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It is known that complete Riemannian surfaces can be obtained by pasting three 
kinds of pieces. In this paper we prove an analogous result in the context of plane 
domains with their quasihyperbolic metrics. In order to do it, we prove several facts 
about quasihyperbolic closed geodesics of independent interest; for instance, we 
characterize the existence of quasihyperbolic minimizers, and we show that images 
of local quasihyperbolic geodesics are finite graphs.
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1. Introduction

A domain is an open connected subset of Euclidean space. Given a domain Ω � Rn, for each continuous 
rectifiable curve γ ⊂ Ω its quasihyperbolic length is the length induced by the density 1/δΩ(x), with 
δΩ(x) = dRn(x, ∂Ω) = dRn(x, Ωc); i.e.,

LΩ(γ) =
∫
γ

ds

δΩ(x) ,

where ds is the differential of Euclidean arclength. The quasihyperbolic distance in Ω, denoted by kΩ, is the 
distance induced by LΩ, i.e.,
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kΩ(x1, x2) = inf
{
LΩ(γ) : γ is a curve joining x1 and x2 in Ω

}
.

In this paper we identify the complex plane C with Euclidean plane; thus we have a quasihyperbolic metric 
defined on every domain Ω � C as a particular case of the above construction.

The quasihyperbolic metric of a domain in Rn was introduced by Gehring and Palka [11] in 1976. It has 
turned out to be a useful tool, for example, in harmonic analysis and many subfields of geometric function 
theory; for instance: in the study of quasiconformal maps either between Euclidean domains [27], [44] or 
between domains in Banach spaces [40], analysis of metric spaces [19], hyperbolic type metrics [15], [22], 
[23], [26], Sobolev spaces [29], [30], and John domains [9]. There is also quite a strong relationship between 
uniform domains and the quasihyperbolic metric [10], [11], [31].

The quasihyperbolic metric has important invariance properties. Since it depends on the shape of the 
boundary ∂Ω, it is usually less symmetric than the Poincaré metric [14]. It is nevertheless quasi-invariant 
under Möbius transformations [11]. Gehring and Osgood [10] established a rough, but very useful, notion 
of quasi-invariance for quasiconformal distance under quasiconformal maps. See also [27], [44] and the 
references therein.

The quasihyperbolic distance between two given points may be hard to compute. A useful tool for 
estimating its value is the j-metric, which is an easier to compute distance function but known to never 
be a geodesic distance [21, Theorem 2.10]. Gehring and Palka obtained in [11] the comparison result k ≥ j

between quasihyperbolic distance and j distance. Recent comparison results are proved in [23] and [26].

Definition 1.1. A quasihyperbolic geodesic for a domain Ω is a nonconstant path α : [a, b] → Ω such that

LΩ(α) = kΩ
(
α(a) , α(b)

)
. (1.1)

If β : [a′, b′] → Ω is a quasihyperbolic geodesic and φ : [a, b] → R is a continuous, monotone function 
with φ([a, b]) = [a′, b′], then the composite path α(t) ≡ β

(
φ(t)

)
is also a quasihyperbolic geodesic and it has 

the same image as β. We say that the path α is a reparametrization of β.
While condition (1.1) is a global one, in the Riemannian setting geodesics are defined by a local property:

Definition 1.2. A path γ : I → M on a Riemannian manifold M is a geodesic path if there is some fixed 
constant c > 0 and for each t0 ∈ I there is an ε(t0) > 0 such that the Riemannian distance dM

(
γ(t1), γ(t2)

)
equals c|t1 − t2| for all t1, t2 ∈ [ t0 − ε(t0) , t0 + ε(t0) ] ∩ I. If c = 1 then γ is a unitary geodesic path.

A geodesic image in a Riemannian manifold M is the set γ(I) for some geodesic path α : I → M.

The word geodesic is used for both geodesic paths and geodesic images in M when there is no danger of 
confusion.

Definition 1.3. In a Riemannian manifold M, a closed geodesic is a geodesic path γ : [a, b] → M such 
that γ(a) = γ(b) and the (b − a)-periodic extension R → M of γ is also a geodesic path; which forces 
γ′(a) = γ′(b). A simple closed geodesic is a closed geodesic γ : [a, b] → M that is also a simple closed path.

It is well known [10, Lemma 1] that a quasihyperbolic geodesic between given points always exists in 
Euclidean domains. They also exist in domains of many Banach spaces, and, in the case the domain is 
convex, the geodesic joining two points is unique [39]. For any planar domain Ω � R2 Väisälä has the 
following result:

Theorem A. ([42, Conjecture 1.2 and Theorem 7.7 (2)]) Any two of points in Ω whose quasihyperbolic 
distance is less than 2 are the endpoints of a unique (up to reparametrization) quasihyperbolic geodesic in 
Ω.
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G. Martin [31, Corollary 4.8] proved in 1985 that every quasihyperbolic geodesic α(t) in a Euclidean 
domain is C1,1 smooth, which exactly means that α is a reparametrization of some path β(u) whose velocity 
β′(u) is Lipschitz and nowhere zero; so the path image is an honest C1,1 submanifold of Euclidean space. 
For domains in many Banach spaces, quasihyperbolic geodesics are C1 smooth [43].

It is shown in [25] that quasihyperbolic balls are C1 smooth for convex domains in many Banach spaces 
(including Rn). For arbitrary domains in Rn, it is proved in [41, Theorem 5.10] that the only points where 
the boundary of a quasihyperbolic ball may not be C1 smooth are inward pointing cusps.

The study of the convexity properties (in the usual sense of linear algebra) of quasihyperbolic balls has 
attracted great interest. For instance [20] and [22] study such properties when the domain is punctured 
space, and [38] deals with convexity properties for quasihyperbolic balls of domains in Banach spaces. In 
[23] it is proved that quasihyperbolic balls with small radius in Euclidean domains are close to being convex. 
In the case of arbitrary domains in the Euclidean plane, there is a very strong result of Väisälä:

Theorem B. ([42, Theorem 7.5]) For any domain Ω � R2, quasihyperbolic balls of radius smaller than 1 are 
strictly convex.

In [20] and [42, Theorem 3.6] we find an explicit example of a planar domain whose quasihyperbolic balls 
of radius greater than 1 are not convex. This makes the radius value 1 optimal for Theorem B.

The proofs of these results required new ideas, since the density 1/δΩ(x) need not be differentiable. An 
example where this happens is the twice-punctured plane Ω = C \ {0, 2}, because δΩ(z) = min(|z|, |z − 2|)
and 1/δΩ(z) = 1/ min(|z|, |z − 2|) are not differentiable at any point on the line {Re(z) = 1}. The unit 
disc Ω = {z ∈ C : |z| < 1} is a domain with smooth boundary whose quasihyperbolic density 1/δΩ(z) =
1/(1 − |z|) is not differentiable at z = 0. On the other hand, a once-punctured plane and a halfplane are 
examples of domains with smooth quasihyperbolic density.

There are good reasons to think that the quasihyperbolic metric in Euclidean domains has negative 
curvature in a meaningful sense [5], [31], [32]. Also, some papers study the relation of the quasihyperbolic 
metric with another interesting geometric concept: Gromov hyperbolicity. The main theorem from [3], that 
extends results from [4], gives a complete characterization of Gromov hyperbolicity of Euclidean domains 
with the quasihyperbolic metric. In [28], there is a characterization of Gromov hyperbolicity of domains 
with the quasihyperbolic metric by geometric properties of the Ahlfors regular length metric measure space. 
See also [16], [17] and [18] for some sufficient Euclidean conditions in order to guarantee the hyperbolicity 
of some domains with the quasihyperbolic metric.

It is claimed in [6] that an arbitrary plane domain is Gromov hyperbolic in the quasihyperbolic metric if 
and only if it has the same property in the Poincaré metric.

We also refer to the survey [24] for more properties of the quasihyperbolic metric.
The model space for a pair of pants is the result of removing from a sphere the interiors of three pairwise 

disjoint closed discs (of positive radius). In general, a pair of pants is any compact topological surface with 
boundary that is homeomorphic to this example.

The celebrated Classification Theorem for compact surfaces says that every connected, orientable, com-
pact topological surface is homeomorphic either to a sphere or to a sphere with handles attached, see e.g. 
[33]. In particular, if such a surface is neither homeomorphic to a sphere nor to a torus then it contains a 
finite collection of pairwise disjoint simple closed curves such that by cutting the surface along them we are 
left with a finite collection of pairs of pants.

If a Riemann metric is specified on a pair of pants and the boundary curves are geodesic images, we call 
this surface a Y-piece. If moreover the metric has constant curvature −1 we speak of a hyperbolic Y-piece.
In the Riemannian setting one has the following:
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Every compact orientable Riemannian surface with constant curvature K = −1 can be split into hyperbolic 
Y-pieces by cutting along a finite collection of pairwise disjoint simple closed geodesics.

A hyperbolic halfplane is a Riemannian surface that is isometric with any of the two connected components 
of H \ γ, where γ is any complete geodesic in the hyperbolic plane H.

Let S be a surface carrying a complete Riemann metric with constant curvature −1. Then S is called a 
hyperbolic funnel if it is conformally diffeomorphic to a half-closed annulus {z ∈ C : a ≤ |z| < b}, for some 
constants 0 < a < b, and the circle {|z| = a} corresponds under this diffeomorphism to a geodesic image 
in S. Likewise S is called a generalized hyperbolic Y-piece if two conditions are met:

(1) S is diffeomorphic to the result of taking three pairwise disjoint closed discs in a sphere (including single 
points as closed discs of zero radius), and then removing the discs of zero radius and the interiors of the 
nontrivial discs.

(2) The diffeomorphism maps the boundaries of the nontrivial discs (if any) to geodesic images in S.

In [2] the following result was obtained

Theorem C. ([2, Theorem 1.2]) A complete orientable Riemannian surface S, with K ≡ −1, which is not 
isometric with the punctured disc, contains a countable collection of geodesics that split it into generalized 
hyperbolic Y-pieces, hyperbolic funnels, and hyperbolic halfplanes.

The geodesics in this theorem are either proper embeddings R ↪→ S or simple closed geodesics, and 
they have pairwise disjoint open neighborhoods. The generalized Y-pieces and hyperbolic funnels are closed 
subsets of S, while the halfplanes are open subsets.

Theorem C is generalized in [37] to surfaces with arbitrary curvature.
The present paper deals with the quasihyperbolic metric on plane domains Ω � C. Since this metric is 

only Lipschitz in general, the behavior of closed geodesics, their existence, and their uniqueness, are not 
trivial to study.

The main result in this paper, stated with a bit more detail as Theorem 7.3 in Section 7, is a decomposition 
for plane domains with their quasihyperbolic metric. It is quite analogous to Theorem C:

Main Theorem. Given a domain Ω � C, endowed with its quasihyperbolic metric, which is neither simply 
nor doubly connected, there exists a set H ⊆ Ω, union of countably many closed domains each one of which 
is a Y-piece, a funnel, a puncture or an exterior Y-piece, in such a way that Ω is the disjoint union of the 
closure H and simply connected open sets.

This decomposition is made possible by other crucial results. In Section 4 we determine when quasihy-
perbolic length can be minimized within the free homotopy class of a Jordan curve, plus we describe some 
useful minimizers which we call quasihyperbolic limit geodesics. In Section 3 we show that quasihyperbolic 
geodesics of finite quasihyperbolic length have a finite number of intersections. This is most valuable, as 
quasihyperbolic geodesics can intersect in the following ways: two distinct quasihyperbolic geodesics may 
be tangent at a point; further, they can have segments of positive length that coincide for a while and then 
split apart. These intersection phenomena are well known, and Väisälä has exhibited them explicitly in [42, 
pages 10-12]. See Section 3 for details.

Just as half-planes are needed in Theorem C, the decomposition in Theorem 7.3 sometimes requires 
pieces which are simply connected open sets. This is made obvious by Examples 8.1 and 8.2.
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2. Background

Let Ω � C be a domain endowed with its quasihyperbolic metric. The quasihyperbolic distance from a 
closed set A ⊂ Ω is the function kΩ(·, A) : Ω −→ R given by

kΩ(z,A) := inf{ kΩ(z, p) : p ∈ A } .

For r > 0 we define the quasihyperbolic neighborhoods of A as follows

BΩ(A, r) =
{
z ∈ Ω : kΩ(z,A) < r

}
,

BΩ(A, r) =
{
z ∈ Ω : kΩ(z,A) ≤ r

}
=

{
z ∈ Ω : kΩ(z, p) ≤ r for all p ∈ A

}
.

The set BΩ(A, r) is always open, while BΩ(A, r) is always closed (and compact when A is compact).
For closed A, A′ ⊂ Ω, the quasihyperbolic Hausdorff distance between them is

kΩ,H(A,A′) = inf
{
r > 0 : A′ ⊆ BΩ(A, r) and A ⊆ BΩ(A′, r)

}
.

The Euclidean analogues dC(·, A), BC(A, r), BC(A, r), and dC,H(A, B) are defined in the obvious way.
We next introduce some notions that deal with ends of surfaces.

Definition 2.1. Let S be a connected, non-compact topological surface.
An end of S is a function E that assigns to each compact subset K ⊂ S a connected component E(K)

of S \K, in such a way that whenever K1 ⊆ K2 we have E(K1) ⊇ E(K2).

The intuitive idea behind this definition is that ends are ‘points at infinity’ of the surface.

Definition 2.2. Let E be an end of a topological surface S.
A neighborhood of E is any open set U ⊆ S that contains E(K) for some compact K ⊂ S.
An end E of S is collared if some neighborhood of E is homeomorphic to (0, ∞) × S1.

Consider the case when the surface is a domain Ω � C. Every isolated point of Ωc = C \ Ω defines a 
collared end of Ω. If Ωc is compact, then the point ∞ of C = C ∪ {∞} defines another collared end of Ω. 
These are all possible collared ends of a planar domain.

Some people use the term limit end to refer to a non-collared end.
We next describe three ways to approach an end of a surface S:

(1) A sequence of points {xn} ⊂ S converges to E if for each neighborhood U of E there is an integer nU

such that the points xnU
, xnU+1, xnU+2, . . . all belong to U .

(2) A sequence of non-empty sets {Xn} converges to E if for each neighborhood U of E there is an integer 
nU such that XnU

, XnU+1, XnU+2, . . . are all contained in U .
(3) A divergent path σ : [0, ∞) → S converges to a unique end Eσ of S; namely, the end that assigns to 

each compact subset K ⊂ S the connected component Eσ(K) of S \K that contains a terminal segment 
σ([a, ∞)), a ≥ 0.

In the proof of Theorem 7.3 we use the following result, a consequence of the proof of [7, Theorem 4.2].

Theorem D. Let Ω � C be a domain, endowed with its quasihyperbolic metric, and let E be an end of Ω. 
Then E is a collared end if and only if there exists a sequence {αn} of simple closed curves converging to 
E and representing a single non-trivial free homotopy class in Ω.
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We shall be using two path homotopy notions.

Definition 2.3. Let M be a connected manifold and consider two paths α, β : [a, b] → M defined on the 
same interval.

We say that α and β are homotopic rel endpoints in M if they have the same initial point p = α(a) = β(a), 
the same final point q = α(b) = β(b), and there is a continuous map F : [a, b] × [0, 1] → M such that for 
each λ ∈ [0, 1] the path Fλ : [a, b] → M given by Fλ(t) = F (t, λ) is a path with initial point p, final point q, 
and, in particular, F0 ≡ α and F1 ≡ β. The map F , if it exists, is a homotopy rel endpoints between α
and β.

Suppose now that α and β are closed paths, i.e. α(a) = α(b) and β(a) = β(b). We say that α and β are 
freely homotopic in M if there is a continuous map G : [a, b] × [0, 1] → M such that for each λ ∈ [0, 1] the 
path Gλ : [a, b] → M given by Gλ(t) = G(t, λ) is a closed path, and, in particular, G0 ≡ α and G1 ≡ β. 
The map G, if it exists, is a free homotopy between α and β.

A homotopy rel endpoints continuously deforms α into β while keeping each endpoint fixed during the 
deformation. A free homotopy continuously deforms the loop α into the loop β, with all intermediate paths 
being also loops.

Both properties, being homotopic rel endpoints or being freely homotopic, are equivalence relations and 
give rise to equivalence classes in M: homotopy classes rel endpoints in M and free homotopy classes in M, 
respectively. Given a domain Ω � C, the constant paths [a, b] → Ω all belong to the same free homotopy 
class, which is called trivial free homotopy class in Ω. A closed path γ ⊂ Ω is null-homotopic, or contractible
in Ω, if it belongs to the trivial free homotopy class in Ω.

Fix a point ∗ ∈ M and consider the (closed) paths in M with ∗ as initial and final point. Their 
homotopy classes rel this endpoint are the elements of a group π1(M, ∗), called fundamental group of M
with basepoint ∗. The multiplication is defined by [α][β] = [αβ], where αβ is a path that goes first along α
and then along β. In this paper we shall not need to keep track of the basepoint and, accordingly, we shall 
write π1(M) for this group. A domain Ω ⊆ C is simply connected if π1(Ω) = {0}, and it is called doubly 
connected if π1(Ω) = Z.

Every continuous map f : M1 → M2 induces a group homomorphism f# : π1(M1) → π1(M2) defined 

by [α] �−→ [f ◦α]. If we have continuous maps M1
f−→ M2

g−→ M3, then (g ◦f)# = g# ◦f#. An immediate 
consequence is that if f is a homeomorphism then f# is a group isomorphism.

Definition 2.4. Given a connected submanifold (possibly with boundary) N ⊂ M and the inclusion map 
i : N ↪→ M, the subgroup i#

(
π1(N )

)
of π1(M) will be called the subgroup induced by N .

A free loop, as opposed to a based loop used in the definition of the fundamental group, is a map from 
the circle to the space without the basepoint-preserving restriction. Free homotopy classes of free loops 
correspond to conjugacy classes in the fundamental group.

We now present some facts about rotation indexes.

Definition 2.5. Consider a point p ∈ C and an oriented, closed path α ⊂ C \ {p}. The rotation index, or 
winding number, of α around p is the number

i(α, p) = 1
2πi

∫
α

dz

z − p
.

Please note that this definition applies to any closed path, not only to simple closed paths.
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Lemma 2.6. The rotation index is always an integer. It remains constant as we deform α within its free 
homotopy class in C \{p}. It also remains constant if we fix α and we move the point p inside one connected 
component of the open set C \ α.

Proof. In Chapter 9 of [35] we find the definitions of two concepts strongly related to fundamental groups: 
covering maps and liftings. Given a covering map π : M → M0 and a map f : N → M0, a lifting of f
under π is a map f̃ : N → M such that f ≡ π ◦ f̃ .

The punctured plane C \ {p} admits the following covering map:

π : R2 −→ C \ {p} , π(l, θ) = p + el+iθ .

Each path α : [a, b] → C \ {p} has a continuous lifting 
(
l, θ

)
: [a, b] → R2 such that α(t) ≡ p + el(t)+iθ(t). If 

moreover α(t) is a closed path, then

p + el(a)+iθ(a) = α(a) = α(b) = p + el(b)+iθ(b) ,

thus l(b) − l(a) = 0 and the angle change θ(a) − θ(b) must be equal to 2πk for some integer k. It is easily 
seen that once α is fixed the integer k is the same for all liftings of α.

Let G : [a, b] × [0, 1] → C \ {p} be a free homotopy between two closed paths α, β : [a, b] → C \ {p}. As 
is explained in [35, Lemma 54.2], the map G has a continuous lifting

(
l, θ

)
: [a, b] × [0, 1] −→ R2 ,

such that G(t, λ) ≡ p + el(t,λ)+iθ(t,λ). For each λ ∈ [0, 1] we must have l(b, λ) − l(a, λ) = 0, and the angle 
change θ(a, λ) − θ(b, λ) must be an integer multiple of 2π. We thus have a continuous function

[0, 1] −→ Z , λ �−→ θ(a, λ) − θ(b, λ)
2π ,

from the interval [0, 1] to the discrete space Z. Such a function is necessarily constant and, in particular, has 
the same value at λ = 0 and at λ = 1. This proves that freely homotopic closed paths in C \ {p} give rise 
to the same integer. In other words, every free homotopy class [α] in C \ {p} determines a unique integer.

A lifting 
(
l(t), θ(t)

)
of the closed path α(t) can be used to compute the integral:

∫
α

dz

z − p
=

b∫
a

(
l′(t) + iθ′(t)

)
el(t)+iθ(t)

el(t)+iθ(t)
dt =

b∫
a

(
l′(t) + iθ′(t)

)
dt = 0 + iθ(b) − iθ(a) = 2πik,

where k ∈ Z is the integer determined by the free homotopy class [α] and at the same time equals i(α, p).
The map C \ α → Z given by p �−→ i(α, p) is continuous, thanks to its integral formula. Therefore it is 

constant on each connected component of C \ α, since Z is a discrete space. �
In fact, it is shown in [35, Chapter 9] that the map π1

(
C\{p}

)
→ Z that takes each class [α] ∈ π1

(
C\{p}

)
to i(α, p) is a group isomorphism. Thus π1(C \ {p}) is an infinite cyclic group, and a closed path α has 
rotation index ±1 around p if and only if its class [α] is a generator for π1(C \ {p}).

Definition 2.7. Let α ⊂ C be a Jordan curve. The interior of α is the bounded connected component Int(α)
of C \ α. The exterior of α is the other connected component Ext(α) of C \ α, so that ∞ ∈ Ext(α).

The meanings of the expressions ‘lies interior to α’, ‘is surrounded by α’, and ‘lies exterior to α’ are the 
obvious ones.
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By a theorem due to Schoenflies [34, Pages 68 and 72], given a Jordan curve α : [a, b] → C there is 
a homeomorphism Φ : C → C such that the path α0 = Φ ◦ α goes once around the unit circle. The set 
α([a, b]) ∪ Int(α) is compact and so is its image under Φ; hence Φ maps Int(α) to the open disc bounded 
by α0. A first consequence is that the interior of any Jordan curve is a simply connected open set.

Lemma 2.8. Let α ⊂ C be a Jordan curve. A point p interior to α gives rotation index i(α, p) = ±1. An 
exterior point q gives i(α, q) = 0.

Proof. Let Φ : C → C be a homeomorphism that maps α to the circular path α0 and the point p to a point 
p0 interior to α0.

The class [α0] of α0 in C\{p0} clearly is a generator for π1(C\{p0}). The isomorphism Φ# : π1(C\{p}) →
π1(C \ {p0}) maps the class [α] to the class [α0]. Therefore the class [α] is a generator for π1(C \ {p}). As 
we have explained above, this implies that i(α, p) = ±1.

Let now U be the unbounded connected component of C \ α and q a point in U . Since connected open 
sets in the plane are path connected, there is a divergent path β : [0, +∞) → U starting at β(0) = q. 
By Lemma 2.6, the number i

(
α, β(t)

)
remains constant as t goes from 0 to +∞. On the other hand, the 

integrand in the formula

i
(
α, β(t)

)
= 1

2πi

∫
α

dz

z − β(t) ,

goes uniformly to zero as t → +∞ because β(t) is divergent, therefore limt→+∞ i
(
α, β(t)

)
= 0. We conclude 

that i
(
α, β(t)

)
is zero for all t ∈ [0, +∞); in particular 0 = i

(
α, β(0)

)
= i(α, q). �

Lemma 2.9. Let α ⊂ Ω be a Jordan curve. The free homotopy class of α in Ω is nontrivial if and only if 
Int(α) contains at least one point of Ωc.

Proof. The set α ∪ Int(α) is homeomorphic to a closed disc. If this set is contained in Ω, it makes α
contractible in Ω. Therefore if [α] is nontrivial then at least one point of Int(α) is not in Ω.

Conversely, if there is a point p ∈ Int(α) ∩ Ωc then i(α, p) = ±1. Therefore α is not freely homotopic in 
C \ {p} to a constant loop. But Ω ⊆ C \ {p}, hence α is not freely homotopic in Ω to a constant loop. �

We finish this Section with the proofs of three facts about uniform path convergence.

Lemma 2.10. Let Ω � C be a domain, endowed with its quasi-hyperbolic metric. If σ, η : [a, b] → Ω are closed 
curves and dΩ(σ(t), η(t)) < 1 for every t ∈ [a, b], then [σ] = [η].

Proof. By Theorem B, the quasihyperbolic ball BΩ(σ(t), 1) is (Euclidean) convex and so, the Euclidean 
segment joining σ(t) and η(t) is contained in BΩ(σ(t), 1) ⊂ Ω. Hence Φ : [a, b] × [0, 1] → C, given by 
Φ(t, s) = (1 − s) σ(t) + s η(t), is a map with values in Ω and it is a free homotopy between σ and η. �
Lemma 2.11. Let Ω � C be a domain, endowed with its quasi-hyperbolic metric.

A point sequence {pn} ⊂ Ω converges to a point p ∈ Ω with respect to Euclidean distance if and only if 
it converges to p with respect to quasihyperbolic distance.

A path sequence σn : [a, b] → Ω converges uniformly to a path σ : [a, b] → Ω with respect to Euclidean 
distance if and only if it converges uniformly to σ with respect to the quasihyperbolic distance.

Proof. If z ∈ BC(p, δΩ(p)/2) ⊂ Ω, then 1δΩ(p) ≤ δΩ(z) ≤ 3δΩ(p).
2 2
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Given z1, z2 ∈ BC(p, δΩ(p)/2) the Euclidean segment γ joining them is contained in BC(p, δΩ(p)/2) and 
we have

kΩ(z1, z2) ≤
∫
γ

|dz|
δΩ(z) <

2
δΩ(p)

∫
γ

|dz| = 2
δΩ(p) |z1 − z2|.

A result of G. Martin [31, Theorem 2.2] states that if η is a quasi-hyperbolic geodesic joining z1, z2, then 
η ⊂ BC(p, δΩ(p)/2). Thus,

kΩ(z1, z2) = LΩ(η) =
∫
η

|dz|
δΩ(z) ≥ 2

3δΩ(p)

∫
η

|dz| ≥ 2
3δΩ(p) |z1 − z2|,

and we conclude

2
3δΩ(p) |z1 − z2| ≤ kΩ(z1, z2) ≤

2
δΩ(p) |z1 − z2|, (2.2)

for every z1, z2 ∈ BC(p, δΩ(p)/2). This implies the first statement.
Let us prove now the second one. Since the image set of σ is compact and Ωc is closed, we have

m := dC(σ,Ωc) = min
p∈σ

δΩ(p) > 0, M := max
p∈σ

δΩ(p) < ∞.

Hence, (2.2) gives

2
3M |z1 − z2| ≤ dΩ(z1, z2) ≤

2
m

|z1 − z2|, (2.3)

if z1, z2 ∈ BC(p, m/2) for some p ∈ σ. Since {z ∈ C : dC(z, σ) < m/2} is an open neighborhood of σ, (2.3)
implies the second statement. �

We have the following consequence for free homotopy classes.

Corollary 2.12. Let Ω � C be a domain, endowed with its quasi-hyperbolic metric, and σ a closed path 
in Ω. If {σn} is a sequence of closed paths converging uniformly to σ (with respect to the Euclidean or the 
quasihyperbolic metric), then there is an integer n0 such that σn ⊂ Ω and [σn] = [σ] for every n ≥ N .

3. Intersection behavior of local geodesics

The definition of quasihyperbolic geodesic is quite restrictive. In particular, condition (1.1) forces the 
path to be an embedding of a Jordan arc. We make a less restrictive definition as follows.

Definition 3.1. Let Ω � C be a domain, endowed with its quasihyperbolic metric. A path α : I → Ω is a local 
quasihyperbolic geodesic if for every t0 ∈ I there exists ε > 0 such that γ|[t0−ε,t0+ε]∩I is a quasihyperbolic 
geodesic.

In this definition we allow ε to be an arbitrarily small positive number; but actually any value 0 < ε < 1
will do, thanks to the following result of Väisälä:

Theorem E. ([42, Theorem 8.10]) If α is a local quasihyperbolic geodesic in Ω and LΩ(α) < 2, then α is a 
quasihyperbolic geodesic in Ω.
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A local quasihyperbolic geodesic need not be an injective path. It can have infinite quasihyperbolic 
length when its domain I is noncompact. It is obvious that Martin’s regularity result [31, Corollary 4.8], 
already mentioned in the Introduction, also holds for local quasihyperbolic geodesics and so they are C1,1

smooth.
In this Section, and also in Section 5, we are going to compare the intersection behavior of Riemannian 

geodesics to that of local quasihyperbolic geodesics.
Riemannian geodesics have a very simple intersection behavior. Let M be a Riemannian manifold. Let 

α : I1 → M and β : I2 → M be two unitary Riemannian geodesics which have an intersection α(t1) = β(t2), 
with t2 = t1 + c. If moreover α′(t1) = β′(t2), then

α(t) ≡ β
(
t + c

)
for all t ∈ I1 ∩ (−c + I2) .

In other words, if two Riemannian geodesics α and β have a tangency then we can fuse α(t) and a time 
translation β(t + c) together into a single geodesic path.

On the contrary, quasihyperbolic geodesics can be tangent at an isolated point of intersection. We recall 
an example where this happens.

Example 3.2. Consider Ω = C \ {0, 2} with its quasihyperbolic metric. For 0 < r ≤ 1, the following curves 
are closed local quasihyperbolic geodesics in Ω:

αr = { z : |z| = r } , βr = { z : |z − 2| = r } ,

and we see that for r = 1 they are tangent at the point z = 0. Let D, D′ be the closed discs bounded by α1
and β1, respectively. One can check that a geodesic joining 1 to any point not in D ∪D′ is exterior to both 
α1 and β1, which forces it to be tangent at z = 1 to both α1 and β1.

What is even more surprising is that two quasihyperbolic geodesic segments may coincide for some 
nonzero amount of time and then split apart. They can be segments of different quasihyperbolic geodesics 
or of the same one; more precisely:

There are pairs of local quasihyperbolic geodesics α1 : J1 → Ω and α2 : J2 → Ω, defined on open intervals 
J1, J2, and compact intervals of positive length I1 ⊂ J1, I2 ⊂ J2 such that

α1(I1) = α2(I2) but α1
(
J1 \ I1

)
∩ α2

(
J2 \ I2

)
= ∅ ,

see Fig. 2 in Section 5. This even happens for restrictions α1 = α|J1 , α2 = α|J2 of a single local quasihy-
perbolic geodesic α to intervals J1 �= J2.

Väisälä describes this previously known phenomenon in [42, pages 10-12], where he exhibits some pairs 
of quasihyperbolic geodesics in the twice-punctured plane C \ {0, 2} that have this behavior.

There are situations which force local quasihyperbolic geodesics to do this. One such condition is the 
existence of a ‘narrow rectangular corridor’ in the domain Ω, as in the following Lemma.

Lemma 3.3. Let Ω � C be a domain that for some a > 2 contains the open rectangle Ua = (−1, 1) + i(−a, a), 
while the long sides L±

a = ±1 + i[−a, a] of that rectangle lie entirely in Ωc.
If γ is a local quasihyperbolic geodesic in Ω joining a point on the short side {x − ia : x ∈ (−1, 1)} ∩ Ω

with a point on the other short side {x + ia : x ∈ (−1, 1)} ∩ Ω, and contained in Ua ∩ Ω, then the segment 
L4 = i[−a + 2, a − 2], four units shorter than [−a, a], is part of γ.
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Fig. 1. A Jordan curve and a homotopic closed quasihyperbolic geodesic.

Proof. The segment L2 = i[−a +1, a −1], two units shorter than [−a, a], separates Q−
a := (−1, 0] +L2 ⊂ Ua

from Q+
a := [0, 1) + L2 ⊂ Ua. In the left rectangle Q−

a we have δΩ(x + iy) = 1 + x, hence the restriction to 
Q−

a of the quasihyperbolic metric of Ω coincides with the restriction to Q−
a of the Poincaré metric in the 

half-plane {x + iy ∈ C : x > −1}. Thus, the geodesics of Ω in Q−
a consist of straight segments orthogonal 

to L−
a , subarcs of half-circles orthogonal to L−

a , and segments contained in L2. A symmetric result holds 
for the right-side rectangle Q+

a . All these parts must be put together so that the result is a C1,1 curve. One 
checks, by inspection, that if γ goes all the way from {y = 1 − a} to {y = a − 1}, then it is the union 
of a straight segment that contains L4 and at most two subarcs of circles centered at L+

a ∪ L−
a and with 

radius 1. �
The left part of Fig. 1 shows a Jordan curve inside a domain Ω � C whose complement Ωc consists of two 

points and two vertical straight segments. The right part of the same figure shows a local quasihyperbolic 
geodesic freely homotopic to the Jordan curve. This local quasihyperbolic geodesic exists, as we shall see in 
Section 4, and goes twice along a straight segment: first in one direction, then in the opposite direction.

The intersection of local quasihyperbolic geodesics is not arbitrarily bad. For example, they cannot have 
a convergent infinite sequence of isolated intersection points. In general, two local quasihyperbolic geodesics 
of finite quasihyperbolic length cannot intersect in a set with infinitely many connected components. Theo-
rem 3.5 below provides a full description for the intersection behavior of local quasihyperbolic geodesics. It 
is based on the following lemma, obtained from two results of Väisälä: Theorems A and E.

Lemma 3.4. Let Ω � C be a domain. Let α : [a1, b1] → Ω and β : [a2, b2] → Ω be local quasihyperbolic 
geodesics with quasihyperbolic lengths less than 2. The set α([a1, b1]) ∩β([a2, b2]) can only be empty, a single 
point, or a compact Jordan arc.

Proof. Both α and β are quasihyperbolic geodesics by Theorem E. In particular α([a1, b1]) and β([a2, b2])
are compact Jordan arcs.

If the lemma did not hold for α, β, then α([a1, b1]) ∩ β([a2, b2]) would be nonempty with at least two 
connected components, say C ′ and C ′′. Assuming this, choose points p′ ∈ C ′ and p′′ ∈ C ′′. Then p′, p′′ would 
both lie on the Jordan arc α([a1, b1]), hence they would be the endpoints of a path α|[a′

1,b
′
1] for some interval 

[a′1, b′1] ⊆ [a1, b1]. Likewise they would be the endpoints of β|[a′′
2 ,b

′′
2 ] for some interval [a′′2 , b′′2 ] ⊆ [a2, b2].

It must be α([a′1, b′1]) �= β([a′′2 , b′′2 ]), for otherwise we would have an arc α([a′1, b′1]) = β([a′′2 , b′′2 ]) contained 
in α([a1, b1]) ∩ β([a2, b2]) and joining C ′ to C ′′, which is impossible since C ′, C ′′ are distinct connected 
components of α([a1, b1]) ∩ β([a2, b2]).

Thus α|[a′
1,b

′
1] and β|[a′′

2 ,b
′′
2 ] would be quasihyperbolic geodesics, different even up to reparametrization, 

with quasihyperbolic length less than 2 but with the same endpoints. As this contradicts Theorem A, the 
lemma follows. �

The theorem we now state says that the joint image of one or several local quasihyperbolic geodesics, 
each with a finite quasihyperbolic length, can be described as a finite graph embedded in the plane.
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Theorem 3.5. Let αi : [ai, bi] → Ω, i = 1, . . . , k, be a finite collection of local quasihyperbolic geodesics whose 
quasihyperbolic lengths are finite. There exists a graph Γ, with finitely many vertices and edges, and an 
embedding κ : Γ ↪→ Ω, such that κ(Γ) =

⋃k
i=1 αi([ai, bi]).

Proof. By splitting each path into segments of quasihyperbolic length less than 2, we may assume without 
loss of generality that LΩ(αi) < 2 for i = 1, . . . , k. We assume this in the rest of the proof and we proceed 
by induction on k.

Case k = 1. We have only one local quasihyperbolic geodesic α1 with LΩ(α1) < 2, hence a quasihyperbolic 
geodesic. The image set α([a1, b1]) is a compact Jordan arc; i.e., the result of embedding into the plane a 
graph that consists of two vertices joined by one edge.

General case: k > 1 and the theorem is true for k − 1. The set K ⊂ Ω, joint image of the local 
quasihyperbolic geodesics α1, . . . , αk−1, is the result of embedding a finite graph Γk−1 into the plane. If 
αk([ak, bk]) ⊆ K, we are done. If K and αk([ak, bk]) are disjoint, then the joint image of α1, . . . , αk is the 
result of embedding into the plane the disjoint union of Γk−1 and the graph with two vertices joined by one 
edge. Assume now that the Jordan arc αk([ak, bk]) is not contained in K but it intersects K.

Since each intersection αi([ai, bi]) ∩ αk([ak, bk]), i = 1, . . . , k − 1, is either empty or connected, it follows 
that K ∩αk([ak, bk]) is a compact set with at least one and at most k− 1 connected components. Therefore 
αk([ak, bk]) \

(
K ∩ αk([ak, bk])

)
is the union of some pairwise disjoint Jordan arcs γ1, . . . , γr ⊂ αk([ak, bk]), 

with 0 < r ≤ (k − 1) + 1 = k. None of the arcs γj is compact, although there may be one including the 
point αk(ak) and there may be another one including αk(bk). We have a set equality:

K ∪ αk([ak, bk]) = K ∪ γ1 ∪ · · · ∪ γr ,

where the right-hand side is a disjoint union.
Each arc γj has two endpoints in αk([ak, bk]). Of these endpoints, the ones different from αk(ak) and 

αk(bk) correspond to points vh ∈ Γk−1, thus leading to a finite list v1, . . . , vs ∈ Γk−1 with s ≤ 2r ≤ 2k.
We now enlarge Γk−1 by the following finite process. Do nothing for those points vh that are vertices of 

Γk−1. If vh is interior to an edge of Γk−1, add it as a new vertex and split that edge accordingly. If some 
γj contains αk(ak) or αk(bk), add a new isolated vertex. Once this has been done for all vh and all γj , we 
have a new finite graph Γ′

k−1 that has an embedding into the plane whose image is one of the following:

K , K ∪ {αk(ak)} , K ∪ {αk(bk)} , K ∪ {αk(ak), αk(bk)} .

By construction, the joint image set

α1([α1, b1]) ∪ · · · ∪ αk([ak, bk]) = K ∪ γ1 ∪ · · · ∪ γr ,

is the result of embedding into the plane a graph Γk obtained from Γ′
k−1 by adding r new edges, so that for 

j = 1, . . . , r the new edge corresponding to γj joins the vertices of Γ′
k−1 that came from the two endpoints 

of γj in αk([ak, bk]). �
4. Closed minimizers

Our second way to replace the definition of quasihyperbolic geodesic by a less restrictive one is to consider 
minimization of a functional (e.g. quasihyperbolic length) within a given path homotopy class.

Definition 4.1. Let a be a path homotopy class (free or rel endpoints) in some manifold M. Let F be a 
functional that maps paths on M to numbers. A minimizer for F in the class a is a path α on M such that

α ∈ a and F [α] = min
{
F [σ] : σ ∈ a

}
.
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We shall apply this definition to only two functionals: Riemannian length and quasihyperbolic length.

Proposition 4.2. Let Ω � C be a domain, endowed with its quasihyperbolic metric. Let α be a closed path in 
Ω that is a minimizer for quasihyperbolic length in its free homotopy class [α]. If α is non-constant, then it 
is a local quasihyperbolic geodesic, hence C1,1.

Proof. Let σ be one such minimizer. Fix z0 ∈ σ and consider an open arc σ0 ⊂ σ with z0 ∈ σ0 and 
LΩ(σ0) < 1/2 (this arc exists because σ is non-constant). Let η0 be a quasihyperbolic geodesic joining the 
endpoints of σ0.

By Theorem B, the quasihyperbolic ball BΩ(z0, 1) is convex in the usual sense of linear algebra. Then, 
since σ0 ∪ η0 ⊂ BΩ(z0, 1), we have that σ0 and η0 are homotopic rel their endpoints. If LΩ(η0) < LΩ(σ0), 
then (σ \ σ0) ∪ η0 is in the free homotopy class [σ] and has strictly less quasihyperbolic length than σ, a 
contradiction. Therefore, LΩ(η0) = LΩ(σ0) and the arc σ0 is a quasihyperbolic geodesic. Since this is valid 
for all points z0 ∈ σ, we see that σ is a local quasihyperbolic geodesic. �

The above proof shows that arcs in α with quasihyperbolic length lesser that 1/2 are quasihyperbolic 
geodesics. But, once we know that α is a local quasihyperbolic geodesic, we can apply Theorem E and 
conclude that arcs in α with quasihyperbolic length lesser that 2 are quasihyperbolic geodesics.

4.1. Existence of closed minimizers

In this subsection we give existence and nonexistence results for minimizers of quasihyperbolic length in 
the free homotopy class represented by a Jordan curve α0 ⊂ Ω. Recall that the interior of α0 is the bounded 
connected component Int(α0) of C \α0, while the exterior of α0 is the other connected component Ext(α0)
of C \ α0, so that ∞ ∈ Ext(α0).

It is natural to consider three possible cases. In the third case we construct these minimizers as limits of 
minimizing Riemannian geodesics, a feature that will be very important later in the paper.

Case 1 (the easy case). Ωc ∩ Int(α0) consists of exactly one point p. In this case it does not matter how 
many points of Ωc lie exterior to α0. The quasihyperbolic metric near an isolated point p of Ωc is isometric 
to a product cylinder (0, ∞) ×S1. If we define polar coordinates (r, θ) by z = p + reiθ, then near p we have 
δΩ ≡ r and the quasihyperbolic metric in {r0 > r > 0} can be seen as the following Riemann metric:

|dz|2
r2 = (dr)2 + r2 (dθ)2

r2 = (d�)2 + (dθ)2 , where � = log r0 − log r ∈ (0,∞) .

This is very well known; it appeared in [32, page 38] and has been used, for example, in [42] and [20]. Notice 
that the circles {r = constant} all have quasihyperbolic length 2π and are minimizers for quasihyperbolic 
length within the class [α0].

Case 2 (nonexistence case). Ωc has two or more points interior to α0 and no point exterior to α0. This can 
only happen when Ωc is compact. If for a moment we consider the Gauss sphere C, then ∞ is the only point 
exterior to α0; we say that α0 surrounds the puncture at infinity.

Let us see that there is no minimizer in this case.
Choose two points z0, z1 ∈ Ωc, and let γ(t) = z0 + r(t)eiθ(t) ⊂ Ω be any counterclockwise Jordan curve 

that surrounds Ωc, then:

LΩ(γ) =
∫ |dz|

δΩ(z) ≥
∫ |dz|

|z − z0|
=

1∫ ∣∣∣∣r′(t)r(t) + iθ′(t)
∣∣∣∣ dt ≥

1∫
θ′(t) dt = 2π . (4.4)
γ γ 0 0
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The value 2π is a lower bound for the quasihyperbolic length of all curves in the class [α0]. Of the two 
inequalities in formula (4.4), the second one is strict unless r′(t) ≡ 0. The curve γ thus has LΩ(γ) > 2π if 
it is not a circle centered at z0. Likewise it has LΩ(γ) > 2π if it is not a circle centered at z1. But a circle 
cannot be centered at both points simultaneously; thus the equality LΩ(γ) = 2π is never achieved.

On the other hand 2π is indeed the infimum. In this case Ωc is a compact set, hence contained in a ball 
Ωc ⊂ BC(p, r0). For each R > r0, the path αR(t) = p + Reit, 0 ≤ t ≤ 2π, is a circle freely homotopic to α0. 
From the estimate:

δΩ
(
αR(t)

)
= dC

(
p + reit , Ωc

)
∈

[
R− r0 , R + r0

]
,

we get:

1
R + r0

∫
αR

|dz| ≤
∫
αR

|dz|
δΩ(z) ≤ 1

R− r0

∫
αR

|dz| ,

which together with 
∫
αR

|dz| = 2πR leads to

2π R

R + r0
≤ LΩ(αR) ≤ 2π R

R− r0
,

and so LΩ(αR) → 2π as R → ∞. This proves that 2π is the (non attainable) infimum of quasihyperbolic 
length within the class [α0].

We state the third case as a theorem. It contains a statement dealing with uniform limits that will be 
made precise during the proof.

Theorem 4.3. (Case 3). Let Ω � C be a domain, endowed with its quasihyperbolic metric. Let a = [α0] be 
the free homotopy class in Ω of a Jordan curve α0 ⊂ Ω, such that Ωc contains at least two points interior 
to α0 and at least one point exterior to α0. Then a contains a minimizer for quasihyperbolic length.

In fact, there is one such minimizer that is a uniform limit of minimizers for Riemannian metrics.

Proof. Since Ωc ⊂ C \ α0, the map Ωc → Z given by x �−→ i(x, α0) is continuous. Therefore the sets

Int(α0) ∩ Ωc = {x ∈ Ωc : i(x, α0) = ±1 } , Ext(α0) ∩ Ωc = {x ∈ Ωc : i(x, α0) = 0 } ,

are both closed.
Consider any path β : [a0, b0] → C with β(a0) ∈ Int(α0) ∩ Ωc and β(b0) ∈ Ext(α0) ∩ Ωc. We first trim 

the initial part of β out. For that purpose, we define the number

a = sup
{
t ∈ [a0, b0] : β(t) ∈ Int(α0) ∩ Ωc

}
.

We have a = limk→∞ tk for a sequence {tk}∞k=1 ⊂ [a0, b0] such that β(tk) ∈ Int(α0) ∩Ωc for all k. We deduce 
that β(a) ∈ Int(α0) ∩ Ωc, because Int(α0) ∩ Ωc is closed. Actually, we have:

a0 ≤ a < b0 , β(a) ∈ Int(α0) ∩ Ωc , β
(
(a, b0]

)
⊂ Ω ∪ Ext(α0) .

Now we trim the final part of β out with the help of the following number:

b = inf
{
t ∈ [a, b0] : β(t) ∈ Ext(α0) ∩ Ωc

}
.
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By an argument similar to the previous one

a < b ≤ b0 , β(b) ∈ Ext(α0) ∩ Ωc , β
(
(a, b)

)
⊂ Ω .

The points p1 = β(a) and q = β(b) are the only ones outside Ω on the trimmed path β|[a,b]. Since Ωc

contains at least two points interior to α0, there is a point p2 ∈ Int(α0) ∩ Ωc with p2 �= p1.
Since Ω ⊆ C \ {p1, p2, q}, any loop α ∈ a is also free homotopic to α0 in C \ {p1, p2, q}, hence

i(α, p1) = i(α0, p1) = ±1 , i(α, p2) = i(α0, p2) = ±1 , i(α, q) = i(α0, q) = 0 . (4.5)

Fix a radius r > 0 such that the following sets are pairwise disjoint

D1 = BC(p1, r) , {p2} , D = BC(q, r) .

Any loop α ∈ a contains a point qα ∈ α outside D∪D1. If such a point did not exist, we would have α ⊂ D

or α ⊂ D1 because D and D1 are different path components of D ∪D1. In both of these cases α would be 
null-homotopic in C \ {p2}, thereby leading to i(α, p2) = 0 which contradicts (4.5).

For L ≥ LΩ(α0) we define aL =
{
α ∈ a : LΩ(α) ≤ L 

}
, which is a nonempty class of loops. Minimizing 

quasihyperbolic length in a is equivalent to minimizing it in aL.
Define also D1(L) = BC

(
p1 , re−L

)
⊂ D1 and D(L) = BC

(
q , re−L

)
⊂ D. Suppose that some loop 

α ∈ a reaches D(L); then it contains a subpath α1 � α going from the point qα to some point in D(L). 
This subpath has to intersect ∂D and ∂D(L), because its initial point qα lies outside D and its final point 
is on D(L). Thus we would have:

LΩ(α) > LΩ(α1) ≥ inf
{
kΩ(x, y) : x ∈ Ω ∩ ∂D , y ∈ Ω ∩ ∂D(L)

}
≥

≥ inf
{
kC\{q}(x, y) : x ∈ Ω ∩ ∂D , y ∈ Ω ∩ ∂D(L)

}
≥

≥ inf
{
kC\{q}(x, y) : x ∈ ∂D , y ∈ ∂D(L)

}
=

= log r − log
(
re−L

)
= L .

One proves in the same way that if α ∈ a reaches D1(L) then LΩ(α) > L. We deduce that all loops α ∈ aL

are disjoint from D(L) ∪ D1(L). For such loops D(L) is contained in the same path component of C \ α

as q, hence i(α, z) = 0 for all z ∈ D(L). Likewise i(α, z1) = ±1 for α ∈ aL and all z1 ∈ D1(L).
Since the path β : [a, b] → Ω starts at the center p1 of D1(L) and ends at the center q of D(L), there is 

an interval [aL, bL] ⊂ [a, b] such that the subpath β|[aL,bL] starts at a point of ∂D1(L) and ends at a point 
of ∂D(L). For each α ∈ aL, we have:

i
(
α , β(aL)

)
= ±1 , i

(
α , β(bL)

)
= 0 . (4.6)

We claim that the compact arc Γa,L = β
(
[aL, bL]

)
⊂ Ω intersects every loop α ∈ aL. Otherwise Γa,L would 

be contained in a path component of C \ α and i
(
α, β(t)

)
would be constant for t ∈ [aL, bL], thereby 

contradicting (4.6).
We have constructed a compact arc Γa,L ⊂ Ω that intersects every loop α ∈ aL. It follows that all these 

loops are contained in the compact connected set BΩ
(
Γa,L, L

)
⊂ Ω. It is connected because Γa,L is an arc 

and quasihyperbolic distance is realized by quasihyperbolic geodesics.

We shall now approximate the quasihyperbolic metric by smooth Riemann metrics. Let ϕ1 : C → R be 
a smooth function with the following properties:
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ϕ1 ≥ 0 , support(ϕ1) ⊆ BC(0, 1) ,

∫
C

ϕ1(x) dx = 1 ,

and for each positive integer ν define ϕν(x) ≡ ν3ϕ(ν3x). We have:

ϕν ≥ 0 , support(ϕν) ⊆ BC

(
0 , 1/ν3 ) ,

∫
C

ϕν(x) dx = 1 .

The function δΩ(x) = dC(x, Ωc) is defined and Lipschitz on all of C, with Lipschitz constant 1. It is easy to 
check that for every positive integer ν the function max

(
1/ν , δΩ(x) 

)
> 0 is also Lipschitz with Lipschitz 

constant 1, and that the function

fν(x) = 1
max

(
1/ν , δΩ(x)

) = min
{
ν ,

1
δΩ(x)

}
,

is Lipschitz with Lipschitz constant ν2.
For the convolution fν ∗ϕν(x) =

∫
fν(x − y)ϕν(y) dy we have fν ∗ϕν(x) > 0 and the following estimate, 

valid on all of C:

∣∣ fν ∗ ϕν(x) − fν(x)
∣∣ =

∣∣∣∣
∫ (

fν(x− y) − f(x)
)
ϕν(y) dy

∣∣∣∣ ≤

≤ Lip(fν)
∫ ∣∣ (x− y) − x

∣∣ϕν(y) dy =

= ν2
∫

|y|ϕν(y) dy ≤

≤ ν2 1
ν3

∫
ϕν(y) dy = 1

ν
.

Let 
{
Kj

}∞
j=1 be a sequence of compact sets such that Kj ⊂ Int(Kj+1) and 

⋃∞
j=1 Kj = Ω. We need these 

sets to be smooth compact domains (in particular, connected), because we shall later apply Theorem F
of Section 5 to them. A possible construction, among many, for the sequence {Kj} is the following. Every 
domain Ω � C, with two or more points in the complement Ωc, has a complete, analytic Riemann metric ρ
with constant curvature −1 called Poincaré metric. Analyticity implies that given a point p0 ∈ Ω there is a 
countable set X ⊂ (0, +∞) such that for r ∈ (0, +∞) \X the boundary of the Poincaré ball Bρ(r) centered 
at p0 is a finite union of pairwise disjoint Jordan curves, each of them analytic except for a finite number 
of corner points (see [12, Theorem 1.2]). Take a divergent sequence of radii {rj}∞j=1 ⊂ (0, +∞) \X and for 
each j transform Bρ(rj) into Kj by smoothing out the corner points.

For each j define numbers 0 < dj < Δj as follows

dj = min
x∈Kj

δΩ(x) , Δj = max
x∈Kj

δΩ(x) .

Construct a divergent sequence of integers {νj}∞j=1 with

νj > max
{
j ,

1
dj

, jΔj

}
, for all j .

On Kj we have fνj
= 1/δΩ and

1 − 1 ≤ fνj
∗ ϕνj

≤ 1 + 1
, (4.7)
δΩ νj δΩ νj



J. Gonzalo et al. / J. Math. Anal. Appl. 502 (2021) 125227 17
which implies

(
1 − 1

j

)
1
δΩ

≤ fνj
∗ ϕνj

≤
(

1 + 1
j

)
1
δΩ

.

For each j we have a smooth Riemann metric 
(
fνj

∗ ϕνj
(z)

)2|dz|2 defined on all of C. These are our 
Riemannian approximations to the quasihyperbolic metric. Denote by Lj the Riemannian length functional 
that corresponds to the metric 

(
fνj

∗ ϕνj
(z)

)2|dz|2. Any path γ ⊂ Kj satisfies:

(
1 − 1

j

)
LΩ(γ) ≤ Lj(γ) ≤

(
1 + 1

j

)
LΩ(γ) .

We now fix j and minimize the functional Lj among the loops α ∈ a that are contained in Kj and have 
Lj(α) ≤ Lj(α0). These loops satisfy:

LΩ(α) ≤ 1
1 − 1

j

Lj(α) ≤ 1
1 − 1

j

Lj(α0) ≤
1 + 1

j

1 − 1
j

LΩ(α0) = j + 1
j − 1 LΩ(α0) ,

which for j ≥ 2 implies LΩ(α) ≤ 2LΩ(α0).
For the rest of the proof make L = 2LΩ(α0). We have just shown that the loops α ∈ a with Lj(α) ≤ Lj(α0)

satisfy LΩ(α) ≤ L, hence they are all contained in B
(
Γa,L, L

)
. In addition, for j large enough the interior 

of Kj contains B
(
Γa,L, L

)
.

The loops α ∈ a with Lj(α) ≤ Lj(α0) also satisfy:

Lj(α) ≤ Lj(α0) ≤
(

1 + 1
j

)
LΩ(α0) ≤ L ,

which implies that they are reparametrizations of closed paths γ : [0, L] → Kj with

‖γ′(t)‖ ≤ 1
(fνj

∗ ϕνj
)
(
γ(t)

) , for all t ∈ [0, L] .

Since reparametrization does not change Riemannian length, in order to minimize Lj among loops in a
contained in Kj we need only consider these closed paths γ(t). This defines a set Pj of closed paths with 
a common domain [0, L], contained in a compact set that lies interior to Kj, and sharing the Lipschitz 
constant

max
{

1
(fνj

∗ ϕνj
)(x) : x ∈ Kj

}
.

Choose a sequence {γj,m}∞m=1 ⊂ Pj with limm→∞ Lj

(
γj,m

)
= �j := inf

{
Lν(γ) : γ ∈ Pj

}
. We can use 

the Arzelá-Ascoli theorem to obtain a subsequence 
{
γj,mk

}∞
k=1 that converges uniformly to a Lipschitz path 

γj : [0, L] → Kj . The uniform convergence is in Euclidean distance, but thanks to Lemma 2.11 it is also 
uniform convergence in quasihyperbolic distance. Also, Corollary 2.12 ensures that γj ∈ a.

From γj ∈ a we get �j ≤ Lj(γj). As is well known, Riemannian length is lower semicontinuous under 
uniform convergence; therefore:

�j ≤ Lj(γj) ≤ lim Lj

(
γj,mk

) = �j ,

k→∞
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and so Lj(γj) = �j . The closed path γj minimizes Lj among all loops in a contained in Kj . Moreover γj lies 
inside the compact set B

(
Γa,L, L

)
that is contained in the interior of Kj . This implies that γj is an honest 

Riemannian geodesic for the Riemann metric 
(
fνj

∗ ϕνj
(z)

)2|dz|2.
We arrive at a sequence 

{
γj
}∞
j=2 made of closed paths γj : [0, L] → Kj with common domain [0, L] and 

lying inside the compact set B
(
Γa,L, L

)
that is independent of j. They share the following finite Lipschitz 

constant:

sup
{

1
(fνj

∗ ϕνj
)(x) : x ∈ B

(
Γa,L, L

)
, j = 2 , 3 , 4 . . .

}
,

and thus there is a subsequence 
{
γjk

}∞
k=1 that converges uniformly as k → ∞ to a closed path γa ∈ a. We 

claim that γa is a minimizer for quasihyperbolic length in the class a.
Let �a = inf

{
LΩ(α) : α ∈ a 

}
≤ LΩ(α0). Given 0 < ε < LΩ(α0), there is α ∈ a with

LΩ(α) < �a + ε < 2LΩ(α0) = L ,

and in particular α ⊂ B
(
Γa,L, L

)
⊂ Kjk , hence

Ljk(γjk) ≤ Ljk(α) ≤
(

1 + 1
jk

)
(�a + ε) ,

and

LΩ(γjk) ≤ 1
1 − 1

jk

Ljk(γjk) ≤
1 + 1

jk

1 − 1
jk

(�a + ε) = jk + 1
jk − 1 (�a + ε) .

But jk + 1
jk − 1 → 1 as k → ∞, thus LΩ(γjk) ≤ �a + 2ε for k large enough (depending on �a and ε). Since this 

is valid for all ε, we have lim supk→∞ LΩ(γjk) ≤ �a. Using now the lower semicontinuity of quasihyperbolic 
length under uniform convergence, we get �a ≤ LΩ(γa) ≤ lim supk→∞ LΩ(γjk) ≤ �a and so LΩ(γa) = �a. �
5. Absence of crossings

We start by giving a name to the special quasihyperbolic minimizers we have constructed.

Definition 5.1. Given a domain Ω � C, a quasihyperbolic limit geodesic in Ω is any quasihyperbolic minimizer 
in Ω constructed as in the proof of Theorem 4.3.

We now recall a very strong result in the Riemannian setting.

Theorem F. ([8]) Let R ⊂ C be a smooth, compact domain with boundary. Fix an arbitrary smooth Riemann 
metric on R.

Let a be a nontrivial free homotopy class in R represented by a Jordan curve. If a has a minimizer α for 
Riemannian length, and α stays in the interior of R, then α is a Jordan curve.

Let a �= b be two distinct nontrivial free homotopy classes in R, represented by disjoint Jordan curves. 
If these classes have minimizers α, β for Riemannian length, both lying in the interior of R, then α and β
are disjoint Jordan curves.

It is remarkable that Theorem F is valid for all smooth Riemann metrics, no matter what the Gaussian 
curvature is. It is a direct consequence of [8, Theorem 2.1], [8, Corollary 3.4], [8, first paragraph of §4], and 
the following lemma.
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Fig. 2. Touching curves.

Lemma 5.2. If α, β are two Jordan curves with nontrivial free homotopy classes in a planar region R, then 
α is not freely homotopic in R to a loop that goes several times along β.

Proof. By Lemma 2.9 we know that Int(α) contains at least one point p ∈ Rc. Notice that p ∈ C \ β and 
R ⊆ C \ {p}.

By Lemma 2.8 we have i(α, p) = ±1 and i(β, p) ∈ {−1, 0, 1}. Let βk be a path that goes k times along β, 
with |k| > 1. If α were freely homotopic in R to βk, then α would also be freely homotopic to βk in C \ {p}
and we would have ±1 = i(α, p) = k · i(β, p) ∈ {−k, 0, k}, which is impossible. �

Quasihyperbolic metrics satisfy a weakened version of Theorem F, were ‘simple closed curve’ is replaced 
by ‘closed curve with no selfcrossings’ and ‘disjoint curves’ is replaced by ‘curves that do not cross’. We now 
make these notions precise.

Definition 5.3. Let Ω � C be a domain.
We say that a closed path α : [a, b] → Ω does not cross itself, or that it is without selfcrossings, if it is a 

uniform limit of simple closed paths.
Given two closed paths α : [a, b] → Ω, β : [a′, b′] → Ω, each without selfcrossings, we say that they do 

not cross if the configuration of the two is a uniform limit of pairs of disjoint simple closed paths.

Thanks to Lemma 2.11, uniform path convergence is the same in Euclidean or quasihyperbolic distance.
Fig. 2 exhibits two pairs of curves. In each pair one curve is the thin solid line while the other is the thick 

dashed line. The curves on the left touch each other but do not cross. The curves on the right do cross; i.e., 
they have a ‘robust’ intersection: it is impossible to make them disjoint by a small perturbation.

Theorem 5.4. Let Ω � C de a domain, endowed with its quasihyperbolic metric.
Let {a1, . . . , am} be a finite family of pairwise distinct free homotopy classes in Ω, each one of them in 

the hypotheses of Theorem 4.3. If m ≥ 2, suppose further that they are represented by pairwise disjoint 
Jordan curves. We can choose minimizers γai

∈ ai, i = 1, . . . , m, in such a way that no γai
crosses itself 

and whenever i �= i′ the curves γai
and γai′ do not cross.

Proof. We start with a family {a} of one single free homotopy class. In the proof of Theorem 4.3 the 
quasihyperbolic minimizer γa for a is a uniform limit of curves γjk with three properties:

– Each γjk belongs to the class a.
– Each γjk is a minimizer within a for a Riemannian metric on a smooth compact domain Kjk ⊂ Ω.
– There is a compact set BΩ

(
Γa,L, L

)
that contains all curves γjk and lies in the interior of all Kjk .

Then we can apply Theorem F, to conclude that the γjk are all Jordan curves. Thus the minimizer con-
structed in the proof of Theorem 4.3 is a uniform limit of Jordan curves. This means, by definition, that γa
does not cross itself.

Let now a �= b be two distinct free homotopy classes, both in the hypotheses of Theorem 4.3, and 
represented by disjoint Jordan curves. Let γa and γb be the quasihyperbolic minimizers constructed in the 
proof of Theorem 4.3. We have sequences of Riemannian minimizers 

{
γj
}

and 
{
ηj
}
, two numbers L1, L2, 

and two compact Jordan arcs Γa,L1 , Γb,L2 ⊂ Ω such that the γj remain inside A1 = BΩ
(
Γa,L1 , L1

)
, while the 
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ηj remain inside A2 = BΩ
(
Γb,L2 , L2

)
. For j large the interior of the compact domain Kj contains both A1

and A2, therefore γj and ηj are Riemannian minimizers for the same Riemann metric on the same domain 
Kj . Theorem F says that γj and ηj are disjoint Jordan curves for each large j.

There is an infinite set J1 = {jk : k = 1, 2, 3, . . . } such that the subsequence 
{
γj
}
j∈J1

=
{
γjk

}∞
k=1

converges uniformly to the minimizer γa. Consider the subsequence with the same indexes 
{
ηjk

}∞
k=1, which 

we can write as 
{
ηj
}
j∈J1

. There is an infinite subset J2 = {jks
: s = 1, 2, 3, . . . } ⊆ J1 such that the 

sub-subsequence 
{
ηjks

}∞
s=1 =

{
ηj}j∈J2 converges uniformly to the minimizer γb. Going back to the γj , the 

corresponding sub-subsequence 
{
γjks

}∞
s=1 =

{
γj
}
j∈J2

still converges uniformly to γa. Theorem F says that 
for each s the curves γjks

and ηjks
are disjoint Jordan curves. This implies that the limit curves γa and γb

do not have self-crossings and do not cross.
For a general finite family {a1, . . . , am} we generate a nested list J1 ⊇ J2 ⊇ · · · ⊇ Jm of infinite sets of 

indices; then get, for each ai, a sequence of Riemannian minimizers with Jm as index set. These m sequences 
are put together into a sequence of configurations 

{
Cj

}
j∈Jm

, where each Cj consists of m pairwise disjoint 
Jordan curves, whose limit limCj =

{
γa1 , . . . , γam

}
is the configuration of the quasihyperbolic minimizers. 

It follows that the curves γai
do not cross themselves and do not cross with one another. �

6. Discs with holes

We have explained in section 4 how to obtain quasihyperbolic minimizers by passing to the limit of 
Riemannian minimizers. In Section 5 we have described the special nature of these limit minimizers. In the 
present section we want to pass to the limit of a sequence of domains bounded by Riemannian geodesics.

Definition 6.1. We shall call disc with k holes the result of removing from a compact, simply connected, 
smooth domain R in C the interiors of k pairwise disjoint, compact, simply connected, smooth domains 
contained in R.

Let Ω � C be a domain endowed with some Riemann metric. A Riemannian geodesic domain is a compact 
subset of Ω bounded by a finite collection of pairwise disjoint Jordan curves that are geodesics for the given 
Riemann metric.

Notice that, although the word ‘domain’ is part of the name, Riemannian geodesic domains are not open 
sets. Instead, they are compact subsets of the plane.

Of course, every Riemannian geodesic domain is a disc with holes, but in addition to its topological 
nature it also has geometric features.

We first consider the case of zero holes. This has two possible characterizations:

(1) The set R is simply connected.
(2) R is the compact set Int(α) := α ∪ Int(α) bounded by a smooth Jordan curve α.

Lemma 6.2. Let Ω � C be a domain. Let αn : [a, b] → C, n = 1, 2, 3, . . . be a sequence of simple closed paths 
that converges uniformly to a closed path α : [a, b] → Ω. Then the sequence 

{
Int(αn)

}
is a Cauchy sequence 

with respect to Euclidean Hausdorff distance.

Proof. For any Jordan curve γ and c > 0, we define the following compact subset of Int(γ):

Intc(γ) =
{
p ∈ C : dC(p, γ) ≥ c , i(γ, p) = ±1

}
.

Given any ε > 0 and t ∈ [a, b], there is nε such that if n, m ≥ nε, then

‖αn(t) − αm(t)‖ ≤ ε.
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We claim that the following also holds: If n, m ≥ nε, then

Int2ε(αn) ⊆ Intε(αm) . (6.8)

If p ∈ Int2ε(αn), then the map

F : [a, b] × [0, 1] −→ C , F (t, λ) = (1 − λ)αn(t) + λαm(t) ,

is a free homotopy from αn to αm that never touches p, because

dC
(
p , F (t, λ)

)
≥ dC

(
p , αn(t)

)
− dC

(
αn(t) , F (t, λ)

)
≥ 2ε− ε > 0 ,

and so F is a free homotopy in C \ {p} from αn to αm. By Lemma 2.6, we have

i(αm, p) = i(αn, p) = ±1 ,

and also dC(p, αm) ≥ d(p, αn) − dC,H(αn, αm) ≥ 2ε − ε = ε. We conclude p ∈ Intε(αm). This proves (6.8).
We finish the proof of the lemma by showing:

n,m ≥ nε =⇒ dC,H

(
Int(αn) , Int(αm)

)
≤ 3ε .

This is a statement symmetric in n and m; therefore it will be proved if we can show:

p ∈ Int(αn) =⇒ dC
(
p , Int(αm)

)
≤ 3ε .

Consider any p ∈ αn ∪ Int(αn). If p ∈ αn, then dC(p, αm) ≤ ε and so dC
(
p, Int(αm)

)
≤ ε. If dC

(
p, αn) ≥ 2ε, 

then p ∈ Int2ε(αn) and formula (6.8) says that p ∈ Int(αm), hence dC
(
p, Int(αm)

)
= 0. The only remaining 

possibility is 0 < d
(
p, αn) < 2ε, but then dC

(
p, αm) ≤ 2ε + dC,H(αn, αm) ≤ 3ε. �

This lemma says that the sets Int(αn) have a compact Hausdorff limit, which we call limit interior of α

and denote limint(α). The above proof, in turn, implies that limint(α) includes the limit path α and the 
sets Intε(αnε

) for all ε > 0.
A finite collection of pairwise disjoint Jordan curves bounds a disc with holes if and only if two conditions 

are met:

(1) The collection has an element α0, called the outer boundary, that surrounds all other curves α1, . . . , αk

in that collection.
(2) The interiors of α1, . . . , αk are pairwise disjoint.

Consider now k+1 uniformly convergent sequences {α0,n} . . . , {αk,n} of Jordan curves. Suppose that for 
each n the curves α0,n, . . . , αk,n are pairwise disjoint and bound a compact set An. Then {An} is a Cauchy 
sequence with respect to Hausdorff distance, where the Hausdorff limit set is described in terms of the limit 
interiors of the limit curves αi = limn αi,n, for i = 0, 1, . . . k.

Definition 6.3. Let Ω � C be a domain, endowed with its quasihyperbolic metric. A quasihyperbolic geodesic 
domain is a compact set G ⊂ Ω which is bounded by k + 1 limit quasihyperbolic geodesics γ0, γ1, . . . , γk, 
where the whole configuration (domain and boundary curves) is the limit of a sequence {Gn} of Riemannian 
geodesic domains whose boundary geodesics are distributed into k + 1 uniformly convergent sequences.

Proposition 6.4. A set G constructed as in the above definition is always path connected.
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Fig. 3. A simple Y-piece.

Proof. Suffices to prove that any two points in ∂G are joined by a path in G.
Fix two quasihyperbolic geodesics α1, β1 ⊂ ∂G1. For each n > 1 let αn, βn ⊂ ∂Gn be the Riemannian 

geodesics homotopic in Ω to α1 and β1, respectively. Let M be an a priori bound for the quasihyperbolic 
distance between αn and βn, and choose paths ξn ⊂ Ω that join αn to βn and have LΩ(ξn) ≤ M . Every 
time ξn exits Gn through a geodesic γ ⊂ ∂Gn, it must re-enter through the same γ and we can replace the 
part of ξn between those two events with an arc of γ. Doing this as many times as necessary, we get a new 
path ξn ⊂ Gn joining αn to βn.

If ξn visits a geodesic γ ⊂ ∂Gn more than once, we can replace the part between the first and last visit 
by a single arc of γ. This procedure leads to yet another path ξ̃n ⊂ Gn, still joining αn to βn and having 
LΩ(ξ̃n) ≤ M + L, where L is an a priori bound for LΩ

(
∂Gn

)
. This bound exists because the boundary 

curves of the Gn minimize quasihyperbolic length in the limit. The domains Gn are all contained inside a 
compact set K, where an estimate like formula (4.7) of Section 4 holds. Therefore there is a constant N
such that LC(ξ̃n) ≤ N for all n.

We can reparametrize ξ̃n : [0, N ] → Ω so that the sequence becomes uniformly Lipschitz. By Arzelá-Ascoli 
there is a subsequence converging uniformly to a Lipschitz path ξ∞ ⊂ Gn that joins the two boundary curves 
α∞ = limn→∞ αn and β∞ = limn→∞ βn homotopic in Ω to α1 and β1, respectively. �
7. Structure theorem

Definition 7.1. Given any domain Ω � C, endowed with its quasihyperbolic metric, we define:
A funnel is the closed subset of Ω placed between a quasihyperbolic geodesic and a connected component 

of C \ Ω = Ωc ∪ {∞} with more than one point.
A puncture in Ω is the closed subset of Ω lying between a simple closed quasihyperbolic geodesic with 

length 2π and an isolated point in Ωc.
The puncture at infinity of Ω exists only when Ωc is bounded, in which case it is the collared end in Ω

defined by the inclusion C \D ⊂ Ω, where D is any closed disc that contains Ωc.
Generalizing the classical definition with negative curvature to our context, we call Y-piece a compact 

geodesic domain bounded by three limit geodesics. Likewise we call exterior Y-piece a non-compact geodesic 
domain that contains the puncture at infinity and is bounded by two limit geodesics.

Fig. 3 shows a Y-piece bounded by three quasihyperbolic geodesics: the one on the right of Fig. 1 and 
two circles, each surrounding a puncture of the domain (Case 1 in Section 4).

Near a puncture p ∈ Ωc, the quasihyperbolic metric is cylindrical; in particular, this neighborhood is 
filled with quasihyperbolic minimizers that surround p and have quasihyperbolic length equal to 2π. By 
contrast, the Poincaré metric near an isolated point p ∈ Ωc has a cusp-like shape and there is no Poincaré 
geodesic surrounding p.

According to the results in Section 4, the puncture at infinity is the only collared end with no quasihy-
perbolic minimizer in its homotopy class.

An exterior Y-piece can be cut by a Jordan curve into a pair of pants and a puncture at infinity, but the 
cutting curve can never be a quasihyperbolic minimizer.
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In the arguments of Section 6, the outer boundary can be replaced by the point ∞ of C and everything 
works, giving rise to noncompact sets that are still closed subsets of C. That is how we construct funnels 
or generalized Y -pieces as limits of the Riemannian analogues.

Proposition 7.2. Let Ω � C be a domain, endowed with its quasihyperbolic metric. Every quasihyperbolic 
geodesic domain G ⊂ Ω is a finite union (with pairwise disjoint interiors) of Y-pieces and, at most, an 
exterior Y-piece. Furthermore, the exterior Y-piece appears in this union if and only if Ωc is a compact set 
and the quasihyperbolic geodesic domain contains a neighborhood of infinity in Ω.

Proof. We denote by γ1, γ2, . . . , γk the quasihyperbolic limit geodesics in ∂G. We can choose pairwise disjoint 
Jordan curves g1, g2, . . . , gk in Ω such that gj ∈ [γj ] for each j. Let G′ be the closed region with boundary 
g1 ∪ · · · ∪ gk. Topologically G′ is a disc with k − 1 holes (or the complex plane with k holes) and we can 
cut it into finitely many pairs of pants Y1, . . . , Ys (and maybe also an exterior Y-piece Y0). We consider the 
set {g1, . . . , gk, η1, . . . , ηh} of pairwise disjoint Jordan curves in ∪n∂Yn and modify it in the following way. 
For i = 1, . . . , k replace gi with γi. For j = 1, . . . , h choose a quasihyperbolic limit geodesic γk+j ∈ [ηj ], 
that exists because ηj separates two pieces none of which is a puncture at infinity. By Theorem 5.4, the 
quasihyperbolic limit geodesics γ1, . . . , γk+h do not cross; therefore γk+1, . . . , γk+h lie inside G and in fact 
split it into the required finite union of Y-pieces and, perhaps, one exterior Y-piece in addition. �
Theorem 7.3. Let Ω � C be a domain, endowed with its quasihyperbolic metric, which is neither simply nor 
doubly connected. There exists a set H ⊆ Ω, union of countably many closed domains each one of which is 
a Y-piece, a funnel, a puncture or an exterior Y-piece, in such a way that Ω is the disjoint union of the 
closure H and simply connected open sets. Any two of the closed domains that make up H either are disjoint 
or share exactly one boundary curve.

Furthermore, the exterior Y-piece appears in this decomposition if and only if Ωc is a compact set.

Assume first that the fundamental group of Ω is finitely generated. Then we prove that C \Ω has a finite 
number of connected components. We do it by contradiction, the references here are [36] and [13]. Suppose 
that C \Ω has infinitely many components; then the Čech cohomology group Ȟ1(C \Ω) would have infinite 

rank. The rank of the reduced Čech cohomology group ˇ̃H1(C \ Ω), which equals that of Ȟ1(C \ Ω) minus 
one, would also be infinite. By Alexander-Pontryagin duality [36, page 445] the reduced homology group 
H̃1(Ω) and the homology group H1(Ω) would both have infinite rank. But H1(Ω) is the abelianization of 
π1(Ω) [13, page 63] and is thus finitely generated. This contradiction shows that C \ Ω has a finite number 
k + 1 of connected components C0, C1, . . . , Ck, with ∞ ∈ C0. Since π1(Ω) is a free group in at least two 
generators, its abelianization H1(Ω) is a free abelian group of rank at least two. This implies k + 1 ≥ 2, 
that is k ≥ 1.

For each 1 ≤ j ≤ k, let Fj be a funnel or puncture in Ω such that Cj is contained in the interior of 
the quasihyperbolic limit geodesic ∂Fj . If Ωc is not compact, i.e. C0 �= {∞}, let F0 be the funnel in Ω
between C0 and a quasihyperbolic limit geodesic ∂F0 that separates C1, . . . , Ck from C0. Then the closure 
of Ω \∪n

j=1Fj (if Ωc is compact) or Ω \∪n
j=0Fj (if Ωc is not compact) is a quasihyperbolic geodesic domain, 

and Proposition 7.2 gives the result in this case.
Assume now that Ω has infinitely generated fundamental group. The proof in this case will take up the 

rest of this section, including proofs of some lemmas and a proposition. Fix a point p0 ∈ Ω. Since Ωc has 
more than one point, we can consider the Poincaré metric ρ in Ω, a complete Riemannian metric with 
constant curvature −1. As ρ is real analytic, the boundary of the Poincaré ball Bρ(r) centered at p0 is a 
finite union of pairwise disjoint Jordan curves (see [12, Theorem 1.2]) except for r ∈ X where X is some 
countable set of numbers. Start with r1 /∈ X such that the fundamental group of the ball Bρ(r1) induces a 
subgroup of π1(Ω) with at least two generators. Inductively, once rn−1 has been chosen we take rn /∈ X with 
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rn > max{rn−1, n}. Each Bn = Bρ(rn) induces a non-cyclic subgroup of π1(Ω) and has boundary made of 
finitely many pairwise disjoint Jordan curves.

Call a boundary component of ∂Bn inessential if it is contractible in Ω, and essential if it is not con-
tractible in Ω. Let B̂n ⊂ Ω be the union of Bn with the closures of the interiors of its inessential boundary 
components.

Now ∂B̂n is made of the essential boundary components {ηni }i∈I0
n

of ∂Bn. In particular, write ηn0 for the 
outer component; which surrounds all other boundary components. Replace the family of curves {ηni }i∈I0

n

by a family of quasihyperbolic limit geodesics {γn
i }i∈In , using the following inductive rules. If the class 

[ηni ] is not in Case of Section 4, and it does not appear among the classes [ηn−1
j ] (in particular, if n = 1), 

then let γn
i be a quasihyperbolic limit geodesic in this class and include the index i in In. If n > 1 and 

there is γn−1
j ∈ [ηni ], then choose γn

i = γn−1
j and include the index i in In. If the outer component ηn0 is 

in Case 1 of Theorem 4.3, forget this curve and exclude the index 0 from In. When done, either In = I0
n

or In = I0
n \ {0}.

Fix a ball Bn. Since {ηni }i∈In are pairwise disjoint Jordan curves, Theorem 4.3 says that the quasihyper-
bolic limit geodesics {γn

i }i∈In do not cross, and there is a quasihyperbolic geodesic domain Gn bounded by 
them.

Lemma 7.4. Let γ be a quasihyperbolic limit geodesic for which there is a natural number N with γ ⊂ ∂Gn

for every n ≥ N . Then γ is the border of a funnel or a puncture in Ω.

Proof. It is well-known that distρ ≤ 2dΩ (see, e.g., [1, Theorem 1-11]). For n ≥ N , let us consider the Jordan 
curve ηn ⊂ ∂Bρ(rn) which is freely homotopic to γ. Since 2 lim infn→∞ dΩ(p0, ηn) ≥ limn→∞ distρ(p0, ηn) =
limn→∞ rn = ∞, and ηn belongs to a single non-trivial free homotopy class for every n ≥ N , Theorem D
gives that {ηn} converges to a collared end F . Since γ is a quasihyperbolic limit geodesic and ηn ∈ [γ] for 
every n ≥ N , the collared end F must be a funnel or a puncture. �

Let us continue now with the proof of Theorem 7.3. By construction we have Gn ⊆ Gn+1. We can take a 
subsequence of radii {rh} such that Gh � Gh+1, and besides, if ∂Gh∩∂Gh+1 contains some quasihyperbolic 
limit geodesic γ, then γ is also in ∂GN for all N > h (such γ is, by Lemma 7.4, the border of a funnel 
or a puncture). This subsequence can be constructed because, once we have arrived at the quasihyperbolic 
geodesic domain Gh, we only need to examine the long-term behavior of a finite number of boundary 
components, namely, those of Gh.

By Proposition 7.2, each connected component of the closure of Gh+1 \Gh is a finite union (with pairwise 
disjoint interiors) of Y-pieces and, at most, an exterior Y-piece.

For each h, let us define Hh as the closed subset of Ω obtained as the union of Gh and the funnels and 
punctures whose boundaries are contained in ∂Gh. Define also H as the union H := ∪hHh.

By construction, any two quasihyperbolic limit geodesics γh ⊂ ∂Hh and γh+1 ⊂ ∂Hh+1 are non-homotopic 
in Ω.

If Ω = H there is nothing else to prove, but Ω \H can be a non-empty set, see Examples 8.1 and 8.2. In 
any case H “captures all the homotopy of Ω”; let us see that it captures even more.

Lemma 7.5. Every Jordan curve α0 ⊂ Ω with non-trivial homotopy class intersects the set H.

Proof. Choose a radius rh, so that the ball B = Bρ(rh) contains α0. Let Gh be the quasihyperbolic 
geodesic domain that corresponds to B (each closed geodesic in ∂Gh is freely homotopic to a closed curve 
in ∂B).

Part 1. Let us see that α0 intersects Gh or is homotopic to an essential boundary component of B.
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For each connected component ηi of ∂B we have either ηi ⊂ Int(α0) (possible only for the inner compo-
nents of ∂B) or ηi ∩ Int(α0) = ∅. If no essential component ηi is contained in the interior of α0, then we 
would have Int(α0) ⊂ B̂ ⊂ Ω, and [α0] would be trivial, contrary to our hypotheses. If only one essential 
component ηi0 lies interior to α0, then α0 ∪ ηi0 is the boundary of an annulus contained in B̂ and α0 is 
homotopic to ηi0 , as claimed. If all essential inner components of ∂B lie interior to α0, then α0 is homotopic 
to the outer component of ∂B, again proving our claim.

The remaining possibility is that there are three essential inner components of ∂B, say η1, η2, η3, the first 
two lying interior to α0 and the third one exterior to α0. It is possible to choose, for j = 1, 2, 3, a point 
zj ∈ Ωc ∩ Int(ηj).

For j = 2, 3, let γj ⊂ ∂Gh be the quasihyperbolic limit geodesic chosen in [ηj ]. If α0 intersects γ2 or γ3, the 
claim is true. Assume that α0 is disjoint from γ2 ∪ γ3. If γ3 is contained in the interior of α0, then we would 
have i(γ3, z3) = 0 �= i(η3, z3), impossible, hence γ3 lies exterior to α0. If γ2 lied exterior to α0, then a close 
enough Jordan curve γ̃2 would also lie exterior to α0 and either Int(α0) ⊂ Int(γ̃2) or Int(α0) ∩ Int(γ̃2) = ∅; 
in the first case we would have i(γ̃2, z1) = ±1 �= i(γ2, z1), impossible; in the second case we would have 
i(γ̃2, z2) = 0 �= i(γ2, z2), again impossible; therefore γ2 lies interior to α0.

Now γ2 lies interior to α0 while γ3 lies exterior to α0. The set Gh thus visits the interior and the exterior 
of α0 and, since by Proposition 6.4 it is path connected, it must intersect α0.

Part 2. Suppose α0 is homotopic to an essential boundary component ηi of B, hence homotopic to a 
quasihyperbolic limit geodesic γi in ∂Gh or perhaps to the puncture at infinity.

Assume first that α0 is homotopic to the puncture at infinity, which in turn is contained in an exterior 
Y -piece P . It is impossible to have α0 ∩ P = ∅, because then α0 could not be homotopic to ηi. Hence, α0
intersects H in this case.

Assume now that α0 is homotopic to a quasihyperbolic limit geodesic γi in ∂Gh. If γi is not in ∂Gh+1, 
then α0 is not homotopic to any essential boundary component of Bρ(rh+1) and, by Part 1, it intersects 
Gh+1. By Lemma 7.4, the only alternative option for γi is to be the boundary of a funnel or puncture F . If 
some non-empty part ξ ⊂ α0 lies on γi or is on the side of γi where F is, then α intersects F .

Finally, α0 could be a Jordan curve homotopic to the boundary γi of F but disjoint from F . But on the 
side of γi opposite to F we must have another piece P of the decomposition, and if α0 intersects P , then 
it intersects H and we are done. Now P cannot be a funnel or a puncture, because then we would have 
Ω = F ∪ P , a domain with cyclic fundamental group. Thus P is either a Y-piece or an exterior Y-piece. 
It is impossible that α0 be disjoint from F ∪ P , because then α0 could not be homotopic to γi. Hence, α0
intersects H and the proof is finished. �

The following result completes the proof of Theorem 7.3.

Proposition 7.6. Each connected component V of Ω \H is simply connected.

Proof. Let γ0 ⊂ V be any loop. Slightly perturb γ0 into a closed path γ ⊂ V in general position. This does 
not change the homotopy class, but now γ has a finite number of transverse self-intersections and C \ γ has 
finitely many bounded components, each contractible. Let U be any of those components.

The Jordan curve ∂U ⊂ γ ⊂ V is disjoint from H and, by Lemma 7.5, it is contractible in Ω. Thus 
U ⊂ Ω.

Since the connected set H is disjoint from ∂U , either H ⊂ U or H ∩ U = ∅. But if we had H ⊂ U then 
H would induce the trivial subgroup in π1(Ω), which is false, hence H and U are disjoint. Then U is a 
connected open subset of Ω \H and it intersects V , therefore U ⊂ V .

Since all bounded components of C \ γ are contained in V , the path γ is contractible in V and so is 
γ0. �
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Fig. 4. A decomposition with nonempty V .

Fig. 5. A Y-piece.

8. Examples

The following example shows that Ω \H may be non-empty.

Example 8.1. Let us define

D =
{
z ∈ C : |z| < 1

}
, Ω = D \ ∪∞

n=1
{
− 1 + 1/n

}
, W =

{
x + iy ∈ D : x > 1/2

}
.

The set H corresponding to this domain contains no outer funnel and no exterior Y-piece. It consists only 
of quasihyperbolic geodesic domains Gh and the punctures around the points −1 + 1/n. We claim that 
every quasihyperbolic limit geodesic in Ω is disjoint from W , hence the Gh are disjoint from W . Since the 
punctures are also disjoint from W , at least one simply connected piece is needed in the decomposition 
of Ω.

Let γ be a quasihyperbolic limit geodesic in Ω and suppose that there exists z0 = x0 + iy0 ∈ γ

with x0 > 1/2. The connected component γ0 of γ ∩ W that contains z0 is an arc joining two points 
1/2 + iy1, 1/2 + iy2 ∈ D. For each x + iy ∈ γ0 we have dC(x + iy, ∂Ω) ≤ dC(1/2 + iy, ∂Ω), with strict 
inequality for x0 + iy0. Therefore, if g is the Euclidean segment joining 1/2 + iy1 and 1/2 + iy2, we have 
LΩ(g) < LΩ(γ0) and, since g and γ0 are homotopic in Ω rel endpoints, we would deduce that γ is not 
minimizing for quasihyperbolic length in its homotopy class.

Example 8.2. Let Ω be the plane domain

Ω =
{
x + iy : x > 0 , |y| < 1

}
\ ∪∞

n=1{5n} .

Lemma 3.3 implies that the decomposition is Ω = H∪V , where the closed set H is the union of the shaded 
regions and straight segments shown in Fig. 4 while the simply-connected open set V is the (non-shaded) rest 
of the domain. The boundary ∂V is a local quasihyperbolic geodesic with infinite quasihyperbolic length, 
and it touches itself along infinitely many straight arcs.

Example 8.3. An application of Lemma 3.3 is the existence of a Y-piece with the shape shown in Fig. 5. 
The domain Ω is the complex plane minus two pairs of parallel straight segments, indicated by thick lines 
in the figure, which delimit narrow rectangular corridors in Ω. The Y-piece consists of the shaded area plus 
the thin segments (one vertical, one horizontal). One of the boundary quasihyperbolic geodesics goes twice 
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along each corridor, touching itself in a whole arc. The other two boundary quasihyperbolic geodesics are 
Jordan curves. The three boundary quasihyperbolic geodesics have a common touch along the thin vertical 
segment.
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