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Abstract

Searches for counterparts to multimessenger events with optical imagers use difference imaging to detect new
transient sources. However, even with existing artifact-detection algorithms, this process simultaneously returns
several classes of false positives: false detections from poor-quality image subtractions, false detections from low
signal-to-noise images, and detections of preexisting variable sources. Currently, human visual inspection to remove
the false positives is a central part of multimessenger follow-up observations, but when next generation gravitational
wave and neutrino detectors come online and increase the rate of multimessenger events, the visual inspection process
will be prohibitively expensive. We approach this problem with two convolutional neural networks operating on the
difference imaging outputs. The first network focuses on removing false detections and demonstrates an accuracy of
92% on our data set. The second network focuses on sorting all real detections by the probability of being a transient
source within a host galaxy and distinguishes between various classes of images that previously required additional
human inspection. We find the number of images requiring human inspection will decrease by a factor of 1.5 using
our approach alone and a factor of 3.6 using our approach in combination with existing algorithms, facilitating rapid
multimessenger counterpart identification by the astronomical community.

Unified Astronomy Thesaurus concepts: Convolutional neural networks (1938); Transient detection (1957)

1. Introduction

Multimessenger astronomy utilizes the coordinated efforts of
two or more types of detectors including electromagnetic,
gravitational wave (GW), and neutrino detectors to gain an
increased understanding of astrophysical phenomena. GW
events detected by the Laser Interferometer Gravitational Wave
Observatory (LIGO; Aasi et al. 2015) and Virgo (Acernese et al.
2014) or high energy neutrinos detected by IceCube (Achterberg
et al. 2006) and ANTARES (Ageron et al. 2011) may have
electromagnetic counterparts that could offer insights for several
fields of physics. For this analysis, we focus specifically on
electromagnetic counterparts that emit in the optical wavelengths
and are bright enough to be detected by existing instruments.
One such instrument, the Dark Energy Camera (DECam
Flaugher et al. 2015) mounted on the 4 m Victor M. Blanco
Telescope at Cerro Tololo Inter-American Observatory in Chile
has been a large contributor to the optical multimessenger
follow-up community due to its ∼3 sq. deg. field of view and
deep imaging capabilities. Multiple observing teams have

utilized DECam for multimessenger observations, and we expect
DECam to continue to be a major multimessenger optical
follow-up instrument into the Rubin Observatory Era.
The Dark Energy Survey Gravitational Wave (DESGW)

team has developed a pipeline to efficiently search for new
optical sources on large areas of sky during multimessenger
follow-up campaigns with DECam (Herner et al. 2020). The
search utilizes difference imaging (Kessler et al. 2015) to
compare a recent (referred to as “search”) image of the area in
the sky associated with a GW or neutrino to a previous
(referred to as “template”) image of the same area taken at
earlier times. After matching the point-spread functions (PSFs)
to the search and template images, the resulting pixel-by-pixel
subtraction of the search and template images is called a
“difference image” (Becker 2015). Once the extant light
sources have been subtracted away, traditional astronomical
image processing tools (Bertin & Arnouts 1996) are applied to
the difference images to identify new sources. The goal of
optical follow-up campaigns is then to scour the detections of
new sources and rapidly communicate interesting objects to the
astronomical community to facilitate multi-wavelength char-
acterizations of any potential multimessenger counterparts.
In a typical counterpart search with DECam, the difference

imaging pipeline produces ∼10,000 detections per 3 deg2 field
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of view (e.g., Morgan et al. 2019, 2020a). These difference
imaging data sets are dominated by artifacts—several classes of
visually obvious spurious detections described in Section 2—
but both the size of the data sets and the need to find candidate
objects quickly for spectroscopic characterization prohibits
excluding these artifacts by visual inspection. This problem can
be remedied using automated artifact-detection tools, of which
there are several in use today (Desai et al. 2016). Most of these
automated tools employ machine learning at their cores,
algorithmically developing selection rules for artifacts by
analyzing large numbers of images. The current tool used in
the DESGW pipeline is autoscan (Goldstein et al. 2015),
which employs a Random Forest classifier (Breiman 2001) to
optimally weight hand-engineered features, such as signal-to-
noise ratio, magnitude, etc. An alternative machine learning
approach, and the one we apply in this analysis, is to use deep
learning, which learns selection rules directly from the data as
opposed to from hand-engineered features. In the case of
images, the most common deep-learning tools are convolu-
tional neural networks (CNNs; LeCun et al. 1989).

Applying CNNs to difference images has been done
previously (Duev et al. 2019), but this work is the first
DECam-specific application in addition to a slight redefining of
the classification problem. In our analysis, we broaden the
classes of objects to more accurately resemble a real multi-
messenger follow-up campaign; on top of filtering imperfect
image subtractions from difference images, we also specifically
look for the presence of a host galaxy and a new transient in the
template and search images, respectively. Our approach uses a
pipeline of two CNNs trained on real DECam difference
imaging data and image processing routines to algorithmically
remove false positives from consideration for being a transient
with a host galaxy. The resulting output of our algorithm is a
score for each image from 0 to 1 representing the probability of
being a transient + host galaxy.

Looking toward the expected increased multimessenger
event rates of the LIGO-Virgo-KAGRA fourth observing run
(Abbott et al. 2020) and IceCube-Gen2 (Aartsen et al. 2021),
better performing tools to robustly and efficiently identify new
transients in host galaxies will be a necessity. This analysis
presents one such tool that will enable DECam and the
DESGW pipeline to efficiently perform multimessenger
follow-up campaigns in the next era of multimessenger
astronomy. We organize the presentation as follows.
Section 2 describes our training data, deep-learning architec-
ture, and training. Section 3 presents the performance of each
phase of our method. We conclude Section 3 with end-to-end
tests of our technique on several real DECam follow-up data
sets. Section 4 discusses the performance of our tool in the
context of future multimessenger follow-up campaigns. Lastly,
we conclude in Section 5.

2. Methods

2.1. Multimessenger Follow-up Data

When the difference imaging process works properly, the
resulting difference image will contain transient objects that
could potentially be the source of GWs or neutrinos. In
practice, though, the rate of difference image detections is two
orders of magnitude higher than the expected number of real
transients. Many false detections are caused by moving objects
such as asteroids and satellites that can be ruled out easily using

multiple observations, while other detections that cannot be
eliminated simply are known as “difference imaging artifacts”.
The most common example of an artifact is known as a “bad
subtraction”, where a slight misalignment or inaccurate
determination of the PSFs between the search and template
images creates adjacent undersubtracted and oversubtracted
regions in the difference image, the first of which can be
interpreted as a real object by Source Extractor (Bertin &
Arnouts 1996). In the current DESGW pipeline, these bad
subtractions are identified using a selection routine called
autoscan (Goldstein et al. 2015) that assigns a score between
0 and 1 to each difference image with higher values
corresponding to higher-quality detections. Most, but not all,
bad subtractions are removed with an autoscan threshold cut
of 0.7, but this technique was not designed to remove other
types of false detections.
Another type of false detection in counterpart searches is a

preexisting point source which is an object that was already
visible in the template image, but produced a difference image
due to changing brightness (e.g., variable Milky Way stars or
astrophysical transients in the template image). Because these
images contain real, astrophysical objects, they are often given
high scores by artifact-detection algorithms like autoscan
even though they are of no interest in multimessenger
astronomy. The other common false positive that is not
eliminated with autoscan is a marginal case where there is
no obvious transient in the difference image. These are images
that seem to contain a host galaxy and a new object may appear
in the search image, however, the resulting difference image is
inconclusive. In most cases, this class contains galaxies with
small variability in their centers rather than supernovae or
kilonovae producing an obvious transient.
There are other, less common types of false positives. For

example, an asteroid detected in a previously empty patch of
sky will appear to be a point-like source in the difference image
and receive high autoscan scores because the lack of the
presence of a host galaxy in the template image does not affect
the scoring. There are also cases where realizations of Poisson
noise produces groups of pixels that could resemble an object
in the search image and in some cases groups of under-
fluctuations in the template image which creates the appearance
of an object after subtraction. We refer to this broad class as
“other artifacts.” The true positive case for multimessenger
counterpart searches is when a distinguishable transient is
visible only in the search image. The transient should exist
within some host galaxy that will be present on both search and
template images. Figure 1 displays examples of the four most
common classes of objects in our data set.

2.2. Data Collection

Because we opted for a deep-learning approach, we required
a large, diverse set of real images with accurate labels. We
utilized images of randomly sampled objects detected from
applying the DESGW Search and Discovery Pipeline to DES
wide-field data (Herner 2019) for our training data. A team of
six experts labeled the images corresponding to the five image
types (“host+ transient”, “no obvious transient”, “bad subtrac-
tion”, “preexisting point source”, and “other artifact”) using an
interactive tool (ArtifactSpy; Morgan 2020) that cycled the
images across the team to ensure precise labeling. When
labeling the images, we rejected images whose detected
transient had any masking over the transient since the flux
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would be measured inaccurately. We also rejected images
where the detected transient could be matched to a high-
confidence star in the DES Data Release 1 (Abbott et al. 2018)
or GAIA Data Release 2 (Gaia Collaboration et al. 2018) since
these steps are routinely performed by the DESGW pipeline.

During the labeling process, it became clear that bad
subtractions dominated the five image classes. To boost
representation of the transient + host galaxy class, we obtained
additional difference imaging data from three sources. First, we
supplemented the data set with a population of the DES wide-
field difference imaging data that was given an autoscan
score of at least 0.9. Second, we incorporated transient + host
objects identified by human inspection during the DESGW
follow-up observations of GW190814 (Morgan et al. 2020a) and
GW200224 (Morgan et al. 2020b, 2020c). Lastly, we simulated
transient + host images using deeplenstronomy (Morgan
et al. 2021). Importantly, the simulations are not run through the
DESGW pipeline, so we are careful not to overload the training
data set with arbitrarily large amounts of simulated data.

From all the DES data and simulated data mentioned above,
we construct two data sets. In total, we obtained 1000 (640 real,
360 simulated) host + transient examples, 921 no obvious
transient examples, 9436 bad subtraction examples, 1050
preexisting point source examples, and 731 other artifact
examples. Of the 640 real host + transient examples, 388 were
collected from DES wide-field data, 214 were collected from
the DESGW follow-up observations of GW200224, and 38
were collected from the DESGW follow-up of GW190814. We
also randomly down-sampled the bad subtraction class to 1000
examples to create a less imbalanced classification problem.
Lastly, we applied rotations and mirroring to the images to
increase the data set size by a factor of 8. The total collection of
images was split into 90% training and 10% validation data
sets. Our overall approach is split into multiple parts, and in
each part, we use the training set to refine our algorithm and use
the validation set to quantify its performance.

Furthermore, we also obtained additional real follow-up
observation data which we only used for testing the entire
approach in Section 3.6. Specifically, difference imaging
samples from DECam follow-up observations of neutrino

counterpart searches IC171106A (Morgan et al. 2019),
IC190331A, and IC201114A (Morgan et al. 2020d) as well
as GW counterpart searches GW190728 (Soares-Santos et al.
2019) and GW190814. These counterpart searches represent a
variety of observing conditions and optical bandpasses. We
selected random samples of the difference images from these
observations such that the size of the sample would produce a
68% confidence level sampling error equal to 1% of the entire
population, indicating the sample size was large enough to be
considered representative. These data sets were kept separate
from each other to assess the performance of our algorithm on
standalone follow-up observations.
For reproduciblility, all images used for this analysis have

been made publicly available (Shandonay & Morgan 2021).

2.3. Algorithm Summary

The various classes of objects in difference imaging data sets
present challenges for classification that demand a robust
processing algorithm. Convolutional neural networks excel at
image recognition (LeCun et al. 2015), making them suitable
candidates for improving image-based multimessenger counter-
part searches. However, we can simplify the classification
process by applying high-fidelity selection criteria to images
before they are passed to a CNN. We apply two preprocessing
filters to each set of search, template, and difference images
designed to remove low-quality or noisy images.
The first preprocessing step performs an estimate of PSF flux

at the center of the search image by subtracting the median
value of the image, corresponding to the sky background, from
each pixel of the image and weighs the result by a Gaussian
realization of the PSF from each image. We remove the images
with a PSF flux below an empirically determined threshold.
Next, the remaining images go through a second preprocessing
step that calculates the signal-to-noise ratio (S/N) from the
SExtractor flux and flux error of the detection in the
difference image and removes images with S/N below another
empirically determined threshold. Both of these thresholds
were determined by finding the strictest cut that would allow
99% completeness of all classes not labeled other artifacts in

Figure 1. Examples of the four classes of difference imaging products in our data set. The upper left panel shows a “bad subtraction” image. The upper right panel
shows a “preexisting point source” image. The lower left panel shows a “no obvious transient” image. The lower right panel shows a “transient + host” image where a
smaller, point-like object is visible within a host galaxy.
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the training data set. The choice of these threshold cuts is
discussed in Section 3. Both of these steps aim to eliminate
most of the noise detections in the other artifact class since
clear image features are necessary for a CNN to learn.

The vast majority of the remaining data set examples are
artifacts that are more difficult to remove with simple filters.
We therefore develop deep-learning tools to remove the
remaining false detections by learning features from the
images. First, a CNN is trained with the goal of exclusively
identifying bad subtractions compared to the other classes.
Singling out the bad subtractions ensures the highest level of
accuracy when removing these artifacts from the data set as
opposed to a multi-class classification scheme. The images
classified as “not bad subtraction” pass the first CNN and move
along a second CNN that scores images with a probability of
being a real transient + host galaxy. Finally, we use these
probabilities from our method and the autoscan scores to fit
a perceptron (Rosenblatt 1958) that applies weights to both
metrics and produces a combined score. The remaining parts of
this section describe each of the components of our approach in
detail.

2.4. Network Design

Convolutional neural networks are a particular type of deep-
learning tool that convolve a kernel of trainable weights with
input data and learn feature maps that carry information
regarding the identity of the objects in the input data. This kind
of approach is particularly well suited for computer vision tasks
performing as state-of-the-art in image classification because
they optimize their feature maps through automated learning
and back-propagation of errors. As a result, the input data set
can be diverse and still classified with high accuracy without
the need for excessive amounts of training data.

The convolutional neural networks in our approach were
developed using the PyTorch library (Paszke et al. 2019).
Both networks have the same structure with three convolutional
layers, a max pooling layer, three dropout layers, and three
fully connected layers. The network architecture has two main
components: a feature extraction step where the convolutional

layers locate edges and shapes within the images, and a
classification step where the fully connected layers weigh the
extracted features and reduce them to classifications. Figure 2
illustrates the flow of information through the layers of the
network, as well as the hyperparameter settings utilized in our
analysis.
The search, template, and difference images are simulta-

neously fed into the network through independent channels,
similar to how the red, green, and blue image arrays are fed into
CNNs in traditional image analyses. The first convolutional
layer applies 32 convolutional filters with size 4 px and stride
1 px to the 51 px by 51 px search, template, and difference
images. Following traditional approaches (He et al. 2016;
Szegedy et al. 2016), the number of convolutional filters is
doubled with each additional layer, and we reduce the size of
the kernel by a factor of 2 with each additional layer to focus on
smaller scale image features. We maintain a stride of 1 px for
each layer, which prevents downsampling of the image
representation size during the convolutions. After all three
convolutional layers, we apply max pooling with a kernel size
of 2 px to magnify the importance of the main features found
by the convolutional operations. Lastly, we flatten the image
representation and apply a series of fully connected layers to
produce classifications from the image representations. With
each fully connected layer, we reduce the size of the
representation to approximately its square root until reaching
a size of 2 (a probability for each group in our binary
classification scheme). Importantly, before each fully con-
nected layer, we utilize a dropout layer to prevent overfitting.
Each of the hyperparameter values above was optimized as
described in Section 2.5. For reproducibility, all neural network
code used for this analysis has been made publicly available
(Shandonay & Morgan 2021).

2.5. Hyperparameter Optimization

The convolutional layers of the neural networks can be
modified by adjusting hyperparameters that determine how the
CNN processes each image. All of the hyperparameters were
chosen by varying the values and testing the CNNs for

Figure 2. The architecture of the neural networks utilized in our image classification algorithm, which extracts features using three convolutional layers (orange
blocks) and classifies the images using fully connected layers (purple) that weigh and aggregate the extracted features. The height and depth of the blocks correspond
to the image dimensions while the width corresponds to the number of channels (convolutional operators) applied. The shading at the right edge of the blocks indicates
a ReLU activation function. The various letters mean the following: k=kernel size, p=padding, s=stride, f=dropout probability. The figure was produced using
PlotNeuralNet (Iqbal 2018).
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performance improvements until the highest accuracy was
achieved. For this optimization, we trained our network
architecture on the training data set and predicted the labels
of the objects in the validation data set. We perform five-way
classification since our goal was to determine the network
hyperparameters best for picking out the features for all the
classifications we desired to make.

The adjustment of most hyperparameters within reasonable
ranges did not produce significant effects. Specifically, varying
the stride of the convolutional layers from 1 pixel to 2 pixels,
varying the dropout fractions from 0.1 to 0.5, and varying the
initial number of convolutional filters from 8 to 32 did not
result in changes to the accuracy on the validation set above the
typical levels of accuracy fluctuations. We did not perform a
hyperparameter search of learning algorithm parameters such
as the learning rate, loss function, batch size, and optimizer
because the accuracy for our fiducial experimental configura-
tion was satisfactory for the goals of this analysis.

Two hyperparameters significantly affected the performance:
the kernel size of the first convolutional layer and the number
of convolutional layers. The kernel size is the dimension of a
matrix of weights that slides across the image and detects
features by multiplying each matrix element by the corresp-
onding pixel on the image. The optimal kernel size depends on
the size of features in the image, so certain values will give
better performance. In a test of 1 pixel to 16 pixels, a kernel
size of 4 pixels was found to be optimal, but similarly, high
performance was observed for kernel sizes between 1 pixel to
8 pixels, corresponding to an upper limit of roughly 2″
(1 DECam pixel= 0.263 arcsec). We interpret this result as the
network’s ability to detect the presence of host galaxies
approximately 2″ in size. We therefore utilized a kernel size of
4 pixels as our largest kernel and decreased the kernel size in
the deeper layers of the network to find smaller features such as
point source transient objects. When trying to identify smaller
scale features, we also found that a third convolutional layer
was beneficial when using initial kernel sizes of 4 pixels and
greater, likely due to the relative scales of features being
identified by the network.

2.6. Training

After optimizing the architecture of our network, we opted
to reformulate the classification problem based on our

observations. In the five-way classification scheme, the
majority of the confusion was between the host + transient
class and the bad subtraction class. In an attempt to prevent this
confusion from hindering performance in a real multimessenger
follow-up campaign data set—where bad subtractions often
occurs in large numbers—we chose to focus on removing the
bad subtractions with a standalone network. For this first
standalone network, the training was performed using only the
transient + host class to represent a positive result and the bad
subtractions to represent a negative result. For the remainder of
the analysis, the goal became to identify the host + transient
class from anything not labeled as a bad subtraction by the first
network. Therefore, a second network was utilized to perform
two-way classification of host + transient examples versus
nonhost + transient examples.
We characterized the performance of the networks during

training by employing a 10-fold cross validation of the training
data set. The networks were trained for 50 epochs and 70
epochs, respectively. Network 2 was allowed to train longer
due to higher observed fluctuations in the loss of the validation
folds of the training data set. Figure 3 shows the performance
of the networks during 10-fold training on just the training data
set, while Sections 3.2 and 3.3 present the measured
performance of the trained networks on the validation data
set as a result of the analysis. From Figure 3, we observe high
training accuracies, but more importantly, we do not observe
large amounts of overfitting.

3. Results

After using the training data set to select the preprocessing
filters’ thresholds and train the two CNNs, we measure the
performance of our algorithm in several tests using the
validation data set and real follow-up observations. In this
section we present several performance metrics. We measure
the efficacies of the preprocessing filters and CNNs on the
validation data set. We then compare the output probabilities of
our second CNN, the goal of which was to sort the remaining
images by the probability of being a transient in a host galaxy,
to the autoscan scores to demonstrate improvement over
tools currently in use. We quantify the selection function of our
approach by measuring the purity, completeness, and false
positive rate as functions of physical properties. Lastly, we
apply our full algorithm to unseen data from real follow-up

Figure 3. Performance on the training data set from the first (left) and second (right) networks plotted using 10-fold cross validation. The standard deviation at each
training step, corresponding to every tenth batch, is plotted using the shaded region around the mean value represented by the solid line. Additionally, the cross
entropy loss is plotted to show steadily decreasing values for both networks.
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campaigns to quantify the factor of improvement in optical
counterpart-finding efficiency.

3.1. Preprocessing

The effectiveness of the preprocessing filters is displayed in
Figure 4 using histograms. The output from the first step of
calculating a weighted value for the flux of each image after
subtracting the background is shown in the left panel of
Figure 4. The threshold was set by requiring a completeness
value of 0.99 to ensure a high number of positive images,
represented by all classes not defined as “other artifacts”, are
included. The resulting purity value was 0.987 at a threshold
set to 13.86 such that nearly all passed images are true
positives. The output from the second step of calculating a
signal-to-noise ratio of each image is shown in the right panel
of Figure 4. The threshold was again set by requiring a
completeness of 0.99 such that a high number of the positive
images are included. The resulting purity value of 0.991 at a
threshold set to 3.76 such that nearly all passed images are true
positives. Together, these two preprocessing filters remove
large fractions of the “other artifacts” class, which simplifies
the classification problem for the deep-learning parts of our
approach.

3.2. First Network

The first CNN in the algorithm is applied to the images that
passed the preprocessing filters. Using the validation data set,
the output probabilities were used to construct a receiver
operating characteristic (ROC) curve to evaluate the ideal
operating threshold. The curve is plotted in Figure 5. The area
under the curve (AUC) of the first network is 0.982 which is
near perfect performance. The operating threshold for deter-
mining positive and negative results was calculated by
maximizing the F1 score which is the harmonic mean of the
purity and completeness. Using this threshold, the false positive
rate was 3% and the true positive rate was 92%. This means
that only 3% of the nonbad-subtraction images were incorrectly
called bad subtraction and will not be passed to the second
CNN. A confusion matrix of the binary predictions using the
chosen operating threshold is shown in Figure 5. All nonbad-
subtraction classes demonstrated an accuracy greater than 95%

which was the intended result of using a straightforward binary
classification.

3.3. Second Network

The final step in the classification algorithm is applied to the
images which were not identified as bad subtractions by the
first CNN or removed as other artifacts by the preprocessing.
The second network is used to sort the real detections, the
images excluding bad subtractions and other artifacts, by their
probability of being a real transient source with a host galaxy.
The probabilities are shown in blue for the three primary
remaining classes in Figure 6. The majority of the transient +
host class falls above a fiducial 0.5 probability threshold of
being labeled correctly. Nearly all of the preexisting point
sources are correctly labeled below the 0.5 probability
threshold indicating a clear distinction between these two
classes. A large portion of the “No Obvious Transient” class
falls at high probabilities which shows the network’s ability to
identify useful images that are not distinguishable with visual
inspection.

3.4. Comparison to autoscan

Multiple tests were conducted to examine whether the
algorithm has the intended result of expediting multimessenger
counterpart searches. The first such test was comparing the
output probabilities from the second network with the scores
given to images by autoscan. autoscan is the current
method for identifying difference image artifacts mainly
focused on removing bad subtractions, but it was not designed
to distinguish other types of false detections. The comparison is
shown in Figure 6.
The biggest takeaway from Figure 6 is that autoscanʼs

score shown in green has similar median values around 0.9 and
similar upper and lower quartiles ranges, which means the not
obvious transient class and preexisting point source class are
not being distinguished from the transient + host galaxy class.
With our image classification algorithm, there is a significant
difference in the probabilities assigned to transient + host
compared to the other classes with higher median values. This
means the output probabilities can be used as improved
indicators of real transients.

Figure 4. Left: histogram of weighted flux values from first preprocessing step. Right: histogram of signal-to-noise ratio values from the second preprocessing step.
Both panels show the validation data set. The purity and completeness were calculated by identifying the other artifacts class as negative and all other classes as
positive because we only intended to remove those images in this step.
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3.5. Candidate Selection Function

The selection function of our approach can also be
determined using the purity, completeness, and false positive
rate (FPR) of the output probabilities of the algorithm. The
probabilities can vary depending on the properties of the
images such as the transient apparent magnitude and S/N. As
the brightness of transients in images increases, the purity
steadily increases to 93% and the FPR decreases to less than
5%. Similarly, for increasing S/N, the purity reaches values of
93% and an FPR of 10% as shown in Figure 7. These results
demonstrate that our algorithm can effectively identify images
with distinguishable features. The completeness does not
change significantly because the transient + host class is
consistently given probabilities above 0.5 at a rate of about
80% distributed over a large range of apparent magnitudes and
S/N. For typical apparent magnitude and S/N ranges near the
center of both plots from Figure 7, we expect purity above 80%
for detections of real transients.

3.6. Testing on Real Observations

Ultimately, the goal of this processing algorithm is to
decrease the number of images requiring visual inspection. We
can measure an increase in efficiency by calculating how many
images fall above a 0.5 threshold from the output of the second
CNN and comparing that to the number of images with

autoscan probability above 0.7. In reality, our approach is
only meant to score the images based on their probability of
being a host + transient, but we adopt a threshold to make
comparisons to autoscan. Values above these thresholds are
used as standard indicators of a potential transient + host
galaxy. After seeing improvements using only our method to
filter potential candidates, we also applied a weighted
combination of the autoscan score and our method to
produce even better results in terms of the detections above a
chosen threshold of 0.8.
The real data sets tested consist of samples of approximately

1000 stamps from the total population of difference imaging
detections. To boost the representation of the host + transient
class, part of each sample was collected by sampling objects
with an autoscan score above 0.7 and part of each sample
was collected by sampling objects randomly. This sampling
procedure produced a different distribution of autoscan
scores in the samples than the full population, so we weight the
reported detections to correct for that difference. Essentially,
we place the population and sample autoscan score
probability distribution functions (PDFs) in bins of 0.05 and
determine the factor required to scale the value of the sample
PDF to the population PDF in each bin. We also present the
number of images in units of detections per square degree per
night. Thus, all test data sets are approximately on the same
footing and can be directly compared.
The results from these calculations are shown in Table 1.

The number of detections per square degree per night above the
thresholds for our method are generally lower in most cases
compared to autoscan. The combined method of calculating
a probability seems to improve on our method across all tested
data sets. Focusing specifically on the transient + host class,
the number of images below our algorithm’s threshold (column
6) and autoscan (column 5) demonstrates that both methods
do not completely capture the desired images. The significant
decrease in the total number of detections using the combined
method comes at the cost of fewer transient + host detections
above the threshold. The fraction of images passing the
thresholds that are transient + host for our algorithm (column
9) and autoscan shows the purity of the detections that
require inspection. The combined method improves on the
purity of detections for all of our tested data sets. Many of the
incorrectly passed images are not obvious transients due to the
marginal quality of the difference image, so a fairly low purity
is expected.

Figure 5. Left: ROC curve of the first CNN’s output. Right: confusion matrix of first CNN predictions. Both panels display results from apply the trained networks to
the validation data set.

Figure 6. Final probabilities of being a transient + host galaxy compared to
autoscan probabilities. The boxes extend from the lower to upper quartile of
each group with the median marked by the line.
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4. Discussion

The development of our approach to do candidate counter-
part identification using a convolutional neural network was
motivated by the desire to improve the efficiency of multi-
messenger follow-ups. The efficacy of our algorithm and
testing on real observations show improvements to the present
method of image processing in the DESGW pipeline using
autoscan. The improvements decrease the number of images
requiring visual inspection by researchers which means the
identification of real transient + host objects can be faster.
Increased efficiency will be beneficial in the current era of
multimessenger astronomy and even more so for future
analyses using more advanced detectors with higher rates of
events. The implementation of our algorithm will improve the
processing technique by making it more robust for future data;
in turn, it will be easier to find useful and interesting objects.

The improved efficiency is reflected in the purity of the
passed images between our method and autoscan as shown
in columns 8 and 9 of Table 1. With generally larger fractions
of passed transient + host images, fewer images need to be
disregarded in the search for real objects. autoscanʼs lower
purity is caused by overestimating the probability of being real
with high values for other classes. The distribution of these
high scores are shown in Figure 6 with similar median values
for the transient + host, not obvious transient, and preexisting
point source classes. Our method has lower certainty for what

constitutes a real transient + host with smaller probabilities, but
notably higher values than the other two classes, meaning the
probabilities can be used as improved indicators of real
transients. A threshold probability of 0.5 effectively achieves
higher completeness and purity than an autoscan probability
of 0.7.
Realtime follow-ups are dominated by false positives such as

point sources and not obvious transients which slow down the
identification of real optical counterparts in multimessenger
searches. The purity of the transient + host class above the
thresholds is shown in columns 8–10 of Table 1 with our
method and the combined method outperforming autoscan.
Candidate identification can happen approximately 1.5 times
faster using our method alone and 3.6 times faster in
combinations with autoscan because there is a decreased
number of images requiring inspection with improved purity
and completeness of the transient + host class. The benefits of
higher efficiency will become even greater in the next era of
GW detectors. We expect a huge increase in the rate of events
requiring triggered follow-ups which means faster responses
will make real detections easier to find. By integrating our tool
into the DESGW pipeline, we have prepared DECam for the
increased event rate which will lead to a higher probability of
detecting the next multimessenger counterpart.
The deployment of our image processing algorithm will

improve the efficiency and scalability of multimessenger

Table 1
Results from Testing Our Method on Real Follow-up Data Sets Compared to autoscan and the Combined Method

Testing Results

Detections above Threshold Transient + Host Detections below Threshold
Fraction above Threshold that are Transient

+ Host Detections

Data Set autoscan Our Method Combined autoscan Our Method Combined autoscan Our Method Combined

IC201114A 398.712 77.648 51.304 3.732 98.616 91.793 0.437 0.536 0.952
IC171106A 99.508 73.178 36.946 9.794 10.832 17.655 0.351 0.231 0.591
GW190814 152.368 86.072 43.047 7.664 6.335 12.460 0.080 0.150 0.170
IC190331A 25.056 682.883 6.725 2.536 3.454 11.754 0.012 0.014 0.013
GW190728 84.029 358.448 29.255 0.185 23.494 25.816 0.010 0.044 0.011

Note. The values are given in units of detections per square degree per night. A detection was passed by each method if it was greater than an output probability
threshold of 0.5 (our method), 0.7 (autoscan), and 0.8 (combined).

Figure 7. The purity, completeness, and false positive rate of the final output with probabilities greater than 0.5 is considered a positive result. The points are
determined using the mean value in each bin. The error bars become large on the edges of the apparent magnitude and signal-to-noise range due to the decreasing
number of counts. Since images with S/N below 3.76 were removed during preprocessing, the S/N plot begins around 5.
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counterpart searches with DECam. The output probabilities from
these detection methods can be used to set thresholds that filter
the vast majority of false detections while maintaining the
transient + host detections. As a result, there will be a decreased
number of images requiring visual inspection compared to
autoscan and higher purity and completeness of data sets
which demonstrates the efficacy of our method and the combined
method. These improvements will become more important
during the next generation of multimessenger astronomy when
more advanced detectors have higher event rates.

5. Conclusion

We developed an algorithm with the goal of improving
multimessenger counterpart searches. Presently, these follow-
up studies are plagued by high rates of false positive detections,
primarily in the form of preexisting point source objects
already visible in the template image and not obviously real
transient + host galaxy images. The various classes of images
have varying recognizable features that are visible in the pixel
values of the images. This visual aspect of classification
motivated the use of convolutional neural networks in our
algorithm to identify the real transients + host images from
false cases. Prior to reaching the CNNs, the images go through
a series of preprocessing routines to simplify the classification
and eliminate images that cause difficulties. Each CNN has the
same structure of three convolutional layers followed by a
series of activation functions that decrease the output to an
array of two probabilities corresponding to the positive and
negative cases. The CNNs differ by their training: the first
network was trained to identify bad subtractions to be removed
from the process, the second network was trained to identify
transient + host images. The images classified as not bad
subtractions were saved and passed along to the second
network where the images were given a probability of being a
real transient + host.

The preprocessing removed other artifacts with a complete-
ness and purity of 0.99. The first and second network were
trained to accuracies of 92% and 72% respectively. The first
network’s ROC curve shown in the left panel of Figure 5 was
calculated with an AUC of 0.982 and the operating threshold
was used to find a 92% true positive rate. The second network’s
success is shown in Figure 6. The majority of the transient +
host class received probabilities above a 0.5 threshold whereas
the most common types of false positives (no obvious transient
and preexisting point source) fall below this value. The output
probabilities of the second network compared to existing
artifact-detection software demonstrate our algorithm’s ability
to distinguish true positives from false positives. We tested the
final end-to-end algorithm on five unseen real follow-up data
sets and demonstrated improvements with a decreased number
of images requiring visual inspection using our method. We
also created a weighted combination of our method and
autoscan that further improved our results and decreased the
number of images requiring inspection by 3.6.

The results of the various tests and comparisons demonstrate
the success of our algorithm at processing sets of search,
template, and difference images such that real transient + host
galaxies can be identified more efficiently. Such improvements
over the current method built into the DESGW pipeline using
autoscan will become especially beneficial during the next
era of multimessenger astronomy when more advanced GW
detectors go online. Decreasing the amount of required human

inspection will expedite the search and the integration of our
method into the DESGW pipeline will increase the probability
of detecting a multimessenger counterpart.
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Appendix
Label Correction with Grad-CAM

All of the labels from ArtifactSpy were completely
determined by human inspection. While this ensured that the
CNNs would be tested against verifiable images, the subjective
labels could not be expected to be 100% consistent. Even with
a standard set of defining characteristics of each class, many
types of images were difficult to always identify as a certain
class, especially with a team of people applying labels.
Preliminary tests of the CNN performance indicated a
significant amount of misclassified bad subtractions. Closer
inspection of the incorrect predictions showed that human error
may have led to incorrect labels.

To inspect misclassified images, we employed a technique
called Gradient-weighted Class Activation Mapping (Grad-
CAM; Selvaraju et al. 2020) to highlight regions on the images
with the highest contributions toward the CNN’s classification
decision. Convolutional layers retain spatial information that
informs classifications in the fully connected layers. Grad-
CAM saves the gradients of each class with respect to the
activation maps of the last convolutional layer to produce a
localization map, essentially enabling us to inspect what the
network sees right before the images are classified. The
resulting heatmap of the difference images showed that the
network was identifying the same features we had been using
in our by-eye classifications; the final classification was only
incorrect because the initial label was incorrect. The images
determined to have incorrect initial labels were mostly subtle
bad subtractions or transients with small amounts of host
separation, making them hard for the team of labelers to agree
on. With the Grad-CAM technique serving as a lens, we were
able to identify when the neural network was making a correct,
but wrong due to the initial label of an image, classification and
corrected the initial labels in the difference imaging data. An
example of this process is shown in Figure A1.
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Figure A1. A visualization of how sets of difference images are interpreted by our networks. After training, the CNNs have learned what to look for in the images to
make a classification. This information is stored in the gradients of the final convolutional layer of the network and is shown by the “Learned Feature Maps” column.
After convolving the learned feature map with the image, the output is passed through a ReLU activation function to produce the class activation map shown as the
“CNN View” column. The learned feature maps demonstrate the network is looking for point-like objects in the center of the images, elongated and off-center objects,
and dipole-like regions. The bright spots in the “CNN View” of the host + transient image and inversely the dark spots for the bad subtraction indicate where those
features are located.
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