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Abstract: Considering the existing controversy over the possible role of acute antioxidant vitamins in
reducing exercise-induced muscle damage (EIMD), this doubled-blind, randomized and controlled
trial aimed to determine whether supplementation with vitamins C and E could mitigate the EIMD
in endurance-trained runners (n = 18). The exercise protocol involved a warm-up followed by 6 to
8 bouts of 1 km running at 75% maximum heart rate (HRmax). Two hours before the exercise protocol,
participants took the supplementation with vitamins or placebo, and immediately afterwards, blood
lactate, rate of perceived exertion and performance were assessed. At 24 h post-exercise, CK, delayed
onset muscle soreness and performance were determined (countermovement jump, squat jump and
stiffness test). The elastic index and vertical stiffness were calculated using a stiffness test. Imme-
diately after the exercise protocol, all participants showed improved maximum countermovement
jump, which only persisted after 24 h in the vitamin group (p < 0.05). In both groups, squat jump
height was significantly greater (p < 0.05) immediately after exercise and returned to baseline values
after 24 h. The elastic index increased in the vitamin group (p < 0.05), but not in the placebo group.
In both groups, lactate levels increased from pre- to immediately post-exercise (p < 0.05), and CK
increased from pre- to 24 h post-exercise (p < 0.05). No significant differences between groups were
observed in any of the variables (p > 0.05). Vitamin C and E supplementation does not seem to help
with EIMD in endurance-trained individuals.

Keywords: antioxidants; ascorbic acid; tocopherols; athletic performance; muscle damage

1. Introduction

Exercise-induced muscle damage (EIMD) is a common response to a prolonged or
high-intensity bout of exercise, occurring in a transient manner and as part of muscle repair
and adaptation [1,2]. This type of response can temporarily diminish muscle function and
also cause muscle soreness, swelling and raised blood levels of intramuscular proteins [3].

Interest in post-exercise recovery has drastically increased in the last few decades [4],
and nutrition is a key strategy in this process [5,6]. Several dietary and supplementation
strategies have been proposed to attenuate symptoms of EIMD [1,7,8]. One of the strategies
tested is based on antioxidant supplementation, which targets reactive oxygen and nitrogen
species (RONS) as factors involved in EIMD [2,3,9].
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Several studies have examined whether vitamin C (VitC) and vitamin E (VitE), either
alone or in combination, are able to mitigate EIMD [10]. However, while some data point to
a muscle protective effect of these antioxidant vitamins, the evidence so far is inconclusive
and not all studies have shown their clear benefits [10,11]. In effect, recognized institutions
such as the Australian Institute of Sport have identified a need for more research regarding
the effects of these vitamins [12,13].

One of the mechanisms of action of antioxidants against EIMD is thought to be limiting
lipid peroxidation [10,11], which leads to sarcolemma disruption [14]. VitE is the most
abundant fat-soluble antioxidant that protects against lipid peroxidation [15,16], whereas
VitC performs multiple antioxidant actions, owing to its capacity to react with several
RONS and consequently decrease lipid peroxidation. Additionally, both vitamins interact
with each other to recycle VitE, which is regenerated by VitC [17].

Besides the possible benefits of acute supplementation with antioxidants, there is
growing literature suggesting that RONS generated during exercise have an essential role
in regulating cell signaling pathways and human redox-sensitive transcription factors [18].
RONS mediate training adaptations such as mitochondrial biogenesis, skeletal muscle
hypertrophy or induction of the endogenous antioxidant system [19,20]. Consequently,
supplementation with high doses of antioxidants could have the effect of blunting certain
adaptations to exercise training [21–23].

Factors such as the type and period of supplementation, or modality and duration of
exercise could influence the effect that antioxidants have on the response and adaptations to
exercise. Accordingly, most beneficial strategies have involved acute supplementation and
fatiguing-type exercise [24]. Hence, it could be useful to consider acute antioxidant supple-
mentation to enhance performance in exercise modalities for which adaptive responses are
irrelevant. However, this issue remains unclear as evidence is still scarce [17]. Based on the
results of our previous systematic reviews [5,6], we hypothesized that this supplementation
could have a protective effect on EIMD and would not benefit physical performance.

Taking into account the wide use of antioxidant vitamins [25] and the existing contro-
versy over their possible role in minimizing EIMD, this double-blind randomized controlled
trial (RCT) investigated whether acute VitC/VitE supplementation could mitigate EIMD
and improve performance in endurance-trained runners.

2. Materials and Methods

The study design was double-blind, RCT, registered at Clinical Trials (https://clinicaltrials.gov)
(accessed on 15 June 2021) with the identifier NCT05127928.

2.1. Participants

Subjects were invited to participate on a voluntary basis if they were healthy and
non-smokers (February 2022). The participants recruited were 18 recreationally endurance-
trained male runners aged 39 to 58 years, belonging to a Running Club in Madrid. Subjects
performed 4 to 5 days of training per week (40–60 km/week), and they had between 3 to
8 years of experience in endurance training. Only men were selected to be able to compare
our results with previous literature, as most of the research in this area has been conducted
on the male population [5,6]. Participants were excluded if they had cardiometabolic or
musculoskeletal disorders, were smokers, or used any type of supplementation. The intake
of dietary supplements was not allowed from two weeks prior to the intervention until
it ended.

Before initiating the study, subjects were informed of the study procedures, goals and
possible risks, and written consent was obtained. This study was approved by the Research
Ethics Committee of the Universidad Europea (protocol code: CIPI/20/209) and conducted
in accordance with the principles of the Declaration of Helsinki.

https://clinicaltrials.gov
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2.2. Experimental Design

Participants were randomly allocated to the VitC plus VitE (VIT) group or the placebo
(PLA) group, in which supplementation was taken 2 h prior to an exercise protocol. Physical
exercise was avoided during the 48 h before the intervention.

Randomization was based on a computer-generated random allocation sequence and
was conducted by an external investigator. No researcher participating in the study had
access to it. During the trial, participants and personnel evaluating outcomes were blinded
to group allocation.

First, a Cooper test was conducted to estimate maximal oxygen consumption (VO2max).
Participants covered the furthest distance possible in 12 min following the traditional
protocol [26]. The total distance completed and heart rate (HR) during the protocol were
measured. VO2max was calculated using the following equation: 22.351 × distance covered
(km)—11.288 [27].

Participants fasted overnight, arriving in the morning when blood and lactate samples
were collected and performance was assessed. Next, subjects ingested the supplement and
ate a standardized breakfast (4.7 kcal/kg, 1 g/kg carbohydrate, 0.1 g/kg protein) based
on bread and jam or honey and water. The exercise protocol commenced with a warm-up
based on 15 min of running at an intensity of 60% of maximum HR (HRmax). After 2 min of
rest, participants executed 6 to 8 bouts of 1 km running at 75% of HRmax separated by 1 min
of recovery. If HR was less than 75% HRmax, they did not perform bouts 7 and 8. Finally,
subjects completed 10 min of running at 70% HRmax. Exercise intensity was controlled by
HR in order to produce a physiological response to effort without generating cell damage.
Therefore, by verifying that HR did not return to baseline, we were able to estimate that
the intensity exceeded the predicted physical capacity of each participant.

Immediately after the exercise session, lactate samples were collected and performance
was measured. Participants also reported their rate of perceived exertion (RPE). After finish-
ing the tests, participants consumed a recovery meal based on 1.2 g/kg of carbohydrate and
0.2 g/kg of protein. Twenty-four hours later, subjects were subjected again to blood tests
and performance measurement. They also described their delayed onset muscle soreness
(DOMS). The trial was conducted in March 2022 in Madrid.

2.3. Supplementation with Antioxidant Vitamins

VitE capsules contained 235 mg of DL-α-tocopherol acetate, VitC capsules contained
1000 mg of ascorbic acid, and PLA capsules contained maltodextrin (Vecos Nucoceuti-
cal). The PLA capsules without VitC or VitE were indistinguishable in terms of shape,
appearance and taste to the vitamin pills. Capsules were provided in individual bags
identified with a participant code. Labeling was completed by an investigator blinded to
identification codes, and allocation was performed by a blinded investigator.

2.4. Diet Control and Body Composition Anaylsis

Every participant followed a diet adapted to their body weight constructed by a
dietitian, according to nutrition guidelines for endurance sport [28,29], starting two days
before the intervention and continuing until the end of all tests. The diet was adjusted to
provide 6 g/kg/d two days before the intervention and 7 g/kg/d of carbohydrate from
the day before trial, until the end of the trial. Protein intake was adjusted to 1.6 g/kg and
distributed in three main meals and two collations [8,28,29]. Foods with high amounts
of antioxidants, such as more than four cups of tea or coffee, more than two fruit juices
and alcoholic beverages were avoided two days prior to the intervention. During the
intervention, coffee and tea were also avoided.

In order to preserve hydration state, participants were asked to maintain their urine
color between level 1 and 3 using The Urine Color Chart (Human Kinetics, Champaign, IL,
USA), mainly before the intervention.
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Regarding body composition data, body mass (kg), body fat (%), muscle mass (kg),
bone mass (kg) and visceral adipose tissue were determined by a Tanita InnerScan V BC-601
device the intervention day prior to the blood analysis.

2.5. Outcome Measures

The primary outcomes were the differences between the VIT and PLA groups in
muscle damage and performance. Secondary outcomes included the differences between
groups in lactate, DOMS and RPE.

2.5.1. Muscle Damage

Venous blood for CK determination was collected from a superficial vein in the
antecubital fossa into standard Vacutainer® tubes containing K3EDTA. Tubes were left
upright for 45 min to allow for complete blood clotting before centrifugation. Serum was
then separated by centrifugation at 3500× g rpm for 15 min at room temperature, stored
in aliquots and kept frozen at −80 ◦C until analysis. Creatine kinase was determined in a
Roche Cobas® c 311 apparatus (Roche Diagnostics GmbH, Penzberg, Germany) according
to the manufacturer’s specifications. CK was determined 24 h after exercise [30].

2.5.2. Lactate

Lactate concentrations were measured in a capillary blood sample obtained from
participants’ fingertips using a portable analyzer (Lactate 2, Arkray, Kyoto, Japan) [31,32].

2.5.3. Physical Performance

Participants performed three different jumps: countermovement jump (CMJ), squat
jump (SJ) and stiffness test (ST). For the CMJ, subjects started from an upright position with
hands on waist and then executed a countermovement jump by flexing the knees to 90◦

and jumping as high as possible. During the flight stage, they were instructed to keep their
knees extended to 180◦, without hyperextending the hips [33]. Jump height was measured
on an infrared platform (Optojump, Microgate, Bolzano, Italy).

Immediately after the CMJ, participants performed a SJ, starting from a standing
position and crouched to 90◦ knee flexion, followed immediately by a jump to maximum
height [34]. Jump height was recorded using the infrared platform. The best and worst
of five CMJ and SJ jump heights were eliminated and the mean of the three remaining
attempts were used in the data analysis.

Finally, subjects undertook a ST consisting of a countermovement jump followed
by seven jumps with knees extended, landing after the seventh jump and controlling
the vertical position without doing further hops [35]. Neuromuscular performance was
determined from these jumps, in terms of jump height, elastic index (EI%) and vertical
stiffness (Kvert).

2.5.4. DOMS and RPE

DOMS was determined using a 10-point visual analogue scale from “0”, indicating
total absence of pain, to “10”, indicating the maximum level of tolerable pain [36]. This
soreness rating was used for the upper body (above the hip), upper part of the legs (from
the hip to the knees) and lower part of the legs (from the knees to the ankles). RPE was
assessed with a 10-point scale [37] adapted by Foster et al. [38].

2.6. Statistical Analysis

The normality of the distribution of the variables was confirmed with the Shapiro–
Wilk test. Baseline differences were analyzed with Student’s t-test and relative changes
within each group were assessed using a paired Student’s t test or two-way ANOVA
with Bonferroni-adjusted post hoc tests. Between-group differences were detected by
two-way ANOVA and ANCOVAS, adjusting values to baseline assessments. Results are
presented as the mean (and standard deviation), effect size, p-value and observed power.
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For inter-group comparisons, 95% confidence interval (CI) and mean differences were
determined. The effect size was determined by Cohen’s d for Student’s t test (magnitude:
0 to 0.2 = trivial, 0.2 to 0.6 = small, 0.6 to 1.2 = moderate, 1.2 to 2 = large, and >2 = very
large [39]), by Wilcoxon’s effect size for Wilcoxon test (magnitude: small effect = 0.10–0.3,
moderate = 0.30–0.5, large ≥ 0.5 [40]) or by Eta squared (η2) for two-way ANOVA (magni-
tude of effect size: 0.01 = small, medium = 0.06, large = 0.14 [40]). For variables not showing
a normal distribution, nonparametric tests were used. All data were analyzed with the
Statistical Package for the Social Sciences version 23 (IBM, Chicago, IL, USA). Significance
was set at p < 0.05.

3. Results
3.1. Participant Characteristics

Participant study flow is presented according to the Consolidated Standards of Re-
porting Trial (CONSORT) diagram (Figure 1). Of the eleven subjects randomly assigned
to each group, ten received vitamin supplementation and eight PLA. Four participants
did not show up on the day of the intervention. Participant characteristics are provided in
Table 1. No significant differences between groups were observed (Table 1).
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Table 1. Participant characteristics.

Group VIT Group PLA p-Value

Age (years) 47.90 (5.75) 46.76 (4.60) 0.656 a

VO2max (mL/min) 53.64 (11.77) 49.65 (9.27) 0.460 a

HRmax (BPM) 174.75 (4.15) 174.53 (4.00) 0.655 a

Body mass (kg) 74.84 (10.94) 75.00 (9.82) 1.00 b

Body fat (%) 21.81 (5.37) 19.31 (4.32) 0.302 a

Muscle mass (kg) 55.22 (5.60) 57.40 (7.10) 0.476 a

Bone mass (kg) 2.90 (0.28) 3.025 (0.35) 0.416 a

Total body water 55.58 (4.04) 57.64 (3.34) 0.264 a

Visceral adipose tissue 9.00 (3.20) 8.25 (1.98) 0.571 a

All values show the mean (standard deviation); Inter-group differences were calculated by independent t-test
a and Mann–Whitney U test b. Body composition was determined with a Tanita InnerScan V BC-601 device.
Abbreviations: BPM (beats per minute); PLA (placebo supplementation); HRmax (maximum heart rate); VIT
(vitamin C plus vitamin E supplementation); VO2max (maximum oxygen consumption).

3.2. Muscle Damage

Twenty-four hours after the exercise protocol, CK levels were significantly higher
than at pre-exercise in both groups (p < 0.05) (Table 2) and there were no between-group
differences (Table 3).

Table 2. Performance, muscle damage and blood lactate data recorded at pre-exercise, immediately
after exercise, and 24 h after exercise and intra-group differences.

Group PRE POST 24 h Effect Size p–Value
(Intragroup × Time)

Observed
Power

CMJ
VIT 22.63 (5.02) 26.71 (6.27) * 25.41 (6.54) * 0.696 0.000 a 1.000

PLA 20.97 (4.21) 25.29 (5.32) * 21.89 (5.02) ** 0.750 0.000 a 1.000

SJ
VIT 21.65 (4.67) 24.74 (6.10) * 22.78 (5.73) ** 0.603 0.000 a 0.994

PLA 20.29 (4.38) 22.91 (5.32) * 20.21 (4.31) ** 0.656 0.001 a 0.989

EI (%)
VIT 4.48 (4.01) 8.25 (4.66) 11.52 (5.13) * 0.400 0.010 a 0.820

PLA 4.16 (9.19) 11.25 (9.52) 8.02 (5.85) 0.208 0.195 a 0.319

Kvert
VIT 159.65 (63.14) 173.45 (56.72) 173.92 (57.68) 0.068 0.533 a 0.142

PLA 161.51 (28.28) 177.86 (56.25) 157.27 (38.88) 0.152 0.315 a 0.228

Lactate
VIT 1.64 (0.40) 6.02 (2.25) - −1.006 y 0.000 b -

PLA 1.86 (1.01) 5.73 (2.36) - −0.891 yy 0.012 c -

CK
VIT 103.03 (15.45) - 302.40 (66.76) −0.886 yy 0.005 c -

PLA 125.06 (65.64) - 233.86 (47.48) −2.493 y 0.000 b -

Intra-group differences were calculated by two-way ANOVA with Bonferroni-adjusted post hoc tests a, paired
sample t-test b and Wilcoxon test c. Effect size was determined by Eta squared (η2), Cohen’s d y or Wilcoxon effect
size yy. * Significant difference versus baseline (p < 0.05). ** Significant difference versus immediately post-exercise
(p < 0.05). Abbreviations: CK (creatine kinase); CMJ (countermovement jump); EI% (elastic index); Kvert (vertical
stiffness); PLA (placebo supplementation); SJ (squat jump); VIT (vitamin C plus vitamin E supplementation).

3.3. Lactate Levels

In both groups, blood lactate levels rose significantly from pre-exercise to immediately
after exercise (p < 0.05) (Table 2). No significant between-group differences were observed
(Table 3).
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Table 3. Performance, muscle damage and lactate data recorded at pre-exercise, immediately after
exercise, and 24 h after exercise and inter-group differences.

Mean
Differences

Effect Size
(η2) 95% CI p-Value

(Intergroup × Time)
Observed

Power

CMJ 2.20 0.007 (−3.23, 7.63) 0.072 a 0.522

SJ 1.92 0.002 (−3.18, 7.02) 0.377 a 0.196

IE (%) 0.27 0.038 (−4.09, 4.63) 0.282 a 0.264

KVERT 3.46 0.009 (−43.44, 50.36) 0.526 a 0.150

CK 90.27 0.077 (−71.07, 251.60) 0.252 b 0.201

Lactate 0.13 0.009 (−2.25, 2.52) 0.907 b 0.051

Between-group differences were detected by two-way ANOVA a and ANCOVAS b. Effect size was determined
by Eta Squared (η2). CI (confidence interval); CK (creatine kinase); CMJ (countermovement jump); EI % (elastic
index); Kvert (vertical stiffness); PLA (placebo supplementation); SJ (squat jump); VIT (vitamin C plus vitamin
E supplementation).

3.4. Performance

Immediately after the exercise protocol, maximum CMJ height was significantly higher
than before exercise in both groups (p < 0.001). After 24 h, this height remained elevated
only in the VIT group (p < 0.05), while in the PLA group it fell to baseline levels (p > 0.05).
In both groups, maximum SJ height was significantly greater (p < 0.05) immediately after
exercise and returned to baseline values after 24 h (p > 0.05). A significant increase in EI%
was produced from pre- to 24 h post-exercise in the VIT group (p < 0.05) (Table 2).

Inter-group comparisons (time × group) revealed no significant difference in perfor-
mance (p > 0.05) (Table 3).

3.5. DOMS and RPE

No significant differences in RPE and DOMS were detected between the groups
(p > 0.05) (Table 4).

Table 4. Delayed-onset muscle soreness, rate of perceived exertion and intergroup differences.

Group VIT Group PLA p-Value (Intergroup) a

RPE 5.30 (2.71) 5.00 (2.00) 0.829

DOMS 24 h upper body 1.60 (0.84) 2.25 (1.91) 0.762

DOMS 24 h upper legs 2.90 (2.18) 3.88 (2.30) 0.408

DOMS 24 h lower legs 2.50 (2.22) 4.00 (3.02) 0.408
All values show the mean (standard deviation); a Mann–Whitney U test was used to detect between group
differences. Abbreviations: DOMS (delayed-onset muscle soreness); RPE (rate of perceived exertion).

4. Discussion

This study was designed to examine whether acute supplementation with VitC plus
VitE could mitigate EIMD and improve athletic performance in endurance-trained individ-
uals. To date, several investigations have explored the effects of chronic supplementation
with VitC and VitE on EIMD [10]. However, acute supplementation protocols have only
tested the intake of VitC [41–43] or VitE [44]. Therefore, as far as we know, this is the first
investigation to address the effects of acute supplementation with both VitC and VitE before
an exercise session.

Two studies conducted in young untrained subjects have assessed muscle damage
measured through CK following acute supplementation with VitC or VitE. No significant
differences were detected between individuals taking VitC (1000 mg) compared to PLA
after running 30 min at 75% VO2max. In both these studies, it was observed that CK only
remained elevated for 24 h after exercise in the PLA group [41,42]. Another two studies
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in physically-active men examined the effects of an antioxidant supplementation on the
response to a 90 min high-intensity interval training session [45,46]. In the first study [45],
participants received 1 g of VitC 2 h before exercise, and in the second one [46] participants
took 200 mg of VitC twice a day during the 3 days after exercise. In both studies, CK
levels increased significantly after exercise, and no differences emerged between groups.
Therefore, the results of all of these articles are in line with our results showing that
supplementation with VitC and VitE have no effect on CK.

In contrast, 800 mg of VitC supplemented 3 h before exercise and 21 h after exercise
led to a significant reduction in CK concentrations 24 h after eccentric exercises in young
basketball players [43]. Beneficial effects of VitE supplementation in response to exercise
in conditions of hypoxia compared to normoxia have also been reported [44]. Thus, acute
supplementation might only be effective in certain conditions, such as in exercise under
hypoxia [44] or eccentric exercise [43].

Several groups have assessed the effects of chronic VitC and VitE supplementation
before an acute exercise session in runners [47–49]. In these studies, no effects on CK
levels were found when VitC (500–1000 mg/d) plus VitE (300–1000 IU/d) were taken
for 2–6 weeks before a 50 km ultramarathon, a marathon, and a 1.5 h downhill exercise,
respectively. Rokitzki et al. [50] reported that supplementation with VitC (200 mg/d) and
VitE (400 IU/day) for 4.5 weeks before the marathon gave rise to reduced CK concentrations
24 h after exercise. However, the authors miscalculated the p-value, thus, the difference
was really not significant, as observed in the previous studies and our investigation.

In the study by Cannon et al. [51], the effects of VitE supplementation with 800 IU/d
over 48 days were assessed in younger and older sedentary men after performing 45 min
of downhill running. It was revealed that in the older SUP group, CK was significantly
higher before exercise and 2 days after, than in the older PLA group. In comparison to the
younger PLA group, older participants given PLA showed significantly reduced levels of
CK. Peters et al. [52] reported that supplementation with VitC for 7 days prior to a 90 km
running event, as well as on the event day and two days later, in runners exacerbated the
CK and C-reactive protein response to exercise.

On the contrary, Itoh et al. [53] found that supplementation with VitE (250 mg) for
4 weeks before and during a 6-day running training protocol led to significantly reduced
concentrations of CK and lactate dehydrogenase 24 h after exercise in trained male runners.

The significant increase of CK in this study, in response to exercise in all participants
with no differences between our SUP and PLA groups, is in line with most data reported
in runners receiving VitC and/or VitE supplements [47–50]. It should be highlighted that
participants of all studies detecting beneficial effects on CK of acute or chronic VitC or VitE
supplementation were young, i.e., under 25 years of age [10].

EIMD can have different consequences, such as DOMS [11]. Different theories have
been proposed to explain the mechanisms underlying DOMS; for instance, there is an
increased release of RONS in response to exercise [10]. However, most authors have
found that antioxidant supplementation does not diminish muscle soreness [11,54], as
we observed in our investigation. Hence, we would argue that supplementation with
VitC/VitE combined in athletes aged over 30 years does not reduce EIMD, as measured
through blood CK levels, and neither does it affect perceived DOMS.

While RONS are thought to play a role in modulating cell signaling pathways and
controlling numerous redox-sensitive transcription factors, it has been well established that
increased RONS production promotes skeletal muscle contractile dysfunction resulting
in muscle fatigue [55]. Consequently, a common action attributed to antioxidant vitamin
supplementation is increased performance, yet the available literature suggests that chronic
VitE and/or VitC supplementation does not improve endurance performance [10], as our
study points out following an acute supplementation protocol. Despite this, running
blocks at speeds below maximum aerobic speed (MAS), has been found to lead to post-
activation potentiation (PAP) (in both SUP and PLA groups), producing greater activation
of fast twitch fibers [56,57] and causing a significant increase in post-exercise jumping
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capacity. Here, after 24 h, only the VIT group participants recovered the ability to apply
force influenced by improved muscle-tendon performance (due to a better use of elastic
energy). We also observed an increase (non-significant) in vertical stiffness in both groups
immediately after exercise. Running blocks at increasing speed (without reaching MAS) has
been reported to increase Kvert [56], and this increase persists when MAS is reached [58].
In our study, running speed was maintained at an intensity close to the anaerobic threshold,
and for this reason, there was a tendency for Kvert to increase, but not significantly. The
coincidence of both fatigue and neuromuscular activation in middle- and long-distance
runners warrants further investigation.

As far as we know, the literature continues to lack data regarding the effects of acute
supplementation with VitC and VitE on exercise performance in humans [10,17,24,59].
Additionally, several investigations have confirmed our finding that VitC and/or VitE
supplementation has no effect on the blood lactate response to exercise [45,46,60–62].

Limitations and Strength

A key strength of this investigation is its experimental design consisting of a double-
blind RCT. Some studies have failed to estimate food intake and others have used food recall
questionnaires which are open to biased responses. In our investigation, participants were
given a personalized diet to follow based on nutritional recommendations for endurance
training and avoiding significant sources of dietary antioxidants. An important limitation
of this investigation is the limited simple size (N = 18) compared to other studies with the
similar objectives and sample sizes from 19 to 32 [36,48,49,51,63–66]. Moreover, the power
analysis of the inter-group differences is low (<0.6). Finally, training intensity was based on
HR rather than a direct method of measuring VO2max.

5. Conclusions

VitC plus VitE supplementation did not attenuate EIMD in trained subjects aged over
30 years. Additionally, this antioxidant supplementation had no effects on perceived DOMS
and performance. Accordingly, acute supplementation with antioxidant vitamins does not
appear to produce any beneficial or detrimental effect on EIMD, DOMS or endurance athletes.
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