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Abstract

Arthropod biomass is a key element in ecosystem functionality and a basic

food item for many species. It must be estimated through traditional costly

field sampling, normally at just a few sampling points. Arthropod biomass and

plant productivity should be narrowly related because a large majority of

arthropods are herbivorous, and others depend on these. Quantifying plant

productivity with satellite or aerial vehicle imagery is an easy and fast proce-

dure already tested and implemented in agriculture and field ecology.

However, the capability of satellite or aerial vehicle imagery for quantifying

arthropod biomass and its relationship with plant productivity has been

scarcely addressed. Here, we used unmanned aerial vehicle (UAV) and satel-

lite Sentinel-2 (S2) imagery to establish a relationship between plant produc-

tivity and arthropod biomass estimated through ground-truth field sampling in

shrub steppes. We UAV-sampled seven plots of 47.6–72.3 ha at a 4-cm pixel

resolution, subsequently downscaling spatial resolution to 50 cm resolution.

In parallel, we used S2 imagery from the same and other dates and locations at

10-m spatial resolution. We related several vegetation indices (VIs) with

arthropod biomass (epigeous, coprophagous, and four functional consumer

groups: predatory, detritivore, phytophagous, and diverse) estimated at 41–48
sampling stations for UAV flying plots and in 67–79 sampling stations for S2.

VIs derived from UAV were consistently and positively related to all arthropod

biomass groups. Three out of seven and six out of seven S2-derived VIs were

positively related to epigeous and coprophagous arthropod biomass, respec-

tively. The blue normalized difference VI (BNDVI) and enhanced normalized

difference VI (ENDVI) showed consistent and positive relationships with

arthropod biomass, regardless of the arthropod group or spatial resolution.
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Our results showed that UAV and S2-VI imagery data may be viable and

cost-efficient alternatives for quantifying arthropod biomass at large scales

in shrub steppes. The relationship between VI and arthropod biomass is

probably habitat-dependent, so future research should address this relation-

ship and include several habitats to validate VIs as proxies of arthropod

biomass.
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INTRODUCTION

Arthropods play a fundamental role in ecosystem
functions, such as pollination, pest control, and organic
decomposition (Losey & Vaughan, 2006), and are a key
food item for many species (B�aldi & Kisbenedek, 1997;
Weiss et al., 2013). Arthropod biomass and diversity are
usually associated with plant productivity, as decreases in
quantity of forage seem to reduce the amount of plant
consumers (the more-individuals hypothesis; Kaspari
et al., 2003; Srivastava & Lawton, 1998). Moreover, plant
health relates to nutrient availability, which may directly
affect plant biomass and indirectly arthropod communi-
ties (Haddad et al., 2001; Siemann, 1998). In summary,
plant biomass and quality, as well as specific vegetation
structure or composition, are related to arthropod biomass
both for the whole community (Dennis et al., 1998;
Harrison et al., 2018; Prather & Kaspari, 2019) and for dis-
tinct taxonomic or functional groups (B�aldi & Kisbenedek,
1997; Labadessa et al., 2015; Smith et al., 2020; Weyer
et al., 2012). Despite these considerations, establishing
general relationships of arthropod biomass with specific
plant characteristics may be tricky, especially at large spa-
tial scales, owing to the great diversity of the arthropod
group in its size, mobility, trophic level, life history, and
microhabitat preferences, including plant structure and
composition (Southwood et al., 1979). Therefore, a more
general evaluation of its relationship with plant productiv-
ity remains a challenge (but see Sweet et al., 2015 and
Fern�andez-Tiz�on et al., 2020).

Remote sensing has the capacity to map and quantify
plant productivity in different types of natural and
anthropogenic influenced plant communities and land
uses (Díaz-Delgado et al., 2017). For several decades,
various satellite platforms, as MODIS, Landsat, and other
mid-spatial-resolution (tens of meters) satellites have been
used to explore andmap plant productivity and other vegeta-
tion characteristics at large scales (e.g., Möller et al., 2017).
Recently, Sentinel-2 (S2) has emerged as a major asset
(Belgiu & Csillik, 2018; Inglada et al., 2015), basically for its

medium spatial (10 m), high radiometric (13 spectral bands),
and rapid temporal (revisit time of 5 days at the equator) res-
olutions, together with its free cost. Theoretically, it would be
relatively easy to test for relationships between satellite-
extracted plant productivity and other biologically relevant
variables different than—but related to—plant productivity.
This could be the case with animal biomass, for example,
when a relation between plants and animals is predicted.
However, the spatial resolution of free satellite imagery could
be too coarse to establish accurate relationships at fine
scales, such as that between plant productivity and arthropod
biomass. The use of unmanned aerial vehicles (UAVs),
which work on high- and very high-resolution imagery
and make it possible to obtain multiple images of different
dates at relatively low cost, may help to test these relation-
ships. UAVs have been used to provide reliable estimates of
plant biomass, productivity, and greenness (Colomina &
Molina, 2014; Pla et al., 2019; Strong et al., 2017) and even
to differentiate among species (Salamí et al., 2014), but on a
few occasions these relationships have been tested at
larger spatial scales, where UAV use may be inefficient
(Fraser et al., 2017; Pla et al., 2019). In short, the combination
in UAVs of multispectral sensors and photogrammetric-
derived information allows for map productivity at very
detailed scales and makes it possible to detect short-
term changes and thus provide rapid assessment for the
management and conservation of other organisms, such
as mammals (Vermeulen et al., 2013) or breeding bird
colonies (Sardà-Palomera et al., 2012). On the other hand,
fine- and medium-resolution remote sensing has the poten-
tial to allow extrapolations to remote and nonsampled
areas, but to our knowledge it has been scarcely used to
relate other key elements in ecosystems, such as arthropod
biomass.

Among the remote sensing-derived products more
often used are plant productivity or greenness indicators,
frequently named vegetation indices (VIs). VIs are math-
ematical combinations based on digital values of spectral
bands, in a way designed to produce a simple value
that indicates the amount or plant vigor (greenness,
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productivity) of vegetation within a pixel, estimated as a
function of the radiation that plants emit or reflect
(Rouse et al., 1974). VIs can be used for detecting changes
in photosynthetic activity and plant spatial heterogeneity
in order to evaluate for phenology, plant stress situations,
damage or conditions, and differences in soil moisture,
for example, which in turn can be used to explain other
ecological relationships (Colomina & Molina, 2014;
Huete et al., 1997; Imran et al., 2020; Inglada et al., 2015).
VIs are related to the proportion of radiation absorbed by
photosynthetic tissues and are linearly correlated with veg-
etation features like the leaf area index (LAI) and plant
biomass (Hunt et al., 2010; Kross et al., 2015; Prabhakara
et al., 2015). Thus, VIs can capture complex ecological
information about canopy structure, aboveground biomass
and leaf traits, or proportion of photosynthetic and
nonphotosynthetic parts, such as leaf dry matter and bare
ground (Ollinger, 2011; Serrano et al., 2000).

The normalized difference VI (NDVI) (Rouse
et al., 1974) is the VI most often used (see a review in
Pettorelli et al., 2011). The majority of VIs are an adaptation
from NDVI and are calculated by combining two or more
spectral bands. For instance, using the green band instead
of the red band allows the VI to be less sensitive to varia-
tions in ground cover as vegetation has a higher level of
reflectance for green wavelengths (Gitelson et al., 1996;
Sripada et al., 2006). The blue channel, as in the blue NDVI
(BNDVI), amplifies chlorophyll absorption by summing
both near-infrared (NIR) reflectance and green channel
reflectance, and have proved useful for vegetation monitor-
ing and a better parameterization of plant health indicators
(Rasmussen et al., 2016). These other VIs may operate bet-
ter under determined circumstances and reduce negative
effects attributed to NDVI, such as those related to atmo-
spheric conditions and soil background (Huete et al., 1997).
In addition, VIs using blue or green channels may perform
well when trying to relate them to biological parameters
(Gitelson et al., 1996; Strong et al., 2017).

Finding simple and low-cost methods to quantify
arthropod abundance or biomass is an important objec-
tive in ecology because it would provide sensitive data for
many uses, including conservation, while improving the
high cost–benefit ratio of field sampling. Field sampling
of plant structure (plant height and cover, frequently by
species) and arthropods (e.g., pitfall traps, sweep net sam-
pling) is very time consuming and expensive and usually
provides information on just a few located points. In con-
trast, UAV and satellite platforms provide affordable or
even free medium- to high-resolution imagery, offering
repeatability in time and space, and can be used in
remote areas (Colomina & Molina, 2014; Strong
et al., 2017). These characteristics make it a potential
cost-efficient tool for estimating arthropod biomass.

In this study we aimed to test for relationships
between plant biomass (estimated through different VIs)
and arthropod biomass (epigeous, coprophagous, and
consumer groups: predatory, detritivore, phytophagous,
and diverse) when working at fine (UAV) and medium
(S2) spatial resolution, under the hypothesis of a positive
relationship between these two ecosystem components and
that this relationship can be detected at both small and large
spatial scales. Owing to the assumed strong site-specific
habitat-dependent relationships between arthropods and
plant productivity (Weiss et al., 2013) and its remote
sensing-derived information, we tested them in a single eco-
system, the natural Iberian shrub-steppe habitats
(“paramos”) in Central Spain. Natural steppe habitats are
one of the most rare and threatened habitats in Europe
(Sainz Ollero, 2013). In Spain, the Iberian “paramos” repre-
sent an important habitat of Iberian steppes (Sainz
Ollero, 2013) and hold singular communities of plants,
arthropods, and birds (Traba et al., 2013; Zurdo et al., 2021),
which are intimately interrelated. Several studies detected
significant relationships between plant structure, arthropod
availability, and threatened insectivorous bird species in
these Iberian “paramos,” which point to a complex system
of multiple interactions where plant structure and composi-
tion modulates arthropod biomass and composition, which
in turn affects the abundance and space use of insectivorous
birds (G�omez-Catasús et al., 2019; Reverter et al., 2019;
Smith et al., 2020). As a consequence, some steppe bird spe-
cies of high conservation interest have their strongholds in
these Iberian “paramos” (Traba et al., 2013), such as the
Dupont’s lark (Chersophilus duponti), the greater short-toed
lark (Calandrella brachydactyla), and the tawny pipit
(Anthus campestris), which makes it of even greater interest
to investigate the relationship between plants and arthro-
pods. Besides the relative homogeneous landscape and sim-
ple vegetation structure of these shrub-steppe habitats
(dominated by small height scrublands and grasslands),
bird distribution is not homogeneous and seems to respond
to spatial heterogeneity at a fine scale in plant and arthro-
pod availability (G�omez-Catasús et al., 2019; Reverter
et al., 2019, 2021), so high- and medium-resolution remote
sensing can help us to better understand these complex eco-
logical relationships at an appropriate scale.

METHODS

Study area

The study area is located in the Iberian System (Soria,
central Spain) (Figure 1a), within the Altos de Barahona
and P�aramo de Layna Special Areas of Conservation
(SAC) and Special Protection Areas (SPAs) of the
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European Union’s Natura 2000 Network (ES4170148 and
ES4170120, respectively; Figure 1b). They are located in
the 10 � 10 Universal Transverse Mercator (UTM) zones
30TWL16, 17, 26, 27, 36, 37, 46, and 55. The whole study
area covers around 50,400 ha in both SACs. The relief is
gentle or plain (excluding river canyons, not considered
in this study), located around 1100–1200 m above sea
level. Soils are shallow with rocky substrate. Climate is
continental Mediterranean, with a mean temperature of
10.8�C and a mean annual rainfall of 471 mm (Aranbarri
et al., 2015).

These areas are of conservation interest owing to the
steppe bird community they hold, particularly Dupont’s
lark, and include several European habitats of interest
(Zurdo et al., 2021). The plant communities are dominated
by continental scrublands and mixed grassland–scrublands,
such as Genista pumila, G. scorpius, Thymus spp., Satureja
intricata, dry perennial grasslands, and xerophytic grass-
lands on carbonate substrates (Sainz Ollero & van

Staalduinen, 2012; Zurdo et al., 2021). Crops, plowed fields,
and pine afforestations are interspersed in the area, though
they were explicitly excluded from the study.

Field sampling—Arthropod biomass

We located a total of 92 field-sampling stations to esti-
mate arthropod biomass, but not all were placed in all
sampling years: 79 in 2017 and 67 in 2018 and 2019
(Table 1). Sampling stations were separated by a mean
distance of 271.7 m (SD = 170.9; minimum and maxi-
mum distances to the nearest sampling station were
117.1 and 1781.3 m, respectively). Arthropod biomass
was sampled once in winter (January/February), summer
(July), and autumn (September/October), and three times
during spring (April, May, and June) in 2017, 2018, and
2019 (Table 1). Sampling stations were not placed in
winter 2018 due to unfavorable weather conditions.

F I GURE 1 (a) Location of study area in Soria province, central Spain (black rectangle). (b) Zoom to study area in southern Soria.

Sampling stations (white dots) and unmanned aerial vehicle (UAV) plots (red limits) are depicted. The name of the Special Areas of

Conservation (SAC) and Special Protection Areas (SPA) for birds of European Union’s Natura 2000 Network (ES4170148 and ES4170120,

respectively) are indicated in bold, along with their limits indicated (black line). (c) Zoom to two UAV plots (black rectangle in panel b),

with UAV plots (red areas) and sampling stations (white dots). The limits of Altos de Barahona SPA (dashed gray line).
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Terrestrial ground-dwelling arthropods were sampled
using three pitfall traps per sampling station, placed at
5-m intervals. Pitfall traps consisted of a plastic cup of
230 ml, 7 cm in diameter and 10 cm in depth, with holes
at the top to ease rain drainage. Plastic cups were buried
and protected by a PVC tube to prevent its collapse and
filled with 175 ml 40% ethylene glycol and a drop of soap
to reduce surface tension. Traps were active for 7 days
then filtered, and animals were stored in 70% ethanol.
Although flying arthropods also fell into the pitfall traps,
we carried out a specific sampling of flying arthropods at
the moment the pitfall traps were collected in order to
cover all taxa. For that, we walked two 10-m transects
per sampling station with an entomological sweep net.
The trapped individuals were stored in the same bottle as
ground-dwelling arthropods, and they were considered
together, hereafter referred to as epigeous arthropods.
For more details about the sampling methodology, see
Reverter et al. (2021) or G�omez-Catasús et al. (2019).

Coprophagous arthropods were sampled at each sam-
pling station, with one baited pitfall trap, consisting of a
20-cm-diameter plastic container baited with 200 g fresh
local sheep dung. Traps were active for 1 day, just after the
collection of epigeous pitfall traps and under similar
weather conditions in all sampling stations. Coprophagous

arthropods were stored in 70% ethanol, and only those
individuals with coprophagous habits were identified:
order Coleoptera family Scarabaeidae (Gymnopleurus spp.,
Onthophagus spp., and Scarabeus spp.) and order Diptera
suborder Brachycera.

We determined arthropods at least to taxonomic
order. We estimated arthropod biomass using the specific
equations from H�odar (1996):

W ¼ α�BLb

where W is biomass in milligrams, BL is body length
(in millimeters), and α and b are specific parameters for
each group (or each order) (H�odar, 1996). We measured
body length (excluding legs, antennas, and other appen-
dices) in a maximum of 15 individuals per sample, using
a digital caliper (�0.01 mm). To minimize observer bias,
all samples were identified by the same researcher
(MR). For a similar methodology for estimation of inver-
tebrate biomass see Traba et al. (2007), G�omez-Catasús
et al. (2019), or Reverter et al. (2021). Lastly, we classi-
fied epigeous arthropod taxa into consumer groups
(predatory, detritivore, phytophagous, and diverse;
Appendix S1) and calculated the biomass per arthropod
consumer group.

TAB L E 1 Number of sampling stations located per month and year in whole study area (sampling stations) and within unmanned

aerial vehicle (UAV) flight plots (sampling station UAV plots).

Season Month
Sampling
stations

Sentinel-2
imagery

Sampling
stations

UAV plots
UAV
flights

2017

Spring April 79 Yes 0 No

June 79 Yes 41 Yes (6)

Summer July 79 Yes 0 No

Autumn October 79 Yes 41 Yes (6)

2018

Spring April 67 No 48 Yes (7)

June 67 Yes 48 Yes (7)

Summer July 67 Yes 0 No

Autumn October 67 Yes 48 Yes (7)

2019

Winter January 67 Yes 0 No

Spring May 67 Yes 0 No

June 67 Yes 0 No

Summer July 67 Yes 0 No

Autumn September 67 Yes 0 No

Note: We indicate whether Sentinel-2 and UAV imagery were available for each sampling period. Lastly, we indicate within brackets the number of plots where
the UAV flights were carried out. Those samplings for which neither Sentinel-2 nor UAV imagery was available are omitted.
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Since three pitfall traps were placed per sampling station,
the biomass of epigeous arthropods (terrestrial + flying) per
station and sampling period was estimated as the mean bio-
mass of the pitfall traps that were active after 7 days. Lastly,
coprophagous arthropod biomass was estimated as the total
biomass measured in each sampling station, since only one
baited pitfall trap was placed per sampling station. If a trap
was invalidated, it was noted asmissing data.

UAV imagery collection

We selected seven plots ranging from 47.6 to 72.3 ha
(mean � SD = 60.0 � 9.6) within the general study area
(Figure 1b). Plots were similar in relation to altitude,
relief, slope, and plant communities. A total of 41 sam-
pling stations were placed within six plots in 2017 and
48 sampling stations within seven plots in 2018 out of the
aforementioned 92 sampling stations (Table 1).

At five time points during 2017 and 2018, we carried
out up to 65 flights, with close to 28 flight hours and
1290 km traveled, with a total of 20,881 images obtained.
A summary of the flights can be found in Appendix S2.
Specific flight dates were always close to the field sampling
addressed to estimate arthropod biomass (see preceding
information; Table 1).

High-resolution UAV images were collected using a
fixed-wing drone (SRPAS model A2) flying 120 m above
the ground (equivalent to a focal length of 5.2 mm),
which offered a resolution on the ground (ground sam-
pling distance) of 4 cm/pixel. In general, each of the
seven study plots was completely covered in a single
flight, although some minor sections or even the entire
sector was repeated in case of technical or meteorological
incidents.

The sensor was a Canon S100 camera modified to
capture the red edge (RE) spectrum (~770 nm; filter
Event38), with a 1/1.7 in. (0.75 � 0.56 cm) CMOS sensor
and 12 MP resolution. This modified sensor provides
images along three discrete spectral bands: RE, green, and
blue. Despite the relatively low-accuracy band-
discrimination capacity of such modified cameras com-
pared to those of traditional multispectral cameras, they
offer good solutions with a high cost–benefit relationship
for estimating productivity indices in agriculture or field
ecology (Lebourgeois et al., 2008; Salamí et al., 2014). The
RE channel was around 770 nm, which may correspond to
a midposition between Channels 6 and 7 in S2. Image
postprocessing consisted in (i) georeferencing (in the
WGS84 system) and altitude registering; (ii) image
aligning and building of a digital elevation model (DEM)
and orthomosaic using the Agisoft Metashape Professional
photogrammetry software (version 1.4). Georeferencing

was done with four to six permanent ground control points
per study plot, determined with submeter precision using
a global navigation satellite system with differential cor-
rection in real time, Emlid Reach. Finally, (iii) we down-
scaled the resolution of the orthophotos to 50 cm/pixel
while calculating the different VIs, in order to reduce the
size of the files and facilitate data processing but
maintaining a high spatial resolution.

Sentinel-2 imagery collection

We used free S2 imagery atmospherically corrected,
corresponding to the 30TVL and 30TWL zones, where all
92 field-sampling points were located (see subsequent
discussion). We selected available cloud-free images
corresponding to the closest date to each arthropod field
sampling (Table 1), always on the same date for both
UTM zones. Imagery was obtained from the LandViewer
page (eos.com). We used blue, green, red, and NIR
(Channel 8) bands to calculate the VIs, at a spatial resolu-
tion of 10 m.

Vegetation indices

We calculated the following VIs for UAV imagery and
the same indices and NDVI for S2 imagery: BNDVI,
enhanced NDVI (ENDVI), green infrared percentage VI
(GIPVI), green NDVI (GNDVI), green ratio VI (GRVI),
green soil adjusted VI (GSAVI), (see Table 2). All these
indices were obtained by applying the corresponding for-
mula (Table 2) on the digital numbers coming from the
corresponding channels of the UAV or S2 imagery and
saved in a raster layer with a Tagged Image File (TIF)
extension. VIs from the UAV imagery were calculated
using the RE band instead of the NIR band because the
modified sensor employed did not provide images along
the NIR spectral band (see the UAV imagery collection sec-
tion). Previous studies demonstrated that VIs calculated
using RE and visible bands showed similar performance in
estimating variables associated with plant productivity,
vigor, and health than those using NIR (Imran et al., 2020;
Upadhyay et al., 2013). In our case, S2-derived VIs calcu-
lated using both RE and NIR bands were highly corre-
lated, leading to similar results (Appendix S3).

We calculated VIs assigned to each arthropod sam-
pling station as the average of each index in a 50-m buffer
around the central point of each sampling station, for
both UAV and S2 imagery. VI calculations, zone statis-
tics, and spatial joining were carried out in an open
geographic information system (GIS) (Quantum GIS
Development Team, 2020).
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Statistical analysis

Response variables (epigeous and coprophagous arthropod
biomass, as well as biomass of predatory, detritivore, phy-
tophagous, and diverse groups) were log-transformed to
achieve linearity, and fixed covariates were z-standardized
(mean = 0 and SD = 1). Explanatory variables (season,
year, and each VI independently) were tested for collinear-
ity prior to data analysis, and all predictors were retained
because all had a generalized variance inflation factor
(GVIF) lower than 2 (Fox & Monette, 1992).

We explored fine-scale (UAV) and coarse-scale
(S2) relationships between the different groups of arthro-
pod biomass (epigeous and coprophagous, on the one
hand, and predatory, detritivore, phytophagous, and
diverse on the other) and each of the VIs calculated from
UAV and S2 imagery, respectively. For this purpose, we
fitted a separate linear regression model (Gaussian error
distribution) for each arthropod group (response variable)
and each VI (covariate), so that the relationship was eval-
uated independently for each arthropod group and for each
VI. In addition, we incorporated a spatial dependency com-
ponent to account for potential nonindependence of data col-
lected from nearby sampling stations. This was carried out
by incorporating a spatial random effect (i.e., random factor)
using integrated nested Laplace approximation with stochas-
tic partial differential equations (INLA-SPDEs) (Lindgren
et al., 2011). The spatial dependency of observations was
accounted for using a latent Gaussian random field, which
we constructed using two-dimensional irregular grids
(meshes) based on the geographic coordinates of the

sampling stations. The meshes divided the study area into a
large number of nonoverlapping triangles (i.e., Delaunay tri-
angulation) and were employed to approximate the solution
of the SPDE that defines the spatial process with a Matérn
covariance (G�omez-Rubio, 2020; Zuur et al., 2017).
Specifically, we constructed two meshes using the sam-
pling stations at S2 and UAV limits, respectively.
The meshes were built using a nonconvex boundary for
the coordinates of sampling stations and with a buffer
zone in order to avoid edge effects for the bordering verti-
ces (Zuur et al., 2017) (Appendix S4). An independent
model was fitted for each VI, incorporating both linear
and quadratic forms of the VIs as predictors to control for
nonlinear relationships. Orthogonal polynomials were
obtained using the function poly from the R package
stats (R Core Team, 2020), avoiding high GVIF values
and potential collinearity among predictors. Moreover,
we incorporated the factors year (2017/2018 for UAV and
2017/2018/2019 for S2) and season (spring/summer/autumn
for UAV and winter/spring/summer/autumn for S2) as pre-
dictors in order to control for potential inter- and intra-
annual variability on epigeous and coprophagous biomass,
although no evaluation or discussion of these results is
presented (Appendix S5 for these results).

The VIs calculated from UAV and S2 imagery are
expected to have a spatial pattern, so spatial confounding
might be a problem in our analyses. Spatial confounding
occurs when covariates are collinear with the spatial ran-
dom effects, leading to bias and variance inflation of the
fixed effects and, hence, erroneous inference (Hanks
et al., 2015; Hodges & Reich, 2010). To overcome this

TAB L E 2 Formulas used to calculate each vegetation index.

Index Description Formula Reference

NDVI Normalized difference vegetation index ρNIR � ρRed
ρNIR þ ρRed

BNDVI Blue normalized difference vegetation index ρNIR � ρBlue
ρNIR þ ρBlue

ENDVI Enhanced normalized difference vegetation index ρNIR þ ρGreenð Þ � 2 � ρBlueð Þ
ρNIR þ ρGreenð Þ þ 2 � ρBlueð Þ

GIPVI Green infrared percentage vegetation index ρNIR
ρNIR þ ρGreen

Crippen (1990)

GNDVI Green normalized difference vegetation index ρNIR � ρGreen
ρNIR þ ρGreen

Gitelson et al. (1996)

GRVI Green ratio vegetation index ρNIR
ρGreen

Sripada et al. (2006)

GSAVI Green soil adjusted vegetation index
ρNIR � ρGreen

ρNIR þ ρGreen þ Lð Þ � 1þLð Þ
with L = 0.5

Note: NIR refers to the Near-infrared spectral band. The NIR band was used to calculate the vegetation indices from Sentinel-2 imagery, but it was replaced by
the red-edge (RE) spectral band for the vegetation indices calculated from unmanned aerial vehicle imagery.
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problem, one potential solution is to constrain the spatial
random effect to be orthogonal to those fixed effects with a
spatial pattern (Adin et al., 2020; Hodges & Reich, 2010).
We tested for spatial confounding in our models by fitting
linear regression models incorporating the spatial random
intercepts for each observation (response variable) and the
VIs as predictors (Hanks et al., 2015). We considered
the existence of spatial confounding when the 95%
Bayesian Credible Interval (95% BCI) for the VI under
consideration did not contain 0, which means that the spa-
tial random intercepts and the VI involved are correlated
(see Appendix S6 for results on spatial confounding
assessment). In the presence of spatial confounding,
we fitted spatial linear regression models (Gaussian
error distribution) constraining the spatial random
effect to be orthogonal to the VIs (extraconstr argument
in INLA; G�omez-Rubio, 2020).

All models were fitted using the R package INLA (Rue
et al., 2009) in the free R software (version 4.0.3; R Core
Team, 2020). We used INLA default prior distributions for
the intercept α�N 0, 0ð ), and the regression coefficients
β�N 0, 1000ð Þ (G�omez-Rubio, 2020). Parameter estimates
were reported as the posterior mean (β), associated SD,
and the 95% BCI. We considered predictors to have an
effect on the response variable when the parameter’s 95%
BCI did not overlap zero (Zuur et al., 2017).

RESULTS

VIs calculated from UAV imagery showed higher correla-
tion values (mean � SD of the Pearson correlation
coefficients = 0.92 � 0.09) than those calculated from S2
imagery (0.88 � 0.13; see Appendix S7). Moreover, VI

from UAV imagery showed low correlation values with
those VI from S2 imagery (0.47 � 0.09; see Appendix S7).
Overall, VIs calculated from S2 had higher values than
those from UAV imagery (Table 3). All VIs calculated
from UAV imagery had higher values in spring than
autumn. All S2-derived indices showed their highest
values in winter (except for NDVI, which was equal in
winter and spring). BNDVI and ENDVI reached their
lowest value in summer, GIPVI, GNDVI, GRVI and
GSAVI in summer and autumn, and NDVI in autumn
(see Appendix S8 for a more detailed description of the
inter- and intra-annual variability in the VI).

The biomass of arthropods also varied along the year
(Table 4). During the winter we recorded the lowest bio-
mass values per sampling station for all groups, increas-
ing considerably during the spring. In the summer we
observed less consistent responses, including negative
(predatory and detritivore arthropods), stable (epigeous
and diverse arthropods), and positive trends (copropha-
gous and phytophagous arthropods; Table 4). Most
arthropod groups decreased during the autumn except
for predatory and phytophagous arthropods that experi-
enced an increase, being the highest values recorded
throughout the year for the phytophagous arthropods
(Table 4).

Relationship between arthropod biomass
and VIs from UAV imagery

All VI from UAV imagery showed a positive linear rela-
tionship with the biomass of epigeous arthropods
(Table 5, Figure 2). All consumer groups showed a posi-
tive relationship with all VI, except for detritivore

TAB L E 3 Summary statistics of vegetation indices calculated from unmanned aerial vehicle (UAV) and Sentinel-2 imagery.

Index

UAV Sentinel-2

Mean SD Range Mean SD Range

BNDVI 0.15 0.04 [0.08; 0.24] 0.56 0.04 [0.46; 0.66]

ENDVI 0.07 0.03 [0.02; 0.15] 0.43 0.04 [0.34; 0.53]

GIPVI 0.58 0.01 [0.56; 0.62] 0.71 0.02 [0.67; 0.76]

GNDVI 0.17 0.03 [0.12; 0.24] 0.42 0.03 [0.35; 0.51]

GRVI 1.41 0.08 [1.27; 1.62] 2.49 0.20 [2.07; 3.11]

GSAVI 0.25 0.04 [0.18; 0.35] 0.63 0.05 [0.52; 0.77]

NDVI … … … 0.31 0.05 [0.20; 0.48]

Note: The mean, SD, and range [minimum; maximum] are shown. The NDVI index could not be calculated for the UAV imagery because the sensor employed

did not provide images along the red spectral band. VI names are provided in Table 2.
Abbreviations: BNDVI, blue normalized difference vegetation index; ENDVI, enhanced normalized difference vegetation index; GIPVI, green infrared
percentage vegetation index; GNDVI, green normalized difference vegetation index; GRVI, green ratio vegetation index; GSAVI, green soil adjusted vegetation
index; NDVI, normalized difference vegetation index.
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arthropods that did not show any relationship with
ENDVI index and for diverse arthropods which did
not show any relationship with GRVI index (see
Appendix S9 for arthropod group results). Lastly, all VI
calculated from UAV imagery showed a positive linear
relationship with the biomass of coprophagous arthro-
pods (Table 5, Figure 3).

Relationship between arthropod biomass
and VIs from Sentinel-2 imagery

In the case of the VIs calculated from the S2 imagery, not
all VIs showed a relationship with the biomass of epige-
ous and coprophagous arthropods. The NDVI calculated
from S2 imagery showed a negative relationship with the
biomass of epigeous arthropods (Figure 4). The BNDVI
and the ENDVI were positively correlated with epigeous
biomass (both linear and quadratic terms; Table 6,
Figure 4), whereas the remaining indices showed no rela-
tionship with epigeous biomass (Table 6). Regarding the
biomass of each consumer group we observed that
ENDVI and BNDVI were positively correlated with the
biomass of predatory, detritivore, and diverse arthropods
but not for the biomass of phytophagous arthropods. More-
over, the NDVI was negatively correlated with the biomass
of phytophagous arthropods, but not with the other con-
sumer groups. All other VIs were only positively correlated
with the biomass of predatory arthropods (see Appendix S9
for these results). Lastly, all VIs were positively correlated
with coprophagous biomass, except for the NDVI, which
showed no relationship (Table 6, Figure 5).

DISCUSSION

Information about ecological patterns and processes at
large spatial scales is essential for both basic and applied
studies. However, the effort required to field-collect this
type of data may be unaffordable, especially for some spe-
cific organisms, and its applicability at large spatial scales
can then be restricted. Thus, the use of remote sensing
imagery to search and map natural processes at large or
very large spatial scales offers great possibilities. This
work has shown a solid positive relationship between dif-
ferent remote sensing–derived VI and arthropod biomass,
even after accounting for seasonal and interannual

TAB L E 4 Summary statistics of the biomass of epigeous and coprophagous arthropods as well as the four functional consumer groups

(predatory, detritivore, phytophagous and diverse).

Arthropod
groups

Winter Spring Summer Autumn

Mean SD Max Mean SD Max Mean SD Max Mean SD Max

Epigeous 24.1 22.6 114.0 503.0 468.0 3783.7 479.6 381.4 2083.1 379.7 415.5 2666.5

Coprophagous 23.2 68.7 526.9 513.6 1397.2 10219.2 846.8 1519.3 10521.8 687.8 1499.3 9980.8

Predatory 17.8 19.2 96.2 103.7 119.0 1158.9 65.3 65.7 488.8 81.0 141.7 1210.5

Detritivore 0.7 2.1 10.7 164.9 280.7 2424.6 105.9 163.9 1098.8 8.3 19.6 131.8

Phytophagous 4.3 7.0 30.5 155.7 190.0 1404.0 233.8 300.0 1879 262.7 374.4 2555.2

Diverse 0.2 0.6 4.5 67.6 225.0 3434.5 69.5 114.6 1072.8 26.6 116.6 1643.8

Note: The mean, SD, and the maximum value are shown.

TAB L E 5 Results of Gaussian spatialmodels addressing

relationship between biomass of epigeous and coprophagous

arthropods, and vegetation indices calculated from unmanned aerial

vehicle imagery.

Index Term β SD 95% BCI

Epigeous

BNDVI Linear 0.345 0.042 [0.261; 0.427]

ENDVI Linear 0.319 0.043 [0.234; 0.403]

GIPVI Linear 0.290 0.046 [0.198; 0.381]

GNDVI Linear 0.290 0.046 [0.198; 0.381]

GRVI Linear 0.305 0.047 [0.213; 0.397]

GSAVI Linear 0.289 0.046 [0.198; 0.381]

Coprophagous

BNDVI Linear 0.485 0.079 [0.331; 0.639]

ENDVI Linear 0.503 0.075 [0.355; 0.651]

GIPVI Linear 0.404 0.089 [0.229; 0.580]

GNDVI Linear 0.404 0.089 [0.230; 0.578]

GRVI Linear 0.402 0.090 [0.226; 0.578]

GSAVI Linear 0.404 0.089 [0.230; 0.579]

Note: Models were fitted using data from 41 sampling stations in spring and
autumn 2017 and 48 sampling stations in spring and autumn 2018. Shown
are the posterior mean (β), SD, and 95% Bayesian credible interval (95% BCI)
for each vegetation index, as well as both the epigeous and coprophagous

biomass.
Abbreviations: BNDVI, blue normalized difference vegetation index;
ENDVI, enhanced normalized difference vegetation index; GIPVI, green
infrared percentage vegetation index; GNDVI, green normalized difference
vegetation index; GRVI, green ratio vegetation index; GSAVI, green soil

adjusted vegetation index.
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variability and geographic position. This relationship was
especially strong and consistent when working with fine-
scale UAV-derived VI, but it was also found with several
coarser-scale S2-derived VIs, which consequently sug-
gests a strong capacity to use raster imagery to extrapo-
late information on unexplored or nonsampled areas.

Despite the difference in channels used for estimating
VIs between UAV and S2 imagery, our results seem con-
clusive about the relationship between VIs and arthropod
biomass. Indeed, both VIs calculated from the NIR and
the RE bands in our sampling stations located in shrub
steppes were highly correlated, and consequently, model-
ing results using RE were basically the same as those using
NIR and presented in the Results section (Appendix S3).
Thus, we consider that our results are solid regardless of
the channel used. Our results are in agreement with those
of several previous works carried out on different habitat
types that found a strong correlation between S2 RE- and
NIR-derived VIs, though the former were less affected by
plant traits, especially when assessing temporal variation
(Fern�andez-Tiz�on et al., 2020; Imran et al., 2020; Sweet
et al., 2015; Upadhyay et al., 2013).

Our results showed a strong relationship between
all UAV-derived VIs and epigeous arthropod biomass

(see also results on consumer functional groups in
Appendix S9). In the case of S2-derived VIs, however,
only two VIs (BNDVI and ENDVI) showed a positive
relationship with the biomass of epigeous arthropods,
whereas one VI (NDVI) showed a negative relationship,
which could be primarily driven by the negative relation-
ship observed between phytophagous arthropods and
S2-derived NDVI (Appendix S9). These differences
between VIs might be explained by the observed discrep-
ancies in the intra-annual variation of the S2-derived VIs,
with autumn being the season in which these discrepan-
cies were most evident (Appendix S8). The S2-derived
BNDVI and ENDVI increased in autumn, whereas GIPVI,
GNDVI, GRVI, and GSAVI remained stable, and NDVI
decreased compared to the summer values (Appendix S8).
Future research should address the relationship between
field measurements of plant productivity and VI values to
better understand the discrepancies observed between
S2-derived VIs and to elucidate which index is the best
indicator of plant productivity in shrub steppes and, thus,
of arthropod biomass.

The highest performance of UAV versus S2-derived
VIs to correlate with arthropod biomass may be explained
by differences in spatial resolution. UAV-derived VIs were

F I GURE 2 Relationship between biomass of epigeous arthropods and vegetation indices calculated from unmanned aerial vehicle

imagery. The mean (black line) and 95% Bayesian credible interval (95% BCI; gray surface) of the values predicted by the models are shown,

as are the observation values for each sampling station (points). BNDVI, blue normalized difference vegetation index; ENDVI, enhanced

normalized difference vegetation index; GIPVI, green infrared percentage vegetation index; GNDVI, green normalized difference vegetation

index; GRVI, green ratio vegetation index; GSAVI, green soil adjusted vegetation index.
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calculated at a 50-cm resolution (after downscaling from
the initial 4-cm resolution), whereas S2-derived VIs were
at a 10-m resolution. The same reasoning might also be
valid for explaining the differences among the VI values
estimated using UAV and S2 since the values of the

same index greatly differ with the approach employed.
In the case of epigeous arthropod biomass, a small
spatial-scale relationship with vegetation could be expected
(B�aldi & Kisbenedek, 1997; Labadessa et al., 2015; Weyer
et al., 2012) because epigeous arthropods include species

F I GURE 3 Relationship between biomass of coprophagous arthropods and vegetation indices calculated from unmanned aerial vehicle

imagery. The mean (black line) and 95% Bayesian credible interval (95% BCI; gray surface) of the values predicted by the models are shown,

as are the observation values for each sampling station (points). BNDVI, blue normalized difference vegetation index; ENDVI, enhanced

normalized difference vegetation index; GIPVI, green infrared percentage vegetation index; GNDVI, green normalized difference vegetation

index; GRVI, green ratio vegetation index; GSAVI, green soil adjusted vegetation index.

F I GURE 4 Relationship between biomass of epigeous arthropods and vegetation indices calculated from Sentinel-2 imagery. The mean

(black line) and 95% Bayesian credible interval (95% BCI; gray surface) of the values predicted by the models are shown, as are the

observation values for each sampling station (points). BNDVI, blue normalized difference vegetation index; ENDVI, enhanced normalized

difference vegetation index; NDVI, normalized difference vegetation index.
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both sedentary and of some mobility (Dennis et al., 1998).
Thus, the relationship may be more difficult to identify
when spatial resolution is coarser (see, however,
Fern�andez-Tiz�on et al., 2020). Changes in spatial resolution,
as mentioned earlier, can modify the determination coeffi-
cient of greenness indices, thereby changing the greenness
values of each pixel (Díaz-Delgado et al., 2017; Prabhakara
et al., 2015). Another complementary explanation could
help to shed light on the differences between the UAV and
S2 results. The chlorophyll absorption range is usually
between 400 and 700 nm (Ollinger, 2011), though in our
case UAV-derived VIs used the RE channel, which is above
700 nm. However, S2-derived VIs estimated with the RE
channel showed similar results (Appendix S3), which sug-
gests that changes should be linked to spatial resolution
more than to radiometric effects. In any case, more research
is needed in this sense in order to disentangle which

radiometrically detected elements are related to arthropod
activity and biomass.

We found a strong and consistently positive relation-
ship between epigeous arthropod biomass and vegetation,
except for S2-derived NDVI. Arthropods seem to be an
especially suitable group to be correlated with plant pro-
ductivity because their response to changes in plant com-
munity are faster than those of vertebrates (Thomas
et al., 2004). Previous works also found strong, although
not always linear, relationships between arthropod abun-
dance or biomass and plant traits related with productiv-
ity, such as size, plant condition, or leaf area
(e.g., Fern�andez-Tiz�on et al., 2020, Harrison et al., 2018,
Prather & Kaspari, 2019, Smith et al., 2020, Sweet
et al., 2015). In summary, increases in plant productivity
promote a higher abundance of arthropod herbivores
(Carmona et al., 2011; Smith et al., 2020), which in turn
increases arthropod predator and parasite populations
(Langellotto & Denno, 2004; Prather & Kaspari, 2019;
Smith et al., 2020). In our case, predatory arthropods
showed a positive linear relationship with all VIs (except
for the NDVI), whereas detritivore and diverse arthropods
showed positive relationships with the S2-derived BNDVI
and ENDVI. However, phytophagous arthropods
showed a negative relationship with S2-derived NDVI
(Appendix S9). In the case of S2-derived NDVI, our results
are counterintuitive; we expected a similar positive rela-
tionship like that found in the other VIs. This may be
because phytophagous arthropod biomass reaches itsmaxi-
mum values in autumn and minimum values in winter
(Table 4), when the NDVI reaches its minimum and maxi-
mum values, respectively (Appendix S8). In any case, in
shrub-steppe habitats where bare ground cover is espe-
cially high and shrubs with pointed and thin leaves pre-
dominate (Zurdo et al., 2021), NDVI seems to show an
inverse behavior compared with green channel–based
VIs, perhaps due to its higher level of reflectance
for green wavelengths (Gitelson et al., 1996; Sripada
et al., 2006). In a previous work, Sweet et al. (2015)
showed that estimates of NDVI calculated at 1-m2 quad-
rats by a field portable spectroradiometer correlated pos-
itively with arthropod biomass. Fern�andez-Tiz�on et al.
(2020) found a positive significant relationship between
satellite-derived NDVI and arthropod biomass in semi-
natural grasslands in central Europe, though the spatial
resolution of the satellite imagery was much coarser
than ours (16 � 16 km), so it had a lower extrapolation
capacity. None of the aforementioned works, in addition
to our own, showed relationships with a maximum
between VIs and biomass, suggesting that the maxi-
mums are probably outside of the studied indices (habi-
tats). Despite the remarkable utility of satellite-derived
VIs (and specially NDVI) in animal ecology (Pettorelli

TAB L E 6 Results of Gaussian spatial models addressing

relationship between the biomass of epigeous and coprophagous

arthropods, and vegetation indices calculated from Sentinel-2

imagery.

Index Term β SD 95% BCI

Epigeous

BNDVI Linear 0.029 0.015 [0.001; 0.058]

Quadratic 0.033 0.013 [0.007; 0.059]

ENDVI Linear 0.037 0.014 [0.008; 0.065]

Quadratic 0.034 0.013 [0.008; 0.060]

GIPVI Linear �0.006 0.043 [�0.091; 0.079]

GNDVI Linear �0.006 0.043 [�0.091; 0.079]

GRVI Linear 0.005 0.039 [�0.071; 0.082]

GSAVI Linear �0.006 0.043 [�0.091; 0.079]

NDVI Linear �0.130 0.041 [�0.211; �0.049]

Coprophagous

BNDVI Linear 0.439 0.115 [0.213; 0.664]

ENDVI Linear 0.441 0.105 [0.234; 0.648]

GIPVI Linear 0.261 0.118 [0.030; 0.492]

GNDVI Linear 0.261 0.118 [0.030; 0.492]

GRVI Linear 0.211 0.107 [0.001; 0.422]

GSAVI Linear 0.261 0.118 [0.030; 0.492]

NDVI Linear �0.091 0.111 [�0.309; 0.126]

Note: Models were fitted using data from 79 sampling stations in spring,

summer and autumn 2017, and 67 sampling stations in spring, summer, and
autumn 2018 and 2019, and winter 2019. Shown are the posterior mean (β),
SD, and 95% Bayesian credible interval (95% BCI) for each vegetation index,
as well as both the epigeous and coprophagous biomass.

Abbreviations: BNDVI, blue normalized difference vegetation index;
ENDVI, enhanced normalized difference vegetation index; GIPVI, green
infrared percentage vegetation index; GNDVI, green normalized difference
vegetation index; GRVI, green ratio vegetation index; GSAVI, green soil
adjusted vegetation index; NDVI, normalized difference vegetation index.
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et al., 2011), our results suggest the need for more study
of the differences between VIs and their relationships
with biodiversity elements.

All UAV-derived and almost all S2-derived VIs,
except for NDVI, showed a positive relationship with
the biomass of coprophagous arthropods. The coproph-
agous group includes high-mobility species that are
attracted to a baited trap, sometimes from long dis-
tances (Dormont et al., 2007; Perrin et al., 2019) and
independently of the characteristics of the above-
ground vegetation where the trap is located. Our
results, being so solid for both UAV and S2, suggest
that a coprophagous species pool attracted to a baited
trap might be highly local and dependent on other
exogenous factors as the abundance of dung of herbivo-
rous mammals. Extensive sheep grazing, as well as the
abundance of wild herbivores, is probably more intense
where plant productivity is higher. Then, in a circular
way, plant productivity is expected to be higher at sites
where dung-processing arthropods are more abundant
because their activity increases nutrient content in the
soil (Prather & Kaspari, 2019).

A remarkable result of this work is the high degree of
similarity among the VIs in their relationship with
arthropod biomass. In the case of UAV-derived VIs, they
all showed a linear relationship with both epigeous and
coprophagous arthropod biomass. In the case of
S2-derived VIs, the relationship was not as obvious or lin-
ear for epigeous arthropod biomass but much more evi-
dent and linear for the case of coprophagous arthropod
biomass. Since the proposal of the first VIs, including
NDVI (Rouse et al., 1974), a very large number of remote
sensing-derived indices exploring plant productivity, bio-
mass, health, and vigor have been put forth. Many of
them rely on the relation between NIR or RE and the
visual range of the spectrum, posing the differences in
the distinctive absorbance spectrum of chlorophyll
between red (or blue or green) and NIR (or RE) regions.
As in other cases (e.g., Viña et al., 2011), our comparison
of VIs yielded inconclusive results with respect to
selecting the best index but, on the contrary, suggests that
almost all the indices performed satisfactorily in terms of
predicting arthropod biomass, except for NDVI, despite
being the most commonly used index. In any case, our

F I GURE 5 Relationship between biomass of coprophagous arthropods and vegetation indices calculated from Sentinel-2 imagery. The

mean (black line) and 95% Bayesian credible interval (95% BCI; gray surface) of the values predicted by the models are shown, as are the

observation values for each sampling station (points). BNDVI, blue normalized difference vegetation index; ENDVI, enhanced normalized

difference vegetation index; GIPVI, green infrared percentage vegetation index; GNDVI, green normalized difference vegetation index;

GRVI, green ratio vegetation index; GSAVI, green soil adjusted vegetation index.
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results are most probably habitat-dependent (Weiss
et al., 2013), and extrapolations for different habitats/
regions should include previous ground-truth fieldwork.
Iberian steppe habitats are not especially productive
because they are subject to a high thermal range, with
extremely low winter temperatures and high summer
temperatures, low annual precipitation, and frequently in
the form of snow (Aranbarri et al., 2015). Under these
conditions, positive relationships between arthropod bio-
mass and VIs may be expected.

CONCLUSION

Our results show that remote sensing imagery and the
derived VIs may perform satisfactorily as proxies of
arthropod biomass in shrub steppes. We found slight dif-
ferences between VIs in their general performance in
terms of explaining arthropod biomass. If considering the
potential of close site dependence of our results, the
selection of the optimal VI would depend on prior cali-
bration between remote and field data. At any rate, our
results showed that all the UAV-derived VIs evaluated
performed satisfactorily for estimating arthropod bio-
mass. In the case of S2-derived VIs, only BNDVI and
ENDVI performed well in the case of epigeous biomass,
and all but NDVI performed well in the case of copropha-
gous biomass. Thus, if a particular index must be chosen,
we suggest using BNDVI or ENDVI because they were
the only two indices that showed strong and consistent
correlations for all the arthropod groups and spatial reso-
lutions tested. Though low-cost UAVs are in constant
development, the total expenses incurred from using UAVs
are difficult to estimate and frequently are ultimately not
very low (Jiménez L�opez & Mulero-P�azm�any, 2019), espe-
cially if the study area is large. In those cases, we recom-
mend using Sentinel free imagery and BNDVI or ENDVI as
a proxy of arthropod biomass in shrub steppes, after the
relationship is adequately calibrated, especially in remote
or unsampled areas. Arthropod biomass seems to be posi-
tively correlated with plant biomass and vigor, which in
turn may benefit from natural fertilization from extensive
grazing. Thus, maintenance of extensive sheep grazing
should result in increased arthropod biomass and diversity
and, consequently, in healthier populations of insectivorous
birds.
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Filipo Colla, Álvaro Ortega, Miguel Muñoz, and Adaia
Cid. We also thank Juan Corley and two anonymous
reviewers whose comments helped to improve the manu-
script. This study was partially supported by the European
Commission (Life Ricotí Project LIFE15-NAT-ES-000802
and Life Connect Ricotí Project LIFE20-NAT-ES-000133)
and the BBVA Foundation (BBVA-Dron Ricotí project).
This paper contributes to the REMEDINAL-3 project from
Community of Madrid.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT
All data and R-code (Gomez-Catasus, 2022) are available
on Zenodo at https://doi.org/10.5281/zenodo.6621453.

ORCID
J. Traba https://orcid.org/0000-0001-6326-8942
J. G�omez-Catasús https://orcid.org/0000-0001-8949-
5318
A. Barrero https://orcid.org/0000-0002-2980-1202
D. Bustillo-de la Rosa https://orcid.org/0000-0002-8584-
2834
J. Zurdo https://orcid.org/0000-0002-7283-3322
C. Pérez-Granados https://orcid.org/0000-0003-3247-
4182
E. L. García de la Morena https://orcid.org/0000-0001-
6746-4414
A. Santamaría https://orcid.org/0000-0001-8376-0969
M. Reverter https://orcid.org/0000-0003-0979-871X

REFERENCES
Adin, A., T. Goicoa, J. S. Hodges, P. Schnell, and M. D. Ugarte.

2020. “Alleviating Confounding in Spatio-Temporal Areal
Models with an Application on Crimes against Women in
India.” arXiv:2003.01946.

14 of 17 TRABA ET AL.

https://doi.org/10.5281/zenodo.6621453
https://orcid.org/0000-0001-6326-8942
https://orcid.org/0000-0001-6326-8942
https://orcid.org/0000-0001-8949-5318
https://orcid.org/0000-0001-8949-5318
https://orcid.org/0000-0001-8949-5318
https://orcid.org/0000-0002-2980-1202
https://orcid.org/0000-0002-2980-1202
https://orcid.org/0000-0002-8584-2834
https://orcid.org/0000-0002-8584-2834
https://orcid.org/0000-0002-8584-2834
https://orcid.org/0000-0002-7283-3322
https://orcid.org/0000-0002-7283-3322
https://orcid.org/0000-0003-3247-4182
https://orcid.org/0000-0003-3247-4182
https://orcid.org/0000-0003-3247-4182
https://orcid.org/0000-0001-6746-4414
https://orcid.org/0000-0001-6746-4414
https://orcid.org/0000-0001-6746-4414
https://orcid.org/0000-0001-8376-0969
https://orcid.org/0000-0001-8376-0969
https://orcid.org/0000-0003-0979-871X
https://orcid.org/0000-0003-0979-871X


Aranbarri, J., P. Gonz�alez-Sampériz, E. Iriarte, A. Moreno,
M. Rojo-Guerra, L. Peña-Chocarro, B. Valero-Garcés, et al.
2015. “Human-Landscape Interactions in the Conquezuela-
Ambrona Valley (Soria, Continental Iberia): From the Early
Neolithic Land Use to the Origin of the Current Oak Wood-
land.” Palaeogeography, Palaeoclimatology, Palaeoecology 436:
41–57.

B�aldi, A., and T. Kisbenedek. 1997. “Orthopteran Assemblages as
Indicators of Grassland Naturalness in Hungary.” Agriculture,
Ecosystems and Environment 66: 121–9.

Belgiu, M., and O. Csillik. 2018. “Sentinel-2 Cropland Mapping Using
Pixel-Based and Object-Based Time-Weighted Dynamic Time
Warping Analysis.” Remote Sensing of Environment 204: 509–23.

Carmona, D., M. J. Lajeunesse, and M. T. J. Johnson. 2011. “Plant
Traits that Predict Resistance to Herbivores.” Functional
Ecology 25: 358–67.

Colomina, I., and P. Molina. 2014. “Unmanned Aerial Systems
for Photogrammetry and Remote Sensing: A Review.” ISPRS
Journal of Photogrammetry and Remote Sensing 92: 79–97.

Crippen, R. E. 1990. “Calculating the Vegetation Index Faster.”
Remote Sensing of Environment 34: 71–3.

Dennis, P., M. R. Young, and I. J. Gordon. 1998. “Distribution and
Abundance of Small Insects and Arachnids in Relation to
Structural Heterogeneity of Grazed, Indigenous Grasslands.”
Ecological Entomology 23: 253–64.

Díaz-Delgado, R., C. Hurford, and R. Lucas. 2017. “Introducing the
Book ‘the Roles of Remote Sensing in Nature Conservation.’”
In The Roles of Remote Sensing in Nature Conservation, edited
by R. Díaz-Delgado, R. Lucas, and C. Hurford, 3–10. Cham:
Springer.

Dormont, L., S. Rapior, D. B. McKey, and J. P. Lumaret. 2007.
“Influence of Dung Volatiles on the Process of Resource
Selection by Coprophagous Beetles.” Chemoecology 17: 23–30.

Fern�andez-Tiz�on, M., T. Emmenegger, J. Perner, and S. Hahn.
2020. “Arthropod Biomass Increase in Spring Correlates with
NDVI in Grassland Habitat.” Science of Nature 107: 1–7.

Fox, J., and G. Monette. 1992. “Generalized collinearity diagnos-
tics.” Journal of the American Statistical Association 87:
178–83.

Fraser, R. H., J. van der Sluijs, and R. J. Hall. 2017. “Calibrating
Satellite-Based Indices of Burn Severity from UAV-Derived
Metrics of a Burned Boreal Forest in NWT, Canada.” Remote
Sensing 9: 279.

Gitelson, A. A., Y. J. Kaufman, and M. N. Merzlyak. 1996. “Use of a
Green Channel in Remote Sensing of Global Vegetation from
EOS- MODIS.” Remote Sensing of Environment 58: 289–98.

G�omez-Catasús, J., V. Garza, M. B. Morales, and J. Traba. 2019.
“Hierarchical Habitat-Use by an Endangered Steppe Bird in
Fragmented Landscapes Is Associated with Large Connected
Patches and High Food Availability.” Scientific Reports 9: 1–12.

G�omez-Rubio, V. 2020. Bayesian Inference with INLA. Boca Raton,
FL: Chapman & Hall/CRC Press.

Haddad, N. M., D. Tilman, J. Haarstad, M. Ritchie, and
J. M. H. Knops. 2001. “Contrasting Effects of Plant Richness
and Composition on Insect Communities: A Field Experiment.”
American Naturalist 158: 17–35.

Hanks, E. M., E. M. Schliep, M. B. Hooten, and J. A. Hoeting. 2015.
“Restricted Spatial Regression in Practice: Geostatistical Models,

Confounding, and Robustness under Model Misspecification.”
Environmetrics 26: 243–54.

Harrison, J. G., C. S. Philbin, Z. Gompert, G. W. Forister,
L. Hernandez-Espinoza, B. W. Sullivan, I. S. Wallace, et al.
2018. “Deconstruction of a Plant-Arthropod Community Reveals
Influential Plant Traits with Nonlinear Effects on Arthropod
Assemblages.” Functional Ecology 32: 1317–28.

H�odar, J. A. 1996. “The Use of Regression Equations for Estimation
of Arthropod Biomass in Ecological Studies.” Acta Oecologica
17: 421–33.

Hodges, J. S., and B. J. Reich. 2010. “Adding Spatially-Correlated
Errors Can Mess up the Fixed Effect you Love.” American
Statistician 64: 325–34.

Huete, A. R., H. Q. Liu, K. Batchily, and W. Van Leeuwen. 1997. “A
Comparison of Vegetation Indices over a Global Set of TM
Images for EOS-MODIS.” Remote Sensing of Environment 59:
440–51.

Hunt, E. R., W. Dean Hively, S. J. Fujikawa, D. S. Linden, C. S. T.
Daughtry, and G. W. McCarty. 2010. “Acquisition of
NIR-Green-Blue Digital Photographs from Unmanned Aircraft
for Crop Monitoring.” Remote Sensing 2: 290–305.

Imran, H. A., D. Gianelle, D. Rocchini, M. Dalponte, M. P. Martín,
K. Sakowska, G. Wohlfahrt, and L. Vescovo. 2020. “VIS-NIR,
Red-Edge and NIR-Shoulder Based Normalized Vegetation
Indices Response to Co-Varying Leaf and Canopy Structural
Traits in Heterogeneous Grasslands.” Remote Sensing 12: 2254.

Inglada, J., M. Arias, B. Tardy, O. Hagolle, S. Valero, D. Morin,
G. Dedieu, et al. 2015. “Assessment of an Operational System
for Crop Type Map Production Using High Temporal and
Spatial Resolution Satellite Optical Imagery.” Remote Sensing
7: 12356–79.

Gomez-Catasus, J. 2022. “Primary-Productivity-Correlates-with-
Arthropod-Biomass-Comparing-Satellite--and-Drone-Based-
Vegetat: Comparative Assessment of Satellite- and Drone-Based
Vegetation Indices to Predict Arthropod Biomass in Shrub-
Steppes (v.1.0.0).” Zenodo. https://doi.org/10.5281/zenodo.
6621453.

Jiménez L�opez, J., and M. Mulero-P�azm�any. 2019. “Drones for
Conservation in Protected Areas: Present and Future.” Drones
3: 10.

Kaspari, M., M. Yuan, and L. Alonso. 2003. “Spatial Grain and the
Causes of Regional Diversity Gradients in Ants.” American
Naturalist 161: 459–77.

Kross, A., H. McNairn, D. Lapen, M. Sunohara, and C. Champagne.
2015. “Assessment of RapidEye Vegetation Indices for Estima-
tion of Leaf Area Index and Biomass in Corn and Soybean
Crops.” International Journal of Applied Earth Observation and
Geoinformation 34: 235–48.

Labadessa, R., L. Forte, and P. Mairota. 2015. “Exploring Life Forms
for Linking Orthopteran Assemblage and Grassland Plant
Community.” Hacquetia 14: 33–42.

Langellotto, G. A., and R. F. Denno. 2004. “Responses of Inverte-
brate Natural Enemies to Complex-Structured Habitats: A
Meta-Analytical Synthesis.” Oecologia 139: 1–10.

Lebourgeois, V., A. Bégué, S. Labbé, B. Mallavan, L. Prévot, and
B. Roux. 2008. “Can Commercial Digital Cameras Be Used as
Multispectral Sensors? A Crop Monitoring Test.” Sensors 8:
7300–22.

ECOLOGICAL APPLICATIONS 15 of 17

https://doi.org/10.5281/zenodo.6621453
https://doi.org/10.5281/zenodo.6621453


Lindgren, F., H. Rue, and J. Lindström. 2011. “An Explicit Link
between Gaussian Fields and Gaussian Markov Random Fields:
The Stochastic Partial Differential Equation Approach.” Journal
of the Royal Statistical Society. Series B: Statistical Methodology
73: 423–98.

Losey, J. E., and M. Vaughan. 2006. “The Economic Value of
Ecological Services Provided by Insects.” Bioscience 56: 311–23.

Möller, M., H. Gerstmann, F. Gao, T. C. Dahms, and M. Förster. 2017.
“Coupling of Phenological Information and Simulated Vegeta-
tion Index Time Series: Limitations and Potentials for the Assess-
ment and Monitoring of Soil Erosion Risk.” Catena 150: 192–205.

Ollinger, S. V. 2011. “Sources of Variability in Canopy Reflectance
and the Convergent Properties of Plants.” New Phytologist 189:
375–94.

Perrin, W., P. Jay-Robert, B. Buatois, and L. Tatin. 2019. “A
Comparative Analysis of Dung Beetle Assemblages (Coleoptera:
Scarabaeidae: Scarabaeinae, Aphodiinae) Attracted to Sheep
and Little Bustard Excrement in Southern France.” The
Coleopterists Bulletin 73: 185–92.

Pettorelli, N., S. Ryan, T. Mueller, N. Bunnefeld, B. Jedrzejewska,
M. Lima, and K. Kausrud. 2011. “The Normalized Difference
Vegetation Index (NDVI): Unforeseen Successes in Animal
Ecology.” Climate Research 46: 15–27.

Pla, M., G. Bota, A. Duane, J. Balagué, A. Curc�o, R. Gutiérrez, and
L. Brotons. 2019. “Calibrating Sentinel-2 Imagery with Multi-
spectral UAV Derived Information to Quantify Damages in
Mediterranean Rice Crops Caused by Western Swamphen
(Porphyrio porphyrio).” Drones 3: 45.

Prabhakara, K., W. Dean Hively, and G. W. McCarty. 2015.
“Evaluating the Relationship between Biomass, Percent
Groundcover and Remote Sensing Indices across Six Winter
Cover Crop Fields in Maryland, United States.” International
Journal of Applied Earth Observation and Geoinformation 39:
88–102.

Prather, R. M., and M. Kaspari. 2019. “Plants Regulate Grassland
Arthropod Communities through Biomass, Quality, and
Habitat Heterogeneity.” Ecosphere 10: e02909.

Quantum GIS Development Team. 2020. “Quantum GIS
Geographic Information System.” Open Source Geospatial
Foundation Project. http://qgis.osgeo.org.

R Core Team. 2020. R: A Language and Environment for Statistical
Computing. Vienna: R Foundation for Statistical Computing
http://www.r-project.org.

Rasmussen, J., G. Ntakos, J. Nielsen, J. Svensgaard, R. N. Poulsen,
and S. Christensen. 2016. “Are Vegetation Indices Derived
from Consumer-Grade Cameras Mounted on UAVs Suffi-
ciently Reliable for Assessing Experimental Plots?” European
Journal of Agronomy 74: 75–92.

Reverter, M., J. G�omez-Catasús, A. Barrero, C. Pérez-Granados,
D. Bustillo-de La Rosa, and J. Traba. 2019. “Interactions in
Shrubsteppes: Implications for the Maintenance of a Threat-
ened Bird.” Ecosistemas: Revista Cietifica y Tecnica de Ecologia
y Medio Ambiente 28: 69–77.

Reverter, M., J. G�omez-Catasús, A. Barrero, and J. Traba. 2021.
“Crops Modify Habitat Quality beyond their Limits.” Agricul-
ture, Ecosystems & Environment 319: 107542.

Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering. 1974.
“Monitoring Vegetation Systems in the Great Plains with
ERTS.” NASA Special Publication 351: 309–17.

Rue, H., S. Martino, and N. Chopin. 2009. “Approximate
Bayesian Inference for Latent Gaussian Models by Using
Integrated Nested Laplace Approximations.” Journal of the
Royal Statistical Society. Series B: Statistical Methodology 71:
319–92.

Sainz Ollero, H. 2013. “Steppes across the World: An Overview with
Emphasis on the Iberian Peninsula.” In Steppe Ecosystems:
Biological Diversity, Management and Restoration, edited by
M. B. Morales and J. Traba, 1–25. New York, NY: NOVA
Science Publishers.

Sainz Ollero, H., and M. A. van Staalduinen. 2012. “Iberian
Steppes.” In Eurasian Steppes: Ecological Problems and
Livelihoods in a Changing World, edited by M. J. A. Werger
and M. A. van Staalduinen, 273–88. London: Springer.

Salamí, E., C. Barrado, and E. Pastor. 2014. “UAV Flight Experiments
Applied to the Remote Sensing of Vegetated Areas.” Remote
Sensing 6: 11051–81.

Sardà-Palomera, F., G. Bota, C. Viñolo, O. Pallarés, V. Sazatornil,
L. Brotons, S. Gom�ariz, and F. Sardà. 2012. “Fine-Scale Bird
Monitoring from Light Unmanned Aircraft Systems.” Ibis 154:
177–83.

Serrano, L., J. A. Gamon, and J. Penuelas. 2000. “Estimation of
Canopy Photosynthetic and Nonphotosynthetic Components
from Spectral Transmittance.” Ecology 81: 3149–62.

Siemann, E. 1998. “Experimental Tests of Effects of Plant
Productivity and Diversity on Grassland Arthropod Diversity.”
Ecology 79: 2057–70.

Smith, B. M., N. J. Aebischer, J. Ewald, S. Moreby, C. Potter, and
J. M. Holland. 2020. “The Potential of Arable Weeds to Reverse
Invertebrate Declines and Associated Ecosystem Services in
Cereal Crops.” Frontiers in Sustainable Food Systems 3: 118.

Southwood, T. R. E., V. K. Brown, and P. M. Reader. 1979. “The
Relationships of Plant and Insect Diversities in Succession.”
Biological Journal of the Linnean Society 12: 327–48.

Sripada, R. P., R.W.Heiniger, J. G.White, andA.D.Meijer. 2006. “Aerial
Color Infrared Photography for Determining Early in-Season
NitrogenRequirements in Corn.”Agronomy Journal 98: 968–77.

Srivastava, D. S., and J. H. Lawton. 1998. “Why more Productive Sites
Have More Species: An Experimental Test of Theory Using
Tree-Hole Communities.” American Naturalist 152: 510–29.

Strong, C. J., N. G. Burnside, and D. Llewellyn. 2017. “The Potential
of Small-Unmanned Aircraft Systems for the Rapid Detection
of Threatened Unimproved Grassland Communities Using an
Enhanced Normalized Difference Vegetation Index.” PLoS
One 12: e0186193.

Sweet, S. K., A. Asmus, M. E. Rich, J. Wingfield, L. Gough, and
N. T. Boelman. 2015. “NDVI as a Predictor of Canopy
Arthropod Biomass in the Alaskan Arctic Tundra.” Ecological
Applications 25: 779–90.

Thomas, J. A., M. G. Telfer, D. B. Roy, C. D. Preston, J. J. D.
Greenwood, J. Asher, R. Fox, R. T. Clarke, and J. H. Lawton.
2004. “Comparative Losses of British Butterflies, Birds, and
Plants and the Global Extinction Crisis.” Science 303: 1879–81.

Traba, J., M. B. Morales, E. L. García De La Morena, M. P. Delgado,
and A. Krištín. 2007. “Selection of Breeding Territory by Little
Bustard (Tetrax Tetrax) Males in Central Spain: The Role of
Arthropod Availability.” Ecological Research 23: 615–22.

Traba, J., P. Sastre, and M. B. Morales. 2013. “Factors Determining
Species Richness and Composition of Steppe Bird

16 of 17 TRABA ET AL.

http://qgis.osgeo.org
http://www.r-project.org


Communities in Peninsular Spain: Grass-Steppe vs. Shrub-
Steppe Bird Species.” In Steppe Ecosystems: Biological Diversity,
Management and Restoration, edited by M. B. Morales and J.
Traba, 47–72. New York, NY: NOVA Science Publishers.

Upadhyay, P., S. K. Ghosh, and A. Kumar. 2013. “High Resolution
Temporal Normalized Difference Vegetation Indices for
Specific Crop Identification.” In ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, Vol. XL-1/W1, 351, 355.

Vermeulen, C., P. Lejeune, J. Lisein, P. Sawadogo, and P. Bouché.
2013. “Unmanned Aerial Survey of Elephants.” PLoS One 8:
e54700.

Viña, A., A. A. Gitelson, A. L. Nguy-Robertson, and Y. Peng. 2011.
“Comparison of Different Vegetation Indices for the Remote
Assessment of Green Leaf Area Index of Crops.” Remote
Sensing of Environment 115: 3468–78.

Weiss, N., H. Zucchi, and A. Hochkirch. 2013. “The Effects
of Grassland Management and Aspect on Orthoptera Diver-
sity and Abundance: Site Conditions Are As Important as
Management.” Biodiversity and Conservation 22: 2167–78.

Weyer, J., J. Weinberger, and A. Hochkirch. 2012. “Mobility and
Microhabitat Utilization in a Flightless Wetland Grasshopper,
Chorthippus Montanus (Charpentier, 1825).” Journal of Insect
Conservation 16: 379–90.

Zurdo, J., J. Baonza, and J. Traba. 2021. “New Insights on Plant
Communities and Flora of the Southern Paramos of the
Iberian Range (Spain).” Phytocoenologia 50: 371–82.

Zuur, A. F., E. N. Ieno, and A. A. Saveliev. 2017. Beginner’s Guide to
Spatial, Temporal, and Spatial-Temporal Ecological Data Analysis
with R-INLA. Newburgh: Page Highland Statistics Ltd.

SUPPORTING INFORMATION
Additional supporting information can be found online in
the Supporting Information section at the end of this article.

How to cite this article: Traba, J., J. G�omez-
Catasús, A. Barrero, D. Bustillo-de la Rosa,
J. Zurdo, I. Herv�as, C. Pérez-Granados, E. L. García
de la Morena, A. Santamaría, and M. Reverter.
2022. “Comparative Assessment of Satellite- and
Drone-Based Vegetation Indices to Predict
Arthropod Biomass in Shrub-Steppes.” Ecological
Applications e2707. https://doi.org/10.1002/
eap.2707

ECOLOGICAL APPLICATIONS 17 of 17

https://doi.org/10.1002/eap.2707
https://doi.org/10.1002/eap.2707

	Comparative assessment of satellite- and drone-based vegetation indices to predict arthropod biomass in shrub-steppes
	INTRODUCTION
	METHODS
	Study area
	Field sampling-Arthropod biomass
	UAV imagery collection
	Sentinel-2 imagery collection
	Vegetation indices
	Statistical analysis

	RESULTS
	Relationship between arthropod biomass and VIs from UAV imagery
	Relationship between arthropod biomass and VIs from Sentinel-2 imagery

	DISCUSSION
	CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


