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Abstract In spite of missing dynamical correlations, 
the projected generator coordinate method (PGCM) 
was recently shown to be a suitable method to tackle 
the low-lying spectroscopy of complex nuclei. Still, de-
scribing absolute binding energies and reaching high 
accuracy eventually requires the inclusion of dynami-
cal correlations on top of the PGCM. In this context, 
the present work discusses the first realistic results of a 
novel multi-reference perturbation theory (PGCM-PT) 
that can do so within a symmetry-conserving scheme for 
both ground and low-lying excited states. First, proof-
of-principle calculations in a small (emax = 4) model 

space demonstrate that exact binding energies of closed-
(16O) and open-shell (18O, 20Ne) nuclei are reproduced 
within 0.5 − 1.5% at second order, i.e. through PGCM-
PT(2). Moreover, profiting from the pre-processing of 
the Hamiltonian via multi-reference in-medium simi-
larity renormalization group transformations, PGCM-
PT(2) can reach converged values within smaller model 
spaces than with an unevolved Hamiltonian. Doing so, 
dynamical correlations captured by PGCM-PT(2) are 
shown to bring essential corrections to low-lying excita-
tion energies that become too dilated at leading order, 
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i.e., at the strict PGCM level. The present work is laying 
the foundations for a better understanding of the opti-

mal way to grasp static and dynamical correlations in a 
consistent fashion, with the aim of accurately describing 
ground and excited states of complex nuclei via ab initio 
many-body methods. 

1 Introduction 

The recent breaking of ab initio calculations away from 
p-shell nuclei into the realm of mid-mass nuclei has been 
made possible by the formulation and implementation 
of so-called many-body expansion methods. Because of 
their polynomial scaling with system size, expansion 
methods provide the best candidates yet to extend the 
reach of ab initio calculations to even heavier nuclei. 
However, and as explained in the introduction to the 
first paper of the present series [1], hereafter referred 
to as Paper I, a current challenge concerns the optimal 
way to consistently capture both static and dynam-
ical correlations within such methods. While doubly 
closed-shell nuclei are dominated by (weak) dynami-
cal correlations that are efficiently grasped through a 
coherent sum of (mostly low-rank) particle-hole excita-
tions of a symmetry-conserving unperturbed product 

state, open-shell nuclei display strong static correlations 
that cannot be conveniently accounted for in this way. 
This results in the necessity to design expansion meth-
ods based on more general unperturbed states that can 
already capture static correlations. 
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A good candidate to provide appropriate unperturbed 
states is the projected generator coordinate method 
(PGCM). The main conclusion of the second paper of 
the present series [2] (Paper II in the following) is that 
the PGCM is suitable to address the low-lying spec-
troscopy of complex nuclei within reasonable theoret-
ical uncertainties in spite of missing dynamical corre-
lations. For instance, the energy spectrum and electric 
multipole transition strengths of the low-lying parity-
doublet bands in 20Ne were reproduced by taking into 

account both quadrupole and octupole collective fluctu-
ations. 

Still, describing absolute binding energies, accounting 
consistently for a wide range of spectroscopic observ-
ables, tackling a large class of nuclei displaying different 
characteristics and achieving high accuracy eventually 
requires the inclusion of dynamical correlations on top 
of the PGCM. This coherent incorporation is made 
possible by expanding the wave operator Ω connecting 
the PGCM state to the exact eigenstate via the novel 
multi-reference perturbation theory (PGCM-PT) formu-

lated in Paper I. Doing so, PGCM-PT embeds, for the 
first time, the PGCM within a systematic symmetry-
conserving expansion method. 

The objective of the present work, the third paper of 

the series, is to discuss first proof-of-principle results of 
second-order PGCM-PT, i.e. PGCM-PT(2), calculations 
in three selected nuclei, namely the doubly closed-shell 
16O, the singly open-shell 18O and the doubly open-shell 
20Ne that was studied at length at the PGCM level in 
Paper II. 

In addition to displaying the first set of PGCM-PT(2) 
results, the goal of the present work is to do so while ex-
ploiting an additional degree of freedom at our disposal 
in quantum many-body calculations, i.e. the possible 

pre-processing of the Hamiltonian, e.g., via unitary trans-
formations generated by nucleus-dependent in-medium 
similarity renormalization group (IMSRG) evolution. 

While nucleus-independent vacuum similarity renormal-
ization group (VSRG) transformations of the Hamilto-
nian have already become a standard tool to pre-sum 
ultra-violet (UV) dynamical correlations by decoupling 
low- and high-momentum modes, nucleus-dependent 
transformations can be exploited more systematically to 
pre-sum infra-red (IR) dynamical correlations. 

The single-reference IMSRG (SR-IMSRG) method [3,4] 

applicable to closed-shell systems can in principle fully 
decouple the unperturbed product state from the rest 
of the Hilbert space, i.e. from the Q space, and thereby 
make it the actual ground-state of the pre-processed 
Hamiltonian at the end of the flow. In this case, the 

wave operator eventually becomes nothing but the iden-
tity operator and the expansion method on top of the 
unperturbed state is trivial. The more general multi-
reference IMSRG (MR-IMSRG) method [5,6,7] applica-
ble to all nuclei cannot, even in principle, fully decouple 
the PGCM unperturbed state from the associated Q 
space such that non-zero dynamical correlations remain 
to be included via a non-trivial, e.g. PGCM-PT, wave 
operator1 . While the impact of these remaining dynam-
ical correlations on absolute energies may be small, we 

will show that their inclusion is important for a proper 
description of low-lying excitation spectra. 

Eventually, a clear picture will emerge that is schemati-
cally illustrated in Fig. 1. Three complementary levers 
must be consistently exploited to efficiently capture cor-
relations within many-body expansion methods in order 
to describe (complex) nuclei 

1. the pre-processing of the Hamiltonian, 

2. the possibly non-trivial nature of the unperturbed 
state, 

3. the rationale of the expansion. 

While each lever is best suited to capture a certain 
category of correlations, the latter are not orthogonal to 
one another such that the ideal way to share the load is 
unclear and will require extensive trial-and-error in the 
future. The present work wishes to contribute to this 
long-term endeavor. 

The present paper is organized as follows. Section 2.1 
details the results obtained in 16O, 18O and 20Ne on the 
basis of (the two-body part of) a chiral effective field the-
ory (χEFT) Hamiltonian evolved via VSRG. Section 3 
then elaborates on the impact of further pre-processing 
the Hamiltonian via MR-IMSRG transformations on the 
results. Conclusions and future perspectives are eventu-
ally discussed in Sec. 4. A set of technical appendices 
provides additional details about the numerical solution 
of the large-scale linear system of equations at play in 
PGCM-PT(2) calculations. 

2 Calculations with VSRG pre-processing 

The reader is referred to Paper I for all necessary details 
about the PGCM-PT formalism as well as to Refs. [8,9, 

10] and Refs. [4,6,7] for vacuum and in-medium IMSRG 

1While the IMSRG constitutes per se a method to solve 
Schrödinger’s equation when the SR-IMSRG implementation 
can be applied, it is not the case for the MR-IMSRG approach 
that can only be seen as a pre-processing of the Hamiltonian 
on top of which an appropriate many-body method must be 
applied. 
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I. Preprocessing of the Hamiltonian
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Fig. 1: (color online) Schematic workflow of expansion many-body methods (vertical axis) versus potential pre-

processings of the Hamiltonian (horizontal axis). Unitary vacuum (in-medium) similarity renormalization group 
transformations denote a nucleus-independent (nucleus-dependent) pre-processing of the Hamiltonian. 

methods, respectively. The PGCM-PT(2) solver is built 
on top of an axially-deformed Hartree Fock Bogoliubov 
(HFB) code [11] and a consistent PGCM solver [12] 
allowing for the projections on good particle number, 
angular momentum and parity. All notations used below 
are consistent with those introduced in Papers I and II 

that should be consulted for reference. 

2.1 Numerical setting 

Proof-of-principle calculations are performed using the 

spherical harmonic oscillator (HO) basis of the one-body 
Hilbert space H1 characterized by an oscillator frequency 
~ω = 20 MeV and 5 oscillator shells (emax = 4). 

The next-to-next-to-next-to-leading order (N3LO) χEFT 
Hamiltonian introduced in Refs. [13,14] and evolved via 
VSRG to the low-momentum resolution scale λvsrg = 
1.88 fm−1 is employed. Thus, UV dynamical correlations 
are already processed via the VSRG decoupling of low-
and high-momentum modes. 

In these proof-of-principle calculations, only the two-
body part of the evolved Hamiltonian is actually re-
tained. Thus, the goal is not to reproduce experimental 

against those obtained from full configuration interac-
tion (FCI) calculations in the same emax = 4 space. The 
FCI calculations rely on a sequence of Nmax-truncated 
many-body Hilbert spaces up to Nmax = 8 embedded 
into the FCI space defined by the emax = 4 truncation 
on the single-particle basis. The results are extrapolated 

to the full emax = 4 model space limit such that FCI 
results come with an uncertainty associated with this 
extrapolation2 . 

Additional many-body methods are also considered for 
comparisons. First, the sub-cases of PGCM and PGCM-
PT obtained by only using one ”seed” HFB state, i.e. 
omitting the GCM part of the calculation, are consid-
ered and referred to as PHFB and PHFB-PT methods. 
The case where the projection part is further omitted 
is utilized as well. This single-reference limit of PGCM-
PT has been formally elaborated on in Paper I and 
denotes a symmetry-breaking scheme in case the seed 
state (i.e. becoming the unperturbed state) is itself sym-
metry breaking. This limit will be also compared to 

2The uncertainties on excitation energies do not originate from 
this extrapolation but are taken from the difference between 
the results obtained for the largest Nmax = 8 and the smallest 
space. Excitation energies are more accurate than absolute 

data but rather to benchmark PGCM-PT(2) results ones because they converge faster with Nmax. 
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the standard single-reference symmetry-breaking Bogoli-
ubov many-body perturbation theory (BMBPT) [15,16, 
17,18,19]. 

Our study focuses on three nuclei of increasing com-
plexity. In each case, a different collective coordinate q 
is employed at the constrained HFB (cHFB) level and 
for the subsequent GCM mixing3 . The characteristics 
of the associated mean-field, PGCM and PGCM-PT 
calculations are 

1. Doubly closed-shell 16O 

– spherically-symmetric Hartree-Fock (HF) states, 

– constraint on the root-mean-square (rms) matter 

radius (q � rrms), 

– no symmetry projection needed. 

2. Singly open-shell 18O 

– spherically-symmetric HFB states, 

– constraint on the pairing gap (q � δ) [20], 

– projection of neutron number N . 

3. Doubly open-shell 20Ne 

– axially-deformed HFB states, 

– constraint on the axial quadrupole moment (q � 
q20), 

– projections on neutron N and proton Z numbers 
as well as on angular momentum J . 

2.1.1 16O 

In doubly closed-shell systems, the mean-field solution 
is nothing but a spherical HF state. Since the rms radius 
operator employed to perform constrained calculations 
commutes with the total angular momentum J2 , all 
mean-field states involved in the 16O calculation carry 
good symmetry quantum numbers and no symmetry 
projection is necessary in the subsequent PGCM and 
PGCM-PT calculations, hence they are simply referred 
to as GCM and GCM-PT, respectively. 

The ground-state total energy curves (TECs) of 16O 
are displayed in Fig. 2 as a function of the rms radius 
rrms of the (underlying) HF vacua. One first observes 
that cHF and GCM results are underbound by about 
20 MeV (12%) with respect to FCI, missing significant 

4IR dynamical correlations. In the present case , the 

3In each case, the employed interval of q values ensures the 
convergence of the PGCM calculation with respect to that 
degree of freedom. 
4The GCM and GCM-PT(2) calculations are performed on 
the basis of the nine cHF states visible on the TEC. 
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Fig. 2: (Color online) Ground-state energy of 16O as a 
function of rrms of the (underlying) HF vacua. 

GCM adds almost no energy (specifically, 165 keV) to 
the HF minimum, which signals that static IR collective 
correlations are marginal in such a doubly closed-shell 
nucleus. 

Given the negligible character of static correlations, 16O 

acts as a good benchmark for the (P)GCM-PT for-
malism. First, its single-reference reduction HF-PT(2) 
is, as formally demonstrated in Paper I, identical to 
canonical MBPT(2), i.e. Møller-Plesset MBPT based on 
the unconstrained HF solution at the minimum of the 
TEC (rrms = 2.03 fm). While both single-reference par-
titionings of the Hamiltonian provide slightly different 
results away from the minimum of the HF TEC, they 
are qualitatively and quantitatively similar. The minima 
of the two TECs are close to the FCI result. However, 
perturbation theories are not variational such that it is 
difficult to argue that these values are to be preferred 
to canonical ones. As a matter of fact MBPT(3) (not 

shown) does not flatten the curve in the vicinity of the 
lowest MBPT(2) value5 . 

Focusing on the canonical point, one observes that GCM-
PT(2) is consistent with MBPT(2)/HF-PT(2), adding 

only 146 keV static correlation energy. This consistency 

5Empirically, the MBPT expansion shows less sign of conver-
gence away from the canonical point such that the correspond-
ing MBPT(2) values should not be preferred. 
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Fig. 3: (Color online) Upper panel: collective ground-
state GCM wave-function probability distribution 
(|f̆0+1 (rrms)|2) in 16O as a function of the rms radius 

of the underlying HF vacua. Lower panel: contributions 
(0+1) (2)

to GCM (e0 (rrms)) and GCM-PT(2) (eS (rrms) + 
(2)
e (rrms)) ground-state energies as a function of rrms.D 

GCM-PT(2) constributions are split into single (one-
particle/one-hole) and double (two-particle/two-hole) 
excitations. 

constitutes a validation of GCM-PT(2), knowing that 
it is formally very different from MBPT(2) and relies 
on a completely different numerical procedure as can be 
appreciated from the various appendices to the present 
paper. 

Furthermore, this consistency sheds some light on single-
reference MBPT(2)/HF-PT(2) results. The upper panel 
of Fig. 3 shows that, while the GCM ground-state col-
lective wave-function spreads over a large interval of 
rrms values due to nuclear-size fluctuations, the Hamil-
tonian dictates that the contributions to the left of 
the HF minimum (i.e. for rrms � 2.03 fm) dominate it. 
From the energetic viewpoint, the lower panel of Fig. 3, 
which shows the decomposition6 of the GCM energy as 
a function of rrms demonstrates that the largest contri-
butions originate from configurations centered around 

6The PGCM collective wave function and the contribution 
(0+1)
e (rrms) of each value of the collective coordinate to the 
PGCM energy are introduced in App. A of Paper II. 

the HF minimum. Next7 , the lower panel also illustrates 
that the physically-informed weights in the GCM un-
perturbed state propagate to GCM-PT(2) such that 
configurations around the HF minimum contribute the 
most to the second-order correction whereas those as-
sociated with the lowest MBPT(2)/HF-PT(2) values 
around rrms 2 [2.1, 2.2] fm are largely subleading. Even-
tually, the total GCM-PT(2) energy is nearly identical to 
canonical MBPT(2)/HF-PT(2) results. This definitely 
gives more credit to low-order MBPT(2)/HF-PT(2) en-

ergies obtained at the canonical point than to those 
obtained at smaller and larger values of rrms. Interest-
ingly, one also observes that the GCM-PT(2) energy 
correction is dominated by double (two-particle/two-
hole) excitations given that the energy contribution of 
single (one-particle/one-hole) excitations is negligible 
at all values of rrms. While this feature is expected at 
the canonical point given that single excitations do not 
contribute to MBPT(2)/HF-PT(2)8 , it is not evident 
away from it. 

Eventually, the GCM-PT(2) binding energy differs by 
0.8% from the FCI result. A common theme throughout 
the paper regards the best way to achieve even greater 
accuracy. At this point, one can either hope to enrich 

the PGCM unperturbed state by selecting a potentially 
pertinent additional collective coordinate q and/or go 
to PGCM-PT(3)9 . A third (complementary) option to 
achieve such a goal will be introduced in Sec. 3. 

2.1.2 18O 

The singly open-shell 18O constitutes the first nucleus 
of the present study in which static correlations are 

expected to be significant. In this particular case, static 
correlations relate to superfluidity and thus translate 
first at the HFB level into the spontaneous breaking of 
the U(1) global-gauge symmetry associated with parti-
cle number conservation. Correspondingly, the pairing 
gap operator is used here as a constraint to vary the 
amount of pairing correlations in the HFB seeds [20]. 
As a next step, further static correlations are captured 
via the restoration of neutron number and the inclusion 
of pairing fluctuations through the PGCM. 

7The decomposition of the PGCM-PT(2) correlation energy 
is provided in Sec. 3.3.2 of Paper I. 
8This a consequence of Brillouin’s theorem that implies a 
decoupling between the HF reference state and its singles 
excitations at the canonical point. 
9The benefit of going to PGCM-PT(3) (see Ref. [21] for a 
similar situation) given the associated numerical scaling makes 
probably more efficient to seek for a further improvement of 
the PGCM unperturbed state. 

0 
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state PGCM wave-function probability distribution 
(|f̆0+1 (δ)|2) in 18O as a function of the pairing constraint 
δ characterizing the underlying HFB vacua. Lower panel: 

(0+1)
contributions to the PGCM (e (δ)) ground-state en-0 

(2) (2)
ergy and to the PGCM-PT(2) (e (δ) + e (δ)) corre-S D 

lation energy. The latter is split into single (two quasi-
particle) and double (four quasi-particle) contributions. 

The ground-state TECs of 18O are displayed in Fig. 4 
as a function of the pairing constraint δ of the (underly-

10ing) HFB vacua . By definition δ = 1 corresponds to 
the canonical, i.e. unconstrained, HFB solution. While 
the PHFB TEC follows the HFB one, it is less bound, 
e.g. by 1.2 MeV at the canonical point. The fact that 
the particle-number projection after variation (PNPAV) 
decreases the binding reflects the fact that the distribu-
tion of particle numbers in the HFB state around the 
average is distorted towards heavier systems. In the next 

step, the GCM mixing associated with the inclusion of 
pairing fluctuations yields negligible correlation energy 
compared to the PNPAV that provides the essential IR 
correlations. 

Similarly to 16O, PGCM underbinds the FCI result 
by about 25 MeV (˘ 13%), thus missing significant IR 
dynamical correlations. While formally not identical to 
canonical BMBPT(2)11 , the single-reference reduction 
of PGCM-PT(2), here denoted by HFB-PT(2), captures 
dynamical correlations on top of HFB. Results from both 
single-reference methods are very similar and agree with 
FCI within uncertainties. 

However, this close agreement is accidental and some-
what spurious. Indeed, PHFB-PT(2), which actually 
corrects for the U(1) breaking of HFB-PT(2), pushes 
the energy up by about 1.5 MeV away from the FCI 
result at the canonical point. This number is close to the 
difference between HFB and PHFB mentioned above. 
While the present calculation constitutes the first ex-
ample demonstrating the impact of exactly restoring 
symmetries within (perturbative) expansion methods, 
it is seen below that the 1.5 MeV shift shall not be fully 
attributed to the symmetry restoration. Adding the 
GCM mixing into the unperturbed state, the PGCM-
PT(2) result remains consistent with PHFB-PT(2) at 
the canonical point within uncertainties. 

Going away from the canonical point, BMBPT(2) and 
HFB-PT(2) differ. This behavior reflects the different 
nature of the partitionings used by the two expansions, 
which is magnified as one departs from the canoni-
cal point. At the same time, PHFB-PT(2) becomes 
less (more) bound than PGCM-PT(2) as δ becomes 
smaller (greater) than 1. Once again, these behaviors 
do not instill trust in perturbative results away from 
the canonical point. Thankfully, PGCM-PT(2) is better 
controlled given that the configurations associated with 
different values of the collective coordinate δ enter the 

unperturbed PGCM state with weights dictated by the 
physical Hamiltonian. As shown in Fig. 5, the collec-

10See Ref. [20] for the definition of δ. 
11See the related discussion in Paper I. 
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tive PGCM wave-function spreads significantly on both 
sides of the canonical point with a maximum located 
to the left of it (δ = 0.7). While the decomposition of 
the PGCM energy reflects this distribution, the second-
order correction is flatter with δ but slightly favors values 
smaller than 1. Eventually, the PGCM-PT(2) binding 
energy is very close to the PHFB-PT(2) energy at the 
canonical point and lies 1.5 MeV (0.8%) above the FCI 
result. 

Still, PGCM-PT(2) and PHFB-PT(2) results carry error 
bars associated with the approximate solution of the 
linear system at play in the formalism. Due to to its 
large dimension, this linear system is solved iteratively 
as discussed in App. B, introducing an uncertainty that 
can be evaluated through Eq. (24). The solution can 
also be affected by linear redundancies and intruder 
problems that are dealt with via the simultaneous use of 
a norm preconditioning and a complex shift γ as detailed 
in Apps. B.3.1 and C, respectively. While increasing 
the precision, the use of an overly large complex shift 
may degrade the accuracy by generating a bias in the 
extracted value. 

In 18O, which qualifies as a difficult case, the iterative 
procedure can be converged in a stable fashion with 
a complex shift γ = 10 MeV, eventually leading to a 
±0.3 MeV precision on the PGCM-PT(2) energy12 that 
is visualized by a band in Fig. 4. While the central 

value reported in Fig. 4 is obtained for γ = 10 MeV, the 
bias (not reported on the figure) due to this complex 
shift13 pushes the PGCM-PT(2) energy up by about 
1 MeV. Eventually, the bias accounts for two thirds of 
the 1.5 MeV (0.8%) disagreement with the FCI result 
and for two thirds of the shift upward compared to 
HFB-PT(2) that was fully attributed to the symmetry 
restoration at first. 

2.1.3 20Ne 

The doubly open-shell 20Ne displays strong static cor-
relations that manifest through the breaking of SU(2) 
rotational symmetry associated with angular momentum 
conservation at the HFB level. Accordingly, the axial 
quadrupole moment operator is used as a constraint to 
vary the deformation of the HFB seeds. As a next step, 
further static correlations are captured via the restora-

tion of angular momentum and the inclusion of shape 
fluctuations through the PGCM. As demonstrated in 

12The precision on the PHFB-PT(2) is better (±0.1 MeV) 
thanks to the lower dimension and the near diagonal character 
of the linear system. 
13The bias is estimated by varying the shift over the interval 
γ ∈ [5, 15] MeV, see App. C.3 for an illustration. 
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Fig. 6: Ground-state energy of 20Ne as a function of 
the axial quadrupole deformation β2 of the (underlying) 
HFB states. 

Paper II, the description of 20Ne strongly benefits from 
breaking and restoring parity as well as the inclusion 
of octupole shape fluctuations. Our present calculations 
are however restricted to axial quadrupole deformation, 

leaving some room for further improvement in the future. 
While U(1) global gauge symmetry is also allowed to 
break spontaneously, it does not do so with the presently 
employed Hamiltonian, hence all HFB states actually 
reduce to (deformed) HF Slater determinants. 

The ground-state TECs of 20Ne are displayed in Fig. 6 
as a function of the axial quadrupole deformation14 

β2 of the (underlying) HFB vacua. One first observes 
that the projection on J provides a significant energy 
gain of 5.5 MeV and moves the minimum of the PHFB 
TEC to larger deformation (β2 = 0.35) than the canoni-
cal HFB minimum (β2 = 0.3). The GCM mixing only 
adds 80 keV correlation energy given that the TEC is 
rather stiff along the axial quadrupole direction15 . Once 
again, static correlations are dominated by the symme-
try restoration. Having included essential static correla-
tions, the PGCM energy is still 21.7 MeV (10%) away 

14See Paper II for a precise definition. 
15As shown in Paper II, the energy is softer against axial 
octupole deformations. 
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Fig. 7: (Color online) Upper panel: collective ground-
state PGCM wave-function probability distribution 
(|f̆0+1 (β2)|2) in 20Ne as a function of the axial quadrupole 

deformation (β2) of the underlying HFB vacua. Lower 
(0+1)

panel: contributions to PGCM (e (β2)) and PGCM-0 
(2) (2)

PT(2) (e (β2) + e (β2)) ground-state energies as aS D 

function of the axial quadrupole deformation (β2) of 

the underlying HFB vacua. The PGCM-PT(2) constri-
butions are split into singles (two quasi-particle) and 
doubles (four quasi-particle) contributions. 

from the FCI result, and misses significant dynamical 
correlations. 

Stepping back to canonical HFB and adding dynam-
ical correlations via BMBPT(2) lowers the energy by 
24.6 MeV, yielding a result that is 2.6 MeV (1.2%) un-
derbound compared to FCI16 . 

On the other hand, starting from the PHFB TEC and 
adding dynamical correlations via PHFB-PT(2) low-
ers the energy by 25.1, 24.9 and 25.7 MeV at the HFB, 
PHFB, and PHFB-PT(2) minima, respectively. These 
energies overshoot the FCI result by about 2.5/3.2/3.4 MeV 
(1.2/1.5/1.6%). While the difference between BMBPT(2) 
and PHFB-PT(2) TECs is similar to the difference be-
tween HFB and PHFB TECs, one observes that a con-

16Canonical BMBPT(2) is the closest point to FCI along the 
TEC in the present example. Note that canonical BMBPT(3) 
only provides an extra 0.3 MeV correlation energy compared 
to canonical BMBPT(2). 

Fig. 8: (Color online) Excitation energy in 20Ne as a 
function of the axial quadrupole deformation (β2) of 
the underlying HFB vacua. Top panel: first 4+ state. 
Bottom panel: first 2+ state. Calculations are performed 
with ~ω = 20 MeV, emax = 4 and employing the two-

body part of the N3LO χEFT Hamiltonian evolved to 
λvsrg = 1.88 fm−1 . 

sistent angular-momentum restoration favors larger de-
formations when adding dynamical correlations. 

The mixing of quadrupole shapes in PGCM-PT(2) only 
adds 310 keV to the PHFB-PT(2) minimum. The PGCM-
PT(2) result keeps a close memory of the PHFB-PT(2) 
minimum (β2 = 0.4) rather than the PHFB-PT(2) value 
at the canonical HFB minimum (β2 = 0.3). All in all, 
the PGCM-PT(2) energy17 overshoots the FCI result 
by 1.7%. This discrepancy is expected to decrease after 
the inclusion of the octupole degree of freedom into the 
PGCM. 

17Present PGCM-PT(2) and PHFB-PT(2) results were ob-
tained with a complex shift γ = 15 MeV. The precision error 
associated with solving the linear system is shown through an 
error band in Fig. 23. 
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Fig. 9: Absolute energies of the first 0+ , 2+ and 4+ 

states in 20Ne computed via PGCM, PGCM-PT(2) and 
FCI. 

In order to further analyse the theoretical content of the 
above results, Fig. 7 shows that the collective PGCM 
ground-state wave-function and the associated energy 
contributions are distributed rather symmetrically around 
the Jπ = 0+ PHFB minimum (β2 = 0.35) of the TEC 
visible in Fig. 6 and spread over a large interval of β2 val-
ues. Interestingly, dynamical correlations captured via 
PGCM-PT(2) favor configurations18 to the left of the 
HFB minimum (β2 = [0.25, 0.30]). As a result, dynami-
cal correlations could counterbalance the overestimated 
radii obtained at the PGCM level (see Paper II) due 
to the opposite predilection of the latter for deforma-
tions larger than the HFB minimum. This interesting 
and non-trivial finding will have to be confirmed by an 
explicit calculation of rms radii at the PGCM-PT(2) 

level in the future. 

In addition to providing accurate absolute energies in 
complex systems, e.g. in doubly open-shell nuclei dis-
playing strong collective static correlations, a key ad-
vantage of the multi-reference PGCM-PT formalism 
over BMBPT is that it provides natural access to the 

18Once again, single excitations bring negligible contributions 
to the correlation energy. 

low-lying spectroscopy within a symmetry-conserving 
scheme by correcting each PGCM eigenstate for dynam-
ical correlations. 

The first 2+ and 4+ excitation energies in 20Ne are 
shown in Fig. 8 as a function of the axial quadrupole 
deformation. First, one observes that the PGCM 2+ 

and 4+ excitation energies differ from the FCI results1 

by 300 keV (27%) and 560 keV (13%), respectively. This 
is consistent with the results displayed in Paper II. One 
also sees that PHFB results at the canonical deformation 
(β2 = 0.3) are very close to PGCM ones, but the differ-
ences grow for smaller or large deformations. Adding 

dynamical correlations, PHFB-PT(2) flattens the exci-
tation energies as a function of β2 compared to PHFB, 
systematically going into the direction of PGCM-PT(2) 

for each deformation. Given that exact results would be 
independent of the deformation of the underlying vac-
uum, this feature is an empirical sign that PHFB-PT(2) 
results are better converged than PHFB ones. It also 

implies that the PGCM-PT(2) spectrum converges with 
fewer states than the PGCM one. Still, at the canoni-
cal deformation (β2 = 0.3) dynamical correlations are 
small, which remains true even when shape mixing is 
added, given that PGCM-PT(2) excitation energies are 
essentially identical to PGCM ones. 

Overall, the PGCM-PT(2) 2+ and 4+ excitation ener-1 1 

gies differ by 24% and 15% from FCI results respectively, 

which seems to indicate that missing correlations are 
beyond two-particle/two-hole excitations of axially de-
formed HF states. While going to PGCM-PT(3) will 

help reduce this difference, it might be numerically less 
costly and more relevant in this case to enrich the PGCM 
unperturbed state via, e.g., the inclusion of octupole, 
triaxial and/or pairing degrees of freedom, or to start 
from HFB states obtained via a variation after particle-
number-projection (VAPNP) calculation, in order to 
compress the spectrum. In the future, another possibility 
would be to design a non-perturbative extension of the 
multi-reference PGCM-PT formalism to more efficiently 
capture higher-rank particle-hole excitations. 

Our 20Ne results are summarized in Fig. 9 where the 
combined benefits of PGCM-PT are clearly apparent. 
Although a slight overbinding of about 3 MeV (˘ 1.5%) 
is observed, PGCM-PT(2) brings down absolute energies 
to the right range of values without degrading their 
relative position. This latter feature is far from trivial 

given that the PGCM-PT formalism is state specific, 
i.e. calculations are performed separately on top of each 
PGCM eigenstate, and considering that each PGCM 
energy is corrected by about 25 MeV while their relative 
distance is on the MeV scale. In particular, the (non-
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trivial) numerical techniques used to solve the PGCM-
PT(2) equations must be well controlled to maintain the 
consistency of the spectra. For example, it is essential 
to use the same complex shift γ for all states belonging 
to a given nucleus in order for the bias on absolute 
energies to be consistent and to largely cancel out in 
the excitation spectrum. 

3 Adding the MR-IMSRG pre-processing 

In the present part, PGCM-PT(2) calculations are per-
formed in a larger model space with emax = 6 (and ~ω = 
16 MeV)19 . We use a Hamiltonian consisting of an SRG-
evolved chiral N3LO nucleon-nucleon interaction with 
λvsrg = 1.8 fm−1 , supplemented with an N2LO three-
nucleon interaction with cutoff Λ = 2.0 fm−1 whose 
low-energy constants are adjusted to A = 3, 4 observ-
ables, as described in Refs. [22,23]. The Hamiltonian 
is further pre-processed via the MR-IMSRG unitary 
transformation based on the Jπ = 0+ canonical PHFB 
state. The evolutions are based on the MR-IMSRG(2) 
truncation scheme, employing the so-called Brillouin 

generator — see Refs. [4,7] for details. The MR-IMSRG 
transformation is parametrized by the flow parameter 
s 2 [0, 20] MeV−1 , where s = 0 means that no transfor-

mation is applied and the upper limit is chosen such 
that the transformed Hamiltonian no longer exhibits 
significant evolution. In the MR-IMSRG(2) truncation 
scheme, the three-nucleon interaction included at the 
beginning of the flow (along with higher-body operators 
for s > 0) is approximated via the normal ordering with 
respect to the J=0 PHFB state. 

In closed-shell nuclei (not shown here), the PHFB ref-
erence state reduces to a spherically invariant Slater 
determinant such that MR-IMSRG is nothing but the 
simpler SR-IMSRG method. In this case, pushing the 
transformation to s = 1 (s sufficiently large in prac-
tice) leads to a complete resummation of dynamical 
correlations into the pre-processed Hamiltonian such 
that the unperturbed HF Slater determinant becomes 
its exact ground state, i.e. no further correlations need 
to be added. While dynamical correlations are largely 
resummed in open-shell nuclei via the MR-IMSRG pre-
processing, the decoupling of the reference state cannot 
be complete [7] such that an additional step is always 
needed to grasp the remaining correlations as illustrated 
below20 . 

19The limitation to emax = 4 was due to the wish to bench-
mark PGCM-PT(2) calculations against FCI results. 
20While the exact decoupling is formally realized in the sim-
pler SR-IMSRG method, it can usually be achieved to good 
accuracy in actual MR-IMSRG calculations when pushing the 
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Fig. 10: (Color online) Absolute binding energy of 18O 
as a function of the flow parameter s associated with 
the MR-IMSRG pre-processing of the Hamiltonian. 

3.1 18O 

The absolute binding energy of 18O is displayed in Fig. 10 
as a function of s. Due to the PNPAV in 18O, the number 

of single and double excitations of the HFB vacuum re-
quired to perform a PHFB-PT(2) calculation is already 
very large (106 states) for emax = 6. The numerical 
implementation will be optimized in the future, but in 
the mean-time, the calculation is made faster by dis-
carding configurations based on their norm as specified 
in App. D. For the same reason, only PHFB-PT(2) cal-

culations on top of the spherical 18O canonical HFB 
vacuum have been performed, leaving a PGCM-PT(2) 
calculation for the future. 

In spite of the change of model space and Hamiltonian, 
the situation encountered at s = 0 is qualitatively similar 
to the one discussed in Sec. 2.1. Indeed, while HFB and 
PHFB are largely underbound, BMBPT(2) and PHFB-
PT(2) bring in the dominant fraction of dynamical cor-

transformation far enough. Strictly speaking, however, the 
decoupling cannot be complete in MR-IMSRG, at least for gen-
erators that have an explicit and manageable second-quantized 
representation. One may be able to define a generator that 
formally achieves the decoupling but such a generator would 
have no practical, i.e. low-rank, representation. 
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Fig. 11: (Color online) Correlation energy, i.e. difference 
to the canonical HFB result, in 18O as a function of 
the flow parameter s associated with the MR-IMSRG 
pre-processing of the Hamiltonian. 

relations21 , with BMBPT(3) adding an extra 2 MeV. 
Switching on the MR-IMSRG pre-processing, HFB and 

PHFB energies drop dramatically for small values of s 
and flatten out very quickly beyond s = 1 MeV−1 . At the 
same time, BMBPT(2), PHFB-PT(2) and BMBPT(3) 

drop towards a similar value, about 1.5 MeV below the 
original BMBPT(3) result, which happens to be also 
similar to the PHFB value. Eventually, PHFB-PT(2) is 
about 4 MeV (2.9%) away from experiment. No conver-
gence analysis as a function of the model space has been 
performed and reaching a converged absolute binding 
energy clearly requires (an extrapolation to) a larger 
model space. 

To better appreciate the impact of the MR-IMSRG evo-

lution, the correlation energy, i.e. the difference to the 
HFB result, is shown in Fig. 11. Having already ab-
sorbed the bulk of dynamical correlations, pre-processed 
Hamiltonians become more and more perturbative with 
increasing s such that BMBPT(2,3) and PHFB-PT(2) 
corrections become less important with the flow, i.e. 
one goes from 38.8 MeV and 36.2 MeV for BMBPT(3) 
and PHFB-PT(2) at s = 0 to 288 keV and 369 keV at 

21Contrarily to the results obtained in Sec. 2.1.2 with a two-
body interaction only and emax = 4, PHFB-PT(2) is very close 
to BMBPT(2) at s = 0. At the same time, the contribution of 
BMBPT(3) is enlarged. 

s = 10 MeV−1 , respectively, with an inversion of the 
two results. At the same time, the particle number pro-
jection that is repulsive at s = 0 (−394 keV) brings 
in additional binding for s � 1 MeV−1 (+327 keV at 
s = 10 MeV−1). These results demonstrate that cor-
relations are reshuffled through the MR-IMSRG flow, 
such that the importance of dynamical correlations is 
strongly reduced whereas static correlations are some-
what enhanced. 

Dynamical correlations added on top of PHFB via 
PHFB-PT(2)22 become as small as 42 keV at s = 10 MeV−1 . 
Thus, the PHFB state used as a reference for the MR-

IMSRG pre-processing is, for all practical purposes, de-
coupled from the Q space at the end of the transforma-
tion in the present calculation. Although the decoupling 
cannot be exact in principle, 18O behaves similarly to a 
closed-shell nucleus such that the dynamical correlations 
left to be captured after PNPAV are very small. 

3.2 20Ne 

The doubly open-shell 20Ne constitutes a richer and 
more instructive example. Figure 12 shows the Jπ = 
0+ , 2+ and 4+ PHFB TECs as a function of the ax-
ial quadrupole deformation β2 for three values (s = 
0, 10, 20) MeV−1 of the MR-IMSRG flow parameter [7]. 
The TECs are strongly lowered with s, e.g. the PHFB 
minimum gains 45.4 MeV going from s = 0 to s = 
20 MeV−1 , with most of the effect occuring for 0 � s � 
10 MeV−1 . At the same time, the deformation of the 

PHFB minimum is lowered from β2 = 0.55 to β2 = 0.52 
while the TECs become stiffer. 

In Fig. 13, PGCM and PGCM-PT(2) binding energies 
are displayed as a function of the flow parameter. Start-
ing from Jπ = 0+ PHFB TECs, PGCM and PGCM-
PT(2) calculations mix five HFB configurations with ax-
ial quadrupole deformations β2 = (0.3, 0.4, 0.5, 0.6, 0.7). 
Unlike in 18O, the convergence of PGCM energies is not 
fully reached yet for s = 20 MeV−1 . Still, the bulk of 
dynamical correlations has already been resummed into 
the pre-processed Hamiltonian at s = 10, which suggests 
a convergent behavior. Eventually, the PGCM energy is 
lowered by 45.2 MeV between s = 0 and s = 20 MeV−1 . 
At the same time, PGCM-PT(2) systematically low-
ers the PGCM value, the added dynamical correlations 

22The numerical solution of the PHFB-PT(2) linear system is 
very stable in the present example such that a small complex 
shift (γ = 1 MeV) can be used safely. The precision error on 
PHFB-PT(2) energies is essentially invisible in Fig. 11 whereas 
the bias generated for γ = 1 MeV is negligible compared to the 
42 keV difference between PHFB and PHFB-PT(2) energies 
at s = 10 MeV−1 . 
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Fig. 12: (Color online) Jπ = 0+ , 2+ , 4+ PHFB TECs 
in 20Ne as a function of the axial quadrupole deforma-
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Fig. 13: (Color online) Absolute PGCM and PGCM-
PT(2) binding energies of 20Ne as a function of the 
MR-IMSRG flow parameter s. 

reducing from 42.5 MeV at s = 0 to only 2.0 MeV at 

s = 20 MeV−1 . Similarly, the difference between PHFB 
and PGCM-PT(2) is drastically reduced as s grows but 
does not vanish, i.e. it still amounts to 2.03 MeV with 
the most pre-processed Hamiltonian23 . This indicates 

that, while very effective, the decoupling of the PHFB 
state from the Q space is not complete and thus less 
effective than in the singly open-shell 18O. This feature 

points to the stronger multi-reference character of 20Ne 
associated with the breaking and restoration of SU(2) 
symmetry. 

The PGCM-PT(2) energy changes by less than 5 MeV 
over the interval s 2 [0, 20] MeV−1 , thus strongly reduc-
ing the flow parameter dependence compared to PGCM 
results. The residual dependence of the ground-state 
energy on the flow parameter results both from the 
breaking of unitarity associated with the truncation 
of the flow equations at the MR-IMSRG(2) level and 
from the approximations to the solution of the A-body 

Schrödinger’s equation at the PGCM-PT(2) level. Under 
the hypothesis that the PGCM-PT is convergent and 
given that the second-order correction reduces to 2 MeV 
at s = 20 MeV−1 , one can speculate that the PGCM-
PT(2) energy is eventually better converged than the 
5 MeV spread over the interval s 2 [0, 20] MeV−1 , i.e. by 

23PHFB and PGCM energies differ by less than 200 keV all 
throughout the interval s ∈ [0, 20] MeV−1 . 
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Fig. 14: (Color online) 2+ (bottom row) and 4+ (top row) excitation energies as a function of β2 for s = 0 (left 1 1 

column), s = 10 MeV−1 (middle column) and s = 20 MeV−1 (right column). 

better than 3%. The fact that the experimental value 
is consistent with the PGCM-PT(2) prediction within 

estimated uncertainty must not be overinterpreted given 
that improving over the presently used emax truncation 
is expected to lower the ground-state energy by several 
MeVs. 

Turning to the low-lying spectroscopy, Fig. 14 displays 

the first 2+ and 4+ excitation energies as a function of 
β2 for the three values of the flow parameter. Focusing 
first on s = 0, the conclusions drawn in Sec. 2.1.3 remain 
valid, i.e. PHFB-PT(2) flattens the excitation energies 
as a function of β2 compared to PHFB whereas dynami-
cal correlations brought in through PGCM-PT(2) do not 
modify the low-lying part of the PGCM ground-state ro-
tational band. However, the picture changes drastically 
when pre-processing the Hamiltonian via MR-IMSRG. 
Indeed, the PGCM spectrum becomes more dilated 
with increasing s. This feature is already visible from 
the Jπ = 0+ , 2+ , 4+ PHFB TECs displayed in Fig. 12 
that become more distant with increasing s. Based on 
this trend, one observes that PHFB-PT(2), while al-
ways flattening the dependence on β2, systematically 
corrects for this dilatation of the rotational spectrum. 

This non-trivial feature is confirmed at the PGCM-PT(2) 
level. 

This key result can be better appreciated in Fig. 15 
where PGCM and PGCM-PT(2) spectra are compared 
to experiment and to the spectrum obtained from a 
richer PGCM calculation including additional axial 
states along with triaxially deformed ones. Although the 
PGCM calculation based on five axial states is rudimen-
tary, the observed dilatation of spectra is not compen-
sated for by such an enrichment of the PGCM unper-

turbed state. Correspondingly, the systematic compen-
sation of that dilatation via PGCM-PT(2) corresponds 
to a genuine action of the perturbation that captures 
dynamical correlations lying outside the reach of the 
presently used PGCM ansatz. In the end, the PGCM-
PT(2) 2+ excitation energy is independent of s within1 

uncertainties. While reduced compared to PGCM, the s 
dependence of the PGCM-PT(2) 4+ excitation energy is 1 

still significant and would probably benefit from being 
performed on top of a richer PGCM state and/or by 
going to PGCM-PT(3). 

The global picture that emerges for pre-processed Hamil-
tonians is illustrated for 20Ne in Fig. 16. The MR-
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Fig. 15: (Color online) Low lying spectrum of 20Ne as a 

function of the MR-IMSRG flow parameter. 

IMSRG evolution largely reshuffles the hierarchy of 
correlations at play. As s grows, one observes that 

1. static correlations captured through the breaking 
of symmetries at the HFB level as well as by their 
restoration and the inclusion of collective fluctua-
tions at the PGCM level slightly increase, 

2. dynamical correlations brought either on top of HFB 
via BMBPT(2) or on top of PGCM via PGCM-PT(2) 
are drastically reduced. 

Overall, dynamical correlations go from being highly 
dominant to being largely subleading. Still, their in-
clusion on top of PGCM via PGCM-PT(2) remains 
mandatory, in particular when dealing with low-lying 
excitation energies. 

Eventually, the great benefit of the pre-processing relates 
to the fact that many-body calculations performed with 
evolved Hamiltonians become numerically gentler as 
s increases, i.e. the numerical solution of the PGCM-
PT(2) linear system is more precise, corrections beyond 
PGCM-PT(2) are minimized and the convergence with 
the model-space size (emax) is probably faster, although 
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Fig. 16: (Color online) Total ground-state energy of 20Ne 
computed within various many-body methods for three 

different values of the MR-IMSRG flow parameter. Num-
bers next to downward arrows denote the corresponding 
gain in correlation energy (in MeV). 

this latter point remains to be studied24 . Given that 
PGCM-PT(2) is numerically more costly than the MR-
IMSRG(2) step (see App. D.1), the optimal combination 
of both methods is of great interest. Of course, this 
optimal point must be such that the error due to the 
breaking of unitarity through the MR-IMSRG(2) pre-
processing is not larger than the error associated with 

PGCM-PT(2) results. 

4 Conclusions 

This work, the third paper of the series on PGCM-
PT, presented the first realistic results for the novel 
multi-reference perturbation theory built on top of an 
unperturbed state generated through the projected gen-
erator coordinate method. While the unperturbed state 
captures crucial static correlations via the breaking and 
restoration of symmetries along with collective fluctu-
ations, the perturbative expansion brings in comple-
mentary dynamical correlations in a consistent fashion 
within a symmetry conserving scheme. Furthermore, 

24See Ref. [24] for an accelerated convergence in so-called 
in-medium no-core shell model calculations. 
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being a state-specific multi-reference many-body pertur-
bation theory, PGCM-PT accesses ground and low-lying 
excited states on an equal footing. 

First, the novel many-body formalism was shown to be 
both versatile and accurate by benchmarking proof-of-
principle results for the doubly closed-shell 16O, singly 
open-shell 18O and doubly open-shell 20Ne nuclei in 
a small (emax = 4) harmonic oscillator model space 
against full configuration interaction results. Binding 
energies obtained at second order, i.e. through PGCM-
PT(2), were shown to be typically 0.5 − 1.5% away from 

FCI results. 

The second focus of the present paper was to demon-
strate the benefit of combining low-order PGCM-PT 
with a pre-processing of the Hamiltonian via multi-
reference in-medium similarity renormalization group 
transformations. The rather low cost of MR-IMSRG(2) 
calculations makes it possible to efficiently capture the 
bulk of dynamical correlations in large model spaces 
(cf. Refs. [24,25,26]). Based on such a pre-processed 
Hamiltonian, PGCM-PT(2) can bring in crucial static 
correlations and any remaining dynamical correlations 

while working in a smaller model space. The present 
work showed that, after the MR-IMSRG(2) pre-processing, 
dynamical correlations included on top of the PGCM 
via PGCM-PT(2) are indeed essential for a satisfactory 

description of low-lying spectra. 

Eventually, it emerges from the present work that a 
versatile and accurate description of complex mid- and 
heavy-mass nuclei will probably rely on the combina-

tion of three levers whose complementarity needs to be 
further studied and optimized: 

1. the pre-processing of the Hamiltonian via, e.g., MR-
IMSRG to efficiently capture the bulk of dynamical 
correlations, 

2. the use of a, e.g., PGCM unperturbed state capturing 
collective static correlations via a low-dimensional di-
agonalization problem that is thus scalable to heavy 
nuclei25 , 

3. the low-order truncation of a systematic expansion 

on top of the multi-reference unperturbed state via, 
e.g., PGCM-PT to bring in remaining dynamical 
correlations. 

Each of the three steps comes with its own flexibility 
that can be exploited in order to optimize their com-

25This can be particularly useful for implementations on GPUs 
or other accelerators with limited memory. 

bination26 . First, the pre-processing is a function of a 
flow parameter s that must be optimized to resum the 
bulk of dynamical correlations without inducing a large 
breaking of unitarity27 . Second, the PGCM depends on a 
choice of suitable collective coordinates that must be rich 
enough to capture all non-perturbative static correla-
tions at play, only leaving weak perturbative corrections 
to the subsequent PGCM-PT step, while maintaining a 
low-enough dimensionality to retain its advantage over 
large-scale diagonalization methods. For example, while 
adding the triaxial degree of freedom did not impact the 
dilated PGCM spectrum of 20Ne at s = 10, 20 MeV−1 , 
the use of HFB states obtained while adding a cranking 
constraint breaking time-reversal invariance [27,28] typ-
ically compresses the PGCM spectrum as demonstrated 
in MR-EDF calculations and in recent ab initio stud-
ies [26,29]. Obtaining such a compression at the PGCM 
level is expected to correlate with a further suppression 
of dynamical correlations on top of the PGCM step. 
Still, if needed, the PGCM-PT can in principle be im-
plemented at various perturbative orders n. In practice, 
however, going beyond PGCM-PT(2) shall probably be 
avoided due to the prohibitive numerical scaling. 

While the present work has laid the foundations of such 
an optimal scheme, future studies will allow us to better 
understand the way many-body correlations can be most 
efficiently captured in complex heavy nuclei within an ab 
initio setting. For example, describing nuclei displaying 
strong shape coexistence via ab initio many-body calcu-
lations constitute an interesting milestone to achieve in 
the years to come. 
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A Anti-symmetry reduction 

From a technical viewpoint, and as extensively explained 
in Paper I, PGCM-PT(2) calculations rely on solving a 
large-scale linear problem of the form 

Ma = −h1 . (1) 

The linear problem relates to excitations I of several 
non-orthogonal Hartree-Fock-Bogoliubov vacua, each of 
which is defined by a set of quasi-particle creation opera-
tors, i.e. a rank-n excitation is defined through a set of n 
quasi-particle labels I ˘ (ki1 , · · · , kin 

). Correspondingly, 
the problem is initially expressed in terms of unrestricted 
sets of quasi-particle indices. Still, anti-commutation re-
lations of quasi-particle creation operators imply that 
M, a and h1 are anti-symmetric with respect to the 
permutations of quasi-particle indices. This can be ex-
ploited to reduce the effective dimensionality of the 

linear system. 

Given a rank-n excitation I ˘ (ki1 , · · · , kin ) on a given 
Bogoliubov state, the set I � {τ(I)}τ2Sn 

of |I| � n! 
permutations of the quasi-particle indices of I needs 
to be considered. For a pair (I, J) of excitations and 
two permutations (τ, τ 0) applicable to I and J , the 
antisymmetry properties are given by 

MpIqJ = �(τ)�(τ 0)Mpτ(I)qτ 0(J) , (2a) 

a J (q) = �(τ)a τ(J)(q) , (2b) 

(I)
hI 
1(p) = �(τ 0)h

τ 0 
(p) , (2c)1 

where �(τ) denotes the signature of the permutation τ . 
First, these antisymmetry properties trivially imply that 
excitations with repeated quasi-particle indices can be 
excluded from the basis. Second, the set of excitations 
I corresponding to one another via a change of the 
quasi-particle ordering can all be tracked through the 

¯ one representative I of I characterized by a strictly 
increasing ordering of the quasi-particle indices k1 < 
· · · < kn. Writing Eq. (1) for such an external ordered 

excitation Ī  XX X 
Ī  Mp ¯ 

J (q) = −h1(p) , (3)IqJ a 
q J J2J 

the internal sum is split such that, with the help of 
Eq. (2), |J | equivalent terms are generated that eventu-
ally yield the reduced form XX 

¯ Ī  |J |MpĪ  qJ̄a 
J (q) = −h1(p) . (4) 

q J 

In order to maintain the Hermiticity of the reduced 
matrix one further left-multiplies the equation by 

p
|I| 

such that the final form XXp p p p¯ Ī  |J | |I|Mp ¯ |J |a J (q) = − |I|h1(p) ,IqJ̄  

q J 
(5) 

naturally leads to a trivial redefinition of the reduced 
matrix and vectors through the inclusion of the combi-
natorial factors. In the following, the above reduction 
process is assumed such that the effective working basis 
only includes excitations characterized by quasi-particle 
indices in a strictly increasing order. For example, ex-
ploiting the anti-symmetry for the dominant double 
(i.e. 4 quasi-particle) excitations reduces the number of 
associated matrix elements by a factor of 242 . 

B Solution of the linear problem 

Finding the numerical solution of Eq. (1) is delicate 
due to the non-orthogonality of the many-body states 

used to represent it. Thus, a careful handling of zeros 
in the norm eigenvalues is typically necessary to avoid 
instabilities while solving the equation. In the following, 
techniques of increasing sophistication are progressively 

introduced in order to eventually motivate the use of 
the iterative MINRES-QLP algorithm. 

B.1 Exact SVD-based solution 

The pedestrian way to solve the linear system can be 
summarized in three steps: (i) diagonalize the norm 
matrix to transform the equation into an orthonormal 
basis, (ii) diagonalize the Hamiltonian matrix in that 
basis and (iii) finally invert the problem. This strategy 
is essentially the same as the one used in PGCM to solve 
the HWG equation (see App. A of Paper II). 

The norm matrix (see Paper I) is first decomposed 
by projecting on the range of N via a singular-value 
decomposition (SVD) 

N = XIX† , (6) 

where X is unitary. Matrix I gathers the singular values 
whose smallest representatives can eventually be dis-
carded. Correspondingly, M, a and h1 are transformed 
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into the resulting orthogonal basis 

M̃ � XMX† , (7a) 

ã � X† a , (7b) 

h̃1 � X†h1 , (7c) 

such that the linear problem equivalently reads 

M̃ã = −h̃1 . (8) 

The solution of this system is then found by diagonaliz-

ing M̃ 

Δ = Y† M̃Y , (9) 

such that, similarly to canonical MBPT, the system is 
˜inverted in the basis where M is diagonal to obtain the 

second-order energy in the form 

E(2) † = −h1 XYΔ−1Y†X†h1 . (10) 

In principle, the projection on the range of N is not 
necessary to solve the system. However, in numerical 
applications, the coupling between spurious eigenval-
ues of N and large eigenvalues of M can arise and the 
explicit removal of the redundancies is often necessary. 

Eventually, full diagonalization is anyway not feasible 
for the large matrices encountered in realistic PGCM-
PT(2) calculations (contrary to the PGCM step where 

the typical dimensions are sufficiently small) such that 
other methods need to be designed to solve the prob-
lem. 

As an example, the distribution of the eigenvalues of 
N and M obtained from a PHFB-PT(2) calculation of 
20Ne in a small model-space is displayed in Fig. 17. Two 

observations can be made 

– The eigenvalue distributions of both matrices are 
very close up to a scaling factor. In particular, as 
expected, their (numerical) kernels have the same 
dimension. 

– The kernel’s dimension is small compared to the ma-
trices’ dimension, and all eigenvalues outside the ker-
nel have the same magnitude. This prevents us from 
using truncated SVD approaches in larger model 
spaces. 

Although the GCM mixing enlarges the kernel of the 
PGCM-PT(2) matrices compared to PHFB-PT(2) due 
to the partial linear dependencies of the added HFB 
states, a large number of independent configurations is 
still present in that case too. 

Fig. 17: (Color online) Distribution of eigenvalues of N 
and M matrices for 20Ne. The calculation is performed 
with a two-body χEFT Hamiltonian, λsrg = 1.88 fm−1 , 
~ω = 20 MeV and emax = 2. 

B.2 Pivoted factorizations 

Factorization algorithms can be applied in order to re-
move spurious eigenvalues without paying the price of 
fully diagonalizing the norm and Hamiltonian matrices. 
Typical examples are pivoted QR [30] and QLP [31] 
factorizations, which are briefly discussed in the follow-

ing. 

B.2.1 Pivoted QR 

An arbitrary n×m complex matrix A can be decomposed 
according to 

AD = QR , (11) 

where D is obtained via a permutation of the columns of 

A, Q is a unitary matrix, and R is an upper triangular 
matrix. The permutation D is used to sort the diagonal 
entries of R in decreasing order of magnitude. In this 
way, the kernel of A corresponds to the last columns of 
R. 

B.2.2 Pivoted QLP 

Matrix A can be decomposed further by performing 
two successive pivoted QR decompositions, yielding the 
form 

D0AD = QLP (12) 

where D, D0 are permutation matrices, Q, P are unitary 
matrices and L is a lower triangular matrix. In particular, 
L has the block-diagonal form � �

L̃ 0 
L = , (13)

0 0 

such that Q and P naturally block factorize A into a 
full-rank part and its null-space. 
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Fig. 18: (Color online) PHFB-PT correlation energy of 
20Ne obtained for SVD, QR and QLP decompositions 
as function of the size of the excluded kernel in the 
decomposition. The calculation is performed with a 
two-body χEFT Hamiltonian, λsrg = 1.88 fm−1 , ~ω = 
20 MeV and emax = 2. 

B.2.3 Illustration of non-iterative solvers 

In our case, pivoted QR/QLP factorizations can either 

be used directly on M to solve Eq. (1) or on the norm 
matrix in order to remove redundancies in the basis. In 
both cases, the symmetry of the matrices guarantees 
that the range and the kernel of both matrices are in 
direct sum. QLP factorization can thus be seen as a 
way to re-express the original problem in the range of 
M or N. In practical applications, some tolerance must 

be used (as with SVD) to discard numerically small 
eigenvalues and disentangle the numerical kernel from 
the numerical range. The QLP factorization, although 

twice more expensive than the single QR decomposition, 
is found to be more stable and to better discard spurious 
eigenvalues. 

Figure 18 shows a comparison of SVD, QR and QLP 
decompositions in a PHFB-PT(2) calculation. Errors 
estimated via δE � kMa + h1kkak (see Sec. B.3.2) are 
also represented on the figure. The three methods are in 
very good agreement with vanishing errors when nearly 
all the space is kept in the calculation. However, discrep-
ancies arise when the truncation is performed according 
to the magnitude of the diagonal elements of the de-
composition. While the SVD is by far the most reliable 

method, the QLP decomposition significantly improves 
the correlation energy with respect to the simpler QR 
decomposition and reduces the corresponding error for 
a fixed kernel dimension. Eventually, the reduced cost 
of QLP/QR decompositions compared to SVD, espe-

cially in their sparse version, make them well suited to 
large-scale calculations. 

B.3 Iterative solvers 

The QLP decomposition introduced above is still not 
applicable to very large matrices due to the runtime 
and memory requirements. An alternative solution is 
to use an iterative method, preferably exploiting the 
symmetry of the input matrix. Among various available 
solvers, the MINRES algorithm [32] finds the minimum-
residual solution to ||Ma + h1|| via QR factorizations 
in the Krylov space of M. In the case of ill-conditioned 
problems, QR factorizations are replaced by QLP fac-
torizations, and the corresponding algorithm is referred 
to as MINRES-QLP [33]. 

The benefit of iterative solvers compared to exact de-
compositions is that, in the former, QR and QLP fac-
torizations are performed in a Krylov subspace of the 
matrix. At iteration k, the problem is of dimension 
k × k, where k is usually much smaller than the original 
matrix dimensions. This results in both runtime and 

memory savings, at the cost of solving the system only 
approximately. 

B.3.1 Preconditioning of the linear system 

The number of iterations required by the solvers strongly 
depends on the eigenvalue distribution of the linear sys-
tem under consideration. Typically, systems where the 
eigenvalues are clustered will have a faster convergence 
than systems with a spread-out spectrum. The spread 

of the eigenvalues can be altered with preconditioning 
techniques that amounts to finding equivalent systems 
with different (generally much smaller) condition num-
bers. 

In this subsection, the compatible symmetric system 

Mx = −h1 , (14) 

is considered. Let A = CCT be a positive definite 
matrix. The solution of the initial system can be deduced 
from the solution of the preconditioned system 

C−1MC−T y = −C−1h1 . (15) 

Whereas various techniques are available to build an 

appropriate matrix A, designing efficient precondition-
ers is still an active field of research [34]. There is no 
perfect preconditioner, and finding the trade-off between 
effectiveness and computational cost heavily relies on 
heuristics. Furthermore, for systems only known up to a 



19 

given precision, preconditioners can artificially magnify 
eigenvalues that are numerically close to zero. Thus, 
a slower convergence with the possibility to stop the 
iterations before the appearance of spurious divergences 
might be preferable. Eventually, solving several equiva-
lent systems simultaneously can make it easier to identify 
problematic features, and discrepancies between differ-
ent solutions can be used as uncertainty estimates in 
the resolution. 

Matrix scaling. Matrix scaling is a type of precondi-
tioning where the preconditioner is a diagonal matrix 
A � D such that the equivalent system reads 

M̃ � DMD (17) 

is better conditioned than M, then the solution to the 
initial system can be found in fewer iterations. For a 
diagonally dominant matrix M, scaling the matrix with 
its own diagonal elements will reduce its condition num-
ber. The binormalization method detailed in Ref. [35] 
amounts to scaling all rows and columns to unit norm, 
which can yield significantly better results at low cost. 

A stochastic matrix-free variant [36] allows one to effi-
ciently apply this method for abstract linear operators 
that are not necessarily defined explicitly by a matrix-

vector product. Below, the stochastic binormalization 
preconditioner is denoted as SBIN. 

Incomplete Cholesky decomposition. For a sparse posi-
tive definite matrix N, an approximate Cholesky factor-
ization preserving the sparsity pattern of the original 

matrix can be computed as 

N ˘ LLT , (18) 

with L a (sparse) lower triangular matrix. A variant of 
Cholesky factorization applicable to positive indefinite 
matrices can be applied directly on the norm matrix N. 
Since N and M have similar eigenvalue spread, eigen-
values of the system preconditioned with LLT will be 
much more clustered than those of the original system, 
hence separating the useful directions of the problem 
from the rest of the Hilbert space. Below, the incomplete 
Cholesky preconditioner is denoted as IC0. 

Norm preconditioning. In some cases, spurious eigenval-
ues in the linear system can couple to physical modes 
and prevent any convergence of the iterative solvers. In 
this case, clustering the eigenvalues via preconditioning 
techniques is counterproductive as spurious modes are 

given an equivalent amplitude to physical ones. When 
this happens, it is preferable to amplify the separation 
of scale between numerically small and large eigenvalues. 
Instead of manually removing redundancies in the norm 
matrix, there exists a simple way to reach the image 
of N without resorting to a decomposition: Instead of 
solving 

Ma = −h1 , (19) 

one directly solves for N−1a inside the range of N via 

� � 
N−1NMN a = −Nh1 . (20) 

D−
1 
2MD−

1 
2y = −D− 1 

2h1 . (16) Even if N is singular, the fact that h1 and a live in the 
range of N by construction ensures that N−1a is well-

If the scaled matrix 
defined. The procedure ensures that small numerical 
eigenvalues of N, originating from collinear many-body 
basis vectors, are tamed down in NMN. Furthermore, 
numerical errors in h1 are suppressed as well. Of course, 
in exact arithmetic, the two systems are equivalent. 
This method corresponds in fact to preconditioning the 

system with N−2 . As mentioned, this slows down the 
convergence of the iterative procedure and must be 
kept for cases where the direct approach or the com-
plex shift method (see below) do not provide accurate 
solutions. Below, the norm precondition is denoted as 
NMN. 

B.3.2 Error evaluation 

Iterative methods may require a large number of iter-
ations or even diverge due to numerical errors. In this 
subsection, a conservative bound to estimate the error on 

the computed second-order energy is developed. 

Given an approximate solution of the system 

Ma = −h1 + b , (21) 

the second-order energy evaluated with Hylleraas’ func-
tional reads 

E(2) † = a †Ma + h1a + a †h1 

† = a †b + h1a . (22) 

The difference between this expression and the directly 
evaluated second-order energy reads 

δE(2) = a † (Ma + h1) . (23) 

Thus, a conservative error estimate on the second-order 
energy is given by 

|δE|(2) � kakkMa + h1k . (24) 
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The quantity |δE|(2) vanishes for an exact solution and 
grows whenever kak becomes too large, which gener-
ally occurs if M is badly conditioned. When the norm-
preconditioning is used, the error estimate is obtained 
as � � 
|δE|(2) � kN−1 N−1 akkNMN a + Nh1k . (25) 

B.3.3 Stopping condition for the iterative solver 

MINRES-QLP already implements by default its own 
stopping criterion based on the relative norm of the 
residuals 

kMa + h1k 
r � . (26)

kak 

In the present case, elements of M and h1 are obtained 
after several computational steps such that round-off and 
discretization errors will alter the quality of the input 
matrices. Furthermore, a threshold on the magnitude 
of the matrix elements of M is employed to enforce the 
sparsity of the matrix. As such, iterations should be 
stopped when the residual errors are of the same order 
as the precision of the input matrix elements. 

B.3.4 Illustration of iterative solvers 

In order to illustrate the use of iterative solvers and pre-
conditioning techniques, results obtained in 20Ne with 

emax = 2 are shown in Fig. 19. One observes that the 
IC0 preconditioning significantly reduces the number 
of iterations needed to reach the converged value. Con-
trarily, the norm preconditioning tends to spread the 
eigenvalues of the system and therefore slows down the 
convergence. For a well-behaved system, applying the 

IC0 preconditioning to the original matrix is therefore 
the method of choice. In contrast, whenever spurious 
eigenvalues prevent the convergence of the iterative pro-
cess, the IC0 preconditioning amplifies the problem. 
Such a case is shown Fig. 20 for the ground state of 
18O. Here, applying a combination of SBIN and norm 
preconditioning is necessary to converge the system to 
the SVD solution. 

C Complex-shift method 

C.1 Motivations 

As it appears in Eq. (10), the second-order energy relies 
on the invertibility of Δ to generate non-zero energy 
denominators. However, the eigenvalues of Δ can vanish, 
which makes the calculation of the second-order energy 
unstable or even ill-defined. Multi-reference methods 

Fig. 19: (Color online) Correlation energy (top) and 
corresponding error (bottom) at each MINRES-QLP 
iteration for the ground state of 20Ne. Results obtained 
with combination of IC0 and norm preconditionings are 

compared to the exact solution obtained via SVD. Cal-
culations are performed with a two-body χEFT Hamil-
tonian [13,14], λsrg = 1.88 fm−1 , ~ω = 20 MeV and 
emax = 2. 

are indeed susceptible to this so-called intruder-state 
problem [37,38]. 

One way to regularize these zeros is to introduce a 
diagonal imaginary shift in the eigenbasis of M. The 
eigenvalues are thus replaced by 

Δ̄ � Δ + ıγI , (27) 

or, equivalently, working in the original basis 

M̄ � M + ıγN , (28) 

which simply corresponds to adding a complex term to 

the unperturbed Hamiltonian H0. The imaginary shift 
moves zero eigenvalues of Δ into the complex plane 
and provides a robust way to remove intruder-state 
divergences. 

In this context, the second-order energy is eventually 
evaluated by simply taking the real part of the Hylleraas 
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Fig. 20: (Color online) Correlation energy (top) and 
corresponding error (bottom) at each MINRES-QLP 
iteration for the ground state of 18O. Results obtained 
with a combination of SBIN and norm precondition-
ings are compared to the exact solution obtained via 
SVD. Calculations are performed with a two-body χEFT 
Hamiltonian [13,14], λsrg = 1.88 fm−1 , ~ω = 20 MeV 
and emax = 2. 

functional, h i 
E(2) † ¯ † = < a Ma + a †h1 + h1a . (29) 

C.2 Implementation in real arithmetic 

Although an extension of MINRES-QLP has been devel-
oped to handle complex symmetric matrices [39,40], it is 
possible to rewrite the complex PGCM-PT(2) equations 
as an enlarged real-valued system, for which the original 
MINRES-QLP algorithm can be applied directly. The 
system of equations 

(M + ıγN)(a + ıb) = −h1 (30) 

is recast into a blockwise 2x2 real symmetric system 

� �� � � � 
M −γN a −h1 = . (31)−γN −M b 0 

Fig. 21: (Color online) Correlation energy (top panel) 
and corresponding estimated error for different values 
of the complex shift γ as a function of the number 
of MINRES-QLP iterations in 20Ne. Calculations are 

performed with a two-body χEFT Hamiltonian [13,14], 
λsrg = 1.88 fm−1 , ~ω = 20 MeV and emax = 2. 

Since the matrices are real by default after projection, 
implementing the imaginary shift via an augmented real 
system is profitable to make use of the MINRES-QLP 
real symmetric solver instead of variants designed for 
complex matrices. 

Note that preconditioning techniques such as SBIN and 
N-IC0 are still applicable within the augmented sys-
tem. 

C.3 Illustration 

Proceeding with the 20Ne test case (emax = 2), the effect 
of the complex shifts on the MINRES-QLP iterations 
with the IC0 preconditioning is illustrated in Fig. 21. In 
general, the complex shift tends to lower the correlation 
energy — in the limit of an infinite shift, the correlation 
energy vanishes. Thus, a bias is introduced that must 
be monitored. Eventually, the larger the complex shift, 
the faster the iterative procedure will converge (towards 
a biased result). 
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In the case of 18O, we can combine the norm and SBIN 
preconditioning (cf. Fig. 20), with the complex shift, as 
pictured in Fig. 22. In contrast to 20Ne, the complex shift 
with the norm preconditioning decreases the convergence 
speed in this case. Applying the complex shift without 
norm preconditioning is also possible, but does only lead 
to a stabilization of the result before the occurrence of 
a divergence. 

In practical applications, the optimal shift depends on 
the interaction, the model space and the system under 
consideration. As the model space is enlarged, encoun-

tering small eigenvalues becomes more probable and 
the complex shift becomes necessary to smear out the 
contaminations. A shift γ 2 [10, 20] MeV is well suited 
to remove spurious behaviors, with an estimated error 

of around 4% on the correlation energy, as can be seen 
in Fig. 23. The difference between the results obtained 
with γ = 15 MeV and γ = 4 MeV28 is used to estimate 
the bias due to the shift. Note that PHFB-PT(2) is more 
sensitive to intruder-state problems than PGCM-PT(2), 
hence the need to employ a larger shift to smooth out 

singularities on the energy curve. In practice, it is es-
sential to use the same shift for all quantum states of 
a given nucleus to obtain a consistent bias in absolute 
binding energies that will largely cancel out in the exci-

tation spectrum. The development of an extrapolation 
method towards γ ! 0 to correct for the bias due to 
the complex shift is left for a future study. 

D Discussion on numerics 

D.1 Scaling 

Any method to solve A-body Schrödinger equation’s 
comes with its numerical complexity and memory re-
quirement. For a given basis size N of the one-body 
Hilbert space, the naive polynomial scaling of runtime 
and storage of the methods discussed in the present 
work is displayed in Tab. 1. These asymptotic values 
are to be revised when particular symmetries are ex-
ploited in the many-body bases (e.g. spherical or axial 
symmetry reducing the size of the many-body tensors 
at play). Moreover, prefactors (ignored here) may play 

a significant role. Nevertheless, the table gives a fair 
idea of the asymptotic cost of the different many-body 
techniques. 

As an example, the computational cost of each indi-
vidual matrix element at play in PGCM-PT(2), which 

28In the present case, γ = 4 MeV constitutes the lowest value 
that is empirically found to deliver a controlled numerical 
result. Below this value, the energy curve displays an erratic 
behavior due to the occurrence of an intruder state. 

Fig. 22: (Color online) Correlation energy (top panel) 
and corresponding estimated error for different values 
of the complex shift γ as a function of the number 
of MINRES-QLP iterations in 18O. Calculations are 

performed with a two-body χEFT Hamiltonian [13,14], 
λsrg = 1.88 fm−1 , ~ω = 20 MeV and emax = 2. 

requires about 1000 vectorized elementary operations, 
makes the construction of the matrix the most time-

consuming step in the calculation. In other words, the 
computation of the N8 matrix elements dictates the over-
all complexity, given that the (approximate) sparsity of 
the matrix makes the cost of solving the linear system 
subleading. Similarly, even if BMBPT(3) has the same 
storage cost as HFB in principle, symmetry properties 
of the density matrices are used to drastically reduce the 
number of matrix elements that are needed at the HFB 
level. In general, the nominal complexity and storage 
requirement have to be balanced with the optimizations 
(vectorization, parallelization, compression techniques) 
that can be applied for a specific method, and they can 
play a decisive role in practical applications. Also, shape 
mixing through PGCM scales quadratically with the 
number of reference states, i.e. a PGCM (PGCM-PT(2)) 
calculation with 10 states is 100 times more costly than 
a PHFB (PHFB-PT(2)) calculation. 

A selection of runtimes as a function of the one-body 
basis dimension is displayed in Fig. 24. For BMBPT(2,3) 
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nproj denotes the number of gauge angles used for projections and 
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Method HFB PGCM BMBPT(2) BMBPT(3) PGCM-PT(2) FCI 

Runtime 

Storage 

O(N4) 

O(N4) 

2 N4)O(nprojngcm
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O(N4) 

O(N6) 

O(N4) 

2 N8)O(nprojngcm
2O(n N8)gcm

O(NA) 

O(NA) 

resolution methods of the many-body problem. 
ngcm the number of states used in the mixing. 

Fig. 23: (Color online) Correlation energy in 20Ne for a 
complex shift γ = 15 MeV. Error bars associated to the 

effect of the shift correspond to the correlation energy 
with γ = 4 MeV. The calculation is performed with a 
two-body χEFT Hamiltonian [13,14], λsrg = 1.88 fm−1 , 
~ω = 20 MeV and emax = 2. 

and PHFB, symmetry properties lower the effective com-
plexity to O(N4). The main differences reside in the 
prefactor, which is, intiutively, larger for BMBPT(3). 
Note that the normal ordering of the Hamiltonian and 
the transformation to the quasi-particle basis are in-
cluded in the runtime estimate. 

D.2 Complexity reduction in PGCM-PT(2) 

The multi-reference PGCM-PT(2) calculation is, in its 
naive formulation, significantly more costly than its 
single-reference counterparts. This is mainly due to the 
redundancies in the visited Hilbert space: many pro-
jected quasi-particle configurations play little to no role 

in the correlation energy or are redundant. This is even 
more true for large-scale applications where the multi-
reference unperturbed state mixes many product HF(B) 
states. This naturally leads to the idea of reducing the 
dimensionality of the problem by selecting only relevant 
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Fig. 24: Timing of many-body methods as a function of 
the basis size of the one body Hilbert space. Projections 
are performed on total angular momentum J with 24 
gauge angles. 

configurations (see Refs. [41,42] for recent applications 
of this idea in nuclear physics and chemistry). In par-
ticular, the application of importance-truncation tech-
niques in the context of non-perturbative methods [43] 
shows promising results that should be applicable to the 
present problem. 

Several procedures to reduce the number of configura-
tions in a controlled way are now briefly introduced, al-
though not all of them have been implemented yet. 

D.2.1 Norm-based importance truncation 

Exact arithmetic The norm of a projected configuration 
is 

n I (p) � hΩI (p)|ΩI (p)i 2 [0, 1] (32) 

such that a configuration I for which nI (p) = 0 satisfies 

|ΩI (p)i = 0 . (33) 
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Trivially, a null vector does not contribute to the linear 
system and can be safely removed from the calcula-
tion. 

Approximate zeros Given a threshold �n > 0, the norm-
based importance-truncated problem is introduced by 
removing configurations I with nI (p) < �n. The exact 
problem is obtained in the limit �n = 0. For now, this is 
the only method that has been implemented and applied 
to discard configurations in 18O at emax = 6. Although 
the number of configurations was divided by two (from 
106 to 5·105) by only keeping configurations whose norm 
reaches 2% of the maximal value, the induced error was 
shown to be less than 1%. A systematic study of the 
results obtained via this procedure still remains to be 
performed. 

D.2.2 Hamiltonian-based importance truncation 

Exact arithmetic The Hamiltonian matrix element of a 
projected configuration reads 

hI 
1(p) � hΩI (p)|H1|Θ(0)i . (34) 

A configuration I for which hI 
1(p) = 0 does not con-

tribute to the linear system nor to the second-order 
energy, hence it can be safely removed from the calcula-

tion. 

Approximate zeros The Hamiltonian-based importance-
truncated problem is introduced by removing configura-
tions I satisfying |hI 

1(p)| < �h, with �h > 0. The exact 
problem is obtained in the limit �h = 0. 

D.2.3 Energy-based importance truncation 

The contribution of a configuration I associated with the 
vacuum |Φ(q)i to the second-order correlation energy is 

(2)I (q) = hI� e (q)a I (q) . (35)1 

A configuration (q, I) for which e(2)I (q) = 0 does not 
29contribute to the correlation energy . Removing config-

urations based on the size of their contribution to the 

correlation energy corresponds to the method advocated 
in Refs. [41,43]. The method is expected to lead to a 
substantial gain for a negligible error on the energy, al-
though the impact on other observables must be checked 
as well. Of course, computing e(2)I (q) requires to solve 
the problem in the first place and is thus impractical. 
The idea is thus to evaluate the importance of a given 

29Such a configuration might still contribute indirectly by 
influencing the value of the other coefficients {aJ (q0)}. 

configuration (q, I) by calculating an approximation to 
e(2)I (q) at a significantly reduced cost, which can typ-
ically be achieved by using BMBPT(2) based on the 
HFB vacuum |Φ(q)i. 
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21. B. Ladóczki, M. Uejima, S. L. Ten-no, Third-order ep-
stein–nesbet perturbative correction to the initiator ap-
proximation of configuration space quantum monte carlo, 
The Journal of Chemical Physics 153 (11) (2020) 114112. 
arXiv:https://doi.org/10.1063/5.0022101, doi:10.1063/ 
5.0022101. 
URL https://doi.org/10.1063/5.0022101 

22. K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga, 
A. Schwenk, Improved nuclear matter calculations from 
chiral low-momentum interactions, Phys. Rev. C 83 
(2011) 031301. doi:10.1103/PhysRevC.83.031301. 
URL https://link.aps.org/doi/10.1103/PhysRevC.83. 

031301 

23. A. Nogga, S. K. Bogner, A. Schwenk, Low-momentum 
interaction in few-nucleon systems, Phys. Rev. C 70 
(2004) 061002. doi:10.1103/PhysRevC.70.061002. 
URL https://link.aps.org/doi/10.1103/PhysRevC.70. 

061002 

24. E. Gebrerufael, K. Vobig, H. Hergert, R. Roth, Ab 
initio description of open-shell nuclei: Merging no-core 
shell model and in-medium similarity renormaliza-
tion group, Phys. Rev. Lett. 118 (2017) 152503. 
doi:10.1103/PhysRevLett.118.152503. 
URL https://link.aps.org/doi/10.1103/PhysRevLett. 

118.152503 

25. J. M. Yao, J. Engel, L. J. Wang, C. F. Jiao, H. Herg-
ert, Generator-coordinate reference states for spectra 
and 0νββ decay in the in-medium similarity renormal-
ization group, Phys. Rev. C 98 (5) (2018) 054311. doi: 
10.1103/PhysRevC.98.054311. 

26. J. M. Yao, B. Bally, J. Engel, R. Wirth, T. R. 
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