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ABSTRACT
As part of the cosmology analysis using Type Ia Supernovae (SN Ia) in the Dark Energy Survey (DES), we present photometrically 
identified SN Ia samples using multi-band light-curves and host galaxy redshifts. For this analysis, we use the photometric 
classification framework SuperNNova trained on realistic DES-like simulations. For reliable classification, we process the DES 
SN programme (DES-SN) data and introduce improvements to the classifier architecture, obtaining classification accuracies of 
more than 98 per cent on simulations. This is the first SN classification to make use of ensemble methods, resulting in more 
robust samples. Using photometry, host galaxy redshifts, and a classification probability requirement, we identify 1,863 SNe Ia 
from which we select 1,484 cosmology-grade SNe Ia spanning the redshift range of 0.07 < � < 1.14. We find good agreement 
between the light-curve properties of the photometrically-selected sample and simulations. Additionally, we create similar SN Ia 
samples using two types of Bayesian Neural Network classifiers that provide uncertainties on the classification probabilities. We 
test the feasibility of using these uncertainties as indicators for out-of-distribution candidates and model confidence. Finally, we 
discuss the implications of photometric samples and classification methods for future surveys such as Vera C. Rubin Observatory 
Legacy Survey of Space and Time (LSST). 
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1 INTRODUCTION 2020). Photometric classification will be particularly crucial for the 
upcoming Legacy Survey of Space and Time (LSST) at the Vera C. 

To fully exploit the power of current and future time-domain surveys, Rubin Observatory, which is expected to discover up to 107 SNe over 
it is necessary to classify astrophysical objects using only photometry. the next decade (LSST Science Collaboration et al. 2009).
Surveys such as the Supernova Legacy Survey (SNLS), Sloan Digi-
tal Sky Survey (SDSS) SN Survey (SDSS-II), Pan-STARRS (PS1), The Dark Energy Survey Supernova programme (DES-SN) ob-
and the Dark Energy Survey (DES) have discovered thousands of tained photometry of more than 30, 000 candidate SNe over its five 
supernovae (SNe) but the majority have not been spectroscopically years of operation. These include thousands of high-redshift SNe Ia, 
classified (Astier et al. 2006; Frieman et al. 2008; Sako et al. 2018; of which only several hundred have been spectroscopically classified. 
Rest et al. 2014; Foley et al. 2018; Bernstein et al. 2012; Smith et al. The first three years of the DES-SN detected and spectroscopically 

classified 251 SNe Ia (Smith et al. 2020). Together with low redshift 
SNe from the Harvard-Smithsonian Center for Astrophysics surveys 

★ E-mail: amoller@swin.edu.au (CfA3, CfA4; Hicken et al. 2009, 2012) and the Carnegie Supernova 
† Author affiliations are shown in Appendix C Project (CSP; Contreras et al. 2010; Stritzinger et al. 2011), these SNe 
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were used to constrain cosmological parameters (Dark Energy Sur-
vey 2019). The DES-SN candidate sample also contains other types 
of transients that have been used for astrophysical and cosmological 
studies: core-collapse SNe (de Jaeger et al. 2020), superluminous 
SNe (SLSNe; Smith et al. 2018; Angus et al. 2019; Inserra et al. 
2021), rapidly evolving transients (Wiseman et al. 2020b; Pursiainen 
et al. 2018) and ‘peculiar’ events (Gutiérrez et al. 2020; Grayling 
et al. 2021). 

To classify SNe without spectroscopy, a number of methods have 
been developed to classify them using their light-curves, i.e., their ob-
served brightness evolution in different filters. Due to their cosmolog-
ical use, much work has focused on disentangling SNe Ia from other 
SN types. The majority have been trained and tested on simulations, 
with only a handful applied to large SN surveys (Sako et al. 2011; 
Möller et al. 2016; Muthukrishna et al. 2019; Möller & de Boissière 
2019; Villar et al. 2019, 2020). Several photometric classifiers have 
been developed and incorporated into the SNIa-cosmology analysis 
pipeline pippin (Hinton & Brout 2020), including snirf (based on 
the architecture developed by Dai et al. 2018), SuperNNova (Möller 
& de Boissière 2019) and scone (Qu et al. 2021). 

In this work, we use the non-parametric framework SuperNNova 
(SNN; Möller & de Boissière 2019) to obtain photometrically clas-
sified SN Ia samples from DES-SN. SNN has several strengths it: (i) 
requires only photometric information (fluxes and time) for classi-
fication, (ii) does not rely on the extraction of features, (iii) can be 
trained to classify any type of transient event, (iv) can use redshifts to 
improve accuracy, (v) has been thoroughly tested using simulations, 
(vi) includes algorithms that assign uncertainties to classification 
probabilities such as Bayesian Neural Networks (BNNs), and (vii) is 
already being applied to real survey data, including early light-curve 
classification in alert streams (Fink broker; Möller et al. 2021). 

Photometrically classified SN Ia samples have started to be used in 
cosmology. First constraints on the cosmic expansion using data from 
SDSS-II and PS1 have shown the feasibility of using these samples 
for cosmology and their competitive constraining power on the Dark 
Energy (Sako et al. 2011; Hlozek et al. 2012; Campbell et al. 2013; 
Jones et al. 2017, 2018). Most of these results use the Bayesian 
Estimation Applied to Multiple Species method (BEAMS; Kunz 
et al. 2007) and its extension ‘BEAMS with Bias Corrections’ (BBC; 
Kessler & Scolnic 2017). These methods incorporate classification 
probabilities of SNe Ia into the analysis, thus requiring accurate 
classification probabilities. Recent work estimates the contamination 
for cosmological constraints in the DES-SN sample using SNN at 
less than 1.4 per cent (Vincenzi et al. 2021). Aside from cosmology, 
photometrically classified samples with SNN have also been used to 
study SN Ia rates (Wiseman et al. 2021). 

This paper is organised as follows: We introduce the DES survey 
and DES-SN candidate sample in Section 2. In Section 3 we present 
pre-processing needed for accurate classification, SuperNNova, re-
alistic simulations, training and classification mechanisms and their 
metrics. In Section 4 we select photometrically classified SNe Ia 
using host galaxy redshift information together with multi-band pho-
tometry. We explore the use of BNNs for classification in Section 5. 
Finally, in Section 6, we discuss our results and their implications for 
future surveys such as LSST. 

2 DES-SN 5-YEAR

The Dark Energy Survey (DES) was a 6-year photometric survey 
that used the Dark Energy Camera (DECam; Flaugher et al. 2015) 
on the Victor M. Blanco telescope in Chile to survey 5000 deg2 of 

the southern hemisphere. For time-domain science, DES imaged ten 
3-deg2 in the ���� filters during the first five years (Abbott et al. 
2018). Eight of these ten fields (X1, X2, E1, E2, C1, C2, S1, and 
S2) were observed to a single-visit depth of � ≈ 23.5 mag (‘shallow 
fields’), and the other two ‘deep fields’ (X3,C3) were observed to a 
depth of � ≈ 24.5 mag. 

2.1 DES-SN candidate sample

Transients were identified using the DES Difference Imaging Pipeline 
diffimg (Kessler et al. 2015) coupled with a machine learning algo-
rithm (Goldstein et al. 2015) to reduce artefacts. A candidate SN is 
defined from the difference image measurements by requiring at least 
two detections with a signal-to-noise ratio (SNR) larger than five in 
any filter. This criteria is designed to remove artefacts and asteroids. 

Each DES-SN candidate was originally associated with a host 
galaxy using the shallower SVA survey, created from DES Science 
Verification data. For the DES-SN analysis, we use deep co-adds 
in Wiseman et al. (2020a). The major source of host galaxy red-
shift information was the Australian Dark Energy Survey (OzDES) 
programme obtaining spectra with the 2dF fibre positioner and 
AAOmega spectrograph on the 3.9-m Anglo-Australian Telescope 
(Yuan et al. 2015; Childress et al. 2017; Lidman et al. 2020). SN 
hosts in OzDES were observed up to a limiting � magnitude of ≈ 24. 
Further details on host galaxy association can be found in Gupta et al. 
(2016); Vincenzi et al. (2020). 

For the 31,636 candidates, 29,113 have an identified host and 
11,350 have a spectroscopic redshift (∼ 30 per cent of the candidates). 

A sub sample of candidates were selected for real-time spectro-
scopic follow-up observations for classification. For the first 3 years 
of the survey,the spectroscopically classified sample is presented in 
Smith et al. (2020). In this work, we use for comparison a preliminary 
spectroscopic sample containing additional classifications from the 
full 5 years of DES-SN. This sample contains 415 spectroscopically 
confirmed SNe Ia (including all 251 spectroscopically classified SNe 
Ia from the DES-SN 3-year analysis), 84 core-collapse SNe, 2 pecu-
liar SNe Ia, 20 SLSNe, 55 AGN, 1 Tidal disruption event (TDE), and 
2 M-stars. We highlight that this spectroscopically classified sample 
is not complete (Kessler et al. 2019b) and does not represents the 
true abundances of different transients in nature. 

In this work we use the fluxes and uncertainties obtained from 
diffimg (Kessler et al. 2015) for the DES-SN candidate sample. 

2.2 Filtering multi-season and other transients

The DES-SN 5 year candidate sample contains not only supernovae 
but also astrophysical events such as fast transients and AGNs. These 
events, called out-of-distribution (OOD) or anomalies, can be hard 
to characterise and thus simulate, therefore photometric classifiers 
are usually not trained to identify them. 

To reject fast, very low SNR transients or transients that have 
a limited photometric sampling (e.g. transients occurring near the 
end or beginning of the observing season), we select only transients 
that have at least 3 nights with a detection that has passed the DES 
Real/Bogus image classifier (Goldstein et al. 2015). 

To reduce the number of slowly-evolving transients that span sev-
eral observing seasons or multi-season candidates (e.g. AGNs) and 
spurious detections we make use of two selection criteria. First, we 
compute the ratio between number of epochs with detections that 
pass the Real/Bogus classifier, and the total number of epochs with 
detections. To reject light-curves with long variability periods, we 
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require this ratio to be the same as in the real-time classification 
pipeline in Smith et al. (2020). Second, we remove artefacts and 
transients that have detections in multiple observing seasons. We 
note that this cut can remove real supernovae, i.e. multiple SNe very 
close-by in the same galaxy, and is not 100% efficient. 

With this filtering, the sample is reduced from 31, 636 to 14, 070 
candidates. This reduces the number of candidates and their contami-
nation; however, some residual AGN and other types of SNe remain. 
We find that this sample includes 405 spectroscopically classified 
SNe Ia (247 of which are in the DES-SN 3yr sample), 83 core-
collapse SNe, 2 peculiar SNe Ia, 19 SLSNe, 37 AGN, 1 TDE and 1 
M-star. 

2.3 Selection Requirements (cuts)

We apply a series of selection cuts on both the quality of the light-
curves and the quality of the redshifts. A thorough review on these 
cuts and their impact on systematics can be found in Vincenzi et al. 
(2021). 

2.3.1 Loose selection cuts 

We select transients that have redshifts obtained from spectra from 
either the SN or its host galaxy (Lidman et al. 2020) using quality 
tags in Vincenzi et al. (2020). In this work, we also include lower 
resolution redshifts from PRIMUS since they are precise enough for 
photometric classification1. After this selection cut we obtain 6,635 
SN candidates. 

Furthermore, we restrict these redshifts to be within the range 
of the SNe Ia expected for DES-SN and thus in our simulations, 
� ∈ [0.05, 1.3]. This cut also removes stars in our catalogues. 

We fit the light-curves using the SALT2 model (Guy et al. 2007). 
We require that: (i) at least two filters have at least one observation 
with SNR larger than 5, (ii) at least one photometric measurement 
before peak brightness �0, and (iii) at least one photometric point ten 
days after peak brightness. 

We select a sample of 2, 381 light-curves that satisfy these sam-
pling criteria and have a SALT2 fit that converges and is within 
SALT2 model boundaries for stretch, �1 ∈ [-4.9, 4.9] and colour 
� ∈ [-0.49, 0.49]. We photometrically classify these candidates in 
the following. This sample contains a subsample of spectroscopi-
cally classified candidates which we will use as a reference: SNe Ia: 
366 (DES-SN 3-year: 228), CC 13, SLSN 2, AGN 3. The SALT2 
parameters (amplitude, stretch, color) are not used by SNN. 

2.3.2 JLA-like cuts 

We will consider an additional set of cuts after photometric classifi-
cation based on the criteria in Vincenzi et al. (2021). They will only 
be applied when specified. 

These cuts are designed to select cosmology-grade SNe Ia and are 
based on those from the Joint Light-curve Analysis: -3.0 < �1 < 3.0, 
-0.3 < � < 0.3, and ��1 < 1 and ��0 < 2 (Betoule et al. 2014). 
Where �, �1, ��0, ��1 are estimated using SALT2 and represent 
colour, stretch and uncertainty on �0 and �1 respectively. These cuts 

1 The redshifts from the PRIsm MUlti-object Survey (PRIMUS) were ob-
tained using the Inamori Magellan Areal Camera and Spectrograph camera 
on the Magellan I Baade 6.5 m telescope (Coil et al. 2011). They are less 
accurate and they have a higher rate of catastrophic failure, thus not suitable 
for cosmological constraints. 

are implemented in SN Ia cosmology analyses to restrict SNIa pa-
rameters to the valid model range, and to reject peculiar SNIa. We 
also use a SALT2 fit probability > 0.001 selection. 

3 PHOTOMETRIC CLASSIFICATION

We use the photometric classification algorithm SuperNNova (SNN) 
to select SN Ia from the DES-SN 5-year candidate sample that pass 
loose selection cuts. We introduce pre-processing necessary for ac-
curate photometric classification of our DES-SN 5-year data (Sec-
tion 3.1). We generate realistic simulations of the DES-SN survey 
to train and test our photometric classification method (Section 3.2) 
and the framework SNN (Section 3.3). We evaluate performance and 
find the best configuration for our framework using small simula-
tions (Section 3.4). We then train optimised models for photometric 
classification of the DES-SN 5-year sample using larger simulations 
(Section 3.5). 

3.1 DES-SN data pre-processing

For accurate photometric classification, the simulations used to train 
the models and the data to be classified should be similar. While light-
curve simulations strive to resemble survey data, pre-processing of 
the survey data is required to assure this. 

First, DES-SN data were taken over five consecutive seasons. Each 
DES season represented about five months of observations per year. 
SNe last only for months, thus are only detected in a subset of this 
photometry. In our simulations (see Section 3.2), supernovae are 
simulated within a rest-frame time span, e.g. -30 days before to 100 
days after peak luminosity. To select an equivalent time window in 
the DES-SN 5-year data, we first obtain an estimated time of peak 
brightness (�0) using the SuperNova ANAlysis software (SNANA; 
Kessler et al. 2009). This �0 estimate is not obtained using SALT2 
(Guy et al. 2007), but instead based on max flux in region of dense 
detections to avoid pathological estimates from a single pathologi-
cal flux in another season. Once the peak has been determined for 
each light-curve, we select and classify photometric points within 
an observed time-window around the light-curve peak of [−30, 100]
days. 

Light-curves may contain photometry that has been flagged as 
flawed. We require that SNN discard photometry that is not reli-
able using the bitmap flag provided by Source Extractor (Bertin 
& Arnouts 1996) and diffimg (Kessler et al. 2015). These photo-
metric outliers are not present in the simulations used to train our 
photometric classifier. This is in particular important when using 
normalisation schemes, which will be introduced in Section 3.3.1, 
since they use maximum fluxes to normalise the light-curves. If that 
maximum flux comes from a bad photometric point, the light-curve 
will be distorted and therefore classification will not be accurate. 
This photometry quality criteria reduces the number of photometric 
measurements by 6% but keeps the number of transients unchanged. 

3.2 Simulations of the DES-SN survey

SNN is used with simulations from the supernova analysis software 
(snana Kessler et al. 2009) and within the pippin orchestration frame-
work (Hinton & Brout 2020). The simulations incorporate informa-
tion from DES-SN observations (PSF, sky noise, zero point), with 
detection efficiencies vs. SNR estimated on fake SNe that were over-
laid on images and processed with diffimg. Simulations include SNe 
that have partial light-curves due to season boundaries or observing 
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Table 1. Simulations used for training and testing SNN . Columns indicate 
simulation name, approximate number of light-curves generated and number 
of light-curves when balancing simulations to have the same number of 
normal Type Ia and other SNe. 

Simulation 
name 

Number of 
light-curves (106) 

Balanced number of 
light-curves (106) 

TRAIN-SIM 
S-TRAIN-SIM 
TEST-SIM 

4.5 
2.0 
0.8 

3.63 
1.4 

Not applicable 

gaps imitating realistic weather conditions. Detailed information on 
the inputs necessary to obtain realistic DES-SN simulations can be 
found in Kessler et al. (2019b). We also make use of recent updates 
in the library of simulated host galaxies for DES-SN as introduced 
by Vincenzi et al. (2020). This host galaxy library includes the de-
pendence of SN rates on galaxy properties such as stellar mass and 
galaxy star formation rate. 

We simulate a variety of SNe using volumetric rates and input 
parameters as described in Vincenzi et al. (2020). Our simulations are 
performed over a redshift range 0.05 < � < 1.3. These simulations 
contain normal SNe Ia, peculiar SNe Ia and core-collapse SNe. 

Normal SNe Ia are generated using the SALT2 SED model pre-
sented in Guy et al. (2007), trained for the JLA sample (Betoule et al. 
2014) and extended to UV and IR wavelengths (Pierel et al. 2018) 
to improve the redshift coverage of our simulated SNe. Volumetric 
rates from Frohmaier et al. (2019) are used. The intrinsic stretch and 
colour distributions are taken from Scolnic & Kessler (2016) and we 
use the G10 intrinsic scatter model from Kessler et al. (2013) based 
on Guy et al. (2010). Peculiar SNe Ia include SN91bg-like (Kessler 
et al. 2019a) and SNe Iax (Jha 2017) with models updates in Vincenzi 
et al. (2021). 

We make use of three different core-collapse SN template col-
lections: V19 (Vincenzi et al. 2019), J17 (Jones et al. 2017) and 
templates used in the Supernova Photometric Classification Chal-
lenge (SPCC; Kessler et al. 2010). The main differences between 
these templates include: the number of SNe used to create them, the 
rates used, and the interpolation methods and wavelength coverage. 
Detailed information on these templates can be found in Vincenzi 
et al. (2019). 

Our baseline simulations, and used unless specified, are generated 
using V19 core-collapse SN templates. Relative core-collapse SN 
rates are given by Li et al. (2011) updated in Shivvers et al. (2017) 
and the total rate is assumed to follow the cosmic star formation 
history presented in Madau et al. (2014) normalised by the local SN 
rate of Frohmaier et al. (2019). 

We generate different simulations to train (TRAIN-SIM and a 
smaller S-TRAIN-SIM for computing efficiency of certain evaluation 
tasks) and test (TEST-SIM) SNN as shown in Table 1. For training, 
after generating the simulation, we randomly trim the simulation to 
ensure a balanced training sample, with the same number of normal 
SNe Ia and non-normal Ia (core collapse SNe and peculiar SNe 
Ia). Volumetric rates guarantee that the mixture of non-Ia SNe is 
consistent with measured rates. We note that the size of the S-TRAIN-
SIM training set is the same as the complete sample used in Möller & 
de Boissière (2019). Having defined our simulated samples we now 
turn to methods of classifying them. 

3.3 SuperNNova (SNN)

SuperNNova (Möller & de Boissière 2019) is a deep learning frame-

work for light-curve classification. It makes use of fluxes and their 
measurement uncertainties over time for accurate classification of 
time-domain candidates. Additional information such as host galaxy 
redshifts can be included to improve performance. 

SNN includes different classification algorithms, such as LSTM2 

Recurrent Neural Networks (RNNs) and two approximations for 
Bayesian Neural Networks (BNNs). We show in Fig. 1 the classifica-
tion probabilities from different methods for a given SN light-curve. 
These probabilities can be used to select a sample by performing a 
threshold cut or by weighting the contribution of candidates by their 
classification score as in the BEAMS and BBC methods (Vincenzi 
et al. 2021; Kunz et al. 2007; Kessler & Scolnic 2017). 

Light-curve simulations are used to train SNN to classify can-
didates into different classes. For cosmology, it can be trained to 
accurately classify SNe Ia versus other other kinds of transients. For 
time-domain astronomy, where brokers are designed to disentangle 
multiple types of transients, SNN can classify subtypes of SNe or 
transients simultaneously. 

Throughout this work we only perform a binary classification, i.e., 
a normal SN Ia or a non-Ia SN. Our results are expressed in the form 
of a prediction of the SN type by using a threshold on the obtained 
SN Ia probability, �, larger than 0.5. 

3.3.1 SNN normalization schemes: cosmo and cosmo quantile 

Since light-curve fluxes and uncertainties exhibit large variations, 
SNN supports different input data (e.g., fluxes, flux-uncertainties and 
time steps) and normalisation schemes (Möller & de Boissière 2019). 
In previous work, the default was the global3 normalisation. However, 
to avoid cosmological bias when using redshifts for classification, 
it is important to avoid using distance information encoded in the 
apparent magnitudes. 

For classification using redshifts, we introduce two new normali-
sation schemes in SNN that ignore distance information: cosmo and 
cosmo_quantile4. In these schemes, for a given light curve, fluxes 
and their respective uncertainties are normalised by the maximum 
light-curve flux in any filter (cosmo) or the 99th quantile of the flux 
distribution to avoid normalisation using an outlier (cosmo_quantile). 
This normalises the fluxes for each light-curve to 1 or near 1, and 
retains colour and signal-to-noise information for the classification. 
The normalisation of the time step, given as an input to SNN , remains 
log transformed and displaced to zero as in the global normalisation 
scheme. 

To evaluate these new normalisation schemes, we measure the 
classification accuracy of SN Ia vs non-SN Ia including redshift as 
an input using simulations from Möller & de Boissière (2019) since 
these were the simulations used to benchmark the SNN framework. 
We find that they slightly improve performance with accuracies of 
99.33±0.02 per cent for both cosmo and cosmo_quantile as compared 
to the 98.43 ± 0.08 per cent accuracy of the global normalisation 
scheme using same dataset, redshift information and default settings 
(seeds and hyper-parameters). In the following analysis, we will use 
only the cosmo_quantile norm since it has similar accuracy to cosmo 

2 Long short-term memory (LSTM; Hochreiter & Schmidhuber 1997))
3 Features, � , are log transformed and scaled. The log transform ( �l) uses the 
minimum value of the feature in all band-passes min( � ) and a constant (� ) to 
centre the distribution at zero as follows: �l = log (−min( � ) + � + � ) . Using 
the mean and standard deviation of the log transform (�, �( �l)), standard 
scaling is applied: �̂  = ( �l − � ( �l))/� ( �l) . 
4 Both normalisation schemes are available at: https://github.com/ 
supernnova/SuperNNova 
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Figure 1. SuperNNova (SNN) classification for the DES-SN candidate 
DES17C2hqm at redshift 0.473±0.001 using three different neural networks: 
baseline RNN, BNN MC dropout (MC), and BNN Bayes by Backprop (BBB). 
All methods were trained with the TRAIN-SIM simulation. Top row shows 
the SN candidate light-curve from DES (normalised flux with cosmo_quantile 
method in band-passes g,r,i,z; time in Observer Frame days). Bottom rows 
shows the classification scores for each method (SN Ia: maroon, non SN 
Ia: orange). Classification scores use all the data before a given date. The 
BNN methods provide classification uncertainties (shadowed regions show 
68 per cent and 95 per cent contours). Each BNN method provides different 
estimations, this is explored in Section 5.2. The large uncertainties in the clas-
sification probability represent the lack of confidence in this classification. 
For this example, uncertainties around days 20–30 are correlated with the 
lower SNR, while around days 50–60 that correlation is less straight forward 
to interpret and could be linked to the secondary peak visible in most filters. 

for the simulations but is more robust against photometry outliers in 
real data. 

3.4 SNN configuration for performance and robustness

We next study the performance of SNN when classifying SNe using 
photometry and host galaxy redshifts. We also characterise the clas-
sification robustness with respect to the training templates, and find 
the best set of hyper-parameters for our DES-SNIa sample. We use 

Table 2. Classification accuracies for models trained by replacing a subset of 
templates from the original configuration in Section 3.2. 

Changed template accuracy 

JLA instead of extended SNIa model 97.96 ± 0.05 
without peculiar SNe Ia 98.21 ± 0.01 
J17 instead of V19 core-collapse model 98.06 ± 0.07 
SPCC templates instead of V19 core-collapse model 98.59 ± 0.02 

the S-TRAIN-SIM simulations introduced in section 3.2, for com-
putational efficiency and to compare results with those of Möller & 
de Boissière (2019), to train a classification model. Our simulation 
was class-balanced (half normal SNe I and half non-Ia SNe) and 
randomly split in 80 per cent for training, 10 per cent for validation 
and 10 per cent for metrics evaluation. Uncertainties in the accu-
racy represent the standard deviation of predictions from five models 
obtained with different seeds. 

Using the default configuration of SNN we obtain a classification 
accuracy of 97.73 ± 0.04% for the cosmo_quantile norm. While this 
accuracy is high, it is ∼ 1% lower than the benchmark in Möller & 
de Boissière (2019) for a similar training set size. Since the SNN 
architecture has not been changed, we investigate if this can be 
attributed to the more complex and realistic DES-SN 5-year sim-
ulations in Section 3.4.1. We then investigate whether a modified 
architecture can improve the classification model and thus its accu-
racy in Section 3.4.2. We highlight that SNN does not reach its peak 
performance when trained using the smaller S-TRAIN-SIMS. Thus, 
larger simulations are needed to improve the model performance. 

3.4.1 Templates impact on performance 

Here, we study how the set of templates used to generate the train-
ing simulation impacts the metrics of our classification algorithm. 
We train different models using simulations that are similar in size 
(equivalent to S-TRAIN-SIM) but are generated by replacing a sub-
set of templates from the original configuration. Obtained accuracies 
are shown in Table 2. 

Models trained with SPCC and J17 templates obtain higher accu-
racies than those trained with V19 templates. This is consistent with 
the accuracy decrease of our present model when compared to that 
of Möller & de Boissière (2019). This is evidence of the more com-
plex classification task with the updated simulations. We highlight 
that V19 uses a large variety of core-collapse templates with greater 
diversity than previous core-collapse models, J17 and SPCC. From 
these, SPCC has the fewest number of non-Ia templates and thus less 
diversity. SPCC templates were used in Möller & de Boissière (2019) 
simulations. The impact of changes like using the JLA SALT2 model 
is less. This shows that the complexity of the classification task in-
creases largely with the updated and more diverse core-collapse SN 
population in the V19 templates and the inclusion of peculiar SNe 
Ia. 

We thus attribute the decrease on accuracy to the more complex 
task of disentangling SNe Ia from core-collapse and peculiar SNe Ia 
generated with updated templates. 

3.4.2 Hyper-parameters 

We investigate whether network hyper-parameters could be modi-
fied to improve performance (for a list of available hyper-parameters, 
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see Möller & de Boissière 2019). We train our models using us-
ing 20 per cent of the S-TRAIN-SIM simulations (280, 033 light-
curves). We modify: batch size (128, 512), dropout (0.05, 0.1, 0.2), 
bidirectional (True, False), hidden dimensions (32, 64, 128), number 
of layers (2, 3, 4), two learning policies (cyclic and non-cyclic) and 
different cyclic phases when using cyclic ([5, 10, 15], [20, 40, 60]). 
We find that the accuracy in different configurations varies up to 
≈ 2%. We find that deeper (3 or 4 layers) and wider networks (up to 
64 hidden dimensions) result in the biggest changes to the accuracy. 
This reflects the increasing complexity of the classification task with 
updated SN templates. Our chosen configuration for S-TRAIN-SIM 
is: batch size 512, dropout 0.05, bidirectional network, 64 hidden di-
mensions, 4 layers, and non-cyclic learning policy. Using the whole 
S-TRAIN-SIM dataset with this new configuration, the classification 
accuracy rises to 98.10 ± 0.06 per cent. 

3.5 SNN trained models for DES-SN 5-year analysis

In the following we use SNN models trained with a larger dataset to 
improve classification accuracy, TRAIN-SIM, and the best configu-
ration of SNN found in the previous section. We increase the batch 
size to 1024 for efficient resource allocation. The larger simulation 
and optimised hyper-parameters provide a better classification accu-
racy with accuracies above 98% as shown in Table 3. Accuracies are 
computed with a balanced test set, where half of the candidates are 
SNe Ia and half are non-Ia SNe. 

To evaluate the accuracy, efficiency and purity of our photometric 
samples, we estimate the performance of our models in the inde-
pendent TEST-SIM. This simulation is not balanced and thus reflect 
the relative rate between SN types. We present performance metrics 
for different levels of selection cuts in Table 4. We highlight that we 
provide the balanced accuracy which shows that after the JLA-like 
cuts, the remaining non-Ia SNe are harder to disentangle. A thorough 
analysis on systematics linked to this classification method can be 
found in Vincenzi et al. (2021). 

In this work, the traditional classification method is named "single 
model". This method represents classifications done using proba-
bilities obtained from one SNN trained model with a single seed. 
In the following, we provide a mean value and uncertainty on the 
metric or classified sample of the "single model" method by taking 
the probabilities obtained with 5 models trained with different seeds. 
These probabilities are then used to compute the mean and standard 
deviation of the metrics listed in Table 3. 

3.5.1 Ensemble methods 

For cosmology, we aim to have a classification method that is not 
highly sensitive to statistical fluctuations in the model and training 
dataset. In ML, ensemble methods have been shown obtain more 
robust predictions (Dietterich 2000; Lakshminarayanan et al. 2016) 
and have been introduced for regression in astronomy (Kim et al. 
2015; Carrasco Kind & Brunner 2014). To produce ensemble classi-
fications, predictions from multiple models are combined. This can 
be viewed as a mechanism of Bayesian marginalisation (Wilson & 
Izmailov 2020; Izmailov et al. 2021) and an alternative to Bayesian 
Neural Networks using Variational Inference explored in Section 5. 

We explore two possible ensemble methods: "probability averag-
ing" and "target averaging". Probability averaging uses the proba-
bility scores and averages them to select light-curves that are above 
the 0.5 probability threshold of being SN Ia. The "target average" 
method averages the predictions and selects the most common one. 
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Table 3. SNN Baseline Performance vs. method on TRAIN-SIM without 
cuts. The chosen method in this work is the Ensemble (probability average) 
and is highlighted in bold. 

method balanced accuracy efficiency purity 

cosmo 

single model 
ensemble (target av.) 
ensemble (prob. av.) 

98.33 ± 0.01 
98.43 ± 0.02 
98.45 ± 0.01 

98.65 ± 0.05 
98.81 ± 0.02 
98.80 ± 0.02 

98.03 ± 0.06 
98.08 ± 0.02 
98.11 ± 0.02 

cosmo_quantile 

single model 
ensemble (target av.) 
Ensemble (prob. av.)

98.35 ± 0.01 
98.45 ± 0.005 

98.46 ± 0.01 

98.68 ± 0.07 
98.84 ± 0.02 
98.83 ± 0.03 

98.03 ± 0.05 
98.09 ± 0.01 
98.10 ± 0.03 

Table 4. SNN Baseline Performance vs. method on TEST-SIM with loose 
selection and JLA-like cuts. 

method balanced accuracy efficiency purity 

with loose selection cuts 

single model 
ensemble (prob. av.) 

98.61 ± 0.03 
98.69 ± 0.01 

99.61 ± 0.02 
99.68 ± 0.01 

99.43 ± 0.02 
99.45 ± 0.005 

+ JLA-like cuts 

single model 
Ensemble (prob. av.)

98.26 ± 0.06 
98.36 ± 0.01 

99.81 ± 0.01 
99.86 ± 0.01 

99.7 ± 0.01 
99.71 ± 0.005 

Uncertainties are computed using the standard deviation of the metric 
for three different sets of five models with different seeds. 

We find that ensemble methods increase the accuracy and purity ≈
0.1% from just using one model prediction, or "single model", as can 
be seen in Table 3. We find a 99.4% overlap between photometrically 
selected Type Ia SNe using both the ensemble and single model 
methods. In the following, we will use the "probability average" 
from different models as our ensemble method. 

Each ensemble in this work is obtained using the predictions of 5 
models trained with different seeds, also called an "ensemble set". 
To study the performance of ensemble methods, we compute metrics 
using the output of 3 ensemble sets, quoting their mean and standard 
deviation. 

3.5.2 Generalisation 

In this Section we verify the ability of our trained models to classify 
data generated using different simulation templates. This is called 
generalisation and showcases the adaptation of our SNN models to 
new unseen data. 

We evaluate the accuracy of our models when trained with sim-
ulations generated using SNe Ia, peculiar SNe and the V19 core-
collapse templates but applied to simulations generated using other 
core-collapse templates such as J17 or SPCC. We observe a decrease 
of < 0.5% in accuracy, which shows that our V19 trained models 
generalise well to other templates of core-collapse SNe. 

We find that ensemble methods such as probability average re-
duces the loss in accuracy due to changes in the data by 0.2% relative 

5 We provide only two-significant figures. The uncertainties are negligible 
and less than 0.005. 
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to the single model. This is expected as ensemble methods are usually 
more robust and thus generalise better than single models. 

3.6 Bayesian Neural Networks (BNNs)

In scientific analyses using machine-learning outputs, it is important 
to evaluate the reliability of a model’s predictions, expressed through 
uncertainties. Uncertainties can be divided into: Aleatoric, usually 
linked to measurement uncertainties (e.g. noise or other effects of data 
acquisition); Epistemic or model uncertainty, which encompasses 
uncertainties in the training set and NN architecture. 

In this section we introduce Bayesian Neural Networks (BNNs) 
which are a promising method to provide uncertainties reflecting the 
model’s confidence on the prediction. 

To compute uncertainties, we obtain different classification prob-
abilities for a given input and evaluate their variance. In NNs this is 
equivalent to finding a posterior distribution of weights. Typically, 
this posterior distribution is intractable for deep neural networks, thus 
different methods have been developed to approximate it. A review 
on BNNs, approximation methods and their use in astronomy can be 
found in Charnock et al. (2020). 

In this Section we use two BNN implementations approximating 
the posterior distribution of weights: MC dropout (Gal & Ghahra-
mani 2015) and Bayes by Backprop (Fortunato et al. 2017). MC 
dropout (MC in the following) provides a Bayesian interpretation by 
using the same dropout mask at the different NN layers including 
the recurrent ones (each time step). Bayes by Backprop (BBB in the 
following) learns a posterior distribution of weights which can then 
be sampled. Both methods have been previously implemented and 
tested on simulations in SNN (Möller & de Boissière 2019). 

3.6.1 BNN classification probabilities and uncertainties 

For both methods, to obtain the classification probability distribution, 
we sample the predictions from our BNN 50 times. This sampling 
number is also known as as the number of inference samples, �� . 
In the following we compute the classification probability, �� for a 
given light-curve, x� as the mean of sampled probabilities: 

��∑1 ©­ ª®�� = � � (x�)
metrically classified samples with JLA-like cuts in Table 5. The sam-
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Table 5. Performance metrics of BNNs evaluated using TEST-SIM simula-
tions with JLA-like cuts. These simulations are indicative of the expected 
purity and efficiency of our photometrically classified samples. 

method accuracy efficiency purity 

MC with JLA-like cuts 

single model 98.01 ± 0.03 98.41 ± 0.03 97.63 ± 0.07 
ensemble (prob. av.) 98.11 ± 0.01 98.51 ± 0.06 97.73 ± 0.05 

BBB with JLA-like cuts 

single model 98.01 ± 0.03 98.41 ± 0.03 97.63 ± 0.07 
ensemble (prob. av.) 98.11 ± 0.01 98.51 ± 0.06 97.73 ± 0.05 

MC dropout and BBB respectively. Balanced accuracies are slightly 
lower than the ensemble method in Table 3. These may be improved 
by adjusting of the hyper-parameters. We choose to keep the cur-
rent configuration and focus on the behaviour of the classification 
uncertainties. 

Traditionally, BNNs are not used in ensembles, combining pre-
dictions by different models. To do so, ideally, the probability distri-
butions for each model in the ensemble set should be concatenated 
into a "joint probability distribution". Then, the ensemble classifi-
cation probability would be computed using Equation 1 sampling 
�� times the "joint probability distribution". However, this can be 
computationally expensive. Using TEST-SIM simulations, we find 
that averaging the mean probability obtained for each model in the 
ensemble set is a close approximation of the one obtained using 
"joint probability distribution". We find that the differences between 
probabilities using the approximation and the "joint distribution" are 
centred at 0.00 ± 0.01 and accuracies change by less than 0.1%. We 
use this approximation in the following for computational efficiency. 

We also test approximating ensemble uncertainties as the sum 
of uncertainties from each model in the ensemble set assuming the 
covariance between models is zero. We find on average that the 
uncertainties obtained with this approximation and from the "joint 
probability distribution" are similar. However, we note that the ap-
proximation for the BBB method has a larger dispersion than the 
one for the MC method. We will evaluate the potential use of BNN 
classification uncertainties in Section 6.2. 

We use TEST-SIM to evaluate the expected metrics for our photo-(1)
�� 

�=1« ¬ ples obtained with BNNs have less than 3% contamination but that 
where � ∈ [1, ��] is the index of inference samples, � � (x�) is the � �ℎ is higher than our Baseline DES-SNIa samples with JLA-like cuts. 
sample of the classification probability distribution for the light-curve BNN performance could be eventually be improved with a different 
x� . network configuration and initialisation. However, for comparison 

We compute the classification probability uncertainty for a given we keep this architecture for the analysis in Section 5. 
light-curve x� as the standard deviation of sampled probabilities: vut ��∑ �2b�� 
where � ∈ [1, ��] is the index of inference samples, � � (x�) is a clas-
sification probability for the given light-curve x� for each inference 
sample � , and �� is given by Equation 1. 

3.6.2 BNN trained models 

Using the TRAIN-SIM simulations we train the two Bayesian mod-
els, MC and BBB, for light-curve classification with host galaxy red-
shifts. Both methods obtain high classification accuracies for the en-
semble probability average method, 98.33±0.01 and 98.11±0.01 for 

(2)� � (x�) − �� = 
�� 

�=1 
4 DES-SN 5-YEAR PHOTOMETRICALLY CLASSIFIED

SNE IA

In this Section, we photometrically classify DES-SN 5-year can-
didates with host spectroscopic redshifts using our baseline RNN 
trained in Section 3.5. 

First, we classify candidates that pass loose cuts using SNN trained 
with host galaxy redshifts in Section 4.1. We further constrain the 
sample using JLA-like cuts and visual inspection in Section 4.2. We 
discuss possible contamination of this sample in Section 4.3 and its 
classification efficiency in Section 4.4. We summarise the properties 
of the baseline photometrically classified SN Ia sample with JLA-like 
cuts in Section 4.5. 
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Table 6. DES-SNIa photometric samples with different selection cuts. In the 
last row, we define the Baseline DES-SNIa sample using a single ensemble 
set probability threshold. Columns indicate: the number of photometrically 
selected SNe Ia and the number of spectroscopically classified SNe Ia con-
tained in that sample. 

loose selection cuts +JLA-like cuts 
method photo Ia spec Ia photo Ia spec Ia 

single model 1861+17 353+3 1478+10 320+3 
−13 −3 −11 −2 

ensemble (prob. av.) 1867+3 354+1 1482+2 321+1 
−4 −0 −2 −0 

Baseline DES-SNIa sample 1863 354 1484 321

4.1 Photometric classification

We use our baseline RNN model to select photometrically classified 
SNe Ia. We show the number of selected light-curves in Table 6 and 
their overlap with spectroscopic SN samples defined in Section 2. 

As shown in Sections 3.5.1 and 3.5.2, ensemble methods provide 
more robust predictions than single model methods. We select our 
Baseline SNe Ia sample using the "probability average" method and 
the cosmo_quantile norm. This normalisation is more robust towards 
photometry outliers present in our analysis. We note that the overlap 
between cosmo and cosmo_quantile probability average sample is 
larger than 98% and between cosmo_quantile probability average 
and single model samples is larger than 99%. 

Our Baseline DES-SNIa sample contains 1,863 photometrically 
identified SNe Ia passing loose selection cuts. In this sample, twelve 
spectroscopically classified SNe Ia are not selected, representing less 
than 1% of the photometric sample. We do not find a particular red-
shift or SALT2 parameter preference for these lost SNe Ia. Visual 
inspection reveals some light-curves have variable quality photome-
try which could contribute to the mis-classification. 

The baseline sample with loose selection cuts can be used to study 
astrophysical properties of SNe Ia like correlations with their host 
galaxies, diversity and rates. In the following, we further constrain 
this sample with cosmology-grade cuts as in Vincenzi et al. (2021). 

4.2 Cuts towards a cosmology sample (JLA-like)

We further constrain our sample by applying selection cuts based on 
SALT2 light-curve fits and redshift quality. 

First, we implement additional requirements on the fitted SALT2 
parameters of the photometrically selected SNe Ia. As in Vincenzi 
et al. (2021), we implement the JLA-like SALT2 cuts from the 
Joint Light-curve Analysis (Betoule et al. 2014) introduced in Sec-
tion 2.3.2. Second, we select only candidates which have a high-
precision spectroscopic redshift. We eliminate those candidates that 
have redshifts provided by PRIMUS since the spectra are of lower-
resolution, more prone to catastrophic failures and not high-quality 
enough for cosmology analysis. 

The results of these cuts in the photometrically selected samples 
are shown in Table 6. We highlight that the JLA-like cuts reduce the 
scatter in the number of SNe, as can be seen by the reduced standard 
deviation in the Table when compared to the sample without JLA-like 
cuts. We obtain a Baseline DES-SNIa sample with JLA-like cuts of 
1, 484 photometrically classified SNe Ia. The missing spectroscopic 
SNe Ia are found to be redder in average and at all redshifts with a 
median around 0.5. 

A summary of the selection criteria used to obtain this sample can 

be found in Table 7. General properties of these samples are further 
studied in Section 4.5. 

4.3 Contamination

As shown in Vincenzi et al. (2021) and in Table 4 contamination 
from core-collapse and peculiar SNe in a SNN classified sample 
with quality cuts is expected to be less than 1%. This estimate was 
obtained using SN simulations containing various types of core-
collapse and peculiar SNe. We inspect the Baseline DES-SNIa sam-
ple with JLA-like cuts obtained in the previous section and do not 
find any spectroscopically identified core-collapse or peculiar SNe. 
We note that spectroscopic samples are not complete and DES-SN 
follow-up preferentially targeted suspected Type Ia SNe. 

In this section, we explore a different type of potential contaminant, 
"out-of-distribution" candidates such as AGNs and other unknown 
transients. These candidates can be erroneously classified since they 
are not present in the simulated training sample and thus we do not 
know how SNN classifies them. 

We find no spectroscopically identified AGN, SLSNe or other SN 
spectral types in our Baseline DES-SNIa sample but 5 candidates 
with host spectra showing AGN features. We find that DES16E2nb, 
DES16X1ext, DES13X3dbe are displaced by more than 100 from 
the centre of the galaxy (additionally DES16E2nb is a spectroscopic 
Type Ia SN) and the other two candidates are displaced between 0.500
and 100. At these separations, the light-curves from these candidates 
are not dominated by the AGN which we confirm by inspection of 
the light-curves. Therefore we keep these photometrically selected 
SNe Ia in our Baseline DES-SNIa sample. 

We also perform visual inspection of the light-curves in the Base-
line DES sample. We find 3 candidates that can be visually tagged 
as multi-season visually: DES16E2nb a spectroscopic SN Ia with 
close by AGN, DES16C3nd two SN Ia in a galaxy (Scolnic et al. 
2020), DES14E2rpm a spectroscopic SN Ia with a fake SN inserted 
at the same coordinates (fakes were inserted to evaluate the detection 
efficiency in DES-SN images, see Brout et al. 2019).We keep all 
these candidates since they are real supernovae with fake or other SN 
light-curves that do not overlap. 

Photometrically classified Type Ia SNe samples are expected to 
have some level of contamination from core-collapse and peculiar 
SNe and possibly by other transients. For the Baseline DES-SNIa 
sample in this work we find no clear evidence of contamination from 
core-collapse and peculiar SNe or long-term variables such as AGNs. 

4.4 Classification efficiency

Traditionally, in cosmology analyses using spectroscopically classi-
fied SNe samples, modelling selection effects is crucial to estimate 
biases and systematic uncertainties. 

Selection effects arise from a combination of SN detection and 
other effects. They are usually modelled as an efficiency with respect 
of an observed magnitude. For host galaxy selection, Vincenzi et al. 
(2020) uses the host galaxy � band magnitude, �host. For spectro-� 

scopic classification, Smith et al. (2020); Kessler et al. (2019b) use 
the modelled supernova peak magnitude in the � band, �peak computed 
from the best-fit SALT2. 

To determine if there is a selection efficiency decrease due to 
photometric classification, we inspect the differences between the 
peak observed magnitude in the � band of our Baseline DES-SNIa 
sample compared to simulated SNe Ia in DES-SN 5-year in Figure 2. 
Our Baseline DES-SNIa photometric sample follows the expected 
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Table 7. Effect of the selection cuts on the candidate sample. We show results for the shallow and deep fields, as well as the total number. Note that some events 
belong to both shallow and deep fields due to field overlap. Columns show the cut, the number of selected candidates, the number of spectroscopic SN Ia in the 
sample and the Section where the sample is described. 

cut shallow deep total 
selected spec Ia selected spec Ia selected spec Ia section 

DES-SN 5-year candidate sample 29203 415 7500 93 31636 415 2.1 
Multi-season 13868 405 4428 88 14070 405 2.2 
Redshifts in 0.05<z<1.3 6556 401 1812 85 6590 401 2.3.1 
SALT2 loose selection 2380 366 698 77 2381 366 2.3.1 
RNN>0.5 (Baseline DES-SNIa) 1863 354 502 76 1863 354 4.1 
JLA-like (Baseline DES-SNIa JLA) 1484 321 408 73 1484 321 4.2 

Figure 2. Distributions of redshift, SALT2 x1, SALT2 c and peak magnitude in i-band �peak for our Baseline DES-SNIa sample from Section 4 for the shallow 
(yellow) and deep (maroon) fields. We show one simulated realisation of DES-SN 5-year sample. Poisson uncertainties are assumed. Both the simulation and 
data pass JLA-like cuts. The goodness-of-fit for each histogram is shown as the �2/number of bins on each plot. 

SN Ia peak magnitude distribution from simulations but we find an 
excess on the maximum magnitude with a reduced �2 = 2.1. We do � 

not find evidence for additional selection efficiency effects from the 
photometric classification procedure. 

4.5 Colour and stretch evolution

We study the properties of the Baseline DES-SNIa sample with JLA-
like cuts and compare it to that expected from realistic simulations. 
In Section 4.4 we found that the effects of classification efficiency 
are negligible, thus we don’t correct for this efficiency and use sim-
ulations including only detection and host galaxy redshift efficiency 
introduced in Section 3.2. 

Figure 2 shows the redshift ��� and SALT2 fitted colour �, stretch 
�1 and �peak distributions for the DES-SNIa 5-year photometric sam-
ple classified using host galaxy redshifts. Figure 2 also shows one 
realisation of a DES-SN 5-year simulated SNe Ia. Uncertainties are 
calculated as the square-root of the number of candidates per bin. 

There is decent agreement between the simulation and data, although 
the reduced �� 2 are somewhat larger than expected from statistical 
fluctuations. 

In Figure 3 we show the redshift evolution of our sample’s colour 
and stretch. Our baseline sample matches the trends expected from 
the simulation. Although there are some slight differences outside 
the 68% simulation contour (equivalent to 1� for a Gaussian distri-
bution) in particular for the shallow fields. 

These differences might result from the small number of candi-
dates (the last two redshift bins have only 24 and 16 SNe Ia), unac-
counted classification contamination, unaccounted selection effects 
or whether there is redshift evolution in the intrinsic SN population 
(Scolnic & Kessler 2016; Popovic et al. 2021; Nicolas et al. 2021) 
or the effect of dust needs to be introduced (Jha et al. 2007; Mandel 
et al. 2011, 2017; Brout & Scolnic 2021). The optimisation of the 
simulation and systematics studies is outside the scope of this work. 

We now turn to select other photometric samples using the novel 
Bayesian Neural Networks and explore their possible use. 
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Figure 3. Redshift dependence of SALT2 � and �1 for the Baseline DES-SNIa photometric sample and simulated SNe Ia for shallow (yellow, left) and deep 
(right, maroon) fields using the DES-SN host galaxy spectroscopic efficiency (Vincenzi et al. 2020) both with JLA-like cuts. For the simulation, orange lines are 
rolling averages of the measured parameters, in grey 150 realisations of SNe Ia in the DES-SN 5-year survey and in solid grey the area covered by the 68% of 
these realisations. The mean and the standard deviation are shown for data using black markers. 

5 PHOTOMETRICALLY CLASSIFIED SNE IA WITH
BAYESIAN NEURAL NETWORKS

In this section we explore the use of Bayesian Neural Networks 
(BNNs) for classification. While the accuracy of these Networks is 
equivalent to the baseline RNN used in Section 4, BNNs also provide 
classification uncertainties. 

We first obtain photometric samples using two BNN schemes 
(MC and BBB, Section 5.1). We then evaluate the classification 
uncertainties from BNNs (Section 5.2), and summarise our findings 
(Section 5.3). 

5.1 BNN photometric sample

We apply our BNN trained models to candidates passing loose and 
JLA-like cuts introduced Sections 2.3.1 and 2.3.2. This candidate 
sample contains 1,701 light-curves that are then photometrically 
classified. 

Using BNN probabilities, the average probability ensemble 
method and a threshold of � larger than 0.5, we obtain about 3% 
more candidates than our Baseline DES-SNIa sample with JLA-like 
cuts in Table 6 for both BNN methods. The additional BNN selected 
supernovae, 52 MC and 51 BBB, have distributions of colour, stretch 
and redshifts that are representative of the Baseline DES-SNIa sam-
ple selected using the RNN models (Section 4). We find that 1 and 
6 SNe Ia in the Baseline DES-SNIa sample are not selected by MC 
and BBB methods. These missing SNe Ia have red colours and are 
at median redshifts close to 0.5. The BNN samples are thus probing 
a similar parameter space to the Baseline DES-SNIa sample. 

As in the previous sample, we find no spectroscopically identified 
AGN, SLSNe or other SN spectral types in our BNN photometric 
sample. We find the same 5 candidates with nearby spectra showing 
AGN features which are kept due to their large enough separation 
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Table 8. Photometric classification of light-curves with Bayesian Neural 
Networks. Columns indicate: the number of photometrically selected events 
and the number of spectroscopic SNe Ia contained in that sample. We show 
these samples with JLA-like SALT2 cuts as in Section 4.2 and when adding 
a cut in the BNN classification uncertainty. 

+JLA-like +JLA-like +unc 
method photo Ia spec Ia photo Ia spec Ia 

MC dropout 

single model 1532+7 335+1 1513+6 333+0 
−4 −1 −3 −0 

ensemble (prob. av.) 1535+3 336+0 1520+2 333+0 
−2 −0 −1 −0 

Baseline MC sample 1535 336 1520 333 

BBB 

single model 1526+8 334+1 1487+5 328+2 
−6 −0 −2 −0 

ensemble (prob. av.) 1528+1 335+1 1483+0 324+1 
−1 −0 −0 −0 

Baseline BBB sample 1529 336 1483 324 

> 0.500, with the AGN. In a cosmological sample however, these can-
didates will be eliminated due to possible issues with the measured 
photometry. 

5.2 BNN uncertainties

In this Section we try to interpret which types of uncertainties are 
captured in the outputs of the BNN model: aleatoric or epistemic. 
BNNs provide classification probability distributions that a priori 
indicate a confidence level on the prediction. These uncertainties are 
shown in Figure 1 for each classification step. Here we only evaluate 
the final uncertainty (final time step) for each event. 



Figure 4. Classification uncertainties obtained for BNN ensemble models. 
Columns indicate which sample is used. For each event in a given sample, 
we obtain their classification uncertainties from the two BNN methods, MC 
and BBB (orange and blue respectively). We show median uncertainties for 
data in circles for: all DES-SN 5-year data (no selection cuts), and Baseline 
BNN SNIa samples with JLA-like cuts. For comparison, we show in squares 
the median uncertainties obtained for the whole simulation (first column) and 
simulated photometric samples with JLA-like cuts (second column). For both 
the data and simulations, we show as errorbars the extent of the 68% of the 
distribution. The different behaviour of simulated MC uncertainties and that 
of DES-SN 5-year candidate sample is further studied in Figure 7. 

In Figure 4 we show the distribution of classification uncertainties 
for different samples. We compare the uncertainties derived from 
the data and from simulations. For most samples, the simulation 
and data uncertainty distributions are similar. This indicates that the 
simulations and data resemble closely after JLA-like cuts. However, 
a large difference is found where there is no selection cut which is 
further explored in Section 6.2. 

Both BNN methods provide different order of magnitude of uncer-
tainties estimates and distribution of mean uncertainties (e.g. BBB is 
more clustered in low uncertainty regions), possibly due to initialisa-
tion parameters or intrinsic properties of the method. Accounting for 
those differences is not straight-forward, see Möller & de Boissière 
(2019) for a discussion on this topic. 

We compare BNN uncertainties as a function of light-curves prop-
erties in Figure 5. We find that MC dropout and BBB exhibit different 
behaviours for both data and simulations. 

We find both indications in favour (+) and against (-) interpretation 
of classification uncertainties as a particular type: 

a. aleatoric uncertainty: linked to measurement uncertainties 
(+) classification uncertainties are correlated to SNR in data. Bright 
candidates and those with higher quality light-curves have on 
average smaller classification uncertainties for both BNNs. 
(-) this correlation is not seen in the simulations for any of the 
BNNs. 

b. epistemic uncertainty: linked to training sets or model 
(+) Large uncertainties are more prevalent in classification proba-
bilities far from 1 (high probability of being a SN Ia) and 0 (low 
probability of being SN Ia) for both simulations and DES-SN 5-year 
data. 
(-) candidates that fulfil selection cuts should more closely resemble 
simulated SNe Ia, thus it is puzzling the increase on median un-
certainty when applying cuts in particular for the MC method (see 
Figure 4). 
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These various behaviours highlights the challenges on quantifying 
uncertainties in complex problems such as astronomical data clas-
sification. In Appendix A we explore further correlations between 
classification uncertainties and SALT2 fit light-curve properties. 

We continue exploring the interpretability of the BNNs uncertain-
ties by adding a threshold on the uncertainties for SNIa sample selec-
tion, as in Möller & de Boissière (2019) and more recently in Butter 
et al. (2021). We note that establishing a threshold for uncertainties 
is not straight-forward. While the whole probability distribution has 
a calibration that can be verified using diagnostic as reliability dia-
grams (DeGroot & Fienberg 1983; Möller & de Boissière 2019), the 
probability uncertainties do not. We chose to eliminate candidates 
with the highest uncertainties (eliminating candidates that are out-
side of 99 percentile of the uncertainty distribution). This cut rejects 
candidates that were in the RNN sample: 12 for the MC model and 
45 for BBB. These candidates are not found to be distributed prefer-
entially in a �, �1 or redshift. We visually inspect these light-curves 
and found that a large proportion have photometry that are outliers. 

5.3 BNN photometric sample contribution

The SNIa samples obtained using BNN methods are found to be 
similar to the one provided by our Baseline DES-SNIa sample in 
Section 4. We evaluate BNN uncertainties and show that they are 
consistent between simulations and data in average after JLA-like 
cuts, showing a good agreement between data and simulation pre-
dictions. However, BNN uncertainties are difficult to interpret and 
assess quantitatively (e.g. assigning an uncertainty threshold). 

We find that uncertainties exhibit different behaviours in the two 
BNN methods and between data and simulations. While the higher 
uncertainties in the MC BNN method for the data could point to-
wards the presence of out-of-distribution candidates, the evidence is 
not conclusive and is not seen in the BBB method. We will further ex-
plore the possible contribution of BNNs in photometric classification 
without any selection cuts in Section 6.2. 

Cuts on uncertainty values potentially improve our photometric 
SNIa samples by rejecting candidates with photometry that con-
tains outliers. These is a promising avenue shown to improve the 
quality of samples, both in quality of the data and rejection of out-
of-distribution events, in previous work using simulations Möller 
& de Boissière (2019) and more recently with astronomical data in 
Butter et al. (2021). 

6 FROM DES TO RUBIN OBSERVATORY LSST

For the LSST survey, where up 107 SNe will be detected over 10 
years, photometric classification will become increasingly important. 

In this work, we have presented different methods for photometric 
classification with redshift information. We compare the samples 
obtained with these different methods in Section 6.1 and explore 
possible applications of Bayesian Neural Networks in future surveys, 
such as LSST, in Section 6.2. 

6.1 DES-SNIa photometric samples

The DES-SN 5-year data contains thousands of potential SNe Ia. We 
show in Table 7 the different steps used in this work to obtain our 
Baseline DES-SNIa JLA sample from the DES-SN 5-year candidate 
sample. Cuts applied before photometric classification reduce the 
candidate sample by 90%. Photometric classification and JLA-like 
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Figure 5. Distribution of classification uncertainty for Baseline MC dropout (upper row) and Bayes by Backprop technique (lower row). We show uncertainties 
as a function of classification probability for all fields (left), SNR of the third brightest point in the light-curve (SNRMAX3, columns 2 and 3), and redshift (zHD, 
columns 4 and 5). Coloured lines show the median of the data with solid blue representing all fields, dotted yellow representing shallow fields, and dot-dash red 
representing the deep fields. Simulations are shown by the grey dashed lines. Shaded regions show the 68% percentile. 

cuts refine the sample with a small 20% reduction. While this reduc-
tion is small, it reduces contamination from ∼ 10% to below 1.4%, 
as shown in (Vincenzi et al. 2021) and in Section 4. 

In addition to our Baseline DES-SNIa sample classified us-
ing RNN probabilities, we have explored identifying samples with 
Bayesian Neural Networks. We compare these samples with with 
the preliminary DES-SN 5-year spectroscopically classified SNe Ia 
sample in Figure 6. As expected, we find that photometric samples 
using RNNs or BNNs provide larger numbers of SNe Ia than the 
spectroscopic sample, probing a larger parameter space. We do not 
find a substantial difference in the parameter distributions between 
different photometric classification methods. 

We highlight that the photometric samples peak at fainter mag-
nitudes and higher redshifts than the preliminary DES-SN 5-year 
spectroscopic SNe Ia sample.This has the potential to reduce selec-
tion biases and opens the possibility of stronger statistical analyses 
with the large numbers of SNe Ia. This will also be true for the 
immense SN samples obtained with LSST. 

6.2 Bayesian Neural Networks as a proxy

Introduced as a promising method to quantify model uncertainties, 
BNNs have not yet been widely used in classification tasks. In Sec-
tion 5, we have shown the difficulties for uncertainty interpretation 
given the different uncertainty values for the BNN methods. However, 
a potential use could be rejecting candidates with large uncertainties, 
as they sometimes have light-curves with photometry outliers. 

Here, we explore other possible uses of BNN uncertainties, using 
samples that have not been constrained with selection cuts. We aim 
to answer two questions: (i) can BNN uncertainties be used as an 
indicator of the representativity of the training set for a given dataset? 
(ii) can BNN uncertainties replace selection cuts? We address these 
questions in Sections 6.2.1 and 6.2.2 respectively. The former could 
be useful to choose the set of SED templates to simulate a survey. 
As some selection cuts require feature extraction, the latter could 

be valuable to avoid this time-consuming process by using instead 
classification uncertainties from non-parametric classifiers as SNN . 

6.2.1 BNNs uncertainties vs. simulation representativity 

First, we use simulations to assess the expected behaviour of un-
certainties when training sets are not representative of the testing 
data. 

We examine how the uncertainties change when using the trained 
model in Section 3.6.2 and applied to individual simulations with 
normal Type Ia supernovae and core-collapse SNe generated with 
the V19, SPCC and J17 templates. We expect that the trained model 
is representative of the V19 simulation. This will not be true for J17 
and SPCC. 

We find that both the single seed and ensemble methods have 
accuracies which decrease for J17 and SPCC simulations by ≈ 0.5% 
for both types of BNNs. We see an increase in the mean model 
uncertainty on classified light-curves generated with J17 and SPCC, 
however this change is within uncertainties. For both BNNs we find 
a longer and more significant tail for the uncertainty distributions 
when classifying J17 and SPCC simulations (ending at ∼ 0.4 − 0.43 
compared to ∼ 0.35 for V19). 

Next, we compare uncertainties when classifying DES-SN 5-year 
data with independent BNN models trained with the V19, J17 and 
SPCC simulations. We find that the mean model uncertainty increases 
for SPCC and J17 classification models for MC dropout but not 
for BBB SPCC model but again within uncertainties. The tail of 
the uncertainties varies between ∼ 0.40 − 0.47 for all classification 
models. We see a longer tail for the uncertainty distributions for BBB 
but not for MC SPCC classification. 

In summary, we do not find strong evidence of BNN uncertain-
ties being sensitive to models trained with different core-collapse 
templates. There is a small but inconclusive tendency to increase un-
certainties for J17 and SPCC in simulations. While these templates 
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Figure 6. Distributions of redshift, SALT2 c, x1 and peak magnitude in the � band �peak, for the samples with JLA cuts: preliminary DES-SN 5-year SNIa 
spectroscopically classified (maroon), Baseline DES-SNIa (RNN) (blue) and Baseline MC and BBB SNIa samples, purple and orange, respectively. We note 
that the MC and BBB samples distributions almost completely overlap one other. 

are different, the changes may be too small to be captured by BNN 
uncertainties. 

6.2.2 BNN uncertainties as a proxy for selection cuts? 

We further study the distribution of classification uncertainties for 
samples selected with different cuts. 

First, we check the behaviour of uncertainties with simulations. 
Uncertainties are distributed with a peak at low values and a de-
creasing long tail. We find that as the sample is refined through cuts 
in redshift, SALT2 convergence, and others, the maximum uncer-
tainty is reduced. For example, if the simulated sample passes loose 
selection cuts and then a JLA-like cut is applied, the maximum un-
certainty in the distribution reduces from 0.37 to 0.26 in MC dropout 
and from 0.34 to 0.25 in BBB. We do not find a significant change 
in the median distribution since it is dominated by small uncertainty 
values. 

For the DES-SN 5-year data we show the distribution of classi-
fication uncertainties in Figure 7 with different selection cuts (see 
Section 2.3.1). As selection cuts are applied, the maximum uncer-
tainties reduces for both methods as in simulations. 

We highlight an interesting behaviour seen for MC dropout clas-
sification uncertainties. We find that this method assigns high uncer-
tainties to candidates that do not have a secured redshift and candi-
dates that are filtered with the multi-season cut. While the model was 
trained to use host galaxy redshifts, it can provide a classification 
for objects using a default value provided, here an assigned redshift 
of −9. While these candidates are clearly outliers (the redshift pro-
vided for classification is -9) and can be eliminated using simple 
cuts, this could indicate that MC dropout uncertainties are indicative 
of out-of-distribution candidates. Importantly, many of these high-
uncertainty candidates are classified with probability larger than 0.5 
which, without selection cuts, would end up in our photometric sam-
ple if no selection cuts were applied. We do not see this behaviour in 
the BBB model. 

The multi-season veto and redshift availability cut effectively elim-
inates the light-curves producing the high-uncertainty peak for MC 
dropout. After these cuts, the most impactful cut for higher uncertain-
ties is linked to the SALT and JLA quality cuts. This is not surprising 
since these cuts restrict the SN properties range to the ones for normal 
SNe Ia. 

In summary, we find that BNN methods behave differently when 
classifying out-of-distribution candidates defined as light-curves 

without redshift. Interestingly, the high-uncertainty peak found for 
the MC dropout method in Figure 7 reflects a possible interpretabil-
ity of these uncertainties. This interpretability could help to quickly 
identify the presence of anomalies in the dataset which were not in 
the training sets of the model. 

For current surveys, our candidate samples are small enough to 
easily identify out-of-distribution events using feature distributions. 
However, for future surveys such as Rubin LSST this may prove 
difficult given the expected detection of 10 million transient can-
didates per night. Here we find that BNN uncertainties from MC 
dropout scheme can provide an indication whether there are out-of-
distribution events in a given candidate sample and further selection 
cuts may be required. 

7 CONCLUSIONS

In this work we train Type Ia vs. non Ia classification models using 
large realistic DES-like simulations and apply them to DES-SN 5-
year data. 

We introduce pre-processing of DES-SN light-curves for accu-
rate photometric classification. This includes selection of light-curve 
time-span, photometry quality cuts and selection cuts to limit out-of-
distribution candidates that are not included in the training set (e.g. 
AGNs). 

We present samples classified with host galaxy redshifts using 
SNN Recurrent Neural Networks and explore the use of Bayesian 
Neural Networks. We introduce the use of ensemble predictions for 
SN classification. We find that selecting SNe using an ensemble of 
models is more robust and stable than any single model. 

Using host galaxy spectroscopic redshifts, we select a Baseline 
DES-SNIa sample of 1,863 photometrically identified Type Ia SNe. 
This sample can be used for astrophysical studies of the properties 
of SNe Ia and their environments. For cosmology, we apply JLA-
like cuts and select 1, 484 photometrically classified SNe Ia. This 
sample is more than three times larger than the DES-SN 5-year 
spectroscopically confirmed SN Ia sample and covers a larger redshift 
range. Most of the spectroscopically identified SNe Ia in DES-SN 
are included in this photometric sample. These 1,484 photometrically 
identified SNe Ia are currently the largest single-survey high-quality 
SN Ia sample and is being used for studies such as rates and SNe Ia 
host-galaxy properties. 

We find that the properties of the SNe Ia in our Baseline DES-Ia 
sample are reproduced in the simulations. We anticipate that with 
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Figure 7. Uncertainties obtained with the two BNN methods (MC and BBB) for the DES-SN 5-year candidate sample, through different selection cuts: 
multi-season filtering, redshifts, SALT2 convergence and JLA-like cuts; and our photometrically identified sample (filled histograms). We show the number of 
events in the y-axis in log scale. MC dropout uncertainties seem to identify those out-of-distribution candidates that have no redshift information (black line) or 
are filtered multi-season events. This secondary peak drives the mean uncertainty behaviour for MC dropout in Figure 4. 

further refinements (improved host galaxy libraries and more accu-
rate dust models), the agreement between the simulations and the 
data will improve. 

Additionally, we explore the use of uncertainties provided by 
Bayesian Neural Networks for identifying out-of-distribution can-
didates and defining representative training sets. We highlight some 
of the BNN pitfalls and the difficulty of comparing classification un-
certainties between variational inference methods. We find that the 
MC dropout BNN provides potentially interpretable uncertainties 
for out-of-distribution event detection and improving the photomet-
ric sample. This work is the first known application of two BNN 
methods on real astrophysical data for classification tasks. 

This work is part of the DES-SN 5-year cosmology analysis. We 
have optimised simulations, the SNN architecture, as well as de-
veloped data pre-processing methods. These methods are a revision 
from those presented in Vincenzi et al. (2021) where contamination 
is found to be less than 1.4% for photometrically classified samples. 
We find that photometric quality is key for robust classification, and 
an improved sample can be expected from using high-quality Scene 
Modelling Photometry (Brout et al. 2019). 

For future surveys such as LSST, photometric classification will 
be key to fully harness the power of these surveys. Photometric clas-
sification with host redshift information will enable using large, low-
contamination, high-quality samples for measuring cosmological pa-
rameters. Potentially, MC BNN could provide useful information to 
filter transient samples in large surveys. Extensions to this work in-
clude photometric classification without redshift, which will assist in 
the allocation of follow-up resources for host galaxy redshift acquisi-
tion (such as Time-Domain Extragalactic Survey TiDES; Frohmaier 
et al. in prep, Swann et al. 2019) and for other astrophysical studies. 
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We provide in https://github.com/anaismoller/DES5YR_ 
SNeIa_hostz: (i) the SNANA and/or Pippin configuration files to 
reproduce simulations in this paper, (ii) configuration files and scripts 
to re-train SNN classifications models (SNN is an open source frame-
work available in GitHub), and (iii) analysis code in python to repro-
duce plots and results. Sample classification probabilities are avail-
able in Zenodo https://doi.org/10.5281/zenodo.5904368. 
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APPENDIX A: UNCERTAINTIES AND FITTED
PARAMETERS

In Section 5.2 we explored the interpretability of BNN uncertainties. 
We concluded that this interpretation was not straight forward from 
our results. Here we extend this discussion by exploring possible 
correlations with other light-curve properties derived from a SALT2 
fit in Figure A1. 

In general, we find that uncertainties tend to be larger for the data 
when compared with simulations. The uncertainties in BBB method 
varies more with the parameters. 

We note that the classification uncertainties are large for red and 
high stretch SNe in the DES 5-year sample. The median classification 
probability is also lower for these candidates. If the uncertainties are 
epistemic due to a smaller training set, then they would be large for 
the ends of the normal SNe Ia SALT2 parameter distributions since 
training sets have fewer such candidates. However, we do not find 
this behaviour. Another possible effect could be that bluer SNe Ia 
are more easily standardisable as previous literature suggests and 
thus their classification is more robust (Kelsey et al. 2021; Brout & 
Scolnic 2021). However, as this tendency is only observed in data 
and not simulations, no conclusion can be confidently drawn. 

The peak magnitude in i-band behaviour in data agrees with that 
of the SNR of the light-curve. Brighter candidates are classified with 
higher confidence than fainter ones. However, as in the previous 
Section we do not see such a behaviour in the simulation. 

While the correlation between supernova properties and classifi-
cation uncertainties are interesting to explore, they are difficult to 
interpret since multiple effects could be contributing to the uncer-
tainties. Tests based on simple physical systems could provide hints 
towards further interpretability, such as recent work by Caldeira & 
Nord (2020). 

APPENDIX B: DES 5-YEAR PHOTOMETRICALLY
SELECTED SNE IA

A Table with photometrically classified SNe Ia from all selection 
methods with their respective probabilities for a subsample of DES 

5-year data is provided at https://doi.org/10.5281/zenodo. 
5904368. Samples are selected using � larger than 0.5 for each 
method plus selection cuts. 
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Table B1. Example of SNN classification probabilities for DES 5-year candidates. A full list of classification probabilities for all DES 5-year candidates that are 
selected for any of the samples in this paper is found in https://doi.org/10.5281/zenodo.5904368. We show probabilities for baseline Recurrent Neural 
Network (RNN) in Section 4) and Bayesian Neural Networks methods MC dropout (MC) and Bayes by Backprop (BBB) in Section 5. For each method we 
provide classification probabilities rounded in two decimals for five different SNN initialisation seeds, �0 = 0, �1 = 55, �2 = 100, �3 = 1000, �4 = 30469 and the 
ensemble average probability of these five seeds ���0. 

IAUC RNN MC BBB 
�0 �1 �2 �3 �4 ���0 �0 �1 �2 �3 �4 ���0 �0 �1 �2 �3 �4 ���0 

DES17S2gpk 0.99 0.95 0.99 0.99 1.00 0.98 1.00 0.96 0.98 0.98 0.99 0.98 0.97 1.00 0.92 0.99 0.98 0.97 
DES14S2bck 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES14S2anv 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES15S2mji 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES13X3woy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES14S2aoi 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES13C3xhy 0.73 0.99 1.00 0.32 0.00 0.61 0.82 0.99 0.54 0.94 0.60 0.78 0.46 0.82 0.85 0.98 0.63 0.75 
DES15X3dyt 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES14E1gvc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES13S2ead 0.99 1.00 1.00 1.00 0.98 0.99 1.00 0.98 1.00 1.00 0.99 0.99 0.99 1.00 0.98 0.98 0.98 0.99 
DES16S1byw 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES16E2bp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES15E1nzd 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES16X3enk 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES16X3hy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES16X3hi 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES15C2mcu 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES13X1hxs 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES13X1bama 0.99 0.98 0.99 0.99 1.00 0.99 0.95 0.94 0.92 0.96 0.94 0.94 0.88 0.88 0.66 0.93 0.89 0.85 
DES17C2acb 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES16C3bab 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES17E2elx 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES14E2fyd 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES16C3bq 0.97 0.99 0.79 0.31 1.00 0.81 0.95 0.83 0.91 0.94 1.00 0.93 0.78 0.95 0.69 0.94 0.87 0.85 
DES15C3mes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES15C3meu 1.00 0.99 1.00 1.00 0.98 0.99 1.00 0.97 0.90 0.89 0.99 0.95 1.00 0.98 0.89 1.00 0.98 0.97 
DES16X3brw 0.79 0.02 0.35 0.02 0.25 0.29 0.99 0.94 0.96 0.97 0.71 0.92 0.91 0.95 0.64 0.86 0.73 0.82 
DES14X1tbo 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 
DES15X3dyv 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES16E2dcg 0.71 0.01 0.50 0.33 0.56 0.42 0.95 0.98 0.94 0.95 0.93 0.95 0.88 0.86 0.75 0.69 0.96 0.83 
DES16E2dch 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES15C2iuv 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES13X2gnl 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES16E1byy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES15E2mhj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES14E2cmo 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES14E2hhu 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES13E1aftw 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES14C2ocp 1.00 1.00 1.00 0.98 1.00 0.99 0.99 1.00 0.99 1.00 0.99 0.99 1.00 0.99 0.83 0.99 0.95 0.95 
DES13X2jdk 1.00 0.97 0.99 0.99 0.99 0.99 0.99 0.97 0.99 0.98 0.96 0.98 0.98 0.98 0.96 0.95 0.98 0.97 
DES14E2clm 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES17C3blq 0.01 1.00 0.96 0.32 0.99 0.66 0.94 1.00 0.79 0.35 0.29 0.67 0.93 0.75 0.96 0.96 0.18 0.76 
DES16E2blm 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES15X3auw 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES15X2mey 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES15C3odz 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES14C3oce 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.73 0.99 0.89 0.99 0.98 0.92 
DES15X2mfa 0.99 0.99 0.99 0.89 0.99 0.97 0.99 0.97 0.97 0.94 0.95 0.96 0.93 0.98 0.94 0.93 0.96 0.95 
DES16S2buz 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES16C3fhz 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES17C2emh 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES17E1bmf 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES17C3ivv 0.87 1.00 0.63 0.96 1.00 0.89 0.81 0.99 0.98 0.92 0.90 0.92 0.99 0.99 0.99 0.98 1.00 0.99 
DES17E1blu 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 1.00 0.98 0.98 0.98 
DES14S2frj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES17E2bmb 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES17C1ify 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DES16X1drk 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Figure A1. Distribution of classification uncertainties for DES 5-year data (maroon) and simulation (grey) using the two BNNs, MC dropout and Bayes by 
Backprop. We show uncertainties as a function of SNR of the third brightest point in the light-curve, redshift, colour, stretch and peak �-band magnitude. The 
median and 68 percentile are shown as a dashed line and filled coloured area. Data is shown as diamonds coloured by the median probability in that parameter 
bin and a maroon coloured area representing the 68% percentile of the distribution. 
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