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Light-shift-induced behaviors observed in momentum-space quantum walks
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Over the last decade there have been many advances in studies of quantum walks (QWs) including a
momentum-space QW recently realized in our spinor Bose-Einstein condensate system. This QW possessed
behaviors that generally agreed with theoretical predictions; however, it also showed momentum distributions
that were not adequately explained by the theory. We present a theoretical model which proves that the coherent
dynamics of the spinor condensate is sufficient to explain the experimental data without invoking the presence
of a thermal cloud of atoms as in the original theory. Our numerical findings are supported by an analytical
prediction for the momentum distributions in the limit of zero-temperature condensates. This current model
provides more complete explanations to the momentum-space QWs that can be applied to study quantum search
algorithms and topological phases in Floquet-driven systems.
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I. INTRODUCTION

Quantum walks (QWs) have been under intensive inves-
tigation over the last two decades since they can outrun
classical algorithms for many practical problems [1–3]. For
example, the Grover search algorithm may be viewed as a
quantum walk algorithm [2]. Due to quantum interference
of various passes during quantum walks, they exhibit quite
different features when compared to their classical counterpart
for which, in contrast, randomness and stochasticity play a
crucial role [1]. Similar to classical random walks there are
essentially two types of quantum analogs: discrete-time and
continuous-time quantum walks. In contrast to the latter, an
additional coin degree of freedom characterizes the former,
where the state of the coin determines the walker’s direction
in the next step.

We apply a theoretical model to the discrete-time quantum
walk implemented in our previous works [4–6] with spinor
Bose-Einstein condensates (BECs), consisting of 87Rb atoms
with an internal spin- 1

2 degree of freedom. In contrast to most
other experimental realizations [7–23], this QW occurs in
quantized momentum space due to time-periodic kicks ap-
plied to the condensate. The experiments in Refs. [4–6] used
the two ground-state Zeeman sublevels |F = 1, mF = 0〉 and
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|F = 2, mF = 0〉 of a Rubidium BEC to form an effective
spin- 1

2 system. The BEC is periodically subjected to pulses
of standing-wave light generated by a laser tuned between the
two ground states and a third excited level. The underlying
description is that of the atom-optics kicked rotor (AOKR) as
described in Refs. [24,25], whose Hamiltonian is

Ĥ = 1

2
p̂2 + kcos(θ̂ )

∞∑
j=−∞

δ(t − jτ ). (1)

Here, p̂ and θ̂ represent the momentum and (angular) position
operators, respectively, while k is the strength of the laser kick
and τ the time delay between consecutive pulses. Since the
experiment is performed in a periodic lattice potential, we
resort to Bloch’s theorem to arrive at the angle description
above. This necessitates the introduction of a dimensionless
quasimomentum β ∈ [0, 1). The width of the Gaussian-like
quasimomentum distribution is experimentally given by the
initial temperature of the BEC, where, e.g., a BEC at zero
temperature would correspond to a fully resonant system with
β = 0 for all atoms. The typical value of the width of the β

distribution in our experimental system is of the order of a few
percent in the Brillouin zone, i.e., βFWHM ≈ 0.025.

The evolution during one period τ is then described by the
following Floquet operator:

Û = Ûf Ûk = e−iτ p̂2

2 e−iσ̂zk cos(θ̂ ), (2)
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which factorizes into a free evolution Ûf and kick operator
Ûk. Since p = n + β, with integer (quantized angula) mo-
menta n, the free evolution equals the identity in quantum
resonance conditions, i.e., for an evolution corresponding to
a full Talbot time τ = 4π and β = 0. Under these resonance
conditions, the atoms move ballistically in momentum space,
i.e., their momenta increase linearly with the number of ap-
plied kicks [25,26].

Because the kicking laser is detuned exactly between the
two internal ground states [4,6], the potential felt by the two
states is identical in size but opposite in sign, which reflects
the σ̂z Pauli matrix. The latter fact models a quantum walk
whose direction in each step depends on the internal coin
state. There is an important difference between our AOKR
quantum walk and an ideal quantum walk as defined, e.g.,
in Ref. [1]. In the latter at any step of the walk a certain
position of the walker only couples to the nearest-neighbor
positions, while in the AOKR quantum walks the coupling to
other momentum classes is given by matrix elements which
are Bessel functions of the first kind [6]. A priori, both internal
states would see the same evolution due to the kicks, i.e., they
would move symmetrically under the AOKR evolution. To
break this symmetry in the coupling, we use a ratchet effect
imposed by an appropriate choice of the initial condition in
the walker’s space. Those ratchet states are a superposition
of at least two neighboring momenta with a relative phase of
eiπ/2, i.e.,

|ψR〉 = 1√
S

∑
s

eisπ/2 |n = s〉 , (3)

where S is the total number of involved momentum classes de-
noted by s. Such initial states can be generated experimentally
via Bragg pulses [27,28]. The mean momentum transfer to
individual states depends on the sign of the kicking potential
that is different for the two internal states, as shown by Ûk

in Eq. (2) [25,29,30]. It turns out to be of crucial importance
that for larger number S in Eq. (3) less dispersion occurs in
the directed kicking [27,28]. Hence, the best correspondence
to an ideal quantum walk is found for large S � 3, while for
S = 2 differences from ideal walks are visible in the central
part of the walker’s probability distribution [31].

The coin operator is realized by a Rabi coupling between
the two internal states of the atoms. This coupling is medi-
ated by resonant microwave (MW) pulses, inducing a unitary
rotation on the Bloch sphere given by

M̂(α, χ ) =
(

cos
(

α
2

)
e−iχ sin

(
α
2

)
−eiχ sin

(
α
2

)
cos

(
α
2

)
)

, (4)

where α and χ are real angles. An additional σ̂z rotation is
implementable by an accessible third angle that was not con-
sidered in Refs. [4,6,31] and will also not be considered in this
paper. The experimental QWs in Ref. [4–6] were described by
the following sequence of unitary operations:

Û j
step = [ÛŶ ] jÛŴ , (5)

realizing j ∈ N steps of the walk applied to an initial state
expressed by Eq. (3). Here

Ŵ = M̂
(π

2
, 0

)
= 1√

2

(
1 1

−1 1

)
(6)

and

Ŷ = M̂
(π

2
,−π

2

)
= 1√

2

(
1 i
i 1

)
(7)

are two different coins that initialize and execute the walk, re-
spectively. It is important that the two coins must be different
in order to guarantee a symmetric evolution of the walker (see
Ref. [1]). The kick strength on the order of k ≈ 1.5 proves
to resemble well an ideal walk with only nearest neighbor
couplings [4–6,31]. For example, the experiments reported
in Refs. [4–6] used k = 1.2, k = 1.45, and k = 1.8. After j
steps, the momentum distribution of both internal states is
measured using the standard absorption imaging procedure
to yield the final observable P(n, j) = P|1〉(n, j) + P|2〉(n, j).
Note that all the experimental realizations so far implemented
walks with only S = 2, e.g., an initial ratchet state of the form

|ψR〉 = 1√
2

(|n = 0〉 + i |n = 1〉). (8)

Numerical simulations of the walk given by Eq. (5) showed
a good resemblance to the ideal quantum walk [31], with
ballistically moving side peaks and little probability at the
center around n = 0. However, the experiments observed a
large nonvanishing part of the momentum distribution that
stayed close to n = 0 throughout the entire evolution of up to
j = 15 steps [4–6]. This observation was initially explained
in Ref. [4] by a rather large residual thermal atomic cloud
that would make up about 10% to 15% of all the measured
atoms. A thermal cloud would correspond to much hotter
atoms uniformly distributed across the entire Brillouin zone
β ∈ [0, 1). All nonresonant quasimomenta (β �= 0) essentially
do not respond to the kicks and hence will move little and
not contribute at all to the expected ballistic flanks in the
distribution. In this paper we suggest a more complete the-
oretical interpretation of the experimental data, not involving
a thermal cloud but based on the concurrence of a sequence
of effects that resulted in a deviation of the experimentally
measured walks from the theoretical expectation. These ef-
fects include a different choice of the phase angle χ in Eq. (4)
and the specific form of the ratchet initial state in Eq. (8), both
reflecting the fact that we are dealing with an AOKR quantum
walk. Note that residual peaks at low momenta observed in the
AOKR quantum walk would not appear in an ideal quantum
walk.

II. THEORETICAL MODEL

A. Theory of the light shift

The physical explanation is based on the additional light
shift that starts playing a role in the spinor AOKR, described
in detail in Refs. [32,33]. For clarity of the argument, we shall
briefly present its origin here.

During a kick, the dynamics of the standard AOKR are
described by interaction terms between the ground and excited
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state of the form

Ĥint = �

2
|g〉〈e| cos

(
θ̂

2

)
ei�t + H.c., (9)

where � is the detuning and � the Rabi frequency of the laser.
The effective dynamics obtained after adiabatically elimi-

nating the excited state are described by an AC-Stark shift of
the ground states |g〉 from the coherent drive of the kicking
laser, i.e.,

Ĥeff = �2

8�
|g〉〈g|(cos(θ̂ ) + 1), (10)

where we used cos2 θ
2 = 1

2 (cos θ + 1) and the rate corre-
sponds to the kick strength before the time integration over
the duration of the kick pulse τp, e.g. k = �2

8�
τp.

In the standard AOKR this constant offset (term with no
cos θ -dependence) can be disregarded as there is only a single
level. In our spinor AOKR, after the adiabatic elimination of
the excited state, two ground states remain, each with such
an AC-Stark shift (of opposite sign due to opposite detuning).
Transitions between the two ground states can get discarded
in rotating wave approximation. Thus, we are left with

Ĥeff = �2

8�
σ̂z(cos(θ̂ ) + 1), (11)

and effectively we have an additional energy difference or
light shift between the two ground states which can no longer
be discarded.

B. Light-shift compensation in the experiment

As just introduced and shown in full detail in Refs. [32,33],
the Hamiltonian for an AOKR with two different internal
states contains an additional constant AC-Stark shift [34]
between the two energy levels. Comparing the physically
effectively implemented Hamiltonian from Eq. (11) with the
QKR-Hamiltonian from Eq. (1), this light shift induces a
phase whenever a kick is applied, giving an effective kick of
the form

Ûk,eff = e−iσ̂zk(1+cos(θ̂ )). (12)

This means that there is a relative phase of 2k for each
application of the kick operator, i.e., for each step of the
walk. This light-shift phase needs to be compensated in the
experiment since it would lead to a different evolution with
respect to the theoretical prediction [note that the new terms
in Eq. (12) would adversely affect the phase evolution in the
internal degree of freedom changing the overall interference
pattern]. A compensation with a σ̂z phase gate with a third
Bloch angle γ = k by an additional MW pulse would be
possible. The experiments reported in Refs. [4–6], however,
used the phase χ of Eq. (4) as a free parameter in order to
best compensate the light shift phase. Several runs were made
for various choices of χ and finally the value, with which the
walk was most symmetric around n = 0, was used in all other
experiments in Refs. [4–6]. The absolute value of χ as well
as a possibly present third Bloch angle γ were under limited
experimental control, and the aforementioned compensation
procedure seemed to make this fact irrelevant.

The experiments may have, for instance, easily exchanged
the coin Ŷ by the coin ĜH in the walk, effectively resulting in
a new sequence, e.g.,

Û j
step = [ÛĜH] jÛŶ , (13)

The Ŷ and ĜH curves in Fig. 1(a) show that such an exchange
of the two coins indeed has dramatic effects on the quality of
the walk. The operator ĜH is the Hadamard gate defined as [6]

ĜH = 1√
2

(
1 1
1 −1

)
. (14)

While momentum distributions of the QWs represented by
Eqs. (13) and (5) are mirror symmetric around n = 0 since
both coins are perfectly balanced (all giving unbiased walks),
the actual final distributions look very different. Assuming
that only a MW pulse expressed by Eq. (4) was applied as
stated in Refs. [4–6] with α = π/2 fixed, the combined effect
of a MW pulse and the light shift could have been of the form

M̂
(π

2
, χ

)
e−ikσ̂z = 1√

2

(
e−ik e−i(χ+k)

−ei(χ−k) eik

)
(15)

= e−ik

√
2

(
1 e−i(χ−2k)

−eiχ ei2k

)
. (16)

In the last step we extracted a global phase e−ik that is not
important for the following discussion. Generally, the phase
χ cannot fully remove the effect of the light shift phase here.
The quantum walk can, however, still be made symmetric
around n = 0 by the choice χ = 2k = π mod (2π ), which
would yield an effective MW operation. Hence, the afore-
mentioned swapping of the two different coin operators could
have occurred in the experiments. For example, with a kick
strength of k ≈ 1.5 the light shift phase gives a value close
to 2k ≈ π [see Eq. (7)]. Small deviations from the condition
for 1.2 < k < 1.8 appear not to change the global picture, as
will be later shown in more detail in Sec. II F. In that sense,
the light-shift and its experimentally incomplete compensa-
tion is the physical reasoning for the potentially implemented
sequence from Eq. (13).

C. Alternative MW pulse: Hadamard gate

We have just seen that the actually implemented MW
pulses in the experiment may be close to Hadamard gates ĜH.
In contrast to the original Ŵ pulses, ĜH pulses have the minus
sign on the diagonal. Both pulses, however, are completely un-
biased leading to walks with sidepeaks moving symmetrically
outwards in a ballistic manner. We find that the difference
in the signs of Ŵ and ĜH matrix elements has no conse-
quence for an ideal quantum walk with just nearest-neighbor
couplings. For our AOKR walks, however, the different sign
induces significantly different behavior. Figure 1(a) shows
a numerical example derived for a perfectly resonant walk
(β = 0). Our simulation results for the here proposed QW
[see Eq. (13)] clearly indicate that the bulk of its momentum
distributions has a larger probability to remain in the center
(n = 0), as shown by the black curve in Fig. 1(a).
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FIG. 1. The walker’s distributions are shown after j = 20 steps for an AOKR discrete-time quantum walk. The kick strength is set at
the experimental value k = 1.45. In (a) different walk protocols are shown. The distributions are computed by evolving the initial state in
momentum space given by Eq. (8). The label Ŷ resembles the walk that is initialized by Ŵ and the evolution is executed with the Ŷ coin. Ŵ
and ĜH are initialized by the Ŷ coin and then their respective walk is executed by Ŵ or ĜH. Ŷ and Ŵ produce the same momentum distributions
for all times. The AOKR walks in (b) are implemented by the Ŷ coin and executed by the ĜH coin. The different labels denote the momentum
classes included in the initial state, as denoted by s in Eq. (3). The broader the initial state is in momentum space, the more the peak in the
central region vanishes. One should remember that only the state expressed by Eq. (8) (solid black line) was experimentally implemented in
Refs. [4–6].

D. Initial-state dependence

As described previously, an important difference between
an ideal quantum walk and the AOKR walks discussed in this
paper are the initial states in the walker’s space [4]. The initial
state experimentally implemented was expressed by Eq. (8)
with two involved momenta. As described in Refs. [27–30],
the state is constructed to be concentrated in position space
at the rising (falling) flanks of the potential where the force
impulse towards the left (right) is maximal. It is exactly this
effect that leads to directed ratchetlike motion. The more
momentum states that are included in the initial state, the
more densely peaked is the wave function in position (angle)
space. For a highly dense wave function in position space, the
directed motion works with minimal dispersion. This disper-
sion is a specific problem in our AOKR walk with respect to
an ideal quantum walk. Hence, it is indeed not too surprising
that the AOKR QWs become more similar to ideal QWs when
using “better” ratchet initial states. This is seen in Fig. 1(b) for
the walk with the new Hadamard coin ĜH during the evolution
steps. The artificial clumping at the center of the momentum
distributions disappears when more momentum classes are
included in the initial states [see Fig. 1(b)].

It is known that an ideal quantum walk does not display a
central peak from the start, independently of the initial state
(see Ref. [1]). The consequence is that an ideal walk does not
display any difference between the various implementations
using the different balanced coins described above. In the
end, the dominant central peak, displayed when using the ĜH

coin, can be seen as an artifact from AOKR realization when
using the simplest initial state. This central peak disappears
when adding more momentum classes to the initial state [see
Fig. 1(b)]. This provides a clear prediction that could easily
be checked in future experiments.

In other words, the experimentally observed residual cen-
tral peak is actually a relic of the AOKR dynamics. This
behavior is expected when in the walk protocol due to light

shift effects the effectively implemented coin during the walk
is ĜH and not Ŷ , as initially intended. Even when this is the
case, the central peak is only visible for an initial ratchet state
sufficiently narrow in momentum space.

E. Analytic solution

A comparison between the numerical implementation of
the walk given by Eq. (13) and the corresponding analytical
solution derived from Eq. (17) is shown in Fig. 2. The full
calculation for the analytical expression is somewhat lengthy
and reveals little insight as it closely follows Refs. [32,33].
Therefore, we only present here the final result for the momen-
tum distributions, while the calculation in full detail can be
found in the Supplemental Material [35]. The final momentum

FIG. 2. Comparison between numerical implementation of the
walk and its analytical solution, as derived from Eq. (17). As ex-
emplary cases we show the final momentum distributions for j = 15
and j = 25 steps, with a kick strength k = 1.45. The initial state in
momentum space is given by Eq. (8).
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distribution is

P(n, j) = P|1〉(n, j) + P|2〉(n, j) = 1

2 j+1S

⎡
⎣(

N∑
l=0

∑
s

al,1(−1)sJ(n−s)((N − 2l − 1)k)

)2

+
(

N∑
l=0

∑
s

al,2(−1)sJ(n−s)((N − 2l + 1)k)

)2

+
(

N∑
l=0

∑
s

al,1(−1)sJ(n−s)( − (N − 2l − 1)k)

)2

+
(

N∑
l=0

∑
s

al,2(−1)sJ(n−s)( − (N − 2l + 1)k)

)2
⎤
⎦. (17)

Here Jα (x) are Bessel functions of the first kind and the coefficients al,1/2 are given by

al,1 = 1

2N

N/2∑
u=0

l∑
m=0

((
N

2u

)
−

(
N

2u + 1

))(
u

m

)(
N − 2m

l − m

)
(−1)N−l+m 8m

+ 1

2N
2

N/2∑
u=0

l−1∑
m=0

(
N

2u + 1

)(
u

m

)(
N − 2m − 1

l − m − 1

)
(−1)N−l+m 8m

− 1

2N
2

N/2∑
u=0

l∑
m=0

(
N

2u + 1

)(
u

m

)(
N − 2m − 1

l − m

)
(−1)N−l+m 8m (18)

and

al,2 = 1

2N

N/2∑
u=0

l∑
m=0

(
N + 1

2u + 1

)(
u

m

)(
N − 2m

l − m

)
(−1)−l+m8m, (19)

with N ≡ j − 1. The sum over s in Eq. (17) denotes the sum
over the involved momentum classes in the initial state given
by Eq. (3). Note that the momentum distribution is found to
be of the same analytical form as those discussed in Ref. [33].
The coefficients only differ from previous results by a factor
(−1)−l within the sums. These additional factors change the
interference patterns in such a way that the different walk pro-
tocols, as discussed in Sec. II C, lead to different momentum
distributions. Since the result above is valid for an arbitrary
number of walk steps, we arrived at a full understanding of
the two different QWs with the two coins Ŷ and Ŵ (or rather
ĜH) interchanged.

F. Comparison between theoretical explanations

We have put forward an alternative way of understanding
the central peaks around zero momentum in the experimental
implementations of the AOKR quantum walks. To simulate
experimental systems, we must include the finite width in the
initial quasimomentum distribution of the spinor BECs men-
tioned in Sec. I. This is best done numerically by averaging
over a reasonable ensemble of quasimomenta β [33]. Nonres-
onant β induces a phase scrambling [25,26], making the walks
less ballistic with the effect of reducing the population in the
ballistically moving side peaks. The value of β, drawn from a
Gaussian distribution of a certain width βFWHM, was estimated
in the experiments as βFWHM ≈ 0.025 (see Refs. [4,6]). The
numerical walks are obtained as an average over 1000 real-
izations, with each realization involving a value of β being
randomly drawn from the corresponding Gaussian.

In the left panels of Fig. 3, the walks are implemented by
the ĜH coin, while the right panels feature the implementation

of Eq. (16). In other words, while the left panels show the
walk that we argue to be responsible for the experimentally
observed momentum distributions, the right panels show the-
oretical predictions using experimental parameters based on
the originally proposed Ŵ coin and an incorrectly chosen
compensation phase [see Eq. (16)] with χ = π and k = 1.45.
As anticipated in Sec. II B, the latter two protocols given by
Eqs. (13) and (16) essentially lead to the same momentum dis-
tributions for all choices of βFWHM = 0 in Figs. 3(a) and 3(b),
βFWHM = 0.01 in Figs. 3(c) and 3(d), and βFWHM = 0.025 in
Figs. 3(e) and 3(f). With increasing βFWHM, the side peaks
and the central regions become less and less distinct and the
ballistic side peaks tend to fade out.

Similar behavior is seen in our experimental data [4–6].
Figure 4(a) shows a typical experimental result adapted from
Ref. [4]. We find good theory-experiment agreements by com-
paring Fig. 4(a) with Fig. 4(b) that shows the predictions of
our current model [see Eq. (13)]. First, we observe in both
Figs. 4(a) and 4(b) a central part that does not evolve far away
from the origin and the two side peaks that evolve ballistically
away from their initial position in momentum space. Second,
the observed and predicted rates of the spread of these side
peaks in momentum space with increasing number of steps ap-
pear comparable. Our current interpretation shown in Fig. 4(b)
would also be in reasonable agreement with the originally
guessed temperature of the BEC with βFWHM ≈ 0.025, when
the fading of the side peaks is considered. Figure 4(c) shows
momentum distributions of the QW given by the previous
theoretical model [see Eq. (5)] after a residual thermal cloud
of atoms is added into the BECs.

The thermal cloud was originally assumed as a possible
solution for the appearance of the prominent central region.
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FIG. 3. Numerical simulations of AOKR quantum walks with
k = 1.45 and different quasimomentum distributions with βFWHM =
0 (a,b), βFWHM = 0.01 (c,d), and βFWHM = 0.025 (e,f), all averaged
over 1000 values of β. Left panels: implemented with the ĜH coin.
Right panels: executed with Eq. (16) at χ = π . It can be seen that
despite the small deviations, as discussed in Sec. II B, both protocols
essentially follow the same behavior, making both likely to corre-
spond to the actual experimental data.

Thermal atoms essentially will not follow the kicking evo-
lution [25,26] and hence remain close to the center. The
experimentally intended Ŷ protocol does not display this be-
havior, as can be seen from Fig. 1. However, the QWs shown
in Fig. 4(c) appear to be different from our experimental
observations, i.e., the predicted QWs lack the significantly
contributing central region and the structures of the side peaks
are of a quite different shape.

The mean energies of the present and original theoretical
models were calculated and plotted as a function of time in
Fig. 5 for comparison. It can be seen that the energy using
ĜH coin increases faster than that of the previous model. The
increase in mean energy for the Ŷ coin has a linear form, while
the ĜH coin increases more quadratically. Note that quantum
resonant AOKR walks possess a quadratic increase in mean
energy, corresponding to a ballistic motion in momentum
space. In the presence of a strong off-resonant β distribution

FIG. 4. AOKR quantum walks with k = 1.45. (a) Experimental
data adapted from Ref. [4]. (b) Numerical simulation derived from
our current theoretical model [see Eq. (13)] with βFWHM = 0.025
and using initial Ŷ rotation and ĜH coins. (c) Numerical simulation
derived from the previous theoretical model [see Eq. (5)] by adding
a cloud of thermal atoms to the BEC part (see text).
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FIG. 5. Comparison between the mean kinetic energies calcu-
lated from the walks seen in Fig. 4 with βFWHM = 0.025. The energy,
Eexp, is extracted from the experimental walk data from Fig. 4(a).
EĜH

and EŶ denote the mean energy for the walk executed by the
ĜH coin [Fig. 4(b)] and the Ŷ coin [Fig. 4(c)], respectively. The inset
shows the energies on a double logarithmic scale with power-law
exponents extracted by the fits (solid lines), giving 1.8 ± 0.2 for
the experimental data and 1.7 ± 0.1 (EĜH

) and 1.3 ± 0.1 (EŶ ) for
the two theoretical models. The apparent better agreement between
the fits for Eexp and EĜH

confirms the better scaling of the model.
The asymptotic exponent of 2 expected for a ballistic walk is hardly
reached for quantum walks with just 15 steps.

like the residual thermal cloud from the original theory, the
energy increases only linearly [25,26]. The data shown for
a small number of up to 15 steps maximum show that the
asymptotic regimes are rarely met.

The mean energy extracted from experimental data pre-
sented in Fig. 4(a) is also plotted in Fig. 5. The experimentally
obtained energy increases with more quadratic than linear
behavior, which is more consistent with current theory and
contradicts the presence of a thermal cloud as originally hy-
pothesized. The comparison is yet more complicated since the
experimental suffered from a series of well-known issues; see
Ref. [6]. The effect most relevant in our context is the fad-
ing out of the ballistic peaks in the experimental momentum
distributions due to atom number fluctuations and small atom
losses. Each time slice is obtained from a new experimental
run, and hence also the relative normalization of the atomic
density might be an issue. All this may have consequences on

the second moment of the distribution that is proportional to
the energy plotted in Fig. 5. Counting less in the tails of the
distribution typically leads to an underestimation of the mean
energy [26].

In the Supplemental Material [35], we also show fur-
ther comparisons between our current theoretical model [see
Eq. (13)] and the previous experimental data, in particular
similar plots as in Fig. 4 for other values of the kick strength
and a more direct matching of the momentum distributions for
a specific case.

III. CONCLUSION

We have introduced a more complete theoretical explana-
tion for the peculiar behavior observed in the discrete-time
quantum walks implemented with the AOKR platform in
Refs. [4–6]. We argue that the coin operations acting on the
internal states of the atoms may have been different from the
original proposal discussed in [31]. This difference, induced
by the experimental calibration of the coin parameters to-
gether with an additional AC-Stark shift present in the setup,
may have led to less efficient quantum walks with a large
population remaining close to the starting site of the walker.
Our hypothesis may be checked in future experiments by
either controlling much better the MW phases at compensated
light shift or using ratchet states with less dispersion [28] as
initial states for the walks.

The understanding of the experimental results is of im-
portance for further applications of walks realized with the
AOKR platform. Our analysis implies that the realized walks
may have had a higher quality than expected in the following
manner: the central population seemingly not participating in
the walker’s evolution is actually an artificial interference ef-
fect induced by a nonoptimal coin and therefore an ingredient
of the system itself. This effect makes the AOKR platform
look even better for the quantum simulation of nontrivial
walks and the investigation of applications such as quantum
search algorithms [36] or of topological phases in Floquet-
driven systems [37].
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