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a b s t r a c t

Recently, a covariant formulation of non-equilibrium phenomena in the context of General Relativity
was proposed in order to explain from first principles the observed accelerated expansion of the
Universe, without the need for a cosmological constant, leading to the GREA theory. Here, we confront
the GREA theory against the latest cosmological data, including type Ia supernovae, baryon acoustic
oscillations, the cosmic microwave background (CMB) radiation, Hubble rate data from the cosmic
chronometers and the recent H0 measurements. We perform Markov Chain Monte Carlo analyses
and a Bayesian model comparison, by estimating the evidence via thermodynamic integration, and
find that when all the aforementioned data are included, but no prior on H0, the difference in the
log-evidence is ∼ −9 in favor of GREA, thus resulting in overwhelming support for the latter over
the cosmological constant and cold dark matter model (ΛCDM). When we also include priors on H0,
either from Cepheids or the Tip of the Red Giant Branch measurements, then due to the tensions with
CMB data the GREA theory is found to be statistically equivalent with ΛCDM.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Our understanding of the expanding universe is anchored
n the geometric description provided by Einstein’s theory of
eneral Relativity (GR). On the one hand, its approximate sym-
etries, i.e., homogeneity and isotropy at large scales, determine

ts background space–time to be described by a Friedmann–
emaître–Robertson–Walker (FLRW) metric. On the other hand,
ts matter content is responsible for the dynamics of the scale
actor, which tracks the growth of length-scales in the geometric
xpansion, as described by the Friedmann equations.
The currently accepted realization of FLRW cosmology is given

y the Λ —Cold Dark Matter (ΛCDM) model. According to it,
baryonic matter and radiation make up only a small portion of
the present content of the universe. Instead, its expansion is
dominated by two components which lack a fully satisfactory
microscopic description. First, a cosmological constant, usually
denoted by Λ, which is added to Einstein’s field equations to
account for the observed late-time accelerated expansion of the
universe. Second, cold (low temperature) dark (without electro-
magnetic interactions) matter, which was required originally to
explain anomalies in the galactic rotation curves but is nowadays
consistent with many other early- and late-time cosmological
observables.
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Even though ΛCDM seems to be the best fit to observations,
he existence of a cosmological constant has been challenged
n theoretical grounds. Consequently, a plethora of alternatives
aven been explored, which fall systematically into two groups.
irst, modified gravity (MG) theories attempt to deliver new
ynamics at large, cosmological, scales, while leaving invariant
maller scales at which GR has been thoroughly probed. Second,
ark energy (DE) models propose the addition of exotic matter,
uch as quintessence.
Furthermore, in the last years there have been observational

hallenges to ΛCDM. Early- and late-time measurements of the
resent-value of the Hubble parameter (H0) seem to be inconsis-
ent [1]. This H0 tension signals a possible failure of the ΛCDM to
describe our universe. However, no available alternative MG or
DE seems to be able to resolve the tension between high and low
redshift probes, while providing a fit to cosmological observations
that is competitive with ΛCDM [2,3]. Moreover, there have been
recent model-independent analyses, using machine learning ap-
proaches, that suggest that there maybe hints of deviations from
ΛCDM at high redshifts [4,5].

Recently, a first-principles explanation of cosmic acceleration
has been proposed by two of us. This is the General Relativistic
Entropic Acceleration (GREA) theory [6]. It is not based on MG
or DE. Rather, it is based on the covariant formulation of non-
equilibrium formulation of thermodynamics [7]. Entropy produc-
tion during irreversible processes necessarily has an impact on
Einstein field equations. This suggests the idea that entropy pro-
duction or, equivalently, information coarse graining, gravitates.

As such, it affects the space–time geometry.
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In FLRW cosmology, irreversible processes inevitably con-
ribute with an acceleration term to the Friedmann equations.
n GREA, it is the sustained growth of the entropy associated
ith the cosmic horizon in open inflation scenarios that explains
urrent cosmic acceleration.
The goal of this paper is to test the full viability of the GREA

heory at the background level and compare it with the ΛCDM,
gainst available cosmological data. To that end we consider
everal datasets: type Ia supernovae, baryon acoustic oscillations
BAO), cosmic microwave background radiation (CMB) and recent
eterminations of H0. We find that, when all of them are included
nd no prior on H0 is assumed, Bayesian evidence strongly favors
he GREA theory, with difference in log-evidence ∼ 9. It is to
ur knowledge the first time an alternative to ΛCDM performs
o remarkably. When priors on H0 are included, however, GREA
s statistically equivalent to a cosmological constant and future
recision tests are required.
This paper is organized as follows. In Section 2 we review the

ovariant formulation of non-equilibrium thermodynamics and
he GREA theory built thereupon. In Section 3 we describe the
osmological data used in our analysis. In Sections 4 and 5 we
resent our results. We finish with our conclusions in Section 6.

. The GREA theory

.1. Entropic forces in general relativity

The GREA theory [6] is build upon the covariant formulation
f non-equilibrium thermodynamics in GR [7]. This formalism
rovides a rigorous synthesis of the variational formulation of
R and the second law of thermodynamics. As a result, it pre-
icts the emergence of entropic forces associated to any out-
f-equilibrium phenomenon, i.e., any increase in entropy. The
instein field equations are modified by the introduction of term
hat encodes such a force

µν −
1
2
Rgµν = 8πG

(
Tµν − fµν

)
, (1)

where fµν is the entropic force tensor. Its precise form is obtained
in the Arnowitt–Deser–Misner (ADM) formalism from the rela-
tion between the time evolution of the spatial metric and the
local production of entropy. When applied to homogeneous and
isotropic cosmology, it leads to the modified Friedmann equations

H2
=

8πG
3

ρ −
k
a2

,

ä
a

= −
4πG
3

(
ρ + 3p −

T Ṡ
Ha3

)
.

(2)

In this setup, the cosmic fluid satisfies the out-of-equilibrium
continuity equation

ρ̇ + 3H(ρ + p) =
T Ṡ
a3

. (3)

One concludes from the form of the entropic force in the second
Friedmann equation that entropy production leads in general to
a positive contribution to the acceleration of the universe.

There are two sources of entropy that fit naturally in the
variational formalism. On the one hand, the matter Lagrangian
may depend on the entropy or entropy density. We call this
bulk entropy. On the other hand, one may be assign entropy
to horizons, as inspired by black hole thermodynamics. This is
achieved by adding a Gibbons–Hawking–York (GHY) term that
is then interpreted as thermodynamic contribution to the action.
We call this boundary entropy.

Bulk entropy is produced during cosmic expansion during cer-
tain out-of-equilibrium processes, such as (p)reheating, phase
 a

2

transitions or gravitational collapse. However, most of the expan-
sion history of the universe is adiabatic and deviations from it are
expected to be short-lived. This means that, although it may pro-
vide interesting phenomenology, it seems unable to explain the
current accelerated expansion of the universe. On the contrary,
boundary entropy can undergo a sustained increase that becomes
relevant only at recent times.

2.2. Cosmic acceleration from boundary entropy

Let us consider an open universe nucleated in de Sitter space,
i.e. in eternal inflation [8]. Inside the true vacuum bubble, local
space–time as seen by a comoving observer is essentially flat
if inflation lasts long enough, e.g. of order N ∼ 70 e-folds.
Nevertheless, the bubble walls are still located at a finite coor-
dinate distance and, thus, we can define a true casual horizon
with

√
−k = a0H0. Inspired by this scenario we propose a

GHY thermodynamic term that induces an entropic contribution
satisfying [6]

ρH a2 =
THSH
a

=
1
2G

sinh(2a0H0η)
a0H0

, (4)

ΩK

1 − ΩK
= e−2N

(
Trh
Teq

)2

(1 + zeq) , (5)

where η is the conformal time, ΩK is the curvature parameter
inside the inflated patch, Trh is the reheating temperature, Teq
and zeq are, respectively, the temperature and redshift at matter-
radiation equality. We now introduce, for convenience, the time
coordinate τ = a0H0η and denote with primes the derivatives
w.r.t. to τ . Then the second Friedmann equation becomes

a′

a0

)2

= ΩM
a
a0

+ ΩK
a2

a20
+

4π
3

Ω
3/2
K

a2

a20
sinh(2τ ) , (6)

where ΩM is the matter density parameter.
Thus, the expansion of the universe is affected by the increase

in entropy of the causal horizon. Since the causal horizon keeps
growing, the entropic term eventually dominates and leads to
a late-time cosmic acceleration. Contrary to a cosmological con-
stant, however, the entropic term is diluted with the expansion,
albeit at a slower rate than radiation and dust, and the universe
ends in Minkowski space–time in the far future.

From the mathematical point of view, this modified second
Friedmann equation is a differential equation in re-scaled con-
formal time τ . It is, however, an integro-differential equation
in cosmic time t , unlike the usual second Friedmann equation.
Physically, this is related to the nature of the entropic term
associated to the causal horizon: it builds up as the expansion
proceeds.

3. The data

Here we present in detail the compilations of data we use in
our analysis.

3.1. The H(z) data

First, we consider the Hubble rate data, which are obtained via
two complementary ways. The first one is from the redshift drift
of distant objects over long periods of time, usually on the order
of a decade. This is possible as in the FRLW metric the Hubble pa-
rameter H(z) can be related to the rate of change of redshift with
respect to time, i.e. H(z) = −

1
1+z

dz
dt [9]. In particular, the H(z)

ata are determined via the differential age method using the
volution of Dn4000, which is a spectral feature of very massive
nd passive galaxies. The systematics in this case mainly come
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Table 1
The H(z) data used in our analysis (in units of km s−1Mpc−1). This
compilation, which was presented in Ref. [12], is partly based on
those of Refs. [10,13].
z H(z) σH Ref.

0.07 69.0 19.6 [14]
0.09 69.0 12.0 [15]
0.12 68.6 26.2 [14]
0.17 83.0 8.0 [15]
0.179 75.0 4.0 [16]
0.199 75.0 5.0 [16]
0.2 72.9 29.6 [14]
0.27 77.0 14.0 [15]
0.28 88.8 36.6 [14]
0.35 82.7 8.4 [17]
0.352 83.0 14.0 [16]
0.3802 83.0 13.5 [10]
0.4 95.0 17.0 [15]
0.4004 77.0 10.2 [10]
0.4247 87.1 11.2 [10]
0.44 82.6 7.8 [18]
0.44497 92.8 12.9 [10]
0.4783 80.9 9.0 [10]
0.48 97.0 62.0 [15]
0.57 96.8 3.4 [19]
0.593 104.0 13.0 [16]
0.60 87.9 6.1 [18]
0.68 92.0 8.0 [16]
0.73 97.3 7.0 [18]
0.781 105.0 12.0 [16]
0.875 125.0 17.0 [16]
0.88 90.0 40.0 [15]
0.9 117.0 23.0 [15]
1.037 154.0 20.0 [16]
1.3 168.0 17.0 [15]
1.363 160.0 33.6 [20]
1.43 177.0 18.0 [15]
1.53 140.0 14.0 [15]
1.75 202.0 40.0 [15]
1.965 186.5 50.4 [20]
2.34 222.0 7.0 [21]

from the metallicity, via the M11 and BC03 models discussed in
Ref. [10]. However, it has been shown that the systematics can be
kept under control by implementing strict selection criteria [10].

On the other hand, some measurements also come from the
lustering of galaxies or quasars, which is a probe of the Hub-
le expansion via the determination of the BAO in the radial
irection [11]. Furthermore, we assume that the H(z) data are
ncorrelated with each other. Finally, here we will make use of
he compilation from Ref. [12] that contains 36 points in the
edshift range 0.07 ≤ z ≤ 2.34 and which are in the form
zi,Hi, σHi ), as is shown in Table 1.

.2. The SnIa data

We also use the Pantheon supernovae type Ia data (SnIa)
ompilation of Ref. [22] of 1048 Supernovae Ia points in the
edshift range 0.01 < z < 2.26, along with their covariance
atrix. The apparent magnitude mB of the SnIa points is given
y

B = 5 log10

[
DL(z)
1Mpc

]
+ 25 + MB, (7)

where DL(z) is the luminosity distance and MB the absolute mag-
nitude. Finally, the parameter MB is marginalized over, according
to the recipe in Appendix C of Ref. [23].

3.3. The BAO

The compilation of BAO data used in our analysis includes
points from 6dFGS [24], WiggleZ [18], the MGS, ELG, LRG, quasars
3

and DR12 galaxy samples BAO points from the completed SDSS-
IV eBOSS survey [25], the year 3 DES [26] and the Lyman-α (Lyα)
absorption and quasars, auto and cross correlation points from
Ref. [27].

In what follows, we will briefly discuss the functions which are
used to describe the BAO data. A key quantity is the ratio of the
sound horizon at the drag redshift rs(zd) to the so-called dilation
cale DV (z):

z ≡
rs(zd)
DV (z)

, (8)

where the comoving sound horizon is

rs(zd) =

∫
∞

zd

cs(z)
H(z)

dz, (9)

where the redshift at the dragging epoch zd is given for exam-
ple by Eq. (4) of [28], however to actually evaluate the inte-
gral of Eq. (9) we will use the fitting formula from Ref. [29],
which is obtained via machine learning improved fits of the full
recombination history, resulting in

zd =
1 + 428.169ω0.256459

b ω0.616388
m + 925.56ω0.751615

m

ω0.714129
m

, (10)

and which is accurate up to ∼ 0.001% [29]. In Eq. (8) we also
defined the dilation scale DV (z), which is given by

DV (z) =

[
(1 + z)2DA(z)2

cz
H(z)

]1/3
, (11)

here DA(z) is the angular diameter distance. Finally, we can also
efine the Hubble and comoving angular diameter distances, via

DH (z) = c/H(z), (12)

M (z) = (1 + z)DA(z). (13)

Next we describe the actual BAO data. In particular, the 6dFGs
and WiggleZ points are given by

z dz σdz
0.106 0.336 0.015
0.44 0.073 0.031
0.60 0.0726 0.0164
0.73 0.0592 0.0185

(14)

where their inverse covariance matrix is

C−1
ij =

⎛⎜⎝
1

0.0152
0 0 0

0 1040.3 −807.5 336.8
0 −807.5 3720.3 −1551.9
0 336.8 −1551.9 2914.9

⎞⎟⎠ (15)

with the χ2 is then given by

χ2
6dFS,Wig = V i C−1

ij V j, (16)

where the difference vector is given by V i
= dz,i − dz(zi).

The BAO measurements for MGS and eBOSS ELGs are given by
DV/rs = 1/dz via

z 1/dz σ1/dz
0.15 4.46567 0.168135
0.85 18.33 0.595

(17)

and the χ2 is

χ2
MGS,ELG =

2∑
i=1

[
1/dz,i − 1/dz(zi)

σ1/dz,i

]2
. (18)

The BAO data from DES year 3 are of the form DM (z)/rs with
z,DM (z)/rs, σDM,i/rs

]
= (0.835, 18.92, 0.51) and the χ2 given by

χ2
DES =

[
DM,i/rs − DM (zi)/rs

]2
. (19)
σDM,i/rs
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We also include the eBOSS LRG data, which are given by
z,DM/rs,DH/rs) = (0.698, 17.8581, 19.3261) with an inverse
ovariance matrix

−1
ij =

(
10.4515 2.14754
2.14754 3.96466

)
, (20)

o that the χ2 is
2
LRG = V i C−1

ij V j, (21)

here the difference vector is
i
=
[
DM,i − DM (zi),DH,i − DH (zi)

]
/rs. (22)

Similarly the eBOSS QSO points are given by
z,DM/rs,DH/rs) = (1.48, 30.6876, 13.2609) with an inverse
ovariance matrix

−1
ij =

(
1.84606 −1.0342
−1.0342 3.86146

)
, (23)

o that the χ2 is
2
QSO = V i C−1

ij V j, (24)

here the difference vector is
i
=
[
DM,i − DM (zi),DH,i − DH (zi)

]
/rs. (25)

We also include the BAO data from Lyα and the cross/auto
correlations with the quasars, which are of the form fBAO =

DH/rs,DM/rs) and are given by

z fBAO σfBAO
2.334 8.99 0.429418
2.334 37.5 2.77308

(26)

ith a correlation coefficient ρ = −0.45, so that the χ2 given by

2
Lya = V i C−1

ij V j, (27)

here the difference vector is
i
=
[
DM,i − DM (zi),DH,i − DH (zi)

]
/rs. (28)

Finally, the eBOSS DR12 galaxy samples data are of the form
BAO = (DM/rs,DH/rs) and are given by

z DM/rs DH/rs
0.38 10.2341 24.9806
0.51 13.366 22.3166

(29)

ith an inverse covariance matrix

−1
ij =

⎛⎜⎝ 52.584 5.15947 −20.0391 −3.54599
5.15947 2.8048 −2.10831 −1.61178

−20.0391 −2.10831 36.8787 5.7886
−3.54599 −1.61178 5.7886 4.64349

⎞⎟⎠ ,

(30)

hile the difference vector is
i
=
[
DM,0.38,DH,0.38,DM,0.51,DH,0.51

]
/rs

− [DM (0.38),DH (0.38),DM (0.51),DH (0.51)] /rs, (31)

ith the χ2 given by
2
DR12 = V i C−1

ij V j. (32)

Finally, the total χ2 is then given by
2
BAO = χ2

6dFS,Wig + χ2
MGS,ELG + χ2

DES + χ2
LRG + χ2

QSO

+ χ2
Lya + χ2

DR12. (33)

ote that in the latter equation we assume that the data are
ndependent with each other, thus we can simply add the χ2
4

erms. However, since some of the points are derived by the same
urvey, inevitably there will be common overlapping galaxies
etween the datasets, which will result to strong covariances,
hich is clearly a limitation in our analysis.
For example for the WiggleZ data the correlations between

he points is given by the covariance matrix Cij, thus we have
ncluded this information in our analysis. However, overall the
ull correlations are not publicly available and it is impossible to
orrectly estimate a covariance matrix, even if a few attempts
ave been made in the literature, e.g. for a similar discussion for
he growth-rate data see Ref. [30].

.4. The CMB shift parameters

The main effects of the new entropy terms will be twofold:
ne on the background Friedmann equation given by Eq. (6) and
nother on possible contributions to the perturbations as seen
y Eq. (3). Currently, a perturbation theory for the GREA model
s not readily available, thus in this work we only focus on the
ackground contributions and leave the full perturbation analysis
or future work.

Thus, we can use the so called CMB shift parameters [31,32].
urthermore, this simplifies the analysis as most Boltzmann codes
alculate the conformal time, after having calculated the Hub-
le parameter, which make modifications of codes like CAMB or
LASS highly non-trivial. The CMB shift parameters encapsulate
he geometric information in the CMB spectrum, via the location
f the peaks and are in a sense a compressed form of the CMB
ikelihood. They are given by

R ≡

√
Ωm,0H2

0 r(zrec)/c, (34)

la ≡ π r(zrec)/rs(zrec), (35)

where rs(zrec) is the sound horizon at recombination and zrec is the
redshift at recombination, which can be calculated by the fitting
formula of Ref. [29].

As here we are interested in non-flat universes we use the
Planck 2018 chains base_omegak_plikHM_TTTEEE_lowl_lowE_
lensing to estimate the data vectors for (R, la, Ωbh2, h). Note that
the curvature is in fact included in our compressed likelihood as
the Planck 2018 chains we used include a free curvature param-
eter, as denoted by the name of the chain. Thus, the curvature
appears directly in the likelihood, since the parameters R and la
given by Eqs. (34)–(35) depend explicitly on Ωk. Following then
the procedure of Refs. [31,32] we find

v =

⎛⎜⎝ 1.74448
302.21792
0.02249
0.63549

⎞⎟⎠ , (36)

while the covariance matrix is as given in Box I.
Thus, the difference vector can be written as

V = [R, la, Ωbh2, h] − v, (38)

thus, the χ2 for the CMB data can be written as

χ2
cmb = VC−1

v V. (39)

3.5. The Riess H0 prior

We also use the H0 measurement from Ref. [33], which comes
from a sample of 75 Milky Way Cepheids, which were used to
recalibrate the extragalactic distance ladder. This approach gives

H (R)
= 73.2 ± 1.3 km s−1 Mpc−1. (40)
0
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Cv = 10−8
×⎛⎜⎝ 2604.44383 16594.36494 −58.52126 4633.20089

16594.36494 738151.92316 −410.26313 20120.28532
−58.52126 −410.26313 2.58145 −93.88730
4633.20089 20120.28532 −93.88730 49803.48059

⎞⎟⎠ .
(37)

Box I.
w

e
i
a

Z

w
g
M
v

e

B

hen, the χ2 term is just

2
H0

=

(
H (R)

0 − H0

σH(R)
0

)2

, (41)

here the Hubble parameter today is given by H0 = 100 h in the
CDM model and by evaluating Eq. (6) at τ = τ0, i.e. at today,

or the GREAT model.

.6. The TRGB H0 prior

Finally, we also include the H0 measurement from Ref. [34],
hich comes from the Tip of the Red Giant Branch (TRGB) method
sing stars in the Large Magellanic Cloud (LMC). This approach
ives
(TRGB)
0 = 69.6 ± 0.8 (stat) ± 1.7 (syst) km s−1 Mpc−1. (42)

hen, the χ2 term is just

2
H0

=

(
H (TRGB)

0 − H0

σH(TRGB)
0

)2

, (43)

where the Hubble parameter today is given by H0 = 100 h in the
ΛCDM model and by evaluating Eq. (6) at τ = τ0, i.e. at today,
or the GREAT model.

. MCMC

In this section we present the results of our Markov Chain
onte Carlo (MCMC) analysis after fitting the data described in
ection 3. Our total likelihood function Ltot can be given as the
roduct of the various likelihoods as

tot = LSnIa × LBAO × LH(z) × Lcmb × LH0 ,

hich can also be translated to the total χ2 via χ2
tot = −2 lnLtot

r
2
tot = χ2

SnIa + χ2
BAO + χ2

H(z) + χ2
cmb + χ2

H0
. (44)

Our χ2 is given by Eq. (44) and the parameter vectors for
oth the ΛCDM and GREAT models are given by: pModel =

Ωm0, Ωbh2, h, Ωk
)
. Then, the best-fit parameters and their un-

ertainties were obtained via an MCMC code written by one of the
uthors.1 Moreover, we assumed priors for the parameters of the
CDM model given by Ωm0 ∈ [0.01, 0.5], Ωbh2

∈ [0.015, 0.035],
k ∈ [−0.1, 0.1], h ∈ [0.5, 1], while for the GREAT model
e chose Ωm0 ∈ [0.01, 0.5], Ωbh2

∈ [0.015, 0.035], Ωk ∈

0.00001, 0.1], h ∈ [0.5, 1].2 Finally, we obtained approximately
(105) points for each of the models.
In order to compare the quality of fit between the models,

e use Bayesian model comparison by means of the evidence B.

1 https://github.com/snesseris/GREAT-project
2 Note that for the GREAT model Ωk has to be positive as otherwise the

quare of the Hubble parameter may become negative.
5

Table 2
The values of both the linear and the logarithmic Jeffreys’
scale.
Bij ln Bij Evidence

< 3 < 1.1 Weak
< 20 < 3 Definite
< 150 < 5 Strong
> 150 > 5 Very strong

The latter is calculated as the integral of the product of the total
likelihood and the priors, over all parameters, that is

Ei ≡

∫
dnxLi(x) p(x), (45)

here p(x) is the prior, while the likelihood for a model Mi is
given by Li(x) for some parameters x. In practice, as the numerical
valuation of the integral is cumbersome, we use thermodynamic
ntegration following the recipe in Appendix and Refs. [35,36]. In
n nutshell, the temperature rescaled evidence can be written as

(β) =

∫
dnxL(x)β p(x), (46)

here β = 1/T is the inverse temperature and the evidence is
iven by Ei ≡ Zi(1), where the latter can be calculated by doing
CMCs at different temperatures and integrating the expectation
alue of the log-likelihood over the range β ∈ [0, 1], see Eq. (A.3).
Then, the comparison of the models is done via the ratio of the

vidence for different models, i.e.

ij =
Ei
Ej

, (47)

which may be interpreted via Jeffreys’ scale. The latter can inter-
pret the Bayes ratio as providing evidence in favor of or against
model Mi when compared against model Mj. In a nutshell, every
time ln Bij increases by a unit, this is interpreted as providing
further support for one of the two models, with 0 meant as
indecisive, to larger than 5 being strongly ruled out. Furthermore,
the specific values of the Bayes ratio can be interpreted as fol-
lows [37]: a value in the range 1 < Bij < 3 implies some evidence,
which in practice is only barely worth a mention, againstMj when
compared with Mi. For values in the range 3 < Bij < 20 this
implies definite but not strong evidence against Mj, while for
20 < Bij < 150 the evidence is strong and finally, when Bij > 150
the evidence is very strong. Note however, that it was shown in
Ref. [38] that the Jeffreys’ scale has to be interpreted with care,
especially in the case of nested models, as it may result to biased
conclusions.

Finally, for easy reference we show the particular values of
both the linear and the logarithmic Jeffreys’ scale in Table 2.

5. Results

Here we present the results of our analysis for both the ΛCDM
and the GREAT models, using the methodology described in the

https://github.com/snesseris/GREAT-project
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Fig. 1. The 68% and 95% confidence contours for the GREAT (left panel) and ΛCDM (right panel) models respectively, including all the data, but no prior on H0 . The
red points/dashed lines correspond to the Planck best-fit (Ωm,0, Ωb,0h2, Ωk,0,H0) = (0.315, 0.0224, 0.001, 67.4), where H0 is given in units of km s−1 Mpc−1 . (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 3
Here we present the results of the MCMC analysis when not including any H0 prior. In particular, we show the mean values, 1σ
errors of the parameters for the GREAT and ΛCDM models respectively, along with the minimum χ2 and the log-evidence log Z(1),
see Appendix and the difference of the log-evidence with respect to the ΛCDM model ∆ log Z(1)Λ,i ≡ log Z(1)Λ − log Z(1)i . The latter
give a Bayes ratio of BΛ,G = exp

[
∆ log Z(1)Λ,G

]
= exp (−9.006) ∼ 1/8150, thus resulting in very strong evidence in favor of the

GREAT model according to the Jeffreys’ scale [38]. Note that H0 is given in units of km s−1 Mpc−1 .
Model Ωm,0 Ωb,0h2 Ωk,0 H0 χ2

min log Z(1) ∆ log Z(1)Λ,i

ΛCDM 0.3057 ± 0.0056 0.0224 ± 0.0002 0.0012 ± 0.0018 68.08 ± 0.58 1075.63 −557.515 0
GREAT 0.3522 ± 0.0190 0.0225 ± 0.0001 0.0010 ± 0.0002 68.38 ± 0.48 1071.35 −548.509 −9.006
4
0
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Table 4
The breakdown of the χ2 for the two models and the different datasets used in
our analysis, in the case of not including any H0 prior. The best-fit parameters
from the MCMC are given in Table 3. As can be seen, the main contribution in
the difference of the χ2s comes from the CMB and to a lesser extent from the
H(z) and BAO data, while the values for the SnIa are practically the same.
Model CMB BAO SnIa H(z) χ2

tot

ΛCDM 4.28 13.99 1034.84 22.52 1075.63
GREAT 0.07 14.39 1034.82 22.10 1071.35

previous sections. In all cases in the Tables that follow we will
show the mean values, 1σ errors of the parameters for the GREAT
and ΛCDM models respectively, along with the minimum χ2, the
og-evidence log Z(1) and the difference of the log-evidence with
espect to the ΛCDM model ∆ log Z(1)Λ,i ≡ log Z(1)Λ − log Z(1)i.

Similarly, in the figures we will always show the 68.3%, 95.5%
nd 99.7% confidence contours for the GREAT (left panel) and
CDM (right panel) models respectively. In all cases, the black
oints will correspond to the mean values of the parameters from
he MCMC, the blue shaded regions will be the confidence levels,
hile the red points will correspond to the Planck 2018 best-fit

Ωm,0, Ωb,0h2, Ωk,0,H0) = (0.315, 0.0224, 0.001, 67.4), with H0
iven in units of km s−1 Mpc−1.
First, we consider the case when we include all of the data,

except the priors on H0, as they may be in some tension with
other data [39,40]. In particular, in Table 3 we provide the results
for the relevant parameters of the two models and as can be seen,
in this case the thermodynamic MCMC analysis gives a Bayes ratio
of BΛ,G = exp

[
∆ log Z(1)Λ,G

]
= exp (−9.006) ∼ 1/8150, thus

esulting in very strong evidence in favor of the GREAT model
ccording to the Jeffreys’ scale [38]. The corresponding confidence
ontours are given in Fig. 1.
 c

6

As this case gives the strongest result in favor of GREAT, we
also analyze in more detail what piece of experimental data
is contributing to this improvement over the ΛCDM model. In
particular, as can be seen in Table 4, there is a difference of χ2

of ∼ 4.3 between ΛCDM (χ2
= 1075.63) and GREAT (χ2

=

1071.35) and the different datasets contribute in different ways.
Specifically, the main effect comes from the CMB data (δχ2

∼

.21) and to a much lesser degree from the H(z) data (δχ2
∼

.42). On the other hand the BAO favor ΛCDM slightly (δχ2
∼

0.4) and the χ2 for the SnIa is practically the same.
Second, we also consider the case where we include all the

ata, along with the Riess H0 prior of Ref. [33]. In Table 5 we
rovide the results for the relevant parameters of the two models
nd as can be seen, the thermodynamic integration gives a Bayes
atio of BΛ,G = exp

[
∆ log Z(1)Λ,G

]
= exp (0.386) ∼ 1.47, thus

esulting in the two models being considered statistically equiv-
lent according to the Jeffreys’ scale, see Table 2 and Ref. [38]. The
orresponding confidence contours are given in Fig. 2.
Furthermore, in Fig. 3 we show the confidence contours for

he w0, wa parameters of the w0waCDM model, which has an
quation of state w(a) = w0+wa(1−a) [41,42]. As can be seen, as
redicted by GREAT, the point (w0, wa) = (−0.946, −0.318) [6],
enoted by an orange star in the plot, is very close to the best-fit
f the model and in good agreement with observations in this
ase.
Finally, we also consider the case with all the data and the

RGB H0 prior of Ref. [34]. In Table 6 we provide the results for
he relevant parameters of the two models and as can be seen,
he thermodynamic integration gives a Bayes ratio of BΛ,G =

xp
[
∆ log Z(1)Λ,G

]
= exp (−0.373) ∼ 0.689, thus resulting

n the two models being considered statistically equivalent ac-
ording to the Jeffreys’ scale, see Table 2 and Ref. [38]. The

orresponding confidence contours are given in Fig. 4.
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Fig. 2. The 68.3%, 95.5% and 99.7% confidence contours for the GREAT (left panel) and ΛCDM (right panel) models respectively, including all data and the Riess H0
prior. The red points/dashed lines correspond to the Planck best-fit (Ωm,0, Ωb,0h2, Ωk,0,H0) = (0.315, 0.0224, 0.001, 67.4), where H0 is given in units of km s−1 Mpc−1 .
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. The 68.3% and 95.5% confidence contours for the CPL model for the
w0 , wa parameters, when including all data and the Riess prior. The black
dot corresponds to the best-fit value, the red dot to the ΛCDM model and
he orange star to the prediction of GREAT (w0, wa) = (−0.946, −0.318) [6].
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

. Conclusions

The matter and energy content of the universe can only be
nferred indirectly from the light that reaches us from distant
ources which are affected by the expansion of the universe.
t is therefore needed to interpret those measurements in the
ontext of a given framework. We have assumed a spatially-
urved, homogeneous and isotropic universe and determined the
arameters of the model that best fit the currently available data,
rom CMB to Large Scale Structure (LSS), SnIa and local rate of
xpansion measurements.
The origin of the present acceleration of the universe is still
mystery. So far, the best model that fits the data is ΛCDM,
7

here the acceleration is driven by a cosmological constant,
hose origin is completely unknown, and whose value cannot
e accounted for by quantum physics. In this paper we have
xplored the possibility, outlined in Ref. [6], that the present
cceleration is driven by the growth of entropy associated with
he cosmological horizon, a term in the action that inevitably
ppears in general relativity for fluids far from equilibrium [7].
uch a surface term could give rise to the observed acceleration
ithout the need to invoke any cosmological constant or extra

ields.
Whether this entropic force is all that is needed to explain

he present cosmological observations was the main aim of this
esearch. We are aware that there could be extra entropic con-
ributions to the acceleration of the universe coming from bulk
ntropy growth processes, e.g. associated with the merging and
ass accretion of black holes at the centers of galaxies, or the

ormation of the cosmic web itself, a highly ordered system very
ifferent from the uniform gas from which it arose.
We have performed a series of tests of the GREA theory with

bservations of the CMB, LSS and SnIa, and added to these the
ecent determinations of the present rate of expansion H0, by
iess et al. (Cepheids) and Freedman et al. (TRGB). We find that,
n the absence of an extra prior on H0, the GREA theory fairs
ignificantly better than ΛCDM, with log of the Bayes factor of
rder 9 in favor of GREA, a feat that has never been reached up to
ate for any alternative to ΛCDM. When including the Cepheids

or the TRGB priors, the ∆χ2 and Bayes evidence is uninformative,
ith | log Bayes| < 1.
Moreover, when extending ΛCDM beyond a constant Λ into

w0waCDM, we find that GREA theory predictions (w0, wa) =

−0.946, −0.318) fall very near the best fit values, see Fig. 3,
hile ΛCDM is at the edge, within the 2-sigma contour. In the

uture, such contours will be significantly reduced and one will
e able to differentiate easily between the two alternatives.
We conclude that GR entropic acceleration is a serious con-

ender as a theory of the late universe and expect future mea-
urements by CMB-S4, Euclid, DESI and LSST, to provide a definite
onclusion. The realization that there is no need for a cosmologi-
al constant and that known physics (General Relativity, Quantum
echanics and Thermodynamics) is all that is needed to explain

he late time observations, could change our way we understand
he origin and evolution of our Universe.
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k

Fig. 4. The 68.3%, 95.5% and 99.7% confidence contours for the GREAT (left panel) and ΛCDM (right panel) models respectively, including all data and the TRGB
prior on H0 . The red points/dashed lines correspond to the Planck best-fit (Ωm,0, Ωb,0h2, Ωk,0,H0) = (0.315, 0.0224, 0.001, 67.4), where H0 is given in units of
m s−1 Mpc−1 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 5
Here we present the results of the MCMC analysis when we include all the available data and the Riess H0 prior, as discussed in the
previous sections. In particular, we show the mean values, 1σ errors of the parameters for the GREAT and ΛCDM models respectively,
along with the minimum χ2 and the log-evidence log Z(1), see Appendix and the difference of the log-evidence with respect to the
ΛCDM model ∆ log Z(1)Λ,i ≡ log Z(1)Λ − log Z(1)i . The latter give a Bayes ratio of BΛ,G = exp

[
∆ log Z(1)Λ,G

]
= exp (0.386) ∼ 1.47,

thus resulting in the two models being considered statistically equivalent according to the Jeffreys’ scale [38]. Note that H0 is given
in units of km s−1 Mpc−1 .
Model Ωm,0 Ωb,0h2 Ωk,0 H0 χ2

min log Z(1) ∆ log Z(1)Λ,i

ΛCDM 0.2995 ± 0.0051 0.0224 ± 0.0002 0.0029 ± 0.0017 68.85 ± 0.53 1088.79 −557.588 0
GREAT 0.3350 ± 0.0155 0.0225 ± 0.0001 0.0008 ± 0.0002 68.98 ± 0.44 1083.39 −557.974 0.386
Table 6
Here we present the results of the MCMC analysis when we include all the available data and the TRGB H0 prior, as discussed in the
previous sections. In particular, we show the mean values, 1σ errors of the parameters for the GREAT and ΛCDM models respectively,
along with the minimum χ2 and the log-evidence log Z(1), see Appendix and the difference of the log-evidence with respect to the
ΛCDM model ∆ log Z(1)Λ,i ≡ log Z(1)Λ −log Z(1)i . The latter give a Bayes ratio of BΛ,G = exp

[
∆ log Z(1)Λ,G

]
= exp (−0.373) ∼ 0.689,

thus resulting in the two models being considered statistically equivalent according to the Jeffreys’ scale [38]. Note that H0 is given
in units of km s−1 Mpc−1 .
Model Ωm,0 Ωb,0h2 Ωk,0 H0 χ2

min log Z(1) ∆ log Z(1)Λ,i

ΛCDM 0.3047 ± 0.0052 0.0224 ± 0.0001 0.0015 ± 0.0017 68.20 ± 0.54 1076.23 −550.484 0
GREAT 0.3502 ± 0.0157 0.0225 ± 0.0001 0.0010 ± 0.0002 68.46 ± 0.45 1071.74 −550.111 −0.373
w
L
i
o

w

Numerical Analysis Files: The Mathematica codes used by the
authors in the analysis of the paper can be found at https://github.
com/snesseris/GREAT-project.
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Appendix. Thermodynamic integration for the Bayesian evi-
dence

In order to estimate the evidence integral, we can use ther-
modynamic MCMC integration [35,36]. To do so, we define the
evidence as a function of the inverse temperature β = 1/T as
follows:

Z(β) =

∫
dnxL(x)β p(x), (A.1)

here x are the n parameters of the model, the likelihood is
(x) and finally the prior p(x) is assumed to be normalized,
.e.
∫
dnx p(x) = 1. Then, the actual Bayes factor, i.e. the evidence,

f the model is just Z(1). Furthermore, it is easy to show that

d ln Z
dβ

=
1

Z(β)

∫
dnx (lnL)L(x)βp(x)

= ⟨lnL⟩β , (A.2)

here ⟨lnL⟩β is the average log-likelihood over the posterior
t an inverse temperature β . Since Z(0) = 1, as the prior is

https://github.com/snesseris/GREAT-project
https://github.com/snesseris/GREAT-project
https://github.com/snesseris/GREAT-project
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normalized, then we get

ln Z(1) =

∫ 1

0
dβ ⟨lnL⟩β . (A.3)

The integral in the last expression can be calculated by esti-
ating the average log-likelihood of each chain at a given inverse

emperature and then performing the integral numerically. In
ractice we use an irregular grid with step size βi =

( i
N

)5
, where

is the number of steps in the grid. For the actual tempered
CMCs, we use the numerical code of one of the authors.
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