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Hydrodynamics provides a universal description of interacting quantum field theories at sufficiently long
times and wavelengths, but breaks down at scales dependent on microscopic details of the theory. In the
vicinity of a quantum critical point, it is expected that some aspects of the dynamics are universal and
dictated by properties of the critical point. We use gauge-gravity duality to investigate the breakdown of
diffusive hydrodynamics in two low-temperature states dual to black holes with AdS2 horizons, which
exhibit quantum critical dynamics with an emergent scaling symmetry in time. We find that the breakdown
is characterized by a collision between the diffusive pole of the retarded Green’s function with a pole
associated to the AdS2 region of the geometry, such that the local equilibration time is set by infrared
properties of the theory. The absolute values of the frequency and wave vector at the collision (ωeq and keq)

provide a natural characterization of all the low-temperature diffusivities D of the states via D ¼ ωeq=k2eq,
where ωeq ¼ 2πΔT is set by the temperature T and the scaling dimension Δ of an operator of the infrared
quantum critical theory. We confirm that these relations are also satisfied in a Sachdev-Ye-Kitaev chain
model in the limit of strong interactions. Our work paves the way toward a deeper understanding of
transport in quantum critical phases.

DOI: 10.1103/PhysRevX.11.031024 Subject Areas: Condensed Matter Physics,
Particles and Fields, String Theory

I. INTRODUCTION

Interacting quantum field theories are notoriously
challenging, especially when there is no quasiparticle-
based description of the state. To describe the late time,
long wavelength dynamics of these states, one can instead
rely on effective approaches such as hydrodynamics. This
approach has been used to gain insight into the quark-gluon
plasma [1–4], ultracold atomic systems [5], and electronic
transport in metals [6–12].

At long times and wavelengths, hydrodynamics provides
an effective description of a system in terms of a few
conserved quantities dictated by symmetries [13–15]. Their
evolution is governed by local conservation equations for
the densities and associated currents, along with constit-
utive relations expressing the currents in terms of the
densities in a gradient expansion. The late time relaxation
of the system back to equilibrium is governed by the
hydrodynamic modes: poles of the retarded Green’s func-
tions of the densities with gapless dispersion relations [16].
While extremely powerful, hydrodynamics breaks down

at sufficiently short scales set by the local equilibration time
and length. At such scales, the dynamics of the system can
no longer be truncated to just the evolution of the conserved
densities. Additional degrees of freedom play a significant
role, and appear as additional poles of the retarded Green’s
function with lifetimes comparable to those of the hydro-
dynamic modes. (They may also manifest themselves as
branch cuts, as is the case in some weakly coupled quantum
field theories [17–19].) In cases where the density response
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exhibits a parametrically slow mode arising due to a weakly
broken symmetry, the breakdown of hydrodynamics man-
ifests itself as a collision in the complex frequency plane at
nonzero wave vector keq between the hydrodynamic mode
and the slow mode. In this case, it is often possible to
augment the hydrodynamic description to incorporate this
slow mode [6,20–28]. But typically the modes relevant for
the breakdown of hydrodynamics are not of this nature, and
a more complete knowledge of a system’s microscopic
details is required to understand them.
In contrast to this, in the nonzero temperature quantum

critical phases found near quantum phase transitions,
transport properties are typically universal and are gove-
rned by scaling properties of the critical point [29]. We
might then expect that the breakdown of hydrodynamics in
a quantum critical phase displays a greater degree of
universality. However, it is often challenging to calculate
concrete observables beyond thermodynamics due to the
lack of analytically tractable models without any simplify-
ing limits, such as a large number of degrees of freedom.
In this work, we exploit gauge-gravity duality to address

hydrodynamic transport and its breakdown in quantum
critical phases. Gauge-gravity duality maps the late time
dynamics of certain large Nc quantum field theories (where
Nc is the rank of the gauge group) to theories of gravity
with a negative cosmological constant [15,30,31]. The
relaxation of conserved densities back to equilibrium is
captured exactly by the evolution of perturbations of
asymptotically anti–de Sitter (AdS) black holes, which
can be studied to obtain a precise understanding of the
breakdown of hydrodynamics and the modes responsible
for it [32,33].
Even in the absence of a weakly broken symmetry, the

breakdown of hydrodynamics can be characterized by an
energy scale ωeq and wave number keq, which are sensitive
to the system’s microscopic details. ωeq and keq are defined
as the absolute values of the complex frequency ω and
complex wave number k at which the hydrodynamic pole
of the retarded Green’s function first collides with a
nonhydrodynamic pole or branch point [34–37]. [A differ-
ent mechanism for the breakdown of hydrodynamics arises
when interactions between hydrodynamic modes are
included, in the guise of a nonanalytic frequency depend-
ence of the retarded Green’s functions (see, e.g., Ref. [14]
for a review). This mechanism is expected to be suppressed
in the largeN limit [38].] The convergence properties of the
real-space hydrodynamic gradient expansion in the linear
regime are governed by keq [39] (see Ref. [40] for a study of
the convergence of nonlinear hydrodynamics in real time),
which also coincides with the radius of convergence of the
small-k expansion of the hydrodynamic dispersion relation
ωhydroðkÞ. See Refs. [41–44] for recent applications of this.
In this work, we study the breakdown of hydrodynamics

in certain low-temperature (T) states dual to black holes
with nearly extremal AdS2 ×R2 near-horizon metrics.

These are examples of quantum critical phases with an
emergent scaling symmetry in time [45–48], which has
been dubbed “semilocal quantum critical.” Formally, this
scaling symmetry corresponds to an infinite Lifshitz scaling
exponent, z ¼ þ∞: time scales but space does not. Such
states are closely related to the Sachdev-Ye-Kitaev- (SYK)
like models of electrons in strange metals, which are
governed by the same type of infrared fixed point in
the limit of large number of fermions and strong inter-
actions [49–60]. (The dimensionless SYK coupling is the
interaction strength over temperature, so strong interactions
are equivalent to low temperatures.) Specifically, we study
the AdS4 neutral, translation-breaking black brane of
Refs. [61,62] and the AdS4-Reissner-Nordström (AdS4-
RN) black brane, and the breakdown of the hydrodynamics
governing the diffusive transport of energy, charge, and
momentum in their dual states. The states we are interested
in do not include any slow modes in the sense described
above. Instead, local equilibration is controlled by the
intrinsic dynamics of the quantum critical degrees of free-
dom of AdS2 ×R2. We identify simple, general results for
the local equilibration scales ωeq and keq and confirm that
these also apply to the SYK chain model studied in
Ref. [44] in the limit of strong interactions.
Our first result is that the breakdown is caused by modes

associated to the AdS2 region of the geometry, and as a
consequence ωeq is set by universal (i.e., infrared) data via

ωeq → 2πΔT as T → 0; ð1Þ

where Δ is the infrared scaling dimension of the least
irrelevant operator that couples to the diffusion mode. This
is in contrast to systems with a weakly broken symmetry,
for which ωeq ≪ T, but is in line with the expectation
that the quantum critical dynamics is controlled by a
“Planckian” timescale τeq ∼ 1=T [29,63]. More precisely,
we find that at small k and T the Fourier space locations of
the longest-lived nonhydrodynamic poles are inherited
from infrared Green’s functions, and are approximately
located at ωn ≡ −iðnþ ΔÞ2πT for non-negative integers n.
The breakdown is characterized by a collision, parametri-
cally close to the imaginary ω axis, between the n ¼ 0
mode (which has a weak k dependence) and the hydro-
dynamic mode. This collision manifests itself as a branch-
point singularity in the dispersion relation of the mode.
Secondly, we find that at low temperatures the correc-

tions to the quadratic approximation −iDk2 to the exact
hydrodynamic dispersion relation are parametrically small
such that the collision occurs when k is almost real and

k2eq →
ωeq

D
as T → 0: ð2Þ

In other words, the scales keq and ωeq governing the regime
of validity of hydrodynamics are set simply by the
diffusivity D and the scaling dimension Δ. In some of
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the examples we study (those involving diffusion of
energy), the relevant diffusivity is controlled by an irrel-
evant deformation of the AdS2 fixed point and in these
cases the result (2) indicates that keq is controlled by the
same irrelevant deformation. A priori, the result (2) is quite
surprising: it relates the radius of convergence to just the
leading-order term in the hydrodynamic expansion. This is
a consequence of the AdS2 fixed point.
By rearranging Eq. (2) we obtain an answer to the

question raised in Ref. [7] of what the underlying velocity
and timescales are that govern the diffusivity in non-
quasiparticle systems. In all our examples they are set
by the local equilibration scales,

D → v2eqτeq as T → 0; ð3Þ

where veq ≡ ωeq=keq and τeq ≡ ω−1
eq are the velocity and

timescale associated to local equilibration.
In the cases where diffusive hydrodynamics breaks down

due to a parametrically slow mode protected by a weakly
broken symmetry, D is typically set by τeq and the speed of
the propagating mode that dominates following the break-
down [64]. We emphasize that the breakdown of hydro-
dynamics is qualitatively different in the cases we study:
there is not a single slow mode but a tower of AdS2 modes
with parametrically similar lifetimes set by ωn, and the
breakdown does not produce a propagating mode with
velocity v ≃ veq. More generally, the local equilibration
time has been argued to set an upper bound on the
diffusivity in Refs. [65,66]. All examples that we study
are consistent with a bound of the form D≲ v2eqτeq for the
range of parameters we have investigated.
In the absence of a slow mode, it was proposed that

low-temperature diffusivities are set by the butterfly veloc-
ity vB and Lyapunov time τL that characterize the onset of
scrambling following thermalization of the system [67].
This was shown to robustly apply to the diffusivity of
energy density Dε in holographic theories and SYK-like
models [58,59,68–71]. For the examples we study, τ−1L ¼
2πT and

Dε → v2BτL as T → 0; ð4Þ

which is furthermore true in general for states governed by
an infrared AdS2 with the universal deformation [69].
As for our result (3), Eq. (4) can be viewed as a

consequence of the excellent applicability of the quadratic
approximation to the exact hydrodynamic dispersion rela-
tion up to the relevant scale. Specifically, pole-skipping
analysis suggests that the energy diffusion mode satisfies
ωhydroðk ¼ iv−1B τ−1L Þ ¼ iτ−1L [72–74], from which Eq. (4)
follows assuming corrections to the quadratic, diffusive
form −iDεk2 at k ¼ iv−1B τ−1L are parametrically small
as T → 0.

Our result (3) is more general than Eq. (4) in that it is true
for all diffusivities in the examples we study, not just the
diffusion of energy. Fundamentally this is because, by
definition, all diffusive modes pass through the location set
by ðωeq; keqÞ, while only the energy diffusion mode satisfies
the pole-skipping constraint above [75]. As a consequence
we provide a new perspective on, and generalization of, the
relations between equilibration, transport, and scrambling
and their applications in AdS2- and SYK-like models of
electrons in strange metals.
In the remainder of this work we explain how we arrive

at Eqs. (1) and (2) before closing with comments on
implications and the more general applicability of our
results. Technical details of our calculations are presented
in Supplemental Material [76].

II. DIFFUSIVE HYDRODYNAMICS

The spectrum of hydrodynamic modes is dependent on
the system under consideration, and by our definition each
hydrodynamic mode has its own associated local equili-
bration scales ωeq and keq. We focus on hydrodynamic
diffusion modes, which arise when a system has a current
density j with constitutive relation

jðρÞ ¼ −Dρ∇ρþOð∇3Þ; ð5Þ

where ρ is the corresponding conserved density. ρ will then
obey the diffusion equation with diffusivity Dρ at leading
order in the derivative expansion, and has a retarded
Green’s function [14,16],

Gρρðω; kÞ ¼
Dρχρρk2 þ � � �

−iωþDρk2 þ � � � ; ð6Þ

where χρρ ≡ limω→0Gρρðω; kÞ is the static susceptibility of
ρ, and ellipses denote terms with higher powers of ω and k.
The dispersion relation of the hydrodynamic diffusion
mode is then

ωhydroðkÞ ¼ −iDρk2 þOðk4Þ: ð7Þ

Hydrodynamic diffusion is a very general phenomenon.
Even within the restricted class of systems that we study,
the set of conserved densities that exhibit hydrodynamic
diffusion varies. In this work, we are interested in the
diffusion of energy ε and of transverse momentum Π.

III. DIFFUSION IN A NEUTRAL
HOLOGRAPHIC STATE

We begin with the AdS4 neutral translation-breaking
model [61,62] which is a classical solution of the action
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ 6 −

1

2

X2
i¼1

ð∂φiÞ2
�
; ð8Þ

with spacetime metric,

ds2 ¼ −r2fðrÞdt2 þ r2dx2 þ dr2

r2fðrÞ ; ð9Þ

supported by two scalar fields φi ¼ mxi (i ¼ 1, 2) that
break translational symmetry. The emblackening factor of
the solution is

fðrÞ ¼ 1 −
m2

2r2
−
�
1 −

m2

2r20

�
r30
r3
; ð10Þ

where r0 denotes the location of the horizon with associated
temperature T. The linear perturbations can be written in
terms of four decoupled variables and we focus on the one
exhibiting the single hydrodynamic mode of the system.
See Ref. [76] for further details on this spacetime, and on
the calculations leading to the results below.

A. Hydrodynamic mode

The hydrodynamic mode corresponds to diffusion of
energy, with the small k dispersion relation (7) and
diffusivity Dε →

ffiffiffiffiffiffiffiffi
3=2

p
m−1 in the low-T limit [20].

First, we quantify corrections to this result that will
enable us to understand the breakdown of hydrodynamics.
In the low-temperature limit T ∼ k2 ∼ ϵ ≪ 1, the retarded
Green’s function of energy density Gεε exhibits a pole
located at

ωðkÞ ¼ −iϵ
ffiffiffi
3

2

r
k2

m

�
1þ ϵ

k2

m2
þ ϵ2

�
4πT2

3m2
þ k4

m4

�
þ � � �

�
;

ð11Þ

where we have explicitly written all ϵ dependence. For
suitably small k, this is an approximation to the dispersion
relation of the hydrodynamic mode as we show in Fig. 1. It
becomes invalid near specific wave numbers k2 ¼ k2n
related to the breakdown of hydrodynamics, which we
address shortly.
It is important to note that Eq. (11) is different than the

hydrodynamic expansion: corrections to the quadratic k2

term are not being neglected as in the usual gradient
expansion, but are parametrically small in this limit under
consideration. One consequence of this is that if we define
any wave number k� with k2� ∼ T at low T, and define ω� to
be the location of the hydrodynamic pole at this wave
number, then Eq. (11) implies Dε → iω�=k2� as T → 0.
For example, choosing k� ¼ iv−1B τ−1L results in the chaos
relation (4) as described in Sec. I. (See Fig. 2 of Ref. [74]
for a visual representation of this.)

We soon show that the breakdown of hydrodynamics at
low T is characterized by a pole collision at k2eq ∼ T;ωeq ∼
T and thus the diffusivity can alternatively be expressed
simply in terms of these scales by Eq. (2). But prior to
exploring the pole collision that characterizes the break-
down of hydrodynamics, it is instructive to first understand
the origin of the nonhydrodynamic mode responsible.

B. Infrared modes

At low T the state is governed by an infrared fixed point
manifest in the emergence of a near-horizon AdS2 ×R2

metric with special linear group [SL(2,R)] symmetry (see
Ref. [76]). Each linear perturbation of the spacetime can be
characterized by ΔðkÞ, a wave-number-dependent scaling
dimension of the corresponding operator with respect to
this infrared fixed point, and a corresponding infrared
Green’s function [47,83],

GIR ∝ T2ΔðkÞ−1 Γ½1
2
− ΔðkÞ�Γ½ΔðkÞ − iω

2πT�
Γ½1

2
þ ΔðkÞ�Γ½1 − ΔðkÞ − iω

2πT�
: ð12Þ

For the spacetime perturbation that exhibits a diffusive
mode, ΔðkÞ ¼ ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 8k2=m2

p
Þ=2.

Although analytically reconstructing Gεε from GIR is not
easy, for our purposes it is enough to observe that Gεε

exhibits poles whose locations approach those of the poles
of GIR as k; T → 0. Specifically, this means that in this limit
Gεε exhibits poles at

ω → ωn ¼ −i2πT½nþ Δð0Þ�; n ¼ 0; 1; 2;…; ð13Þ

with Δð0Þ ¼ 2. The dispersion relation of the n ¼ 0 pole is
shown in Fig. 1.
At low T, the infrared modes Eq. (13) have a parametri-

cally longer lifetime than the other nonhydrodynamic

0 20 40 60 80 100 120
0.0

0.5

1.0

1.5

2.0

2.5

k /T

−Im (ω)
2πT

FIG. 1. Frequencies of the hydrodynamic and longest-lived
infrared modes at T=m ¼ 10−3. Black circles are numerical
results and red lines are the analytic expressions (11) and
(13). For real k, all poles displayed have purely imaginary
frequencies.
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poles of Gεε, and are responsible for the breakdown of
hydrodynamics.
The wave numbers at which our calculation of the

low-T dispersion relation (11) of the hydrodynamic
mode is invalid are k2n ¼

ffiffiffiffiffiffiffiffi
8=3

p ð2þ nÞπmT þOðT2Þ
[see Eq. (43) of Ref. [76] for a precise expression for
kn], for which the mode would be located at precisely
ωðknÞ ¼ ωn in the limit of low T. The natural interpretation
would therefore be that the invalidity of the calculation at
these values of k2 can be traced to the nearby presence of
the infrared mode (assuming that the location of the
infrared mode has a weak k dependence). A more refined
calculation below confirms this, as well as the existence of
a collision between these modes for complex k that signals
the breakdown of hydrodynamics.

C. Breakdown of hydrodynamics

In order to extract the existence of the pole collision, a
more refined perturbative computation of Gεε at the points
ω ¼ ωn þ δω; k2 ¼ k2n þ δðk2Þ is required. This yields

G−1
εε ðω; kÞ ∝ ½Dnδðk2Þ − iδω�ð1 − iτnδωÞ − iλnδω; ð14Þ

where we show only terms relevant for understanding the
collision. The low-T limit of each coefficient is

τn →
9m

16
ffiffiffi
6

p ð2þ nÞπ2T2
; λn →

ffiffiffi
3

2

r
½nðnþ 4Þ þ 3� πT

m
;

ð15Þ
while Dn → Dε in the same limit. The comparable size of
the δω and τnðδωÞ2 terms at frequencies δω ∼ T2 indicates
that for such frequencies Gεε is dominated by two poles,
whose dispersion relations are given by solving the
quadratic equation (14) for δωðδkÞ. In Fig. 2 we show

that indeed Eq. (14) correctly describes the locations of the
two poles near ω0 for real values of k, including the absence
of a collision. The poles collide (coincide in Fourier space)
at the complex value of δk where the discriminant of the
quadratic polynomial vanishes, and the dispersion relation
has a branch point. This collision is shown in Fig. 3.
The collision closest to the origin of k space (n ¼ 0)

signals the breakdown of hydrodynamics. The absolute
values of k and ω at this collision are (as T → 0)

ωeq ≡ jωcollisionj → 4πT

�
1þ 8

ffiffiffi
6

p
πT

9m
þ � � �

�
;

k2eq ≡ jkcollisionj2 →
ωeq

Dε

�
1 −

4
ffiffiffi
6

p
πT

3m
þ � � �

�
; ð16Þ

from which our main results (1) and (2) follow.
The collision location asymptotically approaches real

(imaginary) values of k (ω) as T → 0. More precisely, as
T → 0 the phases of k and ω at the collision point are

ϕk →
24

63=4

�
πT
m

�
3=2

; ϕω → −
π

2
þ ϕk; ð17Þ

where kcollision ¼ keqeiϕk and ωcollision ¼ ωeqeiϕω .
Note that even after the pole collision formally indicating

the breakdown of hydrodynamics, Fig. 4 illustrates that the
system continues to exhibit a diffusionlike mode described
extremely well by the dispersion relation (11). In the limit
of zero temperature, the tower of infrared poles in AdS2 ×
R2 coalesces in a branch cut along the imaginary axis
[47,84]. As the branch cut passes through k ¼ 0, we expect
that a hydrodynamiclike series for the dispersion relation at

100.9 101.0 101.1 101.2 101.3

2.005

2.010

2.015

2.020

k /T

−Im (ω)

2πT

FIG. 2. Frequencies of the hydrodynamic and longest-lived
infrared modes at T=m ¼ 10−3, enlarging the region near ω0. The
black dots are the numerical results (the bottom dots are the
hydrodynamic mode, the top ones the longest-lived nonhydro-
dynamic mode), the red lines show the dispersion relations
extracted analytically from Eq. (14) for real values of k. The pole
collision is not visible here as it happens at a complex value of k.

0.0005 0.0010 0.0015 0.0020

2.0120

2.0125

2.0130

2.0135

2.0140

2.0145

2.0150

Re ���
2�T

�Im ���
2�T

FIG. 3. Motion of the hydrodynamic (starting in the bottom left
of the plot) and longest-lived infrared mode (starting in the top
left of the plot) in the complex ω plane as jkj=T is increased (from
approximately 101.09 to approximately 101.15) at fixed T=m ¼
10−3 and fixed phase of the wave number ϕk ≃ 7.095 × 10−4.
There is a collision for jkj ≃ 101.120T. Equation (14) predicts a
collision at jkj ≃ 101.125T and ϕk ≃ 7.374 × 10−4. In Fig. S2 in
Ref. [76], we show that the discrepancy between the numerical
and analytical values from Eq. (14) decreases with temperature.
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T ¼ 0 would contain nonanalytic terms, as was found
recently in Ref. [85] for a similar state.

IV. DIFFUSION IN A CHARGED
HOLOGRAPHIC STATE

The AdS4-RN solution to Einstein-Maxwell gravity,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ 6 −

1

4
F2

�
; ð18Þ

has a metric of the form Eq. (9) but supported by a radial
electric field,

At ¼ μ

�
1 −

r0
r

�
; ð19Þ

such that the emblackening factor is

fðrÞ ¼ 1 −
�
1þ μ2

4r20

�
r30
r3

þ μ2r20
4r4

: ð20Þ

This solution represents a translationally invariant state
with Uð1Þ chemical potential μ, and its linear perturbations
can be written in terms of four decoupled variables. Further
details of the solution and the calculations underlying our
results are given in Ref. [76].
The state exhibits two independent diffusive hydrody-

namic modes, each associated to a different such variable.
The first, corresponding to diffusion of energy and Uð1Þ
charge with diffusivity Dε, is analogous to the diffusive
mode of the previous section. (In the low-T limit both such
modes have Dε ¼ κ=cρ with κ the open circuit thermal
conductivity and cρ the heat capacity [28,69].) The second
corresponds to the transverse diffusion of momentum with
diffusivity DΠ. In the limit of low temperature, the
diffusivities are (see Ref. [76] for the full, T-dependent
expressions)

DεðT ¼ 0Þ ¼
ffiffiffi
3

p

μ
; DΠðT ¼ 0Þ ¼ 1ffiffiffiffiffi

12
p

μ
: ð21Þ

The variables exhibiting each of these modes have k → 0
infrared scaling dimensions [84,86,87],

Δεð0Þ ¼ 2; ΔΠð0Þ ¼ 1; ð22Þ

and numerical calculations confirm that at small k and T
each corresponding retarded Green’s function exhibits
nonhydrodynamic poles at the locations (13). As before,
a collision close to the imaginary ω axis between the
longest-lived such pole and the hydrodynamic pole signi-
fies the independent breakdown of hydrodynamics in
each case.
At low T (and until the collision occurs) both hydro-

dynamic modes are described extremely well by the
quadratic approximation to the hydrodynamic dispersion
relation, while the locations of the longest-lived non-
hydrodynamic poles depend only very weakly on k. As
a consequence, the equilibration scales in both cases are set
by the simple formulas (1) and (2) as shown in Fig. 5.

0 50 100 150 200

0

2

4

6

k �T

�Im ���

2�T

FIG. 4. Numerical results for the frequencies of the hydro-
dynamic and longest-lived infrared modes of the neutral, trans-
lation-symmetry breaking model at T=m ¼ 10−3 (circles). Away
from ωn≥0, the analytic dispersion relation (11) (solid red line)
provides an excellent approximation to the exact location of
a pole.

10�5 10�4 0.001 0.010

1.00

1.05

1.10

T ��

�eq

2�	T

10�5 10�4 0.001 0.010
0.85

0.90

0.95

1.00

T ��

k eq
2 D

�eq

FIG. 5. Numerically obtained local equilibration data for diffusive hydrodynamics in Gεε (black circles) and GΠΠ (red squares) of the
charged state.
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The phase of the collision wave number ϕk in each case
is shown in Fig. 6, illustrating that the collision point
asymptotically approaches real values of k as T → 0. Both
cases here, and the result (17) in the previous example, are
consistent withΔ controlling the low-T scaling of the phase
via ϕk ∼ TΔ−1=2.
As in the previous example, the system continues to

exhibit diffusionlike modes even after the collision for-
mally indicating the breakdown of hydrodynamics. The
dispersion relations of these modes are extremely well
approximated by the quadratic approximation to diffusive
hydrodynamics, as shown in Fig. S3 of Ref. [76].

V. COMPARISON WITH SYK CHAIN

The SYK model is a (0þ 1)-dimensional theory of N
interacting fermions that, in the limit of large N and strong
interactions, is governed by the same effective action as a
theory of gravity in a nearly-AdS2 spacetime [49–57]. The
SYK chain [58] is a higher-dimensional generalization of
this, which has served as a very useful toy model for
studying diffusive energy transport in strange metal states

of matter. As it exhibits the local quantum criticality
characteristic of AdS2 ×R2 fixed points, it is natural to
ask whether local equilibration in this explicit microscopic
model is governed by our general results (1) and (2).
In Ref. [44], a SYK chain model with N Majorana

fermions per site χi;x and Hamiltonian

H¼ iq=2
XM−1

x¼0

 X
1≤i1<���<iq≤N

Ji1…iq;xχi1;x…χiq;x

þ
X

1≤i1<���<iq=2≤N
1≤j1<���<jq=2≤N

J0i1…iq=2j1…jq=2;x
χi1;x…χiq=2;xχj1;xþ1…χjq=2;xþ1

!

ð23Þ

was studied. The two terms represent q-body on-site and
nearest-neighbor interactions, respectively, where the cou-
plings Ji1…iq;x and J0i1…iq=2j1…jq=2;x

are Gaussian random

variables with zero mean. Remarkably, in the limit N ≫
q2 ≫ 1 an exact analytic expression for Gεε was found for
all values of the effective interaction strength 0 < v < 1
and the relative strength of on-site and intersite interactions
0< γ≤1 [44]. The analytic expression is given in Ref. [76],
where the details of the model are also summarized.
Taking advantage of this result, a detailed study of the

breakdown of diffusive hydrodynamics as a function of
interaction strength v was performed in Ref. [44]. Here we
focus on the limit of strong interactions v → 1, which is
equivalent to T → 0. In this limit, the longest-lived non-
hydrodynamic modes are a series of infrared modes located
at precisely the frequencies ωn of Eq. (13) with Δ ¼ 2 as
k → 0. Hydrodynamics breaks down due to a collision
between the hydrodynamic mode and the longest-lived of
these infrared modes, and in Fig. 7 we confirm that the local
equilibration scales are given simply by

ωeq → 2πΔT and k2eq →
ωeq

Dε
as v → 1; ð24Þ
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FIG. 6. Numerically obtained ϕk for Gεε (black circles) and
GΠΠ (red squares) of the charged state. Dashed lines shows the
best fits to a power law at small T: ϕk ¼ 19.2ðT=μÞ1.50 and
ϕk ¼ 3.80ðT=μÞ0.50, respectively.
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analogously to Eqs. (1) and (2). Unlike in the holographic
examples, the pole collision at strong interactions here
happens for real k (i.e., ϕk ¼ 0). It would be interesting to
determine whether finite 1=q corrections generate a small
nonzero phase ϕk. Consistently with the other examples
we have presented, following the formal breakdown of
hydrodynamics the spectrum still contains a mode whose
dispersion relation is very well approximated by the
quadratic approximation to diffusive hydrodynamics.

VI. OUTLOOK

There is good reason to expect that at least some of our
results will generalize beyond the specific examples studied
here to other states governed by AdS2 infrared fixed points.
While our key observation that the quadratic approximation
to the hydrodynamic dispersion relation works parametri-
cally well even for wave numbers k2 ∼ T seems unusual, it
is nontrivially consistent with the result (4) that is indeed
true for holographic AdS2 ×R2 fixed points with a
universal deformation [69] as well as in related SYK chain
models [58,59].
There are more general holographic and SYK-like

systems governed by AdS2 fixed points that exhibit addi-
tional diffusive modes beyond the two types we have
studied. Of particular interest are nontranslationally invari-
ant systems with a Uð1Þ symmetry, for which an Einstein
relation relates the electrical resistivity to a diffusivity
[7,59,69]. If our results (1) and (2) extend to such modes,
they will therefore also provide a simple relation between
the phenomenologically important electrical resistivity and
the local equilibration scales of such strongly correlated
systems.
Confirmation of the broader applicability of our result

(3) for AdS2 ×R2 solutions would be an important step for
quantifying diffusivities near general infrared fixed points.
One way to do this would be to identify a speed u and
timescale τ such that in generalD ∼ u2τ with the coefficient
being T independent. This is difficult even for the relatively
simple case of holographic energy diffusion, primarily
because there are two exceptional types of fixed point
where dangerously irrelevant deformations take over the
properties of the mode: AdS2 ×R2 fixed points (i.e.,
dynamical critical exponent z ¼ ∞) [69] and relativistic
fixed points (i.e., z ¼ 1) [70]. If our result does generalize
to AdS2 ×R2 solutions (including those with nonuniversal
deformations), both of these exceptional cases will be
consistent with the identification u ¼ veq and τ ¼ τeq
(we expect the result of Ref. [64] to apply to the z ¼ 1
cases due to the existence of a parametrically slow mode
[26,28]; see also Ref. [88]). Provided that naive T scaling
holds for the equilibration scales in the other cases with
finite Lifshitz exponent z (τeq ∼ 1=T and veq ∼ T1−1=z),
which seems likely, this identification will then work for all
fixed points.

For cases where the breakdown of hydrodynamics is due
to a slow mode, it is the separation of scales between the
decay rate of the slow mode Γ and that of typical non-
hydrodynamic excitations T that allows one to augment the
hydrodynamic description to incorporate the slow mode.
Mathematically, the separation allows one to resum the
hydrodynamic expansion into a square root form, valid at
scales ω ∼ k ∼ Γ (see, e.g., Refs. [20,25,27]). This makes
manifest the convergence properties of the hydrodynamic
expansion, keq ∼ Γ. It would be very interesting if one
could extract an analogous effective theory for the cases
described here, taking advantage of the separation of scales
between the decay rate of the infrared modes (set by T) and
that of the other nonhydrodynamic excitations (set by the
curvature of AdS2). Such an effective theory would need to
resum the effects of the entire tower of infrared modes and
would give a greater understanding of why the quadratic
approximation to diffusive hydrodynamics is valid up to
(and indeed beyond) the wave number keq.
It would also be interesting to study whether our results

continue to hold for AdS2 fixed points supported by a
different hierarchy of scales (such as large angular momen-
tum or magnetic field compared to temperature), and
whether analogous results hold for other types of hydro-
dynamic modes near these fixed points.
It would be very useful to have a semiholographic descri-

ption of our results (along the lines of Refs. [91,92]), in
which we couple a gapless hydrodynamic diffusion mode
to the tower of infrared modes associated with the AdS2
region of the spacetime. Our results rely on the fact that the
two types of mode have very little effect on one another
(see, e.g., Fig. 1) and a semiholographic description may
clarify exactly under what conditions this is the case. A
related avenue would be to adapt the recently constructed
holographic effective Schwinger-Keldysh action for diffu-
sion to AdS2 horizons [92–95].
Extending our work to Schrödinger z ¼ 2 IR geometries

would allow us to make contact with ultracold atomic
systems [96], which realize a strongly interacting Fermi gas
near unitarity [5].
In Ref. [97], the charge diffusivity of a cold atomic

system coupled to an optical lattice was measured. In
Refs. [98,99], the thermal diffusivity of high-Tc super-
conductors in the strange metallic regime was also reported.
It would be interesting to investigate the deviations from
diffusive hydrodynamics in these systems.
The examples we studied are all consistent with bounds

on D of the type proposed in Refs. [65,66] but with the
velocity in the bound given by veq (rather than the operator
growth velocity, characteristic velocity of low-energy exci-
tations, or butterfly velocity). (While the SYK chain results
shown in Fig. 7 do not obey a strict boundD ≤ v2eqτeq, there
is no parametric violation of such a relation and thus they
are consistent with Refs. [65,66].) Indeed, the arguments in
Refs. [65,66] assume that veq is set by one of these
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velocities and thus imply the bound D≲ v2eqτeq. In this
sense our results support the assumption of Refs. [65,66]
that the local equilibration is controlled by an underlying
effective light cone, even though the systems are non-
relativistic. It would be very worthwhile to determine D,
veq, and τeq for other states, and over a wider parameter
range, in order to establish the robustness of these obser-
vations and to determine whether veq is set by a speed such
as the butterfly velocity in general.
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A. Reymbaut, C.-D. Hébert, S. Bergeron, A.-M. S.
Tremblay, J. Kokalj, D. A. Huse et al., Bad Metallic
Transport in a Cold Atom Fermi-Hubbard System, Science
363, 379 (2019).

[98] J. C. Zhang, E. M. Levenson-Falk, B. J. Ramshaw, D. A.
Bonn, R. Liang, W. N. Hardy, S. A. Hartnoll, and A.
Kapitulnik, Anomalous Thermal Diffusivity in Underdoped
YBa2Cu3O6þx, Proc. Natl. Acad. Sci. U.S.A. 114, 5378
(2017).

[99] J. Zhang, E. D. Kountz, E. M. Levenson-Falk, D. Song,
R. L. Greene, and A. Kapitulnik, Thermal Diffusivity
Above the Mott-Ioffe-Regel Limit, Phys. Rev. B 100,
241114 (2019).

HYDRODYNAMIC DIFFUSION AND ITS BREAKDOWN NEAR … PHYS. REV. X 11, 031024 (2021)

031024-11

https://doi.org/10.1007/JHEP10(2018)127
https://doi.org/10.1007/JHEP10(2018)127
https://doi.org/10.1007/JHEP10(2018)035
https://doi.org/10.1007/JHEP01(2020)077
https://doi.org/10.1007/JHEP01(2020)077
http://link.aps.org/supplemental/10.1103/PhysRevX.11.031024
http://link.aps.org/supplemental/10.1103/PhysRevX.11.031024
http://link.aps.org/supplemental/10.1103/PhysRevX.11.031024
http://link.aps.org/supplemental/10.1103/PhysRevX.11.031024
http://link.aps.org/supplemental/10.1103/PhysRevX.11.031024
http://link.aps.org/supplemental/10.1103/PhysRevX.11.031024
http://link.aps.org/supplemental/10.1103/PhysRevX.11.031024
https://doi.org/10.1143/PTP.111.29
https://doi.org/10.1007/JHEP04(2011)082
https://doi.org/10.1007/JHEP04(2011)082
https://doi.org/10.1007/JHEP03(2011)104
https://doi.org/10.1007/JHEP03(2011)104
https://doi.org/10.1007/JHEP12(2011)037
https://doi.org/10.1007/JHEP12(2011)037
https://doi.org/10.1007/JHEP06(2013)100
https://doi.org/10.1007/JHEP02(2010)021
https://doi.org/10.1103/PhysRevLett.108.241601
https://doi.org/10.1103/PhysRevLett.108.241601
https://doi.org/10.1007/JHEP04(2010)075
https://doi.org/10.1007/JHEP04(2010)075
https://doi.org/10.1007/JHEP02(2021)021
https://doi.org/10.1007/JHEP01(2010)018
https://doi.org/10.1007/JHEP10(2010)058
https://doi.org/10.1103/PhysRevD.97.081901
https://doi.org/10.1103/PhysRevD.97.081901
https://doi.org/10.1103/PhysRevD.101.086026
https://doi.org/10.1007/JHEP06(2011)012
https://doi.org/10.1088/1367-2630/13/7/075010
https://doi.org/10.1007/JHEP08(2015)086
https://doi.org/10.1007/JHEP08(2015)086
https://doi.org/10.1007/JHEP05(2019)188
https://arXiv.org/abs/1812.08785
https://doi.org/10.1103/PhysRevD.78.046003
https://doi.org/10.1126/science.aat4134
https://doi.org/10.1126/science.aat4134
https://doi.org/10.1073/pnas.1703416114
https://doi.org/10.1073/pnas.1703416114
https://doi.org/10.1103/PhysRevB.100.241114
https://doi.org/10.1103/PhysRevB.100.241114

