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b Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Zona Educacional 4, Campus Sescelades URV (Edifici W3), 43007 Tarragona, Spain 
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A B S T R A C T   

Backed flakes (core edge flakes and pseudo-Levallois points) represent special products of Middle Paleolithic 
centripetal flaking strategies. Their peculiarities are due to their roles as both a technological objective and in the 
management of core convexities to retain its geometric properties during reduction. In Middle Paleolithic con-
texts, these backed implements are commonly produced during Levallois and discoidal reduction sequences. 
Backed products from Levallois and discoidal reduction sequences often show common geometric and 
morphological features that complicate their attribution to one of these methods. This study examines the 
identification of experimentally produced discoidal and recurrent centripetal Levallois backed products 
(including all stages of reduction) based on their morphological features. 3D geometric morphometrics are 
employed to quantify morphological variability among the experimental sample. Dimensionality reduction 
though principal component analysis is combined with 11 machine learning models for the identification of 
knapping methods. A supported vector machine with polynomial kernel has been identified as the best model 
(with a general accuracy of 0.76 and an area under the curve [AUC] of 0.8). This indicates that combining 
geometric morphometrics, principal component analysis, and machine learning models succeeds in capturing the 
morphological differences of backed products according to the knapping method.   

1. Introduction 

The Middle Paleolithic in Western Europe is characterized by the 
diversification of and an increase in knapping methods, resulting in 
flake-dominated assemblages (Kuhn, 2013; Delagnes and Meignen, 
2006). Discoidal and the recurrent centripetal Levallois are two of the 
most common flake production systems during this period. Following 
Boëda (1995a,b, 1994, 1993), there are six technological criteria that 
define discoidal debitage: (1) the volume of the core is conceived as two 
oblique asymmetric convex surfaces delimited by an intersection plane; 
(2) these two surfaces are not hierarchical as they alternately serve as 
striking platforms and debitage surfaces; (3) the peripheral convexity of 
the debitage surface is managed to control lateral and distal removals, 
thus allowing for a degree of predetermination; (4) striking platforms 

are oriented in such a way that the core edge is perpendicular to the 
predetermined products; (5) the fracture planes are secant; and (6) the 
technique employed is direct hard-hammer percussion. Technological 
analyses of Middle Paleolithic assemblages have gradually led to the 
identification of variability within discoidal reduction (Bourguignon 
and Turq, 2003; Locht, 2003; Terradas, 2003; articles in Peresani, 2003). 

In addition, according to Boëda (1994, 1993), six technological 
characteristics define the Levallois knapping strategy: (1) the volume of 
the core is conceived as two convex and asymmetric surfaces; (2) these 
two surfaces are hierarchical and are not interchangeable—they main-
tain their roles as peripheral striking platforms and debitage (or 
exploitation) surfaces, respectively, throughout the reduction sequence; 
(3) the distal and lateral convexities of the debitage surface are main-
tained to obtain predetermined flakes; (4) the fracture plane of the 
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predetermined products is parallel to the intersection between both 
surfaces; (5) the striking platform is perpendicular to the overhang (the 
core edge at the intersection between the two core surfaces); and (6) the 
technique employed is direct hard-hammer percussion. Depending on 
the organization of the debitage surface, Levallois cores are usually 
classified into the preferential method (where a single predetermined 
Levallois flake is obtained from the debitage surface) and the recurrent 
method (where several predetermined flakes are produced from the 
debitage surface), with removals being either unidirectional, bidirec-
tional, or centripetal (Boëda, 1995a,b; Boëda et al., 1990; Delagnes, 
1995; Delagnes and Meignen, 2006). 

Both knapping methods involve the removal of backed products 
(Fig. 1) that usually comprise two categories: core edge flakes (éclats 
débordants) and pseudo-Levallois points. Core edge flakes/éclat 
débordant (Beyries and Boëda, 1983; Boëda, 1993; Boëda et al., 1990) 
are technical backed knives that have a cutting edge opposite and par-
allel (or sub-parallel) to an abrupt margin (a back that usually has an 
angle close to 90◦). This back commonly results from the removal of one 
of the lateral edges of the core and can be plain, retain the scars from 
previous removals, be cortical, or a combination of these attributes. Core 
edge flakes are also divided into two categories: “classic core edge 
flakes” and “core edge flakes with a limited back”. “Classic core edge 
flakes” (Beyries and Boëda, 1983; Boëda, 1993; Boëda et al., 1990), 
which are sometimes referred to as “core edge flakes with a non-limited 
back”/“éclat débordant à dos non limité” (Duran, 2005; Duran and Soler, 
2006), have a morphological axis more or less similar to the axis of 
percussion. “Core edge flakes with a limited back”/“éclat débordant ̀a dos 
limité” have a offset axis of symmetry in relation to the axis of percussion 
(Meignen,1993, 1996; Pasty et al., 2004). This orientation often leads to 
the back not being parallel to nor spanning the entire length of the sharp 
edge or the percussion axis (Slimak, 2003). 

Pseudo-Levallois points (Boëda, 1993; Boëda et al., 1990; Bordes, 
1961, 1953; Slimak, 2003) are backed products where the edge opposite 
the back has a triangular morphology. This triangular morphology is 
usually the result of the convergence of two or more scars. As with core 
edge flakes, the back usually results from the removal of one of the 
lateral edges of the core and can be plain, retain the scars from previous 
removals, or more rarely be cortical or a combination of these traits. 
Both pseudo-Levallois points and core edge flakes with a limited back 
share a symmetry offset from the axis of percussion but are clearly 
differentiable due to their morphology. The present study includes the 
three categories defined above as backed products. 

Depending on the knapping method, different roles in Levallois 
recurrent centripetal and discoidal debitage are attributed to core edge 
flakes and pseudo-Levallois points. Boëda et al. (1990) focus on the role 

of core edge flakes and cortically backed flakes for maintaining the 
lateral convexities throughout Levallois recurrent centripetal reduction. 
Similarly, pseudo-Levallois points contribute to maintaining the lateral 
and distal convexities between different series of removals (Boëda et al., 
1990). 

Focusing on the variability of discoidal debitage, Slimak (2003) 
noted that pseudo-Levallois points are short products that induce a 
limited lowering of the core overhang (the intersection between the 
striking and debitage surfaces). In contrast, core edge flakes can result 
from several distinct production objectives. Expanding on the roles of 
pseudo-Levallois points and core edge flakes within discoidal debitage, 
Locht (2003) demonstrated the systematic production of both products 
at the site of Beauvais. This indicates that at Beauvais, core edge flakes 
and pseudo-Levallois points were the main predetermining/pre-
determined products (Locht, 2003). 

An additional aspect of core edge flakes and pseudo-Levallois points 
is their frequent transport by Paleolithic groups. Turq et al. (2013) 
described the widespread import and export of lithic artifacts during the 
Middle Paleolithic. Examples (Fig. 2) of the transport of pseudo- 
Levallois points from discoidal production sequences have been re-
ported from Combemenue, La Mouline, Les Fieux (Brenet, 2013, 2012; 
Brenet and Cretin, 2008; Folgado and Brenet, 2010; Turq et al., 2013), 
and the open-air site of Bout des Vergnes (Courbin et al., 2020), while 
the transport of core edge flakes (into and out of the site) is also clearly 
observed at Grotte Vaufrey (Geneste, 1988), Teixoneres Cave (Bustos- 
Pérez et al., 2017; Picin et al., 2020), Amalda Cave (Rios-Garaizar, 
2010), Grotta del Cavallo (Romagnoli et al., 2016a), l’Arbreda (Duran 
and Soler, 2006) and at Site N of Maastricht-Belvédère (Roebroeks et al., 
1992). Transported backed pieces have also been clearly identified at 
Abric Romaní in Spain associated with both Levallois and discoidal 
reduction methods (Romagnoli et al., 2016b; Martín-Viveros et al., 
2020). The identification of knapping methods among these specific 
products can help to indentify diachronic and synchronic changes in 
lithic production, selection, and transport as a reflection of hominin 
technological organization and adaptive strategies (Binford, 1979; 
Shott, 2018). 

The attribution of backed pieces to either discoidal or recurrent 
centripetal Levallois reduction can, however, be problematic. For 
example, Mourre (2003) indicates that a key aspect for the identification 
of Levallois core edge flakes is the direction of the debitage axis, which is 
parallel to the intersection plane of the two core surfaces while the 
fracture plane is secant. Slimak (1998–99) showed core edge flakes from 
discoidal reduction to equally have fracture planes parallel to the 
intersection between the debitage surface and striking platforms 
although not as parallel as in Levallois debitage. Delpiano et al. (2021) 

Fig. 1. Examples of backed flakes categories with key features discussed in the present research.  
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demonstrated a tendency of Levallois products to be more elongated 
with thinner and sub-parallel edges, whereas discoidal backed products 
show a higher variation in the minimum and maximum thickness of the 
back. Previous studies (Archer et al., 2021; González-Molina et al., 
2020) addressed the differentiation between discoidal and recurrent 
centripetal Levallois products in general terms were all products are 
considered. While this approach is highly effective, the differentiation 
between backed products of discoidal and recurrent centripetal Levallois 
sequences is not sufficiently addressed. Given the special technological 
role of backed products in core management and production, their 
specific techno-functional properties (Delpiano et al., 2021), the fre-
quency in which they appear in the archaeological record, and their 
common transport as part of hominin toolkits, a more systematic 
approach to their accurate differentiation represents an important 
advancement in describing Middle Paleolithic lithic assemblages. 

This raises the issue as to the extent to which discoidal and Levallois 
recurrent centripetal core edge flakes and pseudo-Levallois points can be 
differentiated based on their morphological features. This issue is rele-
vant to lithic studies because it affects the technological analysis of a 
stone tool assemblage and the evolutionary interpretation of knapping 
concepts over time. Here we address this issue through experimental 
archaeology and a multi-level statistical approach. We reproduced 
classic bifacial discoidal and recurrent centripetal Levallois reduction 
sequences to obtain a collection of backed products. We produced 3D 
scans of lithic artifacts and employed geometric morphometrics to 
quantify the morphological variability of the experimental sample and 
the cores were refit. Dimensionality reduction through principal 
component analysis (PCA) was carried out on a set of coordinates, and 
11 machine learning models were tested to obtain classification accu-
racy and variable importance. Geometric morphometrics and Machine 
Learning models make it possible to directly test technological classifi-
cations of lithic and features usually employed to discriminate between 
both methods. 

2. Methods 

2.1. Experimental assemblage 

The analyzed experimental assemblage derives from the replication 
of nine discrete knapping sequences. Seven cores were knapped in 
Bergerac chert (Fernandes et al., 2012), and two cores were knapped in 
Miocene chert from South of Madrid (Bustillo et al., 2012; Bustillo and 
Pérez-Jiménez, 2005). Five cores were knapped following the discoidal 
“sensu stricto” method, which corresponds highly to Boëda’s original 
technological definition of the knapping system (Boëda, 1993, 1994, 
1995a,b), and five experimental cores were knapped following the 
Levallois recurrent centripetal system (Boëda, 1993, 1994, 1995a,b; 
Lenoir and Turq, 1995). A total of 139 unretouched backed flakes (in-
dependent of the type of termination) were obtained: 70 from the dis-
coidal reduction sequences and 69 from the Levallois reduction 
sequences (Fig. 3). In the case of the Levallois recurrent centripetal 
cores, backed products from both debitage and striking surfaces were 
included. 

The Levallois recurrent centripetal experimental assemblage is 
clearly dominated by non-cortical backed flakes (n = 42; 60.87 %; 
Fig. 2). This is expected as one of the roles of core edge flakes and 
pseudo-Levallois points in Levallois recurrent centripetal methods is the 
management of convexities on subsequent exploitation sequences 
(Boëda, 1993, 1994; Boëda et al., 1990). Thus, although backed flakes 
can be present in the initial decortication phases (n = 9; 13.04 %), the 
subsequent exploitation of the core will equally produce non-cortical 
flakes. Non-cortical backed flakes are also the majority class of the 
experimental discoidal assemblage although this predominance is 
somewhat attenuated (n = 29; 41.43 %; Fig. 2). However, along with 
flakes with nearly 25 % of the dorsal surface covered with cortex, they 
make up the majority of the discoidal backed flakes in the assemblage (n 
= 51; 72.86 %). This reduction in the predominance of non-cortical 

Fig. 2. Middle Paleolithic sites cited in the text showing examples of transport of backed products from discoidal or Levallois recurrent centripetal sequences (base 
map obtained from https://maps-for-free.com/). 
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flakes is also expected in discoidal methods given the organization of 
both debitage surfaces, the nature of the surface convexities, and the 
fracture plane. In discoidal cores, the interchangeable surfaces usually 
have a higher apical convexity than Levallois cores. Additionally, the 
angle and removal of flakes cover a smaller portion of the respective 
surface than in a Levallois core. Thus, it is expected that as reduction 
continues, some products will retain a certain amount of cortex. 

2.2. Data acquisition 

All flakes were scanned with an Academia 20 structured light surface 
scanner (Creaform 3D) at a 0.2 mm resolution. Flakes were scanned in 
two parts and automatically aligned (or manually aligned in case 
automatic alignment failed) and exported in STL formats. Cloudcompare 
2.11.3 (https://www.danielgm.net/cc/) free software was employed to 
perform additional cleaning, mesh sampling, surface reconstruction, and 
transformation into PLY files. Finally, all files were decimated to a 
quality of 50,000 faces using the Rvcg R package v.0.21 (Schlager, 
2017). 

The protocol for the digitalization of landmarks on flakes was based 
on previous studies (Archer et al., 2021, 2018). This included the posi-
tioning of a total of 3 fixed landmarks, 85 curve semi-landmarks, and 
420 surface semi-landmarks (Bookstein, 1997a, 1997b; Gunz et al., 
2005; Gunz and Mitteroecker, 2013; Mitteroecker and Gunz, 2009). This 
makes for a total of 508 landmarks and semi-landmarks. The three fixed 
landmarks correspond to both laterals of the platform width, and the 
percussion point. The 85 curve semi-landmarks correspond to the in-
ternal and exterior curve outlines of the platform (15 semi-landmarks 
each) and the edge of the flake (55 semi-landmarks), and the 60 sur-
face semi-landmarks correspond to the platform surface. The dorsal and 
ventral surfaces are defined by 180 semi-landmarks each. The workflow 
for digitalizing the landmarks and semi-landmarks included the creation 
of a template/atlas on an arbitrary selected flake (Fig. 5, top). After this, 
the landmarks and semi-landmarks were positioned in each specimen 
and were relaxed to minimize bending energy (Fig. 5, bottom; 

Bookstein, 1997a, b). The entire workflow of landmark and semi- 
landmarks digitalization and relaxation to minimize bending energy 
was done in Viewbox version 4.1.0.12 (https://www.dhal. 
com/viewbox.htm), and resulting point coordinates were exported 
into.xlsx files. 

Procrustes superimposition (Kendall, 1984; Mitteroecker and Gunz, 
2009; O’Higgins, 2000) was performed using the package “Morpho” 
v.2.9 (Schlager, 2017) on RStudio IDE (R Core Team, 2019; RStudio 
Team, 2019). After performing Procrustes superimposition and obtain-
ing a new set of coordinates, PCA was performed to reduce the dimen-
sionality of the data (James et al., 2013; Pearson, 1901). There are 
multiple reasons to use dimensionality reduction when dealing with 
high dimensional data on classification, including to avoid having more 
predictors than observations (p > n), to avoid the collinearity of pre-
dictors, to reduce the dimensions of the feature space, and to avoid 
overfitting due to an excessive number of degrees of freedom (simple 
structure with lower number of variables). PCA achieves dimensionality 
reduction by identifying the linear combinations that best represent the 
predictors in an unsupervised manner. The principal components (PCs) 
of a PCA are aimed to capture as high a variance as possible of the 
complete data (James et al., 2013), and PCs that capture a higher 
variance do not necessarily need to be the best for classification. For the 
present work, PCs that represent 95 % of the variance were selected as 
predictors for training the machine learning models. The threshold of 95 
% of the variance was arbitrarily selected since it balances retaining 
most of the dataset variance on a reduced number of variables. The 
identification of best PCs for classification was automatically done by 
the machine learning models using the caret v.6.0.92 package (Kuhn, 
2008). 

A drawback exists in the interpretability of PCA as a result of its 
nature of reducing dimensionality through the identification of linear 
combinations of variables. Because of this, interpreting what morpho-
logical features are being capture by a PC can be difficult. An option for 
interpreting PC is to use manual measurements as predictive variables 
on multiple linear regressions to predict PC values. In addition to 

Fig. 3. Backed products from the experimental sample: core edge flakes (1–2) and pseudo-Levallois points (3–4) from the Discoid knapping method. Core edge flakes 
(5–6) and pseudo-Levallois points (7–8) from the Levallois recurrent centripetal method. 

G. Bustos-Pérez et al.                                                                                                                                                                                                                          

https://www.danielgm.net/cc/
https://www.dhal.com/viewbox.htm
https://www.dhal.com/viewbox.htm


Journal of Archaeological Science: Reports 46 (2022) 103723

5

geometric morphometrics, the following attributes were recorded for 
each of the flakes using the E5 software (McPherron, 2019). 

• Technological length: measured in mm along the axis perpendic-
ular to the striking platform.  

• Technological width: measured in mm along the axis perpendicular 
to the technological length.  

• Maximum thickness of the flake measured in mm.  
• External platform angle (EPA): measured in degrees with a manual 

goniometer.  
• Internal platform angle (IPA): measured in degrees with a manual 

goniometer.  
• Relative amount of cortex on the dorsal face: recorded according 

to its extension on the dorsal surface of the flake, with categories as 
follows: 0 (no cortex), 1 (nearly 25 % covered by cortex), 2 (nearly 
50 % covered by cortex), 3 (nearly 75 % covered by cortex), and 4 
(nearly the entire surface covered by cortex). This variable was 
employed to evaluate the distribution of cortex proportions among 
the experimental assemblage (Fig. 4).  

• Weight: measured to a precision of 0.01 g. 

These measures served to generate the following indices:  

• Elongation index: length divided by width.  
• Carenation index: result of dividing either width or length (the one 

with the lowest value) between maximum thickness.  
• Width to thickness ratio: flake width divided by maximum 

thickness. 

These measures are not employed as inputs for the Machine Learning 
models, but to explore the meaning of the Principal Components 
through multiple linear regression. 

2.3. Machine learning models and evaluation 

The following 11 machine learning models have been tested for 
differentiating between backed flakes extracted from the two surfaces of 
the core within each knapping method: 

• Linear discriminant analysis (LDA): reduces dimensionality aim-
ing to maximize the separation between classes while decision 
boundaries divide the predictor range into regions (Fisher, 1936; 
James et al., 2013).  

• K-nearest neighbor (KNN): classifies cases by assigning the class of 
similar known cases. The “k” in KNN references the number of cases 
(neighbors) to consider when assigning a class, and it must be found 

by testing different values. Given that KNN uses distance metrics to 
compute nearest neighbors and that each variable is in different 
scales, it is necessary to scale and center the data prior to fitting the 
model (Cover and Hart, 1967; Lantz, 2019). 

• Logistic regression: essentially adapts continuous regression pre-
dictions to categorical outcomes (Cramer, 2004; Walker and Duncan, 
1967).  

• Decision tree with C5.0 algorithm: is an improvement on decision 
trees for classification (Quinlan, 2014, 1996).  

• Random forest: is made of decision trees. Each tree is grown from a 
random sample of the data and variables, allowing for each tree to 
grow differently and to better reflect the complexity of the data 
(Breiman, 2001).  

• Gradiant Boosting Machine (Greenwell et al., 2019; Ridgeway, 
2007) implements gradient boosted (Friedman, 2002, 2001), 
allowing the detection of learning deficiencies and increases model 
accuracy. 

• Supported vector machine (SVM): fits hyperplanes into a multi-
dimensional space with the objective of creating homogeneous par-
titions (Cortes and Vapnik, 1995; Frey and Slate, 1991). The present 
study tests SVM with linear, radial, and polynomial kernels.  

• Artificial neural network (ANN): with multi-layer perception, uses 
a series of hidden layers and error backpropagation for model 
training (Rumelhart et al., 1986).  

• Naïve Bayes: computes class probabilities using Bayes’ rule (Weihs 
et al., 2005). 

All models are evaluated using 10 × 50 k-fold cross validation (10 
folds and 50 cycles), providing measures of accuracy. Using a 10-fold 
division, each fold will have 14 data points (with the exception of the 
last fold, which will have 13 data points). Each fold serves subsequently 
as test set for a trained model. Although computationally more expen-
sive, this guarantees that all data points will serve as test sets. The 50 
cycles provide a random shuffling of the dataset prior to fold division, 
thus ensuring that the composition of the folds varies in each cycle and it 
does not play a significant role in the evaluation of the models. 

Machine Learning models commonly use a 0.5 classification 
threshold to assign categories. However, classification thresholds can be 
modified to balance the ability of model to detect true positives and 
avoid false positives which are respectively referred as sensitivity and 
specificity (this problem is exemplified in Fig. 6). The receiver operating 
characteristic (ROC) curve is employed to systematically evaluate the 
ratio of detected true positives while avoiding false positives (Bradley, 
1997; Spackman, 1989). The ROC curve allows visually analyzing model 
performance and calculating the AUC, which ranges from 1 (perfect 
classifier) to 0.5 (random classifier). AUC ranges of values are usually 

Fig. 4. Distribution of backed flakes according to the relative cortex amount for both strategies.  
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interpreted as follows: 1 to 0.9: outstanding; 0.9 to 0.8: excellent/good; 
0.8 to 0.7: acceptable/fair; 0.7 to 0.6: poor; and 0.6 to 0.5: no discrim-
ination (Lantz, 2019). When analyzing lithic assemblages, the use of 
thresholds to guarantee true positives and avoid false positives is of 
special interest. The use of decision thresholds and derived measures of 
accuracy (ROC curve and AUC) can be especially useful in lithic analysis 
since it is expected that products from initial reduction stages are 

morphologically similar, independent of the knapping method. It is ex-
pected that these products show a higher mixture between methods and 
have lower probability values. The use of thresholds better indicates the 
accuracy of a model since it takes into account these probability values. 

Statistical analysis was carried out using R version 4.1.2 in IDE 
RStudio version 2021.09.0 (R Core Team, 2019; RStudio Team, 2019). 
The management of the data and the generation of graphs was done 

Fig. 5. Top: Template/atlas on an arbitrary selected flake with the defined landmarks (in red), curves, and surfaces. Bottom: Landmark positioning after sliding to 
minimize bending energy on a pseudo-Levallois point from a discoidal reduction sequence. 

Fig. 6. Examples of the use of different thresholds for classification. The upper example uses a default threshold of 0.5 for classification. The lower example uses a 0.7 
threshold avoiding three false positives at the expense of one true positive. 
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using the tidyverse v.1.3.1 package (Wickham et al., 2019). The training 
of LDA and KNN was done with MASS v.7.3.57 (Venables and Ripley, 
2002). The training of random forest was done using the “ranger” 
v.0.13.1 package (Wright and Ziegler, 2017). The training of SVM was 
done using the e1071 v.1.7.9 package (Karatzoglou et al., 2006, 2004). 
The RSNNS v.0.4.14 (Bergmeir and Benítez, 2012) package was 
employed to train multi-layer ANN with backpropagation. The klaR 
v.1.7.0 package was employed to train the naive Bayes classifier (Weihs 
et al., 2005). The k-fold cross validation of all models, precision metrics, 
and confusion matrix were obtained using the caret v.6.0.92 package 
(Kuhn, 2008). Machine learning models also provide insights into the 
variable importance for classification. The caret package was employed 
to extract variable importance after each k-fold cross validation. Pack-
age pROC v.1.18.0 is employed to obtain ROC curve and AUC data. 

All 3D models, original coordinates, data, code, models and complete 
workflow is freely available at the corresponding Zenodo repository 
(https://doi.org/10.5281/zenodo.7085139). 

3. Results 

3.1. PCA and model performance 

The PCA results (Fig. 7) show that the first 25 PCs account for 95 % of 
the variance of the dataset, with PC1 accounting for 21.39 % of the 
variance and PC25 accounting for 0.36 % of the variance. This is an 
important reduction from the original number of variables (1,524) and is 
substantially lower than the sample (139). 

Fig. 8 presents the performance metrics for each of the models. In 
general, all models performed with accuracy values higher than 0.7 with 
the exception of KNN, Naïve Bayes, and the decision tree with C5.0 al-
gorithm. When considering the two measures of overall model perfor-
mance (F1 and accuracy), SVM with polynomial kernel presents the 
highest performance values (F1 = 0.75 and accuracy = 0.757). Addi-
tionally, SVM with polynomial kernel also provides the highest values of 
precision. 

SVM with polynomial kernel is closely followed by SVM with a linear 
kernel, which presents the second highest value of accuracy (0.741), the 

fourth highest value of F1 (0.726), and the second-highest value of 
precision (0.774). Outside SVM with different kernels, the boosted trees 
also presents high values of accuracy (0.732), F1 (0.732), and precision 
(0.738). KNN presented the lowest values on the general performance 
metrics, with an accuracy value of 0.61 and a very low F1 score (0.461). 
KNN does seem to present high values of precision (0.751) and speci-
ficity (0.888) although these are clearly the result of a sensitivity (0.333) 
lower than the no-information ratio (0.504). 

The evaluation of the models through the ROC curve and AUC 
(Fig. 9) shows that most models present acceptable/fair (0.8–0.7) 
values. Again, KNN presents the lowest AUC (0.67), a poor value. SVM 
with polynomial kernel presents the highest AUC value (0.799) and is 
thus very close to being an excellent/good model (0.9 to 0.8). The 
optimal probability threshold values from the SVM with polynomial 
kernel are 0.501 for discoidal and 0.491 for Levallois. The general 
performance metrics (F1 and accuracy) and AUC values indicate that 
SVM with polynomial kernel is the best model. The evaluation of SVM 
with the polynomial kernel confusion matrix (Fig. 10) shows a very good 
distribution along the diagonal axis, with the correct identification of 
Levallois products being slightly higher than the correct identification of 
discoidal products. The directionality of confusions shows that for the 
SVM with polynomial kernel, it is more common to mistake discoidal 
backed products for Levallois ones rather than mistaking Levallois 
backed products for those from discoidal reduction sequences. 

3.2. Feature importance 

Fig. 11 presents the PC importance for the discrimination of knap-
ping method according to SVM with polynomial kernel model. The PC 
importance shows that PC3 clearly stands out in importance for the 
discrimination of discoidal and Levallois backed products. PC3 only 
accounts for 10.8 % of the variance but presents the maximum scaled 
importance. PC1, which represents 21.39 % of the variance, is the sec-
ond most important variable, with a score of 46.64, although far from 
PC3. PC8, which represents only 3.63 % of the variance, is the third most 
important variable for the SVM with polynomial kernel model. 

The effect of PC3 on identifying backed products from the two 

Fig. 7. Proportion of variance and cumulative proportion of the first 25 PC.  
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Fig. 8. Performance metrics of models.  

Fig. 9. ROC curves and AUC values of each of the tested models.  

Fig. 10. Normalized confusion matrix of SVM with polynomial kernel. Top left 
represents percentage of backed flakes from Levallois recurrent centripetal 
correctly identified as belonging to that strategy. Bottom left represents per-
centage of backed flakes from Levallois recurrent centripetal incorrectly iden-
tified as belonging to discoidal reduction sequences. 
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Fig. 11. Variable importance of each of the PCs for SVM with polynomial kernel model.  

Fig. 12. Biplots of PC3, PC1, and PC8 (and percentage of variance explained) according to their importance in the SVM with polynomial kernel model.  

Fig. 13. Biplots of PC1, PC6, and PC8 (and percentage of variance explained) according to their importance in the SVM with polynomial kernel model.  

G. Bustos-Pérez et al.                                                                                                                                                                                                                          



Journal of Archaeological Science: Reports 46 (2022) 103723

10

knapping methods is especially notable in the a biplot distribution. 
Fig. 12 presents a biplot distribution of the data between PC3 and the 
following two most important variables. In both cases, backed flakes 
detached from Levallois recurrent centripetal cores tend to be clustered 
in the positive values of PC3, whereas they show a wider distribution, 
usually centered on the 0 value, for PCs 1 and 8. Backed flakes from 
discoidal reduction sequences show a wider distribution although the 
center is in the negative and 0 values of PC3. Although the combination 
of PC3 with PC1 and PC8 shows an overlapping of the confidence 
ellipsis, differentiation between both groups can be observed. 

Fig. 13 presents a biplot distribution of the data when the second 
(PC1), third (PC8), and fourth (PC6) most important variables are 
employed. The biplot from the combination of these variables (Fig. 13) 
shows much more consistent overlapping for the different combinations 
of PC1, PC8, and PC6. 

3.3. Multiple linear regression and feature interpretation 

Multiple linear regression for the prediction of PC3 indicates that the 
best correlation is obtained when the interaction of IPA and the ratio of 
flake width to thickness is employed (p < 0.001, adjusted r2 = 0.65). The 
coefficient of the interaction between the ratio of width to thickness and 
IPA is 0.17, whereas the coefficient of IPA is − 0.77. This indicates that as 
the IPA becomes more open as the values of PC3 decrease. The ratio of 
flake width to thickness offers a counterintuitive coefficient of − 12.79. 
The signal of this coefficient is opposite to that obtained from a linear 
regression where the values of the ratio of flake width to thickness are 
employed to predict PC3 values (p < 0.001; r2 = 0.6; coefficient = 6.46). 
The reversed signal obtained from the interaction can be considered the 
result of Simpson’s paradox (Simpson, 1951). The high correlation be-
tween the carenated index and the ratio of flake width to thickness (p <
0.001; r2 = 0.9) indicates that PC3 captures relative flake thinness to 
thickness although it regresses better with the ratio of width to thick-
ness. In general, thin flakes with an IPA close to 90◦ will have high 
positive PC3 values, whereas thick flakes with open IPA will have 
negative values. 

An analysis of PC3 values according to group (Table 1) shows that 
backed products from Levallois recurrent centripetal methods tend to 
have higher values (mean = 5.47) with a slightly lower standard devi-
ation. Backed products detached from discoidal cores, alternatively, 
tend to have lower values (mean = -5.20) and a slightly higher standard 
deviation (12.74). 

Multiple linear regression for the prediction of PC1 values shows a 
moderate correlation when the elongation index and carenated index 
are employed as predictors (p < 0.001; adjusted r2 = 0.63). The elon-
gation index presents the highest significance and the highest estimate 
value (-39.27), whereas the carenated index presents an estimate value 
of − 4.26. The negative and high value of the estimate for the elongation 
index indicates that as the elongation tendency of a product increases 
(becoming longer relative to its width), the values of PC1 will decrease 
while all other variables remain constant. The negative estimate of the 
carenated index also indicates that as a product becomes thinner, the 

values of PC1 will decrease. Thus, the positive values of PC1 represent 
thick products with a low elongation. 

The analysis of PC1 values shows differences between the backed 
products of the discoidal and Levallois recurrent centripetal methods. 
On average, backed products from the Levallois recurrent centripetal 
method will have higher values (mean = 3.75) compared to discoidal 
products (mean = -3.80). However, an important overlapping of values 
is evident for products from both reduction methods, with high values of 
standard deviation in both cases. 

4. Discussion 

Our results have shown an accuracy of 0.76 for the differentiation of 
backed pieces from discoidal and Levallois recurrent centripetal 
methods. Additionally, the use of decision thresholds provided an AUC 
close to 0.8. This degree of accuracy indicates that the quantification of 
morphological features through geometric morphometrics, along with 
dimensionality reduction using PCA and machine learning models, can 
accurately differentiate between the two methods tested. Of the 11 
models tested, SVM with polynomial kernel provided the best perfor-
mance for the discrimination of discoidal and Levallois recurrent cen-
tripetal methods in backed artifacts. Moreover, results support the 
notion that discoidal and recurrent centripetal Levallois are two sepa-
rate core reduction methods/conceptions. 

The selection of machine learning algorithms depends on the task, 
type of classification, and nature of the data, requiring for the system-
atical evaluation of different algorithms. Of the tested models, SVM with 
polynomial kernel performed the best. SVM’s have a series of features 
which make them ideal for the analysis of lithic artifacts. As previously 
mentioned, SVM models fit hyperplanes to separate classes, use margins 
to find the best separation, and apply a cost value with each misclassi-
fication (Lantz, 2019). Selection of the kernel is key for the performance 
of SVM, since it will have a direct impact on the fitted hyperplane, 
margins and cost value. As a result of these features, SVM are able to 
allow misclassifications and overlapping classifications in order to 
obtain a better general performance. These features of SVM make them 
especially adequate for the analysis of lithic materials and might be one 
of the underlying reasons why it has the best performance metrics. 

The first 25 PCs captured 95 % of the sample variance. Of these PCs, 
the highest importance value for the discrimination of knapping 
methods was obtained by PC3. Multiple linear regression shows that PC3 
is moderately correlated with an interaction between IPA and the ratio 
of flake width to thickness. Thin and wide artifacts with IPA values close 
to 90◦ will have higher PC3 values. The examination of biplots and PC3 
values shows that backed flakes detached from Levallois recurrent 
centripetal cores tend to be thin in relation to the thickness, non- 
elongated, and have an IPA close to 90◦. PC1, which captures elonga-
tion tendencies with higher resolution (along with product thickness) 
also supports this interpretation although higher overlapping exists. The 
discriminatory power of PC3 appears inherently related to differences in 
how the volume of cores in the two methods are conceived: non- 
hierarchized surfaces exploited with secant removals in discoidal 
reduction while recurrent centripetal Levallois is characterized by sub- 
parallel removals from a single debitage surface. Additional features 
for the discrimination of discoidal and Levallois backed products can be 
found in edge angles and the angles of negatives of the dorsal face to-
wards the detachment surface. In general, it is expected that products 
detached from Levallois reduction sequences will have more acute edge 
angles, along with flatter dorsal surface negatives. Again, these differ-
ences in the angles are also inherently related to differences in how the 
volume of cores in the two methods are conceived. 

These results indicate that there are underlying morphological dif-
ferences between backed artifacts detached from both methods. These 
underlying morphological differences can be captured and quantified by 
geometric morphometrics along with PCA and used by machine learning 
models for an accurate discrimination of methods. 

Table 1 
Descriptive statistics of PC3 and PC1 according to knapping method.   

PC3 PC1 

Discoid Levallois Discoid Levallois 

Min  − 38.00  –23.82  − 36.23  − 44.76 
5th Percentile  − 26.51  − 16.16  − 26.25  − 31.17 
1st quantile  − 14.74  0.39  − 7.71  − 16.30 
Mean  − 5.39  5.47  3.75  − 3.80 
Median  − 5.20  8.59  2.37  − 2.74 
3rd quantile  4.98  12.41  16.79  7.58 
95 Percentile  13.38  18.24  32.96  25.18 
Max  16.49  24.29  35.95  41.46 
SD  12.74  10.45  17.31  18.11  
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Several authors have identified underlying morphological charac-
teristics that can differentiate backed products detached from Levallois 
recurrent centripetal and discoidal cores (Boëda et al., 1990; Delpiano 
et al., 2021; Meignen, 1993, 1996; Mourre, 2003). As previously sug-
gested, one of the features captured by PC3 is the internal platform angle 
(IPA). Products with an IPA close to 90◦ have increasing PC3 values, 
which is the case for most backed flakes from Levallois reduction se-
quences. Levallois products having an IPA close to 90◦ was identified 
relatively early on (Kelly, 1954) and further documented following the 
detailed technological description of the Levallois flaking system 
(Boëda, 1993, 1994, 1995a,b). A recent study employing machine 
learning models (González-Molina et al., 2020) based on an attribute 
analysis have also pointed to the IPA as one of the features differenti-
ating Levallois recurrent centripetal and Discoid products. 

Delpiano et al., (2021) focused on the general morphology of backed 
products from discoidal and Levallois reduction sequences, stating that 
the latter tend to be thinner with subparallel and rectilinear edges and a 
higher elongation index. The interpretation of PC3 in the present study 
also identifies backed products from Levallois recurrent centripetal as 
being thinner. However, the interpretation of PC1 (which better cap-
tures elongation) proved not to be a sound criterion for discriminating 
between strategies, with both methods showing a very wide range of 
elongation values. Concerning the elongation of Levallois products, 
Boëda et al. (1990) also noticed the decrease of length/width ratio with 
each successive exploitation phase, resulting in short non-laminar flakes 
and core edge flakes. Mourre (2003) equally called attention to the di-
rection of removal axis being parallel to the plane of intersection of both 
surfaces in the case of Levallois core edge flakes. In our study, the effect 
of this feature can be linked to a higher carenation index, which is 
captured by PC3. The visual exploration of the 3D meshes according to 
PC values did not seem to capture the relation between the debitage axis 
and the symmetry of blanks as an important feature of Levallois cen-
tripetal backed flakes (Meignen, 1993, 1996). This is probably due to the 
inclusion of core edge flakes with a limited back in the experimental 
sample and its possible importance being overshadowed by other fea-
tures better for discrimination captured by PC3 (IPA, carenation index 
and elongation index). 

González-Molina et al., (2020) achieved an 80 % accuracy when 
differentiating between discoidal and Levallois centripetal flakes. 
Although their study focused uniquely on flakes from the exploitation 
phase (with the presence of cortex having very little importance as a 
variable for differentiating methods), it did not specifically addressed 
the issue of backed flakes, and dimensional variables (width at different 
points and maximum thickness) have high importance, it shows the 
potential of using machine learning models for the identification of 
knapping methods. In contrast, our study focused on a concrete set of 
technological products independent of the reduction phase, and the use 
of geometric morphometrics excludes dimensional variables. However, 
despite these differences, similar degrees of accuracy were obtained. 
Archer et al., (2021) also used geometric morphometrics and random 
forest to evaluate the differentiation between three strategies (Levallois, 
discoidal, and laminar). Although overall performance of the models is 
based on accuracy, their study nevertheless reached a similar value to 
that of the present study. However, the classification of the two same 
classes as in the present study varies significantly, with an 87 % accuracy 
for Levallois products and 40 % in the differentiation of discoidal 
products. This contrasts heavily with our results, where the classification 
is more balanced and the identification of backed products from dis-
coidal reduction showed a slightly lower accuracy than the identifica-
tion of products from the Levallois recurrent centripetal method (0.72 
and 0.79, respectively). 

Archer et al., (2021) also reported human analyst identification ra-
tios for flakes from different archaeological sites with the “undiagnostic” 
class being the largest, usually tallying above 60 % (thus, only 35 % of 
flakes were attributed to a knapping method). In both the above- 
mentioned studies (Archer et al., 2021; González-Molina et al., 2020) 

and in the present study, the application of machine learning models 
notably increases the accuracy and predictions regarding the identifi-
cation of knapping methods. Caution is always advisable when evalu-
ating such findings, as controlled experimental assemblages do not 
mimic the complexity of the archaeological record. 

The present study has employed multiple linear regression with 
common metrics of lithic analysis as predictors to determine what fea-
tures were captured by the PCs. The multiple linear regressions of both 
PC3 and PC1 presented moderate correlation values, with more than 0.6 
of the variance explained. However, this also implies that a good portion 
of the variance remains unexplained for both PCs. The remaining un-
explained variance can be the result of several factors. Metric variables 
used as predictors were taken manually, likely resulting in some degree 
of error. Geometric morphometrics capture the same metric variables 
with higher resolution, thus representing another potential source of 
error when establishing correlations. An additional source of the unex-
plained PC variance might come from metric features (and their in-
teractions) recorded as part of exhaustive attribute analyses (e.g. the 
number, organization and flaking angle of previous removals). This 
suggests future research should take into account large sample sizes 
along with the incorporation of these analytical features. 

While backed flakes detached from discoidal and Levallois recurrent 
centripetal methods were the focus of our analysis, it is important to 
note that backed products are common to other flaking strategies such as 
Quina and SSDA (Bourguignon, 1996; Forestier, 1993) not included in 
the present study. Although in Western Europe the coexistence of 
Levallois and discoidal knapping methods with other knapping methods 
in the same archaeological levels is a subject of debate (Faivre et al., 
2017; Grimaldi and Santaniello, 2014; Marciani et al., 2020; Ríos- 
Garaizar, 2017), the present model can be applied to assemblages where 
Levallois and Discoid knapping strategies have been shown to coexist. 
For this, the study and evaluation of the chaîne opèratoire and assem-
blage context and integrity are fundamental for the study of lithic 
technology (Soressi and Geneste, 2011). Thus, the chaîne opèratoire and 
assemblage integrity should be considered prior to the application of 
geometric morphometrics and machine learning models for the identi-
fication of knapping methods. 

5. Conclusions 

Backed flakes are technological products that play special roles in the 
discoidal and Levallois recurrent centripetal methods (Boëda, 1993; 
Boëda et al., 1990; Slimak, 2003). In Levallois reductions, these re-
movals serve to manage lateral and distal core convexities (Boëda et al., 
1990), while their systematic production in discoidal reductions dem-
onstrates their properties to be intentionally sought-after (Locht, 2003; 
Slimak, 2003). Additionally, data from several sites show that they were 
commonly imported and exported (Geneste, 1988; Roebroeks et al., 
1992; Turq et al., 2013, Courbin et al. 2020). This frequent transport is 
possibly connected to their specific morpho-functional features (Del-
piano et al., 2021), a “prehensile” core edge opposite a convergent 
cutting edge. Associated with two technologically distinct core reduc-
tion methods, it should be expected that their morphological features 
differ and therefore allow for the identification of the knapping method. 
With the use of geometric morphometrics, these morphological features 
can be quantified, and PCA for dimensionality reduction allows them to 
be employed in machine learning models. 

PCA and machine learning models indeed capture the different 
morphological features derived from both knapping methods, resulting 
in an accuracy of 0.76 and an AUC of 0.8 in the case of the best model for 
differentiating between knapping strategies. Most of the importance for 
differentiating between the knapping methods was captured by only one 
variable (PC3), which multiple linear regressions showed to be corre-
lated with the elongation index and mostly an interaction between IPA 
and the carenation index. 

The workflow of the present work has been developed to allow for its 
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implementation on archaeological materials. Archaeological backed 
flakes can be scanned, then use the flake template from the present work 
to locate landmarks on the 3D meshes, perform procrustes alignment of 
all backed flakes (archaeological and experimental reference flakes of 
the present research whose original unaligned coordinates are avail-
able), reduce dimensionality of experimental and archaeological backed 
flakes through PCA (it is important to notice that PCA values will change 
with the inclusion of new archaeological data), train the SVM with 
polynomial kernel on the experimental assemblage, and make pre-
dictions on the archaeological material. Of this workflow, 3D scanning 
and landmarks positioning are considered to be the most time- 
consuming stages, while procrustes alignment, PCA and model 
training can be considered to be fairly fast. 

Geometric morphometrics in combination with dimensionality 
reduction methods (PCA) and machine learning models can offer high- 
resolution methods for the identification of knapping methods in lithic 
analysis although their application should not be independent from the 
study of the operative chain and assemblage technological context. 
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Boëda, E., Geneste, J.-M., Meignen, L., 1990. Identification de chaînes opératoires 
lithiques du Paléolithique ancien et moyen. Paléo 2, 43–80. 
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niveles silíceos explotados en el yacimiento arqueológico de Casa Montero 
(Vicálvaro, Madrid). Geogaceta 38, 243–246. 
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de la Société Préhistorique Française 51, 149–169. https://doi.org/10.3406/ 
bspf.1954.3077. 

Kendall, D.G., 1984. Shape Manifolds, Procrustean Metrics, and Complex Projective 
Spaces. Bull. London Math. Soc. 16, 81–121. https://doi.org/10.1112/blms/16.2.81. 

Kuhn, M., 2008. Building Predictive Models in R using the caret Package. J. Stat. Softw. 
28 https://doi.org/10.18637/jss.v028.i05. 

Kuhn, S.L., 2013. Roots of the Middle Paleolithic in Eurasia. Current Anthropology 54. 
https://doi.org/10.1086/673529. 

Lantz, B., 2019. Machine learning with R: expert techniques for predictive modeling. 
Packt publishing ltd. 

Lenoir, M., Turq, A., 1995. Recurrent Centripetal Debitage (Levallois and Discoidal): 
Continuity or Discontinuity? In: Dibble, H.L., Bar-Yosef, O. (Eds.), The Definition and 
interpretation of Levallois Technology, Monographs in World Archaeology. 
Prehistory Press, Madison, Wisconsin, pp. 249–256. 

Locht, J.-L., 2003. L’industrie lithique du gisement de Beauvais (Oise, France): objectifs 
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