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Abstract
Thermal resolution (also referred to as temperature uncertainty) establishes the minimum discernible temperature
change sensed by luminescent thermometers and is a key figure of merit to rank them. Much has been done to
minimize its value via probe optimization and correction of readout artifacts, but little effort was put into a better
exploitation of calibration datasets. In this context, this work aims at providing a new perspective on the definition of
luminescence-based thermometric parameters using dimensionality reduction techniques that emerged in the last
years. The application of linear (Principal Component Analysis) and non-linear (t-distributed Stochastic Neighbor
Embedding) transformations to the calibration datasets obtained from rare-earth nanoparticles and semiconductor
nanocrystals resulted in an improvement in thermal resolution compared to the more classical intensity-based and
ratiometric approaches. This, in turn, enabled precise monitoring of temperature changes smaller than 0.1 °C. The
methods here presented allow choosing superior thermometric parameters compared to the more classical ones,
pushing the performance of luminescent thermometers close to the experimentally achievable limits.

Introduction

Much testing; accuracy and precision in experiment; no
guesswork or self-deception. Martha Marquardt, redacting
the biography of the German scientist Paul Ehrlich, whom
she served as secretary, credits these words to the father of
chemotherapy and 1908 Nobel laureate in Physiology or
Medicine1. This quote, in a sharp yet elegant way, sum-
marizes good practice in scientific investigation. The
availability of accurate and precise tools is key to avoid
self-deception during experimentation, but it also allows
to capture a snapshot of elusive phenomena that could go
otherwise unnoticed. Despite its young age, the field of

luminescence thermometry is no exception to this pursuit
for ever higher precision and accuracy.
In luminescence thermometry, temperature-induced

changes in the spectroscopic properties of an ensemble
of probes (e.g., dye molecules, metal complexes, or
nanoparticles) are harnessed to remotely obtain a thermal
readout of the environment with which the probe is in
contact. This technology has strong appeal, among other
fields, in the biomedical context, as demonstrated by its
applications to study intracellular temperature, determine
physical properties of biological tissues, and detect dis-
eases under in vivo conditions2–5. As it happens with any
expanding sphere of knowledge, during the use of this
sensing technology some complications started to be
observed and solutions began to be proposed6–8. For
instance, irreproducibility in the synthesis of luminescent
species or erroneous readouts caused by photon
attenuation induced by biological tissues have been
abundantly addressed9–14. Another class of conundrums,
which pertain to the conceptual level and to data post-
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processing, have been only pragmatically and less sys-
tematically dealt with. As a result, the field of lumines-
cence thermometry is repleted by the day with new
luminescent probes but few are the improvements at the
methodological level; that is, with the exception of a
handful of recent works involving multiparametric read-
outs and machine learning-based regression models15–17.
By exploring the use of dimensionality reduction (DR),
our work fits in this frame of underexplored data pro-
cessing methods, catering to researchers whose goal is to
maximize the performance of a luminescence thermo-
metry approach.
At the base of the comparison between luminescent

thermometers (LThs) are widely accepted figures of merit,
which allow us to rank thermometric approaches18.
Among them, temperature uncertainty (also referred to as
thermal resolution), δT, establishes the minimum tem-
perature difference detected by a LTh under specific
experimental conditions. Its definition is given by19:

δT ¼ ∂T
∂Δ

� δΔ
where δΔ is the uncertainty in the determination of the
thermometric parameter Δ (i.e., the spectroscopic para-
meter that provides the thermal readout). δT hence
estimates the statistical uncertainty (precision) of the
thermometric approach of interest. Moreover, it provides a
normalized value that can be compared regardless of the
nature of the chosen luminescent thermometer and
thermometric parameter. It justifies, therefore, its exis-
tence as a figure of merit. The researchers are left to
investigate and select the most appropriate thermometric
parameter that minimizes δT. This can be a relatively
simple task for some LThs (e.g., for luminescence lifetime-
based LThs), but it is not so straightforward when multiple
temperature-dependent spectroscopic parameters are pre-
sent (i.e., the so-called multiparametric LThs).
Traditionally a trial-and-error approach has been used

to identify the parameter that is most sensitive towards
temperature. Maturi et al. demonstrated that such plan of
action often leads to an underperformance of the ther-
mometer20. The authors showed that a more reasonable
approach is to select parameters that linearly depend on
the temperature and build a multiple linear regression
model. This approach constitutes certainly an advance-
ment, yet the human component still heavily governs the
decision making in the selection of thermometric para-
meters to build the linear regression model. Its applic-
ability is also limited to parameters with a linear
dependence on temperature. And there is always the
possibility of error increment due to the collinearity of
dependent variables. A more generally applicable strategy
that does not require a preventive identification of specific
parameters is currently lacking; a gap that likely cripples

the real potential of most proposed thermometric
approaches.
Dimensionality reduction (DR) methods can help in this

context. Simply put, DR is the transformation of data
from a high-dimensional space into one with lower
dimensionality such that the final representation retains
most of its meaningful properties. DR techniques gained
momentum in the last couple of years thanks to the
generation of high-dimensionality data21,22, and are at the
basis of applications involving machine learning including
voice recognition, pattern identification, and noise
reduction23–25. Because the calibration of a luminescent
thermometer generates large datasets (e.g., intensity vs.
several wavelengths at different temperatures), extending
DR approaches to luminescence thermometry is a natural
step to identify the numerical quantities that better cor-
relate with temperature. However, only few examples of
DR methods applied to luminescence thermometry have
been reported15–17, Lewis et al., for instance, obtained a
thermal readout through a long short-term memory
neural network trained with a combination of raw spectral
and time-resolved luminescence data obtained from
quantum dots15. Šević et al., on the other hand, used
principal component analysis to infer the temperature
from the luminescence of Sr2CeO4:Eu

3+ nanopho-
sphors17. Both studies, however, built regression models
based on a single calibration dataset. Thus, thermal
resolution or repeatability could not be determined, pre-
venting quantitative assessment of the complete readout
improvement through figures of merit.
In this work, we show how DR can enhance the per-

formance of luminescence thermometry based on near-
infrared (NIR) emitting rare-earth nanoparticles (RENPs)
in the biological temperature range (31–45 °C). Specifi-
cally, we show that linear and non-linear DR methods
improve the precision of the thermometric approach
compared to a classical ratiometric approach. Extension
of the data treatment to datasets gathered for the
temperature-dependent NIR emission of Ag2S semi-
conductor nanocrystals (SNCs) confirms the general
applicability of the proposed methods.

Results
Nanoparticle selection
The water-dispersible RENPs acting as luminescent

thermometers (Fig. 1a–d) were purposely designed to
maximize the number of temperature-dependent variables
at play (Fig. 1e, f). These include variations of relative
intensity between transitions arising from different ions
and/or within a single manifold (i.e., changes in the relative
intensity of Stark components), as well as possible spectral
shifts. This is a challenging situation for the selection of
the most sensitive (hence most precise) thermometric
parameter in a classical way since several changes occur
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simultaneously. Even an experienced researcher in the
field might struggle to select the best integration intervals
and/or properly deconvolute the signals, let alone choos-
ing a combination thereof. The RENPs were prepared
adapting a previously developed approach (see details in
Supporting Information) and have a core/shell/shell/shell
architecture (Fig. 1e) that aims at covering the broadest
NIR wavelength range (Fig. 1f, S1)26.
Preference was given to a NIR-emitting system because

of the relevance of this wavelength range for biomedical
applications27. Signals arising from Er3+, Yb3+, and Nd3+

were observed throughout the whole 850–1600 nm range
under 790-nm excitation. These signals arise from direct
excitation of Er3+ and Nd3+ as well as energy transfer (ET)
processes occurring between ions (Fig. 1e). Aside from
NIR downshifting emission, UC photoluminescence under
the same excitation wavelength was observed (Figure S2).
The RENPs have a bipyramidal morphology (Fig. 1b), with
characteristic sizes of (42 ± 2) and (51 ± 3) nm for their
minor and major axis, respectively (Fig. 1c). Since the as-
prepared RENPs are hydrophobic, they were transferred to

distilled water by NOBF4-mediated removal of oleic acid
molecules coordinated to the RENPs surface, followed by
decoration with citrate molecules (Fig. 1a, b). Citrate
molecules imparted colloidal stability to the individually
dispersed RENPs (Fig. 1d). As expected, the relative
intensity of the emission bands arising from the different
rare earth ions changes sizably when passing from an
organic solvent (here hexanes) to water (Fig. 1f). This is a
consequence of the different vibrational energy featured by
the solvent molecules, which has also been shown to
determine the thermometric performance of RENPs28.
Note that no optimization of the composition of the dif-
ferent shell was attempted, given that the goal of this study
was not to obtain the best performing system.

Experiment
To determine the behavior of the RENPs under tem-

perature variations, the experimental setup depicted in
Fig. 2a was used (see Materials & Methods for further
details). It entails the use of a quartz cuvette filled with an
aqueous dispersion of the RENPs placed in a sample holder
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Fig. 1 The selected RENPs. a Scheme of the steps followed to transfer the as-synthesized hydrophobic RENPs to water. DMF = N,N-
dimethylformamide and cit3– = citrate ion. b Image obtained with a transmission electron microscope (TEM) of the as-synthesized (left) and water-
dispersed (right) core/shell/shell/shell RENPs along with c a size distribution histogram for the minor and major axes of the bipyramidal RENPs and
d hydrodynamic size distribution derived from dynamic light scattering measurements. TEM scale bars are 200 nm. e Scheme showing the
architecture and composition of the various volumes of a RENP along with partial energy level scheme of the doping rare-earth ions. Absorption
processes under 790 nm excitation are depicted as vertical yellow arrows, emissions as vertical purple arrows, ET as black curvy arrows, and non-
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after transfer to water (right)
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where the temperature can be externally controlled. A
thermocouple was inserted in the cuvette, with its tip
immersed in the RENP dispersion. A 790 nm laser diode
was used to excite the RENPs just below the tip of the
thermocouple. The proximity of the tip to the laser path
minimizes discrepancies between the actual temperature of
the dispersion in correspondence of the laser path and the
one picked up by the thermocouple. The power density on
the sample was kept at a value that allowed the minimiza-
tion of heating induced by photothermal effects
(2.5–3.0W·cm−2, see Table 1).
The first part of the experiment consisted in calibrating

the thermometers measuring their fluorescence signal as a
function of temperature. Thus, with the aid of the heat
controller, the temperature of the system was varied from
31 to 45 °C with a step of 1 °C (Fig. 2b). In each of the
15 steps, 100 luminescence spectra were recorded after
the temperature stabilized—i.e., when fluctuations were
smaller than 0.05 °C. The representative time interval in
which these acquisitions took place is shown in the inset
of Fig. 2b. For each of the 15 temperatures, 100 values of
the elected thermometric parameter were thus obtained
along with a meaningful estimation of the associated
intrinsic error (taken here as the standard deviation of the
parameter). Note that this large dataset (1500 spectra in
total, along the path of much testing mentioned above) is

also necessary to reliably employ the DR approaches. Such
a large dataset, in turn, is important in the estimation of
the thermal resolution.
The second part of the experiment aimed at comparing

the quality of the thermal reading provided by the cho-
sen thermometric parameters. To do so, a new set of
data was obtained varying the temperature of the system
from 36.2 to 37.2 °C with a step size five times smaller
than the one used during the calibration (i.e., 0.2 °C).
Note that the reliability of luminescent thermometers is
not generally tested with such small temperature incre-
ments. During the whole process, both the reading from
the thermocouple (Fig. 2c) and the luminescence signal
were recorded for comparison. The rationale being that
the parameters with the best performance would better
resemble the reading provided by the thermocouple in a
precise fashion.

Comparison of the approaches
Classical approach
The thermal response of the RENPs used in this work is

summarized in Fig. 3, which contains a scheme of the
RENPs (Fig. 3a) along with the average luminescence
spectra corresponding to 31 and 45 °C (Fig. 3b). As
expected, the sample presents a sensitivity of the same
order of magnitude of those generally reported for
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Table 1 Summary of the experimental conditions and relevant parameters for each of the three sets of measurements

Sample Exposure time [s] Slit width

[μm]

Beam area

[cm2]

Power density

[W cm−2]

SNR at

31 °C

SNR at

45 °C

Heating when laser on

[°C]

RENPs 3 200 4.9·10−2 2.8 230-77 225-76 0.08

Ag2S SNCs 2 200 4.9·10−2 1 83 8 N/A

For RENPs, the two SNRs values for each temperature are extracted for the strongest Nd3+ emission and Er3+ emission, respectively
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rare-earth doped NPs (which is much lower than, e.g.,
Ag2S SNCs with emission in the NIR)29,30. Indeed, in our
data, only a slight increment in the intensity of the Er3+

emission band centered at 1550 nm is observed over the
tested temperature range—a behavior similar to the one
previously observed in Er3+-containing NIR luminescent
thermometers29. Thus, following the classical route of
(informed) guesswork to select the thermometric para-
meter, there are three reasonable options: (i) the inte-
grated emission, I1550, of Er3+, (ii) the luminescence
intensity ratio, R1, between the integrated emissions of
Yb3+ + Nd3+ around 1000 nm and the 1550 nm emission
band of Er3+, or (iii) the ratio, R2, between the integrated
emissions of the 1330 nm band of Nd3+ and the 1550 nm
band of Er3+. By calculating the average value and stan-
dard deviation of these parameters from the 100 mea-
surements at each step of the calibration, one obtains the
graphs in Fig. 3c–e. The histogram plots of the values
assumed by I1550, R1 and R2 during calibration are
included in Figure S3 for further inspection. All three
parameters have a linear dependence with temperature,
with slopes of 1.10 a.u.·°C−1, −0.00747 °C−1 and
−0.00243 °C−1 for I1550, R1 and R2, respectively. The
corresponding relative thermal sensitivities (Sr) were 0.6,
0.9 and 1.1% °C−1. These values are comparable with
those of other RENPs working in the NIR (Table S1).

Despite the similar linear behavior and relative sensi-
tivities, some of these parameters were associated with
higher uncertainty than others (as highlighted by the
difference in broadness of the histogram distributions in
Fig. S3). The thermal uncertainties of the three ther-
mometric parameters (I1550, R1, and R2) were calculated
(Fig. 2b−d, right y-axes) and, evidently, in the 31–45 °C
range they did not provide an average temperature
uncertainty lower than 0.15 °C. This quantity will be
treated as a reference for the output of the different DR
approaches. Note that while R2 had a higher relative
thermal sensitivity, it was accompanied by a higher
uncertainty (in the order of 0.3 °C). The reason being
that R2 had a lower signal-to-noise ratio than R1. This
result supports the observation that searching for para-
meters with higher sensitivity may not always lead to
better thermal readouts31,32.

DR-based approach
Before we discuss the application of DR to the dataset in

Fig. 3b, it is worth briefly mentioning the main methods
one could use. DR could proceed through (i) the removal
of redundant input features, which is generally achieved
by setting up a correlation matrix and verifying the
absolute values of off-diagonal entries which are closer to
the unity; or (ii) by the transformation of the input data,
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which has its focus on presenting the information with
more recognizable patterns21. A linear DR method entails
a transformation where a linear combination of the ori-
ginal variables is sought after (Fig. 4a). The well-known
algorithms of principal component analysis (PCA) and
multidimensional scaling (MDS) belong to the linear
class33. In the category of non-linear transformation-
based DR approaches fall instead t-distributed stochastic
neighbor embedding (t-SNE), locally linear embedding
(LLE) and isometric mapping (Isomap)33,34. For the sake
of our discussion, we will focus our attention on PCA and
t-SNE for two reasons: (i) they are, respectively, good
representatives of DR approaches based on linear and
non-linear transformations of the input data and (ii) they
do not require a high density of data points to perform
well. The latter point is important because in a calibration
one usually selects a well-defined step to move from one
temperature to another. The spectra corresponding to in-
between temperatures, however, are not measured. Thus,
if the method is extremely dependent on a high density of

data points (as is the case for LLE and Isomap), the pro-
jection of the dataset onto a space of lower dimension
may not work well in these smaller ranges of temperature.
To give a detailed account of PCA and t-SNE, we refer

the reader to the Materials & Methods Section, where
their algorithms are described. A more in-depth descrip-
tion of how they work can be found in published litera-
ture33,35. We nonetheless present here general statements
about their operative principles. In general, the collected
p-dimensional dataset xj (j = 1… p) is mutually correlated
and the datapoints form a p-dimensional ellipsoid. PCA
allows to represent the collected dataset in a diagonalized
basis set. The respective mutually orthogonal p eigen-
vectors are the different principal axes (i.e., principal
components) of the ellipsoid and represent a measure for
the variances along the different directions xj. This is the
most convenient basis to describe the dataset. In t-SNE,
on the other hand, the concept is to assume a model
probability distribution of the dataset and then verify how
much a measured data point deviates from the data point
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expected according to the model of probability distribu-
tion. This difference is the Kullback-Leibler divergence
and must be minimized.
In our system, after applying PCA to the calibration

dataset, one finds that 22 variables (principal components)
are needed to account for 90% of the variance of the
original data (Fig. S5). The high number of PCs needed is
justified by the insertion of the first-order derivative of the
spectra as input for the DR routine—an inclusion moti-
vated by its power to correct for background effects on
the signal36. However, to have a one-to-one comparison
with the previous parameters, we decided to proceed with
the analysis using only the first principal component
(PC1). In addition, while the other PCs could have been
considered for a multiple regression model, the fact that
they did not present an unequivocal relationship with
temperature (i.e., they are not invertible) could narrow the
temperature range in which the model works well (Fig.
S6). PC1, on the other hand, was invertible with tem-
perature in the whole range in which the calibration was
measured and alone accounted for the majority (63%) of
the variance of the dataset. When projecting the calibra-
tion dataset into the direction of this component, one
finds the behavior depicted in Fig. 4c. A quasi-linear
dependence of PC1 with the temperature is observed. By
considering the intrinsic error in its determination, an
average thermal uncertainty of 0.09 °C is achieved (right
axis of Fig. 4c).
On the other hand, when applying t-SNE to the cali-

bration data, a careful balance between the attention given
to the local and global aspects of the calibration needs to be
achieved. This is done by carefully tuning the value of a free
parameter called perplexity. Such parameter is a measure of
information and can be viewed as a knob that sets the
number of effective nearest neighbors37. As a general rule
of thumb, one can assume that the perplexity should be of
the order of the square root of the total number of mea-
surements (in our calibration,

ffiffiffiffiffiffiffiffiffiffi
1500

p � 39)34. In our case,
however, we have discovered that a slightly lower per-
plexity of 35 yields a better clustering of the points corre-
sponding to the 15 temperatures. When applying the
t-SNE algorithm to our experimental dataset with an out-
put dimension of 2, the dependence with temperature of
the first coordinate (t-SNE1) of the low dimensional
dataset found in Fig. 4d is observed. For the dependence of
the second coordinate see Fig. S7. A parabolic behavior was
observed and, similarly, by considering the standard
deviation of the parameter t-SNE1, the thermal uncertainty
was evaluated (right axis of Fig. 4d). In this case, it seemed
to deviate from a constant value, increasing from 0.05 °C to
0.15 °C in the 31–45 °C range. Yet, upon comparison with
the thermometric parameters chosen by visual inspection
(I1550, R1 and R2), the first coordinate of both PCA (PC1)
and t-SNE (t-SNE1) performed better in terms of thermal

resolution in the explored temperature range. The histo-
gram plots of the values assumed by PC1 and t-SNE1
during calibration were also included in Fig. S4 for further
inspection.

Quality-check
While DR-based approaches yield more precise cali-

brations, their true impact on thermal sensing might be
more easily verified with a quality check experiment,
wherein changes as small as 0.2 °C take place (Fig. 2c). To
that end, we compared the readings provided by the
parameters chosen with the usual approach (I1500, R1, and
R2), the two DR-based parameters (PC1 and t-SNE1), and
the one retrieved using the multi linear regression
approach proposed by Maturi et al. (hereafter MLR,
Fig. 5) obtained using a combination of I1500, R1, and R2.
The smoothed curves of each readout – obtained by

applying a Savitzky-Golay filter with a 40-points window
—are included as black lines to guide the eyes of the
reader. In accordance with our expectations, the reading
from PC1 and t-SNE1 were less noisy than the ones from
I1500, R1, and R2. This demonstrates that the improvement
in terms of uncertainty is factual and not just an accident
of approximations in the calculations and/or model fit-
ting. It should be noted that, in contrast, the MLR
approach does not lead to a noticeable improvement of
the precision in this case. The likely reasons being (i) the
underlying assumption in MLR that I1500, R1, and R2 are
the best parameters to summarize the thermal depen-
dence of the RENPs, and (ii) the error inflation caused by
the collinearity of these parameters. The latter issue is a
well-documented problem in statistical literature38. DR
techniques, however, have recently been shown to be
effective in solving it39,40.
Another aspect of the thermal readout which the DR-

based approach improved was the proximity to the value
provided by the thermocouple (taken as the gold stan-
dard). This is especially curious if one compares the
goodness of the linear fits of the calibration datasets found
in Figs. 3c and 4c. If one had to judge the accuracy of R1

and PC1 based on how close these lines were to the points
in the 36–37 °C range, then R1 should be the most
accurate parameter. However, when put to the test with
extra data (Fig. 5), that was not found to be the case. The
reading from R1 provided an average deviation of 0.36 °C.
The one of PC1, however, provided 0.13 °C: a 3-fold
enhancement in accuracy. Thus, to summarize the
improvements observed so far, we calculated two new
quantities for each parameter: (i) the standard deviations
of its thermal readout from its smoothed curve, σsm and
(ii) the standard deviations of its thermal readout from the
one provided by the thermocouple, σtc. They are,
respectively, indicators of the precision and accuracy of
the thermal reading. The results are included in Fig. 5b,
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and they reveal that the approaches based on DR mini-
mize both quantities in these experimental conditions.
At this point, one could wonder if DR-based approaches

affect the repeatability of the thermometric approach. In
Section S6 (Fig. S8) it is demonstrated that there is little to
no effect to this figure of merit. The reason being that the
lack of hysteresis is a pre-requisite to apply DR to lumi-
nescence thermometry. If this condition is respected,
there is little room for improvement in the value of the
repeatability.

Extension to other luminescent thermometers
To demonstrate how DR-based approaches could work

for other types of luminescent thermometers, we have
repeated the experiments described in the previous sec-
tions using Ag2S SNCs (Fig. 6a). To increase the level of

challenge, we performed them under a regime of low
excitation intensity that results in a low overall signal
intensity. Such conditions are particularly relevant for
biomedical applications where, to avoid damage, the
excitation power density needs to stay below specific
safety levels. Moreover, photon extinction by biological
tissues strongly reduces both the number of excitation
photons reaching the luminescent probe (nanoparticle)
and the number of emitted photons collected by the
detection systems41. Swieten et al. have demonstrated that
when working in conditions of low signal-to-noise ratio,
the thermal uncertainty is affected and the performance of
the thermometer is compromised42. It is therefore desir-
able to improve the quality of the thermal readout in such
circumstances. Figure 6b contains the luminescence
spectra (averaged over the 100 measurements) of Ag2S
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SNCs at 31 and 45 °C. Therein, the level of noise in the
spectra is much more noticeable than in the case of
RENPs (Fig. 3b). When performing thermometry with the
usual parameters (i.e., integrated intensity, peak position,
and intensity ratio), one finds that the most precise one is
the integrated intensity I1000-1400 which provides an
uncertainty of 0.13 °C (Figs. S9, S10). Its calibration shows
a non-linear dependence with temperature (Fig. 6c) which
can be fitted to a third-order polynomial.
When applying the DR approaches to the calibration

dataset, non-linear thermal dependences of the new
variables, PC1 and t-SNE1, are also observed. Similar to
I1000-1400, their thermal dependences were fitted to third-
order polynomials. However, in these cases, they both
provided average uncertainties of 0.06 °C in the 31–45 °C
range (Fig. S10). When compared to the usual intensity-
based approach, such values constitute a 2-fold
improvement in the precision of the readout. This bet-
terment of the performance can be verified by comparing
the readouts provided by the classical thermometric
parameter (I1000-1400) with the ones of PC1 and t-SNE1
during the quality check (Fig. 6d, f, h). As illustrated in
Fig. 7, although the accuracy remains substantially

unvaried, the fluctuations of the thermal readout are
significantly reduced.

Discussion
In this work we have dealt with the problem of having

precise measurements with rare-earth-based thermo-
meters that are typically characterized by a reduced
thermal sensitivity. Via the acquisition of multiple lumi-
nescence spectra of the selected RENPs at given tem-
peratures, we were able to account for the experimental
error in the determination of several thermometric
parameters. When applying dimensionality reduction
methods, new thermometric parameters were found, and
an improvement of the thermal resolution was observed.
Specifically, while the best RENP’s thermometric para-
meter identified in a classical way (i.e., visually inspecting
the spectra) provided a thermal uncertainty of 0.15 °C, the
best DR-based parameter lowered this value to 0.09 °C.
This difference in value was shown to be factual in a
comparison of readouts in an experiment where the
temperature was slowly changed in steps of 0.2 °C. The
best DR-based parameter provided a less noisy estimation
of temperature and was able to detect smaller changes in
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temperature. A similar scenario was observed with
Ag2S SNCS, where a 2-fold improvement – from 0.13 to
0.06 °C – of the average precision over the explored
temperature range was achieved and verified with a
quality check experiment. The reason for such superiority
resides in the better ability of DR techniques to dis-
criminate between wavelength ranges that correlate dif-
ferently with temperature (Section S8, Figs. S11 and S12).
The herein obtained values outperform those previously
reported in works that applied neural networks to infer
temperature43,44. The conclusions taken of this proof-of-
concept study are envisaged to spur researchers to employ
better thermometric parameters than the ones used so far,
placing emphasis also on data analysis instead of only on
the synthesis of novel materials.
This pursuit for reduced thermal uncertainty is parti-

cularly relevant in the biological and biomedical context.
Firstly, because the signal-to-noise ratio of the detected
light is usually lower, and the quality of the thermal
sensing is consequently poorer particularly in vivo.
Secondly, because several biological processes are asso-
ciated with temperature changes in the order of 1 °C and
sometimes below 0.1 °C45. The latter is the case, e.g.,
with brain response during seizures. Hence, to properly
and accurately monitor these processes (particularly
their onset), thermal resolutions smaller than 0.1 °C are
desirable.
Concerning the readout accuracy, our work suggests

that PCA and t-SNE can have a positive or neutral effect,
with the possibility of improvement depending on the
goodness and statistical significance of the fit of the
thermal dependence of the new variables. The data
transformation, which inevitably leads to a combination
of intensity- and shaped-based features of the spectra,
can also play an important role in this sense. Indeed,
previous results suggest that a mix of such features is

beneficial for the accuracy of the models43. Given a
proper pre-processing procedure, the approach pro-
posed in this study can be extended to different lumi-
nescent thermometers. In this sense, since the first and
second-order derivatives of the spectrum are widely used
to reduce dispersion, baseline and/or multiplicative
effects36, the code that we uploaded to Zenodo46 allows
the user to freely select if they intend to apply such pre-
processing to their input data for the DR routines (see
also Fig. S13).
At this point of the discussion, a comment about the use

of the relative thermal sensitivity, Sr, as a figure of merit in
DR-based approaches is due. While generally in the lit-
erature methods are compared based on this figure of
merit, we believe that such comparison could be mis-
leading here because the DR algorithms that we utilized
involved transforming the original data into quantities
that did not always possess an easily interpretable physical
meaning. Case in point, the new thermometric parameters
resulting from DR could in principle change their sign as
temperature varied, i.e., they could cross the zero
boundary (as it was the case of PC1 for Ag2S SNCs,
Fig. 6e). While this does not constitute a problem for the
computation of δT, it does for Sr. In fact, if n is a para-
meter whose value is zero at a temperature Tc, then the
definition of Sr = |dn/dT | /n implies that its value will be
indeterminate at Tc. At a first glance, having a high
relative thermal sensitivity seems a desirable aspect. Yet, it
does not necessarily carry the meaning that one intuits:
One can have extremely high sensitivity but poor thermal
resolution, hence leading to a poor thermal readout32.
What ultimately matters in a calibration is not necessarily
the percentual change in the value of a parameter, but
how sensitive the detection system is to the changes
induced in this parameter. In Fig. S14, it is verified that
the DR-based approaches provide from 2 to 10-fold
improvements in the value of Sr for RENPs. But, for the
reasons explained above, i.e. DR-based parameters are not
physical quantities strictly speaking, the comparison
between their Sr values and the ones provided by the
classical approach is misleading. Hence, we believe that
δT is the most suitable figure of merit in this context and,
really, more in general in luminescence thermometry.

Materials and methods
Characterization
The morphology and size of the RENPs were investigated

using a transmission electron microscope (TEM, JEM1400
Flash (JEOL) microscope). Dynamic light scattering (DLS)
measurements were performed on a Malvern Zetasizer
Ultra. For recording the photoluminescence, a 0.2-cm
optical path cuvette was filled with a RENP dispersion in
either ODE or water. The cuvette was placed in a qpod 2e
(Quantum Northwest, Inc.), closed using a teflon cap with
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a hole. A thermocouple was inserted in the cuvette so that
its tip was just above the laser path in the dispersion, hence
having the minimum temperature discrepancy between
the actual temperature along the optical path and the one
measured by the thermocouple. A 790-nm laser was used
to excite the RENPs or Ag2S SNCs. The parameters and
conditions used for the acquisition of the spectra are
summarized in Table 1. For recording the NIR emission of
RENPs and Ag2S SNCs, two 850-nm long-pass filters
(Thorlabs FEL850) were placed along the emission path to
remove the scattered radiation. The emitted radiation was
spectrally sorted by a high-brightness monochromator
(Shamrock 163, Andor) equipped with two gratings:
i) blaze = 1700 nm, 75 gmm−1 for NIR emission and
ii) blaze = 500 nm, 300 gmm−1 for UC (visible) emission.
The spectrally sorted emission was detected with an
infrared photomultiplier (Hamamatsu H1033C).
As observed in Figure S15, after stabilization the qpod

maintains the temperature within the cuvette stable within
± 0.08 or ± 0.047 °C if we consider the standard deviation
or the difference between the minimum and maximum
temperature value, respectively. The used thermocouple
has a resolution of 0.001 °C. The two thermometer cali-
brations and quality check experiments (RENPs and Ag2S
SNCs in the NIR) were performed with static dispersions
in deionized water.

Data pre-processing
Before analyzing the data, a set of pre-processing steps

were taken. Firstly, the values of intensity corresponding
to the wavelengths in which no significant signal had been
observed were manually removed. Specifically, the ranges
of 900–940, 1102–1288, 1380–1464 and 1627–1700 nm
were ignored for the RENPs and the ranges of 900–1000
and 1400–1600 nm for the Ag2S SNCs. The spectra were
then mean-centered and stored in a matrix of 1500 rows
(number of points in the calibration) and 257 (RENPs) or
312 (Ag2s SNCs) columns (number of wavelengths in
which the intensity was measured)36. The columns of
such matrix were then, in turn, SNV (Standard Normal
Variate) normalized. A second matrix was created cal-
culating the first order derivative (obtained through a
Savitzky-Golay matrix of radius 9 (RENPs) or 30 (Ag2S
SNCs) and order 2) of the original spectra. It also had its
columns SNV normalized. This second matrix was meant
to highlight changes in the shape of the spectra36. For
each sample, their two corresponding matrices were then
joined and set as the input (calibration) data in the DR
models. For the sake of simplicity, this will hereafter be
called Mstd.

Principal component analysis (PCA)
PCA is a technique that transforms, up to a certain

degree of accuracy, an amount of p correlated variables

into k uncorrelated ones (where k < p). These new vari-
ables are called principal components and they retain as
much as possible of the variance present in the original
dataset. Its principles are found in linear algebra and,
simply put, it finds the principal axes of the ellipsoid
generated by the set of data points. In our context of
luminescence thermometry, we applied PCA through the
following steps:

(i) As all the columns of the Mstd are already centered
around zero, calculate the covariance matrix
through:

Covi;j ¼
X1500
q¼1

Mstd
i;q M

std
j;q

1500� 1

(ii) Calculate the eigenvalues and eigenvectors of the
covariance matrix.

(iii) Sort the eigenvectors according to their eigenvalues
in the descending order. This organizes them
according to the variance of the original data that
they can account for.

(iv) With a previously stablished criteria (for instance,
accounting for 90% of the variance of the original
data), find the minimal number, K, of eigenvectors
satisfying it.

(v) Calculate the projection, PC, of the standardized
luminescence spectrum measured at temperature Tj

into the r-th eigenvector through:

PCj
r ¼

XN1

q¼1

vqrM
std
q;j

where vqr is the q-th coordinate value of the r-th
eigenvector.

(vi) After obtaining the values of PC for all 1500
measurements and K eigenvectors, study their
dependence with temperature.

If one assumes, therefore, that, in a calibration, the only
significant physical property that is changed is the tem-
perature, then it is highly likely that the variations in the
first principal components take place due to temperature
changes. When compared to the usual approach of
manually selecting thermometric parameters, one is then
safer from the seed of doubt that if a different input fea-
ture had been selected, the performance for thermometry
would be better.

t-distributed stochastic neighbor embedding (t-SNE)
t-SNE is a technique that assumes a model probability

distribution and verify how much the measured data point
deviates from the expected. This difference is called the
Kullback-Leibler divergence and must be minimized. In
the context of luminescence thermometry, one can pro-
ceed as follows:
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Similarities in the original space are given by:

ρij ¼ Exp � xi � xj
�� ���� ��2

ϵ2

 !
=
X
k≠l

Exp � xk � xlj jj j2=ϵ2� �
where ε corresponds to a neighborhood radius.
On the other hand, similarities in the lower-dimensional

space are given by

qij ¼ 1þ yi � yj
�� ���� ��2� ��1

=
X
k≠l

1þ yk � ylj jj j2� ��1

The lower-dimensional embeddings yi are computed by

minimizing the function
P

i;j ρij log ρij=qij
� �

. The para-

meter ε is indirectly connected to what we called per-
plexity parameter in the main text. The higher the
perplexity the smaller the number of clusters.

Projecting the data onto the reduced space
While for PCA the projection of the experimental

dataset onto the reduced space was done through cal-
culations of internal products, for t-SNE the matter was
not so straightforward. Non-linear approaches were
needed to approximate the function that maps the input
data into the newly found space47. For such, the
“DimensionReduction” function of Wolfram Mathema-
tica has been applied.
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