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Abstract
We study the system 

where L and M are boundary values of some outer functions defined in the unit disc. Necessary and suffi-
cient conditions on functions L and M are found so that the system is a Schauder basis in Lp(� ), 1 < p < ∞.
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Introduction

We say that a system {zmF(z)}∞
m=0

 is a Beurling system if F is an outer function. In his fundamental work [3], Beurling 
particularly proved that if F is an outer function from H2(�) , then the system {zmF(z)}∞

m=0
 is complete in the space H2(�) , 

where 𝔻 = {z ∈ ℂ ∶ |z| < 1} is the unit disc. This result can be easily extended for the spaces Hp(�), 1 ≤ p < ∞ (see [6]). 
In the previous paper [12], we studied questions of representations of functions from the spaces Hp(�), 1 ≤ p < ∞ by 
series with respect to Beurling systems. In the present paper, we study the following system of functions

where L and M are boundary values of some outer functions defined in � . We find necessary and sufficient conditions on 
functions L and M so that the system is a Schauder basis in Lp(� ), 1 < p < ∞ , where 𝕋 = ℝ∕2�ℤ . Completeness multi-
pliers for a complete orthonormal system and for the trigonometric system have been studied in [4, 5]. Best references 
for the study of the trigonometric system are [2, 20]. The paper is divided into two parts. In the first part, we adopt some 
results for the spaces Hp(� ), 1 ≤ p < ∞ , and the second part will be dedicated to the study of the systems eiktΨL,M , k ∈ ℤ.

{L(t)eint}−1
n=−∞

∪ {M(t)eint}∞
n=0

,

(1.1)ΨL,M = {L(t)eint}−1
n=−∞

∪ {M(t)eint}∞
n=0
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Preliminary results, definitions and notations

Let

for 1 ≤ p ≤ ∞. The spaces Hp(� ), 1 ≤ p ≤ ∞ are Banach spaces of functions defined on � . The convolution of functions 
g, h ∈ L(� ) is denoted by

We would like to define on �  the analogue of an outer function on the unit disc 𝔻 = {z ∈ ℂ ∶ |z| < 1} . A holomorphic 
function F in � is an outer function if

where � is a real-valued integrable function defined on �  [3] and

The Cauchy and the Poisson kernels are defined as follows:

An important formula for representation of positive functions is due to G. Szegö [8, 19]. In his honour, the analogue of 
an outer function on �  is called S−function. We say that a Lebesgue measurable function � ∶ 𝕋 → ℂ is an S−function if 
ln |�| ∈ L1(� ) and

where l�(t) = l̃n |�|(t) and the conjugate function of an integrable function g is denoted by g̃ . For any measurable function 
� ∶ 𝕋 → ℂ such that ln |�| ∈ L1(� ) , we put

The following statement follows from the definition.

Proposition 1.1 Let � be an S−function. Then, S(�)(t) = ei��(t) for some � ∈ � .

It is easy to observe that the following properties also are true:

For a complex-valued integrable function g defined on �  , such that ln |g(t)| is integrable, we set

Evidently Gg(z) is a non-zero holomorphic function in z ∈ �, Gg ∈ H1(�) and

Hp(𝕋 ) = {� ∈ Lp(𝕋 ) ∶ ∫
𝕋

�(t)eintdt = 0 for all n ∈ ℕ},

g ∗ h(t) =
1

2� ∫
�

g(�)h(t − �)d�.

F(reit) = ei�e�∗Hr(t), � ∈ � ,

Hr(𝜃) =
1 + rei𝜃

1 − rei𝜃
(0 < r < 1, 𝜃 ∈ � ).

Cr(𝜃) =

+∞∑

n=0

rnein𝜃 0 < r < 1, 𝜃 ∈ � ,

Pr(�) =

+∞∑

n=−∞

r|n|ein� =
1 − r2

1 − 2r cos � + r2
.

(1.2)�(t) = ei�|�(t)|eil�(t), for some � ∈ � ,

S(�)(t) = |�(t)|eil� (t), t ∈ � .

(1.3)S(��)(t) = S(�)(t) ⋅ S(�)(t); S(
1

�
)(t) =

1

S(�)(t)
.

(1.4)Gg(re
it) = eln |g|∗Hr(t).
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We also have that

The class of S−functions in Hp(� ), 1 ≤ p ≤ ∞ is denoted by Hp
s (� ).

There is a vast literature on this topic (see, e.g. [6, 9, 13, 20] and others). It is well known (see, e.g. [9]) that 
ln |f (t)| ∈ L1(� ) if f ∈ H1(� ). The following fact is an easy consequence of well-known results that can be found in 
the literature which we have mentioned earlier.

Proposition 1.2 For any f ∈ H1(� ),

where F ∈ H∞(� ) and |F(t)| = 1 a.e. on � .

Given f ∈ H
p
s (� ) , we can recover a non-zero holomorphic outer function in � by the Poisson integral. If � is a non-

negative integrable function such that ln� ∈ L1(� ) , then � is the modulus of a function from H1(� ) (see, e.g. [9], p.53). 
If 1 < p < ∞ , we use the previous assertion for �1∕p to deduce a similar proposition for a function in Hp(� ) . The case 
p = ∞ is studied in [9]. Thus, the following statement holds.

Proposition 1.3 Let g be a Lebesgue measurable function g ∶ 𝕋 → ℂ such that S(g) ∈ Lp(� ), 1 ≤ p ≤ ∞ . 
Then, S(g) ∈ Hp(� ).

Set

It is clear that ln |f (t)| ∈ L1(� ) if f ∈ N(� ). The analogue of the following result is well known in � . We give the proof 
because it is short.

Theorem 1.1 H1(� ) ⊂ N(� ).

Proof Let f ∈ H1(� ) . Set

By Proposition 1.3, we have that S(f0) ∈ H∞
s
(� ) . On the other hand, f ⋅ S(f0) ∈ H∞(� ). Hence, f ∈ N(� ) .   ◻

By the above theorem, we establish

Proposition 1.4 Let � ∈ H1(� ) and let � ∈ H1
s
(� ) . Then, �

�
∈ N(� ).

Proof By Theorem 1.1, we have that

lim
r→1−

Gg(re
it) = S(g)(t) a.e. on � .

(1.5)
1

2� �
�

S(g)(t)dt = Gg(0) = e
1

2�
∫
�
ln |g(t)|dt ≠ 0.

f (t) = F(t) ⋅ S(f )(t),

N(� ) =

{
g

S(h)
∶ g, h ∈ H∞(� )

}
.

f0(t) =

{
1

f (t)
if

1

|f (t)| ≤ 1

1 if |f (t)| < 1.

� =
�1

�2

; � =
�1

�2

,
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where �1,�1 ∈ H∞(� ) and �2,�2 ∈ H∞
s
(� ) . On the other hand, by Proposition 1.1 and (1.3), we deduce that for some 

�1 ∈ �

Thus,

where �2 ∈ �  .   ◻

We also have

Theorem 1.2 For any p, 1 ≤ p ≤ ∞

Proof Let � ∈ Lp(� ) and

By Proposition 1.2, we have that g(t) = G(t)S(g)(t) , where G ∈ H∞(� ) and |G(t)| = 1 a.e. on �  . Hence, by (1.3), we deduce

Thus, S( g
h
) ∈ Lp(� ) and by Proposition 1.2 it follows that � ∈ Hp(� ). The inclusion Hp(� ) ⊆ Lp(� ) ∩ N(� ) holds by 

Theorem 1.1.   ◻

The closed linear span in a separable Banach space B of a system of elements X = {xk}
∞
x=0

⊂ B is denoted by span
B
(X). 

A system X = {xk}
∞
x=0

 is complete in B if span
B
(X) = B.

Beurling’s approximation theorem [3, 6] in the Hp(� ), 1 ≤ p < ∞ spaces have a simple formulation. We give its proof 
for the completeness of the exposition.

Theorem 1.3 Let p ∈ [1,+∞) and let f ∈ H
p
s (� ). Then, the system {f (t)eint}∞

n=0
 is complete in Hp(� ).

Proof Consider the case p > 1 . We assume that there exists g ∈ Hp� (� ), 1∕p + 1∕p� = 1 such that

If we put �(t) = f (t) ⋅ g(t) , then � ∈ H1(� ). By Proposition 1.4 and Theorem 1.2, it follows that

Hence, g is a constant function. This means that ∫
�
f (t)dt = 0 , which contradicts the condition (1.5). If p = 1 , then there 

exists g ∈ L∞(� ) such that (1.6) holds and the following condition

ei�1� = S(
�1

�2

) =
S(�1)

S(�2)
.

�

�
=ei�1

�

S(�)
= ei�1

�1S(�2)

�2S(�1)

=ei�2
�1S(�2)

S(�2)S(�1)
= ei�2

�1S(�2)

S(�2�1)
,

Lp(� ) ∩ N(� ) = Hp(� ).

� =
g

S(h)
, where g, h ∈ H∞(� )

�(t) =
g(t)

S(h)(t)
=

G(t)S(g)(t)

S(h)(t)
= G(t)S(

g

h
)(t).

(1.6)∫
𝕋

f (t)eintg(t)dt = 0 for all n ∈ ℕ0 = {0, 1, 2,…}.

g(t) =
�(t)

f (t)
∈ Hp� (� ).



Journal of Mathematical Sciences 

is not true. The rest of the proof is similar to the case p > 1 and we skip it.   ◻

The following results were obtained by the author in the recent paper.
A system X = {xk}

∞
k=0

⊂ B is called minimal, if there exists a system X∗ = {𝜙n}
∞
n=0

⊂ B
∗, such that

where �nk is the Kronecker symbol (�nk = 0 if n ≠ k and �kk = 1) . The system X∗ is called dual to X. If X is a 
complete and minimal system in B , then the dual system X∗ is unique [14]. A set Ψ ⊂ B

∗ is called total if

if and only if x = 0 . A system X = {xk}
∞
k=0

⊂ B is an M−basis in B if X is complete and minimal in B and its dual system 
X∗ is total.
The following theorems were proved in [12]

Theorem 1.4 Let p ∈ [1,+∞) and let f ∈ H
p
s (� ). The system {eintf (t)}∞

n=0
 is an M−basis in Hp(� ).

That the system {eint}∞
n=0

 is minimal in Hp(� ,w), 1 ≤ p < ∞ was mentioned in [11] without proof. A complete and minimal 
system X = {xk}

∞
k=0

⊂ B with the dual system X∗ = {𝜙k}
∞
k=0

⊂ B
∗ is uniformly minimal if there exists C > 0 such that

Theorem 1.5 Let f ∈ H
p
s (� ) for some 1 < p < ∞. Then, the system {eintf (t)}∞

n=0
 is uniformly minimal in Hp(� ), if and only 

if [f ]−1 ∈ Hp� (� ).

Theorem 1.6 Let f ∈ H1
s
(� ). If the system {eintf (t)}∞

n=0
 is uniformly minimal in H1(� ) , then [f ]−1 ∈ H∞(� ) . If [f ]−1 ∈ H∞(� ) 

and the partial sums of its Fourier series are uniformly bounded in the C(� ) norm, then the system {eintF∗(t)}∞
n=0

 is uni-
formly minimal in H1(� ).

For our study, we need to know the dual system to {eintf (t)}∞
n=0

 in Theorem 1.5. By S[�](t) , we denote the Fourier series of a 
function � ∈ L1(� ) . By (1.5), we know that c0(f ) ≠ 0, if f ∈ H1

s
(� ). For any m ∈ ℕ

Let f ∈ H1
s
(� ) and assume without loss of generality that c0(f ) = 1. We set

which is a non-zero holomorphic function. Hence, [Ff (z)]
−1 is also a holomorphic function in � ∶

We have that

∫
𝕋

eiktg(t)dt = 0 for all k ∈ ℕ.

�n(xk) = �nk (n, k ∈ ℕ),

�(x) = 0 for all � ∈ Ψ

‖xk‖B‖�k‖B∗ ≤ C for all k ∈ ℕ0.

Sm[�](t) =

m∑

j=−m

cj(�)e
ijt, cj(�) =

1

2� ∫
�

�(�)e−ij�d�.

Ff (z) =

∞∑

j=0

cj(f )z
j z ∈ �,

[Ff (z)]
−1 =

∞∑

j=0

bf ,jz
j z ∈ �.
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Set T0(f , t) ≡ 1 and for n ∈ ℕ

By (1.7), we obtain that if j ∈ ℕ0 and j ≤ n

It is clear that the above integral is equal to zero if j > n.
An integrable non-negative function on �  is called a weight function. We say that a weight function w is in the class 
Ap(� ), p ≥ 1 if there exists Cp > 0 such that for any interval I ⊂ �

Sometimes it is called Muckenhoupt’s condition [15].
If f ∈ H

p
s (� ) for some 1 < p < ∞ and � ∈ Hp(� ) , as it was shown in [12], the partial sums of the expansion of � with 

respect to the system {eintf (t)}∞
n=0

 can be represented by the formulae

A function g ∈ Lp(� ,w), 1 ≤ p < ∞ if g ∶ 𝕋 → ℂ is measurable on �  and the norm is defined by

The trigonometric system with different multipliers

The sufficiency of the following theorem was proved in [12].

Theorem 2.1 Let 1 < p < ∞ and let f ∈ H
p
s (� ). Then, the system {eintf (t)}∞

n=0
 is a Schauder basis in Hp(� ) if and only if 

|f |p ∈ Ap(� ).

Proof We give only the proof of the necessity. Assume that the system {eintf (t)}∞
n=0

 is a Schauder basis in Hp(� ) . Then, it 
is uniformly minimal in Hp(� ) and by Theorem 1.5 it follows that [f ]−1 ∈ Hp� (� ) . Thus, for some Cp > 0 independent of �

The last inequality yields (see, e.g. [17], p.40)

(1.7)
k∑

j=0

cj(f )bf ,k−j = 0 for all k ∈ ℕ and bf ,0 = 1.

(1.8)Tn(f , t) = eint +

n−1∑

𝜈=0

b̄f ,n−𝜈e
i𝜈t t ∈ � .

1

2� ∫
�

eijtf (t)Tn(f , t)dt =
1

2� ∫
�

n−j∑

k=0

ck(f )e
i(j+k)tTn(f , t)dt

(1.9)=

n−j∑

k=0

ck(f )bf ,n−j−k = �jn.

1

|I| �I

w(t)dt

[
1

|I| �I

w(t)
−

1

p−1 dt

]p−1
≤ Cp.

(1.10)�m[�](t) = f (t)Sm[�f
−1](t) m ∈ ℕ0.

‖g‖Lp(� ,w) =
�

∫
�

�g(t)�pw(t)dt
� 1

p

< +∞.

‖f ⋅ Sm[�f −1]‖Lp = ‖�m[�]‖Hp ≤ Cp‖�‖Hp ∀m ∈ ℕ0.

‖f ⋅ (𝜑f −1) ∗ Pr‖Lp ≤ Cp‖𝜑‖Hp for 0 < r < 1.
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  ◻

We need the following lemma for the proof.

Lemma 2.1 Let g ∈ Lp(� ) and h ∈ Hp� (� ), where 1 ≤ p < ∞ . Then for 0 < r < 1, t ∈ �

Proof For z = reit, |z| < 1 and any k ∈ ℕ0 , we have

Hence, for any m ∈ ℕ

Which yields

Let �(�) = Re�(�) . By Lemma 2.1, we easily check that

Thus, for any real-valued � ∈ Lp(� )

where Bp > 0 is independent of � . Afterwards, it is easy to see that the same inequality holds for any � ∈ Lp(� ). If we 
set �(t) = |f (t)|p , then it follows that for some Bp > 0 independent of g ∈ Lp(� ,�)

By [7, 17], we finish the proof.   ◻

Let L,M ∈ H
p
s (� ), 1 ≤ p < ∞. Consider the system of functions (1.1). From Theorem 1.5, we deduce

Theorem 2.2 Let 1 ≤ p < ∞ and let L,M ∈ H
p
s (� ). Then, the system ΨL,M is an M−basis in Lp(� ).

Proof Suppose that the system ΨL,M is not complete in Lp(� ). Then in the dual space Lp� (� ) , there exists a non-trivial 
� ∈ Lp

�

(� ) such that

and

1

2� ∫
�

g(�)h(�)Pr(t − �)d� =
1

2� ∫
�

g(�)Pr(t − �)d�
1

2� ∫
�

h(�)Pr(t − �)d�.

1

2� ∫
�

g(�)eik�Pr(t − �)d� =

+∞∑

j=−∞

cj(g)z
j+k = zk

+∞∑

j=−∞

cj(g)z
j.

1

2� ∫
�

g(�)

m∑

k=0

ck(h)e
ik�Pr(t − �)d� =

m∑

k=0

ck(h)z
k

+∞∑

j=−∞

cj(g)z
j.

1

2� ∫
�

g(�)h(�)Pr(t − �)d� = lim
m→+∞

1

2� ∫
�

g(�)

m∑

k=0

ck(h)e
ik�Pr(t − �)d�

=

+∞∑

k=0

ck(h)z
k

+∞∑

j=−∞

cj(g)z
j = h ∗ Pr(t) ⋅ g ∗ Pr(t).

|(𝜓 f −1) ∗ Pr(t)| ≤ |(𝜑f −1) ∗ Pr(t)| 0 < r < 1, t ∈ � .

‖f ⋅ (𝜓 f −1) ∗ Pr‖Lp ≤ Bp‖𝜓‖Lp for 0 < r < 1,

‖g ∗ Pr‖Lp(� ,𝜔) ≤ Bp‖g‖Lp(� ,𝜔) for 0 < r < 1,

∫
𝕋

L(t)e−int�(t)dt = 0 n ∈ ℕ
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From the above relations, it follows that L� ∈ H1(� ) and M� is not a constant and is a H1(� ) function. Afterwards, by 
Proposition 1.4 and Theorem 1.2, we obtain that � ∈ Hp� (� ) and � ∈ Hp� (� ) . Which can happen if and only if � ≡ const . 
Thus, M ≡ const, which contradicts the condition that M� is not a constant function.

Let us show that the system

is dual to ΨL,M . We have that for any j ∈ ℕ

Thus from (1.7), it follows that for any k ∈ ℕ

For any j ∈ ℕ by (1.9), we obtain that

The rest of the proof of the minimality of the system ΨL,M is clear. It remains to check that the system (2.1) is total. Assume 
that it is not true. Then for some non-trivial � ∈ Lp(� ) such that

and

The relations on the last line are equivalent to the following conditions: ∫
�
�(t)e−ijtdt = 0 for all j ∈ ℕ0. Using the fact 

that ∫
�
�(t)dt = 0 , we deduce that ∫

𝕋
�(t)eiktdt = 0 ∀k ∈ ℕ. Hence, �(t) = 0 a.e. on � .   ◻

By the above result and Theorem 1.5, we obtain

Theorem 2.3 Let 1 < p < ∞ and let L,M ∈ H
p
s (� ). Then, the system ΨL,M is uniformly minimal in Lp(� ), if and only if the 

functions [L]−1, [M]−1 ∈ Hp� (� ).

From Theorems 2.2 and 2.3, we easily obtain

Theorem 2.4 Let 1 ≤ p < ∞ , k ∈ ℤ and let L,M ∈ H
p
s (� ). Then, the system

is an M−basis in Lp(� ). Moreover, if 1 ≤ p < ∞ , the system eiktΨL,M is uniformly minimal in Lp(� ), if and only if the func-
tions [L]−1, [M]−1 ∈ Hp� (� ).

When p = 1 by Theorem 1.6, we have

∫
𝕋

M(t)eint�(t)dt = 0 n ∈ ℕ0.

(2.1){T−n(L, t)}
−1
n=−∞

∪ {Tn(M, t)}∞
n=0

∫
𝕋

eijtM(t)eintdt = 0 for all n ∈ ℕ0.

∫
𝕋

Tk(L, t)M(t)eintdt = 0 for all n ∈ ℕ0.

1

2� ∫
𝕋

e−ijtL(t)Tn(L, t)dt =
1

2�∫𝕋

eijtL(t)Tn(L, t)dt = �jn ∀n ∈ ℕ.

∫
𝕋

�(t)Tn(L, t)dt = 0 n ∈ ℕ

∫
𝕋

�(t)Tn(M, t)dt = 0 n ∈ ℕ0.

eiktΨL,M = {L(t)ei(n+k)t}−1
n=−∞

∪ {M(t)ei(n+k)t}∞
n=0
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Theorem 2.5 Let L,M ∈ H1
s
(� ) and let k ∈ ℤ . If the system eiktΨL,M is uniformly minimal in L1(� ) , then [L]−1, [M]−1 ∈ H∞(� ) . 

Moreover, if [L]−1, [M]−1 ∈ H∞(� ) and the partial sums of the Fourier series of the functions [L]−1, [M]−1 are uniformly bounded 
in the C(� ) norm, then the system eiktΨL,M is uniformly minimal in L1(� ).

The following lemma was proved in [12]

Lemma 2.2  Let  f ∈ Hp(� ) and  g ∈ Hp� (� ), where  1 ≤ p < ∞ and  1

p
+

1

p�
= 1, p� = ∞ i f  p = 1 . 

Then, Sn[fg](t) =
∑n

j=0
cj(f )e

ijtSn−j[g](t) for any n ∈ ℕ0.

Theorem 2.6 Let 1 < p < ∞ , k ∈ ℤ and let L,M ∈ H
p
s (� ). Then the system eiktΨL,M is a Schauder basis in Lp(� ) if and 

only if |L|p, |M|p ∈ Ap(� ).

Proof By Theorem 2.4, we know that the system eiktΨL,M is complete and minimal in Lp(� ) . For any n ∈ ℕ , we set

Let g ∈ Lp(� ) be a real-valued function and let gH be its projection on Hp(� ) . By Theorem 2.2, it follows that

Hence, for any n ∈ ℕ

We have that

B∗
L,n
(t, �) =L(t)

−1∑

k=−n

eiktT−k(L, �)

=L(t)

n∑

k=1

e−ikt
k∑

j=0

bL,k−je
ij�

=L(t)

n∑

k=1

bL,ke
−ikt

+ L(t)

n∑

j=1

eij�
n∑

k=j

bL,k−je
−ikt

=L(t) Sn[L
−1 − 1](t)

+ L(t)

n∑

j=1

eij(�−t)Sn−j[L
−1](t)

∫
𝕋

gH(�)B
∗
L,n
(t, �)d� = 0 n ∈ ℕ.

Λ∗
L,n
[g](t) =

1

2� ∫
�

g(�)B∗
L,n
(t, �)d� = Λ∗

L,n
[g − gH](t).

Λ∗
L,n
[g − gH](t) =L(t)

n∑

j=1

c−j(g)e
−ijtSn−j[L

−1](t)

=L(t)

n∑

j=1

cj(g)e
−ijtSn−j[L

−1](t)

=L(t)

n∑

j=1

cj(g − gH)e
−ijtSn−j[L

−1](t)

=L(t) Sn[(g − gH)L
−1](t).
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The last equation is obtained by Lemma 2.2. In a similar way, we deduce (see also [12])

We set

Let u(t) = |L(t)|p, and let v(t) = |M(t)|p , then by a well-known weighted norm inequality [7] (see also [10]) we finish 
the proof of sufficiency because the conditions of Banach’s theorem [1] hold in our case. We will give the proof of the 
inequality

where Cp > 0 is independent of g. Indeed,

The proof of the necessity follows by Theorem 2.1.   ◻
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BM,n(t, �) =M(t)

n∑

k=0

eiktTk(M, �)

=M(t)

n∑

k=0

eikt
k∑

j=0

bM,k−je
−ij�

=M(t)

n∑

j=0

e−ij�
n∑

k=j

bM,k−je
ikt

=M(t)

n∑

j=0

eij(t−�)Sn−j[M
−1](t).

ΛM,n[g](t) =
1

2� ∫
�

g(�)BM,n(t, �)d�

=M(t)

n∑

j=0

cj(gH)e
ijtSn−j[M

−1](t)

=M(t)Sn[gHM
−1](t) = M(t)Sn[gHM

−1](t),

�
�

|Λ∗
L,n
[g](t)|pdt ≤ Cp �

�

|g(t)|pdt,

�
�

|Λ∗
L,n
[g](t)|pdt =�

�

|Λ∗
L,n
[g − gH](t)|pdt

=�
�

|L(t) Sn[(g − gH)L
−1](t)|pdt

=�
�

|Sn[(g − gH)L
−1](t)|pu(t)dt

≤Ap �
�

|[g(t) − gH(t)][L(t)]
−1|pu(t)dt

=Ap �
�

|g(t) − gH(t)|pdt

≤Cp �
�

|g(t)|pdt.
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