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Gaussian noise is an irreducible component of the background in gravitational wave (GW) detectors.
Although stationary Gaussian noise is uncorrelated in frequencies, we show that there is an important
correlation in time when looking at the matched filter signal-to-noise ratio (SNR) of a template, with a
typical autocorrelation time that depends on the template and the shape of the noise power spectral density
(PSD). Taking this correlation into account, we compute from first principles the false alarm rate (FAR) of a
template in Gaussian noise, defined as the number of occurrences per unit time that the template’s matched
filter SNR goes over a threshold ρ. We find that the Gaussian FAR can be well approximated by the usual
expression for uncorrelated noise, if we replace the sampling rate by an effective sampling rate that depends
on the parameters of the template, the noise PSD, and the threshold ρ. This results in a minimum SNR
threshold needed for a given GW trigger, if we want to keep events generated from Gaussian noise below
a certain FAR. We extend the formalism to multiple detectors and to the analysis of GW events. We apply
our method to the GW candidates added in the GWTC-3 catalog and discuss the possibility that
GW200308_173609 and GW200322_091133 could be generated by Gaussian noise fluctuations.

DOI: 10.1103/PhysRevD.107.023027

I. INTRODUCTION

A century after their theoretical derivation from general
relativity [1], gravitational waves (GWs) are now routinely
detected by the laser interferometers of the LIGO-Virgo-
KAGRA Collaboration [2–4]. Their amplitude is so small
that their detection above instrumental and environmental
noise requires sophisticated pipelines [5–9], which look for
signals in the data with various methods. These pipelines
have to be designed to reject noise from very common non-
Gaussian transient sources (also known as glitches) [10]
while being computationally efficient to search for events
in a wide range of parameters within an affordable amount
of time.
In the case of modeled searches for GWs from compact

binary coalescences (CBCs), templates from a predefined
template bank are compared with the data at all times to
find where a GW signal can be present. The likelihood that
the observed data contain a GW signal is quantified by
computing a pipeline-specific ranking statistic, defined in
such a way that the larger its value the more it favors
the signal hypothesis versus the noise hypothesis. If the
detector noise is purely Gaussian, it can be proved that
the optimal ranking statistic for a signal of known form
would be the matched filter SNR [11]. However, the search
pipelines that actually look for GWs use ranking statistics
that, although based on the SNR, introduce corrections to
consider the presence of non-Gaussian glitches, which can
give sizable spurious SNR values. The corrections are

usually based on signal consistency tests, a common
example being the use of χ2 [12] to weigh down the SNR.
In order to assign a significance to the candidate events

in terms of their ranking statistic, the pipelines need to find
the background distribution of the ranking statistic for the
bank of templates. This is estimated in a data-driven way,
usually by running the search on the time-shifted strain of
the different interferometers; thus, the coincidences become
unphysical, and the triggers obtained this way represent an
estimate of the background noise. The false alarm rate
(FAR) of an event is then defined by the search pipeline as
the rate of background triggers over the whole bank of
templates with ranking statistic equal to or higher than the
one observed for the event. Therefore, the FAR can give us
an idea of how likely it is for noise to generate an event.
Intuitively, for a total observation time Tobs, any trigger that
has FAR ≥ 1=Tobs is compatible with being generated by
noise, while FAR ≪ 1=Tobs disfavors the noise hypothesis.
In searches for GWs, the FAR estimates can differ by

several orders of magnitude among different pipelines [13],
given that the FAR usually has an exponential dependence
on the ranking statistic. Therefore, small variations in how
the data are processed, what templates are used, or what one
looks for to rank the events in the different pipelines can
result in orders-of-magnitude discrepancies in the estima-
tion of the FAR.
Moreover, the FAR does not contain any information

about the foreground. To take this into account, together
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with the astrophysical prior knowledge,pastro was introduced
[14]. The rationale behind pastro is to give the Bayesian
probability that a candidate is from astrophysical origin
under a model for the foreground rates fðx; θ⃗Þ and back-
ground rates bðx; θ⃗Þ that depend on the ranking statistic x and
the template parameters θ⃗. A threshold value of pastro > 0.5
is required for any candidate event to be included in the
GWTC-3 catalog [13]. The estimated expected contamina-
tion from events of terrestrial origin is ∼10–15%, or ∼4–6
events. In the same fashion as theFAR,pastro for a given event
can be very different between pipelines and presents large
uncertainties, especially around pastro ∼ 0.5 [15].
As a consequence of the application of this threshold to

enter the GWTC-3 catalog, some events were accepted with
FAR values greater than 1=Tobs ∼ 2 yr−1. One example is
GW200322_091133 [13] with FAR> 400 yr−1, which,
upon further investigation with Bayesian parameter esti-
mation (PE), was found to have low SNR (≤8.5) and
multimodal posterior distributions of its parameters. Since
the likelihood used in PE is approximately proportional to
expðSNR2=2Þ, in events with small SNR the likelihood will
not have a large enough peak to dominate the posterior, and
there will be prior-dominated modes.
All of these difficulties may prompt one to think that

these candidate events with low SNR values might come
from noise fluctuations. The noise and GW signal hypoth-
eses are usually compared locally using the Bayes factor
[16]. However, this number says nothing about how often
we expect noise to generate a signal as “loud” as the
observed one. This has motivated us to question whether
we could aim to obtain a theoretical lower bound on the
false alarm rate of an event, independently of all the
complexities involved in the search pipelines. We start
from the idea that Gaussian noise is always an irreducible
component of the background in GW detectors [17,18]
and that it generates a rate of false alarms that could be
calculated analytically. In the case in which non-
Gaussianities are also present in the strain, more false
alarms will be induced [19], as matches will occur more
easily for a given template, thus making our estimate
assuming only Gaussian noise a lower bound on their
FAR and thus an upper bound on their significance.
In this paper, we propose a new method to derive a local

statistical measure of the significance of an event. The
main idea will be to give a theoretical estimate of how
often we would expect Gaussian noise colored with the
local power spectral density (PSD) to produce a fluc-
tuation that matches a specific template with the same or
higher SNR than the one observed. In Sec. II we develop
the framework to compute the FAR for a given template
in Gaussian noise from a single detector and study its
dependence on different parameters for CBC templates. In
Sec. III we extend the formalism to compute the FAR of a
template when multiple detectors are online. In Sec. IV we
show how to apply our statistical method to fluctuations
observed in the strain, and in Sec. IVA we use it on the

O3b events included in GWTC-3. Finally, in Sec. V we
present our conclusions.

II. FALSE ALARM RATE OF A TEMPLATE
IN A SINGLE DETECTOR

In this section we determine, given a template hðtÞ, how
much stationary Gaussian noise time, from a given detector,
we would have to look at, on average, to obtain a match
with a signal-to-noise ratio (SNR) greater than some
threshold ρ.
In general, the noise will have zero mean, hñi ¼ 0, and

assuming that it is stationary, the different Fourier modes
are uncorrelated,

hñ�ðfÞñðf0Þi≡ 1

2
SnðfÞδðf − f0Þ; ð1Þ

which can be seen as the definition of the noise PSD SnðfÞ.
If we assume that the noise is Gaussian, it is completely
characterized by the fact that it has zero mean and a
variance given in Eq. (1). Using the PSD we can define the
following inner product,

ha; bi ¼ 4

Z
fmax

fmin

ã�ðfÞb̃ðfÞ
SnðfÞ

df; ð2Þ

where tildes denote Fourier transform. This inner product
can be used to write down the usual definitions [20] of the
optimal SNR,

ρopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
hh; hi

p
; ð3Þ

and the matched filter SNR,

ρmf ¼ hh; si
ρopt

; ð4Þ

where sðtÞ is the detector output strain, which in our case
we will assume to be given by stationary Gaussian noise
nðtÞ with PSD Sn. Under this assumption, it can be proven
that ρmf is a complex normal random variable (i.e., a
Gaussian with unit dispersion, σ ¼ 1) [21]:

pðρmfÞdReρmfdImρmf ¼ 1

2π
e−

1
2
jρmf j2dReρmfdImρmf ; ð5Þ

and the real part of the matched filter SNR is the optimum
quantity to rank the significance of events for a signal of
known form under the assumption of Gaussian noise [11].
This quantity is very closely related to the likelihood ratio
for the signal vs Gaussian noise hypothesis, which is the
Bayes factor for a signal of known intrinsic parameters.
However, it is common to be in the situation in which the
global phase of the GW can be changed arbitrarily and does
not contain any astrophysical information [22]. This is the
case in a quasicircular compact binary coalescence, when
we ignore higher order modes and precession. Even when
including them, the global phase can typically be neglected
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since it is highly degenerate with other parameters such as
polarization, location in the sky, and the azimuthal angle
separating the spin vectors of the component BHs. In these
cases we ignore the global phase of the GW in the search by
taking as our ranking statistic the absolute value of the
matched filter SNR:

jρmf j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReðρmfÞ2 þ ImðρmfÞ2

q
; ð6Þ

which is invariant under global phase transformations
h̃ðfÞ → h̃ðfÞeiϕg . Indeed, the SNR usually used in searches
is jρmf j [23] since it is equivalent to automatically finding
the global phase ϕg of the GW that maximizes ReðρmfÞ.
Thus, we choose jρmf j as our ranking statistic in this paper.
Defining h̃ðfÞ as the Fourier transform of the template hðtÞ,
we can use the following property,

F ðhðt0ÞÞ ¼ h̃ðfÞe−2πifðt0−tÞ; ð7Þ

and compute the matched filter signal-to-noise ratio,
Eq. (4), at all times as

ρmfðtÞ ¼ 4

ρopt

Z
fmax

fmin

df
h̃�ðfÞñðfÞ
SnðfÞ

e2πift; ð8Þ

where we assume that the strain only contains Gaussian
noise.At any fixed point in time,ρmfðtÞ ofEq. (8)will behave
as a complex normal variable from Eq. (5), and the pro-
bability of obtaining a value of jρmf j greater than ρ will be

Pðjρmf j> ρÞ ¼ 1

2π

Z
2π

0

d argðρmfÞ
Z

∞

ρ
jρmf jdjρmf je−1

2
jρmf j2

¼ e−
1
2
ρ2 : ð9Þ

A naive computation to estimate the rate of false alarms with
jρmf j> ρwould be tomultiply this probability by the number
of trials per unit time, which, when different times are
independent, would just be the sampling rate of the detector:

FARnaive ¼
1

Δtsamp
e−ρ

2=2: ð10Þ

However, thiswould be incorrect because thevalue of jρmfðtÞj
at different times is correlated. The problem can be explicitly
seen in Fig. 1, where we have generated Gaussian noise from
Advanced LIGO at design sensitivity [2] and computed
jρmfðtÞj using Eq. (8) with IMRPhenomPv2 [24] templates of
the specified masses. Each template is matched with different
noise realizations until we obtain a trigger of jρmfðttrigÞj ∼ 6,
which we show in Fig. 1. The correlation between different
times manifests itself in the fact that jρmfðtÞj is a smooth
function, where the smoothing timescale is related to the
autocorrelation time, and we observe that it depends on
the templatemass. In particular, the larger themass, the larger
the autocorrelation time will be. This correlation of jρmfðtÞj
at different times has a direct effect on the FAR, defined as
the average time between peaks with jρmf j> ρ, since the
smoother the function jρmfðtÞj is, the less peaks per second it
will have, thus reducing the rate of false alarms. Assuming
that the sampling rate of the detector is sufficiently large to see
jρmfðtÞj as a smooth function, in the rest of this section we
demonstrate that the effect of the correlations will be to
replace the sampling rate of the detector 1=Δtsamp in Eq. (10)
by an effective sampling rate that depends on the template,
the noise PSD, and the threshold ρ.

A. Probabilistic derivation of the FAR

The autocorrelation of ρmfðtÞ can be quantified by
computing the covariance between the values of ρmfðtÞ
at different times, assuming that the strain only contains
Gaussian noise:

Γðt;t0Þ

¼1

2
hρmfðtÞρmfðt0Þ�i

¼8

�Z
fmax

fmin

df
Z

fmax

fmin

df0
h̃�ðfÞh̃ðf0Þñ�ðf0ÞñðfÞ
SnðfÞSnðf0ÞðρoptÞ2

e2πiðft−f0t0Þ
�

¼8

Z
fmax

fmin

df
Z

fmax

fmin

df0
h̃�ðfÞh̃ðf0Þhñ�ðf0ÞñðfÞi

SnðfÞSnðf0ÞðρoptÞ2
e2πiðft−f0t0Þ

¼Γðt− t0Þ¼ 4

ðρoptÞ2
Z

fmax

fmin

df
jh̃ðfÞj2
SnðfÞ

e2πifðt−t0Þ; ð11Þ

FIG. 1. Simulation of the modulus of the matched filter SNR jρmfðtÞj for Gaussian noise generated using Advanced LIGO design
sensitivity [2] and IMRPhenomPv2 [24] templates of masses m1 ¼ m2 ¼ 1M⊙, m1 ¼ m2 ¼ 50M⊙, and m1 ¼ m2 ¼ 150M⊙. Each
template is matched with different noise realizations until we obtain a trigger of jρmfðttrigÞj ∼ 6. We plot 0.5 s around this trigger.
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where we have used Eq. (1) and hρmfðtÞi ¼ 0. We observe
in Eq. (11) that for t ¼ t0 we have Γð0Þ ¼ 1, as expected
from the fact that ρmfðtÞ is a complex normal variable at any
specific point in time. In general, Γðt − t0Þ will be non-
negligible for t ≠ t0, so the value of the SNR at two different
times will be correlated. If we consider the SNR at two
different points separated by a time Δt and define ρmfðtÞ≡
ρc1 and ρmfðtþ ΔtÞ≡ ρc2, from Eq. (11) we have that their
joint probability distribution will be given by the following
bivariate complex Gaussian:

pðρc1; ρc2Þ ¼
exp

�
− jρc

1
j2þjρc

2
j2−2ReðΓðΔtÞρc�

1
ρc
2
Þ

2ð1−jΓðΔtÞj2Þ

�
ð2πÞ2ð1 − jΓðΔtÞj2Þ : ð12Þ

Using this expression we can compute the two-point false
alarm probability (FAP2), that is, the probability that either
ρ1 or ρ2 is greater than some SNR threshold ρ,

FAP2 ¼ Pðρ1 > ρ ∪ ρ2 > ρÞ: ð13Þ

An in-depth study of this quantity is given in Appendix,
where we find expressions to compute it numerically and
to analytically approximate it to arbitrary order. To under-
stand how FAP2 behaves, and to gain intuition on how
the FAP of more variables will behave, it is interesting
to discuss its limiting behaviors. When the separation
between the two points is large (Δt → ∞), the correlation
between them vanishes (jΓðΔtÞj → 0), meaning that FAP2
becomes the FAP of two uncorrelated variables, that is,
FAP2ðjΓðΔtÞj ¼ 0Þ ¼ 2e−ρ

2=2 − e−ρ
2

. As the points get
closer together (Δt → 0), the correlation increases
(jΓðΔtÞj → 1), and FAP2 will decrease due to correlation
effects until the correlation is maximal (jΓðΔtÞj ¼ 1),
when the two variables behave as a single one and
FAP2ðjΓðΔtÞj ¼ 1Þ ¼ e−ρ

2=2.
In the real setup of a GW experiment, we are interested

in determining the false alarm probability for N points
separated by a sampling time Δt each. If we define
ρk ≡ jρmfðtþ kΔtÞj, this FAP is given by

FAP ¼ P

�∪N
n¼1

ρn > ρ

�
¼ 1 − P

�∩N
n¼1

ρn < ρ

�

¼ 1 − Pðρ1 < ρÞ
YN
k¼2

P

�
ρk < ρj∩k−1

n¼1
ρn < ρ

�
; ð14Þ

where PðAjBÞ denotes the conditional probability of A
given B, and in the last equality we have used the
multiplication rule of probability. To compute Eq. (14)
we thus need Pðρ2 < ρjρ1 < ρÞ. This can be computed in
terms of the FAP2 defined in Eq. (13):

Pðρ2 < ρjρ1 < ρÞ ¼ Pðρ1 < ρ ∩ ρ2 < ρÞ
Pðρ1 < ρÞ

¼ 1 − FAP2ðρ;ΔtÞ
1 − e−ρ

2=2

≈ 1 − ðFAP2ðρ;ΔtÞ − e−ρ
2=2Þ; ð15Þ

where in the last equality we have assumed that e−ρ
2=2 ≪ 1

(which is true for ρ≳ 3). In order to compute Eq. (14)
we also need to calculate Pðρk < ρjρ1 < ρ ∩ ρ2 < ρ ∩ … ∩
ρk−1 < ρÞ. We can determine this conditional probability in
an approximate way by assuming that it depends only on
the nearest neighbor, that is,

Pðρk < ρjρ1 < ρ ∩ ρ2 < ρ ∩ … ∩ ρk−1 < ρÞ
≈ Pðρk < ρjρk−1 < ρÞ ¼ Pðρ2 < ρjρ1 < ρÞ; ð16Þ

where in the last equality we have just used the translation
invariance of the problem. The nearest neighbor approxi-
mation of Eq. (16) will only be valid in the case in which
the sampling time Δt is large enough such that second
neighbor effects can be neglected, which could be taken
into account by replacing the approximation of Eq. (16)
by Pðρ3 < ρjρ2 < ρ ∩ ρ1 < ρÞ.
Introducing Eqs. (15) and (16) into Eq. (14) and

assuming that FAP2 − e−ρ
2=2 ≪ 1, we have

FAP ≈ 1 − ð1 − e−ρ
2=2Þ½1 − ðFAP2ðρ;ΔtÞ − e−ρ

2=2Þ�N−1

≈ 1 − exp f−N½FAP2ðρ;ΔtÞ − e−ρ
2=2�g

≈ 1 − exp

�
−
Tobs

Δt
½FAP2ðρ;ΔtÞ − e−ρ

2=2�
�
; ð17Þ

where Tobs is the observing time on which we are
computing the FAP, which we assume to be long enough
so that N ¼ Tobs=Δt ≫ 1.
To obtain a quantity that is independent of the observing

time, we define the FAR, which is the average number of
false alarms per unit time. As we see in Fig. 1, the
autocorrelation of the SNR has the effect of clustering
its values in peaks. Though each peak of jρmfðtÞj has many
sample times over the threshold, which naively could count
as false alarms, it is important to realize that each peak
should be counted as a single false alarm; that is, we have to
find the number of uncorrelated false alarms which are thus
Poisson distributed. This is an important point, given that if
each sample time that is over the SNR threshold ρ were
counted as a false alarm, we would obtain the naive FAR
of Eq. (10) since, when looking at individual points,
the probability is given by Eq. (9), and we would greatly
overestimate the FAR.
By the definition of the FAR, the mean of the Poisson

distribution describing the number of uncorrelated false
alarms will be λ ¼ TobsFAR, assuming an observing time
Tobs. Therefore, the probability of having k false alarms is
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pðkÞ ¼ ðTobsFARÞk
k!

e−TobsFAR: ð18Þ

Since the FAP is the probability of having one or more false
alarms, it is given by

FAP¼
X∞
k¼1

pðkÞ ¼ 1−pð0Þ ¼ 1− expf−TobsFARg: ð19Þ

By comparing Eqs. (17) and (19), we immediately deduce
the following relation between the FAR and the FAP:

FAR2ðρ;ΔtÞ ¼
1

Δt
½FAP2ðρ;ΔtÞ − e−ρ

2=2�; ð20Þ

where we add the subscript 2 to highlight that this FAR
has been computed by taking into account only nearest
neighbors.

B. Evaluation of the FAR of a template

In order to further elaborate the expression of the FAR
for a given template in Eq. (20), we need to study the
FAP2ðρ;ΔtÞ more in depth. In the case in which the
detector has a high enough sampling rate, we can assume
that jρmfðtÞj is a continuous function, as is the case in
Fig. 1. This will be a very good approximation in LIGO-
Virgo, where data are taken at a sampling rate of
1=Δtsamp ¼ 16384 Hz. In this case, instead of interpreting
Δt as the sampling time of the detector, we leave it as a free
parameter, as we imagine that the function jρmfðtÞj can be
resampled arbitrarily. We want to make Δt → 0, to obtain
the result for when jρmfðtÞj is continuously sampled, but if
Δt is too small, the nearest neighbor approximation will no
longer be valid. The effect of the farther neighbors will be
to reduce the number of effective trials. This compensates
the increase in the number of sampling points in such a way
that the exact FAR with all correlations taken into account
will be smaller than the FAR from the nearest neighbor
approximation, that is,

FARðρ;ΔtsampÞ ≤ FAR2ðρ;ΔtsampÞ: ð21Þ

With this in mind, we approximate the FAR of Eq. (20)
for Δt → 0, which from Eq. (11) is equivalent to
jΓðΔtÞj → 1. We can do this by introducing in Eq. (20)
the expression for FAP2 of Eq. (A20) found in Appendix,
keeping only next-to-leading order (NLO) terms in
1 − jΓðΔtÞj and assuming that ρ2 ≫ 1:

FAR2 ≈
e−ρ

2=2

Δt
Erf

	
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jΓðΔtÞjp

2



: ð22Þ

Since we are interested in the limit Δt → 0, we can
substitute ΓðΔtÞ by its Taylor expansion around Δt ¼ 0,
which using the definition in Eq. (11) will be given by

ΓðΔtÞ ¼ 4

ðρoptÞ2
Z

fmax

fmin

df
jh̃ðfÞj2
SnðfÞ

e2πifΔt

¼ 4

ðρoptÞ2
Z

fmax

fmin

df
jh̃ðfÞj2
SnðfÞ

X∞
k¼0

ð2πifΔtÞk
k!

¼
X∞
k¼0

ik
Ck

k!
ðΔtÞk; ð23Þ

where Ck are real constants defined as

Ck ¼
4

ðρoptÞ2
Z

fmax

fmin

dfð2πfÞk jh̃ðfÞj
2

SnðfÞ
: ð24Þ

To leading order (LO) in Δt, we then have that jΓðΔtÞj will
be given by

jΓðΔtÞj ¼ 1 −
1

2
ðC2 − C2

1ÞðΔtÞ2; ð25Þ

where we have used that C0 ¼ 1. Substituting the expan-
sion for jΓðΔtÞj of Eq. (25) into Eq. (22) and keeping terms
in Δt up to leading order, we obtain

FAR2ðρ;ΔtÞ ≈
e−ρ

2=2

Δt
Erf

	 ffiffiffi
π

p
2

ρCΔt


; ð26Þ

where for simplicity we have defined

C≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 − C2

1

2π

r
; ð27Þ

which is always a real quantity since C2 − C2
1 ≥ 0.1 This is

a necessary condition given by the fact that C2 − C2
1 is the

leading order coefficient in the Taylor expansion of jΓðΔtÞj
[see Eq. (25)], and we know that jΓðΔtÞj ≤ 1.

1We can explicitly prove that C2 − C2
1 ≥ 0 and gain some

intuition on C, if we realize that

gðfÞ ¼
�

4
ðρoptÞ2

jh̃ðfÞj2
SnðfÞ fmin < f < fmax

0 else
ð28Þ

can be interpreted as a probability distribution function since it is
always non-negative and it is normalized [i.e.,

R
∞
−∞ gðfÞdf ¼ 1].

Using this probability distribution function, we then observe that
C is simply given by

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðEg½f2� − Eg½f�2Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πEg½ðf − Eg½f�Þ2�

q
¼

ffiffiffiffiffi
2π

p
σf;

ð29Þ
where Eg½X� denotes the expectation value of X in g, σf is the
standard deviation of the frequency f in g, and from the second
equality we explicitly see that the argument of the square root is
always positive. From Eq. (29) we then observe that C will be
directly related to the bandwidth, that is, how spread out in
frequencies gðfÞ is. Therefore, the more broadband our detector
and signals are, the larger C will be, in general.
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From Eq. (26) we have that, in the limit Δt → 0,

FAR2ðρ; 0Þ ¼ Cρe−ρ
2=2: ð30Þ

The way to interpret the result of Eq. (30) is that even if we
consider the separation between points to tend to 0, the
FAR will not diverge, as we would have naively deduced
from Eq. (10). The correlation between the neighboring
points will regularize the FAR to the finite value of Eq. (30).
This can be seen in Fig. 2, where we show the FAR2 for

IMRPhenomPv2 [24] templates of different masses, assuming
Advanced LIGO at design sensitivity [2]. The FAR is
computed using the exact expression [Eq. (20)], the LO
expression of Eq. (26), and the NLO expression of Eq. (37),
which will be discussed in the next subsection. For the
case of m1;2 ¼ 50M⊙, we observe that the leading order
expression gives a very accurate representation of the exact
result. This is no longer true for the low mass cases of
m1;2 ¼ 1M⊙ and m1 ¼ 20M⊙; m2 ¼ 4M⊙, where the FAR
decreases faster than expected at high values of Δt due to
correlation tails at this high Δt. To describe this deviation
from the LO result, we have to take into account higher
order corrections in Δt, which will be discussed in the next
subsection.
The fewer trials we do, the smaller the FAR should be.

Therefore, the FAR is a monotonously decreasing func-
tion of Δt, and FAR2ðρ;ΔtsampÞ ≤ FAR2ðρ; 0Þ, which can
correctly be seen in Fig. 2. Using this together with
Eq. (21), we obtain

FARðρ;ΔtsampÞ ≤ FAR2ðρ; 0Þ ¼ ρCe−ρ
2=2: ð31Þ

We expect that the result of Eq. (31) will be a very tight
upper bound and thus a good approximation of the exact
FAR in the case that the NLO corrections are small since
these are related with the length of the correlations and thus
the importance of the next-to-nearest neighbors.
To study the validity of this result, we simulate the

problem at hand. In particular, we simulate the FAP by
generating many chunks of simulated Gaussian noise
from Advanced LIGO at design sensitivity [2] of duration
Tobs ¼ 512 s. We directly compute the probability to have
a trigger with jρmf j> ρ by performing matched filtering on
the noise using a GW template and dividing the number of
chunks where we find a match with jρmf j> ρ by the total
number of chunks analyzed. From this FAP we can obtain
the FAR simply by inverting Eq. (19):

FAR ¼ 1

Tobs
log

�
1

1 − FAP

�
: ð32Þ

In Fig. 3 we show the FAR computed in this way from
the simulation of the FAP and multiplied by eρ

2=2 to extract

FIG. 2. FAR2 for IMRPhenomPv2 [24] templates of different
masses, assuming Advanced LIGO at design sensitivity [2] and
setting the threshold SNR ρ ¼ 4. The FAR is computed using the
exact expression [Eq. (20)], the LO expression of Eq. (26), and
the NLO expression of Eq. (37), where the integrals in frequency
are always computed between fmin ¼ 20 Hz and fmax ¼
2048 Hz to mimic normal GW analysis. We normalize the
FAR to its value at 0 separation and the time to make the LO
approximation of all cases appear the same. The uncorrelated
case of Eq. (10) is also plotted.

FIG. 3. Comparison between the simulated and predicted FAR
for five different IMRPhenomPv2 templates. The simulation is done
using 15 million chunks of 512 s of simulated Gaussian noise
generated from Advanced LIGO at design sensitivity [2]. We
directly compute the probability to have a trigger with jρmf j> ρ
by performing matched filtering between fmin ¼ 20 Hz and
fmax ¼ 2048 Hz with the corresponding GW template and
dividing the number of chunks where we find a match with
jρmf j> ρ by the total number of chunks analyzed. The error on
the FAP is computed using the Wilson score 90% confidence
interval [25]. Introducing this FAP in Eq. (32) (using
Tobs ¼ 512 s), we obtain the FAR plotted with dots, whose error
bars represent the 90% confidence interval. For the theory curves,
the corresponding values of C are computed with Eqs. (27)
and (24).
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the exponential decay behavior and make visualization
easier. The matched filter is done with five different
IMRPhenomPv2 templates. The first three have the same
masses as the ones used in Fig. 2, and we add two more
cases with small NLO contributions, having m1;2 ¼
150M⊙ and m1 ¼ 120M⊙; m2 ¼ 60M⊙. We observe that,
indeed, Eq. (31) is always satisfied and FAR2ðρ; 0Þ is an
upper bound of FARNðρ;ΔtsampÞ within the error. As was
discussed previously, this is a tight upper bound in the case
in which the NLO corrections are small, deviating by less
than 1 part in 1000 for the larger masses (m1;2 ¼ 50M⊙,
m1;2 ¼ 150M⊙ and m1 ¼ 120M⊙; m2 ¼ 60M⊙). In the
cases where the NLO corrections are important
(m1;2 ¼ 1M⊙ and m1 ¼ 20M⊙; m2 ¼ 4M⊙) we can
observe that even though Eq. (31) is still a good upper
bound, it is not so tight anymore. Nonetheless, the
maximum relative error between the upper bound and
the exact value always stays below 15% and decreases
towards larger values of the SNR threshold ρ. We thus
confirm that a good approximation of the FAR is

FAR ¼ Cρe−ρ
2=2: ð33Þ

Comparing this expression with the value of the naive
FAR that we derived at the beginning in Eq. (10), we have
that, as anticipated, the sampling time of the experiment is
naturally replaced by an effective sampling time for which
we can obtain the same result as for uncorrelated points.
This effective sampling rate depends on the threshold ρ and
on the template and noise PSD via the coefficient C:

Δteff ¼
1

ρC
: ð34Þ

Consistently computing corrections to this result, we
would have to take into account the effect of next-to-
leading order corrections. We do this in the next subsection.

C. NLO corrections to the FAR of a template

We start by studying the NLO corrections to the
expression for FAR2 found in Eq. (26). For this we now
substitute in Eq. (20) the expression for FAP2 of Eq. (A25)
found in Appendix, keeping NLO terms in 1 − jΓðΔtÞj and
assuming that ρ2 ≫ 1:

FAR2 ≈
e−ρ

2=2

Δt
Erf

�
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jΓðΔtÞjp

2

�
1þ 1 − jΓðΔtÞj

4

��
:

ð35Þ
When considering the Taylor expansion of jΓðΔtÞj, we now
keep up to quartic terms, that is,

jΓðΔtÞj ¼ 1 −
1

2
ðC2 − C2

1ÞðΔtÞ2

þ 1

24
ðC4 − 4C1C3 þ 6C2

1C2 − 3C4
1ÞðΔtÞ4: ð36Þ

Introducing this Taylor expansion into Eq. (35) and keeping
up to leading order terms, we have

FAR2ðρ;ΔtÞ ≈
e−ρ

2=2

Δt
Erf

� ffiffiffi
π

p
2

ρCΔt
�
1 −

ðΔtÞ2
ðΔtNLOÞ2

��
;

ð37Þ

where we have introduced ΔtNLO as the characteristic time
for which when Δt ≪ jΔtNLOj we can neglect higher order
effects. In terms of Ck, it will be given by

ðΔtNLOÞ2 ¼
24ðC2 − C2

1Þ
C4 − 4C1C3 − 3C2

2 þ 12C2
1C2 − 6C4

1

: ð38Þ

Looking again at Fig. 2 where the NLO FAR2 of Eq. (37) is
compared with the LO expression [Eq. (26)] and with the
exact expression [Eq. (20)], we can observe that the NLO
corrections are not important for the high mass system with
m1;2 ¼ 50M⊙ since jρCΔtNLOj ≫ 1. However, for the low
mass cases of m1;2 ¼ 1M⊙ and m1 ¼ 20M⊙; m2 ¼ 4M⊙,
which have jρCΔtNLOj ∼Oð1Þ, we can see that the higher
order corrections in Δt are important. In these cases, the
tails of the correlation are relatively long, so the FAR
decreases faster than expected as a function of Δt, which
is accurately described by the NLO corrections as long
as Δt≲ ΔtNLO.
We also want to obtain a more accurate formula for the

Gaussian FAR than the one in Eq. (33). To consistently
compute corrections to the result of Eq. (33), we have to
take into account the effect of farther neighbors in Eq. (16).
Nonetheless, doing this becomes very complicated rather
quickly. Instead, a heuristic way to take into account the
next-to-leading order corrections can be found by imposing
that these preserve the same behavior as the leading order
term of Eq. (26), which gives a very good description when
higher orders can be neglected. We can imagine that at
Δteff=2 there will be a sampling point whose correlation we
neglect when we resample jρmfðtÞj. We then impose that
the correlation jΓðΔtÞj at this point has the same value as
in the case where we only consider the leading order term in
the Taylor expansion of Eq. (25):

����Γ
�
Δteff
2

����� ¼ 1 −
π

4ρ2
: ð39Þ

Using the next-to-leading order expansion for jΓðΔtÞj on
the left-hand side, we obtain

1 −
π

4
ðCΔteffÞ2 þ

π

2
ρ2NLOðCΔteffÞ4 ¼ 1 −

π

4ρ2
; ð40Þ

where for convenience we have defined ρNLO in the
following way:
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ρNLO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πðC4 − 4C1C3 þ 6C2

1C2 − 3C4
1Þ

48ðC2 − C2
1Þ2

s
: ð41Þ

Solving Eq. (40) forΔteff, keeping only leading order terms
in ρNLO=ρ, we obtain

1

ΔtNLOeff

¼ ρC

	
1 −

�
ρNLO
ρ

�
2


: ð42Þ

This heuristic result is compared with the simulated
value in Fig. 3. Although we have to keep in mind that
it has not been derived in a consistent way, we can observe
that it closely follows the behavior of the deviations
from Eq. (33) for the cases of m1;2 ¼ 1M⊙ and m1 ¼
20M⊙; m2 ¼ 4M⊙ for which the corrections are important.
Equation (42) will thus be a useful model to understand
how these deviations behave. As expected, the heuristic
corrections of Eq. (42) make the FAR smaller than the
upper bound of Eq. (33). Furthermore, we find that in this
model the magnitude of the corrections is governed by
ρNLO, Eq. (41), which is a parameter that characterizes how
the correlation jΓðΔtÞj deviates from a parabola around
Δt ¼ 0. From Eq. (42) we observe that when we increase
the SNR threshold ρ, the magnitude of the correction
decays as ðρNLO=ρÞ2, so for ρ≳ 3ρNLO, the relative error
when ignoring these corrections is smaller than ∼10%.

D. Dependence on the CBC template parameters

At a constant matched filter SNR, and neglecting higher
order corrections (ρ ≫ ρNLO), the false alarm rate of
Eq. (33) will only depend on the signal via the multipli-
cative coefficient C defined in Eq. (27), which when
multiplied by the SNR, gives us the effective sampling rate.
Since the higher the effective sampling rate, the more false
alarms we expect, we can study how much Gaussian noise
background there is in different regions of the CBC param-
eter space by representing the coefficient C as a function of
the CBC parameters. This is done in Fig. 4, where we plot C
as a function of the CBC component masses for the
IMRPhenomPv2 waveform with the spins set to 0.
The masses are parametrized via the total mass of the

binary, M ¼ m1 þm2, and the mass ratio q ¼ m2=m1, the
leading order parameters that control the amplitude evo-
lution of the waveform [26], which is the part that enters in
the computation of Ck in Eq. (24). These results are robust
with respect to the waveform choice since Ck depends only
on the amplitude evolution, which is not as sensitive to
modeling uncertainties as quantities that depend on the
phase evolution of the template [27].
In Fig. 4 we obtain the natural result that, as a general

trend, the higher the mass, the smaller the FAR will be (at a
constant ρ). This is because the characteristic frequency of
the event will be smaller, and then the characteristic
autocorrelation time of the matched filter SNR will be

longer, meaning that the time between independent trials
will be longer. On top of this general trend we observe a
peak at around M ∼ 10M⊙, which will be due to events
whose merger lies in the upper part of the most sensitive
frequency range of the interferometer. Since during merger
jh̃ðfÞj2 ∝ f−4=3 instead of jh̃ðfÞj2 ∝ f−7=3 as in the inspiral
[26], this will make gðfÞ [Eq. (28)] decay slower at larger
frequencies where it is usually suppressed by the quantum
shot noise [SnðfÞ ∝ f2 [28] at high frequency]. In this case,
where the merger lies in the upper part of the most sensitive
frequency range of the interferometer, the value ofCwill be
larger because the band of frequencies that contribute will
be larger. As a consequence of C being larger, the effective
sampling rate will be larger, leading to more false alarms.
In Fig. 5, the parameter ρNLO giving the scale of the next-

to-leading order corrections is shown. This quantity has a
similar behavior to that of C, saturating at small masses
where the merger is outside the sensitivity band and
generally decreasing at large masses whose merger happens
at low frequency. It also has a peak at intermediate masses,
corresponding to those systems that merge in the upper
range of the frequency band that has the highest sensitivity.
Note that in the case of ρNLO, this peak is more pronounced
and towards smaller masses than in the case of C, which is
due to the fact that in this range the value of ρNLO is
dominated by the value of C4, which weighs higher
frequencies more heavily than C2; see Eq. (24). The
maximum of ρNLO is achieved in this peak around
M ∼ 8M⊙, with a value of ρNLO;max ∼ 2. This means that
if we go to ρ≳ 6, the relative magnitude of the deviations
from Eq. (33) will be smaller than ∼10% for all of the CBC
parameter range [see Eq. (42)]. Therefore, as long as ρ≳ 6
Eq. (33) will not only be an upper bound but also a very
good approximation of the FAR.

FIG. 4. FAR prefactor C as a function of the CBC masses
parametrized via the total mass of the binary M ¼ m1 þm2 and
the mass ratio q ¼ m2=m1 and computed using the PSD of
Advanced LIGO at design sensitivity [2] between fmin ¼ 20 Hz
and fmax ¼ 2048 Hz. The waveform has been computed using
IMRPhenomPv2 with zero spin.
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Having established the validity of Eq. (33) to approxi-
mate the FAR, we can now use it to find what SNR
threshold ρ we would need in order to discard all events
with FAR higher than a given threshold FARth. To do this
we have to invert Eq. (33), which cannot be done exactly in
terms of elementary functions since it is a transcendental
equation, but it can be done approximately in the limit
where ρ ≫ 1:

ρ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log

C
FARth

þ log

�
2 log

C
FARth

��
1þ 1

2 log C
FARth

�s
;

ð43Þ

which gives ρ with a relative error of order Oðlog2ðρÞ=ρ6Þ.
In Fig. 6 we have plotted this SNR threshold ρ for different
FAR thresholds as a function of the total mass of the binary
M, assuming equal component masses (q ¼ 1). Even
though from Fig. 4 we observe that the value of C depends
strongly on M, when we introduce this C in Eq. (43),
ρ depends, to leading order, on the square root of its
logarithm and so has only a mild dependence on M as can
be seen in Fig. 6. As a general trend, the higher M is, the
smaller the SNR threshold ρ will have to be set to exclude
false alarms at a given rate FARth, with the peak at
M ∼ 10M⊙ observed in Fig. 4 now less prominent due
to the logarithmic dependence. The dependence on FARth
will also be mild, as ρwill also depend on the square root of
the logarithm of this quantity. Because of this, the variation
of an order of magnitude in FARth changes ρ by only a
small amount. We observe that if we set ρ ¼ 8, as is
commonly done in the theoretical literature [29], we would
be rejecting Gaussian noise false alarms with rates higher
than FARth ∼ 10−3 yr−1.

III. FALSE ALARM RATE OF A TEMPLATE
IN A NETWORK OF DETECTORS

In this section we determine how much stationary
Gaussian noise time of the detectors in a network we
would have to look at on average to obtain a match with a
SNR greater than some threshold ρ, using a GW template
for the two polarizations fhþðtÞ; h×ðtÞg, which, when
projected in the ith detector, leaves a signal hiðtÞ. For
the problem to be well posed, we will first have to define
what we mean by the SNR for multiple detectors. In the
case where we have more than one detector, the total
optimal SNR ρopttot is defined by summing the individual
optimal SNRs [Eq. (3)] in quadrature, that is,

ρopttot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

hhi; hiii
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ðρopti Þ2
r

; ð44Þ

where h×;×ii denotes the inner product [Eq. (2)] with the
PSD SiðfÞ of the ith detector. If siðtÞ is the strain data in the
ith detector of the network, then the total matched filter
SNR ρmf

tot is defined as

ρmf
tot ¼

1

ρopttot

X
i

hhi; siii ¼
1

ρopttot

X
i

ρopti ρmf
i ; ð45Þ

which, given that each ρmf
i is a complex normal variable, if

there are no correlations between detectors, will also be a
complex normal variable. As was the case for the single-
detector matched filter SNR, the real part of Eq. (45) will be
the optimal quantity to rank the triggers when the form of
the signal is known. Nonetheless, as was discussed in
Sec. II, in most cases of interest, the global phase of the GW

FIG. 6. SNR threshold ρ for different FAR thresholds as a
function of the total mass of the binary M, assuming 0 spin and
equal component masses (q ¼ 1). Note that ρ is plotted using
Eq. (43), where the values of C are the same as the ones for the
q ¼ 1 curve of the left panel of Fig. 4. Direct comparison
between the approximation of Eq. (43) and the ρ obtained by
numerically inverting Eq. (33) shows that the maximum relative
error made on ρ is of 2 × 10−5 for the values shown in this plot.

FIG. 5. The ρNLO as a function of the CBCmasses parametrized
via the total mass of the binary M ¼ m1 þm2 and the mass
ratio q ¼ m2=m1 and computed using the PSD of Advanced
LIGO at design sensitivity [2] between fmin ¼ 20 Hz and
fmax ¼ 2048 Hz. The waveform has been computed using
IMRPhenomPv2 with zero spin.
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can be changed arbitrarily and does not carry any informa-
tion. Therefore,wewant to set jρmf

tot j as the ranking statistic, so
we get rid of the global phase while keeping the information
contained in the relative phase and time of arrival of the GW
in each detector, which will be related to the orientation and
location of the detectors with respect to the direction and
orientation of the GW source. The relative phase of the
incomingGWin the different detectors is sometimes ignored
in GW searches to reduce computational cost, and it can
easily add single-detector triggers [6], although methods to
take it into account in a statistical way have recently been
introduced [30]. The relative phases between detectors are
ignored when using the incoherent SNR, which is obtained
by adding the absolute value of the single-detector matched
filter SNRs in quadrature:

ρinc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

jρmf
i j2

r
: ð46Þ

Nonetheless, here this ranking statistic will not be used
as a lot of information is lost with it. If we shift in time the
signals in all detectors, they will change by the same factor
(F ðhiðt0ÞÞ ¼ F ðhiðtÞÞe−2πifðt0−tÞ), and then as in Eq. (8),
we can compute the matched filter SNR of the signal at

different times with Gaussian noise using the following
expression:

ρmf
tot ðtÞ ¼

4

ρopttot

Z
fmax

fmin

dfe2πift
X
i

h̃�i ðfÞñiðfÞ
SiðfÞ

; ð47Þ

whereSiðfÞ is the noise PSD in the ith detector. This quantity
will also have correlations between different times that will
affect the false alarm rate in a very similar way as in Sec. II.
This correlation can be explicitly seen in Fig. 7, where in the
top panelwe have plotted a simulation similar to that of Fig. 1
for a random realization of the matched filter SNR for each
detector in a network formed by LIGO Livingston (L1),
LIGO Hanford (H1) [2], and Virgo (V1) [3] at their design
sensitivities. In the bottom panel we plot the sum of these
single-detector SNRs both in a coherent way [Eq. (45)] and
an incoherent way [Eq. (46)]. We observe how these are
smooth functions and are thus autocorrelated in time.We also
observe that the incoherent SNR is always above the coherent
one (sometimes quite significantly) since it ignores the
important information carried by the consistency of the
GW phase in the different detectors.
In a similar way as in Eq. (11), we can quantify the

autocorrelation in time of ρmf
tot ðtÞ by computing the covari-

ance between different times:

Γðt; t0Þ ¼ 1

2
hρmf

tot ðtÞρmf
tot ðt0Þ�i

¼ 8

ðρopttot Þ2
�Z

fmax

fmin

df
Z

fmax

fmin

df0e2πiðft−f0t0Þ
X
i

X
j

h̃�i ðfÞh̃jðf0Þñ�jðf0ÞñiðfÞ
SiðfÞSjðf0Þ

�

¼ 8

ðρopttot Þ2
Z

fmax

fmin

df
Z

fmax

fmin

df0e2πiðft−f0t0Þ
X
i

X
j

h̃�i ðfÞh̃jðf0Þhñ�jðf0ÞñiðfÞi
SiðfÞSjðf0Þ

¼ Γðt − t0Þ ¼ 4

ðρopttot Þ2
Z

fmax

fmin

dfe2πifðt−t0Þ
X
i

jh̃iðfÞj2
SiðfÞ

; ð48Þ

FIG. 7. Top panel: simulation of the modulus of the single-detector matched filter SNR jρmfðtÞj for Gaussian noise generated with H1,
L1, and V1 at design sensitivity. The match is performed using a spinless IMRPhenomPv2 [24] template of masses m1 ¼ m2 ¼ 50M⊙,
with extrinsic parameters right ascension 1.7 rad, declination 1.7 rad, polarization 0.2 rad, and a reference time tGPS ¼ 1000000000s.
Bottom panel: result of adding the single-detector SNRs of the top panel both coherently [Eq. (45)] and incoherently [Eq. (46)]. To
obtain the particular curves shown in this plot, we generated random Gaussian noise in the three interferometers until we obtained a
realization with a time at which jρmf

tot j > 6.5, and we plot 0.5 s around the maximum of this trigger.

MORRÁS, SILES, GARCÍA-BELLIDO, and MORALES PHYS. REV. D 107, 023027 (2023)

023027-10



where we have used the fact that when there is no
correlation between the noise of different detectors, then
hñ�jðf0ÞñiðfÞi ¼ 1

2
SiðfÞδijδðf − f0Þ. What we observe in

Eq. (48) is that in the many-detector case, we obtain the
same formula of the covariance as in the single-detector
case of Eq. (11) if we use the following identification:

1

ðρoptÞ2
jh̃ðfÞj2
SnðfÞ

→
1

ðρopttot Þ2
X
i

jh̃iðfÞj2
SiðfÞ

: ð49Þ

Therefore, the FAR will be given by the same expres-
sions that were found in Sec. II for the single-detector case
using the identification of Eq. (49). In other words, an
accurate upper bound approximation of the FAR is given by
Eq. (33), with C given by the same formula of Eq. (27) but
now using the following expression for Ck:

Ck ¼
4

ðρopttot Þ2
Z

fmax

fmin

dfð2πfÞk
X
i

jh̃iðfÞj2
SiðfÞ

: ð50Þ

IV. APPLICATION TO GW EVENTS

So far we have discussed the FAR and the FAP for a
predefined template given a threshold SNR ρ. However, in
real settings what we observe is a fluctuation in the strain;
we do not know if it comes from a GW or from noise, and
we will generically call it an event. This fluctuation can be
interpreted under any template, each giving a different
SNR. For a given template, the threshold SNR ρ to use in
Eq. (33) for the FAR computation is the observed total
matched filter SNR (ρ ¼ jρmf

tot j) since we want to know how
likely it is to find SNRs equal to or larger than the one
observed for the template. The problem is then how to
choose a template, given the observed strain, to determine
the SNR and to compute the FAR using Eq. (33). The
likelihood is the conditional probability of obtaining the
observed strain given a GW signal with parameters θ⃗.
If we assume Gaussian noise, the likelihood takes the
following form [31]:

Lðsjθ⃗Þ ¼ N exp

�
−
1

2

X
i

hsi − hiðθ⃗Þ; si − hiðθ⃗Þii
�

∝ exp

�
ρopttot ðθ⃗Þ

�
Refρmf

tot ðθ⃗; sÞg −
1

2
ρopttot ðθ⃗Þ

��
;

ð51Þ

where N is a normalization constant. Note that the like-
lihood will be larger for those templates that have the
largest matched filter SNR and an optimum SNR such that
ρopttot ¼ Refρmf

totg, which for GW templates can always be
achieved by varying the distance to the source. We then
have the expected result that the more SNR a template has,

the larger its likelihood is, and, therefore, the more likely it
is to reproduce the observed strain.
However, when we associate a template with an event,

we are interpreting the strain fluctuation in terms of a
model, with underlying assumptions about the possible
physics. The consistent way to take this into account is to
think of the event as having the probability of being
described by any template, with some priors on each
template.2 Because we are characterizing a fluctuation
observed in the data, we need to evolve our priors to find
the probability of each template describing the specific
strain. Therefore, what naturally arises is the need to
employ Bayes’ theorem to determine the posterior prob-
ability pðθ⃗jsÞ of each template given the observed strain s:

pðθ⃗jsÞ ¼ Lðsjθ⃗Þπðθ⃗ÞR
dθ⃗0Lðsjθ⃗0Þπðθ⃗0Þ

; ð52Þ

where πðθ⃗Þ is the prior probability for each set of
parameters and it is multiplied by the likelihood to give
the posterior. The more SNR a template has, the larger its
likelihood and the more weight it will be given in the
posterior probability distribution. In Bayesian inference,
the posterior pðθ⃗jsÞ is interpreted as the probability of the
template given the strain. Therefore, the template corre-
sponding to the maximum of the posterior probability
distribution is the most likely template given the strain and
our priors, while the maximum likelihood template is the
template most likely to generate the observed strain. In
general, these two templates will be different from each
other, and they will have different FAPs when computed
with Eqs. (19) and (33), which we call FAPmaxp and
FAPmaxL, respectively. The most representative template
when comparing to the LVK searches would correspond
to the maximum likelihood sample since the modeled
searches performed by the LVK [13] deal with the unknown
intrinsic parameters by setting up a template bank to cover a
target parameter space and then selecting the template
which has the highest likelihood ratio for the signal-vs-
noise origin in a given segment of data, which, in the
Gaussian noise case, means the highest SNR sample. In
practice, the FAR reported by LVK searches would be the
FAR of this max likelihood template multiplied by the trial
factor given by the number of independent templates within
the search parameter space.
Another possibility to consider all the information

contained in the posterior is to compute the FAP of the
fluctuation. To do so, we combine the probability of each

2For example, even though the template that maximizes the
SNR is the one that exactly reproduces the strain (hiðtÞ ¼ siðtÞ),
this is usually a physically impossible GW template, and in this
case, we will not consider it. Our prior probability for a template
that can not be generated by GWs is 0.
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template describing the fluctuation given by the posterior
and the probability of each template to be generated by
Gaussian noise with a SNR equal to or larger than the
observed one, given by the FAP [see Eqs. (19) and (33)],

FAPevent ¼
Z

dθ⃗pðθ⃗jsÞFAPðθ⃗; sÞ

¼
Z

dθ⃗pðθ⃗jsÞ
�
1

− expf−TobsCðθ⃗Þjρmf
tot ðθ⃗; sÞje−1

2
jρmf

tot ðθ⃗;sÞj2g
�
;

ð53Þ

which will always be less than or equal to 1 since the
posterior pðθ⃗jsÞ is normalized, as can be seen in Eq. (52).
The FAPevent of Eq. (53) will now not only depend on a
single template, but similarly to the Bayes factor [16], it
will take into account the distribution of the likelihood over
the prior volume. Therefore, it can be seen as an effective
way of considering the trial factor for the template that best
matches the data over a parameter space.
In general, the normalization of the posterior, given by

the evidence Z ¼ R
dθ⃗Lðsjθ⃗Þπðθ⃗Þ, is extremely difficult to

compute. However, even though the full posterior is
unknown, one can use Monte Carlo methods to obtain
independent samples from it, as done in parameter esti-
mation analysis [20]. In terms of these independent
posterior samples, Eq. (53) can be approximated by

FAPevent ¼
1

Ns

XNs

i¼1

FAPðθ⃗i; sÞ; ð54Þ

where Ns is the number of samples, and the error of
approximating the integral by a sum over independent
posterior samples is given by

ΔFAPevent ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

NsðNs − 1Þ
XNs

i¼1

ðFAPðθ⃗i; sÞ − FAPeventÞ2
vuut :

ð55Þ

A. Application to GW candidates in GWTC-3

As an application of the method previously outlined,
we analyze the 35 CBC candidates included in the last
gravitational wave transient catalog, GWTC-3 [13],
detected during the second part of the third observing
run (O3b). The Bayesian parameter estimation (PE) of
these events has been performed by the LVK Collaboration
as described in Ref. [13], and the posterior samples
obtained are publicly available in Ref. [32].
We compute the value of C for each IMRPhenomXPHM [33]

sample of every event in GWTC-3, using Eqs. (27)

and (50), where we use the local PSD around each event,
which is the same one employed in the PE, also available in
Ref. [32]. In Fig. 8 we show the 90% credible intervals of
jρmf

tot j and C, which are the contours enclosing 90% of the
posterior samples in the (C, jρmf

tot j) plane. Since at first order
the Gaussian FAR only depends on C and jρmf

tot j, in the
upper part of Fig. 8 we plot the contours of constant FAR
using Eq. (43). We observe that for most of the events,
almost all the samples are above a Gaussian FAR of 1 per
year, meaning that we do not expect them to come from a
Gaussian noise fluctuation. However, there are two notable
exceptions which have almost no posterior support for
templates with Gaussian FAR under 1 per year, corre-
sponding to GW200308_173609 (gray) and GW200322_
091133 (red), with only 4.16% and 0.71% of the posterior
samples above this threshold, respectively. These two

FIG. 8. In this plot we show the contours enclosing 90% of the
IMRPhenomXPHM [33] posterior samples in the (C, jρmf

tot j) plane for
all the O3b catalog events. The color of the contours is given by
the median total mass of the posterior samples of each event. The
value of C is computed using Eqs. (27) and (50) with the local
PSD around each event. The values of (C, jρmf

tot j) for the maximum
likelihood and maximum posterior probability samples are
marked with a star and square, respectively. For the specific
cases of GW200308_173609 and GW200322_091133, we addi-
tionally plot the contour of the two events after making the cut in
the likelihood as was done for GWTC-3. These additional
contours are represented using dashed lines while keeping the
same colors as for the posteriors without the cut—gray and red,
respectively. We notice that GW200322_091133 presents a
multimodal posterior after the cut in the likelihood, manifest
in the appearance of multiple red dashed contours. We also plot
lines of constant FAR as defined by Eq. (43).
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events were noticed in GWTC-3 to have multimodal
posterior distributions, due to the lack of a sufficiently large
peak in the likelihood a sufficiently large peak to dominate
the posterior in all parameter space, which induces prior-
dominated modes at large distances and high masses.

In GWTC-3, an ad hoc cut in the likelihood was made to
get rid of these prior-dominated modes. For GW200308_
173609 the sampleswith logfL=L0g< 10 are removedwhile
for GW200322_091133 the sampleswith logfL=L0g<2 are
removed, whereL0 ¼ exp ð−P

ihsi; sii=2Þ is the likelihood

TABLE I. Every candidate GW signal included in the O3b catalog, as well as the detectors observing at the merger time of the events,
the search pipeline in which it has the highest pastro together with the search estimated SNR, the search FAR, and the pastro as calculated
by that same pipeline. We also include the SNR as obtained by the LVK parameter estimation analysis, our Gaussian FAR, and Gaussian
FAP of the event assuming an observing time of 1 yr. While the errors on the PE SNR and the Gaussian FAR represent the 90% credible
intervals, for the Gaussian FAP they represent the uncertainty on the Monte Carlo integral used to compute it, given by Eq. (55). The
events that have an asterisk and are in italics correspond to the ones in which we have performed the ad hoc cut in the likelihood.

Event IFOs Pipeline
Search
SNR

Search
log10ðFAR · yrÞ pastro PE SNR

Gaussian
log10ðFAR · yrÞ

Gaussian
FAPevent (Tobs ¼ 1 yr)

GW191103_012549 HL PyCBC-BBH 9.3 −0.34 0.94 8.9þ0.3
−0.5 −6.40þ1.92

−1.08 ð1.99� 0.24Þ × 10−4

GW191105_143521 HLV PyCBC-BROAD 9.8 −1.92 >0.99 9.7þ0.3
−0.5 −9.44þ2.08

−1.32 ð2.6� 1.4Þ × 10−6

GW191109_010717 HL MBTA 15.2 −3.74 >0.99 17.3þ0.5
−0.5 −54.23þ3.34

−4.04 ð1.96� 0.56Þ × 10−50

GW191113_071753 HLV MBTA 9.2 1.41 0.68 7.8þ0.6
−1.1 −2.40þ3.35

−2.14 0.15724� 0.00085
GW191126_115259 HL PyCBC-BBH 8.5 0.51 0.70 8.3þ0.2

−0.5 −4.27þ1.68
−0.76 ð4.05� 0.12Þ × 10−3

GW191127_050227 HLV PyCBC-BBH 8.7 0.61 0.74 9.1þ0.5
−0.6 −7.77þ2.29

−2.23 ð2.35� 0.54Þ × 10−5

GW191129_134029 HL GstLAL 13.3 < − 5 >0.99 13.2þ0.2
−0.3 −26.58þ1.60

−1.21 ð1.90� 0.36Þ × 10−25

GW191204_110529 HL PyCBC-BBH 8.9 0.52 0.74 8.8þ0.4
−0.6 −6.15þ2.28

−1.62 ð4.68� 0.36Þ × 10−4

GW191204_171526 HL PyCBC-BROAD 17.1 < − 5 >0.99 17.5þ0.2
−0.2 −55.15þ1.80

−1.40 ð1.7� 1.4Þ × 10−52

GW191215_223052 HLV GstLAL 10.9 < − 5 >0.99 11.2þ0.3
−0.4 −16.38þ2.00

−1.59 ð9.5� 2.7Þ × 10−15

GW191216_213338 HV GstLAL 18.6 < − 5 >0.99 18.6þ0.2
−0.2 −63.74þ1.81

−1.47 ð8.1� 2.3Þ × 10−62

GW191219_163120 HLV PyCBC-BROAD 8.9 0.60 0.82 9.1þ0.5
−0.8 −7.61þ3.00

−2.07 ð2.29� 0.33Þ × 10−3

GW191222_033537 HL GstLAL 12 < − 5 >0.99 12.5þ0.2
−0.3 −23.29þ1.53

−1.12 ð2.2� 2.0Þ × 10−21

GW191230_180458 HLV PyCBC-BBH 9.9 −0.38 0.96 10.5þ0.2
−0.4 −13.48þ1.74

−1.09 ð3.6� 3.5Þ × 10−10

GW200112_155838 LV GstLAL 17.6 < − 5 >0.99 19.8þ0.1
−0.2 −74.28þ1.79

−1.17 ð1.82� 0.79Þ × 10−72

GW200115_042309 HLV GstLAL 11.5 < − 5 >0.99 11.3þ0.3
−0.5 −16.69þ2.43

−1.51 ð8.1� 5.1Þ × 10−14

GW200128_022011 HL PyCBC-BBH 9.9 −2.37 >0.99 10.7þ0.3
−0.4 −14.16þ1.66

−1.38 ð4.92� 0.78Þ × 10−13

GW200129_065458 HLV GstLAL 26.5 < − 5 >0.99 26.8þ0.2
−0.2 −144.95þ2.39

−2.21 ð5.94� 0.96Þ × 10−143

GW200202_154313 HLV GstLAL 11.3 < − 5 >0.99 10.9þ0.2
−0.4 −14.63þ1.76

−1.05 ð3.9� 2.2Þ × 10−11

GW200208_130117 HLV PyCBC-BBH 10.8 −3.51 >0.99 10.9þ0.2
−0.4 −15.04þ1.96

−1.13 ð3.4� 2.0Þ × 10−11

GW200208_222617 HLV PyCBC-BBH 7.9 0.68 0.70 7.4þ1.1
−2.0 −1.41þ5.28

−3.95 0.31395� 0.00090
GW200209_085452 HLV MBTA 9.7 1.08 0.97 9.6þ0.3

−0.5 −9.67þ1.99
−1.38 ð2.3� 1.9Þ × 10−6

GW200210_092254 HLV PyCBC-BBH 8.9 0.89 0.54 8.4þ0.5
−0.7 −4.66þ2.50

−1.84 ð1.169� 0.025Þ × 10−2

GW200216_220804 HLV GstLAL 9.4 −0.45 0.77 8.2þ0.3
−0.5 −4.24þ1.72

−1.05 ð2.948� 0.095Þ × 10−3

GW200219_094415 HLV GstLAL 10.7 −3.00 >0.99 10.7þ0.3
−0.4 −14.45þ1.98

−1.33 ð1.4� 1.2Þ × 10−11

GW200220_061928 HLV PyCBC-BBH 7.5 0.83 0.62 7.3þ0.4
−0.7 −1.66þ1.94

−1.13 0.13003� 0.00070
GW200220_124850 HL MBTA 8.2 −2.74 0.83 8.5þ0.3

−0.5 −5.30þ1.74
−1.02 ð5.41� 0.47Þ × 10−4

GW200224_222234 HLV MBTA 19.0 < − 5 >0.99 20.0þ0.2
−0.2 −75.77þ1.84

−1.41 ð7.9� 4.3Þ × 10−74

GW200225_060421 HL PyCBC-BROAD 12.3 < − 5 >0.99 12.5þ0.3
−0.4 −23.14þ1.88

−1.57 ð1.44� 0.35Þ × 10−21

GW200302_015811 HV GstLAL 10.6 −0.96 0.91 10.8þ0.3
−0.4 −14.76þ1.94

−1.64 ð3.11� 0.76Þ × 10−13

GW200306_093714 HL MBTA 8.5 2.61 0.81 7.8þ0.3
−0.6 −2.46þ1.95

−1.19 ð4.933� 0.047Þ × 10−2

GW200308_173609 HLV PyCBC-BBH 8.0 0.38 0.86 3.8þ3.1
−2.5 6.55þ1.91

−6.17 0.96500� 0.00045
GW200308_173609* � � � � � � � � � � � � � � � 7.09þ0.47

−0.50 −0.90þ3.34
−3.31 0.4366� 0.0040

GW200311_115853 HLV GstLAL 17.7 < − 5 >0.99 17.9þ0.1
−0.2 −58.41þ1.69

−1.12 ð6.7� 1.8Þ × 10−57

GW200316_215756 HLV GstLAL 10.1 < − 5 >0.99 10.3þ0.4
−0.7 −12.24þ2.82

−1.81 ð2.5� 2.0Þ × 10−8

GW200322_091133 HLV MBTA 9.0 2.65 0.62 2.5þ3.4
−1.7 8.00þ0.75

−5.35 0.99327� 0.00021
GW200322_091133* � � � � � � � � � � � � � � � 5.3þ1.4

−0.9 9.15þ4.14
−7.37 0.96870� 0.00096
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of the data given no signal, i.e., substituting h ¼ 0 in Eq. (51)
[16]. Dashed lines show the contour that encompasses, in the
(C,jρmf

tot j) plane, 90% of the samples that remain after the
ad hoc likelihood cut. We observe that the result is to remove
the lowest SNRsamples (since theSNRand the likelihood are
intimately related), thus removing the posterior samples with
the largest FAR. However, a large fraction of the remaining
samples still haveFARs larger than1per year,with 32.9%and
96.8% of them above this threshold for GW200308_173609
and GW200322_091133, respectively.
Looking only at the maximum likelihood sample of these

two events (marked with a star in Fig. 8), we see that they
have large SNR values of 8.00 for GW200308_173609
and 8.42 for GW200322_091133, with a single template
FARmaxL of 4.7 × 10−4 yr−1 and 9.9 × 10−6 yr−1, respec-
tively, without taking into account any trial factor due to
the fact that the likelihood is maximized over a param-
eter space.
The Gaussian FAR that we have presented here is not

directly comparable with the FAR computed by the LVK
search pipelines since they differ in methodology in various
ways. The search pipelines make use of a template bank
and a different ranking statistic from the bare SNR to take
into account the presence of non-Gaussianities. The rank-
ing statistic assigned to each trigger by the pipelines is
the one maximized over the template bank covering the
parameter space of the search, with the background
estimated by doing time shifts in detector data. Another
difference is that pipelines do not coherently sum the signal
from all interferometers, as this would not allow margin-
alizing over the location in the sky or polarization or
working with single-detector triggers, making the search
computationally cost prohibitive. For this same reason, the
template bank of the searches often uses simplified wave-
form models, ignoring effects such as precession or higher
order modes and using a coarser sampling of the parameter
space than what is used in a parameter estimation.
In Table I we present the most important parameters to

quantify the significance of the events in GWTC-3, both
from the LVK search and PE results and from our
Gaussian FAR analysis. Looking at the rightmost column,
we notice that there are several events with Gaussian FAPs
[computed using Eq. (54) with Tobs ¼ 1 yr] that are of
order 1. As expected, the highest FAPs come from
GW200308_173609 and GW200322_091133, which have
FAPs of 0.97 and 0.99, respectively. After the likelihood
cut, the FAP of GW200308_173609 improves substan-
tially, becoming 0.44. However, this is not the case for
GW200322_091133, which keeps a very high FAP after
the cut, with a value of 0.97 due to the fact that it has small
SNR values in most of its posterior.
Since both GW200308_173609 and GW200322_

091133 have a small subset of samples in their posteriors
with larger SNRs and correspondingly small FARs, we can
explore which samples have this larger significance by

selecting only those that have a FAR below a 1 yr−1

threshold. In Fig. 9 we show the distribution of some of
the binary parameters using only those samples with FAR
below 1 yr−1. We observe that the parameters of the
waveforms that satisfy this cut are very different from
all other CBC observations [34], with both events having
extremely large effective spin parameters χeff and with
GW200322_091133 having a very extreme mass ratio for
which waveform systematics might be important [33]. It is

FIG. 9. Corner plots of selected parameters for the posterior
samples with Gaussian FAR ≤ 1 per year. Top panel:
GW200308_173609. Bottom panel: GW200322_091133.
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also noticeable that, due to the very low percentage of
posterior samples with FAR below the 1 yr−1 threshold in
GW200322_091133 (∼0.07%), the parameter space might
be undersampled. In principle, both the search [35] and the
parameter estimation [32] should identify similar maximum
likelihood points in the parameter space for a given trigger
time. We can then compare the two template parameters’
values as a sanity check. In the GW200308_173609 case,
differences in the masses are not significant, with trigger
masses of ðm1; m2Þ ¼ ð58.4; 41.3ÞM⊙, while the masses
identified by the PE for the maximum likelihood template
are ðm1; m2Þ ¼ ð64.2; 38.2ÞM⊙. We find larger discrepan-
cies for GW200322_091133, with trigger masses of
ðm1; m2Þ ¼ ð56.0; 15.3ÞM⊙, while the masses identified
by the PE are ðm1; m2Þ ¼ ð161.3; 7.8ÞM⊙. The calculation
of pastro depends crucially on the values of the masses, and
such an extreme mass ratio would definitely represent an
outlier to the population. For both events, in the search and
in the maximum likelihood of the PE, very large values of
χeff are found, in contrast with the rest of the population of
merging BHs [34]. However, since the value of the spin is
not taken into account for pastro calculations [15], this
does not downgrade the event. Finally, for the case of
GW200322_091133 we also find a substantial difference
between the search SNR and the maximum likelihood SNR
of the PE, being 9.0 and 8.4, respectively. Since the FAR
and pastro have an exponential dependence with the SNR,
this difference would also downgrade the event.
Since our method only gives a lower bound estimation

on the FAP, it does not allow us to state that a candidate is
indeed a gravitational wave event, but it can support the
hypothesis of a noise origin. We can derive how likely
Gaussian noise is to generate a signal, but we cannot say
anything about the possibility of non-Gaussianities mim-
icking it. With this in mind, in Fig. 10 we show how the
GWTC-3 events are distributed in the Gaussian FAP and
pastro plane (the values are taken from Table I). We note
that for all 22 events with pastro > 0.9, the Gaussian FAP
also gives them a low probability of generation from a
Gaussian noise fluctuation, with FAP ≤ 2 × 10−4 and
no inconsistency. However, for the 13 events with
0.5< pastro < 0.9, results are mixed. The majority of these
events (8=13) also have Gaussian FAP smaller than 10%, so
we find that they are not likely to be generated by a
Gaussian noise fluctuation. From the 13 events with 0.5<
pastro < 0.9 we have another three in the region of
10%< FAP< 50%, which therefore have some non-
negligible probability of being generated by Gaussian
noise, although it is still more likely they are not.
These three events correspond to GW191113_071753,
GW200208_222617, and GW200220_061928, where
GW200208_222617 is the one with the largest Gaussian
FAP (∼31%) and it also has a multimodal posterior
distribution [13]. Finally, at 0.5< pastro < 0.9 and FAP>
50% we have two points corresponding to GW200308_
173609 and GW200322_091133, which have already been

discussed in detail as likely to be generated by a Gaussian
fluctuation. It is also interesting to note that for all events
with FAP> 0.1, the pastro value quoted in GWTC-3 [13] is
larger than 0.5 in only one of the pipelines, with the others
quoting significantly lower values.

V. CONCLUSIONS

Understanding whether triggers in LIGO-Virgo detectors
are from a gravitational wave or noise origin is a hard task.
For most of the events, the GW signal is expected to be
extremely weak, and in this paper we have explored the
possibility of it being mimicked by the irreducible Gaussian
noise in the gravitational wave detectors.
We have derived a mathematical framework for estimat-

ing the rate of false alarms induced by this Gaussian noise.
Our main result is given in Eq. (33), which gives the rate at
which the matched filter SNR of a specific template with
the Gaussian noise of one (or multiple) GW detector goes
over a threshold ρ. The prefactor C multiplying the FAR
depends on the specific template used for matched filtering.
For CBC templates the most important parameter control-
ling the value of C is the total mass of the event, with C
being significantly smaller for larger masses.
We then studied how the Gaussian FAR of CBC

templates behaves as a function of the threshold SNR,
and we gave an analytical expression for the minimum
SNR needed for a given FAR threshold. We have also
proposed a method to estimate the probability of Gaussian
noise with the local PSD mimicking a given GW candidate
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FIG. 10. Comparison in the Gaussian FAP and pastro plane of
the different GWTC-3 events from Table I. We have set cuts in
FAP of 10% and 50%, as well as in pastro ¼ 0.5 and 0.9.
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in terms of a false alarm probability (53), using the samples
from the parameter estimation analysis of such an event.
Finally, we applied this formalism to the GW candidates

that were added in the GWTC-3 catalog, obtaining a
Gaussian FAR for each template in their PE posterior
and a FAP for the events.
Summarizing these results, most of the event samples are

clearly above the 1 yr−1 FAR threshold, with event FAPs
ranging from ∼10−143 to a more modest ∼10−1, assuming a
reference observation time of 1 yr. However, we find
two clear outliers, GW200308_173609 and GW200322_
091133, with event FAPs very close to 1, signaling very
high odds of Gaussian noise fluctuations mimicking them.
We also explore the samples in their posterior that have
single template FAR< 1 yr−1. These samples have very
extreme parameter values with respect to the observed BBH
population, and in the case of GW200322_091133, they
differ from those identified by the search.
We believe that the methods developed here may be

useful in the future to further investigate GW triggers that
are found in future LVK runs.
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APPENDIX: STUDY OF THE FAP FOR THE
BIVARIATE COMPLEX GAUSSIAN

In this appendix we study the FAP for the bivariate
complex Gaussian (FAP2) whose probability density func-
tion is given in Eq. (12). We obtain Eq. (A19) to numeri-
cally compute FAP2 in an efficient and well-behaved
manner. We also obtain a prescription to analytically
approximate the FAP2 to arbitrary order in 1 − jαj using
Eq. (A23). With this expansion we obtain the leading order
and second order approximations of Eqs. (A20) and (A25),
respectively, as shown in Fig. 11. As seen in Eq. (13), FAP2
is given by the following expression:

FAP2 ¼ Pðρ1 > ρ ∪ ρ2 > ρÞ ¼ 1 − Pðρ1 < ρ ∩ ρ2 < ρÞ

¼ 1 −
1

ð2πÞ2ð1 − jαj2Þ
Z

2π

0

dθ1

Z
2π

0

dθ2

Z
ρ

0

ρ1dρ1

Z
ρ

0

ρ2dρ2 exp

�
−
ρ21 þ ρ22 − 2jαjρ1ρ2 cosðθα − θ1 þ θ2Þ

2ð1 − jαj2Þ
�

¼ 1 −
1

2πð1 − jαj2Þ
Z

ρ

0

dρ1

Z
ρ

0

dρ2ρ1ρ2 exp

�
−

ρ21 þ ρ22
2ð1 − jαj2Þ

�Z
2π

0

dθ exp

� jαjρ1ρ2
1 − jαj2 cos θ

�

¼ 1 −
1

1 − jαj2
Z

ρ

0

dρ1

Z
ρ

0

dρ2ρ1ρ2 exp

�
−

ρ21 þ ρ22
2ð1 − jαj2Þ

�
I0

� jαj
1 − jαj2 ρ1ρ2

�
; ðA1Þ

where for notational simplicity we define α ¼ ΓðΔtÞ and InðzÞ is the modified Bessel function of the first kind [40]:

InðzÞ≡ i−nJnðixÞ ¼
1

π

Z
π

0

dθez cos θ cosðnθÞ ¼
X∞
k¼0

ð1
2
zÞ2kþn

k!ðkþ nÞ! ðn ∈ ZÞ: ðA2Þ
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The integral of Eq. (A1) can be further simplified by
making the change of variables

ρi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − jαj2Þui

q
→ dρi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jαj2
2ui

s
dui; ðA3Þ

which yields

FAP2 ¼ 1 − ð1 − jαj2Þ
Z

x

0

du1

×
Z

x

0

du2I0ð2jαj
ffiffiffiffiffiffiffiffiffiffi
u1u2

p Þe−ðu1þu2Þ; ðA4Þ

where for notational simplicity we have defined

x≡ ρ2

2ð1 − jαj2Þ : ðA5Þ

From Eq. (A2) we have that the Taylor series of I0ðzÞ
around z ¼ 0 is given by

I0ðzÞ ¼
X∞
k¼0

z2k

22kðk!Þ2 → I0ð2jαj
ffiffiffiffiffiffiffiffiffiffi
u1u2

p Þ ¼
X∞
k¼0

jαj2kuk1uk2
ðk!Þ2 :

ðA6Þ

Substituting this expansion into Eq. (A4), we obtain

FAP2 ¼ 1 − ð1 − jαj2Þ
X∞
k¼0

jαj2k
	
1

k!

Z
x

0

uke−udu



2

: ðA7Þ

Since k is a natural number, the integral appearing in
Eq. (A7) is given by

1

k!

Z
x

0

uke−udu ¼ 1 − e−x
Xk
n¼0

xn

n!
: ðA8Þ

Using this in Eq. (A7), the FAP2 will be given by

FAP2 ¼ 1 − ð1 − jαj2Þ
X∞
k¼0

jαj2k
	
1 − e−x

Xk
n¼0

xn

n!


2

¼ 1 − ð1 − jαj2Þ
	X∞
k¼0

jαj2k − 2e−x
X∞
k¼0

Xk
n¼0

jαj2k x
n

n!
þ e−2x

X∞
k¼0

Xk
n¼0

Xk
m¼0

jαj2k x
nþm

n!m!



: ðA9Þ

In the first sum of Eq. (A9), we recognize a simple geometric series. Taking into account that jαj2 < 1, it will converge to
the following expression:

X∞
k¼0

jαj2k ¼ 1

1 − jαj2 : ðA10Þ

FIG. 11. Base 10 logarithm of the relative error between the exact value of FAP2 computed using Eq. (A19) and the approximations
proposed in Eqs. (A20) (left panel) and (A25) (right panel), as a function of the correlation jαj and the SNR threshold ρ. The red line
shows the value of jαj at the decoupling time, which gives us an idea that the region we are interested in has a good approximation as a
function of ρ.
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The second sum of Eq. (A9) can also be summed exactly by making some index manipulation:

X∞
k¼0

jαj2k
Xk
n¼0

xn

n!
¼

X∞
n¼0

xn

n!

X∞
k¼n

jαj2k ¼
X∞
n¼0

ðjαj2xÞn
n!

X∞
k¼0

jαj2k ¼ ejαj2x
1

1 − jαj2 : ðA11Þ

Finally, the third sum of Eq. (A9) cannot be summed exactly, but it can be significantly simplified by making similar
index manipulations:

X∞
k¼0

jαj2k
Xk
n¼0

Xk
m¼0

xnþm

n!m!
¼

X∞
n¼0

X∞
m¼0

xnþm

n!m!

X∞
k¼maxðn;mÞ

jαj2k ¼
X∞
k¼0

jαj2k
X∞
n¼0

X∞
m¼0

jαj2maxðn;mÞ x
nþm

n!m!

¼ 1

1 − jαj2
X∞
n¼0

X∞
m¼0

jαj2maxðn;mÞ x
nþm

n!m!
: ðA12Þ

Substituting the results of the sums of Eqs. (A10)–(A12) into Eq. (A9), we obtain the following result:

FAP2 ¼ 2e−ð1−jαj2Þx − e−2x
X∞
n¼0

X∞
m¼0

jαj2maxðn;mÞ x
nþm

n!m!
: ðA13Þ

To further simplify this expression we can change indices in the sum of Eq. (A13), using l ¼ n −m and k ¼ 1
2
ðnþmÞ:

X∞
n¼0

X∞
m¼0

jαj2maxðn;mÞ x
nþm

n!m!
¼

X∞
l¼−∞

X∞
k¼jlj=2

jαj2kþjlj x2k

ðkþ l
2
Þ!ðk − l

2
Þ! ¼ S0 þ 2

X∞
l¼1

Sl; ðA14Þ

where we use 2maxðn;mÞ ¼ nþmþ jn −mj ¼ 2kþ jlj and define

Sl ¼
X∞
k¼l=2

jαj2kþl x2k

ðkþ l
2
Þ!ðk − l

2
Þ! ¼ jαjl

X∞
k¼0

ðjαjxÞ2kþl

ðkþ lÞ!k!|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Ilð2jαjxÞ

¼ jαjlIlð2jαjxÞ; ðA15Þ

identifying the Taylor series of the modified Bessel function of the first kind of order l shown in Eq. (A2). Using Eqs. (A15)
and (A14) we have that the FAP2 of Eq. (A13) is given by

FAP2 ¼ 2e−ð1−jαj2Þx − e−2x
�
I0ð2jαjxÞ þ 2

X∞
n¼1

jαjnInð2jαjxÞ
�
: ðA16Þ

To compute the sum of modified Bessel functions of the first kind, we can use their integral representation, shown in
Eq. (A2):

I0ðzÞ þ 2
X∞
n¼1

jαjnInðzÞ ¼
1

π

Z
π

0

dθez cos θ
	
1þ 2

X∞
n¼1

jαjn cosðnθÞ


¼ 1

π

Z
π

0

dθez cos θ
	
1þ

X∞
n¼1

ðjαjeiθÞn þ ðjαje−iθÞn



¼ 1

π

Z
π

0

dθez cos θ
	
1þ jαjeiθ

1 − jαjeiθ þ
jαje−iθ

1 − jαje−iθ


¼ 1

π

Z
π

0

dθez cos θ
1 − jαj2

1 − 2jαj cos θ þ jαj2 : ðA17Þ

We have transformed the infinite sum in a definite integral of a relatively simple function. The integral can be expressed
in a more simple and convenient way with the variable change θ ¼ 2 arctan ð1−jαj

1þjαj uÞ:

I0ðzÞ þ 2
X∞
n¼1

jαjnInðzÞ ¼
2

π
ez

Z
∞

0

du
1

1þ u2
exp

�
−2z

ð1 − jαjÞ2u2
ð1þ jαjÞ2 þ ð1 − jαjÞ2u2

�
: ðA18Þ

Substituting this expression for the sum into Eq. (A16) for the FAP2 and using the fact that z ¼ 2jαjx, where x is defined
in Eq. (A5), we obtain
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FAP2 ¼ 2e−ρ
2=2 −

2

π
e−ρ

2=ð1þjαjÞ
Z

∞

0

du
1

1þ u2
exp

(
−
2jαjð1 − jαjÞρ2
ð1þ jαjÞ3

u2

1þ ð1−jαj
1þjαjÞ2u2

)
: ðA19Þ

The integral in this expression cannot be analytically
computed, but it can be numerically integrated as it is a well-
behaved one-variable definite integral that does not suffer
from divergences or accuracy problems due to large can-
cellations, as the previous integrals did. We can check that
this formula has the correct limiting behavior if we realize
that bothwhen jαj ¼ 0 andwhen jαj ¼ 1, the argument of the
exponential inside the integral of Eq. (A19) vanishes and the
value of the integral is π=2. Therefore, in the case in which
jαj ¼ 0, when there is no correlation, FAP2ðjαj ¼ 0Þ ¼
2e−ρ

2=2 − e−ρ
2 ¼ 1 − ð1 − e−ρ

2=2Þ2 as is expected from

two uncorrelated variables. In the opposite limit, when the
correlation is maximal and jαj ¼ 1, FAP2 coincides with the
expected result in which the two variables behave as a single
one, that is, FAP2ðjαj ¼ 1Þ ¼ e−ρ

2=2 ¼ 1 − ð1 − e−ρ
2=2Þ1.

As seen in Sec. II of the main text, we are interested in
obtaining an approximation in the limit in which the
correlation is large and thus jαj → 1. However, we take
into account that the SNR threshold ρ can be large in such a
way that ð1 − jαÞρ2 can be of order Oð1Þ. In this case, an
upper bound approximation for the FAP2 is obtained in the
following way:

FAP2 ≈ 2e−ρ
2=2 −

2

π
e−ρ

2=ð1þjαjÞ
Z

∞

0

du
1

1þ u2
exp

�
−
2jαjð1 − jαjÞρ2
ð1þ jαjÞ3 u2

�

¼ e−ρ
2=2

"
2 − exp

�
−
1

2

�
1 − jαj
1þ jαj

�
3

ρ2
�
Erfc

(
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jαjð1 − jαjÞ
ð1þ jαjÞ3

s )#

≈ e−ρ
2=2

	
1þ Erf

�
1

2
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jαj

p �

; ðA20Þ

where we have used that [40]

2

π

Z
∞

0

du
1þ u2

e−η
2u2 ¼ eη

2

ErfcðηÞ; ðA21Þ

and where ErfðzÞ and ErfcðzÞ are the error function and the complementary error function, respectively. Equation (A20) can
be taken as the leading order term in an expansion in 1 − jαj of the FAP2. To analyze higher order terms it will be convenient
to introduce two new variables:

η ¼ ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jαjð1 − jαjÞ
ð1þ jαjÞ3

s
; ðA22aÞ

ϵ ¼ 1 − jαj
1þ jαj : ðA22bÞ

In the regime we are interested in, η is of order Oð1Þ, while ϵ ≪ 1. Using these variables we have

FAP2 ¼ e−ρ
2=2

	
2 − e−

1−jαj
2ð1þjαjÞρ

2 2

π

Z
∞

0

du
1þ u2

exp

�
−

η2u2

1þ ϵ2u2

�


¼ e−ρ
2=2

	
2 − e−

1−jαj
2ð1þjαjÞρ

2 2

π

Z
∞

0

du
1þ u2

e−η
2u2 exp

�
ϵ2η2u4

1þ ϵ2u2

�


¼ e−ρ
2=2

	
2 − e−

1−jαj
2ð1þjαjÞρ

2 2

π

Z
∞

0

du
1þ u2

e−η
2u2

X∞
n¼0

1

n!

�
ϵ2η2u4

1þ ϵ2u2

�
n


: ðA23Þ

FALSE ALARMS INDUCED BY GAUSSIAN NOISE IN … PHYS. REV. D 107, 023027 (2023)

023027-19



If we truncate the sum at nth order, we obtain an upper bound approximation that is accurate to order ðηϵÞ2n and that has
correct limiting behavior when ϵ → 0, ϵ ¼ 1, η ¼ 0, and η → ∞. Since we want only the first order correction, we can keep
terms up to n ¼ 1 and integrate, obtaining

FAP2 ≈ e−ρ
2=2

	
2 − e−

1−jαj
2ð1þjαjÞρ

2 2

π

Z
∞

0

du
1þ u2

e−η
2u2

�
1þ ϵ2η2u4

1þ ϵ2u2

�


¼ e−ρ
2=2

	
2 − e−

1−jαj
2ð1þjαjÞρ

2

��
1þ ϵ2η2

1 − ϵ2

�
eη

2

ErfcðηÞ þ ηffiffiffi
π

p −
η2

ϵð1 − ϵ2Þ e
η2=ϵ2Erfc

�
η

ϵ

��


≈ e−ρ
2=2

	
2 − e−

1−jαj
2ð1þjαjÞρ

2

�
ð1þ ϵ2η2Þeη2ErfcðηÞ − ϵ2

ηffiffiffi
π

p
�
1 −

1

2η2

��

: ðA24Þ

We can express this result in terms of the correlation jαj and the SNR threshold ρ by substituting the expressions for η and
ϵ of Eq. (A22). To be consistent in the approximation, we keep the first two orders in 1 − jαj, assuming that ð1 − jαÞρ2 is of
order Oð1Þ. Thus, we obtain

FAP2 ≈ e−ρ
2=2

	
1þ Erf

�
1

2
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jαj

p �
1þ 1 − jαj

4
−
ð1 − jαjÞ2

32

��
−
ð1 − jαjÞ3=2

4
ffiffiffi
π

p
ρ

e−
1
4
ð1−jαjÞρ2

�
1 −

ð1 − jαjÞρ2
2

�


≈ e−ρ
2=2

	
1þ Erf

�
1

2
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jαj

p �
1þ 1 − jαj

4

�
1 −

1

ρ2

�
þ 3ð1 − jαjÞ2

32

��

; ðA25Þ

where for simplicity of the final result, in the last step we
have introduced all the corrections inside the argument of
the error function in a way that is consistent with the order
of the approximation. We check that by ignoring the higher
order corrections in 1 − jαj, we recover the leading order
expression of (A20).
In Fig. 11 we show the relative error between the exact

FAP2 computed using Eq. (A19) and the approximations
of Eqs. (A20) (left panel) and (A25) (right panel), as a
function of the correlation jαj and the SNR threshold ρ. We
observe that the leading order approximation (left panel)

already gives an accurate description of the FAP2,
having subpercent accuracy for ρ≳ 5 and reproducing
the exact result as jαj → 1. In the right-hand panel we see
the effect of introducing the higher order correction, and
we observe that the description is now much improved,
reaching an accuracy of better than 1 part in 10 000
for ρ≳ 4 and describing the limit jαj → 1 much better.
If we wanted to approximate the FAP2 to higher
precision, we could take into account more terms in
the sum of Eq. (A23) and analytically integrate them
using Eq. (A21).
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