CONDITIONAL STALLING TECHNIQUE

results are presented in table 10.1, where it can be seen that implementing the logic as

in Fig. 10.1 the system achieves a more than 30% and 40% higher frequency for Z7020

and ZU7EV resp. As a reference, the maximum clock for the on-chip memories (BRAMs)

is also shown in the table. In the case of the Z7020, we attribute the larger frequency gap

to the slower FPGA fabric of this low-end device. Considering the achieved frequencies,

we think that most systems would experience a low or negligible frequency impact when

adding the stage in the pipeline. In addition, the stalling stage has a low area impact.

For DD = 8 and AW = 8, approx. 300 LUTs and 600 flip-flops were consumed, which

represents 0.55% of the available resources in the low-end Z7020 device. This value

increases to 0.75% (400 LUTs and 800 flip-flops), for DD = 16 and AW = 16.

As done in super-scalar µP, to mitigate or eliminate the frequency penalties observed

for wide addresses, they may be hashed and then compared to detect conflicts. High-

performance hardware hashes exist, so their utilization should not have frequency

penalties. Of course, a lower number of operation identifiers (cardinality, C) decreases

performance, but it might not be noticeable for high C (see section 10.4).

Although these results are compiler-dependent, they do provide useful information

about how to maximize throughput when implementing this technique within either a

source-to-source or HLS compiler. Additionally, regarding designing with current HLS

compilers, it shows that providing hints in the code about the architecture we aim for is

still useful.

10.3 Modeling Conditional Stalling

The IIsys of a system using CS is a function of the address distribution (data depen-

dent) and DD (architecture dependent), rather than the algorithm itself. For example,

consider image-processing applications using pixels as addresses. Scanning 8-bit artifi-

cial images has (in general) a much higher probability of obtaining single-pixel-value

bursts, producing numerous conflicts, compared to 16-bit raw photographic images.

The analysis is focused in two addresses distributions: the uniform and the Zipfian.

The former emerges naturally in many situations while in others by design, e.g., using

hashes. In addition, in context-based data compression, contexts are sought to be equally

probable to improve compression [173]. Zipf-like distributions also have been observed to

characterize classes in different applications [174], e.g., web requests [175], and serves

as a skewed probabilities example. To limit the extension of the analysis, we restrict it

to in situ updates (read address = write address), more common in stream processing.

143

CHAPTER 10. STUDY OF THE CONDITIONAL STALLING TECHNIQUE

Results also apply to i.i.d. stateless address distributions.

10.3.1 IIsys Distribution for DD = 1

Given a block of W packets with uniformly distributed addresses, we want to get

P(IIsys). When DD = 1 and the pipeline is full, there are two packet acceptance sequences:

the new packet is accepted in the next cycle (S0) or it waits one cycle and it is accepted

in the following one (S1). It is easy to see that the number of S1 (N1) ∼ B(n =W , p = 1
C).

Given that the block takes W −N1 +N1 ·2 cycles to be processed, P(IIsys = cycles/W)=
P(N1 = cycles−W). From this, it follows that IIsys = 1+ p = 1+ 1

C .

For the Zipf and other stateless distributions, an approximated model can be obtained

setting the binomial parameter p = Pc =∑a∈A P(a)2, where A is the address set and Pc

is the mean collision probability between two addresses.

10.3.2 Hidden Markov Model for DD ≥ 1

A Hidden Markov model (HMM) can capture the behavior for general DD. This is

only presented for the uniform case, given that it allows a simplification, which makes

the size of the model manageable. In general, without this simplification, we consider it

is simpler to rely on simulation data.

10.3.2.1 Model

As observed in fig. 10.2, each state captures the occupation pattern of the pipeline

—in a binary manner, bubble (0) o packet (1)— after having accepted a packet. Then,

states are named ignoring the first stage occupation (always full) and the size of the

state set is 2DD−1. For each new packet, there is a state transition, that depends on

whether there is a conflict or not, and if there is one, with which stage. Additionally,

associated with each transition, there is an observed property, which is the number of

cycles required to accept the new packet (instantaneous IIsys). The model is characterized

by the transition (TM) and emission (EM) matrices, which contain the probabilities of a

state transition and of emitting an II, given the current state.

10.3.2.2 Automatic Model Generation

Each state has as many conflict transitions as it has packets in the pipeline, plus

one non-conflict transition. If the new address is in conflict with the one in the stage

144

CHAPTER 10. STUDY OF THE CONDITIONAL STALLING TECHNIQUE

110
1-3.Pc

Pc
100 101

111

Pc

PcPc

Pc

PcPc

Pc

1-2.Pc

1-2.Pc

1-Pc
II=1
II=2

II=4
II=3

Figure 10.2: Hidden Markov model example for DD = 3 and C ≥ 3.

x ∈ [0..DD−1], then the emission will be II = DD+1− x and (state+2DD−1)>> II will be

the new state. The probability of that conflict to occur is Pc = 1
C . If there are multiple

transitions between a pair of stages (with the same direction), the transition probability

is the sum of all the individual probabilities. If there are no conflicts, then II = 1 and the

new state is computed as before. Finally, notice that depending on C, there are forbidden

states and transitions given that there might not be enough different addresses to fill

the pipeline. A complete implementation can be found in the public repository. As an

example, equation 10.1, shows TM and EM matrices for DD = 3 and C ≥ 3.

(10.1)

TM =

00 01 10 11
f rom←−−−− / ↓ to

Pc Pc 2.Pc 2.Pc 00

0 Pc 0 Pc 01

1−Pc 1−2.Pc 0 0 10

0 0 1−2.Pc 1−3.Pc 11

EM =

00 01 10 11 I I

1−Pc 1−2.Pc 1−2.Pc 1−3.Pc 1

0 Pc 0 Pc 2

0 0 Pc Pc 3

Pc Pc Pc Pc 4

Using the HMM matrices, we can compute, for example, IIsys = [1. . . (DD+1)] ·EM ·π,

where the first row vector contains the value of the II emissions and π is the steady

state distribution column vector (obtained from TM). Notice that EM ·π is the steady

distribution of IIsys.

10.3.2.3 Approximation of the IIsys Distribution for General Block Size

The distribution of IIsys for any block size W and DD, is not trivial. However, we

can obtain a good approximation modeling the system as a stateless one with only

two possible packet acceptance sequences: S0 (No conflict) and S1 (the average conflict

sequence). It is not hard to see that P(S0) = ∑2L−1−1
i=2L−2 πi and S0 emits II0 = 1. S1 emits

the mean conflict cycles, II1 = (IIsys −P(S0))/P(S1), where P(S1) = 1−P(S0) and IIsys

is given by the HMM. In this way, the number of S1 in the W block (N1) follows a

145

CHAPTER 10. STUDY OF THE CONDITIONAL STALLING TECHNIQUE

binomial distribution and P(IIsys = cycles/W) = P(N1 = cycles−W
II1−1) (notice that cycles =

W −N1 +N1 · II1 ∈R).

10.3.3 A Simple IIsys Approximation

Although exact for the uniform distribution, the HMM requires somewhat compute-

intensive operations. There are occasions when faster methods, though no exact, are

more useful, and we also would like to have estimations for other distributions. We

obtain a simple formula (exact for DD = 1) by assuming that the probability of having a

full pipeline (no bubbles) is approximately one. As a result, we get: IIsys ≤ F2(DD,Pc)=
1+ (DD2+DD) ·Pc/2. It is an upper bound because the full state has the highest conflict

probability. The bound will be tighter as Pc ·DD grows smaller, given that the probability

of this state gets closer to 1.

As IIsys increases, a linear approximation, F1(DD,Pc), fits very well the data (see

fig. 10.4). Then, we may set a IIsys above which F1(·) is used instead of F2(·). Finally,

using F2(·) to estimate F1(·) coefficients, we obtain:

(10.2)

DDl im = DD|F2(·)=IIlim
= (

√
(8 · (IIlim −1)/Pc +1) −1)/2

b = ∂F2/∂DD(DDl im,Pc)= (2 ·DDl im +1) ·Pc/2

IIsys ≈
DD < DDl im, 1+ (DD2 +DD) ·Pc/2

DD ≥ DDl im, IIlim +b · (DD−DDl im)

An IIlim = 1.35 results in good approximations (see fig. 10.3). For a more conservative

approach (higher, pessimistic IIsys estimations), higher IIlim may be used.

0 5 10 15
Dependency distance

0.050

0.025

0.000

0.025

II
 R

e
la

ti
ve

 E
rr

o
r C=2

C=4
C=8
C=16
C=32
C=64
C=128
C=256
C=512
C=1024

Figure 10.3: Relative error of Eq. 10.2 with IIlim = 1.35 for random distributions.

146

CHAPTER 10. STUDY OF THE CONDITIONAL STALLING TECHNIQUE

10.4 Performance Analysis

10.4.1 IIsys Improvement for a given Processing Latency

Fig. 10.4 compares IIbase with IIsys when CS is applied and the processing module

is pipelined to achieve IIp = 1 without changing the frequency or DD (the processing

latency remains constant). This is shown for both distributions and different cardinalities

(C). The Zipf parameter s is set to 1.8 to evaluate a very skewed distribution (P(1)= 0.6

for a 8-symbol source), in contrast to the uniform. Notice that, even for low C and very

skewed distributions, IIsys improves significantly. As C grows and the Zipf ’s s decreases,

the throughput improvement is greater, given that conflict probability decreases.

0 1 2 3 4 5 6 7 8
1

2

3

4

5

6

II

IIbase
C=2

C=4

C=8

C=16

C=64

C=1024

0 1 2 3 4 5 6 7 8
Dependency distance

1

2

3

4

5

6

II

IIbase
C=2

C=4

C=8

C=1024

Figure 10.4: IIsys violin plots (99th percentile delimited) for blocks of 1000 packets for
uniformly (top) and Zipf with s = 1.8 (bottom) distributed addresses.

147

CHAPTER 10. STUDY OF THE CONDITIONAL STALLING TECHNIQUE

In general, e.g., due to the nature of the problem or the available buffer size, we

need to understand the IIsys behavior for packet blocks of a given size. The worst-case

performance for non-deterministic address sequences is IIbase, which occurs for single-

address bursts. Of course, as the block size increases, this sequence becomes rarer. To

illustrate this, fig. 10.4 shows, using violin plots, the PDF of IIsys for blocks of 1000

operations, where the 99th percentile (delimited) is noticeably better than IIbase.

10.4.2 Increasing Throughout Optimizing Pipeline Depth

For feed-forward circuits (data only flow downstream), we can increase throughput

using a deeper pipeline to reduce the clock period. However, there are many technology-

1 2 3 4 5 6 7 8
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o
rm

a
li

ze
d

 r
a
te

 (
sa

m
p

le
s/

s)

FF

C=512

C=128

C=32

C=8

C=2

baseline

1 2 3 4 5 6 7 8
Update logic stages

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N
o
rm

a
li

ze
d

 r
a
te

 (
sa

m
p

le
s/

s)

C=512

C=32

C=8

C=4

C=2

baseline

Figure 10.5: Throughput estimation as the number of pipeline stages of the processing
module increases for uniformly (top) and Zipf (bottom) distributed addresses. For com-
parison, FF curve shows the feed-forward circuit behavior.

148

CHAPTER 10. STUDY OF THE CONDITIONAL STALLING TECHNIQUE

dependent inefficiencies associated with this process (work imbalance, increased clock

skew, additional routing delays, etc) [176] [177, Chapter 2]. A simple model to estimate

the resulting clock period for S > 1 stages would be: P = Tcomb/S+Tpp, where Tcomb is

the period for the single-stage logic and Tpp the sum of pipelining penalizations, assumed

approximately constant. In fig. 10.5, the FF curve shows the normalized throughput

estimation for a feed-forward circuit with Tcomb = 8ns and Tpp = 0.9ns as a function of

logic stages. These constants fit the behavior of the example system in section 10.2.

A dependency creates a feedback loop in a module. If the dependency loop logic is

deepened to increase frequency (using only static optimizations), the II increase will

more than compensate the period reduction, worsening throughput. The baseline curve

shows this effect, where, to ease the comparison with FF, the same Tcomb and Tpp are

used and the write and read latencies are set to 0 and 1, resp, then DD = stages−1.

Conversely, when CS is applied, increasing the dependency loop pipelining has the

potential to trade decreased worse-case throughput in favor of higher mean throughput

because IIsys increases slower. The C = x curves are confined between FF and baseline

curves, drawing near to the former as the conflict probability decreases. Although in-

creasing pipelining eventually decreases performance (conflict penalty increases faster

than frequency), the curves show that most systems can be improved optimizing the

pipeline depth.

10.4.3 Trade-off Between IIsys and Area

We have only considered using a processing module with IIp = 1, but it might not

be achievable, e.g., due to resource contention. For the simpler case where the pro-

cessing logic consumes both packets and bubbles at a IIp rate, the system behaves as

if DD′ = ⌊DD/IIp⌋ scaled by IIp. Then, the logic may only track DD′ addresses and

IIsys = II
1
sys(DD′) · IIp, where II

1
sys(·) gives IIsys for a given DD and IIp = 1.

Moreover, controlling IIp enables different throughput-area trade-offs. Particularly

for deeply pipelined modules and skewed distributions, increasing IIp can have a small

impact on IIsys, while the area reduction may be significant as it increases the possibility

of sharing resources and simplifies the control logic. Additionally, it may reduce pipelining

penalties.

149

CHAPTER 10. STUDY OF THE CONDITIONAL STALLING TECHNIQUE

10.5 Application to 100 GbE Flow Metering

To further illustrate the capacity of the CS technique, we apply it to the HLS design

of the TCP flow metering core for 100 GbE (see section 9.2.1). The core was compiled

targeting different pipeline stages, and then implementing the whole metering system.

The flow table was configured to hold 32Ki flows and use 8 ways (cache-like table), for

which it was not previously able to support the maximum packet rate of a 100 GbE link.

The implementations only apply the CS optimization, and thus the minimum DD is 1.

To assess the behavior of the II, we employ the trace used in the memory requirement

evaluation presented in section 5.4.2.1. Fig. 10.6 shows the results, where we compare

the performance of this HLS design against the RTL solution presented in chapter 9.

As observed in the fig., for this design and application, CS can duplicate the average

packets per second ("HLS+CS avg pps" curve), also significantly increasing the 99th

percentile performance ("HLS+CS P99 pps" curve). This enables the HLS solution to

surpass, most of the time, the optimized RTL design1, even with shallow pipelines. As a

reference, the fig. includes the pps of the HLS design as if CS were not applied ("HLS no

CS pps" curve). This also indicates the worst-case performance of the HLS design with

CS, which generally decreases with additional pipelining2. Thus, we trade off worst-case

pps in favor of greater mean pss. Finally, confirming the results obtained in section 10.2,

the CS stage does not contain the critical path in any of the HLS implementations.

0 1 2 3 4 5 6 7
Dependency distance

50

100

150

200

250

300

350

R
at

e
(x

10
)

RTL pps
HLS no CS pps
HLS+CS avg pps
HLS+CS P99 pps
HLS Freq

Figure 10.6: Performance comparison of RTL and HLS design with and without CS.

1CS and the RTL architecture optimization could be applied simultaneously.
2The performance of HLS without CS increases from DD = 1 to DD = 2 because there is a dead cycle

in the circuit operation due to the memory latency and lack of data forwarding. Thus, moving to DD = 2
approx. duplicates the available time for the logic, while II increases only by 50%.

150

CHAPTER 10. STUDY OF THE CONDITIONAL STALLING TECHNIQUE

10.6 Discussion

For systems with 1-cycle-latency memories and single-stage processing, data-forwarding

will generally be a more suitable as it assures an II = 1, although it may have some

frequency penalties. However, as the dependency distance DD (function of the logic and

memory latencies) increases, it gets less and less effective. It is precisely here where

conditional stalling, CS, has a clear application. As illustrated by fig. 10.4, the larger DD,

the greater the potential performance increase CS can offer. This improvement is also

a function of the address distribution, but II will never be worse than the baseline. In

addition, these techniques can be used together, using data-forwarding to mask the write

latency (reducing DD) and CS to partially mask the remaining latencies3. For example,

for Intel eSRAM (12 or 13 cycles latency), this would allow a much higher performance.

Additionally, CS enables throughput improvements by tuning the processing pipeline

depth. However, notice that CS can be a double edge sword (see fig. 10.5), since this

technique magnifies the diminishing returns of pipelining. Thus, we may end up with

a higher area and a slower system. To actually increase throughput, knowledge of

the application and of how frequency varies with the number of stages is necessary.

Nowadays, obtaining the latter is easier than it was in the past, given that an HLS

compiler can automatically iterate over increasingly deeper pipelines and gather timing

data (pre- or post-RTL-synthesis estimations, or post-RTL-implementation).

Then, when the address distribution, the mean collision probability (Pc), or a rep-

resentative input vector is available, mathematical and/or simulation models can be

employed to optimize the logic depth and compute the required buffers for a given con-

fidence level. Of course, the distribution might not be stable or very little information

about it might be available. In these cases, taking a pessimistic approach, assuming a

very skewed distribution might be a viable option. A naïve attempt to limit pipelining

would be that if DD >= C, the logic depth should not be increased. However, this is not

very useful as, even with zero pipelining penalties, the throughput increase after this

point is almost null. As future work, we would like to study the implementation of an

adaptive system with multiple processing units of varying depth (and clock frequency),

choosing at runtime the higher throughput alternative according to the collected conflict

statistics.

Finally, CS enhances portability and functional robustness. A design may ignore

a dependency because it is not true given known input data properties, but if these

3For CS to effective, slow memories have to queue enough requests without significantly increasing
the latency (which also has to be bounded to use CS).

151

CHAPTER 10. STUDY OF THE CONDITIONAL STALLING TECHNIQUE

properties change or the design is reused in another system, it might fail. CS ensures

that designs will always be functionally correct.

10.7 Conclusion

In this chapter, we have studied the conditional stalling technique, a throughput

optimization for logic with data dependencies. This dynamic scheduling method consists

of running a pipeline at full rate when no conflicts are detected, using scheduling

logic to insert bubbles to ensure that no dependency is violated. We implemented two

HLS designs and analyzed the footprint and frequency penalties associated with this

optimization. As a result, we observed that the alternative with decoupled scheduling

logic architecture will not generally present frequency penalties and has a low area

footprint.

We also examined the performance when using this method as a function of input

data and architecture characteristics, with the goal of understanding when to use

it and how to optimize throughput. We showed that, even in adverse cases, it can

significantly enhance performance, particularly when unavoidable latencies are present

in the dependency path. However, we demonstrated that to correctly optimize throughput,

we must take into account both the address statistics and the evolution of frequency

as the pipeline is deepened. Previous works have not considered this, and as a result,

applying the technique led to poor improvements or even to a slower and higher area

system. Finally, this optimization could be integrated within HLS compilers, which can

use the models here provided to make design decisions, resulting in better quality of

results and increased designers’ productivity.

Example systems, as well as the developed simulation and mathematical models, are

available through a public repository.

152

C
H

A
P

T
E

R

11
AUTOMATIC PARTITIONING AND RESOURCE BALANCING

T
his chapter presents and evaluates our novel tool for system partitioning and
resource balancing. It addresses a set of problems that emerge when scaling up
FPGA accelerators in multi-SLR and multi-FPGA platforms. The utilization
of this optimization increased the frequency and computational units per

area of the tested CNN dataflow accelerators, demonstrating up to a 103% performance
improvement over an already optimized monolithic implementation. Targeting multi-
node platforms allowed to increase compute density further, and when combined with
model-parallelism, enabled lower latency and more power-efficient implementations.

This chapter is based on the work published in [83]: Alonso, T., Petrica, L., Ruiz, M., Petri-Koenig J.,
Umuroglu Y., Stamelos I., Koromilas E., Blott, M. & Vissers K. (2021). Elastic-DF: Scaling Performance of
DNN Inference in FPGA Clouds through Automatic Partitioning. ACM Trans. Reconfigurable Technol.
Syst. 15, 2, Article 15 (June 2022), 34 pages. https://doi.org/10.1145/3470567. © 2021 Association for
Computing Machinery . This project was done in collaboration with the Xilinx Research Labs in Ireland,
working as a research intern and later as a visiting scholar. Also, the implementations’ evaluation was done
with the help of InAccel (https://inaccel.com/). My main contributions in this project were formulating
the ILP optimization, developing its implementation, building the accelerator prototypes here presented
(including debugging and performing the initial performance assessment), collaborating on the effort to
provide support in the FINN compiler for the tested CNN models (including additional optimizations) and
co-designing the tool evaluation testing methodology).

153

https://inaccel.com/

CHAPTER 11. AUTOMATIC PARTITIONING AND RESOURCE BALANCING

11.1 Introduction

As our data processing needs grow, larger systems will be deployed using FPGAs.

However, as described in chapter 6 complex optimizations need to take place to achieve

efficient implementations. This is particularly true for designs that do not fit in a single

monolithic FPGA region (SLR). For these, it is more important to consider logic placement

to avoid large frequency penalties due to very long paths. Even with today’s large FPGAs,

which have in the order of millions of logic cells, there are systems that do not fit within

a single chip and also multi-chip implementations can allow higher density deployments,

and thus, optimizing costs. What is more, given that a global point of view is required,

FPGA implementations often leave unused large proportions of FPGA resources, missing

the opportunity of better compute density (performance/area).

We propose a novel tool to address these optimizations in a unified fashion. This tool,

based on integer linear programming, allocates dataflow (chain of modules running in

parallel) hardware implementations to FPGA tiles considering resource and connection

constraints. Additionally, the tool can accept a set of versions for each module (with

equal functionality, but different resource utilization profile, e.g., using LUTs instead of

DSPs for an arithmetic operation) and it will choose the most appropriate one given the

optimization goals and constraints (different module instantiations may use a different

version). The tool supports multi-FPGA deployments, instantiating, when necessary,

communication infrastructure between chips for intermediate results transmission

without host CPU intervention. The tool implementation and code exemplifying its

application to FINN CNNs for frequency optimization are available through public

repositories [120, 178].

11.2 Partitioning and Resource Balancing Tool

In this section, we explain what the tool does, how it works, and how it is implemented.

11.2.1 Implementation Flow

Given that to optimize some wire connections, like reset and memory interfaces, it is

necessary to know, at least approx., the final placement of the module, logic placement is

done in two steps. Resource balancing also needs to take into account placement before

version instantiation, and thus, also requires a two-step process.

154

CHAPTER 11. AUTOMATIC PARTITIONING AND RESOURCE BALANCING

The first step is the floorplaning and version instantiation one, which consists of a

coarse placement, where module versions are assigned to tiles. In Xilinx Vivado, tiles are

pBlocks, which are defined by the user and can be from a whole FPGA to an SLR or a

fraction of it, like a clock region. After this, logic connections are performed considering

the floorplan, then the system goes through logic synthesis, and finally, the second

placement step, P&R. In the floorplaning step, soft pBlocks are used, which allow module

logic to spill over the pBlock boundaries, giving P&R more freedom, and thus, in principle,

implementations should be at least as optimal as those of using hard pBlocks (no spill

over allowed).

The floorplaning step is done by our tool using resource estimates for each of the

modules. There are several ways for the user to get these estimations. In general, for

RTL designs, post OOC synthesis estimates may be used, while HLS IPs may also use

the ones provided by the HLS compiler. If the module resources have been previously

modeled, estimates might be obtained directly from its parameters, like FINN can

do [179]. The FINN model and HLS estimates are not, however, as precise as those after

OOC synthesis, which are very similar to the final results after P&R, but they require

more time. The most suitable estimation method depends on the context (e.g. prototype

vs production phases).

11.2.2 Tool Capabilities

Given the accelerators and target platform description, provided by the user, the tool

will search viable allocations. The accelerator description specifies the modules that com-

pose it and their compute and communication (bandwidth/pins) resource requirements.

The platforms are described as a set of tiles, each of which provide compute resources

and are connected though communication resources. As in the case of the platform tiles,

the granularity of the accelerator modules is defined by the user. For CNNs accelerators,

for example, we may choose CNN layers. To control congestion, the user provides limits

to the utilization rate for each of compute resource and/or to the average utilization rate

of a set of them, which are applied to each tile. Therefore, a viable allocation consist in

an assignment of each module to a tile, such that the resource constraints are respected.

Anchoring Modules For several reasons, the user may need to restrict the location

of a module to a subset of tiles, for example, due to the location of certain interfaces.

Additionally, the user may want to force two modules to be in the same tile, for example,

those that access off-chip may be forced to be placed together to avoid the implementation

155

CHAPTER 11. AUTOMATIC PARTITIONING AND RESOURCE BALANCING

Available
Fabric

SHELL

DDRCTRL

((a)) SLR minimization

DDRCTRL

SHELL

((b)) Congestion minimization

Figure 11.1: Alternative system partitioning strategies. Source [83]

of multiple interfaces. Both of these anchoring types are supported by the tool, using the

name absolute anchor for the former and relative anchor for the latter.

Allocation Optimization For any given instance, there might be multiple viable

allocations. From this set, the tool will choose those with the minimum communication

cost, which is a function of the hardware platform. For example, module connections

across FPGAs are less desirable compared to those within a single chip, as the former

require more logic and energy. In general, we may use these communication costs to

implement higher level partitioning goals. For example, an SLR minimization strategy

would reduce renting costs in a datacenter multi-tenancy scenario, which can be obtained

penalizing SLR crossings, resulting in an implementation as fig.11.1(a) illustrates. Alter-

natively, we may want to minimize congestion for the given platform, reducing resource

utilization limits until the desired congestion equalization is achieved or there are no

viable solutions (going from the system in fig.11.1(a) to that of fig.11.1(b)). In this latter

case, SLR crossing penalization are still useful as a way to minimize them, given that

these crossings limit place and route within a tile. Thus, a large amount of SLR crossings,

albeit below the number of super-long lines (SLL, paths connecting SLRs), may lead to

frequency penalties.

Multi-Dataflow Systems As commented indicated in section 6.3.2.3, there are situa-

tions in which we may want to implement multiple accelerators, which is supported by

the tool, enabling data-parallelism, modules communicating through external memory,

or, in general, to obtain a globally optimized implementation of multiple systems in a

single platform.

Choosing Model-Parallelism Alternatives In chapter 6, we introduced model-

parallelism, indicating that it basically consists of multiple nodes (chips) implementing a

fraction of a single large DFA accelerator, but there are several partitioning alternatives

from the accelerator interface point of view. Each of the three approaches, illustrated

156

CHAPTER 11. AUTOMATIC PARTITIONING AND RESOURCE BALANCING

H
O
S
T

H
O
S
T

((a)) SWMP

H
O
S
T

H
O
S
T

U
D
P

U
D
P

AXI PCIe UDPTCP

((b)) HWMP

H
O
S
T

U
D
P

U
D
P

H
O
S
T

((c)) TMP

Figure 11.2: Model parallelism alternatives for dual-FPGA implementations. Source [83]

by fig. 11.2, has advantages and disadvantages. Software model-parallelism (SWMP) re-

quires the hosts to share intermediate results, but it does not dedicate logic to implement

FPGA-to-FPGA communication. In hardware model-parallelism (HWMP), the intermedi-

ate result transmission is done without host intervention, favoring lower latency. Finally,

transparent model-parallelism (TMP) interfaces to the host as if the implementation was

single-node and only needs a single host after the initial set-up, but this requires more

connection resources. A priori, neither of these alternatives will consistently result in the

most efficient implementation, for example, in terms of congestion equalization. The set

of possible allocations for each of them will generally differ (e.g. TMP will have the first

and last nodes in the same FPGA while HWMP may not), and thus the efficiency and the

viability of the implementation depends on the specific resource profile of the accelerator.

Setting the platform connection options and the anchors appropriately determines the

set of MP alternatives available. For example, TMP can be forced enabling direct FPGA

communication and anchoring the last module of the accelerator to the first one.

Generic Nature Finally, notice that although developed for FPGAs, the tool is not

technology-specific. In principle, the tool can be used to partition for heterogeneous plat-

forms. In such cases, different versions of a module may correspond to implementations

in different technologies, such as FPGA fabric, µP, GPU or AI engines [180], each of

which will have their own type of resources.

11.2.3 ILP Formulation

In this section, we describe the ILP formulation of the optimization problem.

157

CHAPTER 11. AUTOMATIC PARTITIONING AND RESOURCE BALANCING

11.2.3.1 Input Definition

Dataflow Graph The task graph T = (Tn,T e) carries the information regarding the

computations to be implemented, where Tn represents the set of DF nodes, e.g. CNN

layers, and T e represents the set of connections between nodes.

Each node p ∈ Tn is defined for the purposes of partitioning by its potential imple-

mentations and their respective resource utilization profiles. We denote the set of node

resource types as Un and d = |Un| is the total number of node resource types. For FPGA

implementations, typical resource types are LUTs, FFs, DSPs, BRAMs and URAMs

so d = 5. Each possible node implementation v ∈ p is therefore a vector in Qd or Nd
0

specifying the utilization of each resource type for that implementation. For example,

we can have a version using DSPs for a certain computation and an alternative version

using LUTs. We denote tn
p,v,un the requirement of resource type un ∈Un of version v ∈ p

of task p ∈ Tn .

Each task edge is an ordered pair k = {p, q} ∈ T e which establishes a connection from

task node p to task node q, i.e. the output of task node p is the input of task node q.

We denote the set of connection resource types as U e. For multi-FPGA accelerators,

connections between task nodes can be established through dedicated wires if task nodes

reside on the same FPGA or through shared chip-to-chip connectivity if nodes reside on

different FPGAs. The number of wires and off-chip throughput define the set of resource

types in this example. We denote te
k,ue the edge requirement of resource type ue ∈U e

associated with task edge k ∈ T e .

Compute Platform The graph C = (Cn,Ce) describes the target platform. Each node

in Cn represents a compute unit we can assign tasks to, for example, for Multi SLR

FPGA devices it can be a SLR, or otherwise a pBlock or even a whole FPGA device. Each

compute node i ∈ Cn provides a certain amount cn
i,un of each resource type un ∈Un. Each

edge in Ce establishes a connection between compute nodes i and j and provides up

to ce
i, j,ue of each connection resources type ue ∈U e. For example, a connection between

SLRs residing on the same FPGA may provide a large number of wires (SLL) but no

off-chip throughput, whereas a connection between SLRs on different FPGAs will provide

no wires and some off-chip throughput.

11.2.3.2 Constraining the Partition

To be able to set utilization ratios for the compute resources, a limit lun ∈ [0,1] is

provided for each resource type un ∈ Un. Average utilization constraints of the form:

158

CHAPTER 11. AUTOMATIC PARTITIONING AND RESOURCE BALANCING

Avg(un
0 ,un

1 ,un
2 , ..) < l are defined by a list Au of tuples {l, M}, where l ∈ [0,1] is the

average utilization limit and M ⊆ Un is the subset of resource types included in the

average.

Anchoring constraints are specified through two lists of tuples: Aa and Ar correspond-

ing to absolute and relative anchors respectively. Each tuple {p, N} ∈ Aa restrict a task

p ∈ Tn to be placed in a subset of compute nodes N ⊆ Cn. Each tuple {p, q} ∈ Ar forces

task p ∈ Tn to be in the same compute node as task q ∈ Tn.

11.2.3.3 Optimizing the Partition

The partitioning algorithm described herein maps the task graph to the compute

graph, within the constraints specified. In addition, we want to optimize placement and/or

connections of the task nodes. For this, we use an additional matrix, the connection

cost matrix Cc. The element cc
i, j ∈ Cc is the cost associated to the connection between

compute node i and j.
The partitioning is expressed as an Integer Linear Program (ILP). For the formulation

of the problem, we use two sets of binary variables, the edge map Me and the node map

Mn . The edge map variables me
i, j,k ∈ Me state whether the task dependency k connects

a task node mapped to compute node i with a task node mapped to compute node j.
The other set of auxiliary variables are the node map variables mn

i,p,v ∈ Mn, that state

whether the version v of task node p is assigned to the compute node i.
Finally, the ILP formulation is:

minimize
∑

i∈Cn

∑
j∈Cn

∑
k∈T e

me
i, j,k∗cc

i, j(11.1)

Subject to:

(11.2) ∀p ∈ Tn :
∑

i∈Cn

∑
v∈p

mn
i,p,v = 1

∀k = {p, q} ∈ T e,∀i ∈ Cn :
∑

j∈Cn
me

i, j,k =
∑
v∈p

mn
i,p,v(11.3)

∀k = {p, q} ∈ T e,∀ j ∈ Cn :
∑

i∈Cn
me

i, j,k =
∑
v∈q

mn
j,q,v(11.4)

(11.5) ∀i ∈ Cn,∀un ∈Un :
∑

p∈Tn

∑
v∈p

mn
i,p,v ∗ tn

p,v,un ≤ cn
i,un ∗ lun

(11.6) ∀{i, j} ∈ Ce,∀ue ∈U e :
∑

k∈T e
me

i, j,k ∗ te
k,ue ≤ ce

i, j,ue

159

CHAPTER 11. AUTOMATIC PARTITIONING AND RESOURCE BALANCING

Here, eq. 11.2 forces each task node to be placed once and only once. Constrains 11.3

and 11.4 create the link between Me and Mn, that is, these variables are not independent.

For each task edge k = {p, q} ∈ T e, there are compute nodes i and j such that me
i, j,k = 1.

Then, by definition there must be v0 ∈ p and v1 ∈ q such that mn
i,p,v0

= 1 and mn
j,q,v1

= 1,

respectively. Resource limitations are set by eq. 11.5 and 11.6 for node resources and

connection resources, respectively.

Applying anchors The formulation for these constraints is:

(11.7) ∀{p, N} ∈ Aa :
∑
i∈N

∑
v∈p

mn
i,p,v = 1

(11.8) ∀{p, q} ∈ Ar,∀i ∈ Cn :
∑
v∈p

mn
i,p,v =

∑
v∈q

mn
i,q,v

Applying average utilization constraints Defining Cn
M as the subset of nodes in

Cn for which un > 0 for un ∈ M, the formulation for these constraints is:

(11.9) ∀{l, M} ∈ Au,∀i ∈ Cn
M :

1
|M|

∑
un∈M

1
cn

i,un

∑
p∈Tn

∑
v∈p

mn
i,p,v ∗ tn

p,v,un ≤ l

11.2.4 Partitioner Implementation

The developed ILP formulation is generic, i.e. can partition any DFA for any platform

as long as these are specified appropriately. For this work, the partitioner was imple-

mented in Python using the ILP solver provided by the mip [181] module. The resulting

partitioner is relatively fast. For a graph consisting of 100 nodes targeting a platform of

10 SLRs with resource utilization approaching the target resource limits, the runtime is

only a few seconds. The partitioner can be easily integrated into any framework which

provides per-layer resource estimation and infrastructure to pass placement constraints

into the design at build time.

11.2.5 FINN Integration

Figure 11.3 illustrates how our partitioner integrates with the FINN compiler. A

custom FINN analysis pass translates between the FINN intermediate representation

(IR) and the partitioner task graph. The compute graph is generated by custom code

which describes platforms, which were described at the SLR level. Anchors are optionally

provided by the user as arguments to the analysis pass. Based on the partitioner solution,

the location and configuration of each node is stored in the IR. Later in the DFA build

160

CHAPTER 11. AUTOMATIC PARTITIONING AND RESOURCE BALANCING

Brevitas

Streamline HLS
Conversion Folding

Resource
Estimation Floorplan Vitis Build

Partition
ONNX

Generate Partitioning
Solution (ILP Solver)

ONNX

JSON

Figure 11.3: Integration of the ILP partitioner into FINN. Source [83]

process, the location attribute instructs FINN to separate the model into partitions, i.e.

contiguous layers allocated to the same region. Subsequently, each partition is converted

into a Vitis kernel and linked by the FINN backend to produce a bitstream.

11.3 Tool Evaluation

11.3.1 Experimental and Implementation Setup

Communication Infrastructure For the FPGA-to-FPGA connectivity, we use the

Vitis network layer [182] (VNx), which implements the UDP/IP protocol over a 100GbE

link in the FPGA fabric. This kernel requires 35K LUTs, 86K FF and 183 BRAMs,

achieves 100% of the UDP bandwidth (function of packet size), dissipates 6 Watts at full

throughput and has a client to user latency of about 0.5 µs for point-to-point connections.

These specifications are sufficient for our application. Although other communication

systems might be more efficient in terms of bandwidth, latency, and resources, VNx

provides great flexibility as Ethernet connections are generally available in accelera-

tion cards, the connections between FPGA can be easily reconfigured without rewiring

(e.g. connecting FPGA through a packet switch or router) and there are no co-location

restrictions between chips.

ETH Zurich XACC The implemented systems were deployed and tested in the Xilinx

Adaptive Compute Clusters (XACC [183]) in the ETH Zurich. This evaluation cluster

consists of four servers, two of them with 2xU250 Alveo cards and the other two with

a 1xU250 + 2xU280 configuration. To provide connectivity, one of the two 100 GbE

interfaces of the Alveo cards and the server’s NICs are connected to a switch, while

the other acceleration card interfaces are used for direct connections among them. The

XACC was chosen given that it provides the necessary acceleration and connectivity

161

CHAPTER 11. AUTOMATIC PARTITIONING AND RESOURCE BALANCING

infrastructure expected to be found in datacenter environments, plus it is open to the

research community, and thus, facilitates results replication.

Software for runtime execution For the FPGA accelerator instantiation and configu-

ration XRT [184] and PYNQ for Alveo [185] are used, while the multi-node orchestration

is done with Dask [186] and InAccel Coral [187]. To support multi-FPGA accelerators, In-

Accel developed a custom runtime, enabling initialization-time configuration of the VNx

and runtime synchronization between accelerator segments where applicable (HwMP,

SwMP). This runtime abstracted the multi-node aspects, enabling the use of the existing

InAccel MLPerf test harnesses with no changes to application code.

Platform and Accelerator description Platform tiles correspond to FPGA SLRs,

and their available resources were obtained from Vivado-generated reports instead

from the cards’ documentation [188], as we found the former to be more accurate. For

multi-node system evaluation, we used dual-FPGA platforms with 100 GbE connection

between them, either using VNx or the host NIC. We applied absolute constraints to

ensure DMAs were placed in SLRs which have access to off-chip memory interfaces.

Although U280 cards have both HBM and DDR, the HBM was used by default. As for

resource estimates for DFA layers, OOC synthesis estimations are employed. In most

cases, pipeline registers or FIFOs were inserted to cross SLR boundaries.

Build configuration Regarding the implementation flow, Vitis 2020.1 was used to

perform partitioned kernels connections, SLR allocation and implementation, and we

utilized U250_XDMA_201830_2 and U280_XDMA_201920_3 platforms for U250 and

U280, respectively. A high effort process was used to implement the accelerators, selecting

the highest Vitis optimization level (-O3). In addition, PHYS_OPT_DESIGN phase and

post-route TNS cleanup were activated, plus ExploreWithRemap directive was used for

OPT_DESIGN phase, while Explore directive for PLACE_DESIGN, ROUTE_DESIGN,

and PHYS_OPT_DESIGN. Finally, to eliminate the typically high variability in the

resulting Fmax when changing the Vitis target frequency, each build was run multiple

times with target frequencies ranging from 180 to 240 MHz in increments of 10 MHz,

and we kept only the build with the highest Fmax. Although a more complex build process

could be used to better evaluate the impact of our optimizations on maximum frequency

(for example, using implementation strategy sweeping), we regard it as a good balance

between data quality and the number of systems we can build for evaluation (the process

it is very time-consuming).

162

CHAPTER 11. AUTOMATIC PARTITIONING AND RESOURCE BALANCING

11.3.2 Effect of Partitioning on Operating Frequency

Table 11.1: Fmax of baseline and partitioned single-node DNN accelerators. Source [83]

Accelerator Card #DFAs
Fmax Monolithic

(SLR0/SLR1)1
Fmax

Partitioned Speedup

RN-50 U250 1 109 / 154 193 1.74 / 1.25
RN-50 (Fold 2x) U280 1 123 / 208 217 1.76 / 1.04

MN U250 2 110 / 142 210 1.90 / 1.48
MN U280 1 152 / 215 241 1.58 / 1.12

1 Control signals and DDR interface connected to the specified SLR ports.

To evaluate the impact of partitioning (as performed by our tool) on clock frequency,

we implemented single-FPGA MN and RN-50 accelerators targeting U250 and U280.

Folding factors and number of DFAs were configured to achieve large resource utilization

rates. For each accelerator, three connection configurations were used. Two of them

employed monolithic DFA kernels, connecting its control signals and DDR interfaces

either to SLR0 ports (Vitis default configuration) or to the more central (SLR1). The third

configuration used kernels partitioned by our tool (aiming at equalized congestion) with

its ports connected to the corresponding SLR where it was placed. A single version of each

DFA module was provided so that the total resource utilization rates are approx. the same
1. As previously commented, frequency sweeps were performed for each configuration

from 180 to 220 MHz (5 builds each).

Table 11.1 presents the maximum frequencies achieved for each configuration, along

with the relative speedup. These results show that when the port location for the

monolithic kernel is optimized (using SLR1 ports instead of SLR0 ones), frequency

increases significantly, particularly for the U280 implementations. The FPGA in U250

has 4 SLRs while U280 has 3 of them, then the reset logic on SLR4 has to still traverse

2 SLR crossings and/or conditions logic placement more strongly, which explains the

larger frequency penalty U250 implementations exhibit. However, the partitioning

created be our tool further improved the operating frequency resulting, on average, in

an 75% and 22% increase, compared to the Vitis default and the port location optimized

configurations, resp. Again, for the same reasons explained above, the U250 builds show

a more pronounced improvement.

It is also worth noting that we observed an increased routing success rate when

the design was partitioned. For example, for RN-50 (baseline), 3 out of 5 builds (with
1Optimizations, like constant propagation and logic replication, may create some discrepancies

163

CHAPTER 11. AUTOMATIC PARTITIONING AND RESOURCE BALANCING

different target frequencies) failed using the default configuration, 2 of 5 failed in the

optimized case, but all builds succeeded for the partitioned DFA. We also observe a

reduction in total build runtime by approximately 10% when using partitioning.

11.3.3 Effect on Compute Density

Table 11.2: Comparison of compute density achieved by the ILP tool for single- and
multi-node implementations, and with and without multi-version resource balancing
against the optimized monolithic implementation for MN targeting U280 Alveo cards

#DFA Fmax #Cards FPS/Card Speedup

Monolithic SLR 1 1 215 1 1920 1.00
Simple-node 1 241 1 2152 1.12
Dual-node 3 227/230 2 3040 1.58

Dual-version 2 218 1 3893 2.03

For this application, we measure compute density as FPS/area (computed from

accelerator specifications), or given that we limited the analysis to U280 cards, we may

use FPS/Card. To evaluate the capacity of our tool to improve this efficiency measure, we

compare against the results achieved by the optimized monolithic implementation for

the MN CNN targeting U280 Alveo, presented in section 11.3.2. As previously seen, in

this case, partitioning the single-version MN DFA the shows a modest 12% improvement

given that U280 has only 3 SLRs. In this scenario, where partitioning has a lower impact,

we tested the impact of the partitions on compute density when the number of nodes

increased, and when there were more versions of each module. Table 11.2 presents the

results of this evaluation.

H
O

S
T

SLR0 SLR1 SLR2

H
O

S
T

SLR2 SLR1 SLR0

V
N

x

V
N

x

Instance0

Instance1 Instance2

AXI

PCIe

UDP

TCP

MN module

Figure 11.4: Partition of 3xMN in 2xU280 (DP+TMP, default resource profile). Source [83]

164

CHAPTER 11. AUTOMATIC PARTITIONING AND RESOURCE BALANCING

11.3.3.1 Dual-Node implementation

The partitioning result using single-version MN modules is illustrated in fig. 11.4,

where it can be appreciated that the tool was able to squeeze an additional DFA, using

the spare SLR from the FPGA on the right, while balancing congestion in the FPGA

on the left using a TMP configuration. This is achieved with only a 5.8% frequency

penalty, resulting in a 41% compute density improvement overall (58% if compared to

the baseline). Notice the good frequency balance achieved as one FPGA implementation

reaches 227 MHz while the other 230 MHz. Another sign of the quality of the partition

is the reduced number of SLR and FPGA crossings that it presents.

Although fig. 11.4 shows how a single user would exploit it, this implementation

provides a good example of the increased efficiency that could be achieved using the

tool in an FPGA multi-tenancy scenario, given that the additional DFA uses a TMP

configuration, and thus, from the host point of view, it is implemented in the FPGA on

the left. The host on the left would be renting 4 SLRs to implement 2 MN, while the host

on the left just 2 SLR for a single MN, and thus, each would minimize its costs, and the

overall energy consumption is lowered as 2 cards are used instead of 3. In this example,

the datacenter operator is providing with 66% of resources almost the same services

(there is some frequency penalty).

11.3.3.2 Improvement Through Resource Balancing

To evaluate the most advanced resource balancing capabilities of our tool, an ad-

ditional version of each module using DSP and URAMs was provided to the ILP tool.

As a result, it was able to squeeze another DFA in a single U280, with only a 9.5%

H
O

S
T

SLR0

Instance1 Instance0

AXI

PCIe
LUT/BRAM mod.

DSP/URAM mod.

SLR1 SLR2

Figure 11.5: Partition of dual-version 2xMN in 1xU280. Source [83]

165

CHAPTER 11. AUTOMATIC PARTITIONING AND RESOURCE BALANCING

Max. limit (Recomendation)Util. %

Figure 11.6: Resources per SLR for partitioning of dual-version 2xMN in 1xU280

frequency penalty, resulting in an 81% compute density improvement overall (103%

compared to the baseline). Fig. 11.5 show the partition solution, where the two types

of modules can be distinguished, and fig. 11.6 shows the resource rates per SLR of this

partition. To achieve this implementation, the tool chose a great mix of versions, and

we note that the tool does not always choose the same version for different instances

of a given module. Although fig. 11.6 shows high utilization rates, the implementation

presents a low frequency penalty, supporting the quality of the partitioning achieved

by the tool. complexity of balancing all these simultaneously. Despite the complexity of

this optimization task, where multiple resources need to be balanced, connection pins

between SLRs are limited, and it is desired to minimized SLR crossings, the tool requires

less than a second to solve this instance.

Notice that, in this case, BRAM would not allow increasing the number of DFAs/Card

(at least, not without great frequency penalties). Additional versions (for example, hybrid

ones) and lower grained DFA modules, would also open the opportunity for frequency

improvement. Finally, to enhance performance further, the MN DFA folding could be

reduced, but FINN did not support additional parallelism for the MN (see section 6.3.2.3).

11.3.4 Effect of Scale-Out Alternatives on Latency and Power

Four dual-node systems were implemented, one using data-parallelism (DP) and

three using model-parallelism (MP), one per each type (see 11.2.2). Given that FINN

cannot further increase the parallelism of the MN DFA, we use RN-50 targeting a

dual U280 platform. The MP systems use the two cards to implement a single RN-50

DFA with the baseline folding (II = 56 kcycles), while the DP system uses two folded

down DFAs (II = 112 kcycles), one per Alveo, given that the baseline-fold DFA does not

fit in a single U280. We measure the DFA inference latency, but also we use two test

scenarios of the MLPerf benchmark [189]: Single-stream (SS) test, which measures the

90th-percentile latency experimented by the application, and Multi-stream (MS), which

166

CHAPTER 11. AUTOMATIC PARTITIONING AND RESOURCE BALANCING

Table 11.3: Implemented ResNet-50 inference on two Alveo U280s at XACC. Source [83]

Parallelism
DFAs

(#) Fmax
Peak
FPS

DFA
Latency

(ms)

SS1

Latency
(ms)

MS2

50ms, P99
(Streams)

Cards
Power 3

(W)

DP (Fold 2x) 2 215 3513 2.72 5.71 58 134
SW-MP 1 215/230 3559 2.01 6.25 82 116

TMP 1 215/215 4 3374 1.52 4.08 109 121
HW-MP 1 220/235 3618 1.55 3.97 120 125

1 Single-Stream scenario measures the 90th-percentile application latency.
2 Multi-Stream scenario measures the number of streams that the system can serve in 50ms (P99).
3 Average power dissipated by Alveo cards (CPU and NIC not included) for batch size is set to 400.
4 Test run for old version with lower frequency (205/220 MHz).

focuses on latency-constrained throughput, measuring the 99th-percentile of the number

of streams (parallel queries) that the system can serve within 50ms.

For the DP instance, the default Inaccel Coral runtime is utilized to distribute

the data to the FPGAs and gather results, while the adapted runtime handles the

data movements for HwMP and SwMP. For the MP solutions, ≈ 40 Gbps (at peak

performance) are required for the communication between the FPGAs, while the DP

requires ≈ 0.84 Gbps. For robust operation, in TMP and HwMP dual-FPGA systems,

the frequency of both cards is set to the minimum of the two FPGAs Fmax, given that

UDP does not provide flow control. Table 11.3 presents the results of this evaluation.

As noticed in section 11.3.3.1, see that the achieved frequency of each node of a given

implementation is similar, which further supports the capacity of the partitioner to

equalize congestion.

Latency Analysis Although MP provides a slight FPS improvement due to the higher

achieved frequency (probably caused by the reduced OCM congestion), the greater impact

is on the DFA latency, which is almost halved by the TMP and HW-MP alternatives.

These two implementations, which use the direct FPGA-to-FPGA transmission of the

intermediate results (TMP in both directions), also achieve the best SS and MS measures.

TMP provides a 28.5% lower SS latency and 88% more streams in the MS test compared

to DP, while HW-MP improves them further, accomplishing 30.4% lower SS latency and

106% more streams (vs. DP). The other MP instance, SW-MP, has a noticeably higher

latency, which is explained by the fact that the host moves the intermediate results

(large amount of data).

167

CHAPTER 11. AUTOMATIC PARTITIONING AND RESOURCE BALANCING

Power Analysis Ideally, to evaluate the energy efficiency of the different implementa-

tions, given that they differ on their infrastructure usage, one would measure the power

consumed by the whole system. However, XACC does not provide meant to do this, so

only the Alveo card measures were obtained (see table 11.3). Then, TMP measures more

accurately the power required for the inference application (no host NIC data movement),

followed by HW-MP (peak NIC BW≈ 35 kbps), then DP-MP (peak NIC BW≈ 0.84 Gbps)

and, finally, (peak NIC BW≈ 40 Gbps). Each VNx IP consumes 6 Watts at full throughput,

which is half (or less) of what commercial 100 GbE NICs consumed [190, 191]. Note that

when using direct FPGA-to-FPGA transmission the data is already in the FPGA, while

using the host involves first moving the data to the NIC (either from the host memory, or

worst, from the FPGA, which requires one additional PCIe movement). Thus, although

SW-MP measure is the lowest, the whole inference task consumption is probably in the

120-135W range. Interestingly, TMP and HW-MP cards, which have no or little host data

movements, require less power than the DP cards. This can be explained by the fact that

folded down DFAs are less efficient in terms of FPS/area, as seen in section 6.3.2.2. As a

result, although the DP implementation does not have VNx instantiations, it requires

over 70% more LUTs, over 45% more BRAMs and a few more FFs and DSPs than any of

the MP implementations.

11.4 Discussion

11.4.1 Designer’s Productivity

The evaluation shows that our partitioner and resource balancer ILP tool can improve

several design quality measures of the tested large FINN CNN accelerators. Compared to

using monolithic kernels, it achieved increased frequency through adequate floorplaning

and reset logic, and also it enabled greater computational densities, in particular, target-

ing multi-node platforms and performing resource balancing with multi-version modules.

In addition, when combined with model-parallelism, latency was further reduced, and

lower power accelerators were obtained. Although only dataflow CNN implementations

were used in our analysis, the principles that our tool uses to perform the optimizations

are not application-dependent, but based aimed at solving the issues that emerge when

scaling-up FPGA systems, presented in section 6.3. Therefore, we expect that its use will

have a similar impact on other large FPGA designs that can expose a comparable module

granularity and structure. We have tested pipelines that can be represented as somewhat-

168

CHAPTER 11. AUTOMATIC PARTITIONING AND RESOURCE BALANCING

linear directed graphs (as exposed by FINN, not internally), which are common in many

FPGA applications like video, network packet, or signal processing pipelines. However,

and particularly for pipelines with more and more complex interconnections, additional

evaluation is required to confirm these results.

The designs presented by Petrica et al. [192] were partitioned manually. To perform

these simpler partitions (single-node, single-version, ≈ 15 modules), it would take ≈
30min each, which may need to be re-done due to changes in the design. This task is

not only time-consuming for humans, but also we can hardly demonstrate that we have

achieved an optimal solution except in elementary cases. In addition, this optimization

is based on hardware concepts, like resource balancing, critical paths and high fan-out

nets, limiting the capacity of developers without this lower level knowledge to obtain

efficient FPGA implementations. The automatization of this task, not only made us more

productive, obtaining the results in ≈ 1s for the presented systems, but also enabled the

creation of larger systems and to perform more complex optimizations. At the same time,

the tool achieved the best results given the optimization objective, providing high-quality

results like those illustrated by fig. 11.6 for the complex multi-version implementation

(see fig. 11.5).

11.4.2 Tool Scalability

Although the tool proved to be fast for designs many times larger than the presented

implementations, it has to be noted that given our use of an exact ILP solver, the tool

may not be sufficiently quick for designs with significantly more modules (for example,

because of exposing a very fine granularity) and more FPGA nodes. This problem can

be affronted by an initial approximate solution, for example, grouping modules, and

thus, simplifying the optimization. This initial solution can be then iteratively improved

by exposing finer granularity in the node boundaries, as implemented by the graph-

partioning algorithm presented by Henzinger et al. [193]. Notice that the use of this

latter step has its greatest impact for the partitions at the node level, but might not have

a significant effect within a given node. This is because of our use of soft pBlocks (see

section 11.2.1), and thus the P&R implementation step is allowed to move logic across

pBlocks tiles if it considers it necessarily to meet the target frequency.

169

CHAPTER 11. AUTOMATIC PARTITIONING AND RESOURCE BALANCING

11.4.3 Design Methodology

To be able to apply the presented optimizations, we required to implement the

accelerators as explicit interconnected modules (IP, kernels) as opposed to a monolithic

accelerator (single module accelerator with an internal dataflow that only exposes

input and output ports). Principally, this allowed to distribute the computational load

among multiple nodes and regions, and having a distributed control and reset logic for

modules implemented without the knowledge of the final layout. In addition, enabled to

optimize, based on global restrictions, the balance among FPGA resources. Therefore,

this modular design methodology permitted to circumvent the limitations of the available

tools, and to decouple floorplan and resource balancing optimizations from the design of

the accelerator logic. Alternatively, when only a monolithic design is available and using

Vitis to implement the system, it is advisable to use a centered SLR reset to reduce the

possible frequency penalties (see table 11.1).

11.5 Related work

11.5.1 Multi-SLR FPGA Partitioning and Optimization

FPGA design partitioning has been studied for multi-FPGA systems and different

integrating technologies aiming at diverse objectives, including timing closure, tempera-

ture and routability. Here, we focus on multi-die, interposer-based FPGA optimizations

targeting similar metrics.

Hahn et al. [194] proposed modified P&R cost functions, which improved the routabil-

ity of circuits (reducing the number of wires required to successfully implement it) and

slightly increasing speed when targeting multi-SLR FPGAs. That work was further im-

proved by Nasiri et al. [195], incorporating graph partitioning for logic assignment to dies

before placement, obtaining better routability. Furthermore, Lui et al. [196] optimized

implementation total wire length by separating the problem into multi-die floorplanning

and signal assignment steps, using an enumeration- and a network-flow-based algorithm,

respectively. Mao et al. [197] floorplans a set of fixed geometry rectangular modules (more

adequate for ASIC than FPGA design) to multi-die FPGAs using a two-step placement,

using a force-directed method followed by simulated annealing to refine the solution,

aiming for total delay optimization.

Kou et al. [198] designed an ILP-based algorithm to optimize the pin assignments,

minimizing the number of SLR crossings for multi-FPGA designs with the goal of im-

170

CHAPTER 11. AUTOMATIC PARTITIONING AND RESOURCE BALANCING

proving operating frequency. Voss et al. [199] presented a greedy-based algorithm to

facilitate timing closure of high-congestion implementations using multi-SLR devices.

Their algorithm aims at limiting inter-die communication achieving improved implemen-

tation feasibility through balancing the physical memory resources (LUTRAM, BRAM,

and URAM) of each separate module (circuit with high interconnection) of the design.

The main difference with our solution is that, while these tools need to maintain a

cycle-accurate circuit, we may modify the underlying logic to improve timing closure.

We connect modules to the appropriate control and reset controllers as a function of the

resulting floorplan and insert pipeline registers or FIFO to cross SLRs. What is more, we

perform resource balancing through partitioning and choosing module versions based

on global objectives and constraints. In addition to this, we natively support multi-node

platforms, minimizing the communication cost and limiting congestion globally.

11.5.2 Multi-node FPGA DNN Partitioning

In the state-of-the-art we can find many multi-node DNN FPGA implementations,

for which, as in our case, tools were developed to distribute the load. We focus on those

that distribute the hardware logic, as opposed to those that distribute the inference load

to an array of identical processing engines.

Tarafdar et al.[200] uses a greedy algorithm to distribute DFA layers to FPGA

nodes. Note that, although fast to implement and to run, a greedy partitioner will not

generally provide an optimal solution, neither guaranties good ones. What is more,

to obtain the useful TMP configuration, additional tiling of the nodes is required (to

be able to come back to the original tile), which in-turn worsens the quality of the

partition achievable by a greedy algorithm. Zhang et al. [201] presents a mapping

approach for asymmetric multi-FPGA architectures using a dynamic programming-

based partitioning that considers both resource and bandwidth constraints. They only

support linear networks (any non-linear one is transformed to a linear), while we support

any graph structure, including disjoint ones. This allowed us to optimize globally the

implementation of multiple accelerators, combining data- and model-parallelism. In

addition, they only perform monotonous partitions (not allowing to go back and forward

between tiles), and thus, it has the same problems noted for the greedy partitioner.

Zhang et al. [202] also proposed a dynamic programming algorithm. They create only

linear maps (monotone) of CNN layers to a homogenous FPGA cluster connected in a

ring network, either to minimize latency or maximize throughput.

171

CHAPTER 11. AUTOMATIC PARTITIONING AND RESOURCE BALANCING

Geng et al. [125] proposes FPDeep, which provides automatic partitioning and re-

source balancing of the training task graph to MPEs through a multistep approximation

algorithm. Their algorithm assumes N equal FPGAs, for which N connected sub-graphs

are generated, aiming at maximizing throughput using a non-linear optimization ob-

jective without apparent limitations to inter-FPGA communication requirements. Like

in the previous cases, they only support monotonous partitions. Because of this, they

resort to store parameters in a different node to the one where these parameters are

used, which requires additional communication resources and power, plus it is limited to

parameter memories balancing. FPDeep also performs compute resource balancing as a

fine-tuning step, after the partitioning is completed, but only allows trade-off between

two classes of resources.

Unlike those works, we do not impose restrictions on neither the compute platform,

nor on the accelerator network structure. One consequence of this, is that our tool may

perform intra-layer partitioning if the accelerator is exposed at that finer-grain level.

The tool minimizes the communication cost (generally providing the best solution2),

but any partition that fulfills the constraints is allowed (see figs. 11.4 and 11.5). When

appropriately setting the cost matrix, the minimization of this cost results in increased

computational density (see section 11.3.3). Also, we support heterogeneous nodes, re-

sources and connections. What is more, our tool handles, simultaneously, the intra-FPGA

(SLR) partitioning, and can accept multiple versions of a node allowing to further improve

the computational density of the solution.

Compared to the implementations presented in the reviewed works plus other rele-

vant ImageNet classification FPGA CNN accelerators found in the literature [203–205],

our dual-node accelerators obtain the highest FPS (one of them , 3xMN in 2xU280, by

a large margin). Note that a good quantitative comparison against other multi-node

accelerator implementations is hindered by the fact that these designs differ in FPGA

technology, CNN topology, language abstraction level, variable quantization, tensor

sparsity, and implementation, software driver design and training effort. However, this

result does support the quality of the partitions and the efficiency of the implemented

circuits. In addition, our designs can be further improved, for example, incorporating

more flexible scale-up through folding, optimized RTL components, or using techniques to

employ resources more efficiently (e.g., the optimization by Petrica et al. [192] to reduce

the OCM requirements of DFAs).

2Depending on the runtime allowed, the ILP solver might not prove that the solution is optimal.

172

CHAPTER 11. AUTOMATIC PARTITIONING AND RESOURCE BALANCING

11.6 Conclusion

We presented a partitioning and resource balancing tool, which solves a set of related

FPGA implementation problems in a unified manner in a single-stage global optimization.

In particular, it addresses the control set connection issue of large kernels in multi-SLR

FPGAs, and balances multiple resources across FPGA regions and/or chips, partitioning

the pipeline (allowing disjointed partitions in a region) and choosing between equiva-

lent versions of pipeline modules with different resource profiles. This is done while

minimizing the communication cost.

The application of this optimization increased the frequency and computational

units per area of the tested MobileNetV1 and ResNet-50-v1.5 dataflow accelerators,

demonstrating up to a 103% performance improvement over an already optimized

monolithic implementation. At the same time, the tool natively maps systems to a multi-

node implementation if it does not fit in a single FPGA, allowing to increase compute

density further and when combined with model-parallelism, enables lower latency and

more power-efficient implementations. Given the capabilities of the tool, we were able

to implement transparent model-parallelism, which simplifies multi-node accelerator

interfacing and also paves the way towards FPGA multi-tenancy.

To benefit from this optimization, it is necessary to move from a monolithic ker-

nel design methodology to one where accelerators are constructed by explicit smaller

multi-version kernels. As a result of its utilization, our design productivity was greatly in-

creased by simultaneously improving the implementation quality of results and reducing

design time.

Although it is expected that these results will extrapolate to other dataflow archi-

tectures, given that the developed optimization algorithm is generic, i.e. not based

on application characteristics, further evaluation using a more diverse set of designs

needs to be carried out to confirm this (informed) speculation. Given the generality of

the algorithm, a very interesting venue of future work is to apply this optimization

to heterogeneous platforms, that is, create hybrid (FPGA, CPU, GPU,...) mappings of

accelerators.

173

Part IV

Putting All Together

174

C
H

A
P

T
E

R

12
LESSONS LEARNED DESIGNING WITH HLS

I
n this chapter, surveying the literature in the matter and combining it with the
results and experience obtained in the realization of this thesis, we discuss the ben-
efits of using HLS and how to incorporate it in a hardware design methodology.
As a result, a series of methodological aspects were identified as the most impact-

ful. In particular, we observed that HLS can achieve great quality of results, leveraging
wider algorithmic exploration and function specialization. Also, we identify the benefits
of modular partitioning and refinement, and using a hardware oriented development
mentality.

12.1 Introduction

In the different explorations done throughout this thesis, many HLS prototypes were

built, although with different degrees of success. We reexamined what lead to success or

failure, and even in some cases, reimplemented systems. In this process, we observed

that, apart from the limitations HLS compilers still have, coding styles and design

methodologies also explained the quality of results (QoR). Depending on the coding style,

for example, the compiler might infer architectures with idle cycles (not processing data)

or be unable to increase the amount of parallelism.

The impact on performance can be great, for example, in [206] tuning and refactoring

175

CHAPTER 12. LESSONS LEARNED DESIGNING WITH HLS

code of a JPEG encoder (initially based on a software version) achieved a 647X throughput

improvement and a 221X latency reduction with only a 4X area increase. Singh et al. [207]

demonstrated for a maximum string match procedure that a CPU efficient code translated

into slow hardware. An alternative code, more suitable for static parallelization analysis,

allowed to implement a higher performing, parallel architecture. This was because the

compiler as not able to determine statically in the CPU code how much it could unroll

loops with data dependent bounds. Given its impact, many source to source compiler

optimizations have been proposed, among others, to improve scheduling by solving

dependencies issues or by considering data access patterns [159–161, 168–171, 208].

What is more, coding styles affected our capacity to identify optimizations. This is

because they sometimes they lead to implementations whose scheduling and architecture

were harder to analyze, and also, it was harder to understand the issues that prevented

achieving the desired performance from an algorithmic point of view. Conversely, an

appropriate code structure allowed to detect the system inefficiencies more easily and

even facilitated the circumvention of some limitations of the HLS compiler. For example,

the use of non-monolithic accelerators allowed us to obtain global resource balancing,

a reset structure aware of the physical layout (chapter 11), and have multiple clock

domains for C++ modules (chapter 8).

In this chapter, surveying the literature in the matter and combining it with the

results and experience obtained in the realization of this thesis, we discuss the benefits

of using HLS and how to incorporate it in a hardware design methodology.

12.2 Incorporating HLS for Better Productivity

12.2.1 How HLS Improves Productivity

Given the limitations HLS compilers have, why using it? A recent literature review

analyzed 46 studies that compared RTL versus HLS implementations of a given system

in different application areas. They reach the conclusion that although RTL designs

provided higher QoR, the productivity (performance/dev. time) using HLS was 4.4 times

better than with RTL [14]. In typical designs, only a subset of procedures limits perfor-

mance below requirements. Given that, from our experience and the mentioned literature

review, the performance of HLS modules is often not far apart from RTL ones, we expect

that HLS would provide many good enough modules for deployment, and thus, reducing

development time and costs.

176

CHAPTER 12. LESSONS LEARNED DESIGNING WITH HLS

12.2.1.1 Performance Through Wider Algorithm Exploration

For a given design, the QoR obtained by HLS is an lower bound to what RTL can

achieve. However, for a fixed development time, HLS not only allows a more comprehen-

sive DSE, but in particular, a wider algorithm exploration. For example, the LOCO-ANS

HLS implementation achieves the highest throughput JPEG-LS pixel near-lossless

decorrelation. The discovery of an alternative (mathematically equivalent) algorithm to

reconstruct the quantized pixel was one of the main reasons the previous RTL designs

were superseded. This algorithm was not implemented in the initial design, but devel-

oped after confirming the location of the bottleneck. Once identified the optimization, a

functional system was obtained and tested in the FPGA in a few hours. Table 12.1 shows

the QoR impact of this optimization. As it can be seen, not only frequency increased by a

33%, but also most resource requirements decreased.

Conversely, in RTL design, more time is devoted to microarchitecture design, writing

code, and performing verification, and therefore, leaving less time for algorithm design.

In addition, algorithmic changes might not be properly considered after the RTL im-

plementation, as they can require a great design and re-code effort. Alternatively, a

thorough algorithmic optimization can be done before RTL development, but often this

will imply spending time in parts of the system that have little impact on QoR. HLS

allows avoiding these premature optimizations, enabling easier incorporation of later

algorithmic changes.

Note that, although mathematical equivalencies provide a vast source of optimiza-

tions, there other sources. For example, using alternative data access patterns (e.g.

loop tilling or reordering nested loops.), approximations (e.g. CORDIC [209]), using

alternative numerical formats (e.g. using block floating point of the FFT [210]), or bit

manipulations (e.g. the fast inverse square root [211]). De Fine Licht et al. [212] provides

a set of transformations to HLS code to improve performance, particularly useful for

high-performance computing applications1.

Table 12.1: Frequency and resource variation due to the using of the alternative algorithm
to reconstruct the quantized pixel

Part Freq(%) LUT (%) FF(%) BRAM (diff.) DSP (diff.)

Z7020 33.2% -11.3% -4.0% +1 -1
ZUS+ 33.6% -9.7% -4.2% + 1 -1

1A small note on the work by de Fine Licht et al. [212]. Among others, they propose loop fusion as a
pipeline enabling transformation. Considering the key aspects detailed in section 12.3.1, we encourage

177

CHAPTER 12. LESSONS LEARNED DESIGNING WITH HLS

12.2.1.2 Performance Through Module Specialization

Another important source of productivity when using HLS is module specialization.

That is, having a module optimized for a given set of parameters and/or fixed inputs.

Although RTL designs benefit from constant inputs through netlist optimizations like

constant propagation, HLS compiler can make more thorough optimizations of the

architecture. A good example of this is the LOCO-ANS decorrelator optimized just for

lossless compression operation. The removal of the quantization logic, plus the logic

simplification that arises from using only NEAR = 0, led to significant changes in the

scheduling of the pipeline. This allowed going from an I I = 2 to I I = 1 with approximately

a 25% frequency penalty in the tested technologies, that is about a 50% throughput

increase. Given that just a few lines of C++ code needed to be modified, in less than one

hour we could test the system in hardware.

In particular, leveraging C++ templates to ease these module specializations, im-

proved QoR, rivaling or even superseded RTL, can be achieved [213, 214]. The FINN

hlslib [117], employed and expanded during the development of the CNN accelerators,

provides a good example of the use of templates in HLS designs. Here, templates are not

only used for parameter customization but also as a way of decoupling the control path

from the datapath, and thus, favoring code re-use. This is achieved using template class

arguments to define datapath operations.

12.2.1.3 Boosting Productivity in Early Design Stages

HLS has also proved to be a very useful tool, even when it has not considered

for deployment. First, being able to translate higher-level descriptions to hardware

allows faster hardware-algorithm co-design (which), as it facilitates the obtaining real

feedback. Also, it enables earlier system integration, and thus, among other benefits,

enhancing parallel driver software debug and optimization [214]. In addition, it eases

this system integration as HLS design becomes functionally correct faster than RTL

ones [215]. Having an integrated functionally correct system available allows accurate

determination of system bottlenecks. Also, it enables gradual integration of component

refinements, and thus, it accelerates system optimization as the identification of the

source of an issue is faster.

the use of dataflows instead of loop fusion for increasing throughput and routability. They recognize that
routability may be negatively affected by this transformation, and thus, can carry frequency penalties. An
example of how loop splitting enabled higher frequencies was presented in section 10.2. Loop fusion will
normally have a slight latency and possibly an area advantage.

178

CHAPTER 12. LESSONS LEARNED DESIGNING WITH HLS

12.2.2 Software vs Hardware Development

Although the HLS uses languages that were originally designed for software or

inspired by them, the same code styles and methodologies do not generally apply [212].

This is because, among other reasons, HLS does not target an ISA but a circuit, and

thus, the implications of code might be fundamentally different. For this reason, vendors

provide recommendations of how to best design for HLS [216, 217].

Sun et al. [206] also recognized that software and hardware developments achieve

high performance through different means, and as a consequence, in some cases it was

better to start from scratch than from an available SW code. Our development of a

hardware accelerator of the LHE image encoder [218, 219] starting from a software

implementation, was not nearly as successful as the development of the LOCO-ANS

hardware encoder starting from scratch, supporting this observation. In this case, of

course, not only the starting point affected the results, but also other methodological

aspects.

12.2.3 Desired Methodology Characteristics

This led to the question of how to best incorporate HLS in the hardware design

methodology. We previously mentioned some desired features of a methodology that uses

HLS. To improve productivity, we need code that facilitates the detection of bottlenecks

and that allows iterative refinement of the system [220]. As a part of this, it is useful to be

able to effectively decouple problems, for example, through the use of latency-insensitive

protocols [221].

Note that the best coding styles for a given problem is probably going to depend

on the particular HLS tool [215]. For example, in [206] the technique that they found

the less effective for the HLS compiler to share resources, was precisely the one that

enabled us to share the ANS tables in the dual TSG coder. Therefore, part of the iterative

refinement is dedicated to find the code styles better suited for the tool we employ. In

addition, a good methodology should also enable to take advantage from using HLS,

while being able to circumvent its limitations. Finally, given the mentioned productivity

gains derived from using HLS, the methodology should minimize, when possible, the

RTL code implemented.

179

CHAPTER 12. LESSONS LEARNED DESIGNING WITH HLS

12.3 Key Methodological Aspects

We already described how HLS boosts productivity in early design stages and how it

can improve performance through wider algorithm exploration and module specialization.

Although there are many other aspects that influence the success of a development that

employs HLS, we focus on those that we identified, both in our experience and in

the literature, as the most relevant and generally applicable. Of course, a methodology

depends, at least in part, on the tools currently available. As HLS compilers are improved

(for example incorporating optimizations proposed in this thesis) and the systems we

aim to build change, how to best design with HLS will vary.

12.3.1 Modular Design and Refinement

Appropriate design modularization, both within an HLS generated IP and of a

larger system, was one of the main enablers of productivity. Sun et al. [206] indicated

that partitioning allowed to better express the data flow and reduce the complexity of

optimizations. Among other ways, this is achieved by alleviating the data dependencies

between functions, particularly when combined with FIFO channels between them. Also,

they note that by splitting functions, they can create more efficient memory mappings

customized for a given process, instead of a compromise among many of them. We

extended this last observation to coding styles and basic compute element in the design

of the TSG coder, as detailed in chapter 8.

Both Mantovani et al. [222] and Rokicki et al. [223], in their respective designs of a

RISK V processor, described the benefits of partitioning the different processor stages to

better express parallelism. In addition, the former work notes that when combined with

latency-insensitive channels, it allows a richer DSE by independent optimization of each

pipeline stage. These findings are inline with a previously presented design flow based

on modular refinement by Dave et al. [220]. Here the authors also highlight that parti-

tioning facilities code reuse, parallel system development and functional/performance

debugging, which are also supported by de Fine Licht et al. [212]. Interestingly, the

modular refinement methodology closely resembles many aspects of the implementation

process of the TSG coder, as the example at the end of this section shows.

Sarkar et al. [215] also demonstrated that they were able to achieve better QoR

synthesizing modules separately (non-monolithic design), given that this allowed tuning

compiler’s configurations for each specific module. As previously mentioned, we also

found non-monolithic implementations useful, given that they allowed us to obtain global

180

CHAPTER 12. LESSONS LEARNED DESIGNING WITH HLS

resource balancing, implement multi-FPGA accelerators, a reset structure aware of the

physical layout (chapter 11), have multiple clock domains for C++ modules (chapter 8),

and easily mixing RTL and HLL (chapter 9).

Non-monolithic kernels have also advantages for debugging and optimization. First,

consider that HLS compilation and RTL simulation have considerably longer run-times

than software equivalent processes. Using non-monolithic kernels, or at least, setting the

particular module we are interested in as the HLS top-level, can considerably reduce the

compilation and RTL verification times, thus enabling faster development. In addition,

these partitioned IPs allow us to analyze intermediate data using probes for debugging

the implemented hardware.

In general, partitioning the design is a great divide-and-conquer technique as it

allows faster debugging and decoupling dependencies, DSE, frequency, implementation

strategies, placement, design teams, code styles, memory mappings and development

language. Note, however, that it is convenient to keep dependency loops within a sin-

gle module. This is because, partitioning tends to increase loop latency (decreasing

throughput). For this reason, the HLS flow metering core and the pixel decorrelator were

implemented using a single module.

12.3.1.1 Partitioning Example

The HLS implementation of the TSG coder (section 8.2.2) is a good example of how

modularization enables performance. First, we isolated the non-sequential data use

patterns required by the algorithm within modules, which allowed the rest of the system

to access sequentially to data using FIFO interfaces. This was achieved by encapsulating

Algorithm 12.1: Codification procedure of a geometrically distributed symbol
using tANS.

Require: z, param
1: c ← get_cardinality(param)
2: remaining_sym ← z
3: subsym ← z mod c
4: repeat
5: remaining_sym ← remaining_sym− subsym
6: obits ← ANS_table[param][state][subsym].bits
7: store_in_binary_stack(state, obits)
8: state ← ANS_table[param][state][subsym].nx_st
9: subsym ← c

10: until remaining_sym = 0

181

CHAPTER 12. LESSONS LEARNED DESIGNING WITH HLS

the symbol inversion and binary inversion processes in separate dataflow functions, the

Block Buffer and the Binary Stack, resp. These modules were further partitioned in two

concurrent processes, one to write streaming data to a memory and another to read the

data from it, following the required pattern to generate the output data stream. As the

internal memory is implemented as a ping-pong buffer, and these modules are capable of

consuming and generating data concurrently and without major stalls.

Partitioning was also used to simplify control and debug performance, for example,

in the implementation of the geometric coder, which alg. 12.1 illustrates (previously

presented in chapter 7, alg. 7.1). We had the goal of obtaining an architecture capable

of coding a new sub-symbol every cycle, which we knew it was possible after analyz-

ing the algorithm. The straightforward code for this algorithm, however, resulted in

low-performance hardware due to both frequency and idle cycle issues. To obtain an

architecture capable of the desired performance, we iteratively refined the partitions

Algorithm 12.2: Algorithm 12.1 after loop splitting.
Require: z, param

// Module 1
1: c ← get_cardinality(param)
2: remaining_sym ← z
3: subsym ← z mod c

// Module 2
4: repeat
5: remaining_sym ← remaining_sym− subsym
6: end_of _loop ← remaining_sym = 0
7: f i f o1.push(subsym, end_of _loop) // Replaces following function calls
8: subsym ← c
9: until end_of _loop

// Module 3
10: repeat
11: (subsym, end_of _loop)← f i f o1.pop() // Replaces previous function calls
12: obits ← ANS_table[param][state][subsym].bits
13: f i f o2.push(state, obits, end_of _loop) // Replaces following function calls
14: state ← ANS_table[param][state][subsym].nx_st
15: until end_of _loop

// Module 4
16: repeat
17: state, obits, end_of _loop ← f i f o2.pop() // Replaces previous function calls
18: store_in_binary_stack(state, obits)
19: until end_of _loop

182

CHAPTER 12. LESSONS LEARNED DESIGNING WITH HLS

decoupling procedures, and finally arriving at the design presented in section 8.2.2.

Loop splitting was one of the main tools used to decouple processes. That is, we

distributed loop operations among new loops with identical bounds, using FIFOs to

communicate all the data necessary to execute these new loops, as alg. 12.2 illustrates.

This division is allowed because there are no loop-carried dependencies between them.

Each of these loops were then encapsulated in different functions, and we indicated to the

compiler that these run in parallel. This code structure better resembles the hardware

we needed, and it allowed to address the issues of each of the split module separately.

This partition also enabled to share efficiently the ANS state between the Geometric and

the Bernoulli coders. In addition, using simpler modules tends to simplify control, which

favors high operating frequency, as demonstrated in section 10.2, when evaluating the

conditional stalling implementations.

Can this process be automated by the compiler? In some cases, it can, but in general,

this process can be too complex to automatize, then manual transformation might still

be required, as noted by Cardoso et al. [224]. There are other reasons to do this. First, if

we know the architecture we want, this is a mechanism through which we can force it

when directives are not enough. Second, it allows us to better identify the source and

solutions to performance issues, and using the code styles and directives better suited for

each of them. In particular, this enabled us to use more explicit FSM to replace the loop

structures, which were the source of great inefficiencies given that they required one

cycle to start and one cycle to end the variable-length loops. This is specially problematic

for those procedures whose average loop count is small, like for the z decomposition

process (Module 2 in alg. 12.2). The average loop count for it is between 1 and 1.3, and

thus resulted in a 3< II < 3.3. The alternative implementation shown by alg. 12.3, was

capable of emitting a new sub-symbol each clock cycle, which is what we needed. From

a loop perspective, it resulted in 1 < II < 1.3, that is, 2.5 to 3 times more throughput

without significant area changes.

12.3.2 Architecture Design

12.3.2.1 Hardware Design Knowledge

To optimize software, it is important to understand the underlying architecture. For

example, we need to know how caches work to better exploit the concepts of temporal

183

CHAPTER 12. LESSONS LEARNED DESIGNING WITH HLS

Algorithm 12.3: Efficient HLS implementation of Module 2 of algorithm 12.2 .
1: remaining_sym ← 0 // Initial configuration after reset
2: while true do // PIPELINE with II=1
3: if remaining_sym = 0 then
4: (remaining_sym, subsym, c, last_symb, ...)← f i f o_in.pop()
5: end if
6: remaining_sym ← remaining_sym− subsym
7: last_subsymb ← last_symb and remaining_sym = 0
8: f i f o_out.push(subsym, last_subsymb)
9: subsym ← c

10: end while

and spatial locality, and avoiding issues like false sharing2. The more we tune code

for a particular architecture, the more performance we can extract. This will tend to

come at the expense of code portability to other architectures. For example, super-scalar

processors with deep pipelines are more affected by branch miss predictions, than shallow

in-order processors. Because of this, in the former architecture, compiled code with more

instructions, but fewer branches (or easier to predict) may run faster than a shorter code

with more branches.

In the same way, we found that hardware design knowledge was necessary for

identifying issues, coming up with solutions and taking design decisions. For example,

to understand techniques like conditional stalling requires considering the variable

time. Also, as hardware often uses pipeline implementations, the throughput of the

system is determined the minimum throughput of all stages. Conversely, software run-

time optimization tends to be better guided by Amdahl’s law. What is more, frequency

considerations are also important when stages of the dataflow have different II. In these

cases, if a single clock is used, then we may find that frequency is limited by a stage with

low II, thus, decreasing the performance of the stage with the highest II, and so, slowing

down the whole system.

This last consideration describes the situation we faced with the LOCO-ANS HLS

encoder, as the TSG coder has an 2 < II < 2.3, while the lossless decorrelator has an

II = 1. However, TSG coder can operate at a frequency more than 2.3 times higher, and

thus, using different clocks for each of them increased the system throughput by a factor

of 2-2.3. An alternative would have been to set II = 2 for the lossless decorrelator to

increase its clock frequency, but performance would have increased by a factor lower

2False sharing occurs when different cores of a processor utilize different addresses that are stored in
the same cache line, invalidating each other’s cache, although their data is not outdated.

184

CHAPTER 12. LESSONS LEARNED DESIGNING WITH HLS

than 2 due to pipelining penalties (see section 10.4.2). In any way, it is evident that this

design decisions require hardware concepts.

Lahti et al. [14] also found in their RTL vs HLS survey that hardware expertise is still

a requirement to achieve high QoR using current HLS tools. Nane et al. [225] reached a

similar conclusion in their evaluation of four HLS compilers, even when the developers

of three of them were authors of the work. Inline with this, Venkatakrishnan et al.
[226] in their evaluation of two HLS tools, concluded that knowledge about FPGA and

board architecture was a requirement to implement performance optimizations, although

they used a simple convolution kernel as a benchmark. Silva et al. [227] evaluated

FPGAs using HLS kernels for graph algorithms acceleration. They considered that good

hardware knowledge is needed to obtain good performance, particularly for what they

classified as FPGA-unfriendly domains (given the algorithm’s structure).

Finally, note that if hardware knowledge is important for successful HLS develop-

ments, it is more so for hardware-algorithm co-design. Even if compilers continue to

improve, understanding of the underlying technology is probably going to remain useful

to take decisions about the algorithms.

12.3.2.2 Using RTL Analysis to Guide the HLS Implementation

When optimization modules, we found it useful to perform a coarse RTL design,

that is, identifying main hardware resources and data movements. This was specially

important when dependencies were present. For example, we used this technique to

optimize the operating frequency of the LOCO-ANS decorrelator. A basic analysis at the

RTL revealed that many operations in the critical path (context address computation)

could be precomputed. After refactoring the code to have a more regular structure and

to hint the compiler the architecture we wanted, we reached the alternative scheduling.

As a result, frequency improved by 15% and area got slightly reduced. In this case, we

only needed to rearrange the image row buffer updates to have it in a single point of the

code (instead of two, one before the pixel loop and one at the end of it). Note that in this

analysis, we did not design a detailed RTL, but only studied the processes involving the

critical path, identifying feed-forward logic and dependencies, and considering the latency

of BRAMs (which were part of this path). Therefore, it was much less time-consuming

than a full RTL design and implementation.

Other works have found that using an RTL design to guide the HLS implementation

resulted in better QoR (similar to that of the RTL). Canis et al. [228] compared hardware

generated from a software code of a Solve filter against one guided by a hand-crafted RTL

185

CHAPTER 12. LESSONS LEARNED DESIGNING WITH HLS

design. As a result, the HLS code optimized for hardware was one order of magnitude

faster than the software version. In [214], a first HLS design had a significantly greater

footprint than a reference RTL. After an optimization phase, which involved using specific

directives to achieve the same DSP mappings that the reference RTL design had, the

HLS implementation achieved the same amount of DSPs and BRAM and lower LUT and

FF. It has to be noted that these reported improvements came from matrix operations,

which are already more amenable to automatic optimization given the regularity of their

computations.

Sun et al. [206] also considered that having an RTL design in mind helps the pro-

cesses of guiding the HLS tool towards better performing architectures. The previously

mentioned RISC-V implementations, by Mantovani et al. [222] and Rokicki et al. [223],

also used this middle-level design analysis to achieve QoR comparable to hand-crafted

RTL. Finally, Özkan et al. [229] studied the methodological aspects of designing FPGA

kernels with the Altera SDK for OpenCL, reaching the conclusion that better results

were obtained using a hardware development mentality.

12.3.3 Interface Design

Being able to select an interface protocol just by using directives is one of the most

clear benefits of HLS. Yet, it is important to keep in mind that it is hardware what we are

describing. In software, performance is not generally a primary concern when creating

function interfaces. They do have some impact, for example, they affect data locality, the

need of doing data copies and the amount of memory required. In HLS, the implications

are different and generally have a greater impact, particularly on throughput.

For both external and between modules, designing interfaces in HLS implies mainly

two decisions, what protocol and what transaction unit to use. In general, we have to

choose the protocol that better adjusts to the access pattern. For example, a memory

interface can perform sequential reads, but a FIFO interface will better signal the

procedure’s access pattern to both the compiler and other designers. However, we have

found useful to transform algorithms (e.g. reordering operations and/or splitting loops)

to use streaming interfaces (FIFO-like). This is because streaming interfaces simplify

dependency analysis and favors a code style better suited for hardware. This interfaces

also allow to better decouple modules [206, 220, 223].

The second aspect of interface design is the transaction unit. The most direct impact

of this decision is the available bandwidth, and therefore these generally need to be

scaled as we modify the amount of parallelism we exploit. In our HLS design experience,

186

CHAPTER 12. LESSONS LEARNED DESIGNING WITH HLS

we find it useful to bundle the data that is processed together, e.g. using structs or explicit

bit packets. These tend to reduce the required resources (e.g. using packed memories,

instead of partitioned ones), simplify control (fewer signals to control data movements),

and favor synchronization between the packed variables (e.g. not using metadata of

element n with element n+1). Additionally, this generally lead to cleaner code.

Finally, to improve performance, sometimes it is necessary to add processes to convert

between access patterns. The Block Buffer and the Binary Stack are examples of this, as

previously indicated in section 12.3.1.1. Xilinx also recommends the load-compute-store

pattern for kernels, meaning that apart from the compute processes, explicit parallel

processes should be added to copy from and to main memory. This allows not only to

adapt access patterns, but also to hide the large access latency and improve bandwidth

through the use of large transaction bursts [230]. Interestingly, the addition of this

code to better interface with main memory (accelerator card application) was recently

automatized by Sohrabizadeh et al. [208].

12.3.4 Analysis of Compilation Results

12.3.4.1 HLS QoR Estimation Issues

When designing hardware and particularly during the DSE phase, we require feed-

back of the QoR each solution achieves. Yet, HLS tools systematically over-estimates

resources and their timing model tends to be over-pessimistic. In our experience, we

found that frequency estimations are particularly under-estimated for low congestion

implementations, even when the data path was composed of a predesigned RTL IP

(conditional stalling evaluation examples used in chapter 10), and can reach a 100%

relative error, inline with Dai et al. [231] study of the matter. Regarding LUTs, HLS

estimation, in normal circumstances, can also have a relative error over 100%, which

may be explained by subsequent implementation steps, like constant propagation and

LUT combining optimizations. DSP and BRAMs estimations are generally accurate,

except when ROMs can be shared. Although HLS reports replicated ROMs, these may

be latter combined during RTL synthesis, which happened in both LHE quantizer and

TSG coder developments.

Of course, this inaccurate estimations have a negative impact on the DSE productivity

HLS tools promise to provide. Therefore, several works have focused on improving

them [231–233]. Notice, however, that the precision of these estimations is limited by the

information available to the HLS tool. Final QoR depends on many factors not normally

187

CHAPTER 12. LESSONS LEARNED DESIGNING WITH HLS

known by the HLS tool, like synthesis and implementation optimization configurations,

and interactions with the rest of the systems (e.g. congestion).

12.3.4.2 Recommendations

These reports have some utility, particularly when comparing different versions of a

given module, but the considerations presented here need to be kept in mind during the

design process. In addition, there is a set of recommendations that can help to palliate

these issues. A relatively obvious one is to periodically use RTL synthesis to obtain better

frequency and resource feedback. Although these may differ from final implementation

results, we found that Vivado synthesis estimations are very accurate, and considerably

faster to obtain compared to post place and route ones. Also, as mentioned before, prior

to refactoring code so that shared ROMs are inferred, we recommend to first verify it on

the post-synthesis results.

Nane et al. [225] suggested as a rule of thumb to provide a higher target frequency to

the HLS compiler than the actual desired one, while Sarkar et al. [215] recommended

doing target frequency sweeps. We found a combination of these useful, but combined

with specific II requirements (and sometimes also latency ones) to prevent the compiler

to increment the II in favor is higher probabilities to met timing (again, normally overly

pessimistic). The use of these more restrictive directives was particularly important

when dependencies were present, like in the flow metering core and image encoders.

Until the last optimization steps of the design, we used a HLS target frequency equal

to the desired one. Then, as a fine-tuning step, we performed target frequency sweeps

above the desired frequency (using implementation feedback), to improve the operating

frequency of the slowest module of the clock domain.

12.4 Summary

• Use HLS to build quicker a functionally correct integrated system, from which to

obtain high-quality design feedback and upon which optimizations can be applied

gradually.

• Iteratively partition systems into dataflow structures to better decouple and iden-

tify problems. Also, perform separate HLS compilations of dataflow modules for:

– Higher hardware implementation visibility in combination with probes.

– Improve performance:

188

CHAPTER 12. LESSONS LEARNED DESIGNING WITH HLS

* Doing faster DSE (faster compilation and RTL simulation).

* Balancing throughput using different clock domains.

* Isolate a procedure that is not efficiently implemented in HLS, and replace

it by an RTL IP.

* Using partitioning and resource balancing optimizations, and getting at

placement aware reset logic.

* Tuning HLS compilation and RTL synthesis configuration for each module

(Fine-tune step).

• Leverage function specialization (in particular using C++ templates) and late

algorithmic optimizations to improve QoR.

• Use a hardware oriented design mentality to optimize logic and interfaces.

• During the DSE process, take into account the limited accuracy of the QoR estima-

tions before RTL synthesis. In particular, use specific constraints on throughput

and periodically use RTL synthesis for higher quality feedback

12.5 Conclusion

We analyzed the obtained results and employed methods in this thesis when designing

with HLS. Combined with the literature on HLS design optimization methodologies, we

identified key methodological aspects that lead to better quality of results. Considering

these, a set of recommendations was compiled.

These recommendations are: (1) Use HLS for earlier system integration and gradual

refinement. (2) Embrace modular partitioning and refinement for easier and more

impactful optimization. (3) Design HLS code with a hardware design mentality. (4)

Design interfaces with performance in mind, and favoring streaming interfaces. (5)

Leverage wider algorithmic exploration and function specialization to obtain better

hardware. (6) Take into account the limited accuracy of quality of result estimations

before RTL synthesis.

189

C
H

A
P

T
E

R

13
CONCLUSIONS

T
his chapter summarizes the research and development results of the thesis.
Throughout this work, we aimed at contributing to the different stages of the
hardware design process, focusing on FPGAs as a target, to better confront the
computation challenges that we face. For this reason, the contributions span

from algorithms to layout tools, passing through high-level design, low-level optimiza-
tions, and design methodologies. Appendix A presents the list of publications and their
relationship with the chapters of the thesis.

13.1 Main Contributions

LOCO-ANS Algorithm Chapter 7 presented enhancements to the JPEG-LS standard,

improving its coding efficiency at a low computational overhead, particularly for hard-

ware implementations, resulting in the LOCO-ANS algorithm. LOCO-ANS features a

novel adaptive coder for sources with a two-sided geometrical (TSG) distribution, de-

signed for the prediction residuals resulting from the decorrelation process. This coder,

using Tabled Asymmetric Numeral Systems as the underlying technology, has a com-

plexity similar to a Huffman coder but with efficiencies that closely approach the model’s

entropy. Another key aspect resides in the distribution parameter estimation, where low

complexity and more precise quantizers were studied and developed. The resulting codec

190

CHAPTER 13. CONCLUSIONS

was evaluated in depth to understand the sources of inefficiencies and how these relate

to its parameters. The software prototype plus auxiliary code to configure the codec and

run experiments were open sourced to the community [126].

When compared to JPEG-LS baseline compressing photographic images, LOCO-ANS,

using the same context size, achieves up to a 1.6%, 6% and 37.6% mean compression

improvement for an error tolerance set to 0, 1 and 10, respectively. Allowing an increase

in the context size and image tiling, a 2.3% lower bandwidth is obtained for lossless com-

pression, also improving near-lossless compression. Moreover, LOCO-ANS approaches

the lossless compression rates of more complex software encoders, like JPEG-XL and

WebP, even surpassing them in near-lossless compression, while attaining a much faster

encoder speed.

LOCO-ANS Hardware Encoder Chapter 8 described the developed LOCO-ANS

encoder hardware architecture. The obtained results show that this hardware encoder

excels in near-lossless compression, accomplishing the fastest pixel rate so far with

up to 40.5 MPixel/s/lane for a low-end Zynq 7020 and 124.15 MPixel/s/lane for a Zynq

Ultrascale+ device. At the same time, a balanced configuration of the presented encoder

can achieve 7.4%, 16.7%, 25.1%, and 33.0% better compression than the previous fastest

JPEG-LS-like near-lossless implementation (for an error tolerance in [0..3], respectively).

In this way, the presented encoder can cope with higher image resolutions or FPS

than previous near-lossless encoders while achieving higher compression and keeping

encoding latency below 100 µs. Thus, it is a great tool for real-time video compression

and, in general, for highly constrained scenarios like many remote sensing applications.

We consider that mainly two factors made these results possible. First, the algorithm-

hardware co-design approach. In the decorrelator, for example, the modified gradient

quantization (enabled by the TSG coder) not only significantly increases compression,

but also relaxes the near-lossless implementation bottleneck, given that it reduces the

logic depth. Another important example is that we took advantage of the fact that the

decorrelator is the bottleneck of the system to increase the coder compression efficiency

without reducing the system throughput. Yet, the new coder still had to achieve a high

performance, and a trivial implementation of tANS would not suffice because of its

memory requirements. Then, exploiting a property of the symbols’ distribution and

using an alternative TSG distribution model, we devised a coding method that keeps

resources low, closely approaches to the model’s entropy, and achieves high throughput.

This development also gave rise, to our knowledge, to the first adaptive ANS hardware

191

CHAPTER 13. CONCLUSIONS

encoder implementation in the literature.

Methodology for Hardware Design using High-Level Synthesis The other main

reason for these great results was the HLS design, and the methodology behind it.

Chapter 12 presents an analysis of the key methodological aspects that lead to better

quality of results when using HLS. As a result, we consider modular partitioning and

refinement as powerful tool that allows easier and more capable optimization, and also,

that with currently available HLS compilers higher performing systems are obtained

optimizing HLS logic and interfaces with a hardware design (RTL-like) mentality. In

addition, although HLS enables a faster design space exploration, it is important to

take into account the limited accuracy of the quality of result estimations before RTL

synthesis. Finally, with HLS, we can leverage wider algorithmic exploration and function

specialization to obtain better hardware.

Dual read-update architecture and 100GbE flow metering However, HLS com-

pilers can still be improved. The LOCO-ANS hardware encoder can attain even higher

performance using the architecture studied in chapter 9. This was designed to address

the problem of implementing high-throughput and complex read-update processes, spe-

cially when dealing with significant propagation delays associated with the memory

system. For slower link speeds, an HLS implementation could handle maximum packet

rates, but given that network links bandwidth grow faster than silicon speed, we needed

to implement this critical module using an optimized architecture and RTL code.

This architecture enabled to completely offload a 100GbE VPN volumetry application.

Also, it allowed to implement an FPGA TCP flow metering system capable of supporting

the maximum 100GbE packet rate with a single acceleration core using up to 64Ki

flows cache with 8-ways. According to our experiments (chapter 5), this translates into

a significant offload of the task, reducing the output packet rate and bandwidth to

40.6% and 45%, resp. In this way, we demonstrated the FPGA capabilities for processing

100GbE traffic with state (as opposed to stateless, packet-wise processing) and also

proposed an architecture to improve performance of systems with the read-update

pattern, specially when numerous on-chip memory blocks need to be cascaded and/or

having two parallel memory update process is desired.

Study of conditional stalling However, the need for larger memories and more

complex systems can inevitably lead to increased latencies in the read-update cycle,

192

CHAPTER 13. CONCLUSIONS

establishing hard to optimize bottlenecks. For this reason, in chapter 10 we studied

the conditional stalling technique, a throughput optimization for logic with data de-

pendencies. This dynamic scheduling method consists of running a pipeline at full rate

when no conflicts are detected, using scheduling logic to insert bubbles to ensure that no

dependency is violated. We analyzed the footprint and frequency penalties associated

with this optimization, reaching the conclusion that most designs will not reduce their

frequency and that few extra resources are required.

We also examined the performance when using this method as a function of input data

and architecture characteristics, showing that it is specially useful when unavoidable

latencies are present in the dependency path. Also, we demonstrated that to correctly

optimize throughput, we must take into account both the address statistics and the

evolution of frequency as the pipeline is deepened. What is more, it could be integrated

within HLS compilers, which can use the models provided to make design decisions,

resulting in better quality of results and increased designers’ productivity. This optimiza-

tion is compatible with the high-performance architecture developed for the read-update

pattern (chapter 5), so their improvements add up.

Automatic partitioning and resource balancing In chapter 9, we also presented

arrays of flow metering cores which enable scaling up flow tables, increasing the offload-

ing capabilities, while still supporting the maximum packet rate. However, as observed

for the large convolutional neural networks implementations described in chapter 6,

frequency penalties appeared as we crossed the boundary of a monolithic region of a chip

(SLR). To address this issue along with a set of related problems in a unified manner,

in chapter 11 we presented a partitioning and resource balancing optimization tool. In

particular, it addresses the control set connection of large designs in multi-SLR FPGAs,

and balances multiple resources across FPGA regions and/or chips, while it minimizes

the communication cost among them. The tool natively maps systems to a multi-node

implementation if it does not fit in a single FPGA, and it is capable of choosing (or

letting the user choose) among different types of model-parallelism (MP), including the

presented transparent MP, which abstracts the complexities of handling a multi-node

accelerator.

The application of this optimization increased the frequency and computational

units per area of the tested MobileNetV1 and ResNet-50-v1.5 dataflow accelerators,

demonstrating up to a 103% performance improvement over an already optimized

monolithic implementation. Targeting multi-node platforms allowed to increase compute

193

CHAPTER 13. CONCLUSIONS

density, and when combined with model-parallelism, enabled lower latency and more

power-efficient implementations. As a result of its utilization, our design productivity

was greatly increased by simultaneously improving the quality of results and reducing

design time.

13.2 Future Work

In this thesis, several optimizations to HLS have been studied and tested for particu-

lar contexts. Despite the partitioner and resource balancing tool being included in the

FINN NN compiler, an important future work is to integrate the proposed optimizations

in HLS compilers. In this way, these will have their greatest impact.

Before this integration, although we consider that these optimizations have a wide

application, further evaluation using a more diverse set of designs needs to be carried out

to confirm whether the obtained results extrapolate to other contexts. For example, the

architecture presented in chapter 9, could be applied, among others, to the LOCO-ANS

hardware encoder, and applications based on histogram computation. Also, conditional

stalling has the potential of increasing the mean throughput of the LOCO-ANS lossless

encoder.

Furthermore, these optimizations can be pushed forward. Conditional stalling could

be analyzed in combination with other techniques like out-of-order processing and merg-

ing sequential dependent operations. Additionally, the pipeline optimization performed

by conditional stalling requires the address statistics to remain unchanged. Therefore, it

would be interesting to study the implementation of an adaptive system with multiple

processing units of varying depth (and clock frequency), choosing at runtime the higher

throughput alternative according to the collected conflict statistics. As for the partitioner,

given the generality of the algorithm, a very interesting venue of future work is to apply

this optimization to heterogeneous platforms, that is, create hybrid (FPGA,CPU,GPU,...)

mappings of accelerators.

Finally, on the application side, the presented 100GbE flow metering system employed

on-chip memory, which is not enough to completely offload the task. Then, the next

natural step is to use off-chip memory, like HBM. However, this will not be immediate

if significant packet rate penalties are to be avoided, given the large latencies these

memories have. We consider that the architecture optimizations suggested in chapter 9,

in combination with techniques like conditional stalling, should be evaluated for this

goal. In addition to these, the exploration of flow cache policies (to determine what to

194

CHAPTER 13. CONCLUSIONS

keep on-chip), for example based on heavy hitter flow detection, can also be key, not only

for 100 GbE, but for the new higher speed links support.

195

C
H

A
P

T
E

R

14
CONCLUSIONES

E
ste capítulo resume los resultados de investigación y desarrollo de la tesis.
A lo largo de este trabajo, hemos buscado contribuir a las diferentes etapas
del proceso de diseño de hardware, centrándonos en las FPGAs como objetivo,
para afrontar mejor los retos de computación a los que nos enfrentamos. Por

esta razón, las contribuciones abarcan desde algoritmos hasta las herramientas de diseño,
pasando por diseños de alto nivel, las optimizaciones de bajo nivel y las metodologías
de diseño. En el Apéndice A se presenta la lista de publicaciones y su relación con los
capítulos de la tesis.

14.1 Principales Contribuciones

Algoritmo LOCO-ANS El capítulo 7 presentó modificaciones al estándar JPEG-LS,

mejorando su eficiencia de codificación con una baja sobrecarga computacional, en par-

ticular para las implementaciones de hardware, dando como resultado el algoritmo

LOCO-ANS. LOCO-ANS presenta un novedoso codificador adaptativo para fuentes con

una distribución geométrica de doble lado (TSG, por sus siglas en inglés), diseñado para

los símbolos resultantes del proceso de decorrelación. Este codificador, que utiliza sis-

temas numéricos asimétricos tabulados (tANS, por sus siglas en inglés) como tecnología

subyacente, tiene una complejidad similar a la de un codificador Huffman pero con

196

CHAPTER 14. CONCLUSIONES

eficiencias que se acercan mucho a la entropía del modelo. Otro aspecto clave reside en

la estimación de los parámetros de distribución, donde se estudiaron y desarrollaron

cuantificadores de baja complejidad y mayor precisión. El codec resultante se evaluó en

profundidad para entender las fuentes de ineficiencia y cómo estas se relacionan con sus

parámetros. El prototipo software y el código auxiliar para configurar el codec y ejecutar

los experimentos se pusieron a disposición de la comunidad [147].

En comparación con la configuración de base de JPEG-LS para la compresión de

imágenes fotográficas, LOCO-ANS, utilizando el mismo tamaño de contexto, consigue

una mejora media de 1,6%, 6% y 37,6% en la compresión para una tolerancia de error

establecida en 0, 1 y 10, respectivamente. Permitiendo un aumento del tamaño del

contexto y el particionamiento de la imagen, se obtiene una mejora del 2,3% para la

compresión sin pérdidas, mejorando también la compresión casi sin pérdidas. Además,

LOCO-ANS se aproxima a las tasas de compresión sin pérdidas de codificadores de

software más complejos, como JPEG-XL y WebP, superándolos incluso en la compresión

casi sin pérdidas, al tiempo que alcanza una velocidad de codificación mucho mayor.

Codificador hardware LOCO-ANS El capítulo 8 describe la arquitectura de hard-

ware del codificador LOCO-ANS desarrollado. Los resultados obtenidos muestran que

este codificador hardware destaca en la compresión casi sin pérdidas (near-lossless), lo-

grando la tasa de píxeles más rápida hasta el momento con hasta 40,5 MPixel/s/vía para

un Zynq 7020 (gama baja) y 124,15 MPixel/s/vía para un dispositivo Zynq Ultrascale+.

Al mismo tiempo, una configuración equilibrada del codificador presentado puede lograr

una compresión un 7,4%, 16,7%, 25,1% y 33,0% mejor que la anterior implementación

más rápida de tipo JPEG-LS near-lossless (para una tolerancia al error en [0..3], respec-

tivamente). De este modo, el codificador presentado puede hacer frente a resoluciones

o FPS más elevados que los codificadores anteriores, a la vez que consigue una mayor

compresión y mantiene la latencia de codificación por debajo de 100 µs. Por lo tanto, es

una gran herramienta para la compresión de vídeo en tiempo real y, en general, para

escenarios muy limitados como muchas aplicaciones de sensores remotos.

Consideramos que principalmente dos factores han hecho posible estos resultados.

En primer lugar, el enfoque de co-diseño algoritmo-hardware. En el decorrelador, por

ejemplo, la modificación de la cuantización de los gradientes (habilitada por el codificador

TSG) no solo aumenta significativamente la compresión, sino que también relaja el cuello

de botella de la implementación, dado que reduce la profundidad lógica. Otro ejemplo

importante es que aprovechamos que el decorrelador es el cuello de botella del sistema

197

CHAPTER 14. CONCLUSIONES

para aumentar la eficiencia de compresión del codificador sin reducir el rendimiento del

sistema. Aun así, el nuevo codificador tenía que alcanzar un alto rendimiento, y una

implementación trivial de tANS no sería suficiente debido a sus requisitos de memoria.

Luego, explotando una propiedad de la distribución de los símbolos y utilizando un

modelo de distribución TSG alternativo, ideamos un método de codificación que mantiene

los recursos bajos, se aproxima a la entropía del modelo y logra un alto rendimiento.

Este desarrollo también dio lugar, hasta donde sabemos, a la primera implementación de

codificador hardware adaptativo ANS en la literatura.

Metodología de diseño de hardware usando síntesis de alto nivel La otra razón

principal de estos excelentes resultados fue el diseño usando síntesis de alto nivel (HLS,

por sus siglas en inglés) y la metodología detrás de él. En el capítulo 12 se presenta un

análisis de los aspectos metodológicos clave que conducen a una mejor calidad de los

resultados cuando se utiliza HLS. Como resultado, consideramos que el particionamiento

y refinamiento modular es una poderosa herramienta que permite una optimización

más fácil y capaz, y también, que con los compiladores HLS actualmente disponibles

se obtienen sistemas de mayor rendimiento optimizando la lógica e interfaces HLS con

una mentalidad de diseño hardware. Además, aunque HLS permite una exploración

más rápida del espacio de diseño, es importante tener en cuenta la limitada precisión de

la calidad de las estimaciones de resultados antes de la síntesis RTL. Por último, con

HLS podemos aprovechar una exploración algorítmica más amplia y la especialización

de funciones para obtener un mejor hardware.

Arquitectura de doble lectura-actualización y medición de flujos de 100GbE
Sin embargo, los compiladores HLS aún pueden mejorarse. El codificador de hardware

LOCO-ANS puede alcanzar un rendimiento incluso mayor utilizando la arquitectura estu-

diada en el capítulo 9. Ésta fue diseñada para abordar el problema de la implementación

de procesos de lectura-actualización complejos y de alto rendimiento, especialmente

cuando se enfrentan retrasos de propagación significativos asociados al sistema de memo-

ria. Para velocidades de enlace más lentas, una implementación HLS podía manejar las

tasas máximas de paquetes, pero dado que el ancho de banda de los enlaces de red crece

más rápido que la velocidad del silicio, necesitábamos implementar este módulo crítico

utilizando una arquitectura optimizada y código RTL.

Esta arquitectura posibilitó la descarga completa de una aplicación de volumetría

VPN de 100 GbE. También permitió implementar un sistema de medición de flujos

198

CHAPTER 14. CONCLUSIONES

TCP en FPGA capaz de soportar la máxima tasa de paquetes de 100 GbE con un único

núcleo de aceleración que utiliza una caché de flujos de hasta 64Ki con 8 vías. Según

nuestros experimentos (capítulo 5), esto se traduce en una importante descarga de

la tarea, reduciendo la tasa de paquetes de salida y el ancho de banda al 40,6% y al

45%, respectivamente. De este modo, demostramos las capacidades de la FPGA para el

procesamiento con estado del tráfico de 100 GbE (en contraposición al procesamiento

sin estado, paquete a paquete) y también propusimos una arquitectura para mejorar

el rendimiento de los sistemas con el patrón de lectura-actualización, especialmente

cuando es necesario poner en cascada numerosos bloques de memoria dentro del chip y/o

se desea tener dos procesos de actualización de memoria en paralelo.

Estudio del bloque condicional Sin embargo, la necesidad de memorias más grandes

y sistemas más complejos puede conducir inevitablemente a un aumento de las latencias

en el ciclo de lectura-actualización, estableciendo cuellos de botella difíciles de optimizar.

Por este motivo, en el capítulo 10 estudiamos la técnica de bloqueo condicional, una

optimización del rendimiento para la lógica con dependencias de datos. Este método

de planificación dinámica consiste en ejecutar un pipeline a pleno rendimiento cuando

no se detectan conflictos, utilizando la lógica de planificación para insertar burbujas

que garanticen que no se viole ninguna dependencia. Analizamos los recursos y las

penalizaciones de frecuencia asociadas a esta optimización, llegando a la conclusión de

que la mayoría de los diseños no verán reducida su frecuencia y que se necesitan pocos

recursos adicionales.

También examinamos el rendimiento al utilizar este método en función de las carac-

terísticas de los datos de entrada y de la arquitectura, mostrando que es especialmente

útil cuando hay latencias inevitables en el camino de dependencia. Además, demostramos

que para optimizar correctamente el rendimiento hay que tener en cuenta tanto las

estadísticas de direcciones como la evolución de la frecuencia a medida que se profundiza

en el pipeline. Además, podría integrarse en los compiladores HLS, que pueden utilizar

los modelos proporcionados para tomar decisiones de diseño, lo que redundaría en una

mejor calidad de los resultados y en una mayor productividad de los diseñadores. Esta

optimización es compatible con la arquitectura de alto rendimiento desarrollada para el

patrón de lectura-actualización (capítulo 5), por lo que sus mejoras se suman.

Partición automática y equilibrio de recursos En el capítulo 9, también pre-

sentamos arreglos de núcleos de medición de flujos que permiten escalar las tablas de

199

CHAPTER 14. CONCLUSIONES

flujo, aumentando las capacidades de descarga, sin dejar de soportar la tasa máxima

de paquetes. Sin embargo, como se observó en las implementaciones de grandes redes

neuronales convolucionales descritas en el capítulo 6, aparecieron penalizaciones de

frecuencia a medida que cruzábamos el límite de una región monolítica del chip (SLR,

por sus siglas en inglés). Para abordar esta cuestión junto con un grupo de problemas

relacionados de forma unificada, en el capítulo 11 presentamos una herramienta de

optimización de particionamiento y equilibrio de recursos. En particular, determina la

conexión de las señales de control de grandes diseños en FPGAs multi-SLR, y equilibra

múltiples recursos a través de las regiones y/o chips FPGA, al tiempo que minimiza el

coste de comunicación entre ellos. La herramienta mapea de forma nativa los sistemas a

una implementación multi-nodo si no caben en una sola FPGA, y es capaz de elegir (o

dejar que el usuario elija) entre diferentes tipos de paralelismo de modelo, incluyendo

el paralelismo de modelo transparente presentado, el cual abstrae las complejidades de

manejar un acelerador multi-nodo.

La aplicación de esta optimización aumentó la frecuencia y las unidades computa-

cionales por área de los aceleradores de segmentados de MobileNetV1 y ResNet-50-

v1.5, demostrando una mejora del rendimiento de hasta el 103% respecto a una im-

plementación monolítica ya optimizada. La utilización de plataformas multi-nodales

permitió aumentar la densidad de cálculo y, cuando se combinó con el paralelismo de

modelo, permitió una latencia más baja y unas implementaciones más eficientes desde

el punto de vista energético. Como resultado de su utilización, la productividad se in-

crementó notablemente, mejorando simultáneamente la calidad de los resultados y

reduciendo el tiempo de diseño.

14.2 Trabajo Futuro

En esta tesis se han estudiado y probado varias optimizaciones para HLS en contextos

particulares. A pesar de que la herramienta de particionamiento y de equilibrio de

recursos se incluyó en el compilador de redes neuronales FINN, un importante trabajo

futuro es integrar las optimizaciones propuestas en los compiladores HLS. De este modo,

estas tendrán su mayor impacto.

Antes de esta integración, aunque consideramos que estas optimizaciones tienen una

amplia aplicación, es necesario realizar una evaluación adicional utilizando un conjunto

más diverso de diseños para confirmar si los resultados obtenidos se extrapolan a otros

contextos. Por ejemplo, la arquitectura presentada en el capítulo 9, podría aplicarse,

200

CHAPTER 14. CONCLUSIONES

entre otros, al codificador hardware LOCO-ANS, y a aplicaciones basadas en el cálculo de

histogramas. Asimismo, el bloqueo condicional tiene también el potencial de aumentar el

rendimiento medio del codificador sin pérdidas LOCO-ANS.

Por otra parte, estas optimizaciones pueden mejorarse. El bloque condicional podría

analizarse en combinación con otras técnicas como el procesamiento fuera de orden y la

fusión de operaciones dependientes secuenciales. Además, la optimización del pipeline

realizada por el bloqueo condicional requiere que las estadísticas de direcciones no cam-

bien. Por lo tanto, sería interesante estudiar la implementación de un sistema adaptativo

con múltiples unidades de procesamiento de diferente profundidad (y frecuencia de reloj),

eligiendo en tiempo de ejecución la alternativa de mayor rendimiento en función de las

estadísticas de conflictos recogidas. En cuanto al particionador, dada la generalidad del

algoritmo, una línea de trabajo futura muy interesante es aplicar esta optimización a

plataformas heterogéneas, es decir, crear mapeos híbridos (FPGA, CPU, GPU, ...) de

aceleradores.

Por último, en lo que concierne a las aplicaciones, el sistema de medición de flujo de

100 GbE presentado emplea memoria en el chip, lo que no es suficiente para descargar

completamente la tarea. Entonces, el siguiente paso natural es utilizar memoria fuera

del chip, como la HBM. Sin embargo, esto no será inmediato si se quieren evitar penaliza-

ciones significativas en la tasa de paquetes, dadas las grandes latencias que tienen estas

memorias. Consideramos que las mejoras de la arquitectura sugeridas en el capítulo 9,

en combinación con técnicas como el bloqueo condicional, deben ser evaluadas para este

objetivo. Además de esto, la exploración de políticas de caché de flujo (para determinar

qué mantener en el chip), por ejemplo, basadas en la detección de flujos largos, también

puede ser clave, no solo para 100 GbE, sino para el nuevo soporte de enlaces de mayor

velocidad.

201

A
P

P
E

N
D

I
X

A
LIST OF PUBLICATIONS

A.1 Publications Included in the Contents of this
Thesis

A.1.1 Journals & Magazines

1. Alonso, T., Sutter, G.,& López de Vergara, J. E. (2021). An FPGA-Based LOCO-
ANS Implementation for Lossless and Near-Lossless Image Compression
Using High-Level Synthesis. Electronics, 10(23), 2934.

This publication is part of chapter 4 (Image Processing: Compression in Con-

strained Scenarios) and chapter 8 (LOCO-ANS Image Codec: Hardware Imple-

mentation). Also, it contributes to chapter 12 (Lessons Learned Designing with

HLS).

Journal information:

• ISSN:2079-9292

• Indexed in JCR 2020. Impact Factor: 2.397. Q3 (T2) in Engineering, Electrical

& Electronic (145 out of 273). Q3 (T2) in Computer Science, Information

Systems (93 out of 161).

202

APPENDIX A. LIST OF PUBLICATIONS

• Indexed in Scimago 2020. SJR: 0.36. Q2 in Computer Networks and Com-

munications. Q2 Electrical and Electronic Engineering. Q3 in Hardware and

Architecture. Q3 in Signal Processing.

2. Alonso, T., Sutter, G., & López de Vergara, J. E. (2021). LOCO-ANS: An optimiza-
tion of JPEG-LS using an efficient and low complexity coder based on ANS,

in IEEE Access, vol. 9, pp. 106606-106626, 2021, doi: 10.1109/ACCESS.2021.3100747.

This publication is part of chapter 4 (Image Processing: Compression in Con-

strained Scenarios) and chapter 7 (LOCO-ANS Image Codec: Algorithm).

Journal information:

• ISSN:2169-3536

• Indexed in JCR 2020. Impact Factor: 3.367. Q2 (T2) in Engineering, Electrical

& Electronic (94 out of 273). Q2 (T2) in Computer Science, Information

Systems (65 out of 161). Q2 (T2) in Telecommunications (36 out of 91).

• Indexed in Scimago 2020. SJR: 0.587. Q1 in Computer Science. Q1 in Engi-

neering.

3. Alonso, T., Petrica, L., Ruiz, M., Petri-Koenig J., Umuroglu Y., Stamelos I., Ko-

romilas E., Blott, M. & Vissers K. (2021). Elastic-DF: Scaling Performance of
DNN Inference in FPGA Clouds through Automatic Partitioning. ACM

Trans. Reconfigurable Technol. Syst. 15, 2, Article 15 (June 2022), 34 pages.

doi:10.1145/3470567

This publication is part of chapter 6 (AI: Implementation of Large CNN Accelera-

tors) and chapter 11 (Automatic Partitioning and Resource Balancing). Also, it

contributes to chapter 12 (Lessons Learned Designing with HLS).

Journal information:

• ISSN: 1936-7414

• Indexed in JCR 2020. Impact Factor: 2.085. Q3 (T2) in Computer Science,

Hardware & Architecture (30 out of 53).

• Indexed in Scimago 2020. SJR: 0.355. Q2 in Computer Science.

A.1.2 International Conferences

4. Alonso, T., Ruiz, M., Sutter, G., López-Buedo, S., & López de Vergara, J. E. (2019,

April). Towards 100 GbE FPGA-Based Flow Monitoring. In 2019 X Southern

203

APPENDIX A. LIST OF PUBLICATIONS

Conference on Programmable Logic (SPL), Buenos Aires, Argentina (pp. 9-16).

IEEE.

This publication is part of chapter 5 (Computer Networks: 100 GbE Flow Metering)

and chapter 9 (100GbE Flow Metering & Dual Read-Update Architectures).

Conference information:

• Indexed in Scimago 2020. SJR: 0.11.

A.2 Other Publications Related to this Thesis

A.2.1 International Conferences

5. Petrica, L., Alonso, T., Kroes, M., Fraser, N., Cotofana, S., & Blott, M. (2020,

December). Memory-efficient dataflow inference for deep CNNs on FPGA.

In 2020 International Conference on Field-Programmable Technology (FPT), Maui,

HI, USA (pp. 48-55). IEEE.

This publication is related to chapter 6 (AI: Implementation of Large CNN Accel-

erators).

Conference information:

• GGS Class: “Work in Progress”; GSS Rating “B-”.

6. Alonso, T., Ruiz, M., García-Arias, Á. L., Sutter, G., & López de Vergara, J. E.

(2018, August). Submicrosecond Latency Video Compression in a Low-End
FPGA-based System-on-Chip. In 2018 28th International Conference on Field

Programmable Logic and Applications (FPL), Dublin, Ireland (pp. 355-3554). IEEE.

This publication is related to chapter 12 (Lessons Learned Designing with HLS)

and it was the starting point of the developments of chapter 7 (LOCO-ANS

Image Codec: Algorithm) and chapter 8 (LOCO-ANS Image Codec: Hardware

Implementation).

Conference information:

• ISSN: 1946-1488.

• Indexed in Scimago 2020. SJR: 0.27.

• GGS Class: “2”; GSS Rating “A-”.

204

APPENDIX A. LIST OF PUBLICATIONS

A.2.2 Other Communications

7. Alonso, T., Ruiz, M., Sutter, G., Sisterna, C., López-Buedo, S., & López de Vergara,

J. E.. (2018). Monitorización con FPGAs de flujos y sesiones TCP en en-
laces de 40 Gbit/s. In III Jornadas de Computación Empotrada y Reconfigurable

(JCER2018), Teruel, Spain.

This publication is related to chapter 5 (Computer Networks: 100 GbE Flow Meter-

ing) and chapter 9 (100GbE Flow Metering & Dual Read-Update Architectures).

205

A
P

P
E

N
D

I
X

B
LOCO-ANS COMPRESSION EXAMPLES

206

APPENDIX B. LOCO-ANS COMPRESSION EXAMPLES

Figure B.1: Picture of a flower (8-bit, 2268x1512) from the Rawzor dataset. Lossless
compression bpp using LOCO-ANS (Nt6_Stcg7_ANS6): 1.983

Figure B.2: Decoded picture of a flower (8-bit, 2268x1512) from the Rawzor dataset using
LOCO-ANS (Nt6_Stcg7_ANS6) with NEAR = 3. bpp: 0.251. PSNR: 44.16 dB

207

APPENDIX B. LOCO-ANS COMPRESSION EXAMPLES

Figure B.3: Picture of traffic (8-bit, cropped to 2048x1320, and converted to
gray) from the Challenge on learned image compression (CLIC) dataset (Avail-
able: http://compression.cc/tasks/). Lossless compression bpp using LOCO-ANS
(Nt6_Stcg7_ANS6): 3.524

Figure B.4: Decoded picture of traffic (8-bit, cropped to 2048x1320, and converted to gray)
from the CLIC dataset using LOCO-ANS (Nt6_Stcg7_ANS6) with NEAR = 3. bpp: 1.122.
PSNR: 42.91 dB

208

http://compression.cc/tasks/

BIBLIOGRAPHY

[1] N. N. Group., “Nielsen’s law of internet bandwidth,” https://www.nngroup.com/

articles/law-of-bandwidth/, accessed: 2022-3-31.

[2] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional neural

networks: Analysis, applications, and prospects,” IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–21, 2021.

[3] K. Rupp, “48 years of microprocessor trend data,” Jul. 2020, 2020 update of

the popular chart hosted at https://github.com/karlrupp/microprocessor-trend-

data. [Online]. Available: https://doi.org/10.5281/zenodo.3947824

[4] G. E. Moore, “Cramming more components onto electronic circuits,” Electronics
Magazine, vol. 4, 1965.

[5] R. Dennard, F. Gaensslen, H.-N. Yu, V. Rideout, E. Bassous, and A. LeBlanc,

“Design of ion-implanted mosfet’s with very small physical dimensions,” IEEE
Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

[6] G. M. Amdahl, “Validity of the single processor approach to achieving large

scale computing capabilities,” in Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, ser. AFIPS ’67 (Spring). New York, NY, USA:

Association for Computing Machinery, 1967, p. 483–485. [Online]. Available:

https://doi.org/10.1145/1465482.1465560

[7] J. L. Gustafson, “Reevaluating Amdahl’s Law,” Commun. ACM, vol. 31, no. 5, p.

532–533, may 1988. [Online]. Available: https://doi.org/10.1145/42411.42415

[8] J. Henkel, H. Khdr, S. Pagani, and M. Shafique, “New trends in dark silicon,” in

2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), 2015, pp.

1–6.

209

https://www.nngroup.com/articles/law-of-bandwidth/
https://www.nngroup.com/articles/law-of-bandwidth/
https://doi.org/10.5281/zenodo.3947824
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/42411.42415

BIBLIOGRAPHY

[9] S. P. E. Corporation, “SPEC CPU2017 Results,” https://www.spec.org/cpu2017/

results/, accessed: 2022-04-01.

[10] C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W.

Lampson, D. Sanchez, and T. B. Schardl, “There’s plenty of room at

the top: What will drive computer performance after moore’s law?”

Science, vol. 368, no. 6495, p. eaam9744, 2020. [Online]. Available:

https://www.science.org/doi/abs/10.1126/science.aam9744

[11] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon,

W. Harrod, K. Hill, J. Hiller et al., “Exascale computing study: Technology

challenges in achieving exascale systems,” Defense Advanced Research Projects
Agency Information Processing Techniques Office (DARPA IPTO), Tech. Rep,

vol. 15, p. 181, 2008.

[12] D. A. P. John L. Hennessy, “A New Golden Age for Computer Architec-

ture,” https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-

computer-architecture/fulltext, accessed: 2022-04-01.

[13] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao,

S. Brown, F. Ferrandi et al., “A survey and evaluation of fpga high-level synthe-

sis tools,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 35, no. 10, pp. 1591–1604, 2015.

[14] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “Are we there yet? a study

on the state of high-level synthesis,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 38, no. 5, pp. 898–911, 2019.

[15] A. V. Aho and J. E. Hopcroft, The Design and Analysis of Computer Algorithms,

1st ed. USA: Addison-Wesley Longman Publishing Co., Inc., 1974.

[16] C. A. R. Hoare, “Algorithm 64: Quicksort,” Commun. ACM, vol. 4, no. 7, p. 321, jul

1961. [Online]. Available: https://doi.org/10.1145/366622.366644

[17] K. E. Batcher, “Sorting networks and their applications,” in Proceedings of
the April 30–May 2, 1968, Spring Joint Computer Conference, ser. AFIPS ’68

(Spring). New York, NY, USA: Association for Computing Machinery, 1968, p.

307–314. [Online]. Available: https://doi.org/10.1145/1468075.1468121

210

https://www.spec.org/cpu2017/results/
https://www.spec.org/cpu2017/results/
https://www.science.org/doi/abs/10.1126/science.aam9744
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext
https://doi.org/10.1145/366622.366644
https://doi.org/10.1145/1468075.1468121

BIBLIOGRAPHY

[18] S. M. S. Trimberger, “Three ages of fpgas: A retrospective on the first thirty years of

fpga technology: This paper reflects on how moore’s law has driven the design

of fpgas through three epochs: The age of invention, the age of expansion, and

the age of accumulation,” IEEE Solid-State Circuits Magazine, vol. 10, no. 2,

pp. 16–29, 2018.

[19] “IEEE Standard for Standard SystemC Language Reference Manual,” IEEE Std
1666-2011 (Revision of IEEE Std 1666-2005), pp. 1–638, 2012.

[20] T. Alonso, G. Sutter, and J. E. López de Vergara, “LOCO-ANS: An Optimization of

JPEG-LS Using an Efficient and Low-Complexity Coder Based on ANS,” IEEE
Access, vol. 9, pp. 106 606–106 626, 2021.

[21] T. Alonso, G. Sutter, and J. E. López de Vergara, “An fpga-based loco-ans

implementation for lossless and near-lossless image compression using

high-level synthesis,” Electronics, vol. 10, no. 23, 2021. [Online]. Available:

https://www.mdpi.com/2079-9292/10/23/2934

[22] A. Kiely and M. Klimesh, “The ICER progressive wavelet image compressor,” IPN
Progress Report, vol. 42, no. 155, pp. 1–46, 2003.

[23] S. J. Visser, A. S. Dawood, and J. A. Williams, “FPGA based satellite adaptive

image compression system,” Journal of Aerospace Engineering, vol. 16, no. 3,

pp. 129–137, 2003.

[24] B. Sushma, “Endoscopic wireless capsule compressor: A review of the existing

image and video compression algorithms,” in Sustainable Communication
Networks and Application, P. Karuppusamy, I. Perikos, F. Shi, and T. N. Nguyen,

Eds. Singapore: Springer Singapore, 2021, pp. 275–293.

[25] Q. Al-Shebani, P. Premaratne, P. J. Vial, and D. J. McAndrew, “The development

of a clinically tested visually lossless image compression system for capsule

endoscopy,” Signal Processing: Image Communication, vol. 76, pp. 135–150,

2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S092359651830290X

[26] P. Turcza and M. Duplaga, “Low-power image compression for wireless capsule

endoscopy,” in 2007 IEEE International Workshop on Imaging Systems and
Techniques, Cracovia, Poland, May 2007, pp. 1–4.

211

https://www.mdpi.com/2079-9292/10/23/2934
https://www.sciencedirect.com/science/article/pii/S092359651830290X
https://www.sciencedirect.com/science/article/pii/S092359651830290X

BIBLIOGRAPHY

[27] X. Li, X. Chen, X. Xie, G. Li, Li Zhang, C. Zhang, and Z. Wang, “A low power,

fully pipelined jpeg-ls encoder for lossless image compression,” in 2007 IEEE
International Conference on Multimedia and Expo, 2007, pp. 1906–1909.

[28] G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless capsule endoscopy,”

Nature, vol. 405, no. 6785, pp. 417–417, 2000.

[29] M. R. Lone, “A high speed and memory efficient algorithm for perceptually-

lossless volumetric medical image compression,” Journal of King Saud
University - Computer and Information Sciences, 2020. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1319157820303499

[30] T. Richter, J. Keinert, S. Foessel, A. Descampe, G. Rouvroy, and J.-B. Lorent, “JPEG-

XS—A High-Quality Mezzanine Image Codec for Video Over IP,” SMPTE
Motion Imaging Journal, vol. 127, no. 9, pp. 39–49, 2018.

[31] New Infrared Technologies, “TACHYON 16k CAMERA,” https://www.niteurope.

com/wp-content/uploads/2017/01/TACHYON_16k_CAMERA_NIT.pdf, accessed:

2021-09-28.

[32] Y. Nagamatsu, F. Sugai, K. Okada, and M. Inaba, “Basic Implementation of FPGA-

GPU Dual SoC Hybrid Architecture for Low-Latency Multi-DOF Robot Motion

Control,” in 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2020, pp. 7255–7260.

[33] H. Saidi, M. Turki, Z. Marrakchi, A. Obeid, and M. Abid, “Implementation of

reed solomon encoder on low-latency embedded fpga in flexible soc based on

arm processor,” in 2020 International Wireless Communications and Mobile
Computing (IWCMC), 2020, pp. 1347–1352.

[34] X. Zhang, X. Wei, Q. Sang, H. Chen, and Y. Xie, “An efficient fpga-based

implementation for quantized remote sensing image scene classification

network,” Electronics, vol. 9, no. 9, 2020. [Online]. Available: https:

//www.mdpi.com/2079-9292/9/9/1344

[35] L. Li, S. Zhang, and J. Wu, “Efficient object detection framework and hardware

architecture for remote sensing images,” Remote Sensing, vol. 11, no. 20, 2019.

[Online]. Available: https://www.mdpi.com/2072-4292/11/20/2376

212

https://www.sciencedirect.com/science/article/pii/S1319157820303499
https://www.niteurope.com/wp-content/uploads/2017/01/TACHYON_16k_CAMERA_NIT.pdf
https://www.niteurope.com/wp-content/uploads/2017/01/TACHYON_16k_CAMERA_NIT.pdf
https://www.mdpi.com/2079-9292/9/9/1344
https://www.mdpi.com/2079-9292/9/9/1344
https://www.mdpi.com/2072-4292/11/20/2376

BIBLIOGRAPHY

[36] C. A. Lee, S. D. Gasster, A. Plaza, C.-I. Chang, and B. Huang, “Recent developments

in high performance computing for remote sensing: A review,” IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 4,

no. 3, pp. 508–527, 2011.

[37] International Telecommunication Union, “Information technology – lossless and

near-lossless compression of continuous-tone still images: Baseline (itu-t t.

87—iso/iec 14495-1),” International Telecommunication Union, Tech. Rep.,

1998.

[38] Ming Yang and N. Bourbakis, “An overview of lossless digital image compression

techniques,” in 48th Midwest Symposium on Circuits and Systems, 2005., 2005,

pp. 1099–1102 Vol. 2.

[39] M. J. Weinberger, G. Seroussi, and G. Sapiro, “From LOCO-I to the JPEG-LS

standard,” in Proceedings 1999 International Conference on Image Processing
(Cat. 99CH36348), vol. 4, 1999, pp. 68–72 vol.4.

[40] L. Chen, L. Yan, H. Sang, and T. Zhang, “High-Throughput Architecture for Both

Lossless and Near-lossless Compression Modes of LOCO-I Algorithm,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 29, no. 12, pp.

3754–3764, 2019.

[41] Y. Murat, “Key architectural optimizations for hardware efficient jpeg-ls encoder,”

in 2018 IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC), 2018, pp. 243–248.

[42] L. Kau and S. Lin, “High performance architecture for the encoder of jpeg-ls on

sopc platform,” in SiPS 2013 Proceedings, 2013, pp. 141–146.

[43] P. Merlino and A. Abramo, “A Fully Pipelined Architecture for the LOCO-I Com-

pression Algorithm,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 17, no. 7, pp. 967–971, 2009.

[44] M. Ferretti and M. Boffadossi, “A parallel pipelined implementation of LOCO-I

for JPEG-LS,” in Proceedings of the 17th International Conference on Pattern
Recognition, vol. 1, 2004, pp. 769–772.

213

BIBLIOGRAPHY

[45] M. Klimesh, V. Stanton, and D. Watola, “Hardware implementation of a lossless

image compression algorithm using a field programmable gate array,” Mars
(Pathfinder), vol. 4, no. 4.69, pp. 5–72, 2001.

[46] International Telecommunication Union, “Information technology - lossless and

near-lossless compression of continuous-tone still images: Extensions (ITU-T T.

870—ISO/IEC 14495-21),” International Telecommunication Union, Tech. Rep.,

2003.

[47] J. Duda, “Asymmetric numeral systems,” CoRR, vol. abs/0902.0271, 2009. [Online].

Available: http://arxiv.org/abs/0902.0271

[48] ——, “Asymmetric numeral systems: entropy coding combining speed of huffman

coding with compression rate of arithmetic coding,” CoRR, vol. abs/1311.2540,

2013. [Online]. Available: http://arxiv.org/abs/1311.2540

[49] J. Duda, K. Tahboub, N. J. Gadgil, and E. J. Delp, “The use of asymmetric numeral

systems as an accurate replacement for huffman coding,” in 2015 Picture
Coding Symposium (PCS). IEEE, 2015, pp. 65–69.

[50] International Telecommunication Union, “Digital compression and coding of con-

tinuous tone still images - requirements and guidelines, (itu-t t.81—iso/iec is

10918-1),” International Telecommunication Union, Tech. Rep., 1993.

[51] G. Roelofs, “Portable Network Graphics (PNG),” http://www.libpng.org/pub/png/

libpng.html, accessed: 2021-03-16.

[52] M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image compres-

sion algorithm: Principles and standardization into JPEG-LS,” IEEE Transac-
tions on Image processing, vol. 9, no. 8, pp. 1309–1324, 2000.

[53] S. Golomb, “Run-length encodings,” IEEE Trans. Inform. Theory, vol. vol. IT-12, pp.

399–401, 1966.

[54] X. Wu, N. Memon, and K. Sayood, “A context-based, adaptive, lossless/nearly-

lossless coding scheme for continuous-tone images,” ISO/IEC JTC 1/SC
29/WG, vol. 1, 1995.

[55] X. Wu and N. Memon, “Context-based, adaptive, lossless image coding,” IEEE
transactions on Communications, vol. 45, no. 4, pp. 437–444, 1997.

214

http://arxiv.org/abs/0902.0271
http://arxiv.org/abs/1311.2540
http://www.libpng.org/pub/png/libpng.html
http://www.libpng.org/pub/png/libpng.html

BIBLIOGRAPHY

[56] J. J. Rissanen, “Generalized kraft inequality and arithmetic coding,” IBM Journal
of Research and Development, vol. 20, no. 3, pp. 198–203, 1976.

[57] S. M. Najmabadi, Z. Wang, Y. Baroud, and S. Simon, “High throughput hardware

architectures for asymmetric numeral systems entropy coding,” in 2015 9th
international symposium on image and signal processing and analysis (ISPA).
IEEE, 2015, pp. 256–259.

[58] S. M. Najmabadi, H. S. Tungal, T. Tran, and S. Simon, “Hardware-based architec-

ture for asymmetric numeral systems entropy decoder,” in 2017 Conference on
Design and Architectures for Signal and Image Processing (DASIP), 2017, pp.

1–6.

[59] S. M. Najmabadi, T.-H. Tran, S. Eissa, H. S. Tungal, and S. Simon, “An archi-

tecture for asymmetric numeral systems entropy decoder-a comparison with

a canonical huffman decoder,” Journal of Signal Processing Systems, vol. 91,

no. 7, pp. 805–817, 2019.

[60] Rawzor, “Rawzor test images,” http://imagecompression.info/test_images/, ac-

cessed: 2020-07-30.

[61] T. Richter, “libjpeg implementation,” https://github.com/thorfdbg/libjpeg, accessed:

2021-06-15.

[62] N. Merhav, G. Seroussi, and M. J. Weinberger, “Coding of sources with two-sided

geometric distributions and unknown parameters,” IEEE Transactions on
Information Theory, vol. 46, no. 1, pp. 229–236, 2000.

[63] P. G. Howard and J. S. Vitter, “Practical implementations of arithmetic coding,” in

Image and text compression. Springer, 1992, pp. 85–112.

[64] T. Alonso, M. Ruiz, G. Sutter, S. López-Buedo, and J. E. López De Vergara, “To-

wards 100 gbe fpga-based flow monitoring,” in 2019 X Southern Conference on
Programmable Logic (SPL), 2019, pp. 9–16.

[65] T. Zseby, B. Claise, J. Quittek, and S. Zander, “Requirements for IP Flow

Information Export (IPFIX),” RFC 3917, Oct. 2004. [Online]. Available:

https://www.rfc-editor.org/info/rfc3917

215

http://imagecompression.info/test_images/
 https://github.com/thorfdbg/libjpeg
https://www.rfc-editor.org/info/rfc3917

BIBLIOGRAPHY

[66] Cisco Inc., “Cisco Netflow Collection Engine,” https://www.cisco.com/en/

US/products/sw/netmgtsw/ps1964/products_implementation_design_

guide09186a00800d6a11.html, accessed: 2019-02-06.

[67] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller, “An

overview of ip flow-based intrusion detection.” IEEE Communications Surveys
and Tutorials, vol. 12, no. 3, pp. 343–356, 2010.

[68] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and F. True, “Deriv-

ing traffic demands for operational ip networks: Methodology and experience,”

IEEE/ACM Transactions on Networking (ToN), vol. 9, no. 3, pp. 265–280, 2001.

[69] A. Callado, C. Kamienski, G. Szabó, B. P. Gero, J. Kelner, S. Fernandes, and

D. Sadok, “A survey on internet traffic identification,” IEEE communications
surveys & tutorials, vol. 11, no. 3, 2009.

[70] C. Vega, P. Roquero, and J. Aracil, “Multi-gbps http traffic analysis in commodity

hardware based on local knowledge of tcp streams,” Computer Networks, vol.

113, pp. 258–268, 2017.

[71] G. Sadasivan, N. Brownlee, B. Claise, and J. Quittek, “Architecture for

IP Flow Information Export,” RFC 5470, Mar. 2009. [Online]. Available:

https://www.rfc-editor.org/info/rfc5470

[72] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto, and A. Pras,

“Flow Monitoring Explained: From Packet Capture to Data Analysis With

NetFlow and IPFIX,” IEEE Communications Surveys & Tutorials, vol. 16, no. 4,

pp. 2037–2064, 2014.

[73] Cisco Inc., “Flexible NetFlow Configuration Guide,” https://www.cisco.com/c/en/us/

td/docs/ios-xml/ios/fnetflow/configuration/xe-16/fnf-xe-16-book.html, accessed:

2019-01-06.

[74] C. Estan and G. Varghese, “New directions in traffic measurement and accounting:

Focusing on the elephants, ignoring the mice,” ACM Transactions on Computer
Systems (TOCS), vol. 21, no. 3, pp. 270–313, 2003.

[75] E. Miravalls-Sierra, D. Muelas, J. Ramos, J. E. López de Vergara, D. Morató, and

J. Aracil, “Online detection of pathological tcp flows with retransmissions

in high-speed networks,” Computer Communications, vol. 127, pp. 95–104,

216

https://www.cisco.com/en/US/products/sw/netmgtsw/ps1964/products_implementation_design_guide09186a00800d6a11.html
https://www.cisco.com/en/US/products/sw/netmgtsw/ps1964/products_implementation_design_guide09186a00800d6a11.html
https://www.cisco.com/en/US/products/sw/netmgtsw/ps1964/products_implementation_design_guide09186a00800d6a11.html
https://www.rfc-editor.org/info/rfc5470
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/fnetflow/configuration/xe-16/fnf-xe-16-book.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/fnetflow/configuration/xe-16/fnf-xe-16-book.html

BIBLIOGRAPHY

2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0140366417307284

[76] P. Roquero, J. Ramos, V. Moreno, I. González, and J. Aracil, “High-speed TCP

Flow Record Extraction Using GPUs,” The Journal of Supercomputing, vol. 71,

no. 10, pp. 3851–3876, 2015.

[77] M. Forconesi, G. Sutter, S. Lopez-Buedo, and J. Aracil, “Accurate and Flexible Flow-

based Monitoring for High-speed Networks,” in Field Programmable Logic and
Applications (FPL), 2013 23rd International Conference on. IEEE, 2013, pp.

1–4.

[78] V. Puš, P. Velan, L. Kekely, J. Kořenek, and P. Minařík, “Hardware Accelerated

Flow Measurement of 100 Gb Ethernet,” in Integrated Network Management
(IM), 2015 IFIP/IEEE International Symposium on. IEEE, 2015, pp. 1147–

1148.

[79] J. L. Garcia-Dorado, J. A. Hernandez, J. Aracil, J. E. Lopez de Vergara, F. J.

Monserrat, E. Robles, and T. P. de Miguel, “On the duration and spatial charac-

teristics of internet traffic measurement experiments,” IEEE Communications
Magazine, vol. 46, no. 11, pp. 148–155, 2008.

[80] J. L. García-Dorado and J. Aracil, “Flow-concurrence and bandwidth ratio on the

internet,” Computer Communications, vol. 136, pp. 43–52, 2019.

[81] Cisco Inc., “Cisco IOS Flexible NetFlow Command Reference,” https://www.cisco.

com/c/en/us/td/docs/ios/fnetflow/command/reference/fnf_book/fnf_01.html, ac-

cessed: 2019-02-06.

[82] CAIDA, “The CAIDA UCSD Anonymized Internet Traces - 2018,” http://www.caida.

org/data/passive/passive_dataset.xml, accessed: 2019-02-06.

[83] T. Alonso, L. Petrica, M. Ruiz, J. Petri-Koenig, Y. Umuroglu, I. Stamelos,

E. Koromilas, M. Blott, and K. Vissers, “Elastic-DF: Scaling Performance of

DNN Inference in FPGA Clouds through Automatic Partitioning,” ACM Trans.
Reconfigurable Technol. Syst., vol. 15, no. 2, dec 2021. [Online]. Available:

https://doi.org/10.1145/3470567

217

https://www.sciencedirect.com/science/article/pii/S0140366417307284
https://www.sciencedirect.com/science/article/pii/S0140366417307284
https://www.cisco.com/c/en/us/td/docs/ios/fnetflow/command/reference/fnf_book/fnf_01.html
https://www.cisco.com/c/en/us/td/docs/ios/fnetflow/command/reference/fnf_book/fnf_01.html
http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml
https://doi.org/10.1145/3470567

BIBLIOGRAPHY

[84] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,

1998.

[85] Z. Ouyang, J. Niu, Y. Liu, and M. Guizani, “Deep cnn-based real-time traffic light

detector for self-driving vehicles,” IEEE Transactions on Mobile Computing,

vol. 19, no. 2, pp. 300–313, 2020.

[86] C. Zhang, R. Li, W. Kim, D. Yoon, and P. Patras, “Driver behavior recognition via

interwoven deep convolutional neural nets with multi-stream inputs,” IEEE
Access, vol. 8, pp. 191 138–191 151, 2020.

[87] D. N. Thang, L. A. Nguyen, P. T. Dung, T. D. Khoa, N. H. Son, N. T. Hiep,

P. Van Nguyen, V. D. Truong, D. H. Toan, N. M. Hung, T.-D. Ngo, and X.-

T. Truong, “Deep learning-based multiple objects detection and tracking system

for socially aware mobile robot navigation framework,” in 2018 5th NAFOSTED
Conference on Information and Computer Science (NICS), 2018, pp. 436–441.

[88] R. Pereira, T. Barros, L. Garrote, A. Lopes, and U. J. Nunes, “An experimental

study of the accuracy vs inference speed of rgb-d object recognition in mobile

robotics,” in 2020 29th IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN), 2020, pp. 588–595.

[89] A. Koul, S. Ganju, and M. Kasam, Practical Deep Learning for Cloud, Mobile, and
Edge. O’Reilly Media, Inc., 2020.

[90] F. H. Araujo, R. R. Silva, F. N. Medeiros, D. D. Parkinson, A. Hexemer,

C. M. Carneiro, and D. M. Ushizima, “Reverse image search for

scientific data within and beyond the visible spectrum,” Expert Systems
with Applications, vol. 109, pp. 35–48, 2018. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0957417418302987

[91] Y. Zhang, P. Pan, Y. Zheng, K. Zhao, Y. Zhang, X. Ren, and R. Jin, “Visual search at

alibaba,” in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery amp; Data Mining, ser. KDD ’18. New York, NY, USA:

Association for Computing Machinery, 2018, p. 993–1001. [Online]. Available:

https://doi.org/10.1145/3219819.3219820

[92] T. Kim, S. Kim, S. Na, H. Kim, M. Kim, and B.-K. Jeon, “Visual fashion-product

search at sk planet,” arXiv preprint arXiv:1609.07859, 2016.

218

https://www.sciencedirect.com/science/article/pii/S0957417418302987
https://www.sciencedirect.com/science/article/pii/S0957417418302987
https://doi.org/10.1145/3219819.3219820

BIBLIOGRAPHY

[93] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma,

J. Santamaría, M. A. Fadhel, M. Al-Amidie, and L. Farhan, “Review of deep

learning: Concepts, cnn architectures, challenges, applications, future direc-

tions,” Journal of big Data, vol. 8, no. 1, pp. 1–74, 2021.

[94] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway,

and J. Liang, “Convolutional neural networks for medical image analysis: Full

training or fine tuning?” IEEE Transactions on Medical Imaging, vol. 35, no. 5,

pp. 1299–1312, 2016.

[95] C. J. Burke, P. D. Aleo, Y.-C. Chen, X. Liu, J. R. Peterson, G. H. Sembroski,

and J. Y.-Y. Lin, “Deblending and classifying astronomical sources with

Mask R-CNN deep learning,” Monthly Notices of the Royal Astronomical
Society, vol. 490, no. 3, pp. 3952–3965, 10 2019. [Online]. Available:

https://doi.org/10.1093/mnras/stz2845

[96] E. Postnikov, A. Kryukov, S. Polyakov, and D. Zhurov, “Deep learning for energy

estimation and particle identification in gamma-ray astronomy,” arXiv preprint
arXiv:1907.10480, 2019.

[97] I. Priyadarshini and V. Puri, “A convolutional neural network (cnn) based ensemble

model for exoplanet detection,” Earth Science Informatics, vol. 14, no. 2, pp.

735–747, 2021.

[98] A. A. Pol, G. Cerminara, C. Germain, M. Pierini, and A. Seth, “Detector monitoring

with artificial neural networks at the cms experiment at the cern large hadron

collider,” Computing and Software for Big Science, vol. 3, no. 1, pp. 1–13, 2019.

[99] M. Paltenghi, “Time Series Anomaly Detection for CERN Large-Scale Computing

Infrastructure,” Ph.D. dissertation, Politecnico di Milano, Oct 2020, presented

02 Oct 2020. [Online]. Available: https://cds.cern.ch/record/2752641

[100] D. Paul and P. Sala, “Real-time server monitoring and cnn inference on fpga,”

CERN, Tech. Rep., 2019. [Online]. Available: https://openlab.cern/sites/default/

files/2019-11/Report_Debdeep_Paul.pdf

[101] S. Li and X. Zhao, “Image-based concrete crack detection using convolutional neu-

ral network and exhaustive search technique,” Advances in Civil Engineering,

vol. 2019, 2019.

219

https://doi.org/10.1093/mnras/stz2845
https://cds.cern.ch/record/2752641
https://openlab.cern/sites/default/files/2019-11/Report_Debdeep_Paul.pdf
https://openlab.cern/sites/default/files/2019-11/Report_Debdeep_Paul.pdf

BIBLIOGRAPHY

[102] B. Kim, N. Yuvaraj, K. Sri Preethaa, and R. Arun Pandian, “Surface crack detection

using deep learning with shallow cnn architecture for enhanced computation,”

Neural Computing and Applications, vol. 33, no. 15, pp. 9289–9305, 2021.

[103] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and

L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,”

Neural Computation, vol. 1, no. 4, pp. 541–551, 1989.

[104] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in Neural Information Processing
Systems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds., vol. 25.

Curran Associates, Inc., 2012. [Online]. Available: https://proceedings.neurips.

cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[105] G. Cloud, “Cloud TPU,” https://cloud.google.com/tpu, accessed: 2022-04-08.

[106] K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry, “Accelerating cnn inference on

fpgas: A survey,” arXiv preprint arXiv:1806.01683, 2018.

[107] X. Yu, Y. Wang, J. Miao, E. Wu, H. Zhang, Y. Meng, B. Zhang, B. Min, D. Chen,

and J. Gao, “A data-center fpga acceleration platform for convolutional neural

networks,” in 2019 29th International Conference on Field Programmable Logic
and Applications (FPL). IEEE, 2019, pp. 151–158.

[108] J. Knapheide, B. Stabernack, and M. Kuhnke, “A high throughput MobileNetV2

FPGA implementation based on a flexible architecture for depthwise separable

convolution,” in 2020 30th International Conference on Field-Programmable
Logic and Applications (FPL). IEEE, 2020, pp. 277–283.

[109] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo, S. Alkalay,

M. Haselman, L. Adams, M. Ghandi et al., “A configurable cloud-scale DNN

processor for real-time ai,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2018, pp. 1–14.

[110] J. Fowers, K. Ovtcharov, M. K. Papamichael, T. Massengill, M. Liu, D. Lo, S. Alkalay,

M. Haselman, L. Adams, M. Ghandi et al., “Inside project brainwave’s cloud-

scale, real-time ai processor,” IEEE Micro, vol. 39, no. 3, pp. 20–28, 2019.

[111] S. I. Venieris and C.-S. Bouganis, “fpgaConvNet: A framework for mapping convo-

lutional neural networks on FPGAs,” in 2016 IEEE 24th Annual International

220

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://cloud.google.com/tpu

BIBLIOGRAPHY

Symposium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 2016, pp. 40–47.

[112] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and

K. Vissers, “FINN: A framework for fast, scalable binarized neural network

inference,” in Proceedings of the 2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, 2017, pp. 65–74.

[113] M. Ghasemzadeh, M. Samragh, and F. Koushanfar, “Rebnet: Residual binarized

neural network,” in 2018 IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). IEEE, 2018, pp.

57–64.

[114] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural

networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12, pp.

2295–2329, 2017.

[115] X. R. Labs, “FINN: Dataflow compiler for QNN inference on FPGAs,” https://github.

com/Xilinx/finn, accessed: 2021-01-07.

[116] A. Pappalardo, “Brevitas: Quantization-aware training in PyTorch,” https://github.

com/Xilinx/brevitas, accessed: 2021-01-07.

[117] X. R. Labs, “Brevitas: Quantization-aware training in PyTorch,” https://github.

com/Xilinx/finn-hlslib, accessed: 2021-01-07.

[118] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural

networks for mobile vision applications,” CoRR, vol. abs/1704.04861, 2017.

[Online]. Available: http://arxiv.org/abs/1704.04861

[119] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

arXiv preprint arXiv:1512.03385, 2015.

[120] X. R. Labs, “FINN dataflow accelerator examples,” https://github.com/Xilinx/finn-

examples, accessed: 2021-01-07.

[121] Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model parallelism for deep

neural networks,” 2018.

221

https://github.com/Xilinx/finn
https://github.com/Xilinx/finn
https://github.com/Xilinx/brevitas
https://github.com/Xilinx/brevitas
https://github.com/Xilinx/finn-hlslib
https://github.com/Xilinx/finn-hlslib
http://arxiv.org/abs/1704.04861
https://github.com/Xilinx/finn-examples
https://github.com/Xilinx/finn-examples

BIBLIOGRAPHY

[122] K. Saban, “Xilinx Stacked Silicon Interconnect Technology Delivers Breakthrough

FPGA Capacity, Bandwidth, and Power Efficiency,” https://docs.xilinx.com/v/u/

en-US/wp380_Stacked_Silicon_Interconnect_Technology, accessed: 2022-04-08.

[123] J. F. Wakerly, Digital design : principles and practices, 4th ed. Upper Saddle

River: Pearson Prentice Hall, 2006.

[124] i. Xilinx, “UltraFast Design Methodology Timing Closure Quick Refer-

ence Guide,” https://docs.xilinx.com/v/u/en-US/ug1292-ultrafast-timing-closure-

quick-reference, accessed: 2022-04-08.

[125] T. Wang, T. Geng, A. Li, X. Jin, and M. Herbordt, “Fpdeep: Scalable accelera-

tion of cnn training on deeply-pipelined fpga clusters,” IEEE Transactions on
Computers, vol. 69, no. 8, pp. 1143–1158, 2020.

[126] T. Alonso, “LOCO-ANS hardware implementation repository,” https://github.com/

hpcn-uam/LOCO-ANS-HW-coder, accessed: 2022-03-27.

[127] R. F. Rice, “Some practical universal noiseless coding techniques,” Jet Propulsion

Lab., Tech. Rep., 1979. [Online]. Available: https://ntrs.nasa.gov/citations/

19790014634

[128] C. Team, “Charls implementation of jpeg-ls,” https://github.com/team-charls/charls,

commit: 8d12c74e8400b268042ca3bee8a32513181f94dc.

[129] T. Alonso, “CALIC implementation,” https://github.com/Tobi-Alonso/gcif/tree/

master/refs/calic, accessed: 2021-06-15.

[130] International Telecommunication Union, “Information technology – jpeg 2000

image coding system: Core coding system (itu-t t.800 | iso/iec 15444-1),” Inter-

national Telecommunication Union, Tech. Rep., 2019.

[131] Joint Photographic Experts Group, “jpeg2000 implementation,” https://github.com/

uclouvain/openjpeg, commit: cc1919b183f76d5ac79cc9927fb899b47700d925.

[132] International Telecommunication Union, “Information technology – jpeg 2000

image coding system: High-throughput jpeg 2000 (itu-t t.814 | iso/iec 15444-

15),” International Telecommunication Union, Tech. Rep., 2019.

[133] Joint Photographic Experts Group, “High throughput jpeg2000 implementation,”

https://github.com/aous72/OpenJPH, tag: 0.7.3.

222

https://docs.xilinx.com/v/u/en-US/wp380_Stacked_Silicon_Interconnect_Technology
https://docs.xilinx.com/v/u/en-US/wp380_Stacked_Silicon_Interconnect_Technology
https://docs.xilinx.com/v/u/en-US/ug1292-ultrafast-timing-closure-quick-reference
https://docs.xilinx.com/v/u/en-US/ug1292-ultrafast-timing-closure-quick-reference
https://github.com/hpcn-uam/LOCO-ANS-HW-coder
https://github.com/hpcn-uam/LOCO-ANS-HW-coder
https://ntrs.nasa.gov/citations/19790014634
https://ntrs.nasa.gov/citations/19790014634
https://github.com/team-charls/charls
https://github.com/Tobi-Alonso/gcif/tree/master/refs/calic
https://github.com/Tobi-Alonso/gcif/tree/master/refs/calic
https://github.com/uclouvain/openjpeg
https://github.com/uclouvain/openjpeg
https://github.com/aous72/OpenJPH

BIBLIOGRAPHY

[134] The WebM Project, “Webp homepage,” https://developers.google.com/speed/webp,

accessed: 2021-06-15.

[135] ——, “libwebp implementation,” https://github.com/webmproject/libwebp, commit:

f6d2924757f356fcdc620ddaf4c200728a78df09.

[136] ——, “libwebp2 implementation,” https://chromium.googlesource.com/codecs/

libwebp2, commit: f1632cfe6c624fedb2fd47d137da0a2f5fe1fd42.

[137] Joint Photographic Experts Group, “Overview of JPEG XL,” https://jpeg.org/jpegxl/

index.html, accessed: 2021-06-15.

[138] A. Rhatushnyak, J. Wassenberg, J. Sneyers, J. Alakuijala, L. Vandevenne, L. Ver-

sari, R. Obryk, Z. Szabadka, E. Kliuchnikov, I.-M. Comsa, K. Potempa, M. Bruse,

M. Firsching, R. Khasanova, R. van Asseldonk, S. Boukortt, S. Gomez, and

T. Fischbacher, “Committee draft of JPEG XL image coding system,” 2019.

[139] Joint Photographic Experts Group, “JPEG XL Reference Software,” https://gitlab.

com/wg1/jpeg-xl, commit: f2ed004456dc7102b08e34fbcef08e1ef18f374d.

[140] Workshop and Challenge on Learned Image Compression, “Clic training dataset,”

http://compression.cc/tasks/, accessed: 2021-06-15.

[141] Joint Photographic Experts Group, “CLIC images subset,” https://drive.google.com/

drive/folders/1wMgmjf54iN46dVihvMnHhGk8oQT7a8Nd, accessed: 2021-06-

15.

[142] A. V. Lotov and K. Miettinen, “Main terminology and notations used,” in Multiob-
jective optimization. Springer, 2008, ch. Preface,7, pp. X–XI.

[143] J. Alakuijala, J. Sneyers, L. Versari, and J. Wassenberg, “Jpeg white paper: Jpeg

xl image coding system,” Joint Photographic Experts Group, Tech. Rep., 2021.

[Online]. Available: http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf

[144] T. Liebchen, T. Moriya, N. Harada, Y. Kamamoto, and Y. A. Reznik, “The mpeg-4

audio lossless coding (als) standard-technology and applications,” in Proc. 119th
AES Conv, 2005.

[145] Xiph.Org Foundation, “FLAC - Free Lossless Audio Codec,” https://xiph.org/flac/,

accessed: 2021-04-9.

223

https://developers.google.com/speed/webp
https://github.com/webmproject/libwebp
https://chromium.googlesource.com/codecs/libwebp2
https://chromium.googlesource.com/codecs/libwebp2
https://jpeg.org/jpegxl/index.html
https://jpeg.org/jpegxl/index.html
https://gitlab.com/wg1/jpeg-xl
https://gitlab.com/wg1/jpeg-xl
http://compression.cc/tasks/
https://drive.google.com/drive/folders/1wMgmjf54iN46dVihvMnHhGk8oQT7a8Nd
https://drive.google.com/drive/folders/1wMgmjf54iN46dVihvMnHhGk8oQT7a8Nd
http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf
https://xiph.org/flac/

BIBLIOGRAPHY

[146] H. Daryanavard, O. Abbasi, and R. Talebi, “Fpga implementation of jpeg-ls com-

pression algorithm for real time applications,” in 2011 19th Iranian Conference
on Electrical Engineering, 2011, pp. 1–4.

[147] T. Alonso, “LOCO-ANS software implementation repository,” https://github.com/

hpcn-uam/LOCO-ANS, accessed: 2021-03-16.

[148] Y. M. Mert, “Fpga-based jpeg-ls encoder for onboard real-time lossless image

compression,” in Satellite data compression, communications, and processing
XI, vol. 9501. International Society for Optics and Photonics, 2015, p. 950106.

[149] M. Forconesi, G. Sutter, S. López-Buedo, J. E. López de Vergara, and J. Aracil,

“Bridging the gap between hardware and software open source network devel-

opments,” IEEE Network, vol. 28, no. 5, pp. 13–19, 2014.

[150] Forconesi, Marco, “Flexible NetFlow Configuration Guide,” https://github.

com/forconesi/HW-Flow-Based-Monitoring/tree/master/hls_approach/flow_

surveyor, accessed: 2022-03-04.

[151] Xilinx Inc. SDNet PX Programming Language. [Online]. Available: https:

//docs.xilinx.com/v/u/en-US/ug1016-px-programming

[152] B. Trammell and E. Boschi, “Bidirectional Flow Export Using IP Flow

Information Export (IPFIX),” RFC 5103, Jan. 2008. [Online]. Available:

https://www.rfc-editor.org/info/rfc5103

[153] R. Bush and R. Elz, “Serial Number Arithmetic,” RFC 1982, Aug. 1996. [Online].

Available: https://www.rfc-editor.org/info/rfc1982

[154] Xilinx Inc., “Xilinx virtex ultrascale+ fpga vcu118 evaluation board,” https://www.

xilinx.com/products/boards-and-kits/vcu118.html, accessed: 2018-10-26.

[155] ——, “Alveo u200 data center accelerator card,” https://www.xilinx.com/products/

boards-and-kits/alveo/u200.html, accessed: 2022-3-25.

[156] D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler transformations for high-

performance computing,” ACM Comput. Surv., vol. 26, no. 4, p. 345–420, dec

1994.

[157] P. P. Chang, W. Y. Chen, S. A. Mahlke, and W.-m. W. Hwu, “Comparing static and

dynamic code scheduling for multiple-instruction-issue processors,” in Proc.

224

https://github.com/hpcn-uam/LOCO-ANS
https://github.com/hpcn-uam/LOCO-ANS
https://github.com/forconesi/HW-Flow-Based-Monitoring/tree/master/hls_approach/flow_surveyor
https://github.com/forconesi/HW-Flow-Based-Monitoring/tree/master/hls_approach/flow_surveyor
https://github.com/forconesi/HW-Flow-Based-Monitoring/tree/master/hls_approach/flow_surveyor
https://docs.xilinx.com/v/u/en-US/ug1016-px-programming
https://docs.xilinx.com/v/u/en-US/ug1016-px-programming
https://www.rfc-editor.org/info/rfc5103
https://www.rfc-editor.org/info/rfc1982
https://www.xilinx.com/products/boards-and-kits/vcu118.html
https://www.xilinx.com/products/boards-and-kits/vcu118.html
https://www.xilinx.com/products/boards-and-kits/alveo/u200.html
https://www.xilinx.com/products/boards-and-kits/alveo/u200.html

BIBLIOGRAPHY

24th Annual International Symposium on Microarchitecture, ser. MICRO 24.

New York, NY, USA: Association for Computing Machinery, 1991, p. 25–33.

[158] M. Griebl, P. Feautrier, and C. Lengauer, “Index set splitting,” Int. Journal of
Parallel Programming, vol. 28, no. 6, pp. 607–631, 2000.

[159] A. Morvan, S. Derrien, and P. Quinton, “Efficient nested loop pipelining in high

level synthesis using polyhedral bubble insertion,” in 2011 International Con-
ference on Field-Programmable Technology, 2011, pp. 1–10.

[160] J. Liu, S. Bayliss, and G. A. Constantinides, “Offline synthesis of online dependence

testing: Parametric loop pipelining for hls,” in 2015 IEEE 23rd Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines, 2015,

pp. 159–162.

[161] J. Liu, J. Wickerson, S. Bayliss, and G. A. Constantinides, “Polyhedral-based

dynamic loop pipelining for high-level synthesis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 9,

pp. 1802–1815, 2018.

[162] R. M. Tomasulo, “An efficient algorithm for exploiting multiple arithmetic units,”

IBM Journal of Research and Development, vol. 11, no. 1, pp. 25–33, 1967.

[163] A. Nicolau, “Run-time disambiguation: coping with statically unpredictable de-

pendencies,” IEEE Transactions on Computers, vol. 38, no. 5, pp. 663–678,

1989.

[164] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W.-m. W. Hwu,

“Dynamic memory disambiguation using the memory conflict buffer,” in Proc.
Sixth International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS VI. New York, NY, USA:

Association for Computing Machinery, 1994, p. 183–193.

[165] SIEMENS, “Catapult HLS,” https://eda.sw.siemens.com/en-US/ic/catapult-high-

level-synthesis/hls/c-cplus/, accessed: 2022-02-01.

[166] Intel High Level Synthesis Compiler Pro Edition: Reference Manual. [On-

line]. Available: https://www.intel.com/content/www/us/en/docs/programmable/

683349/21-4/pro-edition-reference-manual.html

225

https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/
https://www.intel.com/content/www/us/en/docs/programmable/683349/21-4/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/21-4/pro-edition-reference-manual.html

BIBLIOGRAPHY

[167] Xilinx, Vitis High-Level Synthesis: User Guide, Xilinx.

[168] J. Rohde, K. Müller, and C. Hochberger, “Improving hls generated accelerators

through relaxed memory access scheduling,” in 2020 IEEE International Par-
allel and Distributed Processing Symposium Workshops (IPDPSW), 2020, pp.

74–81.

[169] M. Alle, A. Morvan, and S. Derrien, “Runtime dependency analysis for loop pipelin-

ing in high-level synthesis,” in 2013 50th ACM/EDAC/IEEE Design Automa-
tion Conference (DAC), 2013, pp. 1–10.

[170] S. Derrien, T. Marty, S. Rokicki, and T. Yuki, “Toward speculative loop pipelining

for high-level synthesis,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 11, pp. 4229–4239, 2020.

[171] S. Dai, R. Zhao, G. Liu, S. Srinath, U. Gupta, C. Batten, and Z. Zhang, “Dynamic

hazard resolution for pipelining irregular loops in high-level synthesis,” in

Proc. 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’17. New York, NY, USA: Association for Computing

Machinery, 2017, p. 189–194.

[172] T. Alonso, “Publication repository,” https://github.com/hpcn-uam/hls-conditional-

stalling, accessed: 2022-02-01.

[173] M. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image compres-

sion algorithm: principles and standardization into JPEG-LS,” IEEE Trans.
Image Processing, vol. 9, no. 8, pp. 1309–1324, 2000.

[174] R. T. Fernholz and R. Fernholz, “The universality of zipf ’s law for time-dependent

rank-based random systems,” arXiv preprint arXiv:1707.04285, 2017.

[175] M. A. Kader, E. Bastug, M. Bennis, E. Zeydan, A. Karatepe, A. S. Er, and M. Debbah,

“Leveraging big data analytics for cache-enabled wireless networks,” in 2015
IEEE Globecom Workshops (GC Wkshps), 2015, pp. 1–6.

[176] S. L. Harris and D. M. Harris, “7 - microarchitecture,” in Digital Design and
Computer Architecture, S. L. Harris and D. M. Harris, Eds. Boston: Morgan

Kaufmann, 2016, pp. 384–484.

226

https://github.com/hpcn-uam/hls-conditional-stalling
https://github.com/hpcn-uam/hls-conditional-stalling

BIBLIOGRAPHY

[177] K. Olukotun, L. Hammond, and J. Laudon, Chip multiprocessor architecture:
techniques to improve throughput and latency. Morgan & Claypool Publishers,

2007, vol. 2.

[178] T. Alonso and L. Petrica, “Partitioner and resource balancer tool implementation in

finn,” https://github.com/Xilinx/finn-experimental/blob/main/src/finn/analysis/

partitioning.py, accessed: 2021-06-06.

[179] M. Blott, T. B. Preußer, N. J. Fraser, G. Gambardella, K. O’brien, Y. Umuroglu,

M. Leeser, and K. Vissers, “FINN-R: An end-to-end deep-learning framework

for fast exploration of quantized neural networks,” ACM Transactions on Re-
configurable Technology and Systems (TRETS), vol. 11, no. 3, pp. 1–23, 2018.

[180] Xilinx Inc, “Xilinx ai engine technology,” available online at:https://www.xilinx.

com/products/technology/ai-engine.html. Accessed: 2022-04-11.

[181] H. G. S. Tulio A. M. Toffolo, “The python MIP package,” https://www.python-

mip.com/, accessed: 2021-01-07.

[182] M. Ruiz, “XUP Vitis network example (VNx),” https://github.com/Xilinx/xup_vitis_

network_example, accessed: 2021-01-07.

[183] X. U. Program, “Xilinx adaptive compute cluster (XACC) program,” https://www.

xilinx.com/support/university/XUP-XACC.html, accessed: 2021-01-07.

[184] Xilinx Inc, “Xilinx Runtime Library (XRT),” https://www.xilinx.com/products/

design-tools/vitis/xrt.html, accessed: 2022-04-12.

[185] ——, “PYNQ: Python productivity for Xilinx platforms,” https://pynq.readthedocs.

io/en/latest/, accessed: 2022-04-12.

[186] Dask core developers, “Dask,” https://dask.org/, accessed: 2022-04-12.

[187] C. Kachris, “Performance evaluation of InAccel ML scalable suite,” InAccel, Tech.

Rep., 2018. [Online]. Available: https://www.inaccel.com/wp-content/uploads/

inaccel_white_paper.pdf

[188] Xilinx Inc, “Alveo Data Center Accelerator Card Platforms,” https://docs.xilinx.

com/v/u/en-US/ug1120-alveo-platforms, accessed: 2022-04-12.

227

https://github.com/Xilinx/finn-experimental/blob/main/src/finn/analysis/partitioning.py
https://github.com/Xilinx/finn-experimental/blob/main/src/finn/analysis/partitioning.py
https://www.xilinx.com/products/technology/ai-engine.html
https://www.xilinx.com/products/technology/ai-engine.html
https://www.python-mip.com/
https://www.python-mip.com/
https://github.com/Xilinx/xup_vitis_network_example
https://github.com/Xilinx/xup_vitis_network_example
https://www.xilinx.com/support/university/XUP-XACC.html
https://www.xilinx.com/support/university/XUP-XACC.html
https://www.xilinx.com/products/design-tools/vitis/xrt.html
https://www.xilinx.com/products/design-tools/vitis/xrt.html
https://pynq.readthedocs.io/en/latest/
https://pynq.readthedocs.io/en/latest/
https://dask.org/
https://www.inaccel.com/wp-content/uploads/inaccel_white_paper.pdf
https://www.inaccel.com/wp-content/uploads/inaccel_white_paper.pdf
https://docs.xilinx.com/v/u/en-US/ug1120-alveo-platforms
https://docs.xilinx.com/v/u/en-US/ug1120-alveo-platforms

BIBLIOGRAPHY

[189] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J. Wu, B. Ander-

son, M. Breughe, M. Charlebois, W. Chou, R. Chukka, C. Coleman, S. Davis,

P. Deng, G. Diamos, J. Duke, D. Fick, J. S. Gardner, I. Hubara, S. Idgunji,

T. B. Jablin, J. Jiao, T. S. John, P. Kanwar, D. Lee, J. Liao, A. Lokhmotov,

F. Massa, P. Meng, P. Micikevicius, C. Osborne, G. Pekhimenko, A. T. R. Rajan,

D. Sequeira, A. Sirasao, F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu,

K. Yamada, B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou, “Mlperf inference

benchmark,” in 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), 2020, pp. 446–459.

[190] BROADCOM, “Single-Port 100 Gb/s QSFP56 Ethernet PCI Express 4.0 x16 OCP

3.0 SFF Network Adapter,” https://docs.broadcom.com/doc/957504-N1100G-DS,

accessed: 2022-04-12.

[191] NVIDIA, “NVIDIA Mellanox ConnectX-5 Ethernet Adapter Cards User

Manual,” https://img-en.fs.com/file/user_manual/connectx-5-ethernet-adapter-

cards-user-manual.pdf, accessed: 2022-04-12.

[192] L. Petrica, T. Alonso, M. Kroes, N. Fraser, S. Cotofana, and M. Blott, “Memory-

efficient dataflow inference for deep cnns on fpga,” in 2020 International Con-
ference on Field-Programmable Technology (ICFPT), 2020, pp. 48–55.

[193] A. Henzinger, A. Noe, and C. Schulz, “Ilp-based local search for graph

partitioning,” ACM J. Exp. Algorithmics, vol. 25, jul 2020. [Online]. Available:

https://doi.org/10.1145/3398634

[194] A. Hahn Pereira and V. Betz, “CAD and routing architecture for interposer-based

multi-fpga systems,” in Proceedings of the 2014 ACM/SIGDA international
symposium on Field-programmable gate arrays, 2014, pp. 75–84.

[195] E. Nasiri, J. Shaikh, A. H. Pereira, and V. Betz, “Multiple dice working as one:

CAD flows and routing architectures for silicon interposer FPGAs,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 5, pp.

1821–1834, 2015.

[196] W.-H. Liu, M.-S. Chang, and T.-C. Wang, “Floorplanning and signal assignment

for silicon interposer-based 3d ics,” in 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC), 2014, pp. 1–6.

228

https://docs.broadcom.com/doc/957504-N1100G-DS
https://img-en.fs.com/file/user_manual/connectx-5-ethernet-adapter-cards-user-manual.pdf
https://img-en.fs.com/file/user_manual/connectx-5-ethernet-adapter-cards-user-manual.pdf
https://doi.org/10.1145/3398634

BIBLIOGRAPHY

[197] F. Mao, W. Zhang, B. Feng, B. He, and Y. Ma, “Modular placement for interposer

based multi-FPGA systems,” in 2016 International Great Lakes Symposium on
VLSI (GLSVLSI). IEEE, 2016, pp. 93–98.

[198] W.-S. Kuo, S.-H. Zhang, W.-K. Mak, R. Sun, and Y. K. Leow, “Pin Assignment

Optimization for Multi-2.5D FPGA-Based Systems,” in Proceedings of the
2018 International Symposium on Physical Design, ser. ISPD ’18. New York,

NY, USA: Association for Computing Machinery, 2018, p. 106–113. [Online].

Available: https://doi.org/10.1145/3177540.3178246

[199] N. Voss, P. Quintana, O. Mencer, W. Luk, and G. Gaydadjiev, “Memory mapping

for multi-die FPGAs,” in 2019 IEEE 27th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). IEEE, 2019, pp.

78–86.

[200] N. Tarafdar, G. Di Guglielmo, P. C. Harris, J. D. Krupa, V. Loncar, D. S. Rankin,

N. Tran, Z. Wu, Q. Shen, and P. Chow, “Aigean: An open framework for ma-

chine learning on heterogeneous clusters,” in Sixth International Workshop on
Heterogeneous High-performance Reconfigurable Computing). IEEE, 2020.

[201] W. Zhang, J. Zhang, M. Shen, G. Luo, and N. Xiao, “An efficient mapping approach

to large-scale DNNs on multi-FPGA architectures,” in 2019 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2019, pp. 1241–1244.

[202] C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong, “Energy-efficient CNN

implementation on a deeply pipelined FPGA cluster,” in Proceedings of the
2016 International Symposium on Low Power Electronics and Design, 2016, pp.

326–331.

[203] C. Baskin, N. Liss, E. Zheltonozhskii, A. M. Bronstein, and A. Mendelson, “Stream-

ing architecture for large-scale quantized neural networks on an fpga-based

dataflow platform,” in 2018 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW). IEEE, 2018, pp. 162–169.

[204] W. Jiang, E. H.-M. Sha, X. Zhang, L. Yang, Q. Zhuge, Y. Shi, and J. Hu, “Achieving

super-linear speedup across multi-fpga for real-time dnn inference,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 18, no. 5s, pp.

1–23, 2019.

229

https://doi.org/10.1145/3177540.3178246

BIBLIOGRAPHY

[205] J. Shan, M. T. Lazarescu, J. Cortadella, L. Lavagno, and M. R. Casu, “CNN-on-

AWS: Efficient Allocation of Multikernel Applications on Multi-FPGA Plat-

forms,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 40, no. 2, pp. 301–314, 2021.

[206] Z. Sun, K. Campbell, W. Zuo, K. Rupnow, S. Gurumani, F. Doucet, and D. Chen,

“Designing high-quality hardware on a development effort budget: A study of

the current state of high-level synthesis,” in 2016 21st Asia and South Pacific
Design Automation Conference (ASP-DAC), 2016, pp. 218–225.

[207] D. Singh and P. Yiannacouras, OpenCL. Springer International Publishing, 2016,

pp. 97–114. [Online]. Available: https://doi.org/10.1007/978-3-319-26408-0_6

[208] A. Sohrabizadeh, C. H. Yu, M. Gao, and J. Cong, “Autodse: Enabling

software programmers to design efficient fpga accelerators,” ACM Trans.
Des. Autom. Electron. Syst., vol. 27, no. 4, feb 2022. [Online]. Available:

https://doi.org/10.1145/3494534

[209] J. Volder, “The cordic computing technique,” in Managing Requirements
Knowledge, International Workshop on, vol. 1. Los Alamitos, CA, USA:

IEEE Computer Society, mar 1959, p. 257. [Online]. Available: https:

//doi.ieeecomputersociety.org/10.1109/AFIPS.1959.57

[210] H. Ochi, “Rtl design of parallel fft with block floating point arithmetic,” in 2008
IEEE Conference on Soft Computing in Industrial Applications, 2008, pp. 273–

276.

[211] J.-M. Muller, “Elementary functions and approximate computing,” Proceedings of
the IEEE, vol. 108, no. 12, pp. 2136–2149, 2020.

[212] J. de Fine Licht, M. Besta, S. Meierhans, and T. Hoefler, “Transformations of high-

level synthesis codes for high-performance computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 5, pp. 1014–1029, 2021.

[213] J. Santiago da Silva, F.-R. Boyer, and J. P. Langlois, “Module-per-object: A human-

driven methodology for c++-based high-level synthesis design,” in 2019 IEEE
27th Annual International Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), 2019, pp. 218–226.

230

https://doi.org/10.1007/978-3-319-26408-0_6
https://doi.org/10.1145/3494534
https://doi.ieeecomputersociety.org/10.1109/AFIPS.1959.57
https://doi.ieeecomputersociety.org/10.1109/AFIPS.1959.57

BIBLIOGRAPHY

[214] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang, “High-level

synthesis for fpgas: From prototyping to deployment,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 4, pp.

473–491, 2011.

[215] S. Sarkar, S. Dabral, P. K. Tiwari, and R. S. Mitra, “Lessons and experiences with

high-level synthesis,” IEEE Design Test of Computers, vol. 26, no. 4, pp. 34–45,

2009.

[216] Xilinx Inc, “Vitis hls hardware design methodology,” Available online

at: https://docs.xilinx.com/r/2021.1-English/ug1399-vitis-hls/Vitis-HLS-

Hardware-Design-Methodology. Accessed: 2022-04-20.

[217] Microchip Technology Inc, “Legup: Optimization guide,” available online

at: https://download-soc.microsemi.com/FPGA/HLS-EAP/docs/legup-9.1-

docs/optimizationguide.html#inferring-streaming-hardware-via-producer-

consumer-pattern-with-pthreads. Accessed on: 2022-04-20.

[218] J. J. García Aranda, M. González Casquete, M. Cao Cueto, J. Navarro Salmerón,

and F. González Vidal, “Logarithmical hopping encoding: a low computational

complexity algorithm for image compression,” IET Image Processing, vol. 9,

no. 8, pp. 643–651, 2015.

[219] T. Alonso, M. Ruiz, A. López García-Arias, G. Sutter, and J. E. López de Vergara,

“Submicrosecond latency video compression in a low-end fpga-based system-on-

chip,” in 2018 28th International Conference on Field Programmable Logic and
Applications (FPL), 2018, pp. 355–3554.

[220] N. Dave, M. C. Ng, M. Pellauer, and Arvind, “A design flow based on modular re-

finement,” in Eighth ACM/IEEE International Conference on Formal Methods
and Models for Codesign (MEMOCODE 2010), 2010, pp. 11–20.

[221] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli, “Latency insen-

sitive protocols,” in International Conference on Computer Aided Verification.

Springer, 1999, pp. 123–133.

[222] P. Mantovani, R. Margelli, D. Giri, and L. P. Carloni, “Hl5: A 32-bit risc-v processor

designed with high-level synthesis,” in 2020 IEEE Custom Integrated Circuits
Conference (CICC), 2020, pp. 1–8.

231

https://docs.xilinx.com/r/2021.1-English/ug1399-vitis-hls/Vitis-HLS-Hardware-Design-Methodology
https://docs.xilinx.com/r/2021.1-English/ug1399-vitis-hls/Vitis-HLS-Hardware-Design-Methodology
https://download-soc.microsemi.com/FPGA/HLS-EAP/docs/legup-9.1-docs/optimizationguide.html#inferring-streaming-hardware-via-producer-consumer-pattern-with-pthreads
https://download-soc.microsemi.com/FPGA/HLS-EAP/docs/legup-9.1-docs/optimizationguide.html#inferring-streaming-hardware-via-producer-consumer-pattern-with-pthreads
https://download-soc.microsemi.com/FPGA/HLS-EAP/docs/legup-9.1-docs/optimizationguide.html#inferring-streaming-hardware-via-producer-consumer-pattern-with-pthreads

BIBLIOGRAPHY

[223] S. Rokicki, D. Pala, J. Paturel, and O. Sentieys, “What You Simulate Is What You

Synthesize: Designing a Processor Core from C++ Specifications,” in ICCAD
2019 - 38th IEEE/ACM International Conference on Computer-Aided Design.

Westminster, CO, United States: IEEE, Nov. 2019, pp. 1–8. [Online]. Available:

https://hal.archives-ouvertes.fr/hal-02303453

[224] J. M. P. Cardoso and M. Weinhardt, High-Level Synthesis. Cham: Springer

International Publishing, 2016, pp. 23–47. [Online]. Available: https:

//doi.org/10.1007/978-3-319-26408-0_2

[225] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao,

S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, “A survey and evaluation of

fpga high-level synthesis tools,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 35, no. 10, pp. 1591–1604, 2016.

[226] R. Venkatakrishnan, A. Misra, and V. Kindratenko, “High-level synthesis-based

approach for accelerating scientific codes on fpgas,” Computing in Science
Engineering, vol. 22, no. 4, pp. 104–109, 2020.

[227] P. F. Silva, J. Bispo, and N. Paulino, “Fpgas as general-purpose accelerators for non-

experts via hls: The graph analysis example,” in 2021 International Conference
on Field-Programmable Technology (ICFPT), 2021, pp. 1–4.

[228] A. Canis, J. Choi, B. Fort, B. Syrowik, R. L. Lian, Y. T. Chen, H. Hsiao,

J. Goeders, S. Brown, and J. Anderson, LegUp High-Level Synthesis. Cham:

Springer International Publishing, 2016, pp. 175–190. [Online]. Available:

https://doi.org/10.1007/978-3-319-26408-0_10

[229] M. A. Özkan, O. Reiche, F. Hannig, and J. Teich, “Fpga-based accelerator design

from a domain-specific language,” in 2016 26th International Conference on
Field Programmable Logic and Applications (FPL), 2016, pp. 1–9.

[230] Xilinx Inc., “Vivado High-Level Synthesis,” available online at: https://docs.xilinx.

com/v/u/en-US/ug902-vivado-high-level-synthesis. Accessed: 2022-04-22.

[231] S. Dai, Y. Zhou, H. Zhang, E. Ustun, E. F. Young, and Z. Zhang, “Fast and accurate

estimation of quality of results in high-level synthesis with machine learning,”

in 2018 IEEE 26th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2018, pp. 129–132.

232

https://hal.archives-ouvertes.fr/hal-02303453
https://doi.org/10.1007/978-3-319-26408-0_2
https://doi.org/10.1007/978-3-319-26408-0_2
https://doi.org/10.1007/978-3-319-26408-0_10
https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis
https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis

BIBLIOGRAPHY

[232] A. Al-Zoubi and K. Tatas, “Rapid high-level fpga resource estimation for a novel

heterogeneous platform scheduling scheme,” in 2020 11th International Confer-
ence on Information and Communication Systems (ICICS), 2020, pp. 378–381.

[233] Y. L. Aung, S.-K. Lam, and T. Srikanthan, “Rapid estimation of dsps utilization

for efficient high-level synthesis,” in 2015 IEEE International Conference on
Digital Signal Processing (DSP), 2015, pp. 1261–1265.

233

	Portada
	ABSTRACT
	RESUMEN
	AGRADECIMIENTOS
	LIST OF CONTENTS
	List of Tables
	List of Figures
	List of Algorithms
	Introduction & Background
	Introduction
	Context & Motivation of the Thesis
	Trends of Data Processing Requirements
	Trends of General Purpose Hardware Performance
	Trends of Custom Designed Hardware and FPGAs

	Objectives & Methodology of the Thesis
	Objectives
	Methodology

	Structure of the Thesis

	Introducción
	Contexto y Motivación de la Tesis
	Tendencias de los Requerimientos de Procesamiento
	Tendencias del Desempeño del Hardware de Propósito General
	Tendencias del Hardware Diseñado a Medida y las FPGA

	Objetivos & Metodología de la Tesis
	Objetivos
	Metodología

	Estructura de la Tesis

	Background
	Electronic Circuit Technology
	Design Languages

	Case Studies and Challenges Presentation
	Image Processing: Compression in Constrained Scenarios
	Introduction
	JPEG-LS
	JPEG-LS Baseline Algorithm
	JPEG-LS Extension
	JPEG-LS Hardware Implementations

	Asymmetric Numeral Systems
	tANS Operation
	Coding Efficiency

	Problem Analysis
	Test Image Dataset
	JPEG-LS Optimization Potential

	Research & Development Goals

	Computer Networks: 100 GbE Flow Metering
	Introduction
	Flow Monitoring
	State-of-the-Art
	Problem Analysis
	Scenario
	System Constraints
	Required Hardware

	Research & Development Goals

	AI: Implementation of Large CNN Accelerators
	Introduction
	Background
	The FINN Compiler
	Scaling Up CCN Performance

	Challenges in Scaling Up Dataflow Architecture Performance
	Considerations for Large FPGA Designs
	Maximizing Compute Density

	Research & Development Goals

	 Addressing the Challenges
	LOCO-ANS Image Codec: Algorithm
	Introduction
	LOCO-ANS Overview
	High-Level Description
	Encoding Algorithm Summary

	 An ANS-based Coder for TSG Sources
	Adaptive Bernoulli Coder
	Basic Geometric Coder
	Codification Order for ANS
	Geometric Coder Iterations
	Limitation of Coder Iterations and Symbol Expansion

	Distribution Parameters Estimation
	p Parameter Estimation
	Theta Parameter Estimation
	Resets

	Selection of Coder Parameters
	ANS Tables Limitations and Generation
	Selection Methodology
	Tuning the Coder Parameters

	Experimental Results
	Analysis of LOCO-ANS Configurations Performance
	Experimental System Efficiency
	Software Performance Comparison
	Discussion

	Conclusion

	LOCO-ANS Image Codec: Hardware Implementation
	Introduction
	Encoder Architecture
	Pixel Decorrelation
	TSG Coder

	Results
	Test Platform and Encoder Configurations Description
	Implementation Results
	Results Evaluation

	Discussion
	Related work
	Comparison Considerations
	Lossless-only Encoders Comparison
	Near-lossless Encoders Comparison

	Conclusions

	100GbE Flow Metering & Dual Read-Update Architectures
	Introduction
	 Architectures for the Flow Metering Core
	Sequential Design
	Double-Frequency Multi-Cycle Architecture

	Flow Metering System Implementation
	System Description
	Implementation

	Application of the Architecture for Other Systems with the Read-Update Pattern
	Architecture Improvements
	Arrays of Flow Metering Cores
	Double Frequency Architecture with Increased Pipelining

	Conclusion

	Study of the Conditional Stalling Technique
	Introduction
	Implementation of Conditional Stalling
	Modeling Conditional Stalling
	IIsys Distribution for DD=1
	Hidden Markov Model for DD>=1
	A Simple Mean IIsys Approximation

	Performance Analysis
	 IIsys Improvement for a given Processing Latency
	Increasing Throughout Optimizing Pipeline Depth
	 Trade-off Between IIsys and Area

	Application to 100 GbE Flow Metering
	Discussion
	Conclusion

	Automatic Partitioning and Resource Balancing
	Introduction
	Partitioning and Resource Balancing Tool
	Implementation Flow
	Tool Capabilities
	ILP Formulation
	Partitioner Implementation
	FINN Integration

	Tool Evaluation
	Experimental and Implementation Setup
	Effect of Partitioning on Operating Frequency
	Effect on Compute Density
	Effect of Scale-Out Alternatives on Latency and Power

	Discussion
	Designer's Productivity
	Tool Scalability
	Design Methodology

	Related work
	Multi-SLR FPGA Partitioning and Optimization
	Multi-node FPGA DNN Partitioning

	Conclusion

	 Putting All Together
	Lessons Learned Designing with HLS
	Introduction
	Incorporating HLS for Better Productivity
	How HLS Improves Productivity
	Software vs Hardware Development
	Desired Methodology Characteristics

	Key Methodological Aspects
	Modular Design and Refinement
	Architecture Design
	Interface Design
	Analysis of Compilation Results

	Summary
	Conclusion

	Conclusions
	Main Contributions
	Future Work

	Conclusiones
	Principales Contribuciones
	Trabajo Futuro

	List of publications
	Publications Included in the Contents of this Thesis
	Journals & Magazines
	International Conferences

	Other Publications Related to this Thesis
	International Conferences
	Other Communications

	LOCO-ANS compression examples
	Bibliography

