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Abstract

This paper studies the local and a global dynamics of two-sector models of endogenous

growth with economy-wide external effects and taxes on capital and labor. The local analysis

classifies the parameter space depending on the number of stationary solutions and local

stability of equilibria. Taxes on labor and subsidies to education may determine the existence

of poverty traps and indeterminacy. The global analysis shows that if externalities and taxes

are not too big then the equilibrium path is monotone and therefore a continuous Markov

equilibrium can be defined.
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1 Introduction

This paper is concerned with the local and global dynamics of a wide class of two-sector

endogenous growth models with economy-wide external effects and distortionary taxation.

Our analysis comprises the Lucas [22] framework to which we have added new elements. First,

we include economy-wide external effects in the production function of the physical good and

in the law of motion of physical capital. A number of authors have studied the influence of

external effects in models of economic growth; however, most of them have limited the scope

of these external effects to the sector-specific level (see Ben-Gad [2], Benhabib, Meng and

Nishimura [4] and Benhabib and Nishimura [6]). The inclusion of sector-specific instead of

economy-wide external effects simplifies the analysis, but implies that the external effects at

the aggregate level are not taken into account. In contrast, our model includes economy-wide

external effects on the average level of physical and human capital. The presence of economy-

wide external effects has been used to explain some of the observed empirical regularities.

Lucas [22] explains the wage differences for workers in different countries through the external

effect on the average level of human capital. Garćıa-Belenguer and Santos [15] use this sort

of external effects to explain the different growth rates of physical capital, human capital and

output. Another reason to include economy-wide instead of sector-specific external effects

is that the decisions in the educational sector seem to have a global effect that affects the

productivity of the whole economy and that, given the small relative size of the educational

sector, surpass the sector-specific level.

Besides external effects, our analysis also considers distortionary taxes on physical capital

and labor returns and subsidies to education. Several papers have studied the effect of taxes

and externalities on local dynamics, but most of them have considered these effects separately.

For instance, Bond, Wang and Yip [8], Mino [26] and Raurich [31] study the influence of taxes

on local dynamics, while Benhabib and Gali [3], Benhabib and Perli [7] and Chamley [10]

include external effects in their analysis. Thus, the influence of economy-wide external effects

coupled with distortionary taxes on the dynamics of growth models remains to be explored

(see Ben-Gad [2] for a local analysis with taxes and sector-specific external effects). Our

analysis differs from previous ones in that we study both the local and the global dynamics

of distortionary taxation together with economy-wide external effects. Our results show that
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the influence of taxes on labor and subsidies to education on the growth rate of the economy

depends on the parameter structure of the economy. More precisely, we find that a rise in

taxes and/or subsidies to education increases the growth rate of the economy in most cases.

But if the production function of human capital exhibits constant returns to scale, sufficiently

high values of the elasticity of intertemporal substitution may entail that the rise in taxes

and/or subsidies lowers the growth rate of the economy, provided that external effects are

high enough.

A main concern of the literature on local dynamics has been the necessary conditions for

the existence of indeterminacy. An equilibrium is indeterminate if there is a continuum of

equilibrium paths that converge to the same stationary solution, implying that the agents may

coordinate in different equilibria with different growth rates. Bond, Wang and Yip [8] prove

the existence of indeterminate equilibria under asymmetric taxation of production factors

that implies factor intensity reversals. However, the necessary conditions for the existence of

indeterminacy that they find require that the size of the asymmetries is big. Raurich [31] in-

troduces non-productive government spending and obtains indeterminate equilibria for more

realistic parameter values. Among the studies that include sector-specific external effects

Ben-Gad [2] considers distortionary taxes; both Ben-Gad [2] and Raurich [31] obtain indeter-

minacy for values of the elasticity of intertemporal substitution less than one. The functional

specification of our model differs from these three works. First, we consider economy-wide

instead of sector-specific external effects. Secondly, Bond, Wang and Yip [8] and Raurich

[31] include physical capital in the production of human capital. This assumption implies

that in order to have a balanced growth path (BGP henceforth) no external effect can be

present. Therefore, in order to allow for the existence of a BGP in which capital stocks grow

at different rates, we do not consider physical capital in the production of human capital.

Our local analysis considers the possibility of more than one stationary solution through

the existence of decreasing returns to scale in the effort devoted to schooling. This sort of pro-

duction function for the human capital technology has already been used by Alonso-Carrera

[1] and generates multiple stationary solutions. Also, Ladrón de Guevara, Ortigueira and

Santos [20] and [21] obtain multiple stationary solutions in two-sector models with leisure.

Our results show that there could be two stationary solutions if the elasticity of intertemporal

substitution is sufficiently high (greater than one). Regarding the stability of the station-
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ary solutions, indeterminacy is only possible if the elasticity of intertemporal substitution is

greater than one. The more realistic case occurs when there are two steady states. If there is

only one steady state we need higher values of the external effects in order to have indeter-

minacy. We obtain indeterminate equilibria for a broader parameter range than in Benhabib

and Perli [7] but we need a higher elasticity of substitution than in Ben-Gad [2] and Raurich

[31]. Finally, our analysis shows that there is a wide region of the parameter space in which

the economy displays no stationary solution. Moreover, we find that subsidies to education

and taxes on labor may determine whether the economy belongs to this region or not.

Besides the local properties of the stationary equilibrium, we also offer a qualitative global

study of the equilibrium dynamics for points arbitrarily far from the stationary solution.

Global dynamics is more complex to analyze than local dynamics since linearizations are not

effective and closed form solutions are usually not available. Research on global dynamics

has usually been concerned with studying the existence of Markov -or recursive- equilibrium.

Since the work of Lucas and Prescott [23] several authors have studied this existence problem

in one sector models (e.g., Lucas and Stokey [24], Coleman [11], Greenwood and Huffman

[17] and Datta, Mirman and Reffett [13]). In these papers the most common method of proof

relies on the monotonicity of the equilibrium path. Conditions that insure the monotonicity of

the equilibrium dynamics in two-sector models are less well known. For instance, Ortigueira

and Santos [30] and Santos [32] have shown the lack of existence of Markov equilibrium for

non-optimal economies with one and two sectors. Finally, since the work of Benhabib and

Nishimura [5], several other works have obtained conditions for the existence of cycles in

overlapping generations models (e.g., Michel and Venditti [25]) or in the presence of external

effects (e.g., Venditti [34] and Nishimura and Venditti [29]).

Most of the research on global analysis have focussed on one-sector models. Results for

two-sector models are in Caballé and Santos [9] and Xie [35]. Caballé and Santos [9] show

the monotonicity of the solution in an optimal two-sector growth model. Xie [35] considers

an specific parametrization of the model in Lucas [22] with the human capital externality and

obtains the closed form solution of the model. In our paper we obtain results on the global

dynamics of two-sector endogenous growth models with economy-wide external effects and

distortionary taxation that include the frameworks in [9], [22] and [35]. More precisely, we

give a set of sufficient conditions that guarantee the monotonicity of the equilibrium solution
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and that allow to define a Markov equilibrium. These sufficient conditions require that the

size of the external effects and taxes on capital is not too big. We also show that if there are

no external effects there exits a Markov equilibrium for any tax scheme.

The rest of the paper is organized as follows: Section 2 describes the model, solves the

competitive equilibrium and defines the BGP. Section 3 is concerned with the global dynamics

and the existence of Markov equilibrium. Section 4 is devoted to the local analysis and contains

the main results concerning the uniqueness and stability of the BGP. Section 5 concludes. The

proofs of the main results are relegated to the appendix.

2 The Model

The model economy is assumed to consist of a dynasty of representative agents. The number

of agents at period t is represented by Lt and its law of motion is given by the exogenous

process Lt = Loe
nt, where n ≥ 0 is the population growth rate. Each agent obtains income

from the working activities, the rents of capital and the subsidies to education. This income

is devoted to consumption, investment and tax payments. The stream of consumption yields

utility represented by the function,

∫ ∞

0

c1−σ
t

1− σ
e−ρtLt. (1)

Note that σ > 0 represents the inverse of the elasticity of intertemporal substitution, ct is

per capita consumption in period t and ρ is the discount factor.

The production of the aggregate good is described by a standard Cobb-Douglas neoclas-

sical production function which includes two external effects, corresponding to the possible

influence of the average levels of physical and human capital on the level of productivity. More

precisely,

Yt = A(ke
t )

ϕ(he
t )

φKα
t (Ltutht)

1−α (2)

where Yt is real aggregate output, Kt is the total stock of physical capital in the economy and

ht is the average level of human capital. All agents are endowed with one unit of time which
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can be allocated between working and schooling activities. Then, ut is the average fraction

of time devoted to work whereas (1− ut) is the average fraction of time devoted to schooling.

Physical capital per unit of labor is represented by kt = Kt/(Ltut). Superscript e refers to the

external or spillover effects, which are not directly taken into account for the decisions made

by the individual. The size of the external effects is represented by the coefficients ϕ and φ,

which are supposed to be non-negative. Note that there are constant returns to scale at the

individual level, and 0 < α < 1. The term A represents the level of productivity available to

the economy.

At each date t, output in the economy may be either consumed or invested:

Yt = Ltct + It. (3)

The stock of physical capital in the economy evolves according to the following law of

motion,

K̇t = q1−ε
t (he

t )
ε It − πKKt. (4)

Here πK > 0 denotes physical capital depreciation and qt is the level of exogenous tech-

nological progress for physical capital accumulation. This exogenous process represents the

current state of the technology for producing capital goods and expresses the idea that new

vintages of capital may be more productive than existing ones; e.g., see Hulten [18] and

Greenwood, Hercowitz and Krusell [16]. We assume that variable qt evolves according to the

law qt = q0e
gt for g ≥ 0 and for all t. Also, the process qt is embodied more efficiently the

greater the average level of human capital. This effect is represented by the externality he
t

and the parameter ε ∈ [0, 1) reflects its size. This type of external effect has been employed in

the empirical investigation carried out by Garćıa-Belenguer and Santos [15]. The influence of

human capital on the adoption of new technologies conveys the idea that education enhances

one’s ability to receive and understand information, and that this information processing is

necessary to use new technologies. There are several reasons to believe that this adoption

process is not carried out at the individual level and that some degree of spillover effects are

present (see Nelson and Phelps [28]).

The technology for the production of human capital is represented by a linear function
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in the stock of human capital. Thus, the stock of human capital evolves according to the

following law of motion,

ḣt = B (1− ut)
γ ht − πhht (5)

where B > 0 represents the level of the productivity available and (1 − ut) is the average

fraction of time devoted to schooling. Since γ ∈ (0, 1] there may be decreasing returns to

scale. Human capital depreciates at the rate πh > 0.

Assumption 1 : 1− ϕ− α > 0

Assumption 2 : B − πh > 0

Assumption 1 implies that there are decreasing returns to scale in physical capital. As-

sumption 2 is a necessary condition to have positive growth in the human capital sector.

At every moment in time each dynasty must satisfy the following budget balance so that

total expenditures on consumption and investment cannot be greater than total income.

Ltct + It = (1− τK)rtKt + (1− τl)wtuthtLt + ξwt(1− ut)htLt + Tt. (6)

In (6) total income is the sum of after tax returns to physical capital (1− τK)rtKt, after

tax returns to labor (1 − τl)wtuthtLt, subsidies to education ξwt(1 − ut)htLt and transfers

from the government Tt. τK ∈ [0, 1) represents the tax rate on the returns to physical capital

rtKt, while τl ∈ [0, 1) is the tax rate on returns to labor. The competitive salary in efficiency

units is wt and ξ ≥ 0 represents subsidies to education. The next assumption restricts the set

of feasible values for taxes and subsidies. In the absence of this condition the agent has no

incentive to work and devotes all the time to schooling.

Assumption 3 : 1− τl − ξ > 0.

2.1 Competitive Equilibria

Definition 1 : A competitive equilibrium for this economy is a path for the quantities

{ct, It, ut,Kt, ht, Tt}∞t=0, prices {rt, wt}∞t=0 and constant tax rates and subsidies τK , τl and

ξ such that taking prices as given:
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(i) The representative agent chooses the path for consumption ct, investment It and effort

devoted to working activities ut for each period t that maximize (1) subject to (2)-(6).

(ii) The firm chooses the amount of physical capital Kt and labor Nt that maximize profits at

every period t,

max
Kt,Nt

{A(ke
t )

ϕ(he
t )

φKα
t N1−α

t − rtKt − wtNt}. (7)

(iii) Markets clear and agent’s beliefs must be consistent at every period t,

ke
t = kt, he

t = ht, Kt = Kt, Nt = uthtLt, Tt = τKrtKt + τlwtuthtLt − ξwt(1 −

ut)htLt.

Definition 2 : A balanced growth path for this economy is a competitive equilibrium such

that all the variables {ct, It,Kt, ht, Tt} always grow at a constant rate and ut remains constant.

Let ηY , ηc, ηI , ηK and ηh be the growth rates of output, consumption, investment, physical

capital and human capital in the BGP. Then, using (2)-(4) we obtain the following conditions,

ηY = ηI = ηc + n (8)

ηK = [g(1− ε) + (1− α + φ + ε)ηh]
1

1− ϕ− α
+ n (9)

ηc =
g(1− ε)(ϕ + α)

1− ϕ− α
+

1− α + φ + ε(ϕ + α)
1− ϕ− α

ηh. (10)

The growth rate of human capital in the BGP is ηh = B(1−u∗)γ−1−πh, where superscript

∗ represents a steady state value.

Assumption 4 : (1− σ)ηc(0) < ρ− n < ι(γ) + (1− σ)ηc(1).

Here ηc(0) and ηc(1) are the values of the growth rate of consumption when u = 0 and u = 1.

ι(γ) is the derivative of the production function of human capital evaluated at u = 1; when

γ = 1 this derivative is Bht while if γ < 1 its value is ∞. The first inequality in assumption

4 plays the role of a transversality condition, and it is equivalent to condition (12) in Uzawa

[33]. If this condition is not satisfied (1 − σ)ηc(0) > ρ − n and (1) may take an unbounded

value. Conversely, the second inequality gives a lower bound for the productivity of the human
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capital sector. If investment in human capital is not profitable then an interior BGP is not

achieved.1

The problem of the agent can be solved by maximizing the current value Hamiltonian,

H =
c1−σ
t

1− σ
+ λt

{
q1−ε
t (he

t )
ε [(1− τK) rtKt + (1− τl) wtuthtLt + ξwt (1− ut) htLt

+Tt − Ltct]− πKKt}+ µt {B (1− ut)
γ ht − πhht}

where λt and µt represent the costate variables. Given the utility and production functions,

the maximization problem is concave and the maximum principle provides necessary and

sufficient conditions that define the set of solutions to the problem.

The first-order conditions provide a system in variables ct, Kt, ht and ut. For conve-

nience this system is presented in the appendix. To facilitate the analysis we follow Mul-

ligan and Sala-i-Martin [27] and define two new stationary variables. These variables are

zt = [Kϕ+α−1
t L1−ϕ−α

t h1−α+φ+ε
t q1−ε

t ]
1

ϕ+α−1 and at = Ltctq
1−ε
t (ht)

ε

Kt
. Using (8)-(10) one can

check that both ratios remain constant along the BGP. Moreover, taking logarithms and dif-

ferentiating the expressions above we arrive to the following reduced system in variables z, a

and u.

.
zt

zt
=

ε− 1
1− ϕ− α

g − (n + πK)− 1− α + φ + ε

1− ϕ− α
[B (1− ut)

γ − πh]

+Azϕ+α−1
t u1−ϕ−α

t − at
.
at

at
= n + (1− 1

σ
){(1− ε) g + πK} −

ρ

σ
+

[
(1− τK) α

σ
− 1

]
Azϕ+α−1

t u1−α−ϕ
t +

(1− 1
σ

)ε [B (1− ut)
γ − πh] + at (11)

.
ut

ut
=

1− ut

(1− γ) ut + (ϕ + α) (1− ut)

{
B (1− ut)

γ−1 [(1− α + φ + ε) (1− ut)

+γut +
ξγ

1− τl − ξ

]
+ (ϕ + τKα)Azϕ+α−1

t u1−ϕ−α
t − (ϕ + α)at + (1− ε) g

−(1− α + φ + ε)πh + (1− ϕ− α) (πK + n)} .

1In section 4 and in the appendix we further investigate the influence of these two conditions on the existence

of a BGP.
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2.2 Calibration

We finally provide some baseline parameters which will be useful in future discussions. We let

the inverse of the elasticity of intertemporal substitution σ = 1, the discount factor ρ = 0.08

and the population growth rate n = 0.015. For the share of physical capital in the production

function of the physical good we take the value α = 0.35. In the law of motion of physical

capital we set the growth rate of the exogenous technological change to g = 0.02 and the

depreciation rate of physical capital to πK = 0.06. For the law of motion of human capital we

have chosen parameter values that imply a growth rate of human capital around 1 per cent in

the BGP, thus, we have B = 0.081, πh = 0.035 and γ = 0.4. All these parameter values are

quite standard [e.g., Lucas (1988)]. More controversial are the values of the external effects

ϕ, φ and ε. Regarding the external effects in the production function of the physical good, ϕ

and φ, there are many studies that have obtained estimates for these parameters, we follow

the work of Garćıa-Belenguer and Santos [15] and set ϕ = φ = 0.2. For the external effect

of the average level of human capital in the adoption of the exogenous technological progress

ε, there is not so much empirical evidence and we take the estimate of Costa Carpena and

Santos [12] for a sample of Latin American and OECD countries ε = 0.45. Finally we set the

values of the tax rates and subsidies to τK = τl = 0.2 and ξ = 0.05. This parametrization

implies that there is a unique BGP with u∗ = 0.76 and a growth rate for human capital of 1

per cent.

3 Global Dynamics

Before analyzing the local dynamics of system (11) in section 4, in this section we perform a

novel analysis of the global dynamics of growth models. This analysis exploits the homogeneity

of the Cobb-Douglas production function and allows us to derive some monotonicity properties

of the solution path. More precisely, we give a set of sufficient conditions that guarantee the

monotonicity of the solution trajectory at any point for t ≥ 0. We also show that these

conditions insure the existence of a Markov equilibrium. In the second part of this section we

give some examples of economies that do not satisfy our sufficient conditions and that may

display non-monotone dynamics.

For two sector models, global analysis has been carried out by Caballé and Santos [9] in an
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optimal version of Lucas [22] model. They prove, using the properties of the value function,

the monotonicity of the solution path. Also, Xie [35] obtains the closed form solution for

the Lucas [22] model. But his results are only valid for a specific parametrization since he

assumes that the share of physical capital is equal to the inverse of the elasticity of intertem-

poral substitution, in our model α = σ. The results presented in this section apply to the

three models mentioned above and include a wide class of growth models with economy-wide

external effects and distortionary taxes and subsidies.

Assumption 5 : γ = 1.

To simplify the analysis, we make assumption 5 and only consider the case of constant

returns to scale in the effort devoted to schooling.

To facilitate the analysis it is convenient to define the stationary variable xt = zϕ+α−1
t u1−ϕ−α

t .

This variable and assumption 5 allow us to define the growth rates of the variables as linear

functions in the reduced model. Taking logarithms and differentiating the definition of xt, we

obtain from (11) the following system,

ẋt

xt
= ∆x + Ωxxt + Σxut

ȧt

at
= ∆a + Ωaxt + at + Σaut (12)

u̇t

ut
= ∆u + Ωuxt − at + Σuut

where the parameters are defined in the appendix. System (12) is useful to summarize some

of the results in the literature on global dynamics. As pointed out above, Caballé and Santos

[9] study the model in Lucas [22] without external effects.2 Their parameter selection and the

absence of external effects implies that Σx = Σa = 0, it follows that system (12) can be solved

since now it is a triangular system. Regarding the work of Xie [35], if there are no taxes on

physical capital, his assumption on α implies that Ωa = Σa = Ωu = 0, and again system (12)

is triangular. Nonetheless, as taxes and spillover effects are introduced in the analysis, the

dynamics of the model becomes more complex and the methods used in these works are not

valid to study global dynamics.
2Caballé and Santos choose φ = 0, Lucas assumes φ > 0. Both have ϕ = ε = τK = τl = ξ = 0.
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We turn now to the study of system (12). The main result on monotonicity is stated in

theorem 1 and it enables us to prove the existence of a continuous Markov equilibrium in

theorem 2. The following set of assumptions on the parameter space will be used in the next

theorems.

Assumption 6 : σ > α(1− τK)

Assumption 7 : α > ε + φ

Assumption 8 : τK < −ϕ(ϕ+ε+φ)+(α−ε−φ)α(1−ϕ−α)
α(ϕ+ε+φ)+(α−ε−φ)α(1−ϕ−α) .

Assumption 6 sets an upper bound for the elasticity of intertemporal substitution. As-

sumption 7 requires that the sum of the external effects on the average level of human capital

is less than the share of physical capital in the production function. Assumption 8 sets an

upper bound for the tax rate on physical capital.

Our construct of the Markov equilibrium relies on the following result.

Theorem 1 : Under assumptions 1-8 if the Jacobian matrix of system (12) evaluated at the

steady state has at least one eigenvalue with negative real part, the equilibrium path is strictly

monotone in variables x, a and u. Moreover, at every initial condition ẋt, ȧt and u̇t have the

same sign for all t ≥ 0.

Proof: See the appendix.

The condition of one eigenvalue with negative real part implies that the manifold that

converges to the BGP has at least dimension 1. If there is more than one eigenvalue with

negative real part the equilibrium is indeterminate and there is a continuum of equilibrium

paths converging to the BGP. In any case, theorem 1 states the monotonicity of the equilibrium

trajectories at all points. In section 4 we provide the characterization of the stability of the

BGP and describe the set of parameter values that imply at least one eigenvalue with negative

real part. The bound imposed on τK by assumption 8 includes a wide range of values and in

the absence of external effects is 1. This means that taxes on physical capital alone are not

enough to have non-monotone dynamics or cycles and that some degree of external effects is

needed.
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A Markov equlibrium is a list of decision rules {a, u} that depend on the state variables

(K, h, L, q) such that every trajectory generated by these decision rules is a competitive equi-

librium. Given the utility function and the production functions we can define the state

variable as the ratio m = Kϕ+α−1h1−α+φ+εL1−ϕ−αq1−ε. Hence, if there is a continuous

Markov equilibrium the law of motion of variable m can be expressed by a continuous func-

tion ṁ = f(m).

Theorem 2 : Under assumptions 1-8 there exists a continuous Markov equilibrium for our

model economy.

Proof: See the appendix.

It is known from Coleman [11] and Greenwood and Huffman [17] that for one-sector

economies with flat tax rates on capital returns there always exists a continuous Markov

equilibrium. Theorems 1 and 2 imply that these results can be extended to the two-sector

economies considered in this section. We state this result in the next corollary.

Corollary 3 : Under the assumptions of theorem 2, if there are no external effects, that is

φ = ϕ = ε = 0, a continuous Markov equilibrium does exist for any tax scheme (τK , τl, ξ).

3.1 Counterexamples

Theorem 2 provides a set of sufficient conditions that guarantee the existence of a continuous

Markov equilibrium. In this subsection we construct three economies that do not satisfy

some of these conditions. Our aim is to evaluate the behavior of our model economy when

assumptions 5 to 8 are no satisfied. In examples 1 and 2 we consider two parametrizations

that do not satisfy assumptions 6 and 7. In example 1 we present an economy that displays

non-monotone dynamics while example 2 shows that if those assumptions are not satisfied, it

is possible to have closed orbits. In the last example we perform a computational experiment

of an economy in which assumption 5 is not satisfied and has decreasing returns to scale in

the effort devoted to education.
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Example 1

In this first example we consider the case γ = 1, σ = (1−τK)α and ε = 0. This parametrization

includes the case of Xie [35]3 and implies that assumption 6 is not satisfied. The main

difference between our economy and that of Xie is that, under the parametrization chosen by

Xie, it can be obtained a single differential equation for variable u which allows to characterize

the complete equilibrium path of the economy. In our case, this simple differential equation

in one variable cannot be obtained since there are other external effects (ϕ > 0) and taxes

(τK > 0).4

Lemma 4 : When γ = 1, σ = (1− τK)α and ε = 0, along the equilibrium path, the quantity

Ltctqt is always proportional to the capital stock Kt. Moreover, we have that at = −∆a =
ρ
σ + ( 1

σ − 1)(g + πK)− n for all t ≥ 0.

Proof: Substituting σ = (1− τK)α and ε = 0 in the second equation of system (12), one

obtains that the only value of a that satisfies the transversality conditions is at = −∆a for all

t ≥ 0.

From the previous lemma it follows that (12) reduces to the following planar system,

u̇t

ut
= ∆u+a + Ωuxt + Σuut

ẋt

xt
= ∆x + Ωxxt + Σxut

where ∆u+a = ∆u + ∆a. In figure 1 we show the phase diagram of this system.

Linearizing the new system around the steady state we can obtain the expression of the

discriminant Λ of the characteristic equation,

Λ = (x∗Ωx + u∗Σu)2 − 4x∗u∗(ΩxΣu − ΣxΩu).

Therefore, there will be complex eigenvalues only if the second term is negative. From the

signs of Ωx, Σx, Ωu and Σu it follows that there will be complex eigenvalues if φ, ϕ or τK

3Xie assumes σ = α < φ and ε = ϕ = τK = τl = ξ = 0.
4Using lemma 4 below and the parametrization of Xie, the differential equation on u is given by the last

equation of (12). It can be easily seen that if ϕ or τK are positive, xt enters the equation.
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are high enough. Also, when φ > α the coefficients of the characteristic polynomial are all

positive, implying that both eigenvalues have negative real part.

Now we consider the parametrization of the benchmark economy of section 2 with α = 0.3,

B = 0.09, ϕ = 0.09, σ = 0.24, γ = 1, ε = 0, φ = 0.4 and ξ = 0.1. It can be easily checked

that this economy satisfies that σ = (1 − τK)α and φ > α. These parameter values imply

that assumptions 7 and 8 are not satisfied either. Moreover, there is only one interior BGP at

u∗ = 0.6027 (see section 4 for more details) at which the eigenvalues of the Jacobian matrix

are complex and have negative real part, implying that the trajectories spiral in toward the

steady state (u∗, x∗). The equilibrium paths are represented in figure 1.

Let us consider now the state variable m = Kϕ+α−1h1−α+φL1−ϕ−αq. It follows from the

previous analysis and the definition of xt that, along any equilibrium path, the value of m

oscillates around the stationary value. Thus, the next proposition shows that there does not

exist a Markov equilibrium for this economy.

Proposition 5 : For the economy described in this example, there does not exist a Markov

equilibrium.

Proof: Let us define our candidate equilibrium function as ṁ = f(m). Since the station-

ary solution is a spiral sink, function ṁ = f(m) will circle around the steady state generating

an additional countable number of steady state equilibria. But this is not possible since point

(u∗, x∗) is assumed to be the only non-degenerate steady state equilibrium. The proof is

complete.

Example 2

In this example we present an economy whose equilibrium trajectories are closed-orbits. We

choose again γ = 1, ε = 0 and σ = (1− τK)α, but now we also assume α + ϕ = 1 and α = φ.

These two new assumptions imply that the production function of the physical good exhibits

constant returns to scale in physical capital and that the share of physical capital is equal to

the external effects on the average level of human capital. All these assumptions imply that

now xt is the state variable since xt = mt = htqt. Besides, Ωx = Σu = 0 entail that the planar
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system is,

u̇t = ut(∆u+a + Ωuxt)

ẋt = xt(∆x + Σxut).

We assume ∆u+a < 0 in order to have an interior steady state. This unique interior steady

state is located at (−∆x
Σx

, −∆u+a

Ωu
). Also, it follows from the expression of the discriminant in

example 1 that the eigenvalues of the Jacobian matrix at the steady state are purely imaginary,

which gives no information about stability. The phase diagram of this system is represented

in figure 2. The lines that define the stationary solution divide the region u > 0, x > 0 into

four quadrants.

The equations of this system are equivalent to the predator-prey equations of Volterra and

Lotka (see Hirsch and Smale [19, chapter 12]). From figure 2 it follows that each solution

curve (ut, xt) moves clockwise around the stationary solution.

Let us consider now a trajectory (ut, xt) starting at point u0 > −∆x
Σx

> 0 and x0 > −∆u+a

Ωu
>

0 in quadrant I. Following Hirsch and Smale [19, pp. 261], it can be proved that the trajectory

enters quadrant II, and similarly for other quadrants.

We propose the following function,

H(u, x) = ∆u+alogx + Ωux− (∆xlogu + Σxu)

defined for u > 0 and x > 0. By considering the signs of ∂H/∂u and ∂H/∂x it is easy to see

that the stationary solution (u∗, x∗) is an absolute minimum for H. Also, it can be checked

that H(u, x) is constant on the solution curves of our system, that is, Ḣ(u, x) = 0. It then

follows that H−H(u∗, x∗) is a Liapunov function and therefore (u∗, x∗) is a stable equilibrium.

We can then state the following theorem,

Theorem 6 : Every interior trajectory of the system considered in this example is a closed

orbit.

Proof: See Hirsch and Smale [19, theorem 1, pp. 262].

The previous theorem entails that for any given initial conditions (u0, x0) different from

(0,0) and (u∗, x∗), the economy will oscillate cyclically. This theorem enables us to prove
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in the next proposition that no Markov equilibrium exists for this economy. As pointed out

above x is now the state variable and it follows that, along any equilibrium path, the value

of x oscillates around the stationary value.

Proposition 7 : For the economy described in this example, there does not exist a Markov

equilibrium.

Proof: Same as for proposition 5.

Example 3

In this example we consider the parameter values of the benchmark economy presented in

section 2, except for σ = 0.2 and γ = 0.9. This parametrization implies that assumptions 5

to 8 are not satisfied. We perform a computational exercise for this economy and find out

that a continuous Markov equilibrium does exist since the computed equilibrium function

is continuous and monotone. Under the selected parametrization this economy displays two

stationary solutions, u∗1 < u∗2. The first equilibrium at u∗1 = 0.60 is indeterminate and the

second, at u∗2 = 0.99, is saddle path stable. In our exercise we compute the stable manifold

of the stationary solution at u∗2.

For the computation of the equilibrium we have used the method of reverse shooting. The

results are presented in figure 3, there m = Kϕ+α−1h1−α+φ+εL1−ϕ−αq1−ε is the state variable

of the economy and ṁ is the law of motion. From the results in figure 3 it follows that the

law of motion of the state variable is a continuous function of the states. It should be noted

that a computational experiment is not a proof of existence of Markov equilibrium, however,

when performing the experiment, we have have checked that the derivatives of the dynamical

system do not change sign. This supports the idea that a continuous Markov equilibrium does

exist for this economy.

4 Local Dynamics

In this section we complete the analysis of the dynamics of our model economy, focussing on

the local dynamics of system (11) and considering all the possible parameter values included
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in section 2. In this local analysis we characterize the regions of the parameter space that

yield determinate, indeterminate or unstable equilibria. Also, we describe the regions that

display none, one or more than one BGP. Our analysis is restricted to the case of interior

BGP’s. Notice that the analysis carried out in this section comprises the cases considered

in section 3 but it is not limited to them, since assumptions 5-8 are not considered here.

We divide this section into two parts. First, we study the existence and multiplicity of the

stationary solutions. Then, we investigate the stability properties of the stationary solutions.

4.1 Existence and Multiplicity of Stationary Solutions

To solve the BGP we impose the growth rates in system (11) to be zero. Then, substituting

the first two equations in the third one we obtain the following expression,

0 =
1− u∗

(1− γ)u∗ + (ϕ + α)(1− u∗)
{B(1− u∗)γ−1(

ξγ

1− τl − ξ
+ γu∗) (13)

+[B(1− u∗)γ − πh](Ψ + ε)(σ − 1) + g(1− ε)
(ϕ + α)(σ − 1)

ϕ + α− 1
− ρ + n}

where Ψ = 1−α+φ+ε
ϕ+α−1 .5 Equation (13) only depends on variable u∗, hence, the number of roots

of this equation gives the number of interior stationary solutions.

It can be easily checked that a corner solution for u∗ = 0 is not possible since this would

entail that utility is not maximized. Besides, under assumption 4, u∗ = 1 is not possible

either. Before stating the results on the number of roots of equation (13) we divide the

parameter space into different regions. We first define two reference values for the inverse of

the elasticity of intertemporal substitution.

σ∗1 =
ϕ + φ + ε(ϕ + α)

1 + φ− α + ε(ϕ + α)

σ∗2 = 1 +
B ξγ

1−τl−ξ + n− ρ

(πh −B)
[

1−α+φ+ε
ϕ+α−1 + ε

]
− g(1−ε)

ϕ+α−1(ϕ + α)

Notice that under assumption 1, σ∗1 ∈ (0, 1). For notational convenience we define the

parameter vector as θ ≡ {σ, ρ, n,A, φ, α, ϕ, ε, g, πK , πh, B, γ, τK , τl, ξ} and Θ as the space that
5Notice that Ψ < 0 and also |Ψ| > 1 whenever φ + ε > ϕ.
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contains all the possible values of θ. We divide Θ into the following subsets,

Θ1 = {θ ∈ Θ, s.t. σ > max {σ∗1, σ∗2}}

Θ2 =
{

θ ∈ Θ, s.t. σ∗2 < σ < σ∗1 and (1−γ)ξ
1−τl−ξ > [(Ψ + ε) (σ − 1)− 1]

}
Θ3 =

{
θ ∈ Θ, s.t. γ < 1, σ > σ∗2 and (1−γ)ξ

1−τl−ξ = [(Ψ + ε) (σ − 1)− 1]
}

Θ4 =
{

θ ∈ Θ, s.t. γ < 1 , σ ≥ σ∗2 , σ < σ∗1 and (1−γ)ξ
1−τl−ξ < [(Ψ + ε) (σ − 1)− 1]

}
Θ5 = {θ ∈ Θ, s.t. γ = 1 , σ < min {σ∗1, σ∗2} }

Θ6 =
{

θ ∈ Θ, s.t. γ < 1 , σ < min {σ∗1, σ∗2} , (1−γ)ξ
1−τl−ξ < [(Ψ + ε) (σ − 1)− 1]

and P (uc) = 0}

Θ7 =
{

θ ∈ Θ, s.t. γ < 1 , σ < min {σ∗1, σ∗2} , (1−γ)ξ
1−τl−ξ < [(Ψ + ε) (σ − 1)− 1]

and P (uc) < 0} .

P (u) is defined by the second term of (13) and its expression is given in the appendix by

equation (14). The roots of function P (u) in the interval (0,1) give the stationary solutions

u∗. In the appendix it is shown that P (u) is strictly convex whenever γ < 1. uc is the value

of u that makes zero the derivative of P (u). The next proposition determines the existence

and the number of stationary solutions for each parameter vector in Θ.

Proposition 8 : Under assumptions 1-4 the existence and uniqueness of the BGP is deter-

mined by one of the following three possibilities:

i) If θ ∈
6⋃

i=1
Θi there is one interior BGP.

ii) If θ ∈ Θ7 there exist two interior BGP’s u∗1 < u∗2.

iii) If θ ∈ Θ\
7⋃

i=1
Θi there is no interior BGP.

Proof : See the appendix.

From proposition 8 and the derivative of P (u), given by equation (15) in the appendix,

we derive the expression of uc,

uc =
(Ψ + ε)(σ − 1)− 1− ξ(1−γ)

1−τl−ξ

(Ψ + ε)(σ − 1)− γ
.
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This equation and proposition 8 imply, as in Alonso-Carrera [1], that there are three

necessary conditions for the existence of two BGP’s. The first is that the external effects of the

average level of human capital must be positive (φ > 0 or ε > 0) and high enough. The second

is that there must be decreasing returns to scale in the effort devoted to schooling (γ < 1).

The third condition is a sufficiently small value of σ. Other authors have obtained conditions

under which there are multiple stationary solutions in growth models. For instance, Ladrón

de Guevara, Ortigueira and Santos [20] and [21] show the existence of multiple stationary

solutions in two-sector models of endogenous growth with leisure.

In figure 4 we report some computational experiments to clarify the implications of propo-

sition 8. The parameter values considered in the experiment have been taken from the cal-

ibrated economy of section 2 except for σ, whose default value has been set to 0.5 in panel

b. In panel a we allow to vary parameters γ and σ while in panel b ξ varies instead of σ. It

follows from proposition 8 that there can not be multiple BGP’s for values of σ greater than

1. This comes from the fact that σ∗1 < 1 and therefore θ can not be in subset Θ7 if σ > 1.

This is illustrated in panel a and b of figure 4, there it is possible the existence of two interior

BGP’s for values of σ and γ less than 1. It is also worth noticing that, for plausible parameter

values, the region of the parameter space that yields no BGP is sizeable. Moreover, subsidies

to education ξ play an important role in determining the number of stationary solutions. In

panel b we can observe that for values of γ around 0.5, three different values of ξ in the interval

(0, 0.1) may imply three different situations. A value ξ = 0.02 entails a unique BGP, a higher

value ξ = 0.05 means two BGP’s and for the highest value of ξ = 0.1 no BGP does exist.

Finally, taxes on labor τl play a similar role to ξ in determining the number of stationary

solutions. This follows from equation (13), however, notice that if ξ = 0 the effect of taxes on

labor disappears.

Function P (u) is useful to understand the effect of taxes and subsidies on the growth rate

of the economy. From equation (14) in the appendix we have that both ∂(P (u∗))/∂ξ and

∂(P (u∗))/∂τl are positive. Using the sign of P ′(u∗) and the implicit function theorem we

have the following result.

Corollary 9 : The effects of taxes on labor τl and subsidies to education ξ on the value of

u∗ and therefore on the growth rate of the economy are determined by one of the following
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three possibilities:

i) If γ < 1 and there is only one interior BGP, ∂u∗/∂ξ and ∂u∗/∂τl are negative. There-

fore, an increase (decrease) in τl and/or ξ decreases (increases) u∗, implying that the growth

rate ηh at the BGP is higher (lower).

ii) If γ < 1 and there exist two interior BGP’s (u∗1 < u∗2), ∂u∗1/∂ξ and ∂u∗1/∂τl are positive

while ∂u∗2/∂ξ and ∂u∗2/∂τl are negative. Therefore, an increase (decrease) in τl and/or ξ

increases (decreases) u∗1 and decreases (increases) u∗2. This implies that the growth rate ηh at

the BGP is lower (higher) at u∗1 and higher (lower) at u∗2.

iii) If γ = 1 and there is one interior BGP, the sign of P ′(u∗) is positive if and only if

σ > σ∗1 (see the appendix). Therefore, if σ > σ∗1, ∂u∗/∂ξ and ∂u∗/∂τl are negative. This

implies that an increase (decrease) in τl and/or ξ decreases (increases) u∗ and the growth rate

ηh at the BGP is higher (lower). The opposite applies if σ < σ∗1.

Corollary 9 implies that changes in taxes on labor and subsidies to education may have

different effects on growth rates depending on the parameter values. If γ = 1 and the external

effects are high enough (σ∗1 is high) values of σ above or below σ∗1 entail that the effects of

the changes in τl and ξ work in opposite directions. If γ < 1 increases in τl and/or ξ have

a positive effect on growth rates as long as there is only one BGP. If there are two BGP’s

the sign of the effect for the BGP with lower u∗ is the opposite of the sign for the BGP with

higher u∗. Finally notice that again changes in taxes on labor have no effect if subsidies to

education are zero.

4.2 Stability of the Stationary Solutions

Once we have determined the number of stationary solutions for the different parameter

vectors, we study the local stability of the stationary solutions of system (11). We ignore in

our analysis set Θ6 since at those points the Jacobian is singular. Moreover, those points have

measure zero.

The competitive equilibrium solution is saddle path stable (i.e., the BGP is determinate)

if the Jacobian matrix of the corresponding linear system evaluated at the steady state has

two eigenvalues with positive real part and one with negative real part. If there are two

eigenvalues with negative real part there is a continuum of equilibrium paths that converge to
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the stationary solution (i.e., the BGP is indeterminate). If the three eigenvalues have negative

real part the steady state is a sink. Finally, if all the eigenvalues have positive real part the

system is unstable. The Jacobian matrix of the corresponding linear system at the steady

state is defined by matrix J∗,

J∗ =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,

where the elements of J∗ are given in the appendix. The eigenvalues of J∗ are the roots of

the characteristic equation

−λ3 + Tr (J∗) λ2 −B (J∗) λ + Det (J∗) = 0,

where B (J∗) = a11a22 + a33a22 + a11a33 − (a13a31 + a12a21+a32a23). If we apply Routh’s

theorem (see Gantmacher [14]), we have that the number of roots of the characteristic equation

with positive real part is equal to the number of variations of sign in the scheme,

−1, T r (J∗) ,−B (J∗) +
Det (J∗)
Tr (J∗)

, Det (J∗) .

The next proposition characterizes the signs of the eigenvalues of matrix J∗ for the different

values of the parameter vector θ. Before, we make the following two assumptions,

Assumption 9 : ηh > 0.

Assumption 10 : 2α + ϑ > φ + ε.

Assumption 9 requires that the growth rate of human capital in the BGP is positive.

Assumption 10 requires that the size of the external effects on human capital is not bigger

than twice the share of physical capital plus a positive constant ϑ, that is defined in the

appendix. Both assumptions together guarantee that the trace of J∗ is positive.6

Proposition 10 : Under assumptions 1-4 and 9-10 the local stability of the stationary solu-

tions is determined by one of the following three possibilities:
6If one of these two assumptions is not satisfied and Tr (J∗) < 0 our results are still valid if −B (J∗) +
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(i) If θ ∈
4⋃

i=1
Θi the Jacobian matrix has two eigenvalues with positive real part and one with

negative real part. Therefore, the stationary solution is determinate and locally stable.

(ii) If θ ∈ Θ5 the Jacobian matrix may have either three eigenvalues with positive real part or

one with positive real part and two with negative real part. Therefore, in the first case the

stationary solution is unstable and in the second the stationary solution is indeterminate

and locally stable.

(iii) If θ ∈ Θ7 the Jacobian matrix at u∗1 may have either three eigenvalues with positive

real part or one eigenvalue with positive real part and two with negative real part. The

Jacobian matrix at u∗2 has two eigenvalues with positive real part and one with negative

real part. Therefore, the stationary solution at u∗1 is either unstable or indeterminate

and locally stable. The stationary solution at u∗2 is determinate and locally stable.

Proof : See the appendix.

As already established in previous works, proposition 10 states that there is a unique,

saddle path stable BGP for values of the elasticity of intertemporal substitution low enough

(σ high enough). For values of γ < 1 the equilibrium is determinate as long as there is only

one BGP. This result differs from Benhabib and Perli [7], in their work they assume γ = 1 7

and find that it is possible to have only one stationary solution and indeterminate equilibria.

Proposition 10 shows that their result is only possible if γ = 1. If there are two BGP’s

proposition 10 states that the BGP with lower u∗ is either unstable or indeterminate while

the BGP with higher u∗ is determinate. It then follows that economies with two BGP’s display

Det(J∗)
Tr(J∗)

> 0. The following condition is sufficient for this to happen

γB

�
1 − γ

1 − u∗

�
u∗ +

ξ

1 − τl − ξ

�
− (φ + ε − α)

�
(a11 + a∗) +

(1 − τK)α
a11a

∗

u∗
(1 − u∗)1−γ − (ϕ + α)a∗γBε + a11a

∗α
1 − τK

σ

1 − γ

(1 − u∗)γ

< −(ϕ + τKα)a11ΨBγ − (ϕ + α)
1

σ
a∗γBε.

This condition implies that B(J∗) is greater than zero and holds for sufficiently low values of τK , ϕ and ε. The

definition of B(J∗) is provided in the appendix.
7Notice that they also assume ϕ = ε = τK = τl = ξ = 0 which implies that their parametrization corresponds

to sets Θ1 and Θ5 in our paper.
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a poverty trap. Moreover, the results obtained in the computations of figure 4 show that all

the economies computed with two BGP’s are in the case in which the steady state with lower

u∗ exhibits indeterminacy. Subsidies to education play an important role in determining the

existence of a poverty trap as panel b of figure 4 illustrates. There, it can be noticed that

an increase of the value of ξ may move the economy from a unique, saddle path stable BGP

to a region with two BGP’s and a poverty trap. Equation (13) implies that this same result

applies to taxes on labor τl.

In figure 5 we report four numerical experiments, assuming that γ = 1, in order to evaluate

the possibility of indeterminate equilibria when there is only one BGP. We consider B = 0.18,

the rest of the parameter values are the same as for figure 4. First, we should note that, as in

figure 4, there is a wide region of the parameter space in which there is no BGP. This region

includes values of σ > 1 (see panel a) if subsidies to education are high enough. For values

of σ < 1 the size of this region increases (see panel b, c and d). Regarding the region where

there exits a stationary solution, figure 5 shows where the BGP is unstable, saddle path stable

or indeterminate. Saddle path stability is guaranteed for values of σ high enough. Instability

seems to be related to values of the external effect of physical capital ϕ above 0.4 (see panels c

and d). Finally, indeterminate equilibria seems to be the less likely event. Panel d shows that

in order to have indeterminacy it is necessary to have values of the external effects φ and ϕ

above 0.4 and values of σ around 0.5. We have checked in several computational experiments

that if σ is above 0.7 there is no region displaying indeterminacy.

In summary, for values of the elasticity of intertemporal substitution high enough (σ > 1.5)

and plausible parameter values there is a unique, saddle path stable stationary solution. For

values of σ around 1, subsidies to education may determine whether the economy is in a region

with a BGP or not. For values of σ less than 1, poverty traps coupled with indeterminacy

are empirically plausible if there are decreasing returns to the effort devoted to schooling.

However, when there are constant returns in this effort indeterminacy is only possible for

large values of the external effects. In both cases a value of σ around 0.5 or lower is needed to

have indeterminacy. Finally, our numerical experiments also suggest that the region in which

no BGP does exist can not be excluded since its size is not negligible. These experiments

also find that taxes on labor and subsidies to education may play a role in determining the

number of BGP’s and the existence of poverty traps.
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These results differ from previous works. Benhabib and Perli [7] obtain indeterminacy only

for values of σ close to zero. The works of Ben-Gad [2] and Raurich [31] obtain indeterminacy

for values of σ greater that 1. In the first case this is due to sector-specific external effects,

in the second because of the presence of unproductive government spending coupled with

asymmetric taxation. The asymmetry in taxation or the sector specific-external effects may

produce factor intensity reversals that entail either instability or indeterminacy. In our case,

these factor intensity reversals are not present and the source of indeterminacy are economy-

wide externalities. The effect of these economy-wide externalities on local dynamics is more

complex and difficult to analyze and as we have shown imply different results on the existence

of indeterminate equilibria.

Before we end this section we devote a few lines to discuss the role played by assumption

10. If it is not satisfied the stationary solution in set
4⋃

i=1
Θi might be a sink (three eigenvalues

with negative real part). However, it can be easily shown that for the model of Benhabib

and Perli [7] the condition in footnote 6 is satisfied since then ϕ = τK = ε = 0. We have

also performed several computational experiments and found no case in which the stationary

solution was a sink.

5 Concluding Remarks

In this paper we have studied the dynamics of growth models with physical and human

capital accumulation, economy-wide external effects in the production function and in the

law of motion of physical capital, and distortionary taxes on physical capital and labor. The

analysis includes the study of both local and global dynamics. The study of global dynamics

has focussed on establishing the monotonicity of the equilibrium path and the existence of

Markov equilibrium. The competitive solution is monotone if the Jacobian matrix evaluated

at the stationary solution has at least one eigenvalue with negative real part and the size of

the external effects and taxes on physical capital is not too high. This monotonicity property

ensures the existence of a continuous Markov equilibrium. The analysis also shows that if

there are no external effects a continuous Markov equilibrium always exists for any feasible

tax scheme.

In the examples presented in section 3 we study the dynamics of three economies that
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do not satisfy our sufficient conditions. We find that higher elasticity of intertemporal sub-

stitution and higher external effects may entail non-monotonicity. Furthermore, one of our

examples shows that the existence of cycles cannot be ruled out.

The analysis of local dynamics in section 4 classifies the different regions of the parameter

space depending on the existence, the number and the stability of the stationary solutions.

We find that the local dynamics is determined by four sets of variables, the external effects,

taxes on labor and subsidies to education, the productivity of the human capital sector and

the elasticity of intertemporal substitution. The existence of two BGP and poverty traps is

possible for sufficiently high values of the elasticity of intertemporal substitution (greater than

1), the concavity of the human capital production function and the external effects. Also,

taxes on labor and subsidies to education may determine whether the economy displays one,

two or none stationary solution. Indeterminate equilibria is empirically more plausible when

there are two BGP and poverty traps. If there is only one BGP it is necessary higher values

of the external effects and values of the elasticity of intertemporal substitution greater than

one in order to have indeterminacy. These results differ from previous papers that include

sector-specific external effects or asymmetric factor taxation. In these papers, indeterminacy

is plausible for values of the elasticity of intertemporal substitution less than one. Finally, we

find that taxes on physical capital have no influence on local dynamics.

26



6 Apppendix

6.1 System Obtained from the First Order Conditions of the Hamiltonian

ċt

ct
=

1
σ

[
(1− τK)αA

(
Kt

Ltut

)ϕ

Kα−1
t (Ltut)1−αh1−α+φ+ε

t q1−ε
t

−ε[B(1− ut)γ − πh] + (ε− 1)g − πK − ρ]
.

Kt

Kt
= A

(
Kt

Ltut

)ϕ

Kα−1
t (Ltut)

1−α h1−α+φ+ε
t q1−ε

t − Ltctq
1−ε
t (ht)

ε

Kt
− πK

.
ht

ht
= B (1− ut)

γ − πh

.
ut

ut
=

1− ut

(1− γ) ut + (ϕ + α) (1− ut)

{
B (1− ut)

γ−1 [(1− α + φ + ε) (1− ut)

+γut +
ξγ

1− τl − ξ

]
+ (ϕ + τKα)A

(
Kt

Ltut

)ϕ

Kα−1
t (Ltut)

1−α h1−α+φ+ε
t q1−ε

t

+(1− ε) g − (ϕ + α)
Ltctq

1−ε
t (ht)

ε

Kt
− (1− α + φ + ε)πh

+(1− α− ϕ) (πK + n)}

6.2 System (12)

∆x =
1

ϕ + α
[(1− ε)g + (1− ϕ− α)(n + πK) + (1− α + φ + ε)(B − πh)

+(1− ϕ− α)B
ξ

1− τl − ξ
]

Ωx =
α(1− ϕ− α)(τK − 1)

ϕ + α
A

Σx = −ϕ + ε + φ

ϕ + α
B

∆a = n + (1− 1
σ

)[(1− ε)g + πK + ε(B − πh)]− ρ

σ

Ωa = [
(1− τK)α

σ
− 1]A

Σa = (
1
σ
− 1)εB

∆u =
1

ϕ + α
[(1− ε)g + (1− ϕ− α)(n + πK) + (1− α + φ + ε)(B − πh)

+B
ξ

1− τl − ξ
]
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Ωu =
ϕ + ατK

ϕ + α
A

Σu =
α− ε− φ

ϕ + α
B

Under assumptions 1-4 one can determine the sign of some of the coefficients of the system.

∆x, ∆u and Ωu are always positive while Ωx and Σx are always negative. The remaining

coefficients may have any sign depending on the value of the original parameters.

1. If σ < 1 ⇒ ∆a < 0, but if σ > 1, ∆a may have any sign.

2. Ωa > 0 ⇔ σ < α(1− τK).

3. Σa > 0 ⇔ σ < 1.

4. Σu > 0 ⇔ α > ε + φ.

6.3 Proof of Theorem 1

The strategy of the proof of theorem 1 is to study the phase diagram of system (12). The main

difficulty is that (12) is a 3-dimensional system and the dynamics cannot be represented in a

single plane. Our method exploits the linearity of the growth rates of system (12) and studies

the 2-dimensional phase diagrams orthogonal to each one of the three axis at the steady

state solution. The study of these phase diagrams will allow us to rule out the possibility of

non-monotone dynamics in the region of the parameter space considered in theorem 1.

In order to clarify the exposition, this proof is divided into two cases: First we study the

case α(1− τK) < σ < 1 and second σ > 1. The argument of the proof is similar in both cases.

Case 1 : Here α(1−τK) < σ < 1. The phase diagram orthogonal to the u-axis at u = u∗ has

two different representations, the first is for σ < ϕ + α and the second is for σ > ϕ + α.

Figures 6 and 7 represent these two cases. In the phase diagrams we have drawn the

lines at which variables x, a and u remain constant. The slopes of these lines can be

obtained by setting the derivatives of system (12) equal to zero. Thus, in figures 6 and

7 the slope of the line at which ẋ = 0 is zero since variable a does not enter the first

equation of (12). The slope of line ȧ = 0 is − 1
Ωa

= σ
(σ−(1−τK)α)A and if σ > α(1 − τK)

28



it is greater than zero. Finally the slope of the line u̇ = 0 is 1
Ωu

= ϕ+α
(ϕ+ατK)A , which is

always positive. The difference between figure 6 and figure 7 is that in figure 7 the slope

of line u̇ = 0 is greater than the slope of ȧ = 0. The necessary and sufficient condition

for this to happen is σ > ϕ + α. Outside lines ẋ = 0, ȧ = 0 and u̇ = 0 the arrows show

the sense of motion. One can observe that the stable manifold can only approach the

steady state through the area contained between the vertical line that crosses a∗ and

line ȧ = 0. Finally, for σ > ϕ + α (figure 7) the stable manifold may converge either

from above or below line u̇ = 0.

In figure 8 we represent the phase diagram orthogonal to the x-axis at x∗ when σ < 1.

The slopes of lines u̇ = 0, ȧ = 0 and ẋ = 0 have been drawn as in figures 6 and 7.

Assumption 7 guarantees that the slope of u̇ = 0 is positive while σ < 1 implies that the

slope of ȧ = 0 is negative. The arrows show that the stable manifold cannot approach

the steady state through any of the areas in this plane.

Figure 11 represents the plane orthogonal to the a-axis at a = a∗. One can notice

that σ ∈ (α(1 − τK), 1) implies that the slope of ȧ = 0 is positive and assumption 8

implies that the slope of ẋ = 0 is greater than the slope of u̇ = 0, which is negative due

to assumption 7. It can also be observed that the equilibrium path can approach the

steady state only through the area shown in figure 11.

In summary, the planes orthogonal to the u and a axes at the steady state define the

areas through which the stable manifold can approach the stationary solution. There

are two possibilities. First, if σ < ϕ + α figures 6 and 11 define the stable manifold and

ẋ and ȧ have the same sign while u̇ has the opposite. On the other hand, if σ > ϕ + α

the equilibrium is defined by figures 7 and 11 and again the sign of u̇ is the opposite of

the sign of ẋ and ȧ.

Finally, it remains to check that the stable manifold cannot approach the steady state

through any other area not contained in the phase diagrams. The only possibility is

the space contained between the three planes that define the stationary solution. This

locus is not necessarily represented in any of the three phase diagrams drawn above.

However, it can be verified that this cannot happen. If we study the plane orthogonal

to the a-axis at any a′ < a∗ we find that in the locus contained inside these three planes
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(namely ȧ = 0, ẋ = 0 and u̇ = 0) ȧ < 0. Since the phase diagrams are symmetric with

respect to the steady state, ȧ > 0 occurs for the plane orthogonal to the a-axis at any

a′′ > a∗.

Case 2 : Now we consider σ > 1. The phase diagram orthogonal to the u-axis at the steady

state is drawn in figure 7. The plane orthogonal to the x-axis at the steady state may

have two different representations which are drawn in figures 9 and 10. The difference

is that in figure 9 the slope of line u̇ = 0 is bigger than the slope of line ȧ = 0 while

in figure 10 is the opposite. The stable manifold may approach the stationary solution

through the area shown in figure 9, but this is not possible in figure 10. Finally, figure

12 represents the plane orthogonal to the a-axis at the stationary solution. The only

difference with the case σ < 1 is that the slope of line ȧ = 0 is negative.

Summarizing, there are two different areas through which the stable manifold can ap-

proach the steady state. When the stable manifold is the one contained by figures 7 and

9 the area between the lines u̇ = 0 and ȧ = 0 in figure 7 contains the stable manifold,

and ẋ, ȧ and u̇ have the same sign for every t ≥ 0. The other possible path is the one

contained by figures 7 and 12. In this equilibrium path, u̇ has the opposite sign of ẋ

and ȧ.

To end the proof it has to be checked that the locus contained between the three planes

that define the stationary solution cannot contain the equilibrium path. This can be

done in a similar way to case 1.

The proof is now complete and under the assumptions of theorem 1 we conclude that the

equilibrium path is monotone and the signs of ẋ = 0, ȧ = 0 and u̇ = 0 are constant for all

t ≥ 0.

6.4 Proof of Theorem 2

Given the strict monotonicity of x, a and u for every t ≥ 0 shown in theorem 1, we can use

the implicit function theorem to define variables a and u as functions of the state variable m.

Moreover, given that m = xuϕ+α−1 and that xt > 0, ut > 0 for every t ≥ 0, ṁ = f(m) is a

continuous function.
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6.5 Proof of Proposition 8

The second term of equation (13) defines function P (u),

P (u) = B(1− u)γ−1[
ξγ

1− τl − ξ
+ γu] + {B(1− u)γ − πh}(Ψ + ε)(σ − 1)

+g(1− ε)
(ϕ + α)(σ − 1)

ϕ + α− 1
− ρ + n (14)

The roots of (13) determine the stationary solutions of the system. As previously discussed

we are only interested in values u∗ ∈ (0, 1). To clarify the exposition, we first consider the

case γ < 1. We proceed in three steps.

Step 1 : We compute the derivative of function P (u) and study its possible values.

P ′(u) =
Bγ

(1− u)1−γ

{
1− γ

1− u

[
u +

ξ

1− τl − ξ

]
− [(Ψ + ε)(σ − 1)− 1]

}
(15)

From (15) it follows that P (u) is strictly convex in (0, 1). Besides, P ′(0) may take the

following values,

• P ′(0) > 0 ⇔

 σ > σ∗1 or

σ < σ∗1 and (1−γ)ξ
1−τl−ξ > [(Ψ + ε)(σ − 1)− 1]

• P ′(0) = 0 ⇔ (1−γ)ξ
1−τl−ξ = [(Ψ + ε) (σ − 1)− 1]

• P ′(0) < 0 ⇔ σ < σ∗1 and (1−γ)ξ
1−τl−ξ < [(Ψ + ε) (σ − 1)− 1] .

Step 2 : We study the sign of P (0).

P (0) = B

[
ξγ

1− τl − ξ
+ (Ψ + ε) (σ − 1)

]
− πh [(Ψ + ε) (σ − 1)]

+g (1− ε)
(ϕ + α)(σ − 1)

ϕ + α− 1
− ρ + n

Operating in the previous expression it is easy to check that P (0) ≷ 0 ⇔ σ ≶ σ∗2.

Step 3 : Finally we study the values of P (u) for u close to 1. From (14) one obtains that

lim
u→1

P (u) = +∞. Regarding P ′(u), it can be checked from (15) that lim
u→1

Ṕ (u) = +∞.

Given the strict convexity of P (u), if P (0) < 0 and Ṕ (0) ≷ 0 there is only one BGP. The

same happens if P (0) = 0 and Ṕ (0) < 0. This two cases are included in subsets Θ1 to Θ4. If

P (0) > 0 and Ṕ (0) < 0 there may be three cases. If P (uc) > 0 there is no BGP and we are
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in θ ∈ Θ\
7⋃

i=1
Θi. If P (uc) = 0 we are in Θ6 and there is only one BGP. If P (uc) < 0 there are

two BGP and we are in Θ7. Finally, if P (0) ≥ 0 and Ṕ (0) ≥ 0 we are in θ ∈ Θ\
7⋃

i=1
Θi and

there is no BGP.

Now we consider γ = 1. Here, the slope of P (u) has the sign of −[(Ψ + ε)(σ− 1)− 1] and

it is positive if and only if σ > σ∗1. It follows that there can be at most one interior BGP and

this happens in two cases. First, for σ > max{σ∗1, σ∗2}, we are then in set Θ1, and second for

σ < min{σ∗1, σ∗2}, set Θ5. The value of u∗ can be derived by imposing γ = 1 in equation (14).

6.6 Proof of Proposition 10

The first step is to compute the elements of the Jacobian matrix J∗.

a11 =
∂

.
zt

∂zt

∣∣∣∣
z∗,a∗,u∗

= (ϕ + α− 1) A (z∗)ϕ+α−1 (u∗)1−ϕ−α

a12 =
∂

.
zt

∂at

∣∣∣∣
z∗,a∗,u∗

= −z∗

a13 =
∂

.
zt

∂ut

∣∣∣∣
z∗,a∗,u∗

= − z∗

u∗

{
a11 + ΨBγ (1− u∗)γ−1 u∗

}
a21 =

∂
.
at

∂zt

∣∣∣∣
z∗,a∗,u∗

=
a∗

z∗
a11

[
(1− τk) α

σ
− 1

]
a22 =

∂
.
at

∂at

∣∣∣∣
z∗,a∗,u∗

= a∗

a23 =
∂

.
at

∂ut

∣∣∣∣
z∗,a∗,u∗

= a∗
{[

1− (1− τk) α

σ

]
a11

u∗
−

(
1− 1

σ

)
γεB (1− u∗)γ−1

}
a31 =

∂
.
ut

∂zt

∣∣∣∣
z∗,a∗,u∗

=
(1− u∗) u∗

(1− γ) u∗ + (ϕ + α)(1− u∗)
(ϕ + τkα)

a11

z∗

a32 =
∂

.
ut

∂at

∣∣∣∣
z∗,a∗,u∗

= − (1− u∗) u∗(ϕ + α)
(1− γ) u∗ + (ϕ + α)(1− u∗)

a33 =
∂

.
ut

∂ut

∣∣∣∣
z∗,a∗,u∗

=
(1− u∗)γ u∗

(1− γ) u∗ + (ϕ + α)(1− u∗)

{
γB

[
(1− γ)
1− u∗

[u∗+

ξ

1− τl − ξ

]
− (φ + ε− α)

]
− (ϕ + τkα)

a11

u∗
(1− u∗)1−γ

}
To apply Routh’s theorem, the three key quantities Tr (J∗), B (J∗) and Det (J∗) must be

signed.

32



6.6.1 Sign of Det(J∗)

Det (J∗) = a11a22a33 + a21a32a13 + a12a23a31 − (a13a22a31 + a12a21a33 + a23a32a11). Substi-

tuting the corresponding values we obtain,

Det (J∗) =
(1− u∗)γ u∗a11a

∗ (1− τk) α

[(1− γ) u∗ + (ϕ + α)(1− u∗)]σ

{
Bγ

[
1− γ

1− u∗

(
u∗ +

ξ

1− τl − ξ

)
+(Ψ + ε) (1− σ) + 1]} .

Since a11 < 0 equation (15) implies that Det (J∗) has the opposite sign of Ṕ (u∗).

6.6.2 Sign of Tr (J∗)

To compute the trace of J∗ we first compute a11, a22, and a33 in terms of u∗. The laws of

motion of z and a in the steady state imply,

a11 + a22 =
ϕ + τkα

α(1− τk)

{
− 1− ε

ϕ + α− 1
g + n + πk −Ψ [B (1− u∗)γ − πh]

}
+

(ϕ + α)γB (1− u∗)γ−1

α(1− τk)

[
u∗ +

ξ

1− τl − ξ

]
,

if we add a33,

Tr (J∗) =
(1− u∗)γ u∗Bγ

(1− γ) u∗ + (ϕ + α)(1− u∗)

{[
1 +

ϕ + α

α(1− τk)

]
1− γ

1− u∗

[
u∗ +

ξ

1− τl − ξ

]
+

(1− γu∗) (1− u∗)−γ (ϕ + τkα)
u∗γBα (1− τk)

[
− 1− ε

ϕ + α− 1
g + n + πk−

Ψ [B (1− u∗)γ − πh]] +
ξ
(
(ϕ + α)2 + (ϕ + τkα) (1− ϕ− α)

)
αu∗ (1− τk) (1− τl − ξ)

(16)

+
(

α +
(ϕ + α)2 + (ϕ + τkα)(1− ϕ− α)

α(1− τk)
− φ− ε

)}
.

If the growth rate of human capital is greater than zero, then a11 + a22 is positive, and

therefore Tr (J∗) < 0 ⇒ a33 < 0. We define now constant ϑ in assumption 10.
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ϑ =
[
1 +

ϕ + α

α(1− τk)

]
1− γ

1− u∗

[
u∗ +

ξ

1− τl − ξ

]
+

(1− γu∗) (1− u∗)−γ (ϕ + τkα)
u∗γBα (1− τk)

[
− 1− ε

ϕ + α− 1
g + n + πk−

Ψ [B (1− u∗)γ − πh]] +
ξ
(
(ϕ + α)2 + (ϕ + τkα) (1− ϕ− α)

)
αu∗ (1− τk) (1− τl − ξ)

+
(

(ϕ + α)2 + (ϕ + τkα)(1− ϕ− α)
α(1− τk)

− α

)
.

Notice that the last term is positive and that under assumption 9, ϑ is positive. Moreover,

under assumption 10, Tr(J∗) is also positive.

6.6.3 Sign of B (J∗)

Substituting the corresponding values in the definition of B (J∗) we obtain,

B (J∗) =
(1− u∗)γ u∗

(1− γ) u∗ + (ϕ + α)(1− u∗)

{
(ϕ + τkα)a11ΨγB − (ϕ + α)

(
1− 1

σ

)
a∗γBε

+αa∗a11
(1− τk) (1− γ)

σ (1− u∗)γ + γB

[
(1− γ)
1− u∗

[
u∗ +

ξ

1− τl − ξ

]
− (φ + ε− α)] (a11 + a∗) + (1− τk) α

a∗a11

u∗
(1− u∗)1−γ

}
.

Now we can characterize the stability of the different stationary solutions:

• If θ ∈
4⋃

i=1
Θi then P ′(u∗) > 0 ⇒ Det (J∗) < 0, therefore there are negative signs at the

beginning and at the end of the sequence. Under assumptions 9 and 10, Tr (J∗) > 0

which implies that there are two changes of sign. Hence, in this region of the parameter

space there are always two eigenvalues with positive real part and one with negative

real part. The steady state is a saddle point.

• If θ ∈ Θ5 then P ′(u∗) < 0 ⇒ Det (J∗) > 0. If Tr (J∗) > 0 then B (J∗) may have

any sign, and depending on its value there could be either one or three changes of sign.

Hence, in this region of the parameter space there may be either one eigenvalue with

positive real part and two with negative real part or three eigenvalues with positive real

part. Therefore, there can be a continuum of equilibria converging to the steady state

or global inestability.
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• If θ ∈ Θ7 there are two stationary solutions u∗1 < u∗2. In u∗2 Det (J∗) < 0 and as in case

1 the equilibrium is a saddle point. In u∗1 Det (J∗) > 0 and as in case 2 we may have

either a continuum of equilibria or global inestability.
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ẋ = 0|a=a∗

ẋ > 0 ẋ < 0
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Figure 1: Example 1, γ = 1, σ = α(1− τK) and ε = 0.
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Figure 2: Example 2, γ = 1, σ = α(1− τK), ε = 0, α + ϕ = 1 and α = φ.

40



0 0.4 0.8 1.2 1.6

−0.4

−0.2

0

0.2

m⋅

Steady state at u*
2

State variable m

D
er

iv
at

iv
e 

of
 s

ta
te

 v
ar

ia
bl

e 
m

Figure 3: Example 3, stable manifold at u∗2 in terms of m.

Figure 4: Number of BGP’s.
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Figure 5: Stability of the BGP for γ = 1.
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Figure 6: Equilibrium dynamics in x− a plane for u = u∗ and α(1− τK) < σ < ϕ + α.
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ẋ > 0

x∗

a∗
.

.........................................

..........................................

............................................

.............................................

..............................................

...............................................

................................................

.

................................................

...............................................

..............................................

.............................................

............................................

..........................................

.........................................

-6

�
?

�6

-
?

Figure 7: Equilibrium dynamics in x− a plane for u = u∗ and σ > ϕ + α.
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Figure 8: Equilibrium dynamics in u− a plane for x = x∗ and σ < 1.
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Figure 9: Equilibrium dynamics in u− a plane for x = x∗ and σ > 1. Possibility 1.
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Figure 10: Equilibrium dynamics in u− a plane for x = x∗ and σ > 1. Possibility 2.
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Figure 11: Equilibrium dynamics in x− u plane for a = a∗ and α(1− τK) < σ < 1.
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Figure 12: Equilibrium dynamics in x− u plane for a = a∗ and σ > 1.
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