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Abstract: Nanostructured materials remarkably improve the overall properties of thermoelectric
devices, mainly due to the increase in the surface-to-volume ratio. This behavior is attributed to
an increased number of scattered phonons at the interfaces and boundaries of the nanostructures.
Among many other materials, nanostructured Si was used to expand the power generation compared
to bulk crystalline Si, which leads to a reduction in thermal conductivity. However, the use of nanos-
tructured Si leads to a reduction in the electrical conductivity due to the formation of low dimensional
features in the heavily doped Si regions. Accordingly, the fabrication of hybrid nanostructures
based on nanostructured Si and other different nanostructured materials constitutes another strategy
to combine a reduction in the thermal conductivity while keeping the good electrical conduction
properties. This review deals with the properties of Si-based thermoelectric devices modified by
different nanostructures and hybrid nanostructured materials.

Keywords: thermoelectric devices; phonon scattering; nanostructured Si; hybrid nanostructures

1. Introduction

Thermoelectric devices allow power generation from waste heat. The thermoelectric
effect is the direct conversion of a temperature difference to electricity or vice versa [1].
Among many other materials, bismuth telluride alloys are considered the most efficient
thermoelectric materials [2]. However, these alloys are costly due to the enormous amount
of expensive telluride material the alloys have, in addition to their toxicity. Crystalline Si
was used to expand the power generation via the thermoelectric effect. Si is a non-toxic,
inexpensive, and earth-abundant material. Various thermoelectric alloys based on Si were
designed, including Si-Ge and Mg2Si alloys [3–6]. Although bulk Si has high electrical
conductivity, it has a high thermal conductivity, which yields a low figure of merit (ZT) for
thermoelectric devices [7].

Therefore, researchers focused on modifying methods to improve the performance
of Si-based thermoelectric devices by reducing their thermal conductivity. The growth of
nanostructured Si is one of the sufficient approaches to minimizing the thermal conduc-
tivity of bulk Si. Porous silicon (PSi), Si nanoparticles (SiNPs) or Si nanowires (SiNWs)
are nanostructured instances suitable for enhancing the Seebeck coefficient of Si-based
thermoelectric devices by reducing the thermal conductivity [8–10]. However, texturing
the surface of Si wafers leads to a reduction in the electrical conductivity [11,12]. This
behavior is attributed to the performance of the texturing in the heavily doped regions of
Si substrates.

For that, the combination between two thermoelectric materials or two thermoelectric
nanostructures is another way to combine the good electrical conductivity and the low
thermal conductivity for the improvement of the Seebeck coefficient. Numerous strategies
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were developed by researchers based on hybrid materials or hybrid nanostructures. For
instance, PEDOT:PSS thin films capped with SiNPs at different concentrations of SiNPs [13],
hybrid graphene-mesoporous silicon nanocomposite [14], Phenylacetylene capped with
SiNPs [15], TiO2 nanostructures grown inside the PSi layer [16], atomic layer deposited
(ALD) PbTe/PbSe nanolaminate structures deposited inside the PSi layer [17] and silicon-
germanium nanocomposite alloys [4,6].

The present review article outlines a comparison between the thermoelectric prop-
erties of various reported thermoelectric devices based on Si, porous silicon and hybrid
nanostructures of Si and other thermoelectric materials.

2. Characteristic Features of Thermoelectric Devices

The thermoelectric effect takes place when a thermoelectric material is subjected to
a temperature difference. Accordingly, electrons in the material start to follow from the
hot side to the cold one, creating an electric current. The amount of generated electrical
power depends on the transport properties of the carriers in the thermoelectric material.
The conversion efficiency of thermal energy to electricity is defined by the figure of merit
(ZT). The figure of merit is related to the electrical and thermal properties of a material
through the following relation [7]:

ZT =
S2

k
σT (1)

S =
V

∆T
(2)

where S is the seebeck coefficient, which quantifies the amount of voltage (V) generated
across a given temperature gradient (∆T), σ is the electrical conductivity, k is the thermal
conductivity and T is the absolute temperature.

3. Si-Based Thermoelectric Materials

Non-toxicity, high industrial compatibility, low price compared with other materials,
and the chemical and mechanical stability of silicon make this material a good candidate
for thermoelectric applications. In addition, it shows good electrical conductivity which
depends on the doping level. However, monocrystalline silicon has a high thermal con-
ductivity of ~150 W m−1 K−1 at 300 K, which hinders the high conversion efficiency of
thermoelectric devices. Thermoelectric properties of silicon were previously reported by
researchers. For instance, Bux et al. measured the thermoelectric properties of bulk silicon
with a Seebeck coefficient of 0.008 at 300 K [9]. This reduction in the Seebeck coefficient for
silicon-based thermoelectric devices is attributed to the increase in the thermal conductivity
of silicon [9,18]. Many strategies were developed to improve the thermoelectric properties
of silicon material. One way is by texturing or etching the surface of the silicon substrate to
increase phonon scattering in the interfaces and on the boundaries of the walls of nanos-
tructured silicon [7,9,18]. Another perspective is by combining silicon nanostructures with
another effective thermoelectric material, such as Ge and Mg [3–6,13].

4. Thermoelectric Devices Modified by Nanostructured Silicon

Nanostructured silicon can take many different forms, including porous silicon (PSi),
silicon nanoparticles (SiNPs) or silicon nanowires (SiNWs). The morphology of nanos-
tructured Si depends on the fabrication method and the fabrication parameters [19]. The
increase in the surface-to-volume ratio of nanostructured Si greatly improves the thermo-
electric performance due to an increased number of scattered phonons at the interfaces
and boundaries of the nanowires or nanoparticles of Si. The number of surface defects is
also increased. Furthermore, the reduction in the dimensions of Si nanostructures leads
to increased surface roughness, resulting in a reduction in thermal conductivity. Figure 1
shows the comparison between ZT values of heavily doped single crystal Si and nanostruc-
tured n-type Si studied by Sabah K. Bux et al. in the form of pellets approximately 12.7 mm
in diameter and 15 mm long [9]. An enhancement in ZT values by 3.5-fold was achieved
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due to texturing the Si material. This behavior is attributed to the increase in the density
of the interfaces, in addition to increasing boundary defects around the nanostructures,
increasing the mean free path for phonon scattering.
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Figure 1. Comparison between ZT values for heavily doped single-crystalline Si (dashed lines) and
nanostructured n-type silicon (n-type Nano-bulk Si) (Circles) as a function of temperature. Reprint
with permission [5318650473494]; Copyright Year 2022, John Wiley and Sons Publisher [9].

From another perspective, nanostructured silicon in different forms has been studied
as an effective thermoelectric material by many researchers in a wide range of different
porosities [7,10,18]. For instance, Ting Zhang et al. presented a remarkable enhancement
in the ZT values due to texturing the front and back sides of Si substrate performing Si
nanowire arrays (SiNWAs). The structure of the modified device is SiNWAs/Si/SNWAs
sandwich structured composites (SSC) [18]. ZT values were remarkably increased from
0.006 for bulk Si devices to 0.493 for the modified SSC at room temperature. Figure 2a shows
a schematic representation of the fabricated SSC and the measuring unit. Furthermore,
Figure 2b shows the effect of mean pore diameter (MPD) on the electrical resistivity (ρssc)
and the ZT values of the performed SSC thermoelectric devices. The increase in the pore
diameter leads to an increase in the electrical resistivity due to performing the nanopores
in the heavily doped Si regions. Moreover, the thermoelectric properties were found to
improve with increasing the pore diameter due to the increase in the surface-to-volume
ratio, which leads to increasing the mean free path for phonon scattering.
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Figure 2. (a). Schematic representation of the modified structure of thermoelectric devices based on
SiNWs. (b) Chart representing the effect of mean pore diameter on the electrical resistivity and ZT
values of the fabricated thermoelectric devices. Reprint with permission [5283611435296]; Copyright
Year 2022, Elsevier Publisher [18].

5. Thermoelectric Materials Modified by Hybrid Nanocomposites

Nanostructured Si remarkably contributes to reducing the thermal conductivity of
thermoelectric devices. However, etching the surface of Si substrate occurs in the heavily
doped Si regions. As a result, the electrical conductivity of nanostructured Si remarkably
decreases with the increase in porosity; likewise, fast oxidation of the porous silicon
layer in ambient air. Accordingly, hybrid silicon nanostructures with another effective
thermoelectric material dramatically reduced the thermal conductivity of nanostructured
Si and maintained adequate electrical conductivity due to the other thermoelectric material,
in addition to preventing nanostructured Si from oxidation due to the growth of the other
thermoelectric material into the nanostructured Si layer.

Figure 3 shows a schematic representation of some of the possible hybrid nanostruc-
tures suitable for enhancing the thermoelectric properties of thermoelectric devices. Each
material has a valuable effect in improving the thermoelectric properties of the imple-
mented thermoelectric devices. For instance, Nitin Saxena et al. reported the combination
of the organic PEDOT:PSS material with SiNPs. This combination leads to improving the ZT
value of the fabricated thermoelectric device from 5.3 × 10−3 without SiNPs to 8.0 × 10−3

at 0.5 wt% SiNPs at 300 K [13]. Furthermore, Gitanjali Kolhatkar et al. observed the sta-
bility and reduction in the thermal conductivity due to the combination of graphene and
nanostructured mesoporous Si to 13 WmK−1 [14]. From another perspective, the Seebeck
coefficient of the atomic layer-deposited PbTe/PbSe nanolaminate structures deposited
inside PSi templates significantly increased in both vertical and horizontal directions com-
pared with the growth of the same nanolaminate on planar Si (143 µV/K), 370.556 µV/K in
horizontal directions and 78,670 µV/K in vertical directions at 300 K [17].

Figure 4 shows the enhancement in the Seebeck coefficient of ALD PbTe/PbSe (10/10 nm)
nanolaminates deposited on the PSi substrate with two different porosities compared with
the values of the same layer and deposited on the planar Si substrate as a function of
temperature [17]. From the recorded data, the Seebeck coefficient of PbTe/PbSe (10/10 nm)
nanolaminates deposited on PSi substrate is about four times higher than that of the planar
sample. This enhancement is attributed to the presence of the regular arrays of nanopores.
These pores lead to the increase in the surface-to-volume ratio for Si and for the grown
nanolaminates, which results in a reduction in thermal conductivity. Moreover, the increase
in porosity leads to an increase in the number of defects and surface roughness. So, the
Seebeck coefficient increases, particularly at low temperatures.
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Figure 3. Schematic representation of different hybrid nanostructures. (a) Compose of NPs/thin films,
(b) Hybrid NPs in the form of pellets and (c) Hybrid nanostructured thin films for the development
of efficient thermoelectric devices.
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Figure 4. Comparison between the Seebeck coefficient as a function of temperature for ALD
PbTe/PbSe layer deposited on planar Si and porous silicon, at two different porosities [17].

Additionally, SiNPs show a remarkable enhancement in the thermoelectric properties
compared with the bulk material. This enhancement is attributed to the increase in the
number of surface defects, which leads to increasing phonon scattering between the inter-
faces. However, the increase in the density of SiNPs leads to a reduction in the electrical
conductivity due to the formation of an oxide layer on the outer surface. Figure 5a,b present
the reported thermoelectric properties of PEDOT:PSS thermoelectric material conjugated
with different concentrations of SiNPs. From the reported data, it is clear that the com-
bination with SiNPs leads to a remarkable enhancement in the thermoelectric properties.
However, the large density of SiNPs results in a reduction in conversion efficiency due to
the reduced electrical conduction [13].
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films. (a) Seebeck coefficient for PEDOT:PSS/SiNPs at different concentrations of SiNPs. (b) Figure
of merit values for PEDOT:PSS/SiNPs thermoelectric samples at different concentrations of SiNPs.
Reprint with permission [5324900718582]; Copyright Year 2022, John Wiley and Sons Publisher [13].

Silicon-germanium (SiGe) alloy has been one of the thermoelectric materials most
widely used for Radioisotope Thermoelectric Generators (RTGs) at high temperatures since
1976 [20]. The thermoelectric properties of SiGe alloys can be enhanced by nanostructuring
the composite. For instance, the ZT values of p-type SiGe nanostructured alloy were im-
proved by 50% due to the nanostructuring of the composite [21]. Subsequent work shows
the effect of fabrication parameters on the thermoelectric properties of SiGe nanocom-
posites [22]. The thermal and electrical conduction change is a function of the average
crystallite size, porosity, and doping concentration, in addition to the precise control of the
milling and sintering conditions. Figure 6a–c show the comparison between the electrical
conductivity, Seebeck coefficient and figure-of-merit, respectively, for five different samples
at different preparation conditions in comparison with the thermoelectric properties of the
RTG sample. The preparation conditions are available in ref. [22]. Figure 6a shows the
enhancement in the electrical conduction in a wide range of temperatures for sample 2,
which consists of Si80Ge20. The increase in the concentration of nanostructured Si to 95%
leads to a notable reduction in electrical conductivity (sample 1 Si95Ge5) due to a reduction
in the electrical conduction of nanostructured Si compared with bulk Si. This behavior is
attributed to performing the nanostructures in the heavily doped Si regions. Accordingly,
Figure 6c shows the remarkable enhancement in the ZT values of sample 2 (Si80Ge20) in
a wide range of temperatures. This variation in the thermoelectric performance of the
reported samples indicates the high sensitivity of the thermoelectric properties to the
composition of the nanostructured alloys and the fabrication parameters.
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as a function of temperature. (a) The electrical conductivity for 5 samples and RTG sample, (b) The
seebeck coefficient for the same 5 samples and RTG one, and (c) ZT values, Reprint with permission
[5326930875021]; Copyright Year 2022, John Wiley and Sons Publisher [22].

6. Conclusions

Monocrystalline silicon has high thermal conductivity, which hinders the high conver-
sion efficiency of thermoelectric devices. Many strategies have been developed to improve
the thermoelectric properties of silicon materials. One way is by texturing the surface of
the silicon substrate to increase phonon scattering at the interfaces. Nanostructured silicon
can take many different forms, including porous silicon (PSi), silicon nanoparticles (SiNPs)
or silicon nanowires (SiNWs). Nanostructured Si remarkably contributes to reducing the
thermal conductivity of thermoelectric devices. However, etching the surface of the Si
substrate leads to a reduction in the electrical conductivity of nanostructured Si; likewise,
the fast oxidation of the porous silicon layer in ambient air. Accordingly, hybrid silicon
nanostructures with another effective thermoelectric material can dramatically reduce the
thermal conductivity of nanostructured Si and maintain adequate electrical conductivity
due to the other thermoelectric material, in addition to preventing nanostructured Si from
oxidation. For instance, PEDOT:PSS combined with SiNPs at a specific concentration, the
growth of graphene into nanostructured PSi, atomic layer-deposited PbTe/PbSe nanolam-
inate structures deposited inside PSi templates and Phenylacetylene capped with SiNPs
and alloys of SiGe at suitable percentages are some of the reported hybrid nanostructured
materials that have resulting in remarkable improvements in the thermoelectric properties
of modified thermoelectric devices.
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