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Abstract
Inspired by the successes of stochastic algorithms in the training of deep neural net-
works and the simulation of interacting particle systems, we propose and analyze a
framework for randomized time-splitting in linear-quadratic optimal control. In our
proposed framework, the linear dynamics of the original problem is replaced by a
randomized dynamics. To obtain the randomized dynamics, the system matrix is split
into simpler submatrices and the time interval of interest is split into subintervals. The
randomized dynamics is then found by selecting randomly one or more submatrices
in each subinterval. We show that the dynamics, the minimal values of the cost func-
tional, and the optimal control obtained with the proposed randomized time-splitting
method converge in expectation to their analogues in the original problem when the
time grid is refined. The derived convergence rates are validated in several numerical
experiments. Our numerical results also indicate that the proposed method can lead to
a reduction in computational cost for the simulation and optimal control of large-scale
linear dynamical systems.
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1 Introduction

Solving an optimal control problem for a large-scale dynamical system can be compu-
tationally demanding. This problem appears in numerous applications. One example
is Model Predictive Control (MPC), which requires the solution of several optimal
control problems on a receding time horizon [11, 18]. Another example is the training
of Deep Neural Networks (DNNs), which can be approached as an optimal con-
trol problem for a large-scale nonlinear dynamical system, see, e.g., [4, 9, 10, 27,
29]. Because the computational cost for gradient-based deterministic optimization
algorithms explodes on large training data sets, neural networks (NNs) are typically
trained using stochastic optimization algorithms such as stochastic gradient descent or
stochastic (mini-)batch methods, see, e.g., [6]. In such methods, the update direction
for the parameters of the NN is not computed based on the complete training data set,
but on a subset of the available training data that is chosen randomly in each iteration.
It can be shown that such methods converge in expectation to a (local) minimum of
the considered cost functional, see, e.g., [6].

These successes inspired the development of Random Batch Methods (RBMs) for
the simulation of interacting particle systems [14, 15, 21]. Because the number of
interactions between N particles is of order N 2, the forward simulation of a system
with a large number of particles is computationally demanding. A RBM reduces the
required computational cost by reducing the number of considered interactions as
follows. First, the considered time interval is divided into a number of subintervals of
length ≤ h. In each subinterval, particles are grouped in randomly chosen batches (of
at least two particles) and only the interactions between particles in the same batch
are considered. The number of considered interactions now grows as PN , where P is
the size of the considered batches, and a significant reduction in computational time
can be achieved when P � N . It can be shown that the expected error introduced by
this process is proportional to

√
h, where h denotes (an upper bound on) the length of

the considered time intervals, see [14].
The computation of optimal controls for interacting particle systems is even more

computationally demanding than the forward simulation because it requires several
simulations of the forward dynamics and the associated adjoint problem, see, e.g., [20].
Because the optimal control for the RBM-approximated dynamics can be computed
significantly faster than the control for the original dynamics, it has been proposed in
[18] to control the original system with the controls optimized for the RBM dynamics.
The numerical experiments in [18] indeed indicate that this approach can lead to a
reasonably good approximation of the control for the original system. In [18], the
control of the original dynamics with the RBM-optimal controls is combined with an
MPC strategy, which creates additional robustness against the errors introduced by
the RBM-approximation. However, even for the simplest case that does not consider
the combination with MPC, a formal proof that the optimal control computed for the
RBM-approximated dynamics indeed converges to the optimal control for the original
system for h → 0 was not given.

In this paper, we study, motivated by the ideas from [18], the classical linear-
quadratic (LQ) optimal control problem constrained by randomized dynamics.
Extensions of these results to a nonlinear setting are not only of interest for the control
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of interacting particle systems as considered in [18], but have also applications in
the training of certain DNNs which can be viewed as (the time discretization) of an
optimal control problem, see, e.g., [4, 9, 10, 27, 29]. The results for the LQ problem in
this paper form a starting point for the study of these more involved problem settings.

In this paper, we propose a framework for the simulation and optimal control of
large-scale linear dynamical systems. In our proposed framework, the system matrix
is split into submatrices and the time interval of interest is split into subintervals of
length ≤ h. The randomized dynamics is then found based on the randomly selected
submatrices in each subinterval. Similarly as in [14, 15, 21], we show that the ran-
domized dynamics converges to the dynamics of the original system at a rate

√
h. The

main contributions of this paper concern the LQ optimal control problem in which the
original dynamics is replaced by these randomized dynamics. In particular, we show
that the minimal values of the cost functional and the corresponding optimal controls
for the RBM-dynamics converge (in L2 and in expectation) to their analogues for the
original dynamics when h → 0. The found convergence rates are validated by several
numerical examples. Numerical results also indicate that the proposed method can
lead to a reduction in computational cost.

The remainder of this paper is structured as follows. Section 2 contains a precise
description of our proposed stochastic simulation method and a summary of the main
results of the paper. Section 3 contains the detailed proofs of the convergence of the
proposed method. The proposed method and the obtained convergence results are
illustrated by several numerical examples in Sect. 4. The conclusions and discussions
are presented in Sect. 5.

2 Proposedmethod andmain results

2.1 Proposedmethod

We consider the evolution of a large-scale Linear Time Invariant (LTI) dynamical
system of the form

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, (1)

where the state x(t) evolves in R
N , the control u(t) evolves in R

q , A ∈ R
N×N is the

system matrix, B ∈ R
N×q is the input matrix, and x0 ∈ R

N is the initial condition.
A typical problem associated to the dynamics (1) is to find the optimal control u∗(t)

that minimizes the quadratic cost functional

J (u) = 1

2

∫ T

0

(
(x(t) − xd(t))

�Q(x(t) − xd(t)) + u(t)�Ru(t)
)
dt, (2)

where the given target trajectory xd(t) evolves in R
N , the weighting matrix Q ∈

R
N×N is symmetric and positive semi-definite, and the weighting matrix R ∈ R

q×q is
symmetric and positive definite. It is well known that the optimal control u∗(t) exists
and that it is unique, see, e.g., [17, 22].
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498 D. W. M. Veldman, E. Zuazua

Remark 1 When the state-dimension N is large, the optimal control u∗(t) is typically
computed using a gradient-based algorithm in which the gradient of J (u) is computed
from the adjoint state ϕ(t) that satisfies (see, e.g., [17])

− ϕ̇(t) = A�ϕ(t) + Q(x(t) − xd(t)), ϕ(T ) = 0, (3)

where x(t) is the solution of (1). Note that the adjoint state ϕ(t) is computed by
integrating (3) backward in time starting from the final condition ϕ(T ) = 0. The
gradient of the cost functional J (u) is then obtained as

(∇ J (u)) (t) = B�ϕ(t) + Ru(t). (4)

In our proposed randomized time-splitting method, the matrix A is written as the
sum of M submatrices Am

A =
M∑

m=1

Am . (5)

Typically, the submatrices Am will be more sparse than the original matrix A. For ease
of presentation, the results in this paper are presented under the following assumption.

Assumption 1 The submatrices Am in (5) are dissipative, i.e. 〈x, Amx〉 ≤ 0 for all
x ∈ R

N and all m ∈ {1, 2, . . . , M}.
Remark 2 Note that there always exists a constanta > 0 such that thematrices Am−aI
are dissipative for m ∈ {1, 2, . . . , M}. Assumption 1 is therefore not essential for the
convergence of the proposedmethod, but without Assumption 1 the error estimates are
less clean and grow exponentially in time. This idea is made more precise in Remark 9
in Sect. 3.2.

We then choose a temporal grid in the time interval [0, T ]

0 = t0 < t1 < t2 < · · · < tK−1 < tK = T , (6)

and denote

hk = tk − tk−1, h = max
k∈{1,2,...,K } hk . (7)

In each of the K subintervals [tk−1, tk), we randomly select a subset of indices in
{1, 2, . . . , M}. The idea of the proposed method is to consider a linear combination
of the submatrices Am with the indices that have been selected for each time interval.
This can lead to a significant reduction in computational time when the submatrices
Am are well-chosen and only a small number of submatrices Am are selected in each
time interval.

Tomake this ideamore precise, we enumerate all of the 2M subsets of {1, 2, . . . , M}
as S1, S2, . . . S2M . Note that one of the subsets Sω will be the empty set. To every subset
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Sω (ω ∈ � := {1, 2, . . . , 2M }) we then assign a probability pω with which this subset
is selected. This probability is the same in each of the time intervals [tk−1, tk). Because
we select only one subset Sω in each time interval, the probabilities pω should satisfy

2M∑
ω=1

pω = 1. (8)

From the chosen probabilities pω, we then compute the probability πm that an index
m ∈ {1, 2, . . . , M} is an element of the selected subset

πm =
∑

ω∈�m

pω, �m = {ω ∈ {1, 2, . . . , 2M } | m ∈ Sω}. (9)

Observe that �m is the set of the indices ω of the sets Sω that contain the index m. We
need the following (weak) assumption on the selected probabilities pω.

Assumption 2 The probabilities pω (ω ∈ {1, 2, . . . , 2M }) are assigned such that

• Equation (8) is satisfied and
• the probabilities πm defined in (9) are positive for all m ∈ {1, , 2, . . . , M}.
In each of the K time intervals [tk−1, tk), we then randomly select an index ωk ∈

{1, 2, . . . , 2M } according to the chosenprobabilities pω (and independently of theother
indices ω1, ω2, . . . ωk−1, ωk+1, ωk+1, . . . , ωK ). The selected indices form a vector

ω := (ω1, ω2, . . . , ωK ) ∈ {1, 2, . . . , 2M }K =: �K . (10)

For the selected ω ∈ �K , we then define a piece-wise constant matrix t �→ Ah(ω, t)

Ah(ω, t) =
∑

m∈Sωk

Am

πm
, t ∈ [tk−1, tk). (11)

The scaling by 1/πm assures that the expected value of Ah is A because

2M∑
ω=1

∑
m∈Sω

Am

πm
pω =

M∑
m=1

∑
ω∈�m

Am

πm
pω =

M∑
m=1

Am

πm
πm =

M∑
m=1

Am = A, (12)

where the first identity follows after interchanging the two summations using the
definition of �m in (9), the second from the definition of πm in (9), and the last
identity from the decomposition of A in (5).

Example 1 In the simplest situation, we decompose the original matrix A into M = 2
matrices as A = A1 + A2. We then need to assign 2M = 4 probabilities p� to the
subsets S1 = {1}, S2 = {2}, S3 = {1, 2}, and S4 = ∅. In this example, we choose
p1 = p2 = 1

2 and p3 = p4 = 0. This choice indeed satisfies Assumption 2 because
π1 = p1 + p3 = 1

2 > 0 and π2 = p2 + p3 = 1
2 > 0. The matrix Ah(ω, t) is thus
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500 D. W. M. Veldman, E. Zuazua

either equal to 2A1 with probability p1 = 1
2 or equal to 2A2 with probability p2 = 1

2 .
The expected value of Ah is then indeed 1

22A1 + 1
22A2 = A1 + A2 = A.

To reduce the computational cost for solving (1), the matrix A is replaced by a
Ah(ω, t) in the RBM. For the selected vector of indices ω ∈ �K , we thus obtain a
solution t �→ xh(ω, t)

ẋh(ω, t) = Ah(ω, t)xh(ω, t) + Bu(t), xh(ω, 0) = x0. (13)

The main contribution of this paper concerns the optimal controls computed based on
the RBM-dynamics (13). In particular, we consider the minimization of the functional

Jh(ω, u) = 1

2

∫ T

0

(
(xh(ω, t) − xd(t))

�Q(xh(ω, t) − xd(t)) + u(t)�Ru(t)
)
dt,

(14)
over all u ∈ L2(0, T ;Rq) subject to the dynamics (13). The minimizer of Jh(ω, ·)
depends on the selected indices ω ∈ �K and is denoted by u∗

h(ω, t). Because R is
positive definite, the minimizer u∗

h(ω, t) exists and is unique. As we will show in
(52)–(54) in Sect. 3.1, the minimizers u∗

h(ω, t) are uniformly bounded because R is
positive definite.

Remark 3 Similarly as for the original cost functional J (u) in (2), we can compute
the optimal control uh(ω, t) that minimizes Jh(ω, u) by a gradient-based algorithm.
We can again compute the gradient of Jh(ω, u) from the adjoint state ϕh(ω, t) which
satisfies

− ϕ̇h(ω, t) = (Ah(ω, t))� ϕh(ω, t) + Q(xh(ω, t) − xd(t)), ϕh(ω, T ) = 0.

(15)

The gradient of Jh(ω, u) is then obtained as

∇ Jh(ω, u) = B�ϕh(ω, t) + Ru(t). (16)

Note that when the randomized dynamics for xh(ω, t) in (13) can be solved faster
than the original dynamics for x(t) in (1), the same reduction in computational cost is
typically also obtained for the randomized adjoint in Eq. (15) compared to the original
adjoint Eq. (3). Because the computation of the optimal control u∗(t) [(resp. u∗

h(ω, t))]
requires several evaluations of the forward dynamics (1) [resp. (13)] and the adjoint
Eq. (3) [resp. (15)], it is natural to expect the same relative speed-up for u∗

h(ω, t)
(compared to u∗

h(t)) as for xh(ω, t) (compared to x(t)). This idea is confirmed by the
numerical experiments in Sect. 4.

To conclude this subsection, we summarize the proposed approach to approximate
the solution x(t) of (1) for a given control u(t) and/or the optimal control u∗(t) that
minimizes J (·) in (2) subject to (1) in Algorithm 1. The accuracy of the obtained
solutions xh(ω, t) and/or u∗

h(ω, t) depends on the chosen submatrices Am in Step 1,
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the chosen probabilities pω in Step 2, and the chosen time grid t0, t1, . . . , tK in Step
3. This dependence is captured by the error estimates in the next subsection.

It should be emphasized that we do not have that E[xh(t)] = x(t) (for a fixed
control u(t)) or that E[u∗

h(t)] = u∗(t). Repeating Step 4 in Algorithm 1 for different
realizations of ω and averaging the obtained results leads to better approximations of
E[xh(t)] and/orE[u∗

h(t)] and can therefore only improve the approximation of x(t) and
u∗(t) to some extend. A better way to increase the accuracy of the proposed method
is to repeat Algorithm 1 for a choice of submatrices Am , probabilities pω, and a time
grid t0, t1, . . . , tK that reduce the error estimates presented in the next subsection.

Step 1 Decompose the matrix A into M submatrices Am as in (5), preferably such that Assumption
1 is satisfied.
Step 2 Enumerate the 2M subsets of {1, 2, . . . , M} and assign probabilities p1, p2, …, p2M such
that Assumption 2 is satisfied.
Step 3 Divide the considered time interval [0, T ] into K subintervals [tk−1, tk ) and choose an index
ωk according to the selected probabilities in Step 2 for each subinterval. Store the selected indices in
a vector ω = (ω1, ω2, . . . ωK ).
Step 4 Compute the solution xh(ω, t) of the dynamics (13) for a certain given control u(t) and/or
compute the control u∗(ω, t) that minimizes Jh(ω, ·) in (14) subject to the dynamics (13).

Algorithm 1: The proposed randomized time-splitting method

Remark 4 The presented framework is somewhat different from the problem setting
considered in previous publications on RBMs for interacting particle systems, see,
e.g., [14, 15, 18, 21]. Appendix A shows how these RBMs can be accommodated in
our proposed framework.

2.2 Main results

The main results of this paper concern the effect of replacing the system matrix A in
the original LQ optimal control problem (1)–(2) by the randomized matrix Ah(ω, t)
defined in (11). Clearly, the deviation of the randomized matrix Ah(ω, t) from the
original matrix A will influence the accuracy of the obtained results. The deviation of
Ah(ω, t) from A is measured by

Var[A] :=
2M∑
ω=1

∥∥∥∥∥∥
∑
m∈Sω

Am

πm
− A

∥∥∥∥∥∥
2

pω, (17)

where ‖·‖ denotes the operator norm. The quantity Var[A] is thus the average squared
distance of Ah(ω, t) from A, weighted with the probabilities p1, p2, . . . , p2M with
which different values ofAh(ω, t) occur.Naturally, the error estimates below show that
reducing Var[A] will also reduce the errors introduced by the proposed randomized
time-splitting method.

Example 1 (continued) We again consider the situation from Example 1 in which A
is decomposed into M = 2 submatrices as A = A1 + A2 and Ah(ω, t) is either 2A1
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502 D. W. M. Veldman, E. Zuazua

or 2A2, both with probability 1
2 . We now compute the variance Var[A] according to

(17) and find

Var[A] = ‖2A1 − A‖2 p1 + ‖2A2 − A‖2 p2 = ‖A1 − A2‖2. (18)

Examples 2 and 3 in the following subsection further illustrate howVar[A] depends
on the decomposition of A into submatrices Am and the selected probabilities pω.

Remark 5 When A in an approximation of an unbounded operator as in the examples
in Sect. 4, it is natural to introduce an additional (invertible) weighting matrix W and
compute

VarW [A] :=
2M∑
�=1

∥∥∥∥∥∥

⎛
⎝∑

m∈S�

Am

πm
− A

⎞
⎠W

∥∥∥∥∥∥
2

p�. (19)

Clearly, we want to chooseW such that AW and the matrices AmW can be considered
as approximations of bounded operators. In that case, VarW [A] is also an approxi-
mation of a finite quantity. A natural choice is W = (A − λI )−1 for some λ in the
resolvent of A.

The first main result of this paper is an estimate for the difference

eh(ω, t) = xh(ω, t) − x(t) (20)

between the RBM-dynamics (13) and the original dynamics (1).

Main result 1 Assume that Assumptions 1 and 2 hold and that the input u(t) in (1) is
the same as in the input u(t) in (13), then

E[|eh(t)|2] ≤ C[A,B,x0,T ,u]hVar[A], (21)

for all t ∈ [0, T ].
The first main result follows directly from Theorem 1 in Sect. 3.2.
The expectation operator E is taken with respect to all possible outcomes ω ∈ �K .

A precise definition will be given in Sect. 3.1. The constant C[A,B,x0,T ,u] can be taken
as (‖A‖T 2 + 2T )(|x0| + |Bu|L1(0,T ;RN ))

2. The estimate thus only depends on the
used submatrices Am , the probabilities pω, and the used temporal grid t0, t1, . . . , tK
through hVar[A] defined in (17). The proof of Main result 1 is inspired by the proofs
of convergence of the RBM in [14, 15].

The estimate (21) shows that the expected squared error is proportional to the
temporal grid spacing h. We can thus make the expected squared error in the forward
dynamics arbitrary small by reducing the grid spacing. Note that Markov’s inequality,
see, e.g., [26], shows that

P[|eh(ω, t)| > ε] = P[|eh(ω, t)|2 > ε2] <
E[|eh(t)|2]

ε2
. (22)
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The probability that we select an ω ∈ �K for which |eh(ω, t)| exceeds any given
treshold ε > 0 is thus controlled by E[|eh(t)|2]. According to (21), we can make
this probability as small as desired by choosing the temporal grid spacing h small
enough. However, one should also keep in mind that decreasing h will increase the
computational cost for the RBM-dynamics (13) and that the computational advantage
of the RBM is lost when the required grid spacing is too small.

Example 1 (continued) To illustrate whyMain result 1 could be true, we again consider
the situation from Example 1 in which A is decomposed as A = A1+ A2 andAh(ω, t)
is equal to 2A1 or 2A2, both with probability 1

2 . We additionally assume that u(t) ≡ 0,
that the time grid tk = kT /K (k ∈ {0, 1, 2, . . . , K }) is uniform with grid spacing
h = T /K , and that A1 and A2 commute. Because u(t) = 0, the solution of (1) is
x(t) = eAt x0 and the solution of (13) is

xh(ω, T ) = e2AωK h · · · e2Aω2he2Aω1hx0 = e2A1T1(ω)+2A2T2(ω)x0. (23)

Here, T1(ω) and T2(ω) denote the times during which A1 and A2 are used, i.e.

T1(ω) = T

K

K∑
�=1

χ1(ω�), T2(ω) = T

K

K∑
�=1

χ2(ω�), (24)

where the characteristic functions χ1(ω) and χ2(ω) are defined by the property that
χi (ω) = 1 when ω = i and χi (ω) = 0 otherwise (i ∈ {1, 2}). Note that the second
identity in (23) uses that A1 and A2 commute. BecauseE[χ1] = E[χ2] = 1

2 , it follows
that E[T1] = E[T2] = T /2. When we now consider the limit K → ∞ (so h → 0),
the law of large numbers states that T1 and T2 converge to T /2 (in probability). The
RHS of (23) thus converges (in probability) to eAT x0 = x(T ) for K → ∞. Note that
the convergence in Main result 1 is in expectation, which is stronger than convergence
in probability.

We now present the main results aimed at the LQ optimal control problem con-
strained by randomized dynamics. Because the optimal control u∗

h(ω, t) depends on
the selected indices ω, we need the following result. The key difference with the
first main result is that the input uh(ω, t) may now depend on the randomly selected
indices ω. As will be explained at the start of Sect. 3, this makes the arguments for the
convergence of the RBM in [14, 15] break down.

Note that replacing u(t) in (1) and (13) by uh(ω, t) results in solutions x(ω, t) and
xh(ω, t) that now both depend on the selected indices ω. The second main result now
gives a bound for the expected value of the difference

eh(ω, t) = xh(ω, t) − x(ω, t). (25)

Main result 2 Consider any control uh : �K → L2(0, T ;Rq). Assume that Assump-
tions 1 and 2 are satisfied and letU be such that |uh(ω)|L2(0,T ;Rq ) ≤ U for allω ∈ �K ,
then

E[|eh(t)|2] ≤ C[A,B,x0,T ,U ]hVar[A]. (26)
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The second result follows directly from Theorem 2 in Sect. 3.3.
Just as in the first main result, the expectation is taken over all possible values of

ω ∈ �K and the constant C[A,B,x0,T ,U ] does not depend on the chosen submatrices
Am in (5), the chosen probabilities pω, and the used temporal grid.

Using this result, we can now obtain a no-gap result which shows that the minimal
value of the cost functional Jh(ω, u∗

h(ω)) is (in expectation) close to the minimal value
J (u∗) in the original problem when hVar[A] is small enough.

Main result 3 Let u∗(t) be the control that minimizes the cost functional J (u) in (2)
and let u∗

h(ω, t) be the control that minimizes the cost functional Jh(ω, u) in (14).
Then

E[|Jh(u∗
h) − J (u∗)|] ≤ C[A,B,x0,Q,R,xd ,T ]

(√
hVar[A] + hVar[A]

)
. (27)

The third main result is identical to Theorem 3 in Sect. 3.4.
For hVar[A] small enough,Main result 3 clearly implies thatE[|Jh(u∗

h)−J (u∗)|] ≤
C[A,B,x0,Q,R,xd ,T ]

√
hVar[A], which is also the rate that is observed in numerical exper-

iments. We keep the second term on the RHS of (27) to assure that the estimate is
valid for all values of hVar[A], and not just for sufficiently small values of hVar[A].

By Markov’s inequality, this result thus implies that, for any ε > 0, the probability
that |J (u∗

h(ω)) − J (u∗)| > ε can be made arbitrarily small by reducing the temporal
grid spacing h.

The next main result shows that the optimal control for the RBM-problem u∗
h(ω)

also converges (in expectation) to the optimal control of the original problem u∗ when
h → 0.

Main result 4 Let u∗
h(ω, t) be the minimizer of Jh(ω, ·) in (14) and u∗(t) be the mini-

mizer of J in (2), then

E[|u∗
h − u∗|2L2(0,T ;Rq )

] ≤ C[A,B,x0,Q,R,xd ,T ]hVar[A]. (28)

The fourth main result follows directly from Theorem 4 in Sect. 3.5.
The fourthmain result justifies the use of the optimal controlu∗

h(ω), that is optimized
for theRBM-dynamics to control the original dynamics, as proposed in [18].An almost
immediate corollary of Main result 4 is that the trajectories of the original dynamics
(1) resulting from the controls u∗

h(ω, t) and u∗(t) will also be close to each other, see
Corollary 2 in Sect. 3.5. This further justifies the strategy in [18].

When the control u∗
h(ω) is close to the control u∗ that is optimal for the original

dynamics, the performance J (u∗
h(ω)) should also be close to the optimal performance

J (u∗). This idea is formalized by the fifth and last main result.

Main result 5 Let u∗(t) be the control that minimizes the cost functional J (u) in (2)
and let u∗

h(ω, t) be the control that minimizes the cost functional Jh(ω, u) in (14).
Then

E[|J (u∗
h) − J (u∗)|] ≤ C[A,B,x0,Q,R,xd ,T ]hVar[A]. (29)
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The fifth main result is identical to Corollary 3 in Sect. 3.5. Main result 5 is proven
as a corollary of Main result 4/Theorem 4.

The fifthmain result is particularly important because it shows that the performance
J (u∗

h(ω)) obtainedwith control u∗
h(ω) optimized for the randomized dynamics is close

to the optimal performance J (u∗) when hVar[A] is sufficiently small. This further
motivates strategies in which the original system is controlled by a control u∗

h(ω) that
is optimized for the randomized dynamics, as was proposed in [18].

2.3 Further examples for Var[A] and computational cost

The quantityVar[A] describes how the derived estimates depend on the decomposition
of A into submatrices and the selected probabilities p1, p2, . . . , p2M . We therefore
present two other examples that illustrate how Var[A] depends on the decomposition
of A into submatrices Am and the selected probabilities pω.

Example 2 We decompose the matrix A into M = 3 parts A = A1 + A2 + A3 and
consider two choices for the probabilities pω. In the first case, we only use one of
the submatrices Am simultaneously. We thus assign probabilities p1 = p2 = p3 = 1

3
to the subsets S1 = {1}, S2 = {2}, and S3 = {3} and zero probability to the other 5
subsets of {1, 2, 3}. We then have that π1 = π2 = π3 = 1

3 and the variance Var[A] in
(17) becomes

Var[A] = ‖3A1 − A‖2 p2 + ‖3A2 − A‖2 p3 + ‖3A3 − A‖2 p4
= 1

3

(
‖2A1 − A2 − A3‖2 + ‖2A2 − A1 − A3‖2 + ‖2A3 − A1 − A2‖2

)
.

(30)

In the second case, we always use two of the three submatrices Am simultaneously.We
thus assign probabilities p4 = p5 = p6 = 1

3 to the subsets S4 = {1, 2}, S5 = {2, 3},
and S6 = {1, 3} and zero probability to the other 5 subsets of {1, 2, 3}. We then have
that π1 = p4 + p6, π2 = p4 + p5, and π3 = p5 + p6, so that π1 = π2 = π3 = 2

3 .
The variance Var[A] in (17) becomes

Var[A] = ‖ 3
2 (A1 + A2) − A‖2 p5 + ‖ 3

2 (A2 + A3) − A‖2 p6 + ‖ 3
2 (A1 + A3) − A‖2 p7

= 1
3

(
‖ 1
2 (A1 + A2) − A3‖2 + ‖ 1

2 (A2 + A3) − A1‖2 + ‖ 1
2 (A1 + A3) − A2‖2

)
.

(31)

Observe that ‖ 1
2 (A1+ A2)− A3‖2 = 1

4‖2A3− A1− A2‖2 and that similar expressions
relate the other terms in (30) and (31). The variance for the first case in (30) is thus
four times larger than the variance for the second case in (31). Increasing the over-
lap between the possible values of Ah(ω, t) thus reduces Var[A] and will improve
the accuracy of the proposed method. It is worth noting that similar observations
have been made for domain decomposition methods, for which it is well-known that
increasing the overlap between subdomains increases the convergence rate (see, e.g.,
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[8,Section 1.5]). Note however that increasing the overlap will also reduce the sparsity
ofAh(t) and thus also increase the computational cost. This will be illustrated further
in Example 4 and the numerical examples in Sect. 4.

Example 3 It is not always optimal to choose the probabilities uniform. To illustrate
this, we assume A = A1 + A2 has a block-diagonal decomposition

A =
[
A11 0
0 A22

]
, A1 =

[
A11 0
0 0

]
, A2 =

[
0 0
0 A22

]
. (32)

It easy to verify that ‖αA1 + βA2‖ = max{|α|‖A1‖, |β|‖A2‖} for any α, β ∈ R. We
assign the (at this point undetermined) probability p1 = p to the subset S1 = {1}, the
probability p2 = 1 − p to the subset S2 = {2}, and probabilities p3 = p4 = 0 to the
subsets S3 = ∅ and S4 = {1, 2}. It follows that π1 = p and π2 = 1 − p and that

Var[A] = ‖ 1
p A1 − A‖2 p + ‖ 1

1−p A2 − A‖2(1 − p)

= ‖ 1
p ((1 − p)A1 − pA2)‖2 p + ‖ 1

1−p (pA2 − (1 − p)A1)‖2(1 − p)

= ‖(1 − p)A1 − pA2‖2
(
1
p + 1

1−p

)
=

∥∥∥∥
√

1−p
p A1 +

√
p

1−p A2

∥∥∥∥
2

=
(
max

{√
1−p
p ‖A1‖,

√
p

1−p‖A2‖
})2

. (33)

It is now easy to see that Var[A] is minimal when
√

1−p
p ‖A1‖ =

√
p

1−p‖A2‖. Solving
this equation for p, we find optimal probability

p∗ = ‖A1‖
‖A1‖ + ‖A2‖ . (34)

We observe that the larger the submatrix A1 is compared to A2, the larger the prob-
ability p with which the submatrix A1 is selected should be. Inserting the optimal
probability p∗ in (34) into the expression for Var[A], we find that

Var[A]∗ = ‖A1‖‖A2‖. (35)

With uniform probabilities, i.e., with p = 1/2, Var[A] = max{‖A1‖2, ‖A2‖2}, see
(33). When ‖A1‖/‖A2‖ � 1 or ‖A1‖/‖A2‖ � 1, using the optimal probability p∗
in (34) can thus reduce Var[A] significantly.

We conclude this section with two examples that illustrate the potential reduction
in computational cost offered by the proposed randomized time-splitting method.

Example 4 Let A ∈ R
N×N be a sparse symmetric negative semi-definite matrix with

a bandwidth b, i.e. [A]i j = 0 when |i − j | > b. Select n1, n2, n3 ∈ {1, 2, . . . , N }
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such that n1 + n2 + n3 = N + 2b. It is then possible to split A as A = A1 + A2 + A3
with

A1 =
[
A11 0
0 0

]
, A2 =

⎡
⎣0n1−b 0 0

0 A22 0
0 0 0n3−b

⎤
⎦ , A3 =

[
0 0
0 A33

]
, (36)

where A11 ∈ R
n1×n1 , A22 ∈ R

n2×n2 , A33 ∈ R
n3×n3 , 0n denotes an n × n zero

matrix, and the 0’s denote zero matrices of appropriate size. We assign probabilities
p1 = p2 = p3 = 1

3 to the subsets S1 = {1}, S2 = {2}, and S3 = {3} and zero
probability to the other 5 subsets of {1, 2, 3}. The computational cost for one time step
with the matrix A1 is O(nr1), where r ∈ [1, 3] is a certain power that depends on b, the
time discretization scheme, and the method used to solve the resulting linear systems.
In particular, r = 1 when A is tridiagonal (i.e. when b = 1), r = 3 for an implicit time
discretization scheme in which the resulting linear systems are solved by Gaussian
elimination, and r = 2 for an implicit time discretization scheme inwhich the resulting
linear systems are solved based on a precomputed Lower-Upper (LU) factorization.
Similarly, the computational cost for one time step with the matrices A2 or A3 or with
the full matrix A is O(nr2) or O(nr3) or O(Nr ), respectively. The proposed randomized
time-splitting scheme is therefore expected to reduce the computational cost for one
forward simulation (on the same temporal grid) by a factor

p1nr1 + p2nr2 + p3nr3
Nr

. (37)

When b � N , it is possible to choose n1 ≈ n2 ≈ n3 ≈ N/3, and the reduction in
computational cost is then ≈ 1/3r . Note that the expected reduction in computational
cost can only be observed when n1, n2, and n3 are sufficiently large. As explained in
Sect. 1, we expect that the computation of optimal controls is sped up by the same
factor as the forward simulation.

Similarly as in the second case in Example 2, we also consider the situation in
which the overlap is increased. We thus assign probabilities p4 = p5 = p6 = 1

3 to
the subsets S4 = {1, 2}, S5 = {2, 3}, and S6 = {1, 3} and zero probability to the other
5 subsets of {1, 2, 3}. The cost of doing one time step with the matrices A1 + A2,
A2 + A3, or A1 + A3 is then proportional to (n1 + n2 − b)r , (n2 + n3 − b)r , or
(n1 + n3)r , respectively. When b � N and n1 ≈ n2 ≈ n3 ≈ N/3 the proposed
randomized time-splitting scheme thus reduces the expected computational cost by a
factor 2r/3r . Increasing the overlap thus increases the expected computational cost of
the randomized time splitting method by a factor 2r , but it also reduces Var[Ah] by
a factor 4, see Example 2. Choosing the level of overlap is thus a trade-off between
accuracy and computational cost.

Example 5 When A ∈ R
N×N is symmetric but not sparse, we can select n1, n2, n3 ∈

{1, 2, . . . , N } such that n1 + n2 + n3 = N , and split A as A = A1 + A2 + · · · + A6
with
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A1 =
⎡
⎣A11 0 0

0 0 0
0 0 0

⎤
⎦ , A2 =

⎡
⎣0 0 0
0 A22 0
0 0 0

⎤
⎦ , A3 =

⎡
⎣0 0 0
0 0 0
0 0 A33

⎤
⎦ ,

A4 =
⎡
⎣ 0 A12 0
A21 0 0
0 0 0

⎤
⎦ , A5 =

⎡
⎣0 0 0
0 0 A23
0 A32 0

⎤
⎦ , A6 =

⎡
⎣ 0 0 A13

0 0 0
A31 0 0

⎤
⎦ ,

(38)

where A11 ∈ R
n1×n1 , A22 ∈ R

n2×n2 , and A33 ∈ R
n3×n3 . The cost for doing one

time step with A1, A2, or A3 is O(nr1), O(nr2), and O(nr3), respectively, with r as
in Example 4. Similarly, the cost for doing one time step with A4, A5, or A6 is
O((n1 + n2)r ), O((n2 + n3)r ), and O((n1 + n3)r ), respectively. When we assign
probabilities 1

6 to the six singleton subsets of {1, 2, . . . , 6} and zero probability to
the other, the proposed randomized time-splitting scheme is expected to reduce the
computational cost for one forward simulation (on the same temporal grid) by a factor

nr1 + nr2 + nr3 + (n1 + n2)r + (n2 + n3)r + (n1 + n3)r

6Nr
≈ 1

2

(
1

3r
+ 2r

3r

)
, (39)

where the latter approximation holds when n1 ≈ n2 ≈ n3 ≈ N/3.

3 Convergence analysis

The proof of convergence for the RBM optimal control problem is divided into several
stages.

In the first stage, we consider a control u ∈ L2(0, T ;Rq) that does not depend on
the selected indices ω. We then show that the expected difference between the RBM-
dynamics (13) and the original dynamics (1) can be bounded in terms of hVar[A] as
in Main result 1. The proof of this statement is inspired by the results for interacting
particles systems in [14, 15].

Because we will also need to deal with the optimal control u∗
h(ω, t) that minimizes

Jh(ω, ·), we consider a general family of controls uh(ω, t) (with ω ∈ �K ) in the
second stage. This is a nontrivial extension of the results in the previous stage because
the crucial idea in the proof for the first stage and in [14, 15] is that the solutions
x(tk−1) and xh(ω, tk−1) do not depend on ωk (the index that is used in the time
interval [tk−1, tk)). This is clearly no longer the case when we insert an input uh(ω, t)
that depends on ω, so also on ωk , into the dynamics (1) and (13). This problem is
particularly clear when we consider the family of optimal controls u∗

h(ω) for which
u∗
h(ω, tk−1) will depend on the choices for the ‘future’ indices ωk, ωk+1, . . . ωK .
In the third stage, we prove the no-gap condition presented in Main result 3. A

crucial result for the proof is an auxiliary lemma (Lemma1) that bounds the differences
Jh(ω, u) − J (u) and Jh(ω, uh(ω)) − J (uh(ω)) (in expectation). For controls u that
do not depend on ω, a bound on Jh(ω, u) − J (u) can be obtained directly from Main
result 1. For controls uh(ω) that do depend on ω, we need to use Main result 2 to find
the bound on the expected difference Jh(ω, uh(ω))− J (uh(ω)). For brevity, Lemma 1
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considers controls uh(ω) that depend on ω (which of course also covers the case in
which the control does not depend on ω). The no-gap condition (i.e., a bound on
Jh(u∗

h(ω))− J (u∗)) can then be obtained using classical arguments from the calculus
of variations and Lemma 1 applied to the optimal controls u∗ and u∗

h(ω).
In the fourth stage, we bound the difference between the RBM-optimal control

u∗
h(ω) and the control u∗ optimized for the original dynamics. To this end, we first

bound the expected difference between the gradients of Jh(ω, ·) and J . The bound
on the difference in the optimal controls then follows from classical arguments based
on the α-convexity of the functional Jh(ω, ·). Finally, the bound for the difference
J (u∗

h(ω))− J (u∗) follows easily from the previously derived bound on the difference
between the optimal controls u∗

h(ω) and u∗.
The four stages discussed above will be proved in detail in Sects. 3.2–3.5. We first

present some preliminaries in Sect. 3.1.

3.1 Preliminaries

Wewill use the following notation. The transpose of a real column vector x is denoted
by x�. Similarly, the transpose of a real matrix A is denoted by A�. The entry in the i-
th row and j-th column of A is denoted by [A]i j . The standard Euclidean innerproduct
of two vectors x, y ∈ R

N is denoted by 〈x, y〉 := x�y. The corresponding norm is
denoted by |x | := √

x�x . The (operator) norm of a matrix A ∈ R
N×N is denoted by

‖A‖ := max|x |=1
|Ax |. (40)

We useC[a,b,...,d] to denote a constant that only depends on the parameters a, b, . . . , d.
The value of C[a,b,...,d] may vary from line to line. The L p-norm of a function in
u ∈ L p(0, T ;Rq) (for 1 ≤ p < ∞ and p = ∞) is defined as

|u|L p(0,T ;Rq ) := p

√∫ T

0
|u(t)|p dt, |u|L∞(0,T ;Rq ) := ess sup

t∈[0,T ]
|u(t)|. (41)

We now set up the precise probabilistic setting for our problem. The set�K defined
in (10) is the natural sample space for the considered problem. To turn �K into a
probability space, we assign a probability p(ω) to each ω ∈ �K according to

p(ω) = pω1 pω2 . . . pωK . (42)

Note that we use here that each index ωk is chosen independently from the other
indices ω1, ω2, . . . , ωk−1, ωk+1, ωk+1, . . . , ωK .

A random element on the sample space �K is a function X : �K → V from
the sample space �K to a vector space V . When V = R, X : �K → R is also
called a random variable. Note that we can embed V into V�K

by associating to each
element x ∈ V the constant function X(ω) = x for all ω ∈ �K . Constant functions
X(ω) = x are called deterministic. Functions X(ω) that are not deterministic are
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called stochastic. The expectation operator E assigns to a random variable X ∈ V�K

an element of the vector space V

E[X ] =
∑

ω∈�K

X(ω)p(ω)

=
2M∑

ω1=1

2M∑
ω2=1

· · ·
2M∑

ωK=1

X(ω1, ω2, . . . , ωK )pω1 pω2 · · · pωK . (43)

It is immediate from this definition that E is linear. When V = R, we also see that
E[X ] ≥ 0 when X(ω) ≥ 0 for all ω ∈ �K .

Several random elements appear in the randomized splitting method outlined in
Sect. 2.1. One example is the matrix Ah(ω, t) defined in (11). When t ∈ [tk−1, tk),
Ah(ω, t) only depends on ωk . Therefore, the definitions in (43) and (11) show that
(for t ∈ [tk−1, tk))

E[Ah(t)] =
∑

ω∈�K

Ah(ω, t)p(ω) =
2M∑

ω1=1

2M∑
ω2=1

· · ·
2M∑

ωK=1

∑
m∈Sωk

Am

πm
pω1 pω2 · · · pωK

=
2M∑

ωk=1

∑
m∈Sωk

Am

πm
pωk = A, (44)

where the second to last identity follows from (8) and the last identity from (12). Again
using that Ah(ω, t) only depends on ωk for t ∈ [tk−1, tk), we also find that

E[‖Ah(t) − A‖2] =
∑

ω∈�K

‖Ah(ω, t) − A‖2 p(ω)

=
2M∑

ωk=1

∥∥∥∥∥∥
∑

m∈Sωk

Am

πm
− A

∥∥∥∥∥∥
2

pωk = Var[A], (45)

where the last identity follows from the definition of Var[A] in (17). Note that (45)
holds for every time instant t and that E[‖Ah(t) − A‖2] therefore does not depend on
the considered time instant t .

Another random element is the solution xh : �K → L2(0, T ;RN ) in (13). We will
frequently use that |xh(ω, t)| can be bounded as follows. First of all, observe that

d

dt
|xh(ω, t)|2 = 2〈xh(ω, t),Ah(ω, t)xh(ω, t) + Bu(t)〉 ≤ 2|xh(ω, t)||Bu(t)|, (46)
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where is was used that 〈x,Ah(ω, t)x〉 ≤ 0 for all x ∈ R
N and ω ∈ �K because of

Assumption 1. Now observe that

d

dt
|xh(ω, t)| = 1

2|xh(ω, t)|
d

dt
|xh(ω, t)|2 ≤ |Bu(t)|, (47)

from which we conclude that

|xh(ω)|L∞(0,T ;RN ) ≤ |x0| + |Bu|L1(0,T ;RN ). (48)

For x(t), a similar derivation shows that

|x |L∞(0,T ;R) ≤ |x0| + |Bu|L1(0,T ;RN ). (49)

Wewill also consider situations inwhichwe apply an input uh(ω, t) to the dynamics
(1) and (13) that depends on ω. The resulting solutions are then both random elements
x(ω, t) and xh(ω, t) which satisfy

ẋ(ω, t) = Ax(ω, t) + Buh(ω, t), x(ω, 0) = x0, (50)

ẋh(ω, t) = Ah(ω, t)xh(ω, t) + Buh(ω, t), xh(ω, 0) = x0, (51)

In this case we can obtain estimates similar to (48) and (49) with u and x replaced by
uh(ω) and x(ω), respectively.

The third important random element in this paper is the optimal control u∗
h(ω, ·)

that minimizes Jh(ω, ·) in (14). The coercivity of the functional Jh(ω, ·) allows us to
bound |u∗

h(ω)|L2(0,T ;Rq ) as follows. Denote the smallest eigenvalue of the matrix R
by α > 0, then

α

2
|u∗

h(ω)|2L2(0,T ;Rq )
≤ 1

2

∫ T

0
u∗
h(t)

�Ru∗
h(t) dt ≤ Jh(ω, u∗

h(ω)) ≤ Jh(ω, 0), (52)

where the last inequality follows because u∗
h(ω) is the minimizer of Jh(ω, ·). Next,

observe that

Jh(ω, 0) ≤ 1

2

∫ T

0
(xh(ω, t) − xd(t))

�Q(xh(ω, t) − xd(t)) dt

≤ 1
2‖Q‖ (|xh(ω)|L2(0,T ;RN ) + |xd |L2(0,T ;RN )

)2
≤ 1

2‖Q‖ (
T |x0| + |xd |L2(0,T ;RN )

)2 = C[x0,Q,xd ,T ], (53)

where xh(ω, t) denotes the solution of (13) with u(t) = 0 and the last inequality
follows from (48). Looking back at (52), we find

|u∗
h(ω)|2L2(0,T ;RN )

≤ C[x0,Q,R,xd ,T ]. (54)
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Finally, we repeat some standard definitions from the theory of the convex opti-
mization, see, e.g., [22]. A functional J : V → R on a normed vector space V is
α-convex if there exists an α ≥ 0 such that for all u, v ∈ V and θ ∈ [0, 1]

J ((1 − θ)u + θv) ≤ (1 − θ)J (u) + θ J (v) − α
2 θ(1 − θ)|u − v|2V . (55)

One can easily verify that the functional Jh(ω, ·) is α-convex (for all ω ∈ �K ) when
we take α as the smallest eigenvalue of the positive definite matrix R. The Gâteaux-
derivative of J at the point u in the direction v is denoted by δ J (u; v), i.e.

δ J (u; v) := lim
h→0

J (u + hv) − J (u)

h
. (56)

By subtracting J (u) from both sides of (55), dividing the resulting inequality by θ ,
and then taking the limit θ → 0, we find the well-known inequality

J (v) ≥ J (u) + δ J (u; v − u) + α
2 |v − u|2V . (57)

3.2 The forward dynamics with a deterministic input

In this subsection, we consider a deterministic u(t) and derive a bound for the error

eh(ω, t) := xh(ω, t) − x(t), (58)

where xh(ω, t) and x(t) are the solutions of (13) and (1) resulting from the same input
u(t), respectively.

Remark 6 It is important to stress that xh(t) is not an unbiased estimator for x(t), i.e.,
we do not have E[eh(t)] = E[xh(t)] − x(t) = 0. This can for example be observed
when we write the error dynamics as

ėh(ω, t) = Ah(ω, t)xh(ω, t) + Bu(t) − Ax(ω, t) − Bu(t)

= Aeh(ω, t) + (Ah(ω, t) − A)xh(ω, t), eh(ω, 0) = 0, (59)

where we have substituted x(ω, t) = xh(ω, t) − eh(ω, t). Taking the expected value
in (59) we find

d

dt
E[eh(t)] = AE[eh(t)] + E[(Ah(t) − A)xh(t)], E[eh(0)] = 0. (60)

However, (60) does not imply that E[eh(t)] = 0 for all t because generally

E[(Ah(t) − A)xh(t)] �= E[Ah(t) − A]E[xh(t)] = 0, (61)

where the equality follows because E[Ah(t)] = A, see (44). This would be the case
whenAh(ω, t) and xh(ω, t) are independent, but they are correlated by the dynamics
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(13). Note, however, that at the beginning of each time interval [tk−1, tk), the value of
Ah(ω, t) changes and that Ah(ω, tk−1) is independent of the values of Ah(ω, t) for
t < tk−1 so that

E[(Ah(tk−1) − A)xh(tk−1)] = E[Ah(tk−1) − A]E[xh(tk−1)] = 0, (62)

where the second identity again follows because E[Ah(t)] = A, see (44). This obser-
vation is crucial to obtain the main result of this subsection.

The main result in this subsection is the following.

Theorem 1 Assume that the input u(t) in (13) is deterministic and equal to the input
u(t) in (1) and that Assumptions 1 and 2 hold, then

E[|eh(t)|2] ≤ hVar[A](‖A‖t2 + 2t)(|x0| + |Bu|L1(0,T ;RN ))2. (63)

Proof Observe that

ėh(ω, t) = Ah(ω, t)xh(ω, t) + Bu(t) − Ax(ω, t) − Bu(t)

= Ah(ω, t)eh(ω, t) + (Ah(ω, t) − A)x(t), eh(ω, 0) = 0, (64)

where the last equation follows after substituting xh(ω, t) = x(ω, t) + eh(ω, t).
Fix t ∈ [0, T ] and let k ≤ K be such that t ∈ [tk−1, tk).
Consider an arbitrary time instant s ∈ [0, t) and let � ∈ {1, 2, . . . , k} be such that

s ∈ [t�−1, t�). Then (64) shows that

d

ds
|eh(ω, s)|2 = 2〈eh(ω, s),Ah(ω, s)eh(ω, s)〉 + 2〈eh(ω, s), (Ah(ω, s) − A)x(s)〉
= 2〈eh(ω, s),Ah(ω, s)eh(ω, s)〉 + 2〈eh(ω, t�−1), (Ah(ω, s) − A)x(s)〉

+ 2〈�eh(ω, s), (Ah(ω, s) − A)x(s)〉, (65)

where, in the second equality, we have introduced

�eh(ω, s) := eh(ω, s) − eh(ω, t�−1). (66)

The first term on the RHS of (65) is nonpositive due to Assumption 1. We thus find
after taking the expected value in (65) that

d

ds
E[|eh(s)|2] ≤ 2E[〈eh(t�−1), (Ah(s) − A)x(s)〉]

+ 2E[〈�eh(s), (Ah(s) − A)x(s)〉]. (67)
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For the first term on the RHS of (67), observe that eh(ω, t�−1) = xh(ω, t�−1) −
x(t�−1) only depends on ω1, . . . ω�−1, so that

E[〈eh(t�−1), (Ah(s) − A)x(s)〉] =
∑

ω∈�K

〈eh(ω, t�−1), (Ah(ω, s) − A)x(s)〉p(ω)

=
2M∑

ω1=1

· · ·
2M∑

ω�−1=1

2M∑
ω�=1

〈
eh(ω, t�−1),

⎛
⎝ ∑

m∈Sω�

Am

πm
− A

⎞
⎠ x(s)

〉
pω1 · · · pω�−1 pω�

=
2M∑

ω1=1

· · ·
2M∑

ω�−1=1

〈
eh(ω, t�−1),

⎛
⎝ 2M∑

ω�=1

∑
m∈Sω�

Am

πm
pω�

− A

⎞
⎠ x(s)

〉
pω1 · · · pω�−1

= 0, (68)

where the second identity uses (8), the third identity follows from (8) and the fact that
eh(ω, t) does not depend on ω�, and the last identity follows because (12) shows that
the factor between round brackets vanishes.

For the second term on the RHS of (67), we use that

E[〈�eh(s), (Ah(s) − A)x(s)〉] ≤ E[|�eh(s)|‖Ah(s) − A‖|x(s)|]
≤

√
E[|�eh(s)|2]E[‖Ah(s) − A‖2|x(s)|2] =

√
E[|�eh(s)|2]

√
Var[A]|x(s)|

≤
√
E[|�eh(s)|2]

√
Var[A](|x0| + |Bu|L1(0,T ;RN )), (69)

where thefirst identity follows from theCauchy–Schwartz inequality inRN , the second
inequality from Cauchy–Schwartz inequality in the probability space, and the last
inequality follows from (49).

We now claim that

E[|�eh(s)|2] ≤ h2Var[A](‖A‖s + 1)2(|x0| + |Bu|L1(0,T ;RN ))
2. (70)

We will prove (70) at the end of the proof. Inserting the claim (70) into (69), we find

E[〈�eh(s), (Ah(s) − A)x(s)〉] ≤ hVar[A](‖A‖s + 1)(|x0| + |Bu|L1(0,T ;RN ))
2.

(71)

Inserting (68) and (71) into (67) shows that

d

ds
E[|eh(s)|2] ≤ 2hVar[A](‖A‖s + 1)(|x0| + |Bud |L1(0,T ;RN ))

2. (72)

Integrating (72) from s = 0 to s = t using that eh(ω, 0) = 0 now shows that

E[|eh(t)|2] ≤ hVar[A](‖A‖t2 + 2t)(|x0| + |Bud |L1(0,T ;RN ))
2, (73)

which is the desired estimate (63).
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It thus remains to show that (70) holds. Recall that, for τ ∈ [t�−1, s), (66) shows
that �eh(ω, τ ) = eh(ω, τ ) − eh(ω, t�−1). Using (59), we thus see that �eh(ω, τ ) is
the solution of the ODE

d
dτ

�eh(ω, τ ) = ėh(ω, t) = Aeh(ω, t) + (Ah(ω, t) − A)xh(ω, t), (74)

with initial condition �eh(ω, t�−1) = 0. We therefore also have that

d

dτ
|�eh(ω, τ )| = 〈�eh(ω, τ ), ėh(ω, τ )〉

|�eh(ω, τ )| ≤ |Aeh(ω, τ )|+|(Ah(ω, τ )−A)xh(ω, τ )|.
(75)

Using that �eh(ω, t�−1) = 0, integrating (75) from τ = t�−1 to τ = s yields

|�eh(ω, s)| ≤
∫ s

t�−1

(‖A‖|eh(ω, τ )| + |(Ah(ω, τ ) − A)xh(ω, τ )|) dτ. (76)

To bound eh(ω, τ ), we apply the variation of constants formula to the error dynamics
in (59) and obtain

|eh(ω, τ )| =
∣∣∣∣
∫ τ

0
eA(τ−σ)(Ah(ω, σ ) − A)xh(ω, σ ) dσ

∣∣∣∣
≤

∫ τ

0
‖Ah(ω, σ ) − A‖ dσ (|x0| + |Bu|L1(0,T ;RN )), (77)

where we have used the bound for xh(ω, σ ) in (48) and that ‖eA(τ−σ)‖ ≤ 1 because
Assumption 1 implies that A is dissipative. Using this result in (76), we find

|�eh(ω, s)| ≤
∫ s

t�−1

g(ω, τ ) dτ (|x0|+|Bu|L1(0,T ;RN )), (78)

where we have again used the bound on xh(ω, t) in (48) for the second term in (76)
and introduced

g(ω, τ ) :=
(

‖A‖
∫ τ

0
‖Ah(ω, σ ) − A‖ dσ + ‖Ah(ω, τ ) − A‖

)
. (79)

Squaring both sides in (78) and taking the expectation, we find

E[|�eh(s)|2] ≤ E

[(∫ s

t�−1

g(τ ) dτ

)2
]

(|x0| + |Bu|L1(0,T ;RN ))
2

≤ (s − t�−1)

∫ s

t�−1

E[(g(τ ))2] dτ (|x0| + |Bu|L1(0,T ;RN ))
2, (80)
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where the second inequality follows from the Cauchy–Schwartz inequality in
L2(t�−1, s). Now observe that (79) shows that

E[(g(τ ))2] = ‖A‖2
∫ τ

0

∫ τ

0
E[‖Ah(σ ) − A‖‖Ah(σ

′) − A‖] dσ dσ ′

+ 2‖A‖
∫ τ

0
E[‖Ah(σ ) − A‖‖Ah(τ ) − A‖] dσ + E[‖Ah(τ ) − A‖2].

(81)

Because E[‖Ah(t) − A‖2] = Var[A] for all t , we also have that

E[‖Ah(σ ) − A‖‖Ah(τ ) − A‖] ≤
√
E[‖Ah(σ ) − A‖2]E[‖Ah(τ ) − A‖2] = Var[A].

(82)
Using this result in (81), we obtain

E[(g(τ ))2] ≤ Var[A](‖A‖τ + 1)2. (83)

Using this result again in (80), also using that s − t�−1 ≤ h and τ ≤ s, we find the
claimed inequality (70). ��

Some remarks regarding Theorem 1 are in order.

Remark 7 The error estimate in Theorem 1 involves the operator norm of the matrix
A. This suggests that the expected error E[|eh(t)|2] grows when we are considering
better approximations A of an unbounded operator, which for example happens when
we consider a discretization of a PDE and refine the spatial grid. However, Fig. 4a in
Sect. 4 indicates that E[|eh(t)|] ≤ C

√
hVar[A] for a constant C that does not increase

(but even seems to decrease) when the spatial grid is refined.
A first step in understanding the infinite-dimensional case better is taken in

Appendix B, where we prove that

E[|eh(t)|2] ≤ 2htVarW [A]|W−1x0|. (84)

under the additional assumptions that u(t) ≡ 0 and that all matrices Am commute
pairwise. Here, W is any invertible matrix and VarW [A] is the weighted variance
introduced in Remark 5. Observe that the operator norm ‖A‖ does not appear in this
estimate. The result from Appendix B extends naturally to an infinite dimensional
setting in which all operators Am have the same domain D(Am) = D(A).

Recall from Remark 5 that a typical choice for W is W = (A − λI )−1 for some λ

in the resolvent of A. For |W−1x0| to be bounded, we thus require that x0 ∈ D(A),
where D(A) denotes the domain of the operator A. In an infinite dimensional setting
we thus need an additional smoothness assumption on the initial condition x0. Such
conditions are typical for (deterministic) splitting algorithms, see e.g. [12, 13]. Further
details can be found in Appendix B.
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Remark 8 The error estimate in Theorem 1 is derived based on the error dynamics
(64). Considering the error dynamics (59) leads to a less clean proof because instead
of the 3 terms on the RHS of (65), we then get 4 terms

d

ds
|eh(ω, s)|2 = 2〈eh(ω, s), Aeh(ω, s)〉 + 2〈eh(ω, s), (Ah(ω, s) − A)xh(ω, s)〉

= 2〈eh(ω, s), Aeh(ω, s)〉 + 2〈eh(ω, t�−1), (Ah(ω, s) − A)xh(ω, t�−1)〉
+ 2〈�eh(ω, s), (Ah(ω, s) − A)xh(ω, s)〉
+ 2〈eh(ω, s), (Ah(ω, s) − A)�xh(ω, s)〉, (85)

where�eh(ω, s) := eh(ω, s)−eh(ω, t�−1) and�xh(ω, s) := xh(ω, s)− xh(ω, t�−1).
This approach is closer to proofs for interacting particle systems in [14].

Note that the fourth term in (85) is needed because xh(ω, s) is correlated toAh(ω, s)
for s ∈ (t�−1, t�). Because x(s) is not correlated to Ah(ω, s), it was not necessary to
introduce such a term in (65). The proof of Theorem 1 based on the error dynamics
(64) presented above is thus simpler than a proof based on (59).

Remark 9 When we look back at the proof of Theorem 1, we see that Assumption 1
is only used to assure that the matrices A and Ah(ω, t) are dissipative (for all ω

with p(ω) > 0 and all t ∈ [0, T ]). When Assumption 1 is not satisfied, there must
exist a constant a > 0 such that Â = A − aI and Âh(ω, t) = Ah(ω, t) − aI are
dissipative (for all ω with p(ω) > 0 and all t ∈ [0, T ]). Because E[Ah(t)] = A, it
follows that E[Âh(t)] = E[Ah(t)] − aI = A − aI = Â and Var[‖Âh(t) − Â‖2] =
Var[A]. When we let x̂(t) and x̂h(ω, t) denote the solutions generated by Â and
Âh(ω, t), respectively, we can now prove in a similar way as in Theorem 1 that the
error êh(ω, t) = x̂h(ω, t) − x̂(t) can be bounded as

E[|êh(t)|2] ≤ hVar[A](‖ Â‖t2 + 2t)(|x0| + |Bu|L1(0,T ;RN ))
2. (86)

Because x(t) = eat x̂(t) and xh(ω, t) = eat x̂h(ω, t), also

eh(ω, t) = xh(ω, t) − x(t) = eat x̂h(ω, t) − eat x̂(t) = eat êh(ω, t). (87)

Taking the expectation and using (86), we find

E[|eh(t)|2] ≤ heatVar[A](‖ Â‖t2 + 2t)(|x0| + |Bu|L1(0,T ;RN ))
2. (88)

The error estimate now grows exponentially in time.

3.3 The forward dynamics with a stochastic input

In this subsection, we prove a result similar to Theorem 1 for inputs uh(ω, t) that are
stochastic, i.e., which depend on ω. We thus want to bound the error

eh(ω, t) = xh(ω, t) − x(ω, t), (89)
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Chosen time grid t0, t1, . . . , tK

t0 = 0 t1 s t2 t3 t t4 tK−1 tK = T

Time grid t̃0, t̃1, . . . , t̃K̃ in [s, t]

t̃0 = s t̃1 t̃2 t̃K̃ = t

Fig. 1 The relation between the chosen time grid t0, t1, . . . , tK and the time grid t̃0, t̃1, . . . , t̃K̃ used in

Remark 10. In the displayed example, � = 2, k = 4, and K̃ = 3

where xh(ω, t) and x(ω, t) are the solutions of (51) and (50), respectively.
To this end, we consider the semi-group eAt generated by the matrix A and the evo-

lution operator Sh(ω, t, s) associated to Ah(ω, t). The evolution operator Sh(ω, t, s)
is defined by property that for all vectors xs ∈ R

N (and all t ≥ s), Sh(ω, t, s)xs is
equal to the solution yh(ω, t) of

ẏh(ω, t) = Ah(ω, t)yh(ω, t), yh(ω, s) = xs . (90)

Remark 10 An explicit formula for the evolution operator Sh(ω, t, s) can be obtained
as follows. Let 0 ≤ s ≤ t ≤ T and let �, k ∈ {1, 2, . . . , K } be selected such that

s ∈ [t�−1, t�), t ∈ [tk−1, tk). (91)

By restricting the given time grid 0 = t0 < t1 < t2 < · · · < tK−1 < tK = T to the
interval [s, t], we obtain a grid with K̃ = k − � + 1 grid points

t̃0 := s < t̃1 := t� < t̃2 := t�+1 < · · · < t̃K̃−1 := tk−1 < t̃K̃ := t . (92)

The construction of the time grid t̃0, t̃1, . . . t̃K̃ is illustrated in Fig. 1. We also denote
h̃ p := t̃ p − t̃ p−1 (for p ∈ {1, 2, . . . , K̃ }) and introduce (for each ω ∈ {1, 2, . . . , 2M })

Aω :=
∑
m∈Sω

Am

πm
. (93)

Because Ah(ω, τ ) = Aωp is constant for τ ∈ [t̃ p−1, t̃ p), it is now easy to see that

Sh(ω, t, s) = eAωk h̃ K̃ · · · eAω�+1 h̃2eAω�
h̃1 =

K̃∏
p=1

eAωp+�−1h̃ p . (94)

Under Assumption 1, all matrices Aωp are dissipative and (94) shows that

‖Sh(ω, t, s)‖ ≤ 1. (95)
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Using the variation of constants formula, the solutions of xh(ω, t) and x(ω, t) can
expressed as

xh(ω, t) = Sh(ω, t, 0)x0 +
∫ t

0
Sh(ω, t, s)Buh(ω, s) ds, (96)

x(ω, t) = eAt x0 +
∫ t

0
eA(t−s)Buh(ω, s) ds. (97)

Subtracting (97) from (96) we find the following expression for the error eh(ω, t)

eh(ω, t) = Eh(ω, t, 0)x0 +
∫ t

0
Eh(ω, t, s)Buh(ω, s) ds, (98)

where Eh(ω, t, s) = Sh(ω, t, s) − eA(t−s). The following corollary of Theorem 1
shows that we can bound Eh(ω, t, s) = Sh(ω, t, s) − eA(t−s).

Corollary 1 Under Assumptions 1 and 2, we have that

E[‖Sh(t, s) − eA(t−s)‖2] ≤ (‖A‖T 2 + 2T )hVar[A], (99)

for all 0 ≤ s ≤ t ≤ T .

Proof Fix s ∈ [0, T ] and an initial condition xs ∈ R
N .

Define y(t) = eA(t−s)xs and let yh(ω, t) be the solution of (90), both for t ∈ [s, T ].
We then apply Theorem 1 with u(t) ≡ 0 to the time-shifted solutions ỹ(t̃) = y(t̃ + s)
and ỹh(ω, t̃) = yh(ω, t̃ + s) and the time-shifted matrix Ãh(ω, t̃) = Ah(ω, t̃ + s)
defined on t̃ ∈ [0, T − s]. We thus conclude that (writing t̃ = t − s)

E[|yh(t) − y(t)|2] = E[|ỹh(t̃) − ỹ(t̃)|2] ≤ hVar[A](‖A‖t̃2 + 2t̃)|xs |2. (100)

Noting that, by definition, y(t) = eA(t−s)xs and yh(ω, t) = Sh(ω, t, s)xs , we find that
(for xs �= 0)

E

[
|(Sh(ω, t, s) − eA(t−s))xs |2

|xs |2
]

≤ hVar[A](‖A‖T 2 + 2T ), (101)

where it was used that t̃ = t − s ≤ T . The result now follows from the definition of
the operator-norm. ��
Remark 11 InAppendixB,we prove a result similar toCorollary 1 under the additional
assumption that all matrices Am commute pairwise. The result in Appendix B extends
naturally to an infinite dimensional setting under the additional assumption that the
domains of the operators Am are the same. This is not the case for Corollary 1 because
the operator norm ‖A‖ appears in (99).

We are now ready for the main result of this subsection.
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Theorem 2 Consider any control uh : �K → L2(0, T ;Rq). Assume that Assump-
tions 1 and 2 are satisfied and let U be such that

|Buh(ω)|L2(0,T ;Rq ) ≤ U , (102)

for all ω ∈ �K , then

E[|eh(t)|2] ≤ (‖A‖T 2 + 2T )hVar[A]
(
|x0| +U

√
T
)2

. (103)

Proof Using the triangle inequality in (98), we find

|eh(ω, t)| ≤ ‖Eh(ω, t, 0)‖|x0| +
∫ t

0
‖Eh(ω, t, s)‖|Buh(ω, s)| ds

≤ ‖Eh(ω, t, 0)‖|x0| +
√∫ t

0
‖Eh(ω, t, s)‖2 ds|Buh(ω)|L2(0,T ;Rq ), (104)

where the second inequality follows from the Cauchy–Schwarz inequality in L2(0, t).
Squaring both sides and using the bound (102), we find

|eh(ω, t)|2 ≤ ‖Eh(ω, t, 0)‖2|x0|2 +U 2
∫ t

0
‖Eh(ω, t, s)‖2 ds

+ 2U |x0|‖Eh(ω, t, 0)‖
√∫ t

0
‖Eh(ω, t, s)‖2 ds. (105)

In order to use the bound from Corollary 1 to estimate the last term, note that we can
use the Cauchy–Schwartz inequality in the probability space to find

E

⎡
⎣‖Eh(t, 0)‖

√∫ t

0
‖Eh(t, s)‖2 ds

⎤
⎦ ≤

√
E[‖Eh(t, 0)‖2]

∫ t

0
E[‖Eh(t, s)‖2] ds

(106)
Taking the expected value in (105) and using that the bound on E[‖Eh(t, s)‖2] from
Corollary 1 does not depend on t and s, we find

E[|eh(t)|2] ≤ (|x0| +U
√
t)2(‖A‖T 2 + 2T )hVar[A], (107)

which gives the desired estimate. ��
Remark 12 Because �K is finite, we can always find a constant U such that (102) is
satisfied for a given uh : �K → L2(0, T ;Rq). However, when we consider a family
of temporal grids for which h → 0, the constant U may depend on h (depending
on the considered family of controls uh(ω, t)). Fortunately, we only need to apply
Theorem 2 with uh(ω, t) = u∗

h(ω, t), where u∗
h(ω, t) is the control that minimizes the

cost functional Jh(ω, ·) in (14). For this control, the coercivity of the cost functional
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Jh(ω, ·) implies that the constant U can be chosen independent of the considered
temporal grid, see (54).

Remark 13 Note that the estimate in Theorem 1 depends on the L1-norm of the con-
trol but that estimate in Theorem 2 depends through (102) on the L2-norm. Setting
uh(ω, t) = u(t) in Theorem 2 therefore does not give the estimate in Theorem 1. This
underlines the additional difficulty posed by stochastic controls.

3.4 A no-gap condition

With the results regarding forward dynamics from the previous two subsections, we are
now ready to address the optimal control problem. The main result of this subsection
is the no-gap condition in Theorem 3. To prove this result, we need the following
technical lemma.

Lemma 1 Consider any control uh : �K → L2(0, T ;Rq). Assume thatAssumptions1
and 2 hold and let U > 0 be such that (102) is satisfied. Then

E[|Jh(uh) − J (uh)|] ≤ C[A,x0,Q,xd ,T ,U ]
(√

hVar[A] + hVar[A]
)

. (108)

Proof Let x(ω, t) and xh(ω, t) be the solutions of (50) and (51) for the considered
control uh(ω, t). For brevity, we write x̃(ω, t) = x(ω, t) − xd(t) and x̃h(ω, t) =
xh(ω, t) − xd(t). By definition of the cost functionals J (·) and Jh(ω, ·) in (2) and
(14), we have

Jh(ω, uh(ω)) − J (uh(ω)) = 1
2

∫ T

0

(
x̃h(ω, t)�Qx̃h(ω, t) − x̃(ω, t)�Qx̃(ω, t)

)
dt

=
∫ T

0
x̃(ω, t)�Q(x̃h(ω, t) − x̃(ω, t)) dt

+ 1
2

∫ T

0
(x̃h(ω, t) − x̃(ω, t))�Q(x̃h(ω, t) − x̃(ω, t)) dt

=
∫ T

0

(
x̃(ω, t)�Qeh(ω, t) + 1

2eh(ω, t)�Qeh(ω, t)
)
dt, (109)

where the last identity follows because eh(ω, t) = xh(ω, t) − x(t) = x̃h(ω, t) − x̃(t).
Taking the absolute value and estimating the RHS, we find

|Jh(ω, uh) − J (uh(ω))| ≤ ‖Q‖
∫ T

0

(
|x̃(ω, t)||eh(ω, t)| + 1

2 |eh(ω, t)|2
)
dt

≤ ‖Q‖
(
|x̃(ω)|L2(0,T ;RN )|eh(ω)|L2(0,T ;RN ) + 1

2 |eh(ω)|2L2(0,T ;RN )

)
. (110)
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Taking the expectation and using the Cauchy–Schwartz inequality, we find that

E[|Jh(uh) − J (uh)|]
≤ ‖Q‖

(√
E[|x̃ |2

L2(0,T ;RN )
]
√
E[|eh |2L2(0,T ;RN )

] + 1
2E[|eh |2L2(0,T ;RN )

]
)

. (111)

Using the estimate from Theorem 2, we find

E[|eh |2L2(0,T ;RN )
] =

∫ T

0
E[|eh(t)|2] dt ≤ hVar[A]C[A,x0,T ,U ]. (112)

Because x̃(ω, t) = x(ω, t) − xd(t), (49) shows that

|x̃(ω)|2L2(0,T ;RN )
≤ (

√
T (|x0| + |Buh(ω)|L1(0,T ;RN )) + |xd |L2(0,T ;RN ))

2. (113)

Because |Buh(ω)|L1(0,T ;RN ) ≤ √
T |Buh(ω)|L2(0,T ;RN ) ≤ √

TU , we see from (113)
that E[|x̃ |2

L2(0,T ;RN )
] ≤ C[x0,xd ,T ,U ]. The result now follows by inserting this estimate

and (112) into (111). ��
We are now ready to prove the main result of this section which can be considered

as a no-gap condition for the RBM optimal control problem.

Theorem 3 Let u∗(t) be the (deterministic) control that minimizes the cost functional
J (u) in (2) and let u∗

h(ω, t) be the control that minimizes the cost functional Jh(ω, u)

in (14). Then

E[|Jh(u∗
h) − J (u∗)|] ≤ C[A,B,x0,Q,R,xd ,T ]

(√
hVar[A] + hVar[A]

)
. (114)

Proof We have that

J (u∗) ≤ J (u∗
h(ω)) = Jh(ω, u∗

h(ω)) + δ(ω)

≤ Jh(ω, u∗) + δ(ω) = J (u∗) + δ(ω) + ε(ω), (115)

where δ(ω) = J (u∗
h(ω)) − Jh(ω, u∗

h(ω)) and ε(ω) = Jh(ω, u∗) − J (u∗). Note that
the first inequality follows because u∗ is the minimizer of J and the second inequality
because u∗

h(ω) is the minimizer of Jh(ω, ·). Subtracting J (u∗) + δ(ω) from the first,
third, and fifth expressions in (115), shows that

− δ(ω) ≤ Jh(ω, u∗
h(ω)) − J (u∗) ≤ ε(ω). (116)

Taking the absolute value, we find

|Jh(ω, u∗
h(ω)) − J (u∗)| ≤ max{|δ(ω)|, |ε(ω)|} ≤ |δ(ω)| + |ε(ω)|. (117)
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Therefore also

E[|Jh(u∗
h) − J (u∗)|] ≤ E[|δ|] + E[|ε|]. (118)

Lemma 1 can now be used to find bounds for E[|δ|] = E[|Jh(u∗
h) − J (u∗

h)|] and
E[|ε|] = E[|Jh(u∗) − J (u∗)|].

For the bound on E[|δ|], we use that (54) shows that there exists a constant such
that |Bu∗

h(ω)|L2(0,T ;RN ) ≤ C[B,x0,Q,R,xd ,T ] so that (102) is satisfied with a constantU
that does not depend on the used temporal grid t0, t1, . . . , tK . Lemma 1 thus implies
that

E[|δ|] ≤ C[A,B,x0,Q,R,xd ,T ]
(√

hVar[A] + hVar[A]
)

. (119)

For the bound on E[|ε|], we can simply take U = |Bu∗(t)|L2(0,T ;RN ), which is
a constant that only depends on the parameters A, B, x0, Q, R, xd , T that define the
deterministic problem (1)–(2). Lemma 1 thus also shows that

E[|ε|] ≤ C[A,B,x0,Q,R,xd ,T ]
(√

hVar[A] + hVar[A]
)

. (120)

Inserting (119) and (120) into (118) we find (114). ��

3.5 Convergence in the controls

In the last stage of our analysis of the RBM-optimal control problem, we bound the
expected difference between the optimal control u∗

h that minimizes Jh in (14) and the
optimal control u∗ for the original problem. The proof is based on the strong convexity
of the functional Jh in (14).

To prove themain result, we need the following lemmawhich bounds the difference
between the Gâteaux derivative of Jh and the Gâteaux derivative of J in expectation.

Lemma 2 For any deterministic control u ∈ L2(0, T ;Rq) and any stochastic pertur-
bation vh : �K → L2(0, T ;Rq),

E[|δ Jh(u; vh) − δ J (u; vh)|] ≤ C[A,B,x0,Q,xd ,T ,u]
√
hVar[A]

√
E[|vh |2L2(0,T ;Rq )

].
(121)

Proof Let x(t) and xh(ω, t) be the solutions of (1) and (13), respectively. Furthermore,
denote

y(ω, t) =
∫ t

0
eA(t−s)Bvh(ω, s) ds, yh(ω, t) =

∫ t

0
Sh(ω, t, s)Bvh(ω, s) ds.

(122)
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Directly from the definition of the Gâteaux derivative, we find that

δ J (u, vh(ω)) =
∫ T

0

(
x̃(t)�Qy(ω, t) + u(t)�Rvh(ω, t)

)
dt, (123)

δ Jh(ω, u, vh(ω)) =
∫ T

0

(
x̃h(ω, t)�Qyh(ω, t) + u(t)�Rvh(ω, t)

)
dt, (124)

where we write x̃(t) = x(t) − xd(t) and x̃h(ω, t) = xh(ω, t) − xd(t).
Subtracting (123) from (124), we find

δ Jh(ω, u, vh(ω)) − δ J (u, vh(ω))

=
∫ T

0

(
x̃h(ω, t)�Qyh(ω, t) − x̃(t)�Qy(ω, t)

)
dt

=
∫ T

0

(
x̃h(ω, t)�Q(yh(ω, t) − y(ω, t)) + (x̃h(ω, t) − x̃(t))�Qy(ω, t)

)
dt

=
∫ T

0

(
x̃h(ω, t)�Q fh(ω, t) + eh(ω, t)�Qy(ω, t)

)
dt, (125)

where eh(ω, t) = xh(ω, t)−x(t) = x̃h(ω, t)− x̃(t) and fh(ω, t) = yh(ω, t)−y(ω, t).
Taking the absolute value, we find

|δ Jh(ω, u, vh(ω)) − δ J (u, vh(ω))|

≤ ‖Q‖
∫ T

0
(|x̃h(ω, t)|| fh(ω, t)| + |eh(ω, t)||y(ω, t)|) dt . (126)

Using (48), we find the following bound for x̃h(ω, t) = xh(ω, t) − xd(t)

|x̃h(ω, t)| ≤ |xh(ω, t)| + |xd(t)| ≤ |x0| + |Bu|L1(0,T ;RN ) + |xd(t)|. (127)

We thus have |x̃h(ω, t)| ≤ C[B,x0,xd ,T ,u] for all ω ∈ �K .
Taking the expectation in (126) using this result shows that

E[|δ Jh(u, vh) − δ J (u, vh)|]

≤ ‖Q‖
∫ T

0

(
C[B,x0,xd ,T ,u]E[| fh(t)|] −

√
E[|eh(t)|2]

√
E[|y(t)|2]

)
dt, (128)

where the second term on the RHS follows from the Cauchy–Schwartz inequality.
Again using the notation Eh(ω, t, s) := Sh(ω, t, s) − eA(t−s), (122) shows that

fh(ω, t) = yh(ω, t) − y(ω, t) =
∫ t

0
Eh(ω, t, s)Bvh(ω, s) ds. (129)
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Therefore,

E[| fh(t)|] ≤
∫ t

0
E[‖Eh(t, s)‖|Bvh(s)|] ds

≤
∫ t

0

√
E[‖Eh(t, s)‖2]

√
E[|Bvh(s)|2] ds

≤ C[A,T ]
√
hVar[A]

∫ t

0

√
E[|Bvh(s)|2] ds

≤ C[A,T ]
√
hVar[A]√t

√∫ t

0
E[|Bvh(s)|2] ds

≤ C[A,T ]
√
hVar[A]

√
E[|Bvh |2L2(0,T ;RN )

], (130)

where the second inequality follows from the Cauchy–Schwartz inequality in the
probability space, the third inequality from Corollary 1, and the third inequality from
the Cauchy–Schwartz inequality in L2(0, t).

Because the control u(t) is deterministic, Theorem 1 shows that

E[|eh(t)|2] ≤ hVar[A]C[A,B,x0,T ,u]. (131)

Finally, note

|y(ω, t)|2 =
(∫ t

0
‖eA(t−s)‖|Bvh(ω, s)| ds

)2

≤
∫ t

0
‖eA(t−s)‖2 ds

∫ t

0
|Bvh(ω, s)r |2 ds ≤ t |Bvh(ω)|2L2(0,T ;RN )

. (132)

Therefore, also

E[|y(t)|2] ≤ C[B,T ]E[|vh |2L2(0,T ;RN )
]. (133)

Inserting (130), (131), and (133) into (128) completes the proof. ��
We are now ready to prove the convergence result for the optimal controls.

Theorem 4 Suppose that the functional Jh(ω, ·) in (14) is α-convex for all ω ∈ �K .
Let u∗

h(ω, t) be the minimizer of Jh(ω, ·) in (14) and u∗(t) be the minimizer of J in
(2), then

α2
E[|u∗

h − u∗|2L2(0,T ;Rq )
] ≤ C[A,B,x0,Q,R,xd ,T ]hVar[A]. (134)

Proof We apply (57) with J (·) = Jh(ω, ·), v = u∗
h(ω), and u = u∗ to find

Jh(ω, u∗
h(ω)) ≥ Jh(ω, u∗) + δ Jh(ω, u∗; u∗

h(ω) − u∗) + α
2 |u∗

h(ω) − u∗|2L2(0,T ;Rq )
.

(135)
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Because u∗
h(ω) is the minimizer of Jh(ω, ·), Jh(ω, u∗

h(ω)) ≤ Jh(ω, u∗) and

0 ≥ δ Jh(ω, u∗; u∗
h(ω) − u∗) + α

2 |u∗
h(ω) − u∗|2L2(0,T ;Rq )

. (136)

Bringing δ Jh to the other side, taking the absolute value and then the expectation,
yields

α

2
E[|u∗

h − u∗|2L2(0,T ;Rq )
] ≤ E[|δ Jh(u∗; u∗

h − u∗)|]. (137)

Since u∗ is the minimizer of J , δ J (u∗, v) = 0 for all perturbation v ∈ L2(0, T ;Rq).
In particular, we have that δ J (u∗, u∗

h(ω) − u∗) = 0 for all ω ∈ �K so that also

α

2
E[|u∗

h − u∗|2L2(0,T ;Rq )
] ≤ E[|δ Jh(u∗; u∗

h − u∗) − δ J (u∗; u∗
h − u∗)|]. (138)

We now apply Lemma 2 to the RHS with u = u∗ and vh(ω) = u∗
h(ω) − u∗, which

shows that

α

2
E[|u∗

h − u∗|2L2(0,T ;Rq )
] ≤ C[B,x0,Q,xd ,T ,u∗]

√
hVar[A]

√
E[|u∗

h − u∗|2
L2(0,T ;Rq )

].
(139)

Next, we divide (139) by 1
2

√
E[|u∗

h − u∗|2
L2(0,T ;Rq )

] to find

α
√
E[|u∗

h − u∗|2
L2(0,T ;Rq )

] ≤ C[A,B,x0,Q,xd ,T ,u∗]
√
hVar[A]. (140)

Squaring both sides we arrive at

α2
E[|u∗

h − u∗|2L2(0,T ;Rq )
] ≤ C[A,B,x0,Q,xd ,T ,u∗]hVar[A]. (141)

The result follows because the optimal control u∗(t) only depends on the parameters
A, B, x0, Q, R, xd , and T that define the original problem (1)–(2). ��

We now point out two corollaries of Theorem 4 that are important when we use the
control u∗

h(ω, t) (optimized for the RBM-dynamics) to control the original dynamics.
For the first corollary, we introduce the notation

x∗
h (ω, t) = eAt x0 +

∫ t

0
eA(t−s)Bu∗

h(ω, s) ds, (142)

x∗(t) = eAt x0 +
∫ t

0
eA(t−s)Bu∗(s) ds, (143)

i.e., x∗
h (ω, t) is the solution of the original dynamics (1) resulting from the control

u∗
h(ω, t) optimized for the RBM-dynamics and x∗(t) is the solution of the original

dynamics (1) resulting from the optimal control u∗(t).
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Corollary 2 Suppose that the functional Jh(ω, ·) in (14) is α-convex for all ω ∈ �K

and let x∗
h (ω, t) and x∗(t) be as in (142) and (143), respectively. Then

α2
E[|x∗

h (t) − x∗(t)|2] ≤ C[A,B,x0,Q,R,xd ,T ]hVar[A], (144)

for all t ∈ [0, T ].

Proof Note that

x∗
h (ω, t) − x∗(t) =

∫ t

0
eA(t−s)B(u∗

h(ω, s) − u∗(s)) ds. (145)

Therefore also

|x∗
h (ω, t) − x∗(t)| ≤

∫ t

0
‖eA(t−s)‖‖B‖|u∗

h(ω, s) − u∗(s)| ds

≤ ‖B‖|u∗
h(ω) − u∗|L1(0,T ;Rq ) ≤ ‖B‖√T

√
|u∗

h(ω) − u∗|L2(0,T ;Rq ), (146)

where the second inequality uses that ‖eAt‖ ≤ 1 in view of Assumption 1. The result
now follows after squaring this inequality, taking the expectation, and using (134). ��

Corollary 3 Suppose that the cost functional Jh(ω, ·) is α-convex for all ω ∈ �K . Let
u∗(t) be the (deterministic) control that minimizes the cost functional J (u) in (2) and
let u∗

h(ω, t) be the control that minimizes the cost functional Jh(ω, u) in (14). Then

α2
E[|J (u∗

h) − J (u∗)|] ≤ C[A,B,x0,Q,R,xd ,T ]hVar[A]. (147)

Proof Denote vh(ω, t) := u∗
h(ω, t) − u∗(t) and y(ω, t) := ∫ t

0 e
A(t−s)Bvh(ω, s) ds.

Because the considered functional is quadratic,

J (u∗
h(ω)) − J (u∗) = J (u∗ + vh(ω)) − J (u∗)

= δ J (u∗, vh(ω)) + δ2 J (vh(ω), vh(ω)), (148)

where the Hessian δ2 J (vh(ω), vh(ω)) is given by

δ2 J (vh(ω), vh(ω)) = 1

2

∫ T

0

(
y(ω, t)�Qy(ω, t) + vh(ω, t)�Rvh(ω, t)

)
dt . (149)

Because u∗ is the minimizer of J (·), δ J (u∗, v) = 0 for all v ∈ L2(0, T ;Rq). The first
term on the RHS of (148) thus vanishes. Also observe that

δ2 J (vh(ω), vh(ω)) ≤ 1
2‖Q‖|y(ω)|2L2(0,T ;RN )

+ 1
2‖R‖|vh(ω)|2L2(0,T ;Rq )

. (150)

123



528 D. W. M. Veldman, E. Zuazua

A similar estimate as (132) shows that |y(ω)|2
L2(0,T ;RN )

≤ C[B,T ]|vh(ω)|2
L2(0,T ;Rq )

.
Combining these results in (148), we conclude

|J (u∗
h(ω)) − J (u∗)| ≤ J (u∗

h(ω)) − J (u∗)
≤ δ2 J (vh(ω), vh(ω)) ≤ C[B,Q,R,T ]|vh(ω)|2L2(0,T ;Rq )

. (151)

The result now follows after taking the expectation and using the result fromTheorem4
to bound E[|vh |L2(0,T ;Rq )2] = E[|u∗

h − u∗|2
L2(0,T ;Rq )

]. ��

4 Numerical results

In this section, we apply our proposed method to three medium to large scale linear
dynamical systems that are obtained after spatial discretization of a linear PDE.

4.1 A discretized 1D heat equation

We consider a controlled heat equation on the 1-D spatial domain [−L, L],

yt (t, ξ) = yξξ (t, ξ) + χ[−L/3,0](ξ)u(t), ξ ∈ [−L, L], (152)

yξ (t,−L) = yξ (t, L) = 0, y(0, ξ) = e−ξ2 + ξ2e−L2
, (153)

where χ[−L/3,0](ξ) denotes the characteristic function for the interval [−L/3, 0]. We
want to compute the optimal control u∗(t) that minimizes

J (u) = 100

2

∫ T

0

∫ 0

−L
y(t, ξ)2 dξ dt + 1

2

∫ T

0
u(t)2 dt . (154)

The spatial discretization of the dynamics (152)–(153) is made by finite differences
and the cost functional in (154) is discretized by the trapezoid rule. We choose a
uniform spatial grid with N = 61 grid points ξi = (i −1)�ξ − L (i ∈ {1, 2, . . . , N }),
where �ξ = 2L/(N − 1) is the grid spacing, and obtain a system of the form (1).

The resulting A-matrix is of the form

A = 1

�ξ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 2 0 · · · 0 0 0
1 −2 1 0 0 0
0 1 −2 0 0 0
...

. . .
...

0 0 0 −2 1 0
0 0 0 1 −2 1
0 0 0 · · · 0 2 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (155)
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Observe that A can be written as

A =
n∑

i=1

Ãi , (156)

where the n := N − 1 = 60 matrices Ãi ∈ R
N×N are zero except for the entries

[[ Ã1]11 [ Ã1]12
[ Ã1]21 [ Ã1]22

]
=

[−2 2
1 −1

]
,

[ [ Ãi ]i i [ Ãi ]i,i+1

[ Ãi ]i+1,i [ Ãi ]i+1,i+1

]
=

[−1 1
1 −1

]
, 2 ≤ i ≤ n − 1,

[ [ Ãn]nn [ Ãn]n,n+1

[ Ãn]n+1,n [ Ãn]n+1,n+1

]
=

[−1 1
2 −2

]
.

One can easily verify that the matrices Ãi are dissipative. We now define the M
submatrices Am (for M = 1, 2, 3, 4) as

Am =
im∑

i=im−1+1

Ãi , (157)

where im = nm/M . Because of (156), it is easy to see that the submatrices Am

satisfy (5). Because the submatrices Ãi are dissipative, the submatrices Am in (157)
are dissipative and Assumption 1 is satisfied.

Example 6 For M = 2 and N = 61, we obtain the splitting of the A-matrix in (155)
as A = A1 + A2, with

A1 =
[

A11 031×30
030×31 030×30

]
, A2 =

[
030×30 030×31
031×30 A22

]
, (158)

where A11 and A22 are the 31 × 31-matrices

A11 = 1

�ξ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 2 0 · · · 0 0 0
1 −2 1 0 0 0
0 1 −2 0 0 0
...

. . .
...

0 0 0 −2 1 0
0 0 0 1 −2 1
0 0 0 · · · 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (159)

123



530 D. W. M. Veldman, E. Zuazua

A22 = 1

�ξ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 · · · 0 0 0
1 −2 1 0 0 0
0 1 −2 0 0 0
...

. . .
...

0 0 0 −2 1 0
0 0 0 1 −2 1
0 0 0 · · · 0 2 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (160)

We will present numerical results for four cases:

Case i We decompose A into M = 2 submatrices and assign a probability 1
2 to the

subsets {1} and {2} and a probability 0 to the subsets ∅ and {1, 2}.
Case ii We decompose A into M = 3 submatrices and assign a probability 1

3 to the
subsets {1}, {2}, and {3} and a probability 0 to the other subsets of {1, 2, 3}.

Case iii We decompose A into M = 4 submatrices and assign a probability 1
4 to

the subsets {1}, {2}, {3}, and {4} and a probability 0 to the other subsets of
{1, 2, 3, 4}.

Case iv We decompose A into M = 4 submatrices and assign a probability 1
2 to the

subsets {1, 3} and {2, 4} and a probability 0 to the other subsets of {1, 2, 3, 4}.
In all 4 cases, we fix N = 61, L = 3

2 , and T = 1
2 .

We use a uniform grid 0 = t0 < t1 < . . . < tK−1 < tK = T with a uniform grid
spacing h. We will present results for h = 2−5, 2−7, 2−9, 2−11, 2−13, and 2−15. For
each of the K = T /h time intervals [tk−1, tk), we select an index ωk according to
the probabilities specified in Cases i–iv above. The state xh(ω, t) that satisfies (13) is
computed using a single Crank-Nicholson step in each time interval [tk−1, tk). We use
precomputed LU-factorizations of the matrices I − h

2

∑
m∈Sω

Am
πm

(for subsets Sω with
a nonzero probability pω) that need to be inverted frequently.

The optimal control u∗
h(ω, t) that minimizes Jh(ω, u) in (14) is computed with a

gradient-descent algorithm. The gradient is computed using the adjoint state ϕh(ω, t),
see Remark 3. The time discretization for the adjoint state equation (15) is done using
the scheme proposed in [1] that leads to discretely consistent gradients. The iterates
uk are computed as uk+1 = uk − β∇ Jh(ω, uk). The step size β is chosen such that
Jh(ω, uk − β∇ Jh(ω, uk)) is minimal. The algorithm is terminated when the relative
change in Jh(ω, u) is below 10−6.

The results for the four considered cases are displayed in Fig. 2. Because the
obtained results depend on the randomly selected indices stored in ω, each marker
in the subfigures in Fig. 2 represents the average error or duration over 25 random
realizations of ω. The errorbars represent the 2σ -confidence interval estimated from
these 25 realizations. The errors are computedw.r.t. the solutions x(t) and u∗(t) that are
computed on the same time grid as the corresponding solutions xh(ω, t) and u∗

h(ω, t).
The displayed errors therefore do not reflect the errors due to the temporal (or spa-
tial) discretization but capture only the error introduced by the proposed randomized
splitting method.

Because the matrices A and Am represent approximations of unbounded operators,
the variance Var[A] defined in (17) will grow unbounded when the mesh is refined.
This is also reflected by the large values of Var[A] given in Table 1. It is therefore
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Fig. 2 Simulation results for the discretized 1D heat equation

more natural to consider the variance VarW [A] in (19) weighted by a matrix of the
form W = (A − λI )−1. The values of VarW [A] are indeed much smaller than the
values of Var[A] in Table 1. The results at the end of this subsection (in Fig. 4) also
indicate that the weighted variance VarW [A] reflects the behavior of the error better
when the mesh is refined.

The error estimates in Theorems 1, 3, and 4 and in Corollary 3 are proportional to
hVar[A]. We therefore plot the errors in Fig. 2a–d against

√
hVarW [A] (with W =
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Table 1 Values of Var[A] and
VarW [A] for W = (A − λI )−1

with λ = 0.1

Case i Case ii Case iii Case iv

Var[A] 4.16 · 107 1.65 · 108 3.68 · 108 4.16 · 107
VarW [A] 57.32 133.91 246.54 96.68

(A−0.1I )−1) and expect that the errors for the different cases will be (approximately)
on one line.

Figure 2a shows the difference |xh(ω, t) − x(t)| between the solutions x(t) and
xh(ω, t) of (1) and (13) with u(t) = 0. Recall that the markers in this figure indi-
cate the average error observed over 25 realizations of ω, and are thus estimates for
E[maxt∈[0,T ]|xh(t) − x(t)|]. Because E[|xh(t) − x(t)|] ≤ √

E[|xh(t) − x(t)|2], we
expect (based on the bound in Theorem 1) that the errors in Fig. 2a are proportional
to

√
hVarW [A]. This is indeed confirmed by Fig. 2a.

Figure 2b shows the difference |u∗
h −u∗|L2(0,T ) between the optimal controls u∗(t)

and u∗
h(ω, t) that minimize (2) and (14), respectively. Based on the estimate in The-

orem 4, we again expect that the observed errors are proportional to
√
hVarW [A].

This is indeed the case and the proportionality constants for the different cases are
again (approximately) equal, which is also expected based on the error estimate in
Theorem 4.

The convergence in the optimal controls in Fig. 2b is also illustrated in Fig. 3.
This figure shows the optimal controls u∗

h(ω, t) obtained for 25 randomly selected
realizations of ω ∈ �K (light red) for the six considered grid spacings h of the
temporal grid. The figure also shows the average of the 25 optimal controls u∗

h(ω, t)
(dark red) and the optimal control u∗(t) for the original system (black). Figure 3
indeed shows that the optimal controls u∗

hω, t) get closer to the optimal control u∗(t)
when the spacing of the temporal grid h is reduced. Especially in Fig. 3a, b, it is also
clear that the average of the 25 optimal controls u∗

h(ω, t) (dark red) is not equal to the
optimal control u∗(t) for the original system (black). This indicates that E[u∗

h] �= u∗,
see also Remark 6. This means that u∗

h is a biased estimator for u∗ and averaging
several realizations of u∗(ω, t) can only improve the approximation of u∗(t) to a
limited extend. Note, however, that

|E[u∗
h] − u∗| = |E[u∗

h − u∗]| ≤ E[|u∗
h − u∗|] ≤

√
E[|u∗

h − u∗|2], (161)

so that Theorem 4 shows that E[u∗
h] → u∗ at a rate of

√
hVar[A]. An analysis of the

numerical results (that is not presented in Fig. 2) also indicates that the average of the
25 realizations of u∗

h(ω, t) converges to u∗(t) at this rate.
Figure 2c, d illustrates the convergence of Jh(ω, u∗

h(ω)) and J (u∗
h(ω)) to J (u∗).

Fig. 2c illustrates the error estimate in Theorem 3 and shows that the optimality
gap |Jh(ω, u∗

h(ω)) − J (u∗)| is indeed proportional to
√
hVarW [A]. The difference

between the different cases is more visible than in Fig. 2a, b. Figure 2d illustrates the
error estimate in Corollary 3, which shows that the suboptimality of the RBM-control
|J (u∗

h(ω)) − J (u∗)| is proportional to hVarW [A]. The convergence rate is now twice
as high as in the previous cases and the relative error stabilizes around 10−5, which
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Fig. 3 The optimal controls computed for the 1D heat equation for different time steps h. The controls
u∗
h(ω, t) computed with the proposed randomized time-splitting method are shown for 25 realizations of ω

and compared to the optimal control u∗(t) for the original system

seems to be related to the tolerance of 10−6 used in the computation of the optimal
controls.

Figure 2e, f shows the computational times for (one realization of) xh(ω, t) and
u∗
h(ω, t) in Cases i–iv and the computational time for the original problem (labeled

‘Original’). Note that the results have been generated on temporal grids with different
grid spacings h and that the computational time generally increaseswhen themore time
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steps are used, i.e. when h is smaller. The figures indicate that xh(ω, t) and u∗
h(ω, t)

are not computed faster than the solutions x(t) and u∗(t) of the original problem. The
proposed method does thus not lead to any reduction in computational time in this
example. It seems that we cannot observe any reduction in computational time for
this example because the original A-matrix is quite small (N = 61) and sparse (A is
tridiagonal). The examples in the following two subsections indicate that a reduction
in computational cost is obtained when the state dimension N is significantly higher
or when A has significantly more nonzero off-diagonal elements.

To conclude this example, we study the dependence of our results on the number of
grid points N . This gives us some indication whether the RBM can also be applied to
infinite dimensional problems. In particular, the results give us some indicationwhether
the proposed randomized splitting also works for the underlying PDE problem (152)–
(154). As we also noted in Remarks 5 and 7, the main concerns are related to operator
norm of A, that appears in Var[A] and in the estimate in Theorem 1, which grows
unbounded when the mesh is refined. These concerns also motivated the introduction
of the weighted variance VarW [A], see Remark 5.

When the estimate in Theorem 1 indeed depends on ‖A‖, the error |xh(ω, t)−x(t)|
divided by Var[A] should grow when N is increased. Figure 4a shows that this is not
the case, but that this ratio actually decreases when N is increased. However, when we
divided the errors by VarW [A], the result seems to be independent of the mesh size.
Figure 4b shows that the same trend is observed for the errors in the optimal control.

The numerical results in Fig. 4 match well with the result from Appendix B, where
we prove an error estimate proportional to VarW [A] under the additional assumption
that all matrices Am commute. This result also extends to an infinite-dimensional set-
ting when the domains the operators Am coincide. However, in the setting considered
here, the matrices Am do not commute and are not approximations of operators with
the same domains. Proving the convergence of the proposed randomized time splitting
method for the underlying PDE problem (152)–(154) with the proposed randomized
time splitting method is a challenging topic for future research.
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Fig. 4 The errors in the forward dynamics xh(ω, t) and the optimal control u∗
h(ω, t) divided by Var[A]

and VarW [A] (withW = (A− 0.1I )−1) as a function of the number of nodes N . The results are presented
for case i, so A is decomposed in M = 2 parts
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4.2 A discretized 3D heat equation

We now consider a heat equation on the a 3-D spatial domain V = [−L, L]3,

yt (t, ξ) = �y(t, ξ), ξ ∈ [−L, L]3, (162)

∇ y(t, ξ) · n = u(t), ξ ∈ Stop, (163)

∇ y(t, ξ) · n = 0, ξ ∈ ∂V \Stop, (164)

y(0, ξ ) = e−|ξ |2/(8L2), (165)

where ∇ and � are the gradient and Laplacian operators w.r.t. ξ , n is the outward
pointing normal, and Stop denotes the top surface Stop = {(ξ1, ξ2, ξ3) ∈ [−L, L]3 |
ξ3 = L}. The control u(t) can be considered as a uniform heat load on the top surface.
We want to compute the control u∗(t) that minimizes

J = 1000
∫ T

0

∫∫
Sside

(y(t, ξ))2 dξ dt +
∫ T

0
(u(t))2 dt, (166)

where Sside = {(ξ1, ξ2, ξ3) ∈ [−L, L]3 | ξ1 = −L}. We fix L = 0.75 and T = 2.
The spatial discretization of (162)–(166) is made by finite differences using 16 ×

16 × 16 grid points the ξ1-, ξ2-, and ξ3-directions. This leads to a model of the form
(1)–(2) with N = 163 = 4096 states. The resulting A-matrix is again dissipative. We
create the decomposition of A into submatrices Am by observing that A is diagonally
dominant. In particular, we have that

[A]i i = −
N∑
j=1
j �=i

[A]i j , (167)

where the off-diagonal elements [A]i j ( j �= i) are positive and the diagonal elements
[A]i i are negative. By associating a matrix Ãi j ∈ R

N×N to each pair (i, j)with j > i ,
we obtain a decomposition of A as

A =
N∑
j=1
j>i

Ãi j , (168)

where the matrices Ãi j ( j > i) are zero except for the entries

[[ Ãi j ]i i [ Ãi j ]i j
[ Ãi j ] j i [ Ãi j ] j j

]
= [A]i j

[−1 1
1 −1

]
(169)

Because the off-diagonal elements [A]i j ≥ 0 ( j �= i), it is easy to verify that all
the matrices Ãi j are dissipative. Also note that the matrix A contains many zero
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Fig. 5 Results for the discretized 3D heat equation

off-diagonal elements, so that many of the matrices Ãi j are zero. There are only
3(16− 1)162 = 11,520 nonzero off-diagonal elements and thus only 11,520 nonzero
matrices Ãi j . The 11,520 nonzero matrices Ãi j are randomly divided into M groups
of (approximately) equal size. The matrices Am in (5) are formed by summing the
matrices Ãi j in each group.

We again consider uniform time grids with a grid spacing h. In each time interval
[tk−1, tk), we randomly use P of the M submatrices simultaneously. In our formalism,
we thus assign a probability 1/

(M
P

)
to each of the

(M
P

)
subsets of {1, 2, . . . , M} of size
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P . The states xh(ω, t) and the optimal controls u∗
h(ω, t) are computed in the same

way as for the example in the previous subsection.
The obtained results are presented in Fig. 5. The average errors (indicated by the

markers) and the 2σ -confidence intervals (indicated by the error bars) are now esti-
mated based on 10 realizations of ω. Figure 5a–d again show the convergence rates
expected based on our theoretical results, just as in Fig. 2a–d for the example in the
previous subsection. We also observe that the errors are smaller when larger parts of
A are used simultaneously, i.e., when P/M is larger.

Figure 5e, f also shows a computational advantage of the proposed method. Natu-
rally, the computational advantage increases when the matrixAh(ω, t) is more sparse,
i.e., when P/M is smaller. This situation is significantly different from the 1D heat
equation considered in the previous subsection. For that example, the proposedmethod
did not lead to any computational advantage. Apart from the larger state dimension
N in the 3D example, this difference seems to be related to the more ‘dense intercon-
nection structure’ of the 3D problem (in which every node is typically connected to 6
neighboring nodes) compared to the 1D problem (in which every node is connected
to two neighboring nodes). This idea will be explored further in the next subsection
in which we consider a model with an even denser interconnection structure.

4.3 A FE discretization of the fractional Laplacian

We consider a controlled fractional heat equation on the a 1-D spatial domain ξ ∈
[−L, L],

yt (t, ξ) = −(−d2ξ )s y(t, ξ) + χ[−L/3,0](ξ)u1(t) + χ[L/3,2L/3](ξ)u2(t), (170)

y(t,−L) = y(t, L) = 0, y(0, ξ) = e−β2ξ2 − e−β2L2
, (171)

with the fractional power s ∈ (0, 1). We fix s = 0.7, L = 5, and β = 0.4. Note that
the control u(t) = [u1(t), u2(t)]� now has two components. Our aim is to compute
the optimal control u∗(t) = [u∗

1(t), u
∗
2(t)]� that minimizes

J (u) = 100

2

∫ T

0

∫ L

−L
y(t, ξ)2 dξ dt + 1

2

∫ T

0

(
u1(t)

2 + u22(t)
)
dt . (172)

A Finite Element (FE) discretization of (170)–(171) with N + 1 linear elements of
equal length takes the form

Eẋ(t) = Ax(t) + Bu(t), x(0) = x0, (173)

where the state x(t) evolves in R
N . Note that (173) now also contains the symmetric

and positive definite mass matrix E and is thus not exactly of the form (1), but that the
proposed method also applies to systems of this form. An explicit expression for the
stiffness matrix A can be found in [5]. Because the fractional Laplacian is a nonlocal
operator, all elements of A are nonzero. From the expressions for the coefficients of
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A in [5] we can verify that A is symmetric and diagonally dominant, i.e.

− [A]i i >

N∑
j=1
j �=i

|[A]i j |. (174)

We can now write

A =
N∑
j=1
j≥i

Ãi j =
N∑
j=1
j>i

Ãi j +
N∑
i=1

Ãii , (175)

where the matrices Ai j ∈ R
N×N ( j ≥ i) are zero except for the coefficients

[[ Ãi j ]i i [ Ãi j ]i j
[ Ãi j ] j i [ Ãi j ] j j

]
=

[−|[A]i j | [A]i j
[A]i j −|[A]i j |

]
, [Aii ]i i = [A]i i +

N∑
j=1
j �=i

|[A]i j |. (176)

Again, it is easy to verify that the matrices Ai j ( j ≥ i) are dissipative.
Now assume that N is divisable by some number P . We then decompose A into

M = P(P + 1)/2 submatrices Am as in (5) by setting

Am(p,q) =
i p∑

i=i p−1+1

iq∑
j=iq−1+1

Ãi j , q ≥ p ∈ {1, 2, . . . , P}, (177)

where i p = pN/P and m(p, q) is a bijection

m : {(p, q) ∈ {1, 2, . . . , P}2 | q ≥ p} → {1, 2, . . . , P(P + 1)/2}. (178)

We thus effectively decompose A into N/P × N/P blocks, but we treat the diagonal
in such a way that all submatrices Am are dissipative.

We only use one of the matrices Am in each time interval [tk−1, tk) and thus assign
uniform probabilities 2/(P(P + 1)) to each of the M = P(P + 1)/2 subsets of
{1, 2, . . . M} of size 1.

The results obtained for N = 96 are shown in Fig. 6. The markers and the error
bars in this figure again indicate the average and 2σ -confidence interval estimated
from 10 realizations of ω. Results are presented for for P = 4, 8, 16, and 32, which
correspond to values of M = 10, 36, 136, and 528, respectively. Note that the number
of submatrices M is now much larger than in the previous two examples, and that also
hVar[A] and the relative errors are larger than in the previous examples. Figure 6b, c
even shows relative errors that exceed 100%. However, we still observe the conver-
gence rates predicted by the theoretical results in Sect. 3 in Fig. 6a–d. In particular,
the convergence rate in Fig. 6d is again twice as high as in the other figures.
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Fig. 6 Results for the discretized 1D fractional heat equation with s = 0.7

When we inspect the computational times in Fig. 6e, f, we see that increasing M
decreases the computational time. In particular, solutions for M = 528 are typically
computed 2–3 times faster than the solutions for the original dynamics. We expect
that the computational advantage of the proposed method increases further when we
increase the state dimension N .
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5 Conclusions and discussions

5.1 Conclusions

We have proposed a general framework for randomized time-splitting in LQ optimal
control problems. It has been shown that the dynamics, the minimal values of the
cost functional, and the optimal control obtained with the proposed randomized time-
splitting method converge in expectation to their analogues in the original problem
when the grid spacing of the time grid goes to zero. The convergence rates in our
theoretical results are also observed in three numerical examples.

In two of the three considered examples, the proposed method leads to a typi-
cal reduction in computational cost of a factor 2–3. Only in the first example of a
heat equation on a 1-D spatial domain, no reduction in computational cost could be
observed. This seems to be the case because the matrix A is not very large and already
very sparse in this example.

5.2 Extension to unbounded operators

We have considered finite-dimensional systems in this paper, but the numerical exam-
ples in Sect. 4 are all obtained after spatial discretization of an infinite-dimensional
system. A natural question is therefore whether our results can be extended to an
infinite-dimensional setting. We already touched on this question in Remarks 5 and 7
and in Appendix B. In particular, at the end of Appendix Bwe indicate how results can
be extended to an infinite dimensional setting under the (strong) additional assump-
tions that all operators Am commute and have the same domain D(Am).

It should be noted that the assumption that D(Am) = D(A) is very strong and will
not be satisfied in many applications. A prototypical example is the splitting of an
advection diffusion problem with zero Dirichlet boundary conditions (represented by
A) in an advective part (represented by A1) and a diffusive part (represented by A2).
Functions in D(A2) can then satisfy the zero Dirichlet boundary conditions on the
whole boundary, but the functions in D(A1) only satisfy the zero Dirichlet boundary
conditions on the parts of the boundary where the velocity field is pointing inward.
The analysis of the RBM becomes much more subtle in these kind of situations. The
numerical results in Fig. 4 also seem to indicate that the proposed randomized time
splitting method converges under weaker assumptions than the ones in Appendix B.

The technical difficulties encountered when weakening these assumptions are
related to the difficulties in deterministic operator splitting with unbounded opera-
tors. These date back to the paper [28] by Trotter, and have been an active field of
research since then, see, e.g., [12, 16, 19, 23, 24]. As the large literature on this topic
indicates, determining the necessary conditions for the convergence of the proposed
stochastic operator splitting method with unbounded operators is an interesting but
challenging topic for future research.
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5.3 Extension to nonlinear dynamics

Another important topic for future research is the extension of our results for the
linear quadratic optimal control problem to problemswith nonquadratic cost functions
constrained by nonlinear dynamics. This extension is particularly interesting because
of the connections between the training of certain types of Deep Neural Networks
(DNNs) and optimal control, see, e.g., [4, 9, 10, 27, 29], and is also important for the
control of interacting particles systems, see [18].

In the most general setting, we would replace the linear dynamics (1) by the non-
linear dynamics

ẋ(t) = f (x(t), u(t)), x(0) = x0, (179)

where f : RN ×R
q → R

N is Lipschitz in the first variable x . As an analogue of (5),
we then write (for x ∈ R

N and u ∈ R
q )

f (x, u) =
M∑

m=1

fm(x, u), (180)

for certain Lipschitz continuous functions fm : RN × R
q → R

N . Similarly as in this
paper, we choose a time grid 0 = t0 < t1 < t2 < · · · < tK = T , enumerate the
subsets S1, S2, . . . , S2M of {1, 2, . . . , M} and assign probabilities p1, p2, . . . , p2M
to them, and randomly select a K -tuple ω = (ω1, ω2, . . . , ωK ) of indices ωk ∈
{1, 2, . . . 2M } according to the selected probabilities. We then consider the (typically
simpler) dynamics

ẋh(ω, t) =
∑

m∈Sωk

fm(xh(ω, t), uh(ω, t))

πm
, t ∈ [tk−1, tk). (181)

Extending Theorem 1 (which considers the forward dynamics with a deterministic
control uh(ω, t) = u(t)) to such a nonlinear setting seems possible along the lines of
the results for interacting-particle systems in [14]. The main difficulty is in Theorem 2
where we use the variation of constants formula to obtain an estimate for a stochastic
control uh(ω, t) (which depends on the randomly selected indices in ω). The variation
of constants formula can be extended to a nonlinear setting, see, e.g., [7], but this leads
to several additional complications which we aim to address in a future work.

When an analogue of Theorem 2 for nonlinear dynamics can be obtained, a bound
onE[|Jh(uh)− J (uh)|] as in Lemma 1 should follow relatively easily from a Lipschitz
condition on the integrand in the considered cost function. An analogue of the no-gap
condition, i.e., a bound on E[|J (u∗

h) − J (u∗)|], can then be obtained using classical
arguments from the calculus of variations and the bound on E[|Jh(uh) − J (uh)|],
similarly as for the linear-quadratic case in Theorem 3.

With these results, the suboptimality gapE[|Jh(u∗
h)− J (u∗)|] be bounded using the

analogues of Lemma 1 and Theorem 3 as follows. We start by noting that the triangle
inequality shows that
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|J (u∗
h(ω)) − J (u∗)| ≤ |J (u∗

h(ω)) − Jh(ω, u∗
h(ω))| + |Jh(ω, u∗

h(ω)) − J (u∗)|.
(182)

Taking the expectation in this inequality, we see that the first term on the RHS can be
bounded using (the analogue of) Lemma 1 and the second term on the RHS can be
bounded using (the analogue of) Theorem 3. We thus obtain a bound on E[|Jh(u∗

h) −
J (u∗)|] that is of order √

h. It is interesting to observe that this rate is slower than
the rate of order h found for the linear-quadratic case in Corollary 3. This difference
seems to occur because Corollary 3 relies on the strict convexity of the functional,
which is lost in a setting in which the dynamics are nonlinear.

5.4 Combination withmodel predictive control

As suggested in [18], it is natural to combine the proposed randomized time-splitting
methodwith anMPC strategy. The resulting algorithm is essentially a receding horizon
strategy, see, e.g., [2, 3, 25], but we now use the proposed stochastic time-splitting
method to approximate the optimal controls that need to be computed in each step.
An important element of such a receding horizon strategy is that the optimal control
is computed based on the current state of the original dynamics (1). This creates a
feedback mechanism that provides additional robustness against the errors introduced
by the proposed stochastic time-splitting method.

The receding horizon strategy introduces two additional parameters in the control
algorithm: the prediction horizon T̂ and the control horizon τ . When the prediction
horizon T̂ is too short, the difference between the controls computed on the prediction
horizon [0, T̂ ] and the desired optimal control on [0,∞) will be large. Decreasing the
control horizon τ strengthens the feedbackmechanism of theMPC strategy, whichwill
likely allow for larger errors in the proposed stochastic time-splittingmethod. This idea
could be formalized further by deriving an explicit error estimate that demonstrates
the interaction of the control horizon τ and hVar[A] (which characterizes the accuracy
of the proposed random time-splitting method).
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Appendix A: Interacting particle systems in the proposed framework

In this appendix, we explain the connection of our framework to the previously
proposed RBMs for interacting particle systems in [14, 15, 18, 21]. We consider a
(linearized first-order) system of N interacting particles

ẋi (t) = 1

N − 1

N∑
j=1
j �=i

ai j (x j (t) − xi (t)), xi (0) = x0,i , i ∈ {1, 2, . . . N }, (A1)

where the ai j ∈ R ( j �= i) are constants. To simplify the following exposition, we
assume that the number of particles N is divisible by some number P > 1.

We discuss here one particular RBMcalled RBM-1 in [14], but other variants can be
treated similarly. We first choose a time grid 0 = t0 < t1 < t2 < · · · < tK1 < tK = T
in the time interval [0, T ]. In each time interval [tk−1, tk), we then choose a random
partition of the index set {1, 2, . . . , n} into disjoint subsets Bk

r (also called batches)
of size P (r ∈ {1, 2, . . . , N/P}). We consider only the interactions between particles
that are in the same batch. To formalize this idea, note that, in each time interval
[tk−1, tk), every particle i is contained in precisely one batch Bk

r(i,k). We thus consider
the dynamics

ẋRBM,i (t) = 1

P − 1

∑
j∈Bk

r(i,k)
j �=i

ai j (xRBM, j (t) − xRBM,i (t)), xi (0) = x0,i . (A2)

To connect this idea to our framework, we write (A1) in matrix form

ẋ(t) = Ax(t), x(0) = x0, A = 1

N − 1

N∑
i, j=1
i �= j

Ãi j , (A3)

where x(t) = [x1(t), x2(t), . . . xN (t)]� and x0 = [x0,1, x0,2, . . . , x0,N ] and the entries
of the matrices Ãi j ( j �= i) are zero except for the entries

[[ Ãi j ]i j [ Ãi j ]i i
] = ai j

[
1 −1

]
. (A4)

Also the RBM-dynamics (A2) can be written in matrix form as

ẋRBM(t) = ARBM(t)xRBM(t), xRBM(0) = x0, (A5)
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where

ARBM(t) = 1

P − 1

N/P∑
r=1

∑
{i, j}⊆Bk

r

Ãi j , t ∈ [tk−1, tk). (A6)

Note that the probability that two distinct indices i and j are in the same batch (i.e.,
the probability that j �= i is in the batch Bk

r(i,k)) is (P − 1)/(N − 1) because there are

P − 1 of the N − 1 places in Bk
r(i,k) remaining after the index i has been fixed. This

factor is also visible in the definitions of A and ARBM(t).
Tomake the connection to our proposed framework,we enumerate theM = N (N−

1) interaction matrices Ai j , i.e., we choose a bijection

m : {(i, j) ∈ {1, 2, . . . , N }2 | i �= j} → {1, 2, . . . , N (N − 1)}, (A7)

and set

Am(i, j) := 1

N − 1
Ãi j . (A8)

We then need to assign probabilities pω to the 2M subsets Sω of {1, 2, . . . , M}. Natu-
rally, we only assign nonzero probabilities to subsets Sω that correspond to a partition
∪̇rBr = {1, 2, . . . , N }, i.e. sets of the form

Sω = {m(i, j) | ∃i, j,r such that i �= j and {i, j} ⊆ Br }. (A9)

Standard combinatorics shows that there are

N = N !
(P!)N/P (N/P)! , (A10)

distinct partitions of N indices into N/P subsets of size P . We assign a probability
pω = 1/N to each of the subsets of the form (A9).

It remains to compute the probabilitiesπm = πm(i, j) defined in (9), i.e. to determine
how many of the subsets Sω of the form (A9) contain m = m(i, j). When a certain
batch Br∗ contains i and j ( j �= i) there are

(N−2
P−2

)
ways to fill the remaining positions

in Br∗ with P − 2 of the N − 2 remaining indices. Once the indices in Br∗ are fixed,
there are

M = (N − P)!
(P!)N/P−1 (N/P − 1)! , (A11)

ways to distribute the remaining N − P indices into N/P − 1 subsets of size P . We
thus conclude that

πm =
(N−2
P−2

)M
N (A12)
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Using the formulas for N and M, it can be verified that

πm = P − 1

N − 1
. (A13)

It is now easy to verify that the definition of Ah(ω, t) in (11) is equivalent to the
definition of ARBM(t) in (A6).

Appendix B: An alternative for Corollary 1

In this appendix, we will prove a result similar to Corollary 1 under the additional
assumption that all matrices commute. The proof is quite intuitive and gives an idea
about how the results in this paper can be generalized to an infinite dimensional setting.

The analysis in this appendix uses the following additional assumption.

Assumption 3 Suppose that the matrices A1, A2, . . . , AM all commute pairwise, i.e.

Am Am′ = Am′ Am, (B14)

for all m,m′ ∈ {1, 2, . . . , M}.
Also observe that for any two dissipative matrices X ,Y ∈ R

N×N and vector x0 ∈
R

N we have that

|eX x0 − eY x0| =
∣∣∣∣
∫ 1

0

d

dτ
eXτ+Y (1−τ)x0 dτ

∣∣∣∣
≤

∫ 1

0
‖eXτ+Y (1−τ)‖|(X − Y )x0|dτ ≤ |(X − Y )x0|, (B15)

where it was used that Xτ + Y (1 − τ) is dissipative for τ ∈ [0, 1] because X and Y
are dissipative by assumption.

Theorem 5 Under Assumptions 1, 2, and 3, we have that

E[‖Sh(t, s)x0 − eA(t−s)x0‖2] ≤ 2h(t − s)VarW [A]|W−1x0|2, (B16)

for all 0 ≤ s ≤ t ≤ T , all x0 ∈ R
N , and all invertible matrices W.

Proof We use the notation from Remark 10, so � and k are such that s ∈ [t�−1, t�) and
t ∈ [tk−1, tk), K̃ = k − � + 1, and

t̃0 := s < t̃1 := t� < t̃2 := t�+1 < · · · < t̃K̃−1 := tk−1 < t̃K̃ := t, (B17)

see also Fig. 1 on page 24. Furthermore, we denote h̃ p := t̃ p − t̃ p−1 for p ∈
{1, 2, . . . , K̃ } and denote Aω := ∑

m∈Sω
Am/πm for ω ∈ {1, 2, . . . , 2M }. Note
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that Ah(ω, τ ) = Aωp for τ ∈ [t̃ p−1, t̃ p) and that Aω is dissipative for all ω ∈
{1, 2, . . . , 2M } because of Assumption 1.

Because the matrices Aω (with ω ∈ {1, 2, . . . , 2M }) all commute pairwise due to
Assumption 3, the formula for Sh(ω, t, s) in (94) in Remark 10 reduces to

Sh(ω, t, s)x0 = exp

⎛
⎝ K̃∑

p=1

Aωp+�−1 h̃ p

⎞
⎠ x0. (B18)

Because Assumption 1 implies that the matrix in the exponent in the formula above
and A are both dissipative, (B15) can be applied to find that

|Sh(ω, t, s)x0 − eA(t−s)x0| ≤
∣∣∣∣∣∣

K̃∑
p=1

(Aωp+�−1 − A
)
h̃ px0

∣∣∣∣∣∣ , (B19)

where it was used that
∑K̃

p=1 h̃ p = t − s. Squaring this expression yields

|Sh(ω, t, s)x0 − eA(t−s)x0|2

≤
K̃∑

p,p′=1

h̃ ph̃ p′ 〈(Aωp+�−1 − A)x0, (Aωp′+�−1
− A)x0〉. (B20)

When we take the expected value, the terms with p �= p′ disappear because

E[〈(Aωp+�−1 − A)x0, (Aωp′+�−1
− A)x0〉]

=
2M∑
ω=1

2M∑
ω′=1

〈(Aω − A)x0, (Aω′ − A)x0〉pω pω′

=
〈

2M∑
ω=1

(Aω − A)x0,
2M∑

ω′=1

(Aω′ − A)x0

〉
= 〈0, 0〉 = 0 (B21)

where the first identity follows after writing ω = ωp−�+1 and ω′ = ωp′−�+1, and
the second to last identity from (12) and (8). Therefore, only the terms with p = p′
remain after taking the expected value of (B20) and

E[|Sh(t, s)x0 − eA(t−s)x0|2]

≤
2M∑

ω�=1

2M∑
ω�+1=1

· · ·
2M∑

ω
�+K̃−1=1

K̃∑
p=1

h̃2p|(Aωp+�−1 − A)x0|2 pω�
pω�+1 . . . pω

�+K̃−1

=
K̃∑
p=1

h̃2p

2M∑
ω=1

|(Aωp+�−1 − A)x0|2 pω. (B22)
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The proof is completed with two straightforward observations. First of all, note that
because h̃ p ≤ h

K̃∑
p=1

h̃2p ≤
K̃∑
p=1

hh̃ p = h
K̃∑
p=1

h̃ p = h(t − s). (B23)

Secondly, we have that

2M∑
ω=1

|(Aωp+�−1 − A)x0|2 pω =
2M∑
ω=1

|(Aωp+�−1 − A)WW−1x0|2 pω

≤
2M∑
ω=1

‖(Aωp+�−1 − A)W‖2|W−1x0|2 pω. (B24)

The result follows after inserting (B23) and (B24) into (B22). ��
The proof of Theorem 5 extends naturally to an infinite dimensional setting as

follows. Most of the definitions and notations from Sect. 2 remain unchanged, apart
from the following.

• The state and the control no longer evolve in the finite-dimensional spaces RN

and R
q , but in the (potentially) infinite-dimensional Hilbert spaces X and U ,

respectively.
• A and Am (with m ∈ {1, 2, . . . , M}) now represent the generators of C0-
semigroups eAt and eAmt on the Hilbert space X with domains D(A) and D(Am),
respectively.

• B is now a bounded linear operator from U to X .

For simplicity we assume that the domains of the operators Am are all the same
and equal to the domain of A, i.e. D(Am) = D(A). For a value of λ in the resolvent
set of A, the resolvent W = (A− λI )−1 is a bounded operator X → D(A) ⊂ X with
(unbounded) inverse A−λI and one now easily verifies that AW and AmW represent
bounded operators on X , meaning that VarW [A] as introduced inRemark 5 is bounded.
For |W−1x0| = |(A − λI )x0| to be bounded, we require that x0 ∈ D(A). The proof
of Theorem 5 can thus be applied in this setting with the additional assumption that
x0 ∈ D(A). The proof remains effectively unchanged.

Note that when we want to use Theorem 5 to obtain a result similar to Theorem 2,
we also need a smoothness assumption on the input operator B. In particular, similarly
as (104) in Theorem 2, we would then like to bound

∫ t

0

∣∣∣(Sh(ω, t, s) − eA(t−s))Buh(ω, s)
∣∣∣ ds, (B25)

which is only possible with Theorem 5 when |W−1Buh(ω, s)| is finite. To this end
one would typically require that the range of B is contained in D(A).
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