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Abstract We use the multiregional core-periphery model of the new economic geog-
raphy to analyze and compare the agglomeration and dispersion forces shaping 
the location of economic activity for a continuum of network topologies — spa-
tial or geographic configuration — characterized by their degree of centrality, and 
comprised between two extremes represented by the homogenous (ring) and the het-
erogeneous (star) configurations. Resorting to graph theory, we systematically extend 
the analytical tools and graphical representations of the core-periphery model for 
alternative spatial configuration, and study the sustain and break points. We study 
new phenomena such as the infeasibility of the dispersed equilibrium in the hetero-
geneous space, resulting in the introduction of the concept pseudo flat-earth as a 
long-run equilibrium corresponding to an uneven distribution of economic activity 
between regions.

Keywords New economic geography · Space topology · Transport costs · Networks

1 Introduction

The real world shows that economic activity is distributed unevenly across locations, 
both at the national, regional and urban levels. One of the most important expla-
nations for that uneven distribution is geography, Krugman and Obstfeld (2011). 
Indeed, the configuration of economic activity at any of the above mentioned

mailto:javier.barbero@uam.es
mailto:jose.zofio@uam.es


2 J Barbero, J. L. Zofı́o

territorial scales cannot be dissociated from the particular geography where mar-
ket processes take place. That is, economic forces are influenced by the economy’s
spatial characteristics, as both first nature geographical determinants and “second
nature” economic factors (market structure, pricing rules, etc.) shape the particular
distribution of economic activity in a given space.1 For example, if we take regions
as the territorial benchmark, the distribution of economic activity and transport net-
works in France has given rise to a topology resembling a star network, where the
central Île-de-France region presents a prominent situation, characterized by its high
degree of centrality. Meanwhile, Germany presents a more even geographical distri-
bution of economic activity, with a tightly woven transport grid that results in a more
balanced, less centralized economy. It is clear, then, that geography, understood as
a specific spatial configuration, determines the final distribution of economic activ-
ity along with economic forces. Levinson (2009) and Blumenfeld-Lieberthal (2009)
discuss the fundamentals and empirical analyses on the topology and evolution of
transportation network infrastructures at country level.

Graph theory makes it possible to introduce a spatial dimension into new eco-
nomic geography models based on increasing returns and imperfect competition, by
way of a network topology that includes transport costs—as the opposing centrifugal
force, normally associated to the concept of distance between locations, and shaping
a specific spatial configuration. In this study we explore the behavior of the canon-
ical core-periphery model on different network topologies, which represent specific
configurations of locations in an abstract space, and that would need to be qualified
with real geographic variables in empirical applications of the model (e.g., specific
transport costs between locations). Therefore, by network topology we understand
a specific spatial configuration of locations, corresponding in the real world to the
geographical features of economic activity.2 In this context, the question naturally
arises on how a particular topology influences the centripetal and centrifugal forces
that drive agglomeration or dispersion.

In recent years several contributions have appeared that qualify the initial setting of
the seminal core-periphery model introduced by Krugman (1991); e.g., allowing for
different definitions of the utility function as in Ottaviano et al. (2002), the existence
of vertical linkages as in Puga and Venables (1995), etc. But it is fair to say that
the behavior of these models under alternative spatial configurations of the economy
has not been systematically discussed. In its original version, there are two regions
with the long-run distribution of economic activity either fully agglomerated in one
or equally divided between the two.

Nevertheless, a few ways to generalize the model to a multiregional setting have
been proposed in the literature. The core-periphery model has been extended to a
greater number of regions with the assumption that they are evenly located along the

1Cronon (1991) defines “first nature” as the local natural advantages that firms seek when settling on their
location, and “second nature” as the forces arising from the presence of other firms. The first is related to
geographical features and results in diverse market potential, while the second corresponds to economic
interactions; i.e., Marshallian externalities.
2See Ducruet and Beauguitte (2014) for a review of how network research has been integrated into regional
science.
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rim of a circumference, in the so-called racetrack economy, e.g., Krugman (1993),
Fujita et al. (1999), Brakman et al. (2009). Whereas these authors obtain results
through numerical simulation, Castro et al. (2012) obtain analytical results for the
case of three regions equally spaced along a circle, while Akamatsu et al. (2012),
using bifurcation theory, generalize these results to a larger number of locations.
Closed form analytical solutions are also obtained by Picard and Tabuchi (2010)
adopting the simpler version of the NEG model proposed by Ottaviano et al. (2002)
and allowing for different transport cost functions. Alternatively, adopting the oppo-
site spatial configuration, Ago et al. (2006) analytically study a situation in which
three regions are located on a line—a star network topology. The former authors con-
clude that the central region has locational advantages and that economic activity will
concentrate there as transport costs fall. However, using also the alternative model of
Ottaviano et al. (2002) they also show that the central region can present locational
disadvantages and that price competition can make economic activity move to two
or just one of the peripheral regions. Castro et al. (2012) qualify the results obtained
for two regions regarding long-run equilibria, generalizing some of them to a larger
number of regions. In graph theory, the previous racetrack (or ring) economy and the
line (star) economy represent two simple and extreme topologies of a spatial network;
the former characterizing a neutral or homogeneous topology where no region has a
(first nature) geographical advantage, and the latter the most uneven heterogeneous
space where central regions enjoy privileged locations.3

The aim of the present study is to generalize the well-known canonical model
of the new economic geography by analyzing systematically the effect of different
geographic configurations on the locational patterns of economic activity. To accom-
plish this goal we use the customary analytical and simulation tools to study how
alternative network topologies determine the long-run equilibria of the multiregional
model. In particular we calculate the sustain and break points: i.e., the transport cost
levels at which full agglomeration cannot be sustained and the symmetric dispersion
is broken, and determine the existence (or absence) of alternative equilibria. Instead
of studying the sustain and break points for one specific topology, as it is usually
done in the literature, we do so for a continuum of network topologies between the

3The study of multi-country models based on networks has been also undertaken in the New trade Theory
(NTT) literature as in Behrens et al. (2009). The main difference between NTT models and new economic
geography (NEG) models is the assumption about workers mobility. Indeed both sets of models assume
that there is an upper tier CD utility function with a homogenous and differentiated products, with the lat-
ter corresponding to a CES specification which yields the desirable price index. Also, the technology in
both models is characterized by increasing returns, and the market equilibrium is solved within a monop-
olistic competition market structure. Considering that transport costs are also of the iceberg form, the only
difference when solving for the equilibrium is whether workers are immobile. While in NTT models it is
firms mobility (so as to meet the zero profit condition) and the exports/imports trade balance what clear the
market, and the spatial equilibrium can be characterized in terms of equal relative market potentials, RMP,
in NEG models the equilibrium is defined under the same conditions but it is workers mobility what clears
the market so as to equalize real wages across locations, (i.e., the instantaneous equilibrium). Both types
of models can be solved in a particular network as in Behrens et al. (2009)—who exemplify their model
with a line and triangle topologies, or our four region model. Therefore, market equilibrium through RMP
equalization in NTT models and real wage equalization in NEG models summarize the main difference
between both types of models.
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already mentioned extreme cases: the racetrack-ring economy and the star economy.
In fact, a racetrack-ring economy with three locations corresponds geometrically to
the triangle studied by Castro et al. (2012), while the star economy corresponds to the
line economy of Ago et al. (2006). Because our methodology can be extended to a
larger number of regions, we can with no loss of generality study all possible network
topologies (spatial or geographical configurations) that we particularize for simplic-
ity to the case of four locations, yielding new results and properties never studied in
the literature.4

By exploring the effect of different spatial or geographical configurations on
the locational patterns of economic activity our study determines the relationship
between “first” nature network characteristics and “second” nature economic forces.
On one hand, first nature characteristics correspond to the existing transport costs
between regions, and more particularly the bilateral transport costs, while network
geography is summarized by a centrality index . On the other, second nature eco-
nomic forces relate to the consumers and firms behavior. For consumers, preferences
are defined in terms of an upper tier CD utility function with a homogenous and dif-
ferentiated products, with the latter corresponding to a CES specification. For firms,
it is assumed that the technology is characterized by increasing returns, and the mar-
ket equilibrium is solved within a monopolistic competition market structure. In the
model, second nature parameters correspond to the shares of income spent in the
homogenous and differentiated goods, the price-elasticity and elasticity of substitu-
tion, marginal and fixed costs, and so on. It is the trade-off between these economic
forces resulting as in the price index and home market effects, and first nature char-
acteristics represented by transportation costs, what determine the final equilibrium
outcome in terms of agglomeration or dispersion of economic activity.

In this sense we contribute to the literature studying the combination—
harmonization—of both first and second nature determinants, with a particular focus
on the former, which is characterized by relative transport costs; and see how localiza-
tion patterns change as some locations benefit from first-nature advantages, yielding
endogenous asymmetries associated with short-run and long-run equilibria, as well
as the dynamics associated with continuous or catastrophic changes (see the recent
discussion on this matter by Picard and Zeng (2010)).

The paper is structured as follows. The multiregional core-periphery model and
the characterization of the network topologies by their centrality index, including the
extreme racetrack-ring and star space topologies, are presented in Section 2. In this
section we also generalize the model’s dynamics relative to workers moving between
existing locations. In Section 3, without loss of generality, we perform the four-region
analysis for the well-known racetrack economy and for its opposite spatial config-
uration in network topology, the star. We determine the transport cost value up to
which the agglomeration of the economic activity is sustainable, the sustain point. We
introduce the infeasibility of the symmetric flat-earth equilibrium in heterogeneous

4The methodology can be also interpreted in terms of urban systems where the different locations within
the network are cities or metropoleis characterized by densely populated areas, and whose growth and
evolution respond to economic forces, (Barthélemy and Flammini 2009).
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space. In Section 4, we analyze the continuum of intermediate topologies using the
network centrality index, determine the corresponding sustain and break points, and
generalize the previous results for any degree of centrality. Section 5 concludes.

2 The Multiregional Core-periphery Model and the Network Topology

In the multiregional core-periphery model, there are N regions with two sectors of
production: the numéraire agricultural sector, perfectly competitive, and the man-
ufacturing sector, with increasing returns to scale. The agricultural workers are
immobile and equally distributed across regions.5 Manufacturing workers can move
between regions, and λi is the share of manufacturing workers and manufacturing
activity in region i, as labor is the only production factor and technology is sym-
metric across regions. Iceberg transport costs are assumed for the manufacturing
sector. Transport costs between region i and region j , τij , depend on the unit-distance
transport cost T and on the distance between the regions dh

ij in the network h. The
transport cost function defines as:

τij = T
dh
ij (1)

The system of non-linear equations that determine the multiregional instantaneous
equilibrium are well known:

yi = μwiλi +
(

1 − μ

N

)
, i = 1, . . . , N (2)

gi =
⎛
⎝λiw

1−σ
i +

N∑
j=1�=i

λj

(
wjτji

)1−σ

⎞
⎠

1/(1−σ)

, i = 1, . . . , N (3)

wi =
⎛
⎝yig

σ−1
i +

N∑
j=1�=i

yj g
σ−1
j τ 1−σ

ij

⎞
⎠

1/σ

, i = 1, . . . , N (4)

ωi = wig
−μ
i , i = 1, . . . , N, (5)

where yi , gi and wi represent the income, price index and nominal wage of region i,
λi is the share of manufacturing activity, and ωi is the real wage, which defines as the
nominal wage deflated by the price index. The parameter σ represents the elasticity
of substitution between varieties of the manufacturing sector, σ > 1, whereas μ is

5Although different asymmetries can be incorporated into the model (e.g., uneven distribution of the pop-
ulation working in the agricultural sector, varying productivity among firms, etc.), we follow the seminal
core-periphery model where all locations are symmetric, as we are interested in isolating the effects of
changing unitary transport costs and network topology on the reallocation of economic activity across
regions, and therefore they constitute the only sources of variation of the sustain and break points defining
the long-run equilibria. The study of these changes that are related to transport policy can be comple-
mented with other governmental policies such as trade, tax and regional subsidies as discussed in Baldwin
et al. (2005).
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the share of income expended in the manufacturing sector, 0 < μ < 1. As for the
income (2), it is the sum of manufacturing and agricultural workers’ incomes (whose
wages are wi and one by choice of numéraire, respectively). As for the price index
(3), representing a weighted average of delivered prices, it is lower the larger the
share of the manufacturing industry in region i (which is domestically produced), and
the larger the imports from nearby regions rather than distant regions as transports
costs will be lower for the former than the latter. Finally, the wage Eq. 4 shows that
it will be higher if incomes in other regions with low transport costs from i are high,
as firms pay higher wages if they have inexpensive access to large markets. 6

The previous system of non-linear equations embeds both first nature advantages
corresponding to the network topology in terms of the relative transport costs, τij ,
as well as economic parameters representing second nature economic factors that
condition the location of the (mobile) manufacturing production and its associated
labor force. Particularly, preference parameters as the shares of income spent in the
homogeneous or differentiated good, μ, and the elasticity of substitution σ , along
with the technological parameters characterizing the strength of increasing returns in
manufacturing in terms of fixed costs F and marginal costs c.

The homogeneous space is defined as a topology in which all regions have the
same relative position, whereas in the heterogeneous space certain regions are bet-
ter positioned in the network; i.e., first nature locational advantages. The simplest
and most extensively studied case of a homogeneous topology corresponds to the
afore-mentioned racetrack-ring economy, where all regions are evenly situated along
the rim of a circumference, (Krugman 1993).7 The extreme heterogeneous topol-
ogy is the star, where one region, the center, has the best relative position, while all
the other regions, the periphery, also situated along the rim of the circumference,
have the least advantageous relative positions and are connected to the center only
through the spokes of the star. Figure 1 represents the four-location case for both the
homogeneous ring and heterogeneous star network topologies.

The network topology enters the model as the distance between regions, which
determines the transport costs between them. Since we are interested in how changes
to the topology affect the agglomeration and dispersion of economic activity, we
normalize the absolute measures of distance and transport cost, so as to render all
topologies comparable. We do so by circumscribing both the homogeneous ring and
heterogeneous star network topologies in a circle of radius 1. For the ring economy,
the length of the n sides of a regular polygon—square in our case—is given by the
formula: dHM

ij = 2r sin(π/n), n = 4. As for the star, all it is required is that length of
the spokes is 1. To illustrate, Fig. 1 shows the circumference enclosing the networks;
the dotted circle denotes that regions are not connected through the circumference

6Step by step solution of the model obtaining the equilibrium conditions for consumers and producers,
market clearing and trade balance for multiple regions can be found in Fujita et al (1999, chs. 4 and 5) or
Robert-Nicoud (2005, 8–10), including the normalizations yielding the specific system of equations above.
7Another example of the use of a racetrack-ring economy is Kuroda (2014), who study a dispersed supply
chain network with intermediate and final goods sectors, and the changes that take place in their spatial
distribution as a result of location-specific risky hazards (shocks).
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Fig. 1 The extreme homogeneous ring and heterogeneous star network topologies

but through the distances within the network h, represented in these cases by straight,
solid lines: i.e., the ring or star topologies.

With regard to the shares of workers and manufacturing activity, the dynamics are
as follows: (i) workers will leave region i if there is a region j with a higher real wage,
(5), or, equivalently, higher indirect utility, (Castro et al. 2012); (ii) if several regions
have higher real wages, workers are assumed to move to the one offering the highest
value; (iii) when the highest wage is observed in several regions, workers emigrate
evenly towards those regions. Therefore, from region i’s perspective, workers will
move according to these rules:

λ̇i

⎧⎨
⎩

λ̇i < 0 if ωi < max(ωj ), ∀j �= i

λ̇i = 0 if ωi = max(ωj ), ∀j ∧ �ωj < ωi, ∀j �= i

λ̇i > 0 if ωi = max(ωj ), ∀j ∧ ∃ωj < ωi, ∀j �= i

(6)

where the second line summarizes the instantaneous equilibrium: i.e., equal real
wages across regions.8 A distribution of lambdas for which the system of Eq. 2
through Eq. 5 holds therefore represents an instantaneous equilibrium, while a long-
run equilibrium—steady state—is one in which workers do not have an incentive
to move according to Eq. 6 if there is a shock marginally increasing the share of
manufactures in any region, and it is denoted by λ∗ = (λ∗

1, . . . , λ
∗
N).

In a multiregional economy we can characterize the spatial or network topology
with graph theory, which proposes several indicators that summarize the pattern of
interconnections between various locations; e.g., Harary (1969). Centrality measures
are particularly useful for the study of the multiregional network, as they are good
indicators of the relative position of the regions within the network.

8It is possible to include moving costs that must be compensated by wage differentials before workers
actually change location, (Tabuchi et al. 2014). Studying workers flows between locations as discussed by
Patuelli et al. (2007), which would require relaxing the assumption that wage earners work where they live
and incur in commuting costs, also represents an interesting extension.
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With
∑N

j=1 dh
ij being the sum of the distances from location i to all other j loca-

tions within the network h, the centrality of location i corresponds to the following
expression:

ch
i =

min
(∑N

j=1 dh
ij

)
∑N

j=1 dh
ij

(7)

where min
(∑N

j=1 dh
ij

)
corresponds to the value of the location(s) best positioned

within the economy, denoted by i∗, with ch
i∗ = 1. In a homogeneous space such as

that represented by the ring topology all locations have a centrality of 1, whereas
in the heterogeneous star topology the central node has a centrality of 1 and all
peripheral nodes have equal centrality values lower than 1: ch

i < ch
i∗ = 1.

The centrality of the economy — network centrality — defines as:

C(h) =
∑N

i=1

[
ch
i∗ − ch

i

]
max

[∑N
i=1

[
ch
i∗ − ch

i

]] =
∑N

i=1

[
ch
i∗ − ch

i

]
(N−1)(N−2)

(2N−3)

(8)

where
∑N

i=1

[
ch
i∗ − ch

i

]
is the sum of the centrality differences between the location

with the highest centrality and all remaining locations, and max
[∑N

i=1

[
ch
i∗ − ch

i

]]
is the maximum sum of the differences that can exist in a network with the same
number of nodes. This maximum corresponds to a heterogeneous star network with a
central node and N −1 periphery nodes. The network centrality for the homogeneous
ring space is C(hHM) = 0 and for the heterogeneous star space C(hHT ) = 1. The
two extreme topologies have the extreme network centralities.

3 Analysis of the Extreme Topologies: The Ring and Star Economies

Without loss of generality, we can study a four-region economy by comparing the
two opposite cases of spatial topology in terms of network centrality: the ring and
the star (Fig. 1). In the homogeneous space the four regions are the four vertices of a
square. In the heterogeneous three-pointed star topology there is a central location, 1,
and three peripheral locations connected to the center. Both spaces are circumscribed
in a circle of radius 1. The distance matrices of the four-region ring and star networks
are the following:

DHM =

⎛
⎜⎜⎝

0 1.4142 2.8284 1.4142
1.4142 0 1.4142 2.8284
2.8284 1.4142 0 1.4142
1.4142 2.8284 1.4142 0

⎞
⎟⎟⎠ , DHT =

⎛
⎜⎜⎝

0 1 1 1
1 0 2 2
1 2 0 2
1 2 2 0

⎞
⎟⎟⎠

The sustain point is the level of transport cost at which the agglomeration of
economic activity is no longer sustainable and economic activity disperses across
regions. To compute the value of the sustain point we must select the reference region,
or regions, where the economic activity is initially agglomerated and check whether it
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is a feasible solution for the instantaneous equilibrium defined in Eq. 2 through
Eq. 5. Next, given a particular network h, we use the dynamic rules set in (6) to
compute the value of T for which λ̇i > 0 in each region.

For example, assuming that a single location agglomerates (e.g., region 1: ω1 = 1
in Eq. 5) and given the generalized definition of the real wages for the remaining
regions (i �= 1),9 we compute the level of the transport cost corresponding to the
sustain point T1i (S) for which ωi > ω1, i �= 1, and determine the subsequent final
instantaneous equilibrium compatible with T > T1i (S): i.e., a comparative statics
analysis. In this section we explore the sustain point for the two extreme ring and
star topologies when the region in the center starts agglomerating. In the first case all
the regions in the homogeneous space are equivalent, and we need to explore only
the case of one of the regions, as the long-run equilibria are symmetric: i.e., any
permutation of the agglomerating location yields identical results.

3.1 Homogeneous-ring Topology: From Full Agglomeration to Flat-earth
Dispersion

In simulations for the ring network with region 1 agglomerating (λ∗
1 = 1), as shown

in Fig. 2, the sustain point for region 3 (the farthest region from 1, as dHM
13 = 2.83)

is T HM
13 (S) = 1.39, which is lower than the value for neighbor regions 2 and

4 (separated by dHM
ij = 1.41, j = 2, 4): T HM

1j (S) = 1.52, j = 2, 4.10 That
is, when the transport cost rises above 1.39 economic activity spreads to region
3, since ω3 > ω1, and regions 1 and 3 both produce manufactures. The sustain

point, defined as min
(
T HM

1j (S)
)

= 1.39, j = 2, 3, 4, suggests a partial agglomer-

ation in two regions separated by the maximum distance dHM
13 = 2.83. As a result,

the configuration λ = (λ1 = 0.5, λ2 = 0, λ3 = 0.5, λ4 = 0) is a candidate
for a stable equilibrium, since real salaries in the agglomerating regions are equal:
ωi = 0.9353, i = 1, 3, while those of the empty regions are ωi = 0.8611, i = 2, 4.
Because the minimum sustain value corresponds to the farthest regions, the balance
between competition and transport costs makes it more profitable for firms and work-
ers leaving the agglomerating region to relocate as far as possible and thereby equally
serve the markets of the regions with no manufacturing activity, regions 2 and 4.

Whether the partial agglomeration (or partial dispersion) given by λ = (λ1 =
0.5, λ2 = 0, λ3 = 0.5, λ4 = 0) is a long-run equilibrium depends on the cor-
responding stability analysis for a shock that marginally increases the share of
manufactures in one or more agglomerating regions, and its effect on the real wages:
i.e.,∂ωi/∂λi, i = 1, 3. Nevertheless, if we assume that such a shock does not take
place, and since the previous distribution may represent a subsequent instantaneous
equilibrium, we can further study its sustainability as transport costs keep rising.

9See Appendix A for the expression of real wages when one region is agglomerating.
10To ease comparability with Fujita et al. (1999), all simulations in these sections use the parameter values
σ = 5 and μ = 0.4. Expressions for real wages when only one region is agglomerating and the agglom-
eration depends only on transport costs are presented in Appendix A for N regions and in Appendix B for
N = 4 regions.
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Region 1
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Region 3

Fig. 2 Real wages for the ring topology when one region agglomerates

Figure 3 shows real wages for different transport-cost values when the instantaneous
equilibrium corresponds to agglomeration in regions 1 and 3. The sustain point in this
case is T HM

1j (S) = T HM
3j (S) = 1.72, j = 2, 4. When transport cost increases beyond

1.72 manufacturing activity disperses across all regions — flat-earth. That is, a sit-
uation where all regions have the same share of manufacturing activity, λi = 0.25,
emerges as a possible long-run equilibrium, as regions end up having the same real
wage ωi = 0.878, ∀i. Once again, however, its steady-state assessment depends on
the necessary stability analysis for long-run equilibrium.

3.2 Heterogeneous-star Topology: From Full Agglomeration to ‘Pseudo’ Flat-earth

We now examine the star topology when the location with the highest centrality – the
center of the star: max cHT

i = cHT
i∗ = cHT

1 = 1 —begins agglomerating: λ∗
1 = 1.

As shown in the following Section 4, this extreme heterogeneous network topology
defines an upper bound (highest value) for the sustain point of all possible spatial con-
figurations, with T HT

C∗
i j

(S) = 2.58, j = 2, 3, 4 (Fig. 4). Above this value of transport

cost, agglomeration is no longer sustainable and manufacturing activity disperses to
the three peripheral regions. Once again, the question is whether the dispersion of
economic activity can result in an equal distribution of the manufacturing industry:
i.e., whether λi = 0.25∀i corresponds to a long-run equilibrium.
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Fig. 3 Real wages for the ring topology when opposite regions agglomerate

Once again, we must resort to stability analysis, but it turns out that we can
immediately prove that this spatial configuration does not represent a stable equi-
librium, because it simply cannot exist. That is, the flat-earth long-run equilib-
rium is infeasible in any heterogeneous space with the system of Eq. 2 through
Eq. 5 characterizing it, because it requires transport costs to be equal for all regions
(i.e., a homogeneous space topology is a necessary condition). Indeed, symmetric
equilibrium is possible only if all regions have the same real wage: ωi = wig

−μ
i .

If all regions have the same share of manufacturing, λi = 1/N , the nominal
wage in all agglomerating regions is wi = 1, as the following condition holds
(Robert-Nicoud (2005) for N = 2, as well as Ago et al. (2006) and Castro et al.
(2012) for N = 3):

N∑
i=1

λiwi = 1 (9)

Therefore, real wages are equal in all regions only if price indices are equal
in all regions. Since the price index of a region i depends on the transport cost
between all agglomerating regions and region i, the price index will be equal across
regions if and only if all the regions have the same relative position in the network
economy.
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Fig. 4 Real wages for the star topology when the central region agglomerates

Proposition 1 (Non-existence of the flat-earth equilibrium in a heterogeneous space)
Symmetric equilibrium, flat-earth, is feasible only if all locations have the same rel-
ative position in the network. Therefore, symmetric equilibrium is feasible only in a
homogeneous space.

Proof 1 Equality of real wages across regions: ωi = ωj , ∀i, j , agglomerating an
even share of manufacturing activity λi = 1/N , requires that price indices be equal:
gi = gj , ∀i, j . Substituting this even share of manufacturing and wi = 1 – from Eq. 9
— in Eq. 3, real wages are (not) equal if bilateral transport costs—centralities—are
the same (different); this is (not) verified in the homogeneous (heterogeneous) space.

Proposition 1 can be easily illustrated. Real wages when the four regions of the
star hypothetically have the same share of manufacturing activity: λi = 0.25, are
represented in Fig. 5. For all levels of transport cost, the real wage of the central
region 1 is higher than the real wages of the remaining regions except in the unreal
case when transport is costless: T = 1. This illustrates that economic activity moves
from the periphery to the center and that the flat-earth equilibrium is not feasible in
the heterogeneous space.

Therefore, with region 1 agglomerating, once transport costs overcome the (single)
sustain point T HT

c∗
i

(S) = 2.58.j = 2, 3, 4, manufacturing activity will disperse across

regions and reach a configuration that we define and characterize in the following



The Multiregional Core-periphery Model: The Role of the Spatial Topology 13

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

T

ω
i

Region 1
Regions 2, 3 and 4

Fig. 5 Real wages for the star topology when all regions have an equal share of economic activity

section and name pseudo flat-earth, i.e., a long run equilibrium where all regions
produce the manufacturing good with unequal distribution As we show, for a pseudo
flat-earth the central regions share of manufacturing is above 0.25, while peripheral
regions shares are below 0.25. Figure 5 illustrates that the hypothetical flat-earth
situation is not a stable equilibrium for all transport costs, including the sustain point,
as the real wage is higher in the central region than in any other: ω1 = 0.8774 >

ωi = 0.8772, i = 2, 3, 4.

3.3 Comparing Sustain Points in Ring and Star Network Topologies

The differences in the sustain points between the homogeneous and the heteroge-
neous space lead to the following result:

Result 1 (The sustain point in a heterogeneous space is higher (lower) than in the
homogeneous space for central (peripheral) regions) There is a transport-cost level
in the homogeneous ring topology and the heterogeneous star topology at which
agglomeration forces are outweighed by the dispersion forces. Regarding this level
of the transport cost, the sustain point for the central region (peripheral region)
is higher (lower) in a heterogeneous space than in a homogeneous space, because
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Table 1 Sustain-point values for different network topologies: from agglomeration to dispersion

Homogeneous ring topology Heterogeneous star topology

Region EHM = 1 EHM = 2 EHM = 3 EHT = 1 EHT = 2

1 λ1 = 1 λ1 = 0.5 λ1 = 0.25 λ1 = 1 λ1 > 0.25

2 1.52 1.72 λ2 = 0.25 2.58 λ2 < 0.25

3 1.39 λ2 = 0.5 λ3 = 0.25 2.58 λ3 < 0.25

4 1.52 1.72 λ4 = 0.25 2.58 λ4 < 0.25

agglomeration forces are higher (lower) in regions that have a locational advantage
(disadvantage), i.e., that exhibit a better (worse) relative position:11

T HT
ci∗ j (S) > T HM

ij (S) > T HT
jci∗ (S) (10)

The values of the sustain point for the different situations already examined are
presented in Table 1. Beginning with the homogeneous space we have the initial
equilibrium, EHM = 1, in which only one region is agglomerating. When trans-
port cost reaches T HM

13 (S) = 1.39, half of the economic activity moves to the
farthest region, thereby reaching a second-unstable-equilibrium, EHM = 2. If trans-
port cost continues to increase beyond T HM

1j (S) = T HM
3j (S) = 1.72, j = 2, 4

economic activity disperses across all regions, attaining a final long-run equilibrium,
EHM = 3. In a heterogeneous star topology, starting at an equilibrium in which the
center is agglomerating economic activity, EHT = 1, when transport cost rises above
T HT

1j (S) = 2.58, j = 2, 3, 4, economic activity disperses across all regions, attaining

a pseudo flat-earth long-run situation, EHT = 2.

3.4 Break Points

Studying the break point involves determining when a symmetric equilibrium is
unstable. To obtain the break point analytically we generalize the procedure set out
in Fujita et al. (1999), which requires defining an initial distribution for the stability
analysis. We start with a symmetric equilibrium—either flat-earth in the homoge-
neous ring topology or pseudo flat-earth in the heterogeneous star topology—in
which all regions have the same share of manufacturing activity (λi = 1/N ), and
evaluate the derivative of the real wage with respect to the change in a regions share
of manufacturing activity i: ∂ωi/∂λi . A break point is the transport cost at which the
derivative of the real wage equals zero and the symmetric equilibrium is unstable,
because the derivative to its right is positive and the derivative to its left is negative. If

11We have also studied the sustain point for one of the peripheral regions with lowest centrality: λ2 = 1
with cHT

i = 0.6, i = 2, 3, 4 (top region in Fig. 1). In this case, the central region defines the lowest value
for the sustain point: min T2cHT

i∗
= 1.44. Complete results for the full range of alternative simulations are

available upon request.
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the equilibrium is unstable, a small shock increasing a regions share of manufacturing
activity triggers agglomeration in that region.12

Stability of the equilibrium and breakpoints for the ring topology has been widely
studied analytically in the literature: Fujita et al. (1999) for the two regions econ-
omy, Castro et al. (2012) for three regions, and Ikeda et al. (2012) for four regions,
by inspecting the sign of the eigenvalues of the Jacobian matrix of the dynamic
equation. For non symmetric distributions of λ, however, it is not possible to obtain
analytical expressions of those eigenvalues and numerical techniques must be used
(Akamatsu and Takayama 2009). Thus, analytical expressions cannot be obtained
for our heterogeneous-star topology. Nevertheless, instead of dealing with numeri-
cal techniques based on the Jacobian, we introduce a new method to analyze when
a long-run equilibrium in the heterogeneous star space in broken, for a given shock,
using the derivatives of the functions defining the spatial equilibrium.

The system of nonlinear equation derivatives of Eq. 2 through Eq. 5 that allows us
to determine the value of ∂ωi/∂λi is the following:13

dyi = μdwiλ + μwidλi, (11)

(1 − σ)
dgi

gσ
i

= w1−σ
i dλi + (1 − σ)λiw

−σ
i dwi+

+
N∑

j=1�=i

(
(wj τji)

1−σ dλj + (1 − σ)λj τ
1−σ
ji w−σ

j dwj

)
,

(12)

σ
dwi

w1−σ
i

= gσ−1
i dyi + (σ − 1)yiσ

σ−2
i dgi+

+
N∑

j=1�=i

(
gσ−1

j τ 1−σ
ij dyj + (σ − 1)yj τ

1−σ
ij gσ−2

j dgj

)
,

(13)

g
μ
i dωi = dwi − μwi

dgi

gi

. (14)

In any heterogeneous network topology like the star the flat-earth equilibrium,
with all regions having the same share of manufacturing activity is infeasible
(Proposition 1). Therefore, to analyze the break point we must first characterize
the stable long-run equilibrium that best captures the idea of symmetric disper-
sion: i.e., a spatial configuration where no region lacks manufacturing production:
λ∗ = (λ∗

1, . . . , λ
∗
N), λ∗

i > 0. In general, then, what we call pseudo flat-earth
is a situation in which all locations have some level of manufacturing but some
(central) regions have a greater share. Given this criterion we can introduce a fur-
ther qualification that allows us to determine the bounds for the set of lambdas
λ∗ for which long-run equilibria exist. The lowest bound can be defined accord-
ing to the principle of least difference, by which the sum of the differences in

12This is normally illustrated in the literature with the so-called wiggle diagram, which presents the value
of the derivative ∂ωi/∂λi for the full range on lambda values: λ ∈ [0, 1]. In this diagram, instantaneous
equilibria are characterized by equality of real wages. The instability (stability) of these interior equilibria
depends on whether the derivatives to the right of and to the left of the break point are positive (negative)
and negative (positive), respectively.
13Eq. 11 is obtained directly by totally differentiating the income Eq. 2. The differentiation process
yielding Eq. 12 through Eq. 14 is presented in Appendices C through E, respectively.
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manufacturing shares is the lowest: min
∑N

i (max(λi) − λi) —denoted by λ∗L =
(λ∗L

1 , . . . , λ∗L
N ), λ∗L

i > 0 and named minimum pseudo flat-earth. Opposite to this,
the upper bound corresponds to that distribution for which the sum of differences is
the highest: λ∗H = (λ∗H

1 , . . . , λ∗H
N ), λ∗H

i > 0, termed maximum pseudo flat-earth:

max
∑N

i (max(λi) − λi). The introduction of pseudo flat-earth (including its maxi-
mum and minimum qualifications) is a novel outcome of the present multiregional
core-periphery model, which, unlike the two- and three-region models, allows us to
characterize a steady state where all regions produce manufacturing but have different
shares depending their relative position in the network. Formally, in a multiregional
heterogeneous network topology, pseudo flat-earth is a stable long-run equilibrium
characterized by:

1. λ∗
i > 0, ∀i

2. ωi = ωj , ∀i, j

3. ∂ωi/∂λi ≤ 0, ∀i

4. ∃(λ∗
i , λ

∗
j )| λ∗

i �= λ∗
j

In the particular case of the heterogeneous star network topology, the derivative of
the real wage should be zero for the central region and negative for peripheral regions.
Pseudo flat-earth is therefore given by the set of lambdas λ∗ = (λ∗

1, . . . , λ
∗
N), λ∗

i > 0,
with the upper and lower bounds being values that solve the following optimization
programs for all transport-cost levels, corresponding to the maximum and minimum
pseudo-flat-earth distributions of manufacturing production, respectively. Consid-
ering the system of Eq. 2 through Eq. 5 and its associated system of derivatives
Eq. 11 through Eq. 14, we determine the upper bound associated with the maximum
lambda of the region of highest centrality (maximum pseudo flat-earth distribution)
by solving the following program:

max λH
c∗
i

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λi > 0, ∀i

ωi = ωj , ∀i, j

∂ω1
∂λ1

= 0,

∂ωj

∂λj
< 0, ∀j �= 1

(15)

where the first set of restrictions characterizes the new pseudo-flat-earth definition
(no emptiness), the second set ensures that an instantaneous equilibrium exists, and
the third and fourth sets determine its stability. Precisely, the upper bound corre-
sponds to the third restriction, which determines the largest value of lambda λ∗H

1 for
which the pseudo flat-earth still holds, thereby signaling the associated transport cost
corresponding to the break-point value.
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The minimum value of lambda for which the dispersed equilibrium holds – i.e.,
characterizing the minimum pseudo flat-earth distribution — is:

max λL
c∗
i

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λi > 0, ∀i

ωi = ωj , ∀i, j

∂ω1
∂λ1

= 0,

(16)

We let δ denote the difference between the maximum and minimum shares of
manufacturing that the central region can have for pseudo flat-earth equilibria to be
stable; i.e., intervals of stable equilibria:

δ = max λ∗H
c∗
i

− min λ∗L
c∗
i

(17)

Consequently uneven distributions of manufacturing activity may exhibit long
run stability for any transport cost value, a property unknown in the literature. As
for the stability analysis, since the central region tends to attract and agglomerate
economic activity as a result of its privileged first nature situation—see proposi-
tion 1 in Ago et al. (2006)—we consider the shock: dλ = (dλ1 = 0.001, dλ2 =
−dλ1/3, dλ3 = −dλ1/3, dλ4 = −dλ4/3), when evaluating ∂ωi/∂λi . In this
analysis, maximum pseudo flat-earth corresponds to the transport cost and its
associated distribution of manufacturing shares for which ∂ωi/∂λi = 0 consti-
tutes a break point T HT (B)|dλ, for the given shock dλ. Conversely, minimum
pseudo flat-earth is asymptotic to the traditional flat-earth definition, with man-
ufacturing production approaching equal distribution as transport cost tends to
infinity.

For our particular four-region star network topology, the combination of shares
that solves the maximization problem given by Eq. 15 is λ∗H

1 = 0.3376, λj =
0.2208, j = 2, 3, 4, yielding a break point value of T HT (B)|dλ = 2.14, at which real
wages across regions are equal ωi = ωj∀i, j and ∂ω1/∂λ1 = 0, with the right deriva-
tive being positive and the left derivative negative. The combination of shares of
manufacturing that solves the minimization problem given by Eq. 16 is λ∗L

1 ≈ 0.25,
slightly over 0.25 for the central region, and λ∗L

j = 0.25, j = 2, 3, 4, slightly under
0.25 for the peripheral regions. The distance between the maximum and the mini-
mum is δ = 0.0875. Consequently, pseudo flat-earth exists for λ∗

1 ∈ (
λ∗L

1 ; λ∗H
1

) =
(0.25; 0.3376] , λ∗

j ∈ [0.2208; 0.25) , j = 2, 3, 4 and for this range of transport
costs T ∈ [2.139; +∞] . For each level of transport cost we find a unique com-
bination of shares of manufacturing that produces stable long-run pseudo-flat-earth
equilibrium.
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4 Intermediate Topologies: Centrality and Critical Points

In this section we explore the sustain and break points for a continuum of topologies
between the already studied extremes: the homogeneous ring configuration, exhibit-
ing a centrality measure C(hHM) = 0, and the heterogeneous star configuration, with
C(hHT ) = 1. First, we determine the number of intermediate topologies, or steps,
that we want to study between these two cases. If we recall the distance matrices
in Section 3, the differences between these extreme topologies are given by a linear
transition matrix:

Ddif = DHM − DHT

s
, (18)

where DHM is the distance matrix of the ring topology, DHT the distance matrix of
the star topology and s stands for the total number of steps.

For our four-region case, the difference matrix is:

Ddif =

⎛
⎜⎜⎝

0 0.4142/s 1.8284/s 0.4142/s

0.4142/s 0 −0.5858/s 0.8284/s

1.8284/s −0.5858/s 0 −0.5858/s

0.4142/s 0.8284/s −0.5858/s 0

⎞
⎟⎟⎠ (19)

In our simulation we determine the sustain and break points for a hundred net-
work topologies: s = 100, each corresponding to the following matrices: DHT (h) =
DHT + hDdif , h = 0, . . . , s were DHT (h) varies as the matrix of the star topol-
ogy gets successively one step closer to that of the ring topology: i.e., for h = 100,
DHT (100) = DHM .

Given the linear transition schedule represented by the difference matrix (19),
we determine the extension of the economy represented by the circle of radius 1
circumscribing each topology as discussed in Section 2. This ensures that transporta-
tion costs are normalized and we can disentangle the effect on changes in the unit
transport cost and each network’s centrality.

4.1 Sustain Points for the Continuum of Network Topologies

Figure 6 shows the sustain point for intermediate space topologies from C(hHM) = 0
to C(hHT ) = 1. Generalizing the first result, we see that the underlying function
that defines the sustain point, T C(h)

13 (S), increases as the network centrality increases.
Moreover, it is convex, implying that as the uneven spatial configuration associated
with first-nature characteristics reduces (increases), the reduction (increment) in the
sustain point is smaller (larger). Assuming that the ”no-black-hole” condition holds,
we can summarize this finding as follows:

Result 2 (The higher (lower) the centrality of the network, the higher (lower) the
sustain point) There exists a transport-cost level at which the forces agglomerating
economic activity are outweighed by the opposite dispersion forces. This transport-
cost level—the sustain point—rises (falls) as the centrality of the network, C(h), rises
(falls).
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Fig. 6 Sustain points for the continuum of network topologies

This result, which can be summarized in the following inequality:

min
(
T

C(h)
1j (S)

)
> min

(
T

C(h′)
1j (S)

)
, C(h) > C(h)′ (20)

implies that as centrality increases the agglomerating forces associated to the price
index and home market effect are reinforced given the existing transport costs. That
is, these elements of cumulative causation tend to increase agglomeration because:
i) locations with larger manufacturing sectors enjoy lower price indices (and there-
fore higher real wages) as transports costs are nonexistent for local production and
lower for imports (price index effect); that is, increasing the centrality reduces the
price index in the agglomerating region; and ii) locations with a higher demand for
manufacturers attract a larger proportion of employment (and therefore higher nom-
inal and real wages), reinforcing the attractiveness of this location for manufacturing
workers.

4.2 Break Point Values for the Continuum of Network Topologies

To compute the break point for each intermediate topology and its associated maxi-
mum pseudo-flat-earth distribution: λ∗H

c∗
i

, we once again evaluate the system of Eq. 2

through Eq. 5 along with its associated system of derivatives Eq. 11 through Eq. 14,
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for the following vectors of differentials, which correspond to the previous analyses
of ring and star topologies.

dλHM =

⎛
⎜⎜⎝

dλ1
dλ2
dλ3
dλ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.005
−0.005

0.005
−0.005

⎞
⎟⎟⎠ ; dλHT =

⎛
⎜⎜⎝

dλ1
dλ2
dλ3
dλ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.001
−0.001/3
−0.001/3
−0.001/3

⎞
⎟⎟⎠ . (21)

The difference vector of the shock from one topology to the next is given by:

dλdif = dλHM − dλHT

s
. (22)

As for the distance matrices, the vector of differentials for each simulation is
dλHT (h) = dλHT + hdλdif , h = 0, . . . , 100, where dλHT (h) varies as the star’s
matrix gets one step closer to that of the ring topology, and dλHT (h) = dλHM for
h = 100.

The break point values for intermediate topologies are shown at the top of Fig. 7
and their associated shares of manufactures at the bottom. As with the sustain points,
the function underlying the break point shows increasing network centrality and it is
convex. This implies that decreasing (increasing) network centrality makes the full
dispersed equilibrium stable over a larger (smaller) range of transport costs. Once
again, if the “no-black-hole” condition holds, we get the following result.

Result 3 (The higher (lower) the centrality of the network, the higher (lower) the
break point) There exists a transport-cost level at which long-run dispersed equilib-
rium becomes unstable. This level rises (falls) as the centrality of the network rises
(falls).

Again, this result can be summarized in the following inequality:

min
(
T C(h)(B)|dλHT (h)

)
> min

(
T C(h′)(B)|

dλHT (h′)
)

, C(h) > C(h)′ (23)

Figure 7 allows us to disentangle the effects of changes in network topology, C(h),
and the unit-distance transport cost T . Regarding the parameters’ space, any cen-
trality and transport cost combination above the dotted line represents a dispersed
equilibrium. On the other hand, a combination below the solid line, implies full
agglomeration. Alternatively, the area ”A” represents a situation where there are mul-
tiple equilibria. For a given value of transport cost between the minimum (ring) and
maximum (star) sustain points, and with a departure from a fully agglomerated equi-
librium (below the sustain point line), reducing the centrality of the network will
eventually result in a dispersed spatial configuration as the sustain point is reached.
Alternatively, for a given value of transport cost between the minimum (ring) and
maximum (star) break points, and with a departure from a dispersed pseudo-flat-earth
equilibrium (above the break point line), increasing the centrality of the network will
break the equilibrium eventually and shift the economy toward a more agglomerated
outcome. Regarding the convexity of the sustain and break points, this non-linearity
implies that increases in the centrality of the network result in ranges of transport
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costs for which agglomeration is sustainable that increase at a higher rate (the area
below the sustain point line), but also results into a lower range of transports costs
for which the dispersed equilibrium exists, which in turn diminishes also to a higher
rate (the area above the break point points). Altogether, this implies that the agglom-
erated equilibrium is sustainable for an increasingly larger range of transports cost,
while the dispersed equilibrium exists for a decreasingly lower range of transport
costs. Finally, Fig. 7 also illustrates the gap between the maximum and minimum
pseudo flat-earth for a given network centrality (17). The largest and smallest gaps
are observed for the extreme star and ring topologies, respectively.14

5 Conclusions

The relative position of locations —nation, region or city —in space plays a critical
role in the agglomeration and dispersion of economic activity. Whereas transport cost
is one of the elements that shapes the current distribution of economic activity, geo-
graphical topology must also be taken into account, since the effects of a change in
transport costs on the distribution of economic activity (e.g., the triggering of alter-
native processes of agglomeration or dispersion) differ depending on the economy’s
spatial configuration. Thus the relative position of a region in space determines the
final result of these processes.

Our results show that alternative network topologies present different behav-
iors for agglomerating and dispersing forces and thus for alternative spatial con-
figurations of economic activity. Indeed, result 1 shows that for the two polar
cases—homogeneous ring topology and heterogeneous star topology—the sustain
point is higher in the latter. The existence of a first nature advantage in favor of the
central region makes agglomeration in that region more sustainable (and therefore
less sustainable in peripheral regions). We generalize the result for these extreme
topologies to any pair of network configurations, showing in results 2 and 3 that both
the sustain and break points are higher in networks presenting higher centralities.
If we were to depart from a symmetric equilibrium, regions with higher centrali-
ties would start drawing economic activity at a higher transport-cost level than if the
network were neutral, with no region presenting a locational advantage.

The systematic study of sustain and break points yields several interesting results
never studied in the literature. For heterogeneous networks exhibiting a positive
degree of centrality, we stress that the dispersed flat-earth equilibrium, which is the
initial configuration of manufacturing activity when studying break points, is infea-
sible (proposition 1). Therefore, we introduce the concept of pseudo flat-earth that
defines as a steady-state equilibrium in which all regions produce manufacturing
in unequal shares. As there are various values of manufacturing shares that satisfy
this stability criterion, we further qualify this concept in terms of inequality between
shares. Thereby we introduce maximum pseudo flat-earth as that economy where

14Given the transition matrix (19), regions 2 and 4 present the same centrality index (7) for all network
topologies, and therefore have the same shares of manufacturing activity.
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the share difference between the central region and the peripheral regions is at its
largest, and the minimum pseudo flat-earth as that economy where the difference is
at its smallest. Additionally, we find that both the sustain and break points are convex
on the degree of centrality. Consequently, as the centrality of the network increases
the transport-cost thresholds for which full agglomeration and symmetric dispersion
are no longer stable increase to a higher rate, showing that the higher first-nature
advantages, the stronger the agglomeration forces in favor of central locations.

The definition of the spatial equilibrium and its changes in terms of the network
centrality is one of the main contributions of this study, with the previous results
having important implications for policies aiming to increase territorial cohesion
between regions by way of infrastructure investment; e.g., in terms of accessibility,
which in our network framework corresponds to a reduction of network centrality.
This situation is illustrated in Fig. 7, where the spatial equilibrium of an econ-
omy in terms of its centrality and transport cost corresponds to A = (C(h), T ).
In this situation neither fully agglomerated nor fully dispersed equilibria are steady
states, and reducing network centrality favors the dispersed outcome, whereas if net-
work centrality were increased the agglomerated outcome would emerge. In general,
with a departure from a heterogeneous space, full cohesion between regions can be
achieved only if all regions have the same relative position in terms of transport
costs. Because in real geographical patterns some locations are better situated than
others as a result of first-nature advantages, full cohesion is not possible unless trans-
port costs are equalized across all regions (e.g., with infrastructure investments). An
objective beyond reach of transportation planners. Indeed, because in the real world
it is impossible with infrastructure policies to transform a heterogeneous space into a
homogeneous space like the “racetrack economy”, policymakers should bear in mind
that there might be situations where the first-nature advantages of some locations are
so large that any feasible reduction in the centrality of network topology may not
be enough to trigger a dispersion of economic activity. In other words, at existing
levels of unit-transport costs, using infrastructure policy to reshape the economy’s
spatial configuration in terms of network centrality may not be enough to substan-
tially change the distribution of economic activity. In the same vein, given a network
centrality, a reduction in unitary transport cost driven by lower market prices (e.g.,
as expected from a liberalization of labor and capital markets) or by technologi-
cal improvements (e.g., vehicle fuel efficiency) may not be enough to overcome the
privileged position of some locations15

For our model, we normalize the size of the different topologies so as to ren-
der them comparable; i.e., networks are defined in the two-dimensional Euclidean
plane confined within a circle of radius 1. This can be understood as a units-invariant

15Note that we do not favor a particular locational pattern, since the superiority of dispersion or agglomera-
tion as a social outcome depends on transport costs and the alternative social functions defined, see Charlot
et al. (2006). Nevertheless, it is widely accepted that transport-infrastructure policies aim to increase ter-
ritorial cohesion in terms of per-capita income. Therefore, when promoting infrastructure improvements
public officials take for granted that a reduction in network centrality favors less-developed (periph-
eral) regions: i.e., their expected long-run outcome is territorial cohesion through reduction of income
differentials.
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framework. As distances can be measure in any unit of measurement and the sustain
and break points are not units invariant, this is a simple way to obtain results based on
relative transport-cost differences, regardless of their absolute values. This allows us
to disentangle the effects of changes in transport cost and in the degree of centrality in
the network topology. Nevertheless, it is clear that both elements end up configuring
total transport costs. In fact, distance as cost in economics, and even in geography, is
not represented solely by the obvious geographical distance between two locations.
There are other measures besides it: for instance, distance as travel time, generalized
transport costs. All of these can be expressed in unit-distance terms (e.g., per kilo-
meter, minute, dollars), and thus our distinction between these two elements can be
maintained in empirical applications. Still other clear alternatives for the introduc-
tion of transport costs would be weighted networks, where distance matrices capture
more sophisticated definitions of the cost function. This opens the possibility of using
weighted links—e.g., distances weighted by generalized transport costs—within net-
work theory (e.g., Opsahl et al. (2010)). In any case, it would be possible to simulate
the effect on particular economies of transport policies aimed at reducing network
centrality, thereby predicting whether such investments would in fact increase terri-
torial cohesion. For example, as previously suggested, a country’s network topology
could be such that no investment whatsoever would change the existing geograph-
ical distribution of economic activity, due to a network so central that no sustain
point could ever be reached; i.e., the existence of a ”black hole” location in terms of
network centrality, complementing that associated to other parameters of the model.

Finally, for the multiregional model in this study we have considered only the
canonical core-periphery model of Krugman (1991), but we could extend the analysis
and introduce network theory in other simple models of the new economic geography,
like the linear version by Ottaviano et al. (2002), or more elaborated models as the
one with vertical linkages by Puga and Venables (1995).
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Appendix A: Real Wages in a Multiregional Economy when One Region
is Agglomerating

When only one region — say, region 1 — is agglomerating we set λ1 = 1 and
λi = 0 ∀i �= 1 in Eq. 2, thereby obtaining:

y1 = 1 + (N − 1)μ

N
; yi = 1 − μ

N
, i = 2, . . . , N.
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Since by Eq. 9 the nominal wage of region 1 is equal to 1, we can substitute and
get price indices (3):

g1 = 1; gi = τ1i , i = 2, . . . , N.

Inserting the price indices and income we obtain nominal wages (4):

w1 = 1

wi =
⎛
⎝1 − μ

N
τσ−1

1i + 1 + (N − 1)μ

N
τ 1−σ
i1 +

N∑
j=2�=i

1 − μ

N
τσ−1

1j τ 1−σ
ij

⎞
⎠

1/σ

.

as well as the real wage (5):
ωσ

1 = 1

ωσ
i = 1 − μ

N
τ

σ−1−μσ
1i + 1 + (N − 1)μ

N
τ 1−σ
i1 τ

−μσ
1i + 1 − μ

N
τ

−μσ
1i

N∑
j=2�=i

τ σ−1
1j τ 1−σ

ij

Appendix B: Real Wages in a Multiregional Economy with N = 4

Following the same procedure as in Appendix A and setting N = 4, we obtain the
following expressions of real wages:

ωσ
1 = 1

ωσ
2 = 1−μ

4 τ
σ−1−μσ
12 + 1+3μ

4 τ 1−σ
21 τ

−μσ
12 + 1−μ

4 τ
−μσ
12

(
τσ−1

13 τ 1−σ
23 + τσ−1

14 τ 1−σ
24

)
ωσ

3 = 1−μ
4 τ

σ−1−μσ
13 + 1+3μ

4 τ 1−σ
31 τ

−μσ
13 + 1−μ

4 τ
−μσ
13

(
τσ−1

12 τ 1−σ
32 + τσ−1

14 τ 1−σ
34

)
ωσ

4 = 1−μ
4 τ

σ−1−μσ
14 + 1+3μ

4 τ 1−σ
41 τ

−μσ
14 + 1−μ

4 τ
−μσ
14

(
τσ−1

12 τ 1−σ
42 + τσ−1

13 τ 1−σ
43

)

Appendix C: Price Index Derivative

Raising the price index Eq. 3 to 1 − σ yields:

g1−σ
i = λiw

1−σ
i +

N∑
j=1�=i

λj (wj τji)
1−σ ,

Taking logs:

(1 − σ) ln gi = ln

⎛
⎝λiw

1−σ
i +

N∑
j=1�=i

λj (wj τji)
1−σ

⎞
⎠

and taking the derivative:

(1 − σ)
dgi

gi

=
d

(
λiw

1−σ
i + ∑N

j=1�=i λj (wj τji)
1−σ

)

λiw
1−σ
i + ∑N

j=1�=i λj (wj τji)1−σ
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The denominator of the right-hand side is g1−σ
i , which can be brought to the left

side:

(1 − σ)
dgi

gσ
i

= d

⎛
⎝λiw

1−σ
i +

N∑
j=1�=i

λj (wj τji)
1−σ

⎞
⎠ .

Totally differentiating the right-hand side, we arrive at Eq. 12:

(1 − σ)
dgi

gσ
i

= w1−σ
i dλi + (1 − σ)λiw

−σ
i dwi+

+ ∑N
j=1�=i

(
(wj τji)

1−σ dλj + (1 − σ)λj τ
1−σ
ji w−σ

j dwj

)
,

Appendix D: Wage Derivative

Raising wage Eq. 4 to σ yields:

wσ
i = yig

σ−1
i +

N∑
j=1�=i

yj g
σ−1
j τ 1−σ

ij ,

Taking logs:

σ ln wi = ln

⎛
⎝yig

σ−1
i +

N∑
j=1�=i

yj g
σ−1
j τ 1−σ

ij

⎞
⎠ ,

and taking derivatives:

σ
dwi

wi

=
d

(
yig

σ−1
i + ∑N

j=1�=i yj g
σ−1
j τ 1−σ

ij

)

yig
σ−1
i + ∑N

j=1�=i yj g
σ−1
j τ 1−σ

ij

.

The denominator of the right-hand side is wσ
i , so it can be brought to the left side:

σ
dwi

w1−σ
i

= d

⎛
⎝yig

σ−1
i +

N∑
j=1�=i

yj g
σ−1
j τ 1−σ

ij

⎞
⎠

Totally differentiating the right-hand side, we get Eq. 13:

σ
dwi

w1−σ
i

= gσ−1
i dyi + (σ − 1)yiσ

σ−2
i dgi

+ ∑N
j=1�=i

(
gσ−1

j τ 1−σ
ij dyj + (σ − 1)yj τ

1−σ
ij gσ−2

j dgj

)
,

Appendix E: Real Wage Derivative

Totally differentiating Eq. 5 yields:

dωi = g
−μ
i dwi − μwig

−μ−1
i dgi .
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Multiplying both sides by g
μ
i :

g
μ
i dωi = dwi − μwig

−1
i dgi,

results in Eq. 14

g
μ
i dωi = dwi − μwi

dgi

gi

.
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