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Abstract: A new approach for basis set generation is reported and tested in helium atom and dimer.
The basis sets thus computed, named sigma, range from DZ to 5Z and consist of the same composition
as Dunning basis sets but with a different treatment of contractions. The performance of the sigma sets
is analyzed for energy and other properties of He atom and He dimer, and the results are compared
with those obtained with Dunning and ANO basis sets. The sigma basis sets and their extended
versions up to triple augmented provide better energy values than Dunning basis sets of the same
composition, and similar values to those attained with the currently available ANO. Extrapolation
to complete basis set of correlation energy is compared between the sigma basis sets and those of
Dunning, showing the better performance of the former in this respect.

Keywords: He atomic basis sets; helium dimer; He2 potential well; correlation energy; complete
basis set; sigma basis set

1. Introduction

The study of weak van der Waals (vdW) interactions has always been one of the most
challenging applications of theoretical calculations of electron structure. Thus, methods
based on Kohn–Sham (KS) density functional theory (DFT) have shown limitations for
including weak and long-range interactions in the exchange-correlation term of the KS
equation. In particular, standard functionals of DFT fail to explain these interactions
because the stabilization is determined by dispersion interactions, and is not explained
by these functionals. Exchange-correlation potentials, derived from local and semi-local
models, often exhibit artifacts when applied to systems with large non-local correlation
effects. Nevertheless, there is a continuous effort to include vdW interactions within the
framework of KS theory [1], and remarkable progress on corrections to this fact has been
made, such as the exchange-hole dipole moment (XDM) model [2,3].

In the long range, vdW interactions are dominated by dispersion and permanent
multipole moment interaction and include superposition and exchange contributions.
The behavior of an exchange functional in the region of small density and large density
gradients plays a very important role. From a topological point of view, the presence of
vdW interactions can be identified by reduced density gradient (RDG) analysis. In this
respect, a novel procedure for studying van der Waals interactions has been developed as
an extension of Bader’s QTAIM in combination with RDG analysis in which a volumetric
source function is used for describing the atomic composition of vdW interactions [4].

The above considerations reinforce that the well known fact is that to reliably study
vdW interactions, not only large basis sets (BS) are needed, but also fine electron correlation
treatments are required to reproduce experimental data. In particular, noble gases have been
the focus of much research as a starting point for the study of rare gas dimer interactions [5],
a criterion for the performance of basis sets and correlation methods in vdW studies.

Among the systems linked by vdW dispersion interactions, helium occupies an out-
standing position. The properties of gaseous helium are close to those of the ideal gas
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because the interactions between helium atoms are extremely weak, and its behavior at very
low temperatures makes helium a paramount system on its own, with unusual physico-
chemical properties under these conditions. Furthermore, vdW interaction in helium dimer,
He2, is a touchstone for testing the capabilities of the most precise theoretical procedures
available [6], as its existence is due to purely electronic correlation effects.

The accurate computation of the He2 potential energy curve is a big challenge, and a
great amount of work has been devoted to this task. Ab initio studies on He2 interactions
have been published by Van Mourik et al., who report dimer calculations using different
methods and computational levels (MPn, CCSD(T), FCI, . . . ) with large basis sets, including
polarization [7–9]. In the late 20th and 21st centuries, many other authors have published
works on He2, using various sets of a consistent basis for correlation and a high level of
theory: SAPT [10], CCSD(T) [11], r12-MR-ACPF [12–14], MRCI [15], CCSD(T) [16], Monte
Carlo [17], Compton profiles [18] and Gaussian geminal theory [19]. The most accurate
results were obtained with BS supplemented with an additional set of bond functions [20],
obtaining better results when compared with larger BS without bond functions.

Because of the high accuracy intended and the feeble interaction involved, the question
about the full elimination of basis set superposition error (BSSE) in the calculations of He2
energy has been a matter of discussion [21], which still remains today. This problem comes
from the difficulty of saturating the dispersion energy in calculations with conventional
basis sets, and it is especially relevant in weakly interacting species. A good representa-
tion of the dispersion energy requires polarization functions with small exponents, and
extrapolation methods from the raw energies without Counterpoise (CP) correction have
been proposed to reduce the BSSE [22–24]. In particular, extrapolation to complete basis
set (CBS) limit for the helium dimer was studied by A. Varandas [22,25], who carried out
calculations with size-consistent methods such as Hartree–Fock (HF) and full configuration
interaction (FCI) using Dunning BS.

As a consequence of this extraordinary effort, the accuracy achieved is certainly
impressive and, according to the best estimations, the potential energy curve of He2 has a
minimum at a distance Re = 2.9676 Å, with an energy of −34.82 µEh with respect to the
limit of separated atoms [20,26]. This minimum in the potential energy curve is remarkably
shallow and has been found to admit only one vibrational state, the mean distance between
nuclei in this state being ca. ten times the equilibrium distance [27].

In this work, we report a way of constructing new basis sets for molecular calculations
which overcome the variational performance of the existing ones of equivalent composition.
Furthermore, we apply the procedure to the development of basis sets, hereafter named
sigma (σBS), for helium atoms and use them for the study of helium atom and dimer.

The article is organized as follows. In Section 2, the procedure for developing sigma
BS is explained, and the contraction scheme and composition are described. Supplementary
Materials are included, which contain the link for the sigma basis sets for He. In Section 3,
a brief summary of computational procedures, methods, bases and programs is given.
The results on the He atom and the He2 dimer are reported in Section 4, in which the
the precision of the total and dissociation energies as well as the equilibrium distances
is discussed. Results on the CBS extrapolation of correlation energies are included in a
subsection of Section 4. Finally, conclusions are drawn from these results in Section 5.

2. Criteria for Basis Set Optimization and Contraction Scheme: Size and Composition

The σBS consists of linear combinations (contractions) of radial primitive Gaussians
aimed at providing highly accurate energy values at different computational levels. In the
construction of σBS, we have exploited our previous experience in the development of
exponential type BS [28–31]. Guided by this experience, we have decided to design σBS
with the characteristic that, if a given primitive contains a spherical harmonic of quantum
number l = L, all the primitives with the same exponent and l < L are also present in
the set. For instance, if there is a d function with exponent αi, then s and p functions
with this exponent will appear in the BS. This characteristic was thought to reduce the
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computation cost of integrals involving primitives, although most standard packages are
usually not prepared to profit from it. Another feature of σBS is that all primitives in a
given shell, i.e., with the same angular part, participate in all contractions of the same shell.
The combination of both features makes it possible for the number of primitives in the
contractions can be increased, and the quality of the BS functions is thus improved, without
penalizing the computational cost. In summary, contractions in σBS are built from the
same set of exponentials combined with different angular functions. Furthermore, whereas
polarization functions of Dunning BS consist of single Gaussian functions (one primitive
per function without contraction), in sigma basis sets they are true contractions, yielding
significant improvements in the results on energy.

As a rule of thumb, the number of primitives included in each shell of polarization
functions is equal to the number of contractions in the shell plus two. As mentioned before,
the radial parts of the primitives used in the polarization functions are also present in the
functions of the core shells. The choice of primitives for polarization functions, among
those of core shells functions, is not obvious and must be accomplished by optimizing
the exponents together for both types of functions. It is also noticeable that, albeit not
specifically intended, the exponents of the primitives thus obtained almost follow an even
tempered sequence, with slight variations and covering a wide range of values.

To simplify the notation, XZ will be used in the following as an abbreviation of cc-
pVXZ, and aXZ of aug-cc-pcVXZ families. The equivalent Atomic Natural Orbitals (ANO)
and σBS will be denoted as anoXZ, aanoXZ, σXZ and aσXZ, respectively. In each of the six
families, we have considered basis sets ranging from X = 2 (DZ) up to 5 (5Z).

The optimization of helium σBS follows the general lines of Dunning’s procedure
which relies on the minimization of CISD energy in He atoms. Starting with a given set
of exponents in the primitives, the contractions are constructed in a stepwise way. In the
case of He, the (1s) contraction of the σDZ is determined by minimizing the HF energy for
the ground state. Next, the CISD is used to add a new shell and one more contraction per
shell, but keeping unchanged the contraction previously optimized. These two steps yield
the σDZ basis set. This procedure is repeated, changing the primitive exponents until their
optimum values are obtained.

To build the σTZ, we proceed as in the case of the σDZ. After optimizing the 2(s) +
1(p) contractions, a new shell and a new contraction per shell, 1(s) + 1(p) + 1(d), are added
and optimized with CISD of the He atom. The scheme for all σBS follows the procedure
described but repeating the steps of contraction/optimization as many times as required
according to the BS level. Proceeding in this way, and taking into account that the number
of primitives is increased according to the rule mentioned, σBS tend to saturate one-electron
space per shell, yielding energies as close as possible to the best attainable values according
to their size.

In general, these σBS give energy values for He atoms lower than those of Dunning
BS and similar to those of ANO BS, as we will see the next section. Unlike in Dunning and
ANO BS, in the case of the augmented σBS (aσBS), the CISD energy of the dimer at the best
available equilibrium distance (BED) Re = 2.9676 Å [26] is considered for the optimization
of σBS exponents.

3. Computational Details

As it is well known, basis sets augmented with polarization and diffuse functions can
adequately reproduce weak dispersion interactions [9,25,32]. Bearing this in mind, to study
He2 interactions in a systematic way, we have carried out calculations using atom-centered
basis sets. In particular, in this work we use correlation consistent basis sets developed by
Dunning et al. [32–35] as a reference for testing the performance of σBS reported herein.
Dunning BS are widely used, and they are especially well suited for our purposes because
they incorporate polarization functions and, in the case of augmented versions, diffuse
functions. In addition, it has been shown that correlation-consistent basis sets doubly
augmented with diffuse functions can be used to nearly saturate the radial contribution
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to the dispersion energy in rare gas dimers [8,9,36]. Furthermore, these basis sets are
grouped in families whose members are ranked in size (and quality), and this facilitates the
extrapolation of results to the CBS limit.

For testing the accuracy of energy values attained with the σBS, we have also used
the ANO BS, which have proved to be able to exhaust the capabilities of the underlying
Gaussian expansion basis (to minimize the contraction error) and provide a highly accurate
reference [37,38].

Electronic structure calculations of He and He2 have been carried out at HF, CISD and
FCI levels, using MOLPRO suite [39].

4. Results and Discussion
4.1. Sigma Basis Sets vs. Dunning and ANO Basis Sets

The composition of the basis sets for the He atom is detailed in Table 1, in which
the numbers of exponentials, primitives and contractions are quoted. Notice that the
composition is the same for the three families, the only difference being the number of
primitives, smaller in Dunning BS and similar in ANO and σBS. On the other hand, the
number of exponentials is smaller in σBS than in the other two.

Table 1. Composition of Dunning, ANO and sigma basis sets.

Basis Sets # Exponentials # Primitives # Contracted

DZ 5 7 (4s, 1p) 5 [2s, 1p]
TZ 8 16 (5s, 2p, 1d) 14 [3s, 2p, 1d]
QZ 12 32 (6s, 3p, 2d, 1f) 30 [4s, 3p, 2d, 1f]
5Z 17 57 (7s, 4p, 3d, 2f, 1g) 55 [5s, 4p, 3d, 2f, 1g]

anoDZ 15 25 (10s, 5p) 5 [2s, 1p]
anoTZ 19 45 (10s, 5p, 4d) 14 [3s, 2p, 1d]
anoQZ 23 66 (10s, 5p, 4d, 3f) 30 [4s, 3p, 2d, 1f]
ano5Z 25 84 (10s, 5p, 4d, 3f, 2g) 55 [5s, 4p, 3d, 2f, 1g]

σDZ 10 19 (10s, 3p) 5 [2s, 1p]
σTZ 10 37 (10s, 4p, 3d) 14 [3s, 2p, 1d]
σQZ 10 66 (10s, 5p, 4d, 3f) 30 [4s, 3p, 2d, 1f]
σ5Z 10 108 (10s, 6p, 5d, 4f, 3g) 55 [5s, 4p, 3d, 2f, 1g]

aDZ 7 11 (5s, 2p) 9 [3s, 2p]
aTZ 11 25 (6s, 3p, 2d) 23 [4s, 3p, 2d]
aQZ 16 48 (7s, 4p, 3d, 2f) 46 [5s, 4p, 3d, 2f]
a5Z 22 82 (8s, 5p, 4d, 3f, 2g) 80 [6s, 5p, 4d, 3f, 2g]

aanoDZ 15 25 (10s, 5p) 9 [3s, 2p]
aanoTZ 19 45 (10s, 5p, 4d) 23 [4s, 3p, 2d]
aanoQZ 23 66 (10s, 5p, 4d, 3f) 46 [5s, 4p, 3d, 2f]
aano5Z 25 84 (10s, 5p, 4d, 3f, 2g) 80 [6s, 5p, 4d, 3f, 2g]

aσDZ 11 23 (11s, 4p) 9 [3s, 2p]
aσTZ 11 46 (11s, 5p, 4d) 23 [4s, 3p, 2d]
aσQZ 11 82 (11s, 6p, 5d, 4f) 46 [5s, 4p, 3d, 2f]
aσ5Z 11 133 (11s, 7p, 6d, 5f, 4g) 80 [6s, 5p, 4d, 3f, 2g]

In Table 2, some properties computed at HF and FCI levels are reported. As can
be appreciated, FCI energies computed with σBS are lower than those computed with
their equivalent partners of the other two families. In the case of He2, energies have been
calculated at the equilibrium distance optimized at each computational level, and no result
is displayed in the case of HF calculations with ANO or σBS because no minimum is found
in these cases.
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Table 2. He and He2 energies (Eh), dissociation energies and equilibrium distances at HF and FCI levels.

He Atom He2 Dimer De(µH) Re(Å)

HF FCI HF FCI HF FCI HF FCI

DZ −2.85516048 −2.88759483 −5.71032241 −5.77519594 1.47 6.28 3.209 3.090
TZ −2.86115334 −2.90023217 −5.72230756 −5.80047345 0.87 9.11 3.637 3.296
QZ −2.86151423 −2.90241088 −5.72302886 −5.80483479 0.40 13.03 3.806 3.236
5Z −2.86162483 −2.90315188 −5.72324982 −5.80632032 0.15 16.55 4.005 3.155

anoDZ −2.86165583 −2.89748229 — −5.79496717 — 2.60 — 3.623
anoTZ −2.86166988 −2.90170267 — −5.80341360 — 8.26 — 3.335
anoQZ −2.86167139 −2.90282021 — −5.80565442 — 13.99 — 3.194
ano5Z −2.86167205 −2.90324192 — −5.80650279 — 18.95 — 3.112

σDZ −2.86166454 −2.89755779 — −5.79511772 — 2.13 — 3.645
σTZ −2.86166897 −2.90175275 — −5.80351122 — 5.73 — 3.426
σQZ −2.86167087 −2.90283439 — −5.80567817 — 9.39 — 3.301
σ5Z −2.86167106 −2.90324791 — −5.80651300 — 17.17 — 3.141

aDZ −2.85570467 −2.88954849 −5.71141075 −5.77914013 1.41 43.16 3.417 2.998
aTZ −2.86118343 −2.90059792 −5.72236734 −5.80122808 0.49 32.22 3.806 3.007
aQZ −2.86152200 −2.90253360 −5.72304429 −5.80510033 0.30 33.13 4.057 2.979
a5Z −2.86162693 −2.90320053 −5.72325393 −5.80643456 0.07 34.96 4.131 2.981

aanoDZ −2.86166988 −2.89996594 — −5.79993919 — 7.31 — 3.378
aanoTZ −2.86167139 −2.90245288 — −5.80490575 — 13.88 — 3.197
aanoQZ −2.86167205 −2.90312610 — −5.80627113 — 18.93 — 3.113
aano5Z −2.86167282 −2.90339507 — −5.80681090 — 20.76 — 3.088

aσDZ −2.86167614 −2.89997789 — −5.79996081 — 5.02 — 3.464
aσTZ −2.86167722 −2.90245411 — −5.80491755 — 9.33 — 3.300
aσQZ −2.86167716 −2.90313545 — −5.80628469 — 13.84 — 3.197
aσ5Z −2.86167707 −2.90340070 — −5.80681741 — 16.02 — 3.143

Dissociation energies of He2, De have been computed as the difference between the
energies of the separated atoms and that in the minimum of the curve, Re. In the case of
Dunning BS, a shallow minimum is obtained at the HF level at a distance that increases
with the BS size. As mentioned above, this minimum does not appear in HF calculations
with the two other families, suggesting that the improvements in the core zone with respect
to those of Dunning should prevent the presence of a minimum at the HF level.

The convergence of De and Re towards the currently best available values (De = 34.82 µEh
and Re = 2.9676 Å) [26] has been analyzed in FCI calculations, and the results are depicted in
Figures 1 and 2. In Figure 1, De is plotted vs. the BS size for the three types of BS, including the
augmented versions. It is observed that non-augmented BS have a slow convergence towards
the exact result, and they are far away from it even at the 5Z level. Augmented ANO and σBS
improve the results slightly, but the convergence is still far from the reference. On the other
hand, Dunning augmented BS, although not optimized for CISD energy of He2 at Re, yield
astonishing precise depth values of the well.

In the case of equilibrium distance, displayed in Figure 2, the behavior is quite similar
to that of De, with Dunning augmented BS giving a very good agreement even with the
smallest set (aDZ).
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Figure 1. Dissociation energy, De (µEh).
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Figure 2. Equilibrium distance, Re (angstrom).

4.2. Multiple Augmented Basis Sets

Given the excellent performance of Dunning BS with regard to the dissociation energy
of He2, and in an attempt to understand why this is not so in the case of σBS, we decided
to explore the performance of multiple augmented basis sets in both families.

We developed double and triple augmented σBS but, unlike in Dunning BS, which
were designed to improve the polarizability of the He atom, we followed the methodology
based only on energy. Thus, we obtained double and triple augmented σBS (daσXZ and
taσXZ) to compare with the corresponding Dunning BS (daXZ and taXZ, for short). These
multiply augmented BS are described in Table 3. In analogy with Table 1, the number of
exponentials, primitives and contracted functions are given, and the same comments on
the composition, size and characteristics mentioned before also hold for the new multiple
augmented σBS.
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Table 3. Composition of double and triple augmented Dunning and σBS.

Basis Sets # Exponentials # Primitives # Contracted

daDZ 9 15 (6s, 3p) 13 [4s, 3p]
daTZ 14 34 (7s, 4p, 3d) 32 [5s, 4p, 3d]
daQZ 20 64 (8s, 5p, 4d, 3f) 62 [6s, 5p, 4d, 3f]
da5Z 27 107 (9s, 6p, 5d, 4f, 3g) 105 [7s, 6p, 5d, 4f, 3g]

daσDZ 12 27 (12s, 5p) 13 [4s, 3p]
daσTZ 12 55 (12s, 6p, 5d) 32 [5s, 4p, 3d]
daσQZ 12 98 (12s, 7p, 6d, 5f) 62 [6s, 5p, 4d, 3f]
daσ5Z 12 158 (12s, 8p, 7d, 6f, 5g) 105 [7s, 6p, 5d, 4f, 3g]

taDZ 11 19 (7s, 4p) 17 [5s, 4p]
taTZ 17 43 (8s, 5p, 4d) 41 [6s, 5p, 4d]
taQZ 24 80 (9s, 6p, 5d, 4f) 78 [7s, 6p, 5d, 4f]
ta5Z 32 132 (10s, 7p, 6d, 5f, 4g) 130 [8s, 7p, 6d, 5f, 4g]

taσDZ 13 31 (13s, 6p) 17 [5s, 4p]
taσTZ 13 64 (13s, 7p, 6d) 41 [6s, 5p, 4d]
taσQZ 13 114 (13s, 8p, 7d, 6f) 78 [7s, 6p, 5d, 4f]
taσ5Z 13 183 (13s, 9p, 8d, 7f, 6g) 130 [8s, 7p, 6d, 5f, 4g]

Results obtained with multiple augmented BS are summarized in Table 4, whose
structure is identical to that of Table 2. Regarding the atomic calculations at HF and FCI
levels, it is observed again that energies computed with σBS are always better than those
of the equivalent Dunning sets. In fact, taσXZ, albeit not directly intended, yields a good
agreement with the HF limit (−2.861679995 Eh) [40,41] even for the smallest set of the series,
with an error ca. 10−6 Eh in all cases.

Table 4. He and He2 energies (Eh), dissociation energies and equilibrium distances at HF and FCI
levels for double and triple augmented BS.

He Atom He2 Dimer De(µH) Re(Å)

HF FCI HF FCI HF FCI HF FCI

daDZ −2.85570939 −2.88959436 −5.71142686 −5.77924689 8.09 58.17 3.288 2.964
daTZ −2.86118387 −2.90060812 −5.72237146 −5.80126097 3.72 44.72 3.837 2.995

daQZ −2.86152234 −2.90253661 −5.72304596 −5.80511435 1.28 41.13 4.045 2.958
da5Z −2.86162717 −2.90320194 −5.72325487 −5.80644187 0.52 37.98 3.882 2.965

daσDZ −2.86167803 −2.90035561 — −5.80072031 — 9.08 — 3.320
daσTZ −2.86167821 −2.90265038 — −5.80531813 — 17.37 — 3.136
daσQZ −2.86167822 −2.90323388 — −5.80648926 — 21.52 — 3.080
daσ5Z −2.86167816 −2.90343963 — −5.80690928 — 30.02 — 3.002

taDZ −2.85571146 −2.88960188 −5.71143417 −5.77926374 11.22 59.92 3.351 2.984
taTZ −2.86118406 −2.90061002 −5.72237488 −5.80128012 6.76 60.33 3.654 2.996
taQZ −2.86152247 −2.90253721 −5.72304861 −5.80511936 3.67 44.93 3.973 2.957
ta5Z −2.86162726 −2.90320225 −5.72325624 −5.80644560 1.72 41.10 3.850 2.960

taσDZ −2.86167928 −2.90046500 — −5.80094227 — 12.26 — 3.247
taσTZ −2.86167885 −2.90272428 — −5.80546977 — 21.21 — 3.087
taσQZ −2.86167886 −2.90328593 — −5.80659710 — 25.24 — 3.037
taσ5Z −2.86167829 −2.90344482 — −5.80692585 — 32.21 — 2.982

With respect to the dimer, Dunning BS (daXZ and taXZ) again give minima at
the HF level, the well depth being greater than that obtained with the smaller XZ and
aXZ, and the equilibrium distances range from 3.2 to 4.0 Å. Again, the σBS (daσXZ and
taσXZ) give no minimum. In all cases, the FCI energies for the diatom tend to the ex-
act value −5.80748357 Eh, estimated from the best available values for the He energy
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(2.903724377 . . . Eh) [42] and for the well depth (34.82 µEh) [26]. Notice that energy val-
ues computed with daσXZ y taσXZ are significantly lower than those obtained with the
equivalent Dunning BS.

Regarding the dissociation energy, Figure 3 shows that in Dunning BS, the inclusion
of new polarization functions in the sequence aXZ, daXZ, taXZ tends to worsen the results,
whereas in σBS, a regular improvement in the value of De is observed. In the case of
equilibrium distance, Re, Dunning BS produce results closer to the exact than those of σBS,
but the results attained with the latter also exhibit a regular approach to the right value, as
shown in Figure 4.
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Figure 3. Dissociation energy, De (µEh), multiple augmented BS.
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4.3. Extrapolation to CBS

The performance of the basis sets in extrapolations to CBS has been analyzed in the
case of correlation energy both for the atom and for the dimer at BED. Although there are
many extrapolation schemes, we have taken one due to Helgaker [43]:

EXZ = ECBS + α/Xβ.

The correlation energy of the atom has been calculated as the difference between the
exact value [42] and the HF limit energy [40] and that of the dimer with the HF value at
BED and adding the energy of the well (34.82 µEh).
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Correlation energy values thus computed plus the extrapolated CBS energies obtained
for the Dunning and σBS are collected in Table 5 and depicted in Figures 5 and 6. The best
available correlation energies appear at the top of Table 5, with values of 0.0420444 Eh and
0.0841528 Eh for the atom and the dimer, respectively. To facilitate comparisons, figures
coincident with reference values are displayed in bold type.

Table 5. Correlation energy (Eh) for He and He2 dimer at the equilibrium distance (2.97 Å).

He Atom He2 Dimer

Limit 0.0420444 0.0841528

BS Dunning Sigma Dunning Sigma

DZ −0.0324343 −0.0358932 −0.0648756 −0.0717958
TZ −0.0390788 −0.0400838 −0.0781781 −0.0801879
QZ −0.0408967 −0.0411635 −0.0818256 −0.0823559
5Z −0.0415271 −0.0415768 −0.0830947 −0.0831955

CBS a −0.0423430 −0.0420352 −0.0847403 −0.0841253

aDZ −0.0338438 −0.0383018 −0.0677448 −0.0766221
aTZ −0.0394145 −0.0407769 −0.0788879 −0.0815831
aQZ −0.0410116 −0.0414583 −0.0820829 −0.0829540
a5Z −0.0415736 −0.0417231 −0.0832083 −0.0834887

CBS a −0.0423532 −0.0420496 −0.0847687 −0.0841510

daDZ −0.0338850 −0.0386776 −0.0678307 −0.0773832
daTZ −0.0394242 −0.0409722 −0.0789168 −0.0819873
daQZ −0.0410143 −0.0415557 −0.0820937 −0.0831597
da5Z −0.0415748 −0.0417615 −0.0832142 −0.0835811
CBS a −0.0423531 −0.0419952 −0.0847654 −0.0840554

taDZ −0.0338904 −0.0385857 −0.0678420 −0.0776054
taTZ −0.0394260 −0.0410454 −0.0789302 −0.0821388
taQZ −0.0410147 −0.0416071 −0.0820963 −0.0832671
ta5Z −0.0415750 −0.0418099 −0.0832159 −0.0836765

CBS a −0.0423526 −0.0420285 −0.0847545 −0.0841117
a Extrapolation to complete basis set with EXZ = ECBS + α/Xβ.
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The better performance of σBS over Dunning BS is evident. CBS extrapolation yields a
gain of at least two figures in the former, while scarcely one figure is gained in the latter.
The case of σaXZ is specially noticeable, as three figures are gained in the CBS extrapolation
both in the atom and in the diatom. Furthermore, CBS extrapolation in Dunning BS lies
below the exact value, whereas it converges to the right value in the case of σBS. This
behavior is clearly visible in Figures 7 and 8.
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5. Conclusions

A new scheme for developing basis sets is reported and applied to helium atom and
dimer. The σBS thus developed are configured by combining the same set of exponentials
with different angular functions and saturating the corresponding one-electron spaces. The
new family ranges from DZ to 5Z, with the same composition as Dunning BS, and also
includes, simply, double and triple augmented versions. Energy values for helium atom
and diatom computed with the σBS are lower than those obtained with their partners in
Dunning BS, and similar to ANO BS, both at HF and FCI levels.

The analysis of the energy of He2 reveals the presence of a minimum in the curve
at the HF level in the case of Dunning BS that does not appear with σ or ANO BS. In the
case of FCI, all calculations yield a well whose depth tends to the reference value as the
BS quality improves. Augmented σ BS display a good convergence which, in the case of
multiple augmented BS, is even more regular than in the corresponding Dunning BS.

CBS extrapolation of the correlation energy of He2 at BED has also been examined,
proving that the results with σBS are clearly superior to those attained with Dunning
BS. Especially remarkable is the result with the aσXZ, which shows an agreement of five
decimal figures with the best available result. Furthermore, it can be noticed that the CBS
extrapolation with Dunning BS falls below the exact value, while the sigma converges to
the right value.

Supplementary Materials: The σBS used in this work can be found online in MOLPRO format at
https://www.mdpi.com/article/10.3390/computation10050065/s1.
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Abbreviations
The following abbreviations are used in this manuscript:

ANO Atomic Natural Orbitals
aANO Augmented ANO
aXZ aug-cc-pVXZ
aσBS Augmented Sigma Basis Set
BED Best Available Equilibrium Distance of He2
BS Basis set(s)
BSSE Basis Set Superposition Error
CBS Complete Basis Set
CC Coupled Clusters
CCSD(T) Coupled Clusters Singles Doubles (Triples)
CISD Configuration Interactions Singles and Doubles
CP Cunterpoise
daXZ aug-aug-cc-pVXZ
daσBS Double Augmented Sigma Basis Set
FCI Full Configuration Interaction
HF Hartree-Fock
MP Möller-Plesset
MR-ACPF Multi-Reference Averaged Coupled-Pair Functional
MRCI Multi-Reference Configuration Interaction
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SAPT Symmetry-Adapted Intermolecular Perturbation Theory
σBS Sigma Basis Set
taXZ aug-aug-aug-cc-pVXZ
taσBS Triple Augmented Sigma Basis Set
vdW van der Waals
XZ cc-pVXZ
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