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A B S T R A C T

Phase-field models are a leading approach for realistic fracture problems. They treat the crack as
a second phase and use gradient terms to smear out the crack faces, enabling the use of standard
numerical methods for simulations. This regularization causes cracks to occupy a finite volume
in the reference, and leads to the inability to appropriately model the closing or contacting –
without healing – of crack faces. Specifically, the classical idealized crack face tractions are
that the shear component is zero, and that the normal component is zero when the crack opens
and identical to the intact material when the crack closes. Phase-field fracture models do not
replicate this behavior.

This work addresses this shortcoming by introducing an effective crack energy density
that endows the regularized (finite volume) phase-field crack with the effective properties
of an idealized sharp crack. The approach is based on applying the QR (upper triangular)
decomposition of the deformation gradient tensor in the basis of the crack, enabling a
transparent identification of the crack deformation modes. By then relaxing over those modes
that do not cost energy, an effective energy is obtained that has the intact response when the
crack faces close and zero energy when the crack faces are open. The effective energy is often,
but not always, consistent with the classical crack-face tractions; it is shown here that there
generally does not exist a stored energy that is consistent both with the classical crack-face
tractions and with reproducing the intact response when the crack closes.

A highlight of this approach is that it lies completely in the setting of finite deformation,
enabling potential application to soft materials and other settings with large deformation or
rotations. The model is applied to numerically study representative complex loadings, including
(1) cyclic loading on a cavity in a soft solid that shows the growth and closing of cracks in
complex stress states; and (2) cyclic shear that shows a complex pattern of crack branching
driven by the closure of cracks.

. Introduction

Phase-field approaches to fracture regularize the singular crack and thereby enable easy numerical calculations for complex
racture problems. The key idea is to introduce an additional scalar field 𝜙 and then regularize the field through the introduction of
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Fig. 1. The goal is to formulate an effective crack volume energy such that the regularized crack volume (top right) has the same response as the sharp crack
(top left). The QR decomposition enables us to clearly separate the deformation into distinct modes, and we then minimize over modes (a) and (b), while
retaining the energy associated with modes (c), (d), and (e).

gradient terms, of the form |∇𝜙|2, in the energy. The field 𝜙 tracks the level of damage in the domain, and the crack corresponds
to regions that are completely damaged. The regularization term |∇𝜙|2 is consequently related to the energy associated with the
formation of fracture surfaces. This regularization enables the use of standard computational methods, specifically the finite element
method (FEM), to approximate the evolution of cracks in a specimen under load.

The regularization, however, causes cracks to occupy a finite volume in the reference configuration, and leads to unphysical
behavior when an existing crack is subject to loads that causes the crack faces to close.2 For instance, the earliest phase-field models
of fracture used simply that the damaged region has zero elastic energy; however, this causes cracks in this model to grow even
under compressive load as it provides a means of relieving elastic energy of all kinds, not just those that drive crack growth in real
systems. In addition, these models allow for interpenetration of the crack faces. To address these issues, Miehe et al. (2010) proposed
a partition of the elastic energy into tensile and compressive parts, and allowed the damaged region to sustain only the compressive
part. Related to this, Amor et al. (2009) proposed a partition of the energy into compressive hydrostatic, tensile hydrostatic, and
deviatoric parts, and allowed the damaged region to sustain only the compressive hydrostatic part. However, this class of approaches
has a key shortcoming: the energy partitioning does not consider the crack direction at all. For instance, tension across the crack
faces that drives crack growth is not distinguished from tension along the length of the crack that does not directly drive crack
growth. Appendix A describes specific instances where this class of approaches gives incorrect stresses; in turn, this can lead to
incorrect driving forces for crack growth and affect the crack-parallel T-stress.

Based on the recognition that it is essential to consider the crack orientation in defining the energy of the damaged region, Strobl
and Seelig (2015, 2016), Agrawal (2016), Steinke and Kaliske (2019) and Fei and Choo (2020) proposed models, in the linear
regime, for the damaged elastic energy that account for the crack orientation. The current work builds on these approaches in that
we account for the crack normal in defining the energy density of the damaged region. Fig. 1 summarizes our overall approach: we
aim to derive an effective crack energy such that a regularized crack volume has the same response as an idealized sharp crack. We
achieve this by separating the kinematics associated with each of the deformation modes in Fig. 1, and then appropriately treating
each mode.

Our technical strategy in brief is as follows. Rather than starting with the typical polar decomposition of the deformation gradient
𝑭 , we use the QR or Gram–Schmidt multiplicative decomposition of 𝑭 into a rotation and an upper-triangular part in the frame of
the crack. The upper triangular representation in the frame of the crack provides a transparent and direct measure of the opening
or closing of the crack face, the stretch along the length of the crack, and the crack face shear deformation. We then obtain the
damaged elastic energy by minimizing the intact energy over the crack face shear – using that the idealized crack cannot sustain shear
tractions – and minimizing it over the crack opening stretch if the crack is opening. This strategy provides a constructive approach
to obtaining the effective damaged energy given the form of the intact energy. We demonstrate the efficacy of this approach in
numerical calculations: first, of the elastic response of cracks that do not evolve; and, second, of the response and growth of cracks
in complex settings that include compressive and cyclic loadings that cause crack closure.

2 We use ‘‘close’’ to denote crack faces that come in contact and not that the crack heals; we do not allow cracks to heal in this work.
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1.1. The classical phase-field model of fracture

The starting point of phase-field modeling of brittle fracture is the influential variational model of quasistatic crack evolution
ue to Francfort and Marigo (1998). In its simplest form, it consists in minimizing the energy

𝐸[𝒚, 𝛤 ] = ∫𝛺⧵𝛤
𝑊 (∇𝒚) d𝑉𝒙 + 𝐺𝑐𝑛−1(𝛤 ) (1.1)

ver all admissible deformations 𝒚 ∶𝛺 → R𝑛 and cracks 𝛤 ⊂ 𝛺. Here 𝛺 is an open set of R𝑛 (𝑛 = 2, 3) representing the body in its
reference configuration, 𝑛−1 is the surface measure, 𝐺𝑐 is the toughness constant or work to fracture, and 𝑊 is the stored energy
density of the material. The evolution of the system is typically given by an external loading that depends on the time 𝑡, whose
nergy is added to (1.1) and make up the total energy of the system. The proposed evolution law postulates that at each time 𝑡,
he pair deformation-crack (𝒚(𝑡), 𝛤 (𝑡)) minimizes the total energy and that the crack set 𝛤 (𝑡) is nondecreasing with 𝑡. This model is
nspired by Griffith’s (Griffith, 1921) theory of fracture, but its main advantage is that the crack path is not specified a priori but
ather it is selected by energy minimization.

This model can be recast as a free-discontinuity problem in the same way that the Mumford–Shah (Mumford and Shah, 1989)
odel for image segmentation was recast as a free-discontinuity model by De Giorgi et al. (1989). In fact, the earlier work by
mbrosio and Braides (1995) shows the following preliminary version of a free-discontinuity model that encompasses elastic and

racture energies, but in the static case. As typical in free-discontinuity problems (Ambrosio et al., 2000), the main idea is to unify
he pair deformation-crack (𝒚, 𝛤 ) not as a Sobolev function 𝒚 defined in 𝛺 ⧵ 𝛤 together with a crack set, but as an 𝑆𝐵𝑉 function 𝒚
efined in 𝛺 whose jump set 𝐽𝒚 is 𝛤 . In this way, the only variable is the deformation 𝒚 and the energy (1.1) is substituted by

𝐸[𝒚] = ∫𝛺
𝑊 (∇𝒚) d𝑉𝒙 + 𝐺𝑐𝑛−1(𝐽𝒚). (1.2)

hen the time-dependence is taken into account, and, hence, the irreversibility of the crack reflecting that cracks do not heal, the
erm 𝑛−1(𝐽𝒚) is substituted by 𝑛−1(𝐽𝒚 ∪𝐾(𝑡)), where 𝐾(𝑡) is the union of all previous crack sets of the deformation, i.e., ⋃𝑠<𝑡 𝐽𝒚(𝑠).
he existence of a quasistatic evolution for this model was first proved by Francfort and Larsen (2003) and Dal Maso et al. (2005),
nd then underwent many generalizations.

A direct approach to the numerical minimization of the functional is intractable using standard methods. A fruitful procedure
s the construction of an approximating sequence of elliptic functionals that 𝛤 -converge to the functional to approximate (see,
.g., Braides, 1998). Inspired by the result of Modica and Mortola (1977), Modica (1987), Ambrosio and Tortorelli (1990, 1992)
ntroduced an approximation of the Mumford–Shah model, which, in its vectorial version, turns out to be an approximation of (1.2).
t reads as follows:

𝐸[𝒚, 𝜙] = ∫𝛺

(

𝜙2 + 𝜂𝜖
)

𝑊 (∇𝒚) d𝑉𝒙 + 𝐺𝑐 ∫𝛺

(

(1 − 𝜙)2

4𝜖
+ 𝜖|∇𝜙|2

)

d𝑉𝒙. (1.3)

ere 𝜙 is a new variable, the crack indicator field, and 𝜂𝜖 is an infinitesimal that goes to zero faster than 𝜖. The field 𝜙 satisfies
≤ 𝜙 ≤ 1 everywhere and when 𝜙(𝒙) ≃ 1 it signals that the material at 𝒙 is healthy, whereas 𝜙(𝒙) ≃ 0 means that the material at 𝒙

s damaged. The number 𝜂𝜖 makes the first integral of (1.3) elliptic, and, hence it avoids the degeneracy in the regions when 𝜙 = 0.
he 𝛤 -convergence of (1.3) to (1.2) was proved (under different assumptions on 𝑊 ) by Focardi (2001) and Chambolle (2004) (see
lso Braides et al., 2007; Henao et al., 2015). As a consequence of the 𝛤 -convergence result, as 𝜖 → 0, minimizers (𝒚𝜖 , 𝜙𝜖) at the
evel 𝜖 of the functional (1.3) tend to (𝒚, 1), where 𝒚 is a minimizer of (1.2).

When time-independence is put into the model, the irreversibility of the crack is translated into the restriction that 𝜙(𝑡) is
ondecreasing with 𝑡.

Numerical studies and experiments for this model can be found in Bourdin and Chambolle (2000), Bourdin et al. (2000),
iacomini (2005), Bourdin (2007) and Burke et al. (2010). See also the review paper (Bourdin et al., 2008). The model has also
een widely characterized and applied in the mechanics community; a sample from this vast literature include Clayton and Knap
2014, 2015), da Silva Jr. et al. (2013), Lo et al. (2019), Ambati et al. (2015), Sun et al. (2021), Agrawal and Dayal (2017), Wu
t al. (2020), Kamensky et al. (2018), Moutsanidis et al. (2018), Diehl et al. (2022) and Clayton (2021); particularly, we highlight
he important work of Abdollahi and Arias (2012) that deals with developing effective crack energies in the context of electrical
oundary conditions on the crack face.

.2. The proposed model

We make some modifications to the basic model (1.3). First, we add an additional field that keeps track of the orientation of
he crack3; this is a vector field 𝒅, which is imposed to have norm |𝒅| ≤ 1. A value |𝒅| ≃ 0 indicates that the material is healthy,
hereas |𝒅| ≃ 1 indicates that the material is damaged (cracked). The direction 𝒏 ∶= 𝒅∕|𝒅| indicates the normal to the crack. We
ill explain later how 𝒅 evolves in a quasistatic evolution. The comparison between this 𝒅 and the 𝜙 of model (1.3) is not direct,
ut, in a sense, |𝒅| plays the role of 1 − 𝜙, while 𝒅 should be parallel to ∇𝜙.

3 The essentially-similar idea of accounting for crack orientations and level of damage through tensorial internal variables was introduced in continuum
amage mechanics a few decades ago, e.g., Murakami (1988), Lemaitre and Chaboche (1994, Section 7.3.1); we thank Pradeep Sharma for mentioning this to
3
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We will also introduce a new energy term 𝑊d depending on ∇𝒚 and 𝒏 that is only activated in the cracked region. The subscript
d in 𝑊d stands for ‘damaged’. The dependence on 𝒏 makes it possible to distinguish the different deformation modes, according to
whether they are of extension/compression type or shear type with respect to the crack. Thus, 𝑊d replaces 𝑊 as the energy in the
cracked region. The fictional effective material that is placed in the ‘‘crack volume’’ in the reference configuration is no longer taken
to have zero elastic energy (as in the classical model explained in Section 1.1), but instead has nonzero elastic energy for specific
deformation modes and zero elastic energy for other modes, as sketched in Fig. 1. The modes are distinguished through the local
orientation of the crack (obtained from 𝒏) and the elastic energy of the nonzero modes are set up to match the elastic response of
the original material 𝑊 . The specific form of 𝑊d will be described in Section 2.

The volume energy will be a convex combination between the bulk energy 𝑊 and the cracked energy 𝑊d. We impose the convex
restriction |𝒅| ≤ 1, and, in analogy with (1.3), the volume energy will be

∫𝛺

(

(1 − |𝒅|)2𝑊 (∇𝒚) +
(

1 − (1 − |𝒅|)2
)

𝑊d (∇𝒚,𝒏)
)

d𝑉𝒙. (1.4)

In the regions where the material is healthy (|𝒅| ≃ 0) the bulk energy is essentially 𝑊 , and where the material is damaged (|𝒅| ≃ 1)
the bulk energy is essentially 𝑊d. When the material is healthy, we have |𝒅| ≃ 0 so the unit vector 𝒏 is undefined or ill-defined, but
this is not a problem because 𝑊d is multiplied by (1 − (1 − |𝒅|)2).

In addition, we will add an infinitesimal 𝜂𝜀 > 0 to the factor in 𝑊 of the bulk energy in (1.4), as in the Ambrosio–Tortorelli
ormulation. The presence of this term 𝜂𝜖 prevents the loss of ellipticity (i.e., the degeneracy) in a region where the material is
otally cracked (when |𝒅| ≃ 1). This infinitesimal has the property 𝜂𝜖 ≪ 𝜖𝑝−1, and is imposed to ensure the 𝛤 -convergence of this
odel to the sharp-interface model of fracture (1.2), as in Focardi (2001), Chambolle (2004), Braides et al. (2007) and Henao et al.

2015). Here 𝑝 is the growth exponent of 𝑊 at infinity (basically, the exponent of |𝑭 | in the expression of 𝑊 ), which does not play
n important role for the moment; for example, for a Mooney–Rivlin material, 𝑝 = 2.

We will also add the (Modica–Mortola or Ambrosio–Tortorelli) term

∫𝛺

(

|𝒅|2

2𝜖
+ 𝜖

2
|∇𝒅|2

)

d𝑉𝒙,

hich is expected to converge to the sharp-energy term as 𝜀→ 0.
All in all, the proposed energy is

𝐸[𝒚,𝒅] = ∫𝛺

(

((1 − |𝒅|)2 + 𝜂𝜖)𝑊 (∇𝒚) +
(

1 − (1 − |𝒅|)2
)

𝑊d (∇𝒚,𝒏)
)

d𝑉𝒙 + 𝐺𝑐 ∫𝛺

(

|𝒅|2

2𝜖
+ 𝜖

2
|∇𝒅|2

)

d𝑉𝒙 (1.5)

ith the restriction |𝒅| ≤ 1.

otation. Vector, matrices and higher order tensors are written in boldface.
The set of 3 × 3 matrices with positive determinant is denoted by R3×3

+ , while 𝑆𝑂(3) stands for its subset of rotations. Analogous
otation is used in dimension 2.

The inverse of an invertible matrix 𝑭 is 𝑭 −1, its transpose is 𝑭 𝑇 and the inverse of its transpose is 𝑭 −𝑇 . Its determinant is det 𝑭 ,
ts cofactor cof 𝑭 , which satisfies cof 𝑭 = (det 𝑭 )𝑭 −𝑇 . Its norm |𝑭 | is the square root of ∑𝑖𝑗 𝐹

2
𝑖𝑗 .

Given two vectors 𝒂, 𝒃, its tensor product 𝒂⊗ 𝒃 is the matrix with components (𝑎 ⊗ 𝑏)𝑖𝑗 = 𝑎𝑖𝑏𝑗 .

tructure of the paper. In Section 2, we define the effective energy 𝑊d and show its main properties. As a preliminary, we recall
he QR decomposition of a matrix. In Section 3, we recall the classical crack face traction condition for smooth frictionless cracks
nd compare it with the condition satisfied by 𝑊d. Sections 4–6 are devoted to the calculation of examples of effective energies 𝑊d
iven a stored energy 𝑊 . We treat both the 2D and the 3D cases. Precisely, in Section 4, we deal with a Mooney–Rivlin energy, in
ection 5 with a (𝑝, 𝑞)-energy (a generalization of Mooney–Rivlin allowing for general – not necessarily quadratic – exponents 𝑝 and
), and in Section 6 with a very general energy 𝑊 ; in the latter case, of course, we cannot give an explicit expression for 𝑊d. In
ection 7, we develop the theory for small strain: given an energy 𝑊 , we build the effective energy 𝑊d, and then approximate it by
eglecting terms that are higher-order than quadratic in the strain. In Section 8, we describe the numerical implementation, with
pecial emphasis on the irreversibility of the crack. In Section 9, we present some numerical examples; all of these are in the setting
f large deformations. Section 10 is the concluding discussion. In Appendix A, we discuss some deficiencies of the energy-splitting
ethod, which, in fact, was one of the motivation to construct the energy 𝑊d of this article. In Appendix B, we collect the proofs

f all results stated in the article.

. Effective energy for regularized cracks

In this section we define the effective energy 𝑊d given an energy 𝑊 . More precisely, in Section 2.1 we describe the properties
hat such an effective energy should have. In Section 2.2 we recall the QR decomposition of a matrix, which provides us with
language to express the desirable properties of 𝑊d. We also recall the concept of frame-indifference for the energy density. In

ection 2.3 we define 𝑊d as a minimization of 𝑊 over certain modes. We also state the main properties of 𝑊d. Section 2.4 is a
emark about the graph of 𝑊d(𝑭 ,𝒏) in terms of 𝒏: while the definition of 𝑊d was done so that 𝑊d(𝑭 ,𝒏) = 0 for certain orientations
4
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Fig. 2. The top row shows different loadings, and the middle and lower rows show the idealized deformation for intact and cracked specimens, respectively.
Based on this idealization, we assign zero energy to modes (a) and (b).

2.1. Motivation and heuristics

The term 𝑊d is the main contribution of this work, and will make a crucial difference between our model and the original
Ambrosio–Tortorelli model and variants (see Section 1.1). The starting idea for a definition of 𝑊d is the following. Imagine that 𝑊
is isotropic and a crack has been formed. Then, close to the crack the effective response should not be isotropic anymore, and this
non-isotropy will be detected by the effective energy 𝑊d.

This 𝑊d has two variables: the deformation gradient ∇𝒚 and a unit vector 𝒏, which is expected to be normal to the crack. The
definition of 𝑊d should be such that, after the crack has been formed, some basic deformation modes (shear, compression, extension)
will or will not have energy, according to their orientation relative to the crack. In this heuristic explanation, we assume implicitly
that 𝑊 ≥ 0 and 𝑊 (𝑰) = 0. Specifically, we want the following basic modes to carry no effective energy:

(a) Extension perpendicular to the crack.
(b) Shear parallel to the crack.

On the other hand, we expect the following basic modes to have positive energy:

(c) Compression parallel to the crack.
(d) Extension parallel to the crack.
(e) Compression perpendicular to the crack.

Specifically, modes (c) and (e) should have the same energy as 𝑊 , while mode (d), slightly less so as to take into account the energy
necessary to increase the volume of the body; in the linear setting, this is equivalent to considering that the Poisson ratio of the
material is typically strictly positive. Any other mode will carry some effective energy, but less than 𝑊 , so 0 < 𝑊d < 𝑊 .

See Fig. 2 for a 2D representation of modes (a)–(e).

2.2. QR decomposition and frame-indifference

In this section we state the key representation result of the deformation gradient that will be used to formulate the definition
of 𝑊d. Henceforth we will use the following notation for triangular matrices: for an orthonormal basis {𝒕1, 𝒕2,𝒏}, and numbers
𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 > 0 and 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 ∈ R, we define

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 ) ∶= 𝐴𝒏𝒏𝒏⊗ 𝒏 + 𝐴𝒕1𝒕1 𝒕1 ⊗ 𝒕1 + 𝐴𝒕2𝒕2 𝒕2 ⊗ 𝒕2 + 𝐴𝒕1𝒏𝒕1 ⊗ 𝒏 + 𝐴𝒕2𝒏𝒕2 ⊗ 𝒏 + 𝐴𝒕1𝒕2 𝒕1 ⊗ 𝒕2. (2.1)

If the basis considered is the canonical basis {𝒆1, 𝒆2, 𝒆3}, instead of 𝐴𝒆𝑖𝒆𝑗 we will write 𝐴𝑖𝑗 .

Proposition 2.1. For any 𝑭 ∈ R3×3
+ and any orthonormal basis {𝒕1, 𝒕2,𝒏} there exist unique

𝑹 ∈ 𝑆𝑂(3), 𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 > 0, 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 ∈ R

such that

𝑭 = 𝑹𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 ).

We remark that QR decompositions have been applied for creating constitutive equations in elasticity in the past few years (Paul
et al., 2021; Clayton and Freed, 2020; Srinivasa, 2012; Freed et al., 2020), where this approach was shown to provide important
advantages. The coefficients of an upper triangular matrix provide a clear interpretation in terms of compression, extension and
5
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shear in a specified frame, as opposed to the typical polar decomposition. With this language, we can describe the modes (a)–(e)
precisely:

(a) 𝑭 = 𝐴𝒏𝒏𝒏⊗ 𝒏 + 𝒕1 ⊗ 𝒕1 + 𝒕2 ⊗ 𝒕2 with 𝐴𝒏𝒏 ≥ 1.
(b) 𝑭 = 𝑰 + 𝐴𝒕1𝒏𝒕1 ⊗ 𝒏 + 𝐴𝒕2𝒏𝒕2 ⊗ 𝒏 with 𝐴𝒕1𝒏, 𝐴𝒕2𝒏 ∈ R.
(c) 𝑭 = 𝒏⊗ 𝒏 + 𝐴𝒕1𝒕1 𝒕1 ⊗ 𝒕1 + 𝐴𝒕2𝒕2 𝒕2 ⊗ 𝒕2 with 0 < 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 < 1.
(d) 𝑭 = 𝒏⊗ 𝒏 + 𝐴𝒕1𝒕1 𝒕1 ⊗ 𝒕1 + 𝐴𝒕2𝒕2 𝒕2 ⊗ 𝒕2 with 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 ≥ 1.
(e) 𝑭 = 𝐴𝒏𝒏𝒏⊗ 𝒏 + 𝒕1 ⊗ 𝒕1 + 𝒕2 ⊗ 𝒕2 with 0 < 𝐴𝒏𝒏 < 1.

The explicit expression of 𝑹 and 𝑨 of the QR decomposition is cumbersome. Nevertheless, the coefficient 𝐴𝒏𝒏, which will be the
ost relevant in the sequel, can be given an easy expression.

emma 2.1. Let 𝑭 ∈ R3×3
+ and let {𝒕1, 𝒕2,𝒏} be an orthonormal basis. Let 𝑭 = 𝑹𝑨 be its QR decomposition with respect to that basis,

ccording to Proposition 2.1. Then

𝐴𝒏𝒏 = 1
|

|

|

𝑭 −𝑇 𝒏||
|

. (2.2)

For the sake of completeness, we recall that a function 𝑊 ∶R3×3
+ → R is frame-indifferent when 𝑊 (𝑭 ) = 𝑊 (𝑹𝑭 ) for all 𝑭 ∈ R3×3

+
nd 𝑹 ∈ 𝑆𝑂(3). Since frame-indifference is a physical requirement we will henceforth impose that our stored-energy function 𝑊 is
rame-indifferent.

Naturally, 𝑊d must be frame-indifferent, too. Since the crack (and, hence 𝒏) is viewed in the reference configuration, the
rame-indifference for 𝑊d takes the form

𝑊d(𝑭 ,𝒏) = 𝑊d(𝑹𝑭 ,𝒏), (2.3)

or all 𝑭 ∈ R3×3
+ , all 𝑹 ∈ 𝑆𝑂(3) and all unit vectors 𝒏. In addition, as 𝒏 is determined up to a sign, 𝑊d must satisfy

𝑊d(𝑭 ,𝒏) = 𝑊d(𝑭 ,−𝒏). (2.4)

emark 2.1 (Frame Indifference in Terms of the Cauchy–Green Tensor). An equivalent way of expressing frame-indifference is to require
hat 𝑊 (𝑭 ) be able to be written as 𝑊 𝑪 (𝑪) = 𝑊 (𝑭 ), where 𝑪 = 𝑭 𝑇𝑭 ; equivalently, that 𝑊 (𝑭 ) can be expressed as 𝑊 𝑼 (𝑼 ) = 𝑊 (𝑭 ),
here 𝑼 is the tensor square root of 𝑪 (the symmetric positive definite matrix of the polar decomposition of 𝑭 ).

Here, we propose to work with the following decomposition of 𝑪 :

𝑨𝑇𝑨 = 𝑪 , where 𝑨 = 𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 ). (2.5)

rom Proposition 2.1, 𝑨 is unique given the orthonormal basis, i.e., 𝑨 is a function of 𝑪 given 𝒕1, 𝒕2,𝒏. Therefore, any energy function
ased on 𝑨 is frame-indifferent. □

.3. Relaxation over modes

In this section, given 𝑊 , we provide a definition of 𝑊d, based on relaxation over modes. We recapitulate the properties we
equire for 𝑊d: assuming that 𝑊 ≥ 0 and 𝑊 (𝑰) = 0, the effective energy must have zero energy for modes (a)–(b) of Section 2.1,
he same energy as 𝑊 for modes (c) and (e), and an intermediate energy for mode (d) and, in fact, any other mode. Moreover, it
ust satisfy (2.3) and (2.4). In addition, since it is an effective energy it should be 0 ≤ 𝑊d ≤ 𝑊 .

Among the many ways to define an energy density 𝑊d with the properties above, we propose one based on minimization over
odes, as we will develop in the following paragraphs.

roposition 2.2. Let 𝑊 ∶R3×3
+ → R be continuous and satisfy that

𝑊 (𝑭 ) → ∞ as det 𝑭 → 0 or |𝑭 | → ∞. (2.6)

et {𝒕1, 𝒕2,𝒏} be an orthonormal basis of R3. Then:

(a) For each 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 > 0 and 𝐴𝒕1𝒕2 ∈ R, the minimum

min
𝐴𝒏𝒏>0

𝐴𝒕1𝒏 ,𝐴𝒕2𝒏∈R

𝑊
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 )
)

(2.7)

exists.
(b) For each 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒏𝒏 > 0 and 𝐴𝒕1𝒕2 ∈ R, the minimum

min
𝐴𝒕1𝒏 ,𝐴𝒕2𝒏∈R

𝑊
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 )
)

6

exists.
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(c) For each 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 > 0 and 𝐴𝒕1𝒕2 ∈ R, the minimum

𝐴∗
𝒏𝒏 = min

{

𝐴̄𝒏𝒏 > 0 ∶ there exist 𝐴∗
𝒕1𝒏

and 𝐴∗
𝒕2𝒏

such that

inf
𝐴𝒏𝒏>0

𝐴𝒕1𝒏 ,𝐴𝒕2𝒏∈R

𝑊
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 )
)

= 𝑊
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴̄𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴
∗
𝒕1𝒏
, 𝐴∗

𝒕2𝒏
, 𝐴𝒕1𝒕2 )

)}

exists.

We are in a position to define the effective energy.

Definition 2.1. Let {𝒕1, 𝒕2,𝒏} be an orthonormal basis of R3. Let 𝑊 ∶R3×3
+ → R be continuous, frame-indifferent and satisfy (2.6).

Given 𝑭 ∈ R3×3
+ , let 𝑭 = 𝑹𝑨 be the QR decomposition of 𝑭 with respect to the basis {𝒕1, 𝒕2,𝒏}, with

𝑨 = 𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 ).

Let 𝐴∗
𝒏𝒏 be as in Proposition 2.2. We define

𝑊d (𝑭 ,𝒏) =
⎧

⎪

⎨

⎪

⎩

min 𝐴′𝒏𝒏>0
𝐴′𝒕1𝒏

,𝐴′𝒕2𝒏
∈R

𝑊
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴
′
𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴

′
𝒕1𝒏
, 𝐴′

𝒕2𝒏
, 𝐴𝒕1𝒕2 )

)

, if 𝐴𝒏𝒏 ≥ 𝐴∗
𝒏𝒏,

min𝐴′
𝒕1𝒏

,𝐴′
𝒕2𝒏

∈R𝑊
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴
′
𝒕1𝒏
, 𝐴′

𝒕2𝒏
, 𝐴𝒕1𝒕2 )

)

, if 𝐴𝒏𝒏 < 𝐴∗
𝒏𝒏.

The next result provides an alternative definition of 𝑊d that does not rely so heavily on the QR decomposition; in fact, only on
𝐴𝒏𝒏, which, in turn, can be given the closed-form formula of Lemma 2.1. Thus, we provide a way of computing 𝑊d without using
Definition 2.1, which in some situations is useful for computational and theoretical purposes.

Proposition 2.3. Let {𝒕1, 𝒕2,𝒏} be an orthonormal basis of R3. Let 𝑊 ∶ R3×3
+ → R be continuous, frame-indifferent and satisfy (2.6).

Given 𝑭 ∈ R3×3
+ , let 𝐴𝒏𝒏 be as in (2.2). Then

𝐴∗
𝒏𝒏 = 𝐴𝒏𝒏 × min

{

𝐴̄′′
𝒏𝒏 > 0 ∶ there exist 𝐴̄′′

𝒕1𝒏
, 𝐴̄′′

𝒕1𝒏
∈ R such that

min
𝐴′′𝒏𝒏>0

𝐴′′𝒕1𝒏
,𝐴′′𝒕2𝒏

∈R

𝑊
(

𝑭𝑨𝒕1 ,𝒕2 ,𝒏

(

𝐴′′
𝒏𝒏, 1, 1, 𝐴

′′
𝒕1𝒏
, 𝐴′′

𝒕2𝒏
, 0
))

= 𝑊
(

𝑭𝑨𝒕1 ,𝒕2 ,𝒏

(

𝐴̄′′
𝒏𝒏, 1, 1, 𝐴̄

′′
𝒕1𝒏
, 𝐴̄′′

𝒕2𝒏
, 0
))

}

(2.8)

and

𝑊d (𝑭 ,𝒏) =
⎧

⎪

⎨

⎪

⎩

min 𝐴′′𝒏𝒏>0
𝐴′′𝒕1𝒏

,𝐴′′𝒕2𝒏
∈R

𝑊
(

𝑭𝑨𝒕1 ,𝒕2 ,𝒏

(

𝐴′′
𝒏𝒏, 1, 1, 𝐴

′′
𝒕1𝒏
, 𝐴′′

𝒕2𝒏
, 0
))

, if 𝐴𝒏𝒏 ≥ 𝐴∗
𝒏𝒏,

min𝐴′′
𝒕1𝒏

,𝐴′′
𝒕2𝒏

∈R𝑊
(

𝑭𝑨𝒕1 ,𝒕2 ,𝒏

(

𝐴𝒏𝒏, 1, 1, 𝐴′′
𝒕1𝒏
, 𝐴′′

𝒕2𝒏
, 0
))

, if 𝐴𝒏𝒏 < 𝐴∗
𝒏𝒏.

The following result shows the invariance properties of 𝑊d. We recall that the group  of symmetries of 𝑊 is the set of 𝑸 ∈ 𝑆𝑂(3)
such that 𝑊 (𝑭𝑸) = 𝑊 (𝑭 ) for all 𝑭 ∈ R3×3

+ , and that a material is isotropic if  = 𝑆𝑂(3).

Proposition 2.4. Let {𝒕1, 𝒕2,𝒏} be an orthonormal basis and let 𝑭 ∈ R3×3
+ . Let 𝑊 ∶R3×3

+ → R be continuous, frame-indifferent and satisfy
(2.6). Then:

(a) 𝑊d(𝑭 ,𝒏) does not depend on 𝒕1, 𝒕2.
(b) 𝑊d(𝑭 ,𝒏) = 𝑊d(𝑭 ,−𝒏)
(c) 𝑊d(𝑸𝑭 ,𝒏) = 𝑊d(𝑭 ,𝒏) for all 𝑸 ∈ 𝑆𝑂(3).
(d) If  ⊂ 𝑆𝑂(3) is the group of symmetries of 𝑊 then 𝑊d(𝑭𝑸𝑇 ,𝑸𝒏) = 𝑊d(𝑭 ,𝒏) for all 𝑸 ∈ .
(e) If 𝑊 is isotropic then 𝑊d(𝑭𝑸𝑇 ,𝑸𝒏) = 𝑊d(𝑭 ,𝒏) for all 𝑸 ∈ 𝑆𝑂(3).

Of course, this proposition describes desirable properties for an effective energy 𝑊d: properties (a)–(b) show that 𝑊d depends
on the direction perpendicular to the crack (and not on the sense or the other elements of the orthonormal basis), while property
(c) expresses its frame-indifference; see (2.3) and (2.4). Lists (d)–(e) express that the symmetries of 𝑊 are transferred to 𝑊d, but
with a caveat: when the deformation gradient 𝑭 changes to 𝑭𝑸𝑇 then normal 𝒏 has to change to 𝑸𝒏. Indeed, one of the original
motivations for 𝑊d was that the isotropy of 𝑊 is broken when the deformation gradient 𝑭 changes to 𝑭𝑸𝑇 and the normal 𝒏
remains unchanged.

2.4. Low energy crack orientations from the effective energy

Typically, we expect cracks to be oriented such that the crack normal is aligned with the local dominant tensile direction. In
our model, this is achieved if, given 𝑭 , we have that 𝑊d (𝑭 ,𝒏) is minimized for 𝒏 aligned with the dominant tensile direction. We
7

examine this question here, and find that the expected direction is a global minimum but there exist other local minima.
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Fig. 3. Graph of 𝑊d(𝑭 ,𝒏)∕𝜇 as a function of 𝜃, with 𝜆 = 𝜇 = 1 and 𝒏 = (cos 𝜃, sin 𝜃). Left: 𝑭 = 𝑰 + 1
2
𝒆2 ⊗ 𝒆2; the minimum is attained at 𝜃 = 𝜋

2
. Right:

𝑭 = 𝑰 + 1
2
𝒆1 ⊗ 𝒆2; the minimum is attained at 𝜃 = 𝜋

2
and at another value depending on 𝐹12.

In order to simplify the exposition, we work in dimension 2. In Section 4.1 we will compute the effective energy 𝑊d of the stored
nergy

𝑊 (𝑭 ) =
𝜇
2
(

|𝑭 |

2 − 2 − 2 log det 𝑭
)

+ 𝜆
2
(det 𝑭 − 1)2 .

For a given 𝑭 , we parametrize 𝒏 = (cos 𝜃, sin 𝜃) for 0 ≤ 𝜃 ≤ 𝜋, because of the invariance of Proposition 2.4. (b). We plot 𝑊d(𝑭 ,𝒏)
gainst 𝜃. The results, for the following two choices of 𝑭 are as follows.

In the first case we let

𝑭 =
(

1 0
0 𝐹22

)

ith 𝐹22 ≥ 1, which represents an extension perpendicular to the crack when 𝒏 = 𝒆2, and expect that the minimum of 𝑊d(𝑭 ,𝒏) is
nly attained at 𝒏 = 𝒆2. Particularizing the formulas of Section 4.1 for this 𝑭 , we obtain that, when we define

𝐴11 =
√

𝑛22 + 𝐹
2
22𝑛

2
1, 𝐴∗

22 =
𝜆𝐴11 +

√

4𝜇2 + 4𝜇𝜆𝐴2
11 + 𝜆

2𝐴2
11

2(𝜇 + 𝜆𝐴2
11)

,

he formula for the relaxed energy is

𝑊d(𝑭 ,𝒏) =
𝜇
2
(

𝐴2
11 + (𝐴∗

22)
2 − 2 − 2 log(𝐴11𝐴

∗
22)

)

+ 𝜆
2
(

𝐴11𝐴
∗
22 − 1

)2 .

Numerically, one can check that the only minimum is attained at 𝒏 = 𝒆2, as expected. See Fig. 3, left, for the graph of 𝑊d(𝑭 ,𝒏)∕𝜇
s a function of 𝜃, with 𝐹22 =

3
2 and 𝜆 = 𝜇 = 1.

In the second example we let

𝑭 =
(

1 𝐹12
0 1

)

with 𝐹12 ∈ R, which represents a shear parallel to the crack when 𝒏 = 𝒆2, and expect that the minimum of 𝑊d(𝑭 ,𝒏) is only attained
at 𝒏 = 𝒆2. Particularizing the formulas of Section 4.1 for this 𝑭 , we obtain that, when we define

𝐴11 =
√

1 − 2𝐹12𝑛1𝑛2 + 𝐹 2
12𝑛

2
1, 𝐴22 =

1
𝐴11

, 𝐴∗
22 =

𝜆𝐴11 +
√

4𝜇2 + 4𝜇𝜆𝐴2
11 + 𝜆

2𝐴2
11

2(𝜇 + 𝜆𝐴2
11)

,

the formula for the relaxed energy is

𝑊d(𝑭 ,𝒏) =

{

𝜇
2

(

𝐴2
11 + (𝐴∗

22)
2 − 2 − 2 log(𝐴11𝐴∗

22)
)

+ 𝜆
2

(

𝐴11𝐴∗
22 − 1

)2 if 𝐴22 > 𝐴∗
22,

𝜇
2

(

𝐴2
11 + 𝐴

2
22 − 2

)

if 𝐴22 ≤ 𝐴∗
22.

umerically, one can check that it has two minima: one located at 𝒏 = 𝒆2, as expected, and the other one depending on 𝐹12 but not
n 𝜆 or 𝜇. Fig. 3, right, shows the graph of 𝑊d(𝑭 ,𝒏)∕𝜇 as a function of 𝜃 with 𝐹12 =

1
2 and 𝜆 = 𝜇 = 1.

3. The classical crack face traction condition

The classical crack face traction conditions for a smooth frictionless crack are that the shear traction is zero and that the normal
traction is either zero (when the crack is open) or compressive (when the crack is closed). To this, we append the natural condition
that the compressive normal traction, when the crack is closed, is identical to that in the intact material under the same deformation.
The key question in this section is to understand if the proposed energy 𝑊d satisfies these traction conditions. In summary, we find
8

that it does so for some but not all materials.
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In terms of the (Piola–Kirchhoff) stress 𝑻 d in the damaged material, and the stress 𝑻 in the intact material, the classical crack
face conditions can be written as

𝑇 d
𝒕1𝒏

= 𝑇 d
𝒕2𝒏

= 0 and 𝑇 d
𝒏𝒏 = min{𝑇𝒏𝒏, 0}. (3.1)

he notation for subindices is so that 𝑇 d
𝒕𝑖𝒏

indicates the shear components of the traction, while 𝑇 d
𝒏𝒏 denotes the normal component

f the traction, and analogously for 𝑻 . Of course, the stresses are the derivatives of the corresponding elastic energy densities.
A potential strategy to construct 𝑊d that satisfies (3.1) could be to simply use (3.1) as the starting point, and integrate

ppropriately to construct the corresponding stored energy density. By QR decomposition and frame-indifference, in order for (3.1)
o be satisfied for all deformation gradients, it is enough that it holds for those of the form (2.1). Standard arguments based on the
ymmetry of the second derivative show that, given 𝑊 (hence 𝑻 ), an energy 𝑊d exists satisfying (3.1) if and only if

𝜕2

𝜕𝐴𝒏𝒏 𝜕𝐴𝒕𝑖𝒏
𝑊

(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 )
)

= 0, 𝑖 = 1, 2. (3.2)

3.1. The traction condition is generally incompatible with a stored energy density

An interpretation of condition (3.2) is that the dependence of 𝑊 on the 𝐴𝒏𝒏 and 𝐴𝒕𝑖𝒏 components is somewhat uncoupled. This
ondition is not satisfied for every 𝑊 but it is satisfied, for example, for Mooney–Rivlin materials. Indeed, let the stored energy
ensity 𝑊 take the form

𝑊 (𝑭 ) = 𝑎 |𝑭 |

2 + 𝑏 |cof 𝑭 |

2 + ℎ(det 𝑭 )

ith 𝑎, 𝑏 > 0 and any function ℎ. Then, with respect to any orthonormal basis {𝒕1, 𝒕2,𝒏},

𝑊
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 )
)

= 𝑎
(

𝐴2
𝒕1𝒕1

+ 𝐴2
𝒕2𝒕2

+ 𝐴2
𝒏𝒏 + 𝐴

2
𝒕1𝒕2

+ 𝐴2
𝒕1𝒏

+ 𝐴2
𝒕2𝒏

)

+ 𝑏
(

𝐴2
𝒕1𝒕1

𝐴2
𝒏𝒏 + 𝐴

2
𝒕2𝒕2

𝐴2
𝒏𝒏 + 𝐴

2
𝒕1𝒕1

𝐴2
𝒕2𝒕2

+ 𝐴2
𝒕1𝒕1

𝐴2
𝒕2𝒏

+ 𝐴2
𝒏𝒏𝐴

2
𝒕1𝒕2

+
(

𝐴𝒕2𝒕2𝐴𝒕1𝒏 − 𝐴𝒕2𝒏𝐴𝒕1𝒕2

)2
)

+ ℎ(𝐴𝒕1𝒕1𝐴𝒕2𝒕2𝐴𝒏𝒏),

hich is readily seen to satisfy (3.2).
On the other hand, if we consider exponents 𝑝, 𝑞 > 0 with (𝑝, 𝑞) ≠ (2, 2) then it is easy to check that the energy

𝑊 (𝑭 ) = 𝑎 |𝑭 |

𝑝 + 𝑏 |cof 𝑭 |

𝑞 + ℎ(det 𝑭 )

does not satisfy (3.2). In summary, it shows that, for general energies, there do not exist effective crack energy densities that both
satisfy the crack face traction conditions and have the correct intact response when the crack closes.

3.2. Traction on the crack face satisfied by the effective energy

In this subsection we calculate the tractions 𝑇 d
𝒕𝑖𝒏

and 𝑇 d
𝒏𝒏 for the effective energy constructed in Definition 2.1, and compare them

with (3.1).
Let 𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 > 0 and 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 ∈ R. From Definition 2.1 we have

𝑊d

(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 ),𝒏
)

=

⎧

⎪

⎨

⎪

⎩

𝑊
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴
∗
𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴

∗
𝒕1𝒏
, 𝐴∗

𝒕2𝒏
, 𝐴𝒕1𝒕2 )

)

, if 𝐴𝒏𝒏 ≥ 𝐴∗
𝒏𝒏,

𝑊
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴
∗∗
𝒕1𝒏
, 𝐴∗∗

𝒕2𝒏
, 𝐴𝒕1𝒕2 )

)

, if 𝐴𝒏𝒏 < 𝐴∗
𝒏𝒏,

for some functions

𝐴∗
𝒏𝒏 = 𝐴∗

𝒏𝒏(𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒕2 ), 𝐴∗
𝒕𝑖𝒏

= 𝐴∗
𝒕𝑖𝒏

(𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒕2 ) (𝑖 = 1, 2),

𝐴∗∗
𝒕𝑖𝒏

= 𝐴∗∗
𝒕𝑖𝒏

(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒕2 ) (𝑖 = 1, 2).

Assume, for simplicity, that the functions 𝐴∗
𝒏𝒏, 𝐴

∗
𝒕𝑖𝒏
, 𝐴∗∗

𝒕𝑖𝒏
can be defined uniquely, at least locally; we will see in Section 6 an example

of this situation. The derivatives of 𝑊d in the directions (𝒕𝑖,𝒏) and (𝒏,𝒏) are
𝜕𝑊d
𝜕𝐴𝒕𝑖𝒏

(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 ),𝒏
)

= 0, 𝑖 = 1, 2 (3.3)

and

𝜕𝑊d
𝜕𝐴𝒏𝒏

(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 ),𝒏
)

=

⎧

⎪

⎨

⎪

0 if 𝐴𝒏𝒏 > 𝐴∗
𝒏𝒏,

𝜕𝑊
𝜕𝐴

(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴
∗∗
𝒕1𝒏
, 𝐴∗∗

𝒕2𝒏
, 𝐴𝒕1𝒕2 )

)

if 𝐴𝒏𝒏 < 𝐴∗
𝒏𝒏,

(3.4)
9
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since
𝜕𝑊
𝜕𝐴𝒕𝑖𝒏

(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴
∗∗
𝒕1𝒏
, 𝐴∗∗

𝒕2𝒏
, 𝐴𝒕1𝒕2 )

)

= 0, 𝑖 = 1, 2

because 𝐴∗∗
𝒕1𝒏
, 𝐴∗∗

𝒕2𝒏
are minimizers of 𝑊

(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 )
)

.
We compare these results with the crack face conditions (3.1). Let 𝑻 and 𝑻 d be as in the beginning of this section. Formulas

(3.3) and (3.4) show that, for strains of the form 𝑨𝒕1 ,𝒕2 ,𝒏 (see (2.1)),

𝑇 d
𝒕1𝒏

= 𝑇 d
𝒕2𝒏

= 0 (3.5)

and

𝑇 d
𝒏𝒏 =

⎧

⎪

⎨

⎪

⎩

0 if 𝐴𝒏𝒏 > 𝐴∗
𝒏𝒏,

𝑇𝒏𝒏
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴
∗∗
𝒕1𝒏
, 𝐴∗∗

𝒕2𝒏
, 𝐴𝒕1𝒕2 )

)

if 𝐴𝒏𝒏 < 𝐴∗
𝒏𝒏.

(3.6)

As we can see, (3.5) corresponds to the first part of (3.1), but in general, (3.6) differs from the second part of (3.1). Nevertheless,
in the particular case that

⎧

⎪

⎨

⎪

⎩

0 ≤ 𝑇𝒏𝒏 if 𝐴𝒏𝒏 > 𝐴∗
𝒏𝒏,

𝑇𝒏𝒏
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴
∗∗
𝒕1𝒏
, 𝐴∗∗

𝒕2𝒏
, 𝐴𝒕1𝒕2 )

)

= 𝑇𝒏𝒏 ≤ 0 if 𝐴𝒏𝒏 < 𝐴∗
𝒏𝒏,

(3.7)

we have that conditions (3.5)–(3.6) are equivalent to (3.1).
Let us have a closer look to (3.7). As 𝐴∗

𝒏𝒏, 𝐴
∗
𝒕1𝒏
, 𝐴∗

𝒕2𝒏
are minimizers of 𝑊

(

𝑨𝒕1 ,𝒕2 ,𝒏

)

(where 𝑨𝒕1 ,𝒕2 ,𝒏 is as in (2.1)), we have that

𝑇𝒏𝒏
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴
∗
𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴

∗
𝒕1𝒏
, 𝐴∗

𝒕2𝒏
, 𝐴𝒕1𝒕2 )

)

= 0.

A natural condition would then be that

𝑇𝒏𝒏
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴
∗
𝒕1𝒏
, 𝐴∗

𝒕2𝒏
, 𝐴𝒕1𝒕2 )

)

≥ 0 when 𝐴𝒏𝒏 > 𝐴
∗
𝒏𝒏,

and

𝑇𝒏𝒏
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴
∗
𝒕1𝒏
, 𝐴∗

𝒕2𝒏
, 𝐴𝒕1𝒕2 )

)

≤ 0 when 𝐴𝒏𝒏 < 𝐴
∗
𝒏𝒏,

while only in the few situations where the expression of the energy 𝑊 has an uncoupled dependence on the terms 𝐴𝒏𝒏, 𝐴𝒕1𝒏, 𝐴𝒕2𝒏
we additionally have that

𝑇𝒏𝒏
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 )
)

≥ 0 when 𝐴𝒏𝒏 > 𝐴
∗
𝒏𝒏,

and

𝑇𝒏𝒏
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴
∗∗
𝒕1𝒏
, 𝐴∗∗

𝒕2𝒏
, 𝐴𝒕1𝒕2 )

)

= 𝑇𝒏𝒏
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 )
)

≤ 0 when 𝐴𝒏𝒏 < 𝐴
∗
𝒏𝒏.

We thus recover the interpretation that (3.2) shows that 𝑊 has an uncoupled dependence of 𝐴𝒏𝒏 and 𝐴𝒕𝑖𝒏.

4. Example material: Mooney–Rivlin

In this section we compute the effective energy for a Mooney–Rivlin material, in both 2D and 3D.

4.1. Neo-Hookean material in 2D

We consider the neo-Hookean energy in 2D

𝑊 (𝑭 ) =
𝜇
2
(

|𝑭 |

2 − 2 − 2 log det 𝑭
)

+ 𝜆
2
(det 𝑭 − 1)2 , (4.1)

or 𝜇, 𝜆 > 0. Note that the minimum value of 𝑊 is zero and is attained at 𝑆𝑂(2). Moreover, it is easy to check that the elasticity
ensor 𝗖 = 𝐷2 𝑊 (𝑰) is given by

𝗖𝜺 ∶ 𝜺 = 2𝜇|𝜺|2 + 𝜆(tr 𝜺)2 (4.2)

or symmetric 𝜺, so 𝜆 and 𝜇 are the Lamé parameters.
We compute 𝑊d according to Definition 2.1 with the obvious modifications for 2D. As a consequence of Proposition 2.4, it is

nough to calculate 𝑊d(𝑨, 𝒆2) for upper triangular matrices 𝑨 with positive diagonal elements. The orthonormal basis chosen will
e, of course, {𝒆1, 𝒆2}. Since it is the canonical basis, we will use the usual triangular representation of a matrix, instead of the
otation 𝐴 𝒆 ⊗ 𝒆 + 𝐴 𝒆 ⊗ 𝒆 + 𝐴 𝒆 ⊗ 𝒆 .
10
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For 𝐴11, 𝐴22 > 0 and 𝐴12 ∈ R, we have

𝑊
(

𝐴11 𝐴12
0 𝐴22

)

=
𝜇
2
(

𝐴2
11 + 𝐴

2
12 + 𝐴

2
22 − 2 − 2 log(𝐴11𝐴22)

)

+ 𝜆
2
(𝐴11𝐴22 − 1)2.

iven 𝐴11 > 0 the minimum of the above expression in 𝐴22 > 0 and 𝐴12 ∈ R is easily seen to be attained at 𝐴∗
12 = 0 and

𝐴∗
22(𝐴11) ∶=

𝜆𝐴11 +
√

4𝜇2 + 4𝜇𝜆𝐴2
11 + 𝜆

2𝐴2
11

2(𝜇 + 𝜆𝐴2
11)

, (4.3)

while given 𝐴11, 𝐴22 > 0 the minimum in 𝐴12 ∈ R is easily seen to be attained at 𝐴∗∗
12 = 0. For future reference, note that

𝐴∗
22(𝐴11) > 1 if and only if 𝐴11 < 1. (4.4)

he expression for 𝑊d is, therefore,

𝑊d

((

𝐴11 𝐴12
0 𝐴22

)

, 𝒆2
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑊

(

𝐴11 0
0 𝐴∗

22

)

, if 𝐴22 > 𝐴∗
22,

𝑊

(

𝐴11 0
0 𝐴22

)

, if 𝐴22 ≤ 𝐴∗
22.

(4.5)

he values of 𝑊d(𝑭 ,𝒏) for any (𝑭 ,𝒏) can be calculated with the formula above and the relations

𝑊d(𝑸𝑭 ,𝒏) = 𝑊d(𝑭 ,𝒏) = 𝑊d(𝑭𝑸𝑇 ,𝑸𝒏), 𝑸 ∈ 𝑆𝑂(2). (4.6)

see Proposition 2.4 and note that 𝑊 is isotropic). More explicitly, we consider, for any unit vector 𝒏,

𝑸 =
(

𝑛2 −𝑛1
𝑛1 𝑛2

)

, (4.7)

hich satisfies 𝑸 ∈ 𝑆𝑂(2) and 𝑸𝒏 = 𝒆2. Then 𝑊d(𝑭 ,𝒏) = 𝑊d(𝑭𝑸𝑇 , 𝒆2). We apply QR decomposition to 𝑮 ∶= 𝑭𝑸𝑇 and obtain that
= 𝑹𝑨 with 𝑹 ∈ 𝑆𝑂(2) and 𝑨 upper triangular. Elementary calculations show that

𝑨 =
(

𝐴11 𝐴12
0 𝐴22

)

ith

𝐴11 =
√

𝐺2
11 + 𝐺

2
21 =

√

(𝐹11𝑛2 − 𝐹12𝑛1)2 + (𝐹21𝑛2 − 𝐹22𝑛1)2, 𝐴22 =
det 𝑭
𝐴11

, (4.8)

hile the expression for 𝐴12 is not important. Let 𝐴∗
22 be as in (4.3). Then

𝑊d(𝑭 ,𝒏) =

{

𝜇
2

(

𝐴2
11 + (𝐴∗

22)
2 − 2 − 2 log(𝐴11𝐴∗

22)
)

+ 𝜆
2

(

𝐴11𝐴∗
22 − 1

)2 if 𝐴22 > 𝐴∗
22,

𝜇
2

(

𝐴2
11 + 𝐴

2
22 − 2 − 2 log(𝐴11𝐴22)

)

+ 𝜆
2

(

𝐴11𝐴22 − 1
)2 if 𝐴22 ≤ 𝐴∗

22.
(4.9)

Using formulas (4.3) and (4.5), we compute the effective energy 𝑊d of the basic modes (a)–(e) described in Section 2.2, with
he obvious modifications for 2D, in the special case 𝒏 = 𝒆2 and 𝒕 = 𝒆1:

(a) 𝑭 = 𝐴22𝒆2 ⊗ 𝒆2 + 𝒆1 ⊗ 𝒆1 with 𝐴22 > 11. Then

𝑊d

((

1 0
0 𝐴22

)

, 𝒆2
)

= 𝑊
(

1 0
0 1

)

= 0.

(b) 𝑭 = 𝑰 + 𝐴12𝒆1 ⊗ 𝒆2 with 𝐴12 ∈ R. Then

𝑊d

((

1 𝐴12
0 1

)

, 𝒆2
)

= 𝑊
(

1 0
0 1

)

= 0.

(c) 𝑭 = 𝒆2 ⊗ 𝒆2 + 𝐴11𝒆1 ⊗ 𝒆1 with 0 < 𝐴11 < 1. Then, thanks to (4.4),

𝑊d

((

𝐴11 0
0 1

)

, 𝒆2
)

= 𝑊
(

𝐴11 0
0 1

)

.

(d) 𝑭 = 𝒆2 ⊗ 𝒆2 + 𝐴11𝒆1 ⊗ 𝒆1 with 𝐴11 > 1. Then, thanks to (4.4),

𝑊d

((

𝐴11 0
0 1

)

, 𝒆2
)

= 𝑊
(

𝐴11 0
0 𝐴∗

22

)

.

It is interesting to note that, contrary to mode (c), in this mode the energy of the cracked material is less than that of the intact
material. Under extension parallel to the crack, the damaged material undergoes – in addition to an extension of magnitude
𝐴11 > 1 parallel to the crack – a compression of magnitude 𝐴∗

22 < 1 perpendicular to the crack due to the transverse shrinkage,
because the material has a positive Poisson ratio.
11
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(e) 𝑭 = 𝐴22𝒆2 ⊗ 𝒆2 + 𝒆1 ⊗ 𝒆1 with 0 < 𝐴22 < 1. Then

𝑊d

((

1 0
0 𝐴22

)

, 𝒆2
)

= 𝑊
(

1 0
0 𝐴22

)

.

These examples (a)–(e) show that the effective energy meet our expectations. Now we calculate the effective energy of two other
epresentative modes, for which an intermediate behavior is presented: 𝑊d will carry some energy but less than 𝑊 , i.e., 0 < 𝑊d < 𝑊 .

(f) Isotropic compression with shear parallel to the crack: 𝑭 = 𝛼𝑰 + 𝐴12𝒆1 ⊗ 𝒆2 with 0 < 𝛼 < 1 and 𝐴12 ∈ R. Then

𝑊d

((

𝛼 𝐴12
0 𝛼

)

, 𝒆2
)

= 𝑊
(

𝛼 0
0 𝛼

)

.

(g) Isotropic compression with shear perpendicular to the crack: 𝑭 = 𝛼𝑰 + 𝐴21𝒆2 ⊗ 𝒆1 with 0 < 𝛼 < 1 and 𝐴21 ∈ R. By QR
decomposition,

𝑊d

((

𝛼 0
𝐴21 𝛼

)

, 𝒆2
)

= 𝑊d

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

√

𝛼2 + 𝐴2
21

𝛼𝐴21
√

𝛼2+𝐴2
21

0 𝛼2
√

𝛼2+𝐴2
21

⎞

⎟

⎟

⎟

⎠

, 𝒆2

⎞

⎟

⎟

⎟

⎠

= 𝑊

⎛

⎜

⎜

⎜

⎝

√

𝛼2 + 𝐴2
21 0

0 𝛼2
√

𝛼2+𝐴2
21

⎞

⎟

⎟

⎟

⎠

.

4.2. Mooney–Rivlin material in 3D

We consider the Mooney–Rivlin energy

𝑊 (𝑭 ) =
𝜇1
2

(

|𝑭 |

2 − 2 log det 𝑭 − 3
)

+
𝜇2
2

(

|cof 𝑭 |

2 − 4 log det 𝑭 − 3
)

+ 𝜆̄
2
(det 𝑭 − 1)2 ,

here 𝜇1, 𝜇2, 𝜆̄ > 0. The minimum of 𝑊 is 0 and is attained at 𝑆𝑂(3). The Lamé parameters of this material are 𝜆 = 𝜆̄ + 2𝜇2 and
= 𝜇1 + 𝜇2, since the elasticity tensor 𝗖 at the origin is given by (4.2). They are related with Young’s modulus 𝐸 and Poisson’s

atio 𝜈 as

𝜇 = 𝐸
2(1 + 𝜈)

, 𝜆 = 𝐸𝜈
(1 + 𝜈)(1 − 2𝜈)

, 𝜈 = 𝜆
2(𝜆 + 𝜇)

.

In particular, this material has a positive Poisson ratio.
We do the calculations of 𝑊d corresponding to Definition 2.1. As in Section 4.1, as a consequence of Proposition 2.4 and the

isotropy of 𝑊 , it is enough to calculate 𝑊d(𝑨, 𝒆3) for triangular matrices 𝑨 with positive diagonal elements. We have

𝑊
⎛

⎜

⎜

⎝

𝐴11 𝐴12 𝐴13
0 𝐴22 𝐴23
0 0 𝐴33

⎞

⎟

⎟

⎠

=
𝜇1
2

(

𝐴2
11 + 𝐴

2
22 + 𝐴

2
33 + 𝐴

2
12 + 𝐴

2
13 + 𝐴

2
23 − 2 log(𝐴11𝐴22𝐴33) − 3

)

+
𝜇2
2

(

𝐴2
11𝐴

2
22 + 𝐴

2
11𝐴

2
23 + (−𝐴22𝐴13 + 𝐴23𝐴12)2 + 𝐴2

11𝐴
2
33 + 𝐴

2
33𝐴

2
12 + 𝐴

2
22𝐴

2
33

− 4 log(𝐴11𝐴22𝐴33) − 3
)

+ 𝜆̄
2
(

𝐴11𝐴22𝐴33 − 1
)2 .

Given 𝐴11, 𝐴22 > 0 and 𝐴12 ∈ R, the minimum in 𝐴33 > 0 and 𝐴13, 𝐴23 ∈ R of the expression above is easily seen to be attained at
𝐴∗
13 = 𝐴∗

23 = 0 and 𝐴∗
33(𝐴11, 𝐴22, 𝐴12) given by

𝐴∗
33 =

𝜆̄𝐴11𝐴22 +
√

(𝜆̄𝐴11𝐴22)2 + 4
(

𝜇1 + 𝜇2𝐴2
11 + 𝜇2𝐴

2
12 + 𝜇2𝐴

2
22 + 𝜆̄𝐴

2
11𝐴

2
22
) (

𝜇1 + 2𝜇2
)

2
(

𝜇1 + 𝜇2𝐴2
11 + 𝜇2𝐴

2
12 + 𝜇2𝐴

2
22 + 𝜆̄𝐴

2
11𝐴

2
22
) , (4.10)

while given 𝐴11, 𝐴22, 𝐴33 > 0 and 𝐴12 ∈ R, its minimum in 𝐴13, 𝐴23 ∈ R is easily seen to be attained at 𝐴∗∗
13 = 𝐴∗∗

23 = 0. For future
reference, we note that

𝐴∗
33 > 1 if and only if 𝜇2𝐴

2
11 + 𝜇2𝐴

2
12 + 𝜇2𝐴

2
22 + 𝜆̄𝐴

2
11𝐴

2
22 < 𝜆̄𝐴11𝐴22 + 2𝜇2.

In fact, the following particular case will be useful in the analysis of some examples: given 𝛼 > 0,

∗

12

𝐴33(𝛼, 𝛼, 0) > 1 if and only if 𝛼 < 1. (4.11)
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t

The expression for 𝑊d is, therefore,

𝑊d

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

𝐴11 𝐴12 𝐴13
0 𝐴22 𝐴23
0 0 𝐴33

⎞

⎟

⎟

⎠

, 𝒆3
⎞

⎟

⎟

⎠

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑊

⎛

⎜

⎜

⎜

⎝

𝐴11 𝐴12 0
0 𝐴22 0
0 0 𝐴∗

33

⎞

⎟

⎟

⎟

⎠

, if 𝐴33 > 𝐴∗
33,

𝑊

⎛

⎜

⎜

⎜

⎝

𝐴11 𝐴12 0
0 𝐴22 0
0 0 𝐴33

⎞

⎟

⎟

⎟

⎠

, if 𝐴33 ≤ 𝐴∗
33.

(4.12)

In order to calculate the values of 𝑊d(𝑭 , 𝒆3) for any 𝑭 ∈ R3×3
+ , we apply QR decomposition to 𝑭 : elementary but long calculations

how that 𝑭 = 𝑹𝑨 for some 𝑹 ∈ 𝑆𝑂(3) and

𝑨 =
⎛

⎜

⎜

⎝

𝐴11 𝐴12 𝐴13
0 𝐴22 𝐴23
0 0 𝐴33

⎞

⎟

⎟

⎠

,

ith

𝐴11 =
√

𝐹 2
11 + 𝐹

2
21 + 𝐹

2
31,

𝐴22 =

√

(𝐹11𝐹22 − 𝐹12𝐹21)2 + (𝐹11𝐹32 − 𝐹12𝐹31)2 + (𝐹21𝐹32 − 𝐹22𝐹31)2

𝐴11
,

𝐴33 =
det 𝑭
𝐴11𝐴22

, 𝐴12 =
𝐹11𝐹12 + 𝐹21𝐹22 + 𝐹31𝐹32

𝐴11
.

The expressions for 𝐴13, 𝐴23 are not relevant in this calculation. With this, we have by Proposition 2.4 that 𝑊d(𝑭 , 𝒆3) = 𝑊d(𝑨, 𝒆3)
nd can apply formula (4.12).

Finally, the values of 𝑊d(𝑭 ,𝒏) for any (𝑭 ,𝒏) can be calculated with the formula above and the relation

𝑊d(𝑸𝑭 ,𝒏) = 𝑊d(𝑭 ,𝒏) = 𝑊d(𝑭𝑸𝑇 ,𝑸𝒏), 𝑸 ∈ 𝑆𝑂(3) (4.13)

see Proposition 2.4 and note that 𝑊 is isotropic). More explicitly, we consider, for any unit vector 𝒏, two vectors 𝒕1, 𝒕2 such that
𝒕1, 𝒕2,𝒏} is an orthonormal basis. Then we consider the rotation 𝑸 = 𝒆1⊗ 𝒕1 + 𝒆2⊗ 𝒕2 + 𝒆3⊗ 𝒏, which in coordinates takes the form

𝑸 =
⎛

⎜

⎜

⎝

(𝒕1)1 (𝒕1)2 (𝒕1)3
(𝒕2)1 (𝒕2)2 (𝒕2)3
𝑛1 𝑛2 𝑛3

⎞

⎟

⎟

⎠

. (4.14)

Clearly, 𝑸𝒏 = 𝒆3. Then 𝑊d(𝑭 ,𝒏) = 𝑊d(𝑭𝑸𝑇 , 𝒆3) and we can apply the formulas above. Specific choices of 𝒕1, 𝒕2 can be

𝒕1 =
(𝑛1𝑛3, 𝑛2𝑛3,−𝑛21 − 𝑛

2
2)

√

𝑛21 + 𝑛
2
2

, 𝒕2 =
(𝑛2,−𝑛1, 0)
√

𝑛21 + 𝑛
2
2

.

Now we compute the effective energy 𝑊d of the basic modes described in (a)–(e) described in Section 2.2 for the special case
hat 𝒏 = 𝒆3, 𝒕1 = 𝒆1 and 𝒕2 = 𝒆2:

(a) 𝑭 = 𝒆1 ⊗ 𝒆1 + 𝒆2 ⊗ 𝒆2 + 𝐴33𝒆3 ⊗ 𝒆3 with 𝐴33 ≥ 1. We have 𝐴∗
33 = 1 and, hence,

𝑊d

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

1 0 0
0 1 0
0 0 𝐴33

⎞

⎟

⎟

⎠

, 𝒆3
⎞

⎟

⎟

⎠

= 𝑊
⎛

⎜

⎜

⎝

1 0 0
0 1 0
0 0 1

⎞

⎟

⎟

⎠

= 0.

(b) 𝑭 = 𝑰 + 𝐴13𝒆1 ⊗ 𝒆3 + 𝐴23𝒆2 ⊗ 𝒆3 with 𝐴13, 𝐴23 ∈ R. We have 𝐴∗
33 = 1 and, hence,

𝑊d

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

1 0 𝐴13
0 1 𝐴23
0 0 1

⎞

⎟

⎟

⎠

, 𝒆3
⎞

⎟

⎟

⎠

= 𝑊
⎛

⎜

⎜

⎝

1 0 0
0 1 0
0 0 1

⎞

⎟

⎟

⎠

= 0.

(c) 𝑭 = 𝛼𝒆1 ⊗ 𝒆1 + 𝛼𝒆2 ⊗ 𝒆2 + 𝒆3 ⊗ 𝒆3 with 0 < 𝛼 < 1. Thanks to (4.11), we have 𝐴∗
33 > 1 and, hence,

𝑊d

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

𝛼 0 0
0 𝛼 0
0 0 1

⎞

⎟

⎟

⎠

, 𝒆3
⎞

⎟

⎟

⎠

= 𝑊
⎛

⎜

⎜

⎝

𝛼 0 0
0 𝛼 0
0 0 1

⎞

⎟

⎟

⎠

.

(d) 𝑭 = 𝛼𝒆1 ⊗ 𝒆1 + 𝛼𝒆2 ⊗ 𝒆2 + 𝒆3 ⊗ 𝒆3 with 𝛼 > 1. Thanks to (4.11), we have 𝐴∗
33 < 1 and, hence,

𝑊d

⎛

⎜

⎜

⎛

⎜

⎜

𝛼 0 0
0 𝛼 0

⎞

⎟

⎟

, 𝒆3
⎞

⎟

⎟

= 𝑊
⎛

⎜

⎜

𝛼 0 0
0 𝛼 0

∗

⎞

⎟

⎟

.

13

⎝⎝0 0 1⎠ ⎠ ⎝0 0 𝐴33⎠
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The same comments of modes (c)–(d) in the neo-Hookean material of Section 4.1 apply here: as the material has a positive
Poisson ratio, the extension of magnitude 𝛼 > 1 parallel to the crack induces a compression of magnitude 𝐴∗

33 < 1
perpendicular to the crack.

(e) 𝑭 = 𝐴33𝒆3 ⊗ 𝒆3 + 𝒆1 ⊗ 𝒆1 + 𝒆2 ⊗ 𝒆2 with 0 < 𝐴33 < 1. We have 𝐴∗
33 = 1 and, hence,

𝑊d

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

1 0 0
0 1 0
0 0 𝐴33

⎞

⎟

⎟

⎠

, 𝒆3
⎞

⎟

⎟

⎠

= 𝑊
⎛

⎜

⎜

⎝

1 0 0
0 1 0
0 0 𝐴33

⎞

⎟

⎟

⎠

.

s in Section 4.1, we compute the energy of the following two modes for which 0 < 𝑊d < 𝑊 .

(f) Isotropic compression with shear parallel to the crack: 𝑭 = 𝛼𝑰 +𝐴13𝒆1⊗ 𝒆3 +𝐴23𝒆2⊗ 𝒆3 with 0 < 𝛼 < 1 and 𝐴13, 𝐴23 ∈ R. We
have

𝐴∗
33 =

𝜆̄𝛼2 +
√

(𝜆̄𝛼2)2 + 4
(

𝜇1 + 2𝜇2𝛼2 + 𝜆̄𝛼4
) (

𝜇1 + 2𝜇2
)

2
(

𝜇1 + 2𝜇2𝛼2 + 𝜆̄𝛼4
) ≥ 𝛼,

so

𝑊d

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

𝛼 0 𝐴13
0 𝛼 𝐴23
0 0 𝛼

⎞

⎟

⎟

⎠

, 𝒆3
⎞

⎟

⎟

⎠

= 𝑊
⎛

⎜

⎜

⎝

𝛼 0 0
0 𝛼 0
0 0 𝛼

⎞

⎟

⎟

⎠

.

(g) Isotropic compression with shear perpendicular to the crack: 𝑭 = 𝛼𝑰+𝐴31𝒆3⊗𝒆1+𝐴32𝒆3⊗𝒆2 with 0 < 𝛼 ≤ 1 and 𝐴31, 𝐴32 ∈ R.
Some long but elementary calculations show that, when we define

𝐴̄11 =
√

𝛼2 + 𝐴2
31, 𝐴̄12 =

𝐴31𝐴32

𝐴̄11
,

𝐴̄22 =

√

𝛼4 +
(

𝐴2
31 + 𝐴

2
32
)

𝛼2

𝐴̄11
, 𝐴̄33 =

𝛼3

𝐴̄11𝐴̄22
,

(4.15)

the expression of 𝐴∗
33 is obtained via (4.10) by substituting 𝐴𝑖𝑗 with the 𝐴̄𝑖𝑗 in (4.15), and the effective energy is

𝑊d

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

𝛼 0 0
0 𝛼 0
𝐴31 𝐴32 𝛼

⎞

⎟

⎟

⎠

, 𝒆3
⎞

⎟

⎟

⎠

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑊

⎛

⎜

⎜

⎜

⎝

𝐴̄11 𝐴̄12 0
0 𝐴̄22 0
0 0 𝐴∗

33

⎞

⎟

⎟

⎟

⎠

if 𝐴̄33 ≥ 𝐴∗
33,

𝑊

⎛

⎜

⎜

⎜

⎝

𝐴̄11 𝐴̄12 0
0 𝐴̄22 0
0 0 𝐴̄33

⎞

⎟

⎟

⎟

⎠

if 𝐴̄33 < 𝐴∗
33.

Unlike the analog of this mode in 2D (see Section 4.1), one can have both cases 𝐴̄33 ≥ 𝐴∗
33 and 𝐴̄33 < 𝐴∗

33, depending on the
parameters and the coefficients.

5. Example material: A (𝒑, 𝒒) energy

In this section we consider a generalization of Mooney–Rivlin energies by changing the terms |𝑭 |

2 and |cof 𝑭 |

2 to |𝑭 |

𝑝 and
cof 𝑭 |

𝑞 , respectively, for arbitrary exponents 𝑝, 𝑞 ≥ 1. The drawback is that explicit formulas are not available.
This generalization of the Mooney–Rivlin energy for exponents (𝑝, 𝑞) is useful in the modeling of soft materials (Henao et al.,

015, 2016). For example, a neo-Hookean energy in 2D with a term |𝑭 |

𝑝 with 1 < 𝑝 < 2 allows for cavitation, while for 𝑝 ≥ 2, it does
ot. Roughly speaking, the lower the exponent 𝑝, the softer the material. In 3D, the exponent 𝑞 in | cof 𝑭 |

𝑞 also models the strength
f the material. In fact, 1 < 𝑝 < 3 and 1 < 𝑞 < 3

2 , the material can exhibit cavitation, while for 𝑝 ≥ 3 or 𝑞 ≥ 3
2 , it cannot Müller et al.

1994).

.1. A 𝑝-energy in 2D

For 𝜇̄, 𝜆̄ > 0 and 𝑝 ≥ 1, we consider the following generalization of neo-Hookean energy:

𝑊 (𝑭 ) =
𝜇̄
𝑝

(

|𝑭 |

𝑝 − 2
𝑝
2 − 2

𝑝
2−1𝑝 log det 𝑭

)

+ 𝜆̄
2
(det 𝑭 − 1)2 .

The minimum of 𝑊 is 0 and is attained at 𝑆𝑂(2). In order to compare the parameters 𝜇̄, 𝜆̄, 𝑝 with those of linear elasticity, we define

𝜆 = 𝜆̄ − 2
𝑝
2−2𝜇̄, 𝜇 = 2

𝑝
2−1𝜇̄.

nd note that the elasticity tensor 𝗖 at the origin is given by (4.2).
14
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As in Section 4.1, we do the calculations corresponding to Definition 2.1, with the obvious modifications in 2D. Again, it is
nough to calculate 𝑊d(𝑨, 𝒆2) for upper-triangular 𝑨.

For 𝐴11, 𝐴22 > 0 and 𝐴12 ∈ R, the function 𝑊 satisfies

𝑊
(

𝐴11 𝐴12
0 𝐴22

)

=
𝜇̄
𝑝

(

(

𝐴2
11 + 𝐴

2
22 + 𝐴

2
12
)

𝑝
2 − 2

𝑝
2 − 2

𝑝
2−1𝑝 log(𝐴11𝐴22)

)

+ 𝜆̄
2
(

𝐴11𝐴22 − 1
)2 .

It is easy to see that the infimum in 𝐴12 is attained at 𝐴∗
12 = 0. Moreover, as 𝑝 ≥ 1 the function 𝑊

(

𝐴11 𝐴12
0 𝐴22

)

is strictly convex in

22, and tends to infinity when 𝐴22 → 0 or 𝐴22 → ∞. Hence, there exists a unique minimizer 𝐴∗
22 = 𝐴∗

22(𝐴11) > 0. The expression of
𝐴∗
22 cannot be given in closed form except for specific choices of 𝑝. Thus, the expression of the energy is

𝑊d

((

𝐴11 𝐴12
0 𝐴22

)

, 𝒆2
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑊

(

𝐴11 0
0 𝐴∗

22

)

, if 𝐴22 > 𝐴∗
22,

𝑊

(

𝐴11 0
0 𝐴22

)

, if 𝐴22 ≤ 𝐴∗
22

and the value of 𝑊d for any (𝑭 ,𝒏) is reduced to this via (4.6) (see Proposition 2.4 and note that 𝑊 is isotropic). Alternatively, one
can use Proposition 2.3.

5.2. A (𝑝, 𝑞)-energy in 3D

For 𝜇1, 𝜇2, 𝜆̄ > 0 and 𝑝, 𝑞 ≥ 1 we consider the following generalization of Mooney–Rivlin energy:

𝑊 (𝑭 ) =
𝜇1
𝑝

(

|𝑭 |

𝑝 − 3
𝑝
2 − 3

𝑝
2−1𝑝 log det 𝑭

)

+
𝜇2
𝑞

(

|cof 𝑭 |

𝑞 − 3
𝑞
2 − 2 ⋅ 3

𝑞
2−1𝑞 log det 𝑭

)

+ 𝜆̄
2
(det 𝑭 − 1)2 .

The minimum of 𝑊 is 0 and is attained at 𝑆𝑂(3). In order to compare the parameters 𝜇1, 𝜇2, 𝜆̄, 𝑝, 𝑞 with those of linear elasticity,
we define

𝜆 = 𝜆̄ − 3
𝑝
2−2𝜇1(𝑝 − 2) + 2 ⋅ 3

𝑞
2−2𝜇2(2𝑞 − 1), 𝜇 = 3

𝑝
2−1𝜇1 + 3

𝑞
2−1𝜇2

nd note that the elasticity tensor 𝗖 at the origin is given by (4.2).
For 𝐴11, 𝐴22, 𝐴33 > 0 and 𝐴12, 𝐴13, 𝐴23 ∈ R, the function 𝑊 satisfies

𝑊
⎛

⎜

⎜

⎝

𝐴11 𝐴12 𝐴13
0 𝐴22 𝐴23
0 0 𝐴33

⎞

⎟

⎟

⎠

=
𝜇1
𝑝

(

(

𝐴2
11 + 𝐴

2
22 + 𝐴

2
33 + 𝐴

2
12 + 𝐴

2
13 + 𝐴

2
23
)

𝑝
2 − 3

𝑝
2 − 3

𝑝
2−1𝑝 log(𝐴11𝐴22𝐴33)

)

+
𝜇2
𝑞

(

(

𝐴2
11𝐴

2
22 + 𝐴

2
11𝐴

2
23 + (−𝐴22𝐴13 + 𝐴23𝐴12)2 + 𝐴2

11𝐴
2
33 + 𝐴

2
33𝐴

2
12 + 𝐴

2
22𝐴

2
33
)

𝑞
2

− 3
𝑞
2 − 2 ⋅ 3

𝑞
2−1𝑞 log(𝐴11𝐴22𝐴33)

)

+ 𝜆̄
2
(

𝐴11𝐴22𝐴33 − 1
)2 .

t is easy to see that the infimum of this expression in 𝐴13, 𝐴23 ∈ R is attained when 𝐴∗
13 = 𝐴∗

23 = 0. Moreover, as 𝑝, 𝑞 ≥ 1 the function

𝑊
⎛

⎜

⎜

⎝

𝐴11 𝐴12 𝐴13
0 𝐴22 𝐴23
0 0 𝐴33

⎞

⎟

⎟

⎠

s strictly convex in 𝐴33, and tends to infinity when 𝐴33 → 0 or 𝐴33 → ∞. Hence, there exists a unique minimizer 𝐴∗
33 =

∗
33(𝐴11, 𝐴22, 𝐴12) > 0. The expression of 𝐴∗

33 cannot be given in closed form except for specific choices of 𝑝, 𝑞. Thus, the expression
f the energy is

𝑊d

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

𝐴11 𝐴12 𝐴13
0 𝐴22 𝐴23
0 0 𝐴33

⎞

⎟

⎟

⎠

, 𝒆3
⎞

⎟

⎟

⎠

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑊

⎛

⎜

⎜

⎜

⎝

𝐴11 𝐴12 0
0 𝐴22 0
0 0 𝐴∗

33

⎞

⎟

⎟

⎟

⎠

, if 𝐴33 > 𝐴∗
33,

𝑊

⎛

⎜

⎜

⎜

⎝

𝐴11 𝐴12 0
0 𝐴22 0
0 0 𝐴33

⎞

⎟

⎟

⎟

⎠

, if 𝐴33 ≤ 𝐴∗
33
15

nd the value of 𝑊d at any (𝑭 ,𝒏) is reduced to this via (4.13). Alternatively, one can use Proposition 2.3.
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6. Example material: General energy near the identity

In this section we show how far we can go with the expression of 𝑊d near the identity without an explicit formula for 𝑊 . The
calculations here will be useful in Section 7 when we develop the linear theory. We perform the calculations in detail for the 2D
case and just write the final formulas for the 3D case.

The assumptions on 𝑊 are as follows: 𝑊 is a 𝐶2 function, its set of global minimizers is 𝑆𝑂(3) (in the 2D case, 𝑆𝑂(2)), it satisfies
he coercivity assumption (2.6), and the restriction of the elasticity tensor 𝗖 = 𝐷2 𝑊 (𝑰) to the set of symmetric matrices is positive
efinite. Note that, necessarily, 𝐷𝑊 (𝑰) = 𝟎.

.1. General 2D energy

We calculate 𝑊d according to Definition 2.1, with the obvious modification for 2D. The basis chosen is the canonical one: {𝒆1, 𝒆2}.
We use the usual notation

𝑐𝑖𝑗𝑘𝑙 =
𝜕2𝑊

𝜕𝐹𝑖𝑗𝜕𝐹𝑘𝑙
(𝑰)

for the components of the elasticity tensor 𝗖. The following inequalities are possibly well known to experts, but we have not found
a proper reference.

Lemma 6.1. Assume that the 𝗖 is positive definite in the set of symmetric matrices. Then

𝑐1212 > 0 and c1212𝑐2222 − 𝑐21222 > 0.

Define 𝒇 ∶ R3 → R2 as

𝒇 (𝐴22, 𝐴11, 𝐴12) =
(

𝜕𝑊
𝜕𝐹12

(

𝐴11 𝐴12
0 𝐴22

)

, 𝜕𝑊
𝜕𝐹22

(

𝐴11 𝐴12
0 𝐴22

))

.

hen

𝒇 (1, 1, 0) = (0, 0),
𝜕𝒇
𝜕𝐴22

(1, 1, 0) = (𝑐1222, 𝑐2222),
𝜕𝒇
𝜕𝐴12

(1, 1, 0) = (𝑐1212, 𝑐1222).

Thanks to Lemma 6.1, we can apply the implicit function theorem, and find that there are unique 𝐶1 functions 𝐴∗
22 = 𝐴∗

22(𝐴11) and
𝐴∗
12 = 𝐴∗

12(𝐴11) defined for 𝐴11 ≃ 1 such that

𝜕𝑊
𝜕𝐹12

(

𝐴11 𝐴∗
12(𝐴11)

0 𝐴∗
22(𝐴11)

)

= 𝜕𝑊
𝜕𝐹22

(

𝐴11 𝐴∗
12(𝐴11)

0 𝐴∗
22(𝐴11)

)

= 0. (6.1)

Moreover,

𝐴∗
12(1) = 0, 𝐴∗

22(1) = 1,

(𝐴∗
12)

′(1) =
𝑐1122𝑐1222 − 𝑐1112𝑐2222
𝑐1212𝑐2222 − 𝑐21222

, (𝐴∗
22)

′(1) =
𝑐1112𝑐1222 − 𝑐1122𝑐1212
𝑐1212𝑐2222 − 𝑐21222

. (6.2)

In an analogous way, there is a unique 𝐶1 function 𝐴∗∗
12 = 𝐴∗∗

12(𝐴22, 𝐴11) defined for (𝐴22, 𝐴11) ≃ (1, 1) such that

𝜕𝑊
𝜕𝐹12

(

𝐴11 𝐴∗∗
12(𝐴22, 𝐴11)

0 𝐴22

)

= 0.

oreover,

𝐴∗∗
12(1, 1) = 0,

𝜕𝐴∗∗
12

𝜕𝐴11
(1, 1) = −

𝑐1112
𝑐1212

,
𝜕𝐴∗∗

12
𝜕𝐴22

(1, 1) = −
𝑐1222
𝑐1212

. (6.3)

A standard argument based on the coercivity (2.6), the uniqueness of the functions 𝐴∗
22, 𝐴

∗
12, 𝐴

∗∗
12 and the fact that the minimum

of 𝑊 is attained at 𝑆𝑂(2) shows that

inf
𝐴′22>0

𝐴′12∈R

𝑊
(

𝐴11 𝐴′
12

0 𝐴′
22

)

= 𝑊
(

𝐴11 𝐴∗
12(𝐴11)

0 𝐴∗
22(𝐴11)

)

, inf
𝐴′
12∈R

𝑊
(

𝐴11 𝐴′
12

0 𝐴22

)

= 𝑊
(

𝐴11 𝐴∗∗
12(𝐴22, 𝐴11)

0 𝐴22

)

.

Indeed, the sketch of this argument is as follows. We only do it for the first infimum, since the second is analogous. The idea is to
divide the range of the variables 𝐴′

12 and 𝐴′
22 into three regions, and ascertain whether the infimum is attained in those regions.

Region 𝑅1 consists of values for which |𝐴′
12| is very big or 𝐴′

22 ≃ 0 or 𝐴′
22 is very big. Region 𝑅2 consists of those values of 𝐴′

12
and 𝐴′

22 not in 𝑅1 for which 𝐴′
12 is far from zero or 𝐴′

22 is far from 1. Finally, region 𝑅3 consists of those values for which 𝐴′
12 ≃ 0

and 𝐴′
22 ≃ 1. Thus, regions 𝑅1, 𝑅2 and 𝑅3 cover the range of the variables 𝐴′

12 and 𝐴′
22. The continuity of 𝑊 and the coercivity

condition (2.6) ensure that the infimum is actually a minimum and that it is not attained when 𝐴′
22 → 0 or 𝐴′

22 → ∞ or |𝐴′
12| → ∞.

Thus, the minimum is not attained in region 𝑅1. Since argmin𝑊 = 𝑆𝑂(2) and 𝐴11 ≃ 1 the infimum has to be attained when
(

𝐴11 𝐴′
12
′

)

16

0 𝐴22
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is close to 𝑆𝑂(2). This rules out the possibility that 𝐴′
12 and 𝐴′

22 are in region 𝑅2. Therefore, the infimum is attained in region 𝑅1.
Now, the partial derivatives of 𝑊 with respect to 𝐴12 and 𝐴22 have to be zero at the minimum. Finally, the argument (6.1) show
that 𝐴∗

12 and 𝐴∗
22 are the only functions in region 𝑅1 that make those partial derivatives be zero.

Thus, the expression of 𝑊d becomes

𝑊d

((

𝐴11 𝐴12
0 𝐴22

)

, 𝒆2
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑊

(

𝐴11 𝐴∗
12(𝐴11)

0 𝐴∗
22(𝐴11)

)

, if 𝐴22 ≥ 𝐴∗
22(𝐴11),

𝑊

(

𝐴11 𝐴∗∗
12(𝐴22, 𝐴11)

0 𝐴22

)

, if 𝐴22 < 𝐴∗
22(𝐴11).

If 𝑊 is isotropic, this is enough to determine 𝑊d. If not, one has to adapt the computation of this section to any orthonormal basis.
We omit the calculations, since they are totally analogous, and just write the final formulas. The expression for 𝑊d is

𝑊d
(

𝑨(𝐴𝒏𝒏, 𝐴𝒕𝒕, 𝐴𝒕𝒏),𝒏
)

=

{

𝑊
(

𝑨(𝐴∗
𝒏𝒏(𝐴𝒕𝒕), 𝐴𝒕𝒕, 𝐴∗

𝒕𝒏(𝐴𝒕𝒕))
)

, if 𝐴𝒏𝒏 ≥ 𝐴∗
𝒏𝒏(𝐴𝒕𝒕),

𝑊
(

𝑨(𝐴𝒏𝒏, 𝐴𝒕𝒕, 𝐴∗∗
𝒕𝒏 (𝐴𝒏𝒏, 𝐴𝒕𝒕))

)

, if 𝐴𝒏𝒏 < 𝐴∗
𝒏𝒏(𝐴𝒕𝒕),

with the following definitions and properties:

• {𝒕,𝒏} is an orthonormal basis.
• 𝑨(𝐴𝒏𝒏, 𝐴𝒕𝒕, 𝐴𝒕𝒏) = 𝐴𝒏𝒏𝒏⊗ 𝒏 + 𝐴𝒕𝒕𝒕⊗ 𝒕 + 𝐴𝒕𝒏𝒕⊗ 𝒏, which is the 2D analog of (2.1).
• 𝑐𝑖𝑗𝑘𝑙 are the coefficients of the elasticity tensor with respect to the basis {𝒕,𝒏}. We will use a dual notation with the same

meaning: the indices 𝑖, 𝑗, 𝑘, 𝑙 run in the set {1, 2} and also in the set {𝒕,𝒏}.
• 𝑐𝒕𝒏𝒕𝒏 > 0 and 𝑐𝒕𝒏𝒕𝒏𝑐𝒏𝒏𝒏𝒏 − 𝑐2𝒕𝒏𝒏𝒏 > 0.
• There are unique 𝐶1 functions 𝐴∗

𝒏𝒏 = 𝐴∗
𝒏𝒏(𝐴𝒕𝒕) and 𝐴∗

𝒕𝒏 = 𝐴∗
𝒕𝒏(𝐴𝒕𝒕) defined for 𝐴𝒕𝒕 ≃ 1 such that

inf
𝐴′𝒏𝒏>0
𝐴′𝒕𝒏∈R

𝑊
(

𝑨(𝐴′
𝒏𝒏, 𝐴𝒕𝒕, 𝐴

′
𝒕𝒏)

)

= 𝑊
(

𝑨(𝐴∗
𝒏𝒏(𝐴𝒕𝒕), 𝐴𝒕𝒕, 𝐴

∗
𝒕𝒏(𝐴𝒕𝒕))

)

.

Moreover,

𝐴∗
𝒕𝒏(1) = 0, 𝐴∗

𝒏𝒏(1) = 1,

(𝐴∗
𝒕𝒏)

′(1) =
𝑐𝒕𝒕𝒏𝒏𝑐𝒕𝒏𝒏𝒏 − 𝑐𝒕𝒕𝒕𝒏𝑐𝒏𝒏𝒏𝒏
𝑐𝒕𝒏𝒕𝒏𝑐𝒏𝒏𝒏𝒏 − 𝑐2𝒕𝒏𝒏𝒏

, (𝐴∗
𝒏𝒏)

′(1) =
𝑐𝒕𝒕𝒕𝒏𝑐𝒕𝒏𝒏𝒏 − 𝑐𝒕𝒕𝒏𝒏𝑐𝒕𝒏𝒕𝒏
𝑐𝒕𝒏𝒕𝒏𝑐𝒏𝒏𝒏𝒏 − 𝑐2𝒕𝒏𝒏𝒏

.
(6.4)

• There is a unique 𝐶1 function 𝐴∗∗
𝒕𝒏 = 𝐴∗∗

𝒕𝒏 (𝐴𝒏𝒏, 𝐴𝒕𝒕) defined for (𝐴𝒏𝒏, 𝐴𝒕𝒕) ≃ (1, 1) such that

inf
𝐴′
𝒕𝒏∈R

𝑊
(

𝑨(𝐴𝒏𝒏, 𝐴𝒕𝒕, 𝐴
′
𝒕𝒏)

)

= 𝑊
(

𝑨(𝐴𝒏𝒏, 𝐴𝒕𝒕, 𝐴
∗∗
𝒕𝒏 (𝐴𝒏𝒏, 𝐴𝒕𝒕))

)

.

Moreover,

𝐴∗∗
𝒕𝒏 (1, 1) = 0,

𝜕𝐴∗∗
𝒕𝒏

𝜕𝐴𝒕𝒕
(1, 1) = −

𝑐𝒕𝒕𝒕𝒏
𝑐𝒕𝒏𝒕𝒏

,
𝜕𝐴∗∗

𝒕𝒏
𝜕𝐴𝒏𝒏

(1, 1) = −
𝑐𝒕𝒏𝒏𝒏
𝑐𝒕𝒏𝒕𝒏

. (6.5)

6.2. General 3D energy

In this section we just write the final formula for the effective energy, without a detailed description of the calculations, which,
of course, follow the lines of the previous subsection. There exists 𝐶1 functions

𝐴∗
13 = 𝐴∗

13(𝐴11, 𝐴22, 𝐴12), 𝐴∗
23 = 𝐴∗

23(𝐴11, 𝐴22, 𝐴12), 𝐴∗
33 = 𝐴∗

33(𝐴11, 𝐴22, 𝐴12)

defined for (𝐴11, 𝐴22, 𝐴12) ≃ (1, 1, 0), and

𝐴∗∗
13 = 𝐴∗∗

13(𝐴11, 𝐴22, 𝐴33, 𝐴12), 𝐴∗∗
23 = 𝐴∗∗

23(𝐴11, 𝐴22, 𝐴33, 𝐴12)

defined for (𝐴11, 𝐴22, 𝐴33, 𝐴12) ≃ (1, 1, 1, 0) such that

inf
𝐴′33>0

𝐴′13 ,𝐴
′
23∈R

𝑊
⎛

⎜

⎜

⎝

𝐴11 𝐴12 𝐴′
13

0 𝐴22 𝐴′
23

0 0 𝐴′
33

⎞

⎟

⎟

⎠

= 𝑊
⎛

⎜

⎜

⎝

𝐴11 𝐴12 𝐴∗
13

0 𝐴22 𝐴∗
23

0 0 𝐴∗
33

⎞

⎟

⎟

⎠

,

inf
𝐴′
13 ,𝐴

′
23∈R

𝑊
⎛

⎜

⎜

𝐴11 𝐴12 𝐴′
13

0 𝐴22 𝐴′
23

⎞

⎟

⎟

= 𝑊
⎛

⎜

⎜

𝐴11 𝐴12 𝐴∗∗
13

0 𝐴22 𝐴∗∗
23

⎞

⎟

⎟

17

⎝ 0 0 𝐴33⎠ ⎝ 0 0 𝐴33⎠
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and

𝑊d

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

𝐴11 𝐴12 𝐴13
0 𝐴22 𝐴23
0 0 𝐴33

⎞

⎟

⎟

⎠

, 𝒆3
⎞

⎟

⎟

⎠

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑊

⎛

⎜

⎜

⎜

⎝

𝐴11 𝐴12 𝐴∗
13

0 𝐴22 𝐴∗
23

0 0 𝐴∗
33

⎞

⎟

⎟

⎟

⎠

, if 𝐴33 ≥ 𝐴∗
33,

𝑊

⎛

⎜

⎜

⎜

⎝

𝐴11 𝐴12 𝐴∗∗
13

0 𝐴22 𝐴∗∗
23

0 0 𝐴33

⎞

⎟

⎟

⎟

⎠

, if 𝐴33 < 𝐴∗
33.

If 𝑊 is isotropic, this is enough to determine 𝑊d. If not, one has to adapt the above calculations to any orthonormal basis {𝒕1, 𝒕2,𝒏},
as explained at the end of the previous subsection.

7. Small deformation model

The theory developed throughout this work is essentially nonlinear, since, for example, frame-indifference for 𝑊 is reflected
in the equality 𝑊 (𝑹𝑭 ) = 𝑊 (𝑭 ) for all rotations 𝑹, while for 𝑊d it takes the form (2.3). Consequently, the procedure to derive
a linear theory is to start from a nonlinear energy 𝑊 , compute its relaxation 𝑊d and then linearize 𝑊d. Changing the order of
these operations (i.e., first linearize and then relax) would end up with a nonlinearly elastic energy, which eventually would need
a further linearization.

The function obtained from 𝑊 by this process of relaxation and linearization will be denoted by 𝑊d,lin, so that 𝑊d,lin(𝜺,𝒏) consists
of the quadratic terms in 𝜺 of 𝑊d(𝑰 + 𝜺,𝒏). It is well known that one can restrict to symmetric 𝜺.

In this section we calculate 𝑊d,lin for a general material with a stored energy 𝑊 that satisfies the assumptions of Section 6: 𝑊
is of class 𝐶2, its set of global minimizers is 𝑆𝑂(3), it satisfies the coercivity assumption (2.6), and the restriction of the elasticity
tensor 𝗖 = 𝐷2 𝑊 (𝑰) to the set of symmetric matrices is positive definite. We will see that the final formula for 𝑊d,lin only depends
on 𝗖.

For simplicity, the calculations in this section are detailed in dimension 2, while in dimension 3 only the final result are exposed.

.1. 2D theory

In order to linearize 𝑊d(⋅, 𝒆2), we let 𝑭 = 𝑰 + 𝜺 with 𝜺 small, which plays the role of the displacement gradient. We can assume
hat 𝜺 is symmetric.

We linearize the formulas (4.8) for the QR decomposition of 𝑭 , and obtain that 𝑭 = 𝑹𝑨 with 𝑹 ∈ 𝑆𝑂(2),

𝑨 =
(

𝐴11 𝐴12
0 𝐴22

)

nd

𝐴11 =
√

𝐹 2
11 + 𝐹

2
21 = 1 + 𝜀11 + 𝑜(|𝜺|), 𝐴22 =

𝐹11𝐹22 − 𝐹12𝐹21
√

𝐹 2
11 + 𝐹

2
21

= 1 + 𝜀22 + 𝑜(|𝜺|), (7.1)

hile the expression of 𝐴12 is not important in this development. We consider the functions 𝐴∗
22, 𝐴

∗
12, 𝐴

∗∗
12 of Section 6.1. Using

ormulas (6.2), (6.3) and (7.1), we find that their linearization is as follows:

𝐴∗
22(𝐴11) = 1 +

𝑐1112𝑐1222 − 𝑐1122𝑐1212
𝑐1212𝑐2222 − 𝑐21222

(𝐴11 − 1) + 𝑜(𝐴11 − 1)

= 1 +
𝑐1112𝑐1222 − 𝑐1122𝑐1212
𝑐1212𝑐2222 − 𝑐21222

𝜀11 + 𝑜(|𝜺|),

𝐴∗
12(𝐴11) =

𝑐1122𝑐1222 − 𝑐1112𝑐2222
𝑐1212𝑐2222 − 𝑐21222

(𝐴11 − 1) + 𝑜(𝐴11 − 1) =
𝑐1122𝑐1222 − 𝑐1112𝑐2222
𝑐1212𝑐2222 − 𝑐21222

𝜀11 + 𝑜(|𝜺|),

𝐴∗∗
12(𝐴22, 𝐴11) = −

𝑐1112
𝑐1212

(𝐴11 − 1) −
𝑐1222
𝑐1212

(𝐴22 − 1) + 𝑜(|𝐴11 − 1| + |𝐴22 − 1|)

= −
𝑐1112
𝑐1212

𝜀11 −
𝑐1222
𝑐1212

𝜀22 + 𝑜(|𝜺|).

Now,

𝗖

(

𝐴11 − 1 𝐴∗
12

0 𝐴∗
22 − 1

)

∶
(

𝐴11 − 1 𝐴∗
12

0 𝐴∗
22 − 1

)

= 𝗖

(

𝐴11 − 1 𝐴∗
12∕2

𝐴∗
12∕2 𝐴∗

22 − 1

)

∶
(

𝐴11 − 1 𝐴∗
12∕2

𝐴∗
12∕2 𝐴∗

22 − 1

)

= 𝑐1111(𝐴11 − 1)2 + 𝑐1212(𝐴∗
12)

2 + 𝑐2222(𝐴∗
22 − 1)2

+ 2
(

𝑐1112(𝐴11 − 1)𝐴∗
12 + 𝑐1122(𝐴11 − 1)(𝐴∗

22 − 1) + 𝑐1222𝐴∗
12(𝐴

∗
22 − 1)

)

,

so

𝑊
(

𝐴11 𝐴∗
12(𝐴11)
∗

)

18

0 𝐴22(𝐴11)
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S

s

T

N

T

w

w

t

f

w

= 1
2
𝗖

(

𝐴11 − 1 𝐴∗
12

0 𝐴∗
22 − 1

)

∶
(

𝐴11 − 1 𝐴∗
12

0 𝐴∗
22 − 1

)

+ 𝑜(|𝐴11 − 1|2 + |𝐴∗
12|

2 + |𝐴∗
22 − 1|2)

= 1
2
𝜀211

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

𝑐1111 + 𝑐1212

(

𝑐1122𝑐1222 − 𝑐1112𝑐2222
𝑐1212𝑐2222 − 𝑐21222

)2

+ 𝑐2222

(

𝑐1112𝑐1222 − 𝑐1122𝑐1212
𝑐1212𝑐2222 − 𝑐21222

)2
⎞

⎟

⎟

⎠

+2

(

𝑐1112
𝑐1122𝑐1222 − 𝑐1112𝑐2222
𝑐1212𝑐2222 − 𝑐21222

+ 𝑐1122
𝑐1112𝑐1222 − 𝑐1122𝑐1212
𝑐1212𝑐2222 − 𝑐21222

+𝑐1222
𝑐1122𝑐1222 − 𝑐1112𝑐2222
𝑐1212𝑐2222 − 𝑐21222

𝑐1112𝑐1222 − 𝑐1122𝑐1212
𝑐1212𝑐2222 − 𝑐21222

)]

+ 𝑜(|𝜺|2)

= 1
2

(

𝑐1111 −
𝑐21122𝑐1212 − 2𝑐1112𝑐1122𝑐1222 + 𝑐21112𝑐2222

𝑐1212𝑐2222 − 𝑐21222

)

𝜀211 + 𝑜(|𝜺|
2).

imilarly,

𝗖

(

𝐴11 − 1 𝐴∗∗
12

0 𝐴22 − 1

)

∶
(

𝐴11 − 1 𝐴∗∗
12

0 𝐴22 − 1

)

= 𝗖

(

𝐴11 − 1 𝐴∗∗
12∕2

𝐴∗∗
12∕2 𝐴22 − 1

)

∶
(

𝐴11 − 1 𝐴∗∗
12∕2

𝐴∗∗
12∕2 𝐴22 − 1

)

= 𝑐1111(𝐴11 − 1)2 + 𝑐1212(𝐴∗∗
12)

2 + 𝑐2222(𝐴22 − 1)2

+ 2
(

𝑐1112(𝐴11 − 1)𝐴∗∗
12 + 𝑐1122(𝐴11 − 1)(𝐴22 − 1) + 𝑐1222𝐴∗∗

12(𝐴22 − 1)
)

,

o

𝑊
(

𝐴11 𝐴∗∗
12(𝐴22, 𝐴11)

0 𝐴22

)

= 1
2

(

𝑐1111 −
𝑐21112
𝑐1212

)

𝜀211 +
(

𝑐1122 −
𝑐1112𝑐1222
𝑐1212

)

𝜀11𝜀22 +
1
2

(

𝑐2222 −
𝑐21222
𝑐1212

)

𝜀222 + 𝑜(|𝜺|
2).

he final formula for 𝑊d,lin(⋅, 𝒆2) is

𝑊d,lin
(

𝜺, 𝒆2
)

=

⎧

⎪

⎨

⎪

⎩

1
2

(

𝑐1111 −
𝑐21112𝑐2222−2𝑐1112𝑐1122𝑐1222+𝑐

2
1122𝑐1212

𝑐1212𝑐2222−𝑐21222

)

𝜀211 if 𝜀22 >
𝑐1112𝑐1222−𝑐1122𝑐1212
𝑐1212𝑐2222−𝑐21222

𝜀11,

1
2

(

𝑐1111 −
𝑐21112
𝑐1212

)

𝜀211 +
(

𝑐1122 −
𝑐1112𝑐1222
𝑐1212

)

𝜀11𝜀22 +
1
2

(

𝑐2222 −
𝑐21222
𝑐1212

)

𝜀222 otherwise.

(7.2)

otice that 𝑊d,lin(⋅, 𝒆2) is continuous.
The formula for 𝑊d,lin(𝜺,𝒏) can be deduced as follows. If 𝑊 is isotropic, given a unit vector 𝒏, we consider the rotation (4.7).

he linearization of 𝑊d consists of the quadratic terms in 𝜺 of

𝑊d(𝑰 + 𝜺,𝒏) = 𝑊d((𝑰 + 𝜺)𝑸𝑇 , 𝒆2) = 𝑊d(𝑸(𝑰 + 𝜺)𝑸𝑇 , 𝒆2) = 𝑊d(𝑰 +𝑸𝜺𝑸𝑇 , 𝒆2),

here we have used Proposition 2.4 and the isotropy of 𝑊 . We define 𝜺𝒏 = 𝑸𝜺𝑸𝑇 and apply formula above for 𝜺𝒏 to find that

𝑊d,lin (𝜺,𝒏)

=

⎧

⎪

⎨

⎪

⎩

1
2

(

𝑐1111 −
𝑐21112𝑐2222−2𝑐1112𝑐1122𝑐1222+𝑐

2
1122𝑐1212

𝑐1212𝑐2222−𝑐21222

)

(𝜀𝒏11)
2 if 𝜀𝒏22 >

𝑐1112𝑐1222−𝑐1122𝑐1212
𝑐1212𝑐2222−𝑐21222

𝜀𝒏11,

1
2

(

𝑐1111 −
𝑐21112
𝑐1212

)

(𝜀𝒏11)
2 +

(

𝑐1122 −
𝑐1112𝑐1222
𝑐1212

)

𝜀𝒏11𝜀
𝒏
22 +

1
2

(

𝑐2222 −
𝑐21222
𝑐1212

)

(𝜀𝒏22)
2 otherwise,

(7.3)

ith

𝜀𝒏11 = 𝜀22𝑛
2
1 − 2𝜀12𝑛1𝑛2 + 𝜀11𝑛22, 𝜀𝒏22 = 𝜀11𝑛

2
1 + 2𝜀12𝑛1𝑛2 + 𝜀22𝑛22. (7.4)

In fact, formula (7.3) can be simplified because of the isotropy of 𝑊 . Indeed, taking into account the symmetries of 𝗖, we find
hat it acts as

𝗖𝜺 ∶ 𝜺 =
∑

𝑖𝑗𝑘𝑙
𝑐𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙

= 𝑐1111𝜀
2
11 + 4𝑐1112𝜀11𝜀12 + 2𝑐1122𝜀11𝜀22 + 4𝑐1212𝜀212 + 4𝑐1222𝜀12𝜀22 + 𝑐2222𝜀222.

or symmetric 𝜺. Comparing this expression with the familiar one in the isotropic case

𝗖𝜺 ∶ 𝜺 = 2𝜇|𝜺|2 + 𝜆(tr 𝜺)2 = 2𝜇
(

𝜀211 + 2𝜀212 + 𝜀
2
22
)

+ 𝜆
(

𝜀211 + 2𝜀11𝜀22 + 𝜀222
)

e find that
19

𝑐1111 = 𝜆 + 2𝜇, 𝑐1112 = 0, 𝑐1122 = 𝜆, 𝑐1212 = 𝜇, 𝑐1222 = 0, 𝑐2222 = 𝜆 + 2𝜇.
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Therefore, the formula of 𝑊d,lin of (7.3) reduces as follows:

𝑊d,lin (𝜺,𝒏) =
⎧

⎪

⎨

⎪

⎩

1
2

(

𝜆 + 2𝜇 − 𝜆2

𝜆+2𝜇

)

(𝜀𝒏11)
2 if 𝜀𝒏22 > − 𝜆

𝜆+2𝜇 𝜀
𝒏
11,

𝜆+2𝜇
2 (𝜀𝒏11)

2 + 𝜆𝜀𝒏11𝜀
𝒏
22 +

𝜆+2𝜇
2 (𝜀𝒏22)

2 if 𝜀𝒏22 ≤ − 𝜆
𝜆+2𝜇 𝜀

𝒏
11,

(7.5)

ith 𝜺𝒏 as in (7.4).
If 𝑊 is not isotropic, instead of formula (7.3), we have to adapt the calculations leading to (7.2) to any orthonormal basis {𝒕,𝒏},

s in the end of Section 6.1. The final formula is
𝑊d,lin (𝜺,𝒏)

=

⎧

⎪

⎨

⎪

⎩

1
2

(

𝑐𝒕𝒕𝒕𝒕 −
𝑐2𝒕𝒕𝒕𝒏𝑐𝒏𝒏𝒏𝒏−2𝑐𝒕𝒕𝒕𝒏𝑐𝒕𝒕𝒏𝒏𝑐𝒕𝒏𝒏𝒏+𝑐

2
𝒕𝒕𝒏𝒏𝑐𝒕𝒏𝒕𝒏

𝑐𝒕𝒏𝒕𝒏𝑐𝒏𝒏𝒏𝒏−𝑐2𝒕𝒏𝒏𝒏

)

𝜀̃2𝒕𝒕 if 𝜀̃𝒏𝒏 >
𝑐𝒕𝒕𝒕𝒏𝑐𝒕𝒏𝒏𝒏−𝑐𝒕𝒕𝒏𝒏𝑐𝒕𝒏𝒕𝒏
𝑐𝒕𝒏𝒕𝒏𝑐𝒏𝒏𝒏𝒏−𝑐2𝒕𝒏𝒏𝒏

𝜀̃𝒕𝒕,

1
2

(

𝑐𝒕𝒕𝒕𝒕 −
𝑐2𝒕𝒕𝒕𝒏
𝑐𝒕𝒏𝒕𝒏

)

𝜀̃2𝒕𝒕 +
(

𝑐𝒕𝒕𝒏𝒏 −
𝑐𝒕𝒕𝒕𝒏𝑐𝒕𝒏𝒏𝒏
𝑐𝒕𝒏𝒕𝒏

)

𝜀̃𝒕𝒕𝜀̃𝒏𝒏 +
1
2

(

𝑐𝒏𝒏𝒏𝒏 −
𝑐2𝒕𝒏𝒏𝒏
𝑐𝒕𝒏𝒕𝒏

)

𝜀̃2𝒏𝒏 otherwise,

(7.6)

here 𝑐𝑖𝑗𝑘𝑙 are the coefficients of the elasticity tensor with respect to the basis {𝒕,𝒏}, and 𝜀̃𝑖𝑗 the components of the strain 𝜺 with
espect to the basis {𝒕,𝒏}. They are related to the coefficients 𝑐𝑝𝑞𝑟𝑠 with respect to the canonical basis via

𝑐𝑖𝑗𝑘𝑙 =
2
∑

𝑝,𝑞,𝑟,𝑠=1

(

𝒆̃𝑖 ⋅ 𝒆𝑝
) (

𝒆̃𝑗 ⋅ 𝒆𝑞
) (

𝒆̃𝑘 ⋅ 𝒆𝑟
) (

𝒆̃𝑙 ⋅ 𝒆𝑠
)

𝑐𝑝𝑞𝑟𝑠

Ting, 1996), while

𝜀̃𝑖𝑗 =
2
∑

𝑝,𝑞=1

(

𝒆̃𝑖 ⋅ 𝒆𝑝
) (

𝒆̃𝑗 ⋅ 𝒆𝑞
)

𝜀𝑝𝑞 .

e have used a dual notation with the same meaning: the indices 𝑖, 𝑗, 𝑘, 𝑙 run in the set {1, 2} and also in the set {𝒕,𝒏}. Moreover,
he basis {𝒕,𝒏} has been renamed to {𝒆̃1, 𝒆̃2}.

As we can see from (7.6), the linearization of 𝑊d only depends on 𝑊 through its elasticity tensor. Moreover, it satisfies the
raction condition (3.1). Indeed, the (𝒕,𝒏) and the (𝒏,𝒏) components of the Piola–Kirchhoff stress of the material given by 𝑊d,lin are,
espectively,

𝜕𝑊d,lin

𝜕𝜀𝒕𝒏
(𝜺,𝒏) = 0

nd
𝜕𝑊d,lin

𝜕𝜀𝒏𝒏
(𝜺,𝒏) = max

{

(

𝑐𝒕𝒕𝒏𝒏 −
𝑐𝒕𝒕𝒕𝒏𝑐𝒕𝒏𝒏𝒏
𝑐𝒕𝒏𝒕𝒏

)

𝜀̃𝒕𝒕 +
(

𝑐𝒏𝒏𝒏𝒏 −
𝑐2𝒕𝒏𝒏𝒏
𝑐𝒕𝒏𝒕𝒏

)

𝜀̃𝒏𝒏, 0
}

= max
{

𝑇𝒏𝒏, 0
}

,

here 𝑇𝒏𝒏 is the (𝒏,𝒏) component of the Piola–Kirchhoff stress corresponding to an intact material with energy
(

𝑐𝒕𝒕𝒏𝒏 −
𝑐𝒕𝒕𝒕𝒏𝑐𝒕𝒏𝒏𝒏
𝑐𝒕𝒏𝒕𝒏

)

𝜀̃𝒕𝒕𝜀̃𝒏𝒏 +
1
2

(

𝑐𝒏𝒏𝒏𝒏 −
𝑐2𝒕𝒏𝒏𝒏
𝑐𝒕𝒏𝒕𝒏

)

𝜀̃2𝒏𝒏 + ℎ(𝜀̃𝒕𝒕, 𝜀̃𝒕𝒏)

for an arbitrary function ℎ. For the sake of symmetry, we choose the ℎ so that the energy is

1
2

(

𝑐𝒕𝒕𝒕𝒕 −
𝑐2𝒕𝒕𝒕𝒏
𝑐𝒕𝒏𝒕𝒏

)

𝜀̃2𝒕𝒕 +
(

𝑐𝒕𝒕𝒏𝒏 −
𝑐𝒕𝒕𝒕𝒏𝑐𝒕𝒏𝒏𝒏
𝑐𝒕𝒏𝒕𝒏

)

𝜀̃𝒕𝒕𝜀̃𝒏𝒏 +
1
2

(

𝑐𝒏𝒏𝒏𝒏 −
𝑐2𝒕𝒏𝒏𝒏
𝑐𝒕𝒏𝒕𝒏

)

𝜀̃2𝒏𝒏,

but this energy depends on 𝒏, so in general it does not correspond to a single intact material.

.2. 3D theory

An analogous calculation can be done in 3D. We do not repeat the argument but write down the final formulas. We make the
ollowing abbrevations:

𝜺̄ = (𝜀11, 2𝜀12, 𝜀22), 𝜺̂ = (𝜀11, 2𝜀12, 𝜀22, 𝜀33),

∇𝐴∗
13,∇𝐴

∗
23,∇𝐴

∗
33 are the row vectors in R3 solving the system

⎛

⎜

⎜

⎝

𝑐1313 𝑐1323 𝑐1333
𝑐1323 𝑐2323 𝑐2333
𝑐1333 𝑐2333 𝑐3333

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

∇𝐴∗
13

∇𝐴∗
23

∇𝐴∗
33

⎞

⎟

⎟

⎠

= −
⎛

⎜

⎜

⎝

𝑐1113 𝑐1213 𝑐1322
𝑐1123 𝑐1223 𝑐2223
𝑐1133 𝑐1233 𝑐2233

⎞

⎟

⎟

⎠

,

while ∇𝐴∗∗
13 ,∇𝐴

∗∗
23 are the row vectors in R4 solving the system

(

𝑐1313 𝑐1323
)(

∇𝐴∗∗
13
∗∗

)

= −
(

𝑐1113 𝑐1213 𝑐1322 𝑐1333
)

.

20

𝑐1323 𝑐2323 ∇𝐴23 𝑐1123 𝑐1223 𝑐2223 𝑐2333
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Then, 𝑊d,lin(𝜺, 𝒆3) equals
1
2

[

𝑐1111𝜀
2
11 + 4𝑐1112𝜀11𝜀12 + 2𝑐1113𝜀11∇𝐴∗

13 ⋅ 𝜺̄ + 2𝑐1122𝜀11𝜀22 + 2𝑐1123𝜀11∇𝐴∗
23 ⋅ 𝜺̄

+ 2𝑐1133𝜀11∇𝐴∗
33 ⋅ 𝜺̄ + 4𝑐1212𝜀212 + 4𝑐1213𝜀12∇𝐴∗

13 ⋅ 𝜺̄ + 4𝑐1222𝜀12𝜀22 + 4𝑐1223𝜀12∇𝐴∗
23 ⋅ 𝜺̄

+ 4𝑐1233𝜀12∇𝐴∗
33 ⋅ 𝜺̄ + 𝑐1313

(

∇𝐴∗
13 ⋅ 𝜺̄

)2 + 2𝑐1322∇𝐴∗
13 ⋅ 𝜺̄𝜀22 + 2𝑐1323∇𝐴∗

13 ⋅ 𝜺̄∇𝐴
∗
23 ⋅ 𝜺̄

+ 2𝑐1333∇𝐴∗
13 ⋅ 𝜺̄∇𝐴

∗
33 ⋅ 𝜺̄ + 𝑐2222𝜀

2
22 + 2𝑐2223𝜀22∇𝐴∗

23 ⋅ 𝜺̄ + 2𝑐2233𝜀22∇𝐴∗
33 ⋅ 𝜺̄ + 𝑐2323

(

∇𝐴∗
23 ⋅ 𝜺̄

)2

+ 2𝑐2333∇𝐴∗
23 ⋅ 𝜺̄∇𝐴

∗
33 ⋅ 𝜺̄ + 𝑐3333

(

∇𝐴∗
33 ⋅ 𝜺̄

)2
]

,

(7.7)

f 𝜀33 ≥ ∇𝐴∗
33 ⋅ 𝜺̄, while it equals

1
2

[

𝑐1111𝜀
2
11 + 4𝑐1112𝜀11𝜀12 + 2𝑐1113𝜀11∇𝐴∗∗

13 ⋅ 𝜺̂ + 2𝑐1122𝜀11𝜀22 + 2𝑐1123𝜀11∇𝐴∗∗
23 ⋅ 𝜺̂

+ 2𝑐1133𝜀11𝜀33 + 4𝑐1212𝜀212 + 4𝑐1213𝜀12∇𝐴∗∗
13 ⋅ 𝜺̂ + 4𝑐1222𝜀12𝜀22 + 4𝑐1223𝜀12∇𝐴∗∗

23 ⋅ 𝜺̂

+ 4𝑐1233𝜀12𝜀33 + 𝑐1313
(

∇𝐴∗∗
13 ⋅ 𝜺̂

)2 + 2𝑐1322∇𝐴∗∗
13 ⋅ 𝜺̂𝜀22 + 2𝑐1323∇𝐴∗∗

13 ⋅ 𝜺̂∇𝐴
∗∗
23 ⋅ 𝜺̂

+ 2𝑐1333∇𝐴∗∗
13 ⋅ 𝜺̂𝜀33 + 𝑐2222𝜀

2
22 + 2𝑐2223𝜀22∇𝐴∗∗

23 ⋅ 𝜺̂ + 2𝑐2233𝜀22𝜀33 + 𝑐2323
(

∇𝐴∗∗
23 ⋅ 𝜺̂

)2

+ 2𝑐2333∇𝐴∗∗
23 ⋅ 𝜺̂𝜀33 + 𝑐3333𝜀

2
33

]

,

(7.8)

if 𝜀33 < ∇𝐴∗
33 ⋅ 𝜺̄.

In the presence of isotropy, the final formula is

𝑊d,lin
(

𝜺, 𝒆3
)

=

⎧

⎪

⎨

⎪

⎩

1
2

(

𝜆 + 2𝜇 + 3𝜆2
𝜆+2𝜇

)

(𝜀211 + 𝜀
2
22) +

(

𝜆 + 3𝜆2
𝜆+2𝜇

)

𝜀11𝜀22 + 2𝜇𝜀212 if 𝜀33 ≥
𝜆

𝜆+2𝜇 (𝜀11 + 𝜀22),
𝜆+2𝜇
2 (𝜀211 + 𝜀

2
22 + 𝜀

2
33) + 𝜆(𝜀11𝜀22 + 𝜀11𝜀33 + 𝜀22𝜀33) + 2𝜇𝜀212 if 𝜀33 <

𝜆
𝜆+2𝜇 (𝜀11 + 𝜀22),

(7.9)

nd the formula for a general unit vector 𝒏 is calculated as follows: we consider any 𝑸 ∈ 𝑆𝑂(3) such that 𝑸𝒏 = 𝒆3, as in (4.14), and
se that

𝑊d,lin(𝜺,𝒏) = 𝑊d,lin(𝑸𝜺𝑸𝑇 , 𝒆3).

If 𝑊 is not isotropic, then 𝑊d,lin(𝜺,𝒏) is calculated as in (7.7)–(7.8), but replacing 𝑐𝑖𝑗𝑘𝑙 with 𝑐𝑖𝑗𝑘𝑙 and 𝜀𝑖𝑗 with 𝜀̃𝑖𝑗 , similarly to
Section 7.1.

8. Numerical implementation

We use the finite element method to compute numerical solutions, implemented in the open source FEniCS library, which is
now used widely for problems in mechanics, e.g., Logg et al. (2012) and Barchiesi et al. (2021); our implementation adapts the
code from Hrishikesh et al. (2019). We use 𝒚(𝒙) and 𝒅(𝒙) as the primary unknown functions, and approximate them using standard
iecewise linear elements. We consider two classes of problems.

First, we compute the energy-minimizing deformation 𝒚, keeping 𝒅 fixed at a prescribed configuration that corresponds roughly
to a crack; we refer to this type of problem as a ‘‘frozen crack’’. For these problems, the energy is minimized under load using the
FEniCS Dolfin Adjoint library (Mitusch et al., 2019).

Second, we compute the fully-coupled problem of crack growth, wherein both 𝒚 and 𝒅 evolve to minimize the energy under a
time-dependent external loading. To compute the minimization at each load step, we find that alternate minimization over 𝒚 and 𝒅
works well, following Hrishikesh et al. (2019). Specifically, at each load step, we perform first a minimization over 𝒚 with 𝒅 fixed,
and then minimize over 𝒅 with 𝒚 fixed, and alternate this until we converge. That is, given the iterates 𝒚𝑖 and 𝒅𝑖, we obtain the
next iterate using:

𝒚𝑖+1 = argmin
𝒚

𝐸[𝒚,𝒅𝑖],

𝒅𝑖+1 = argmin
𝒅

𝐸[𝒚𝑖+1,𝒅]
(8.1)

and we repeat until max{‖𝒚𝑖+1 − 𝒚𝑖‖, ‖𝒅𝑖+1 − 𝒅𝑖‖} < 10−3. Once we reach a converged solution, we update the time-dependent load.
An important aspect of crack growth is that the minimization over 𝒅 must respect the physics that cracks do not heal even

hen the load is reversed. Following standard approaches, e.g. Bourdin (2007), we implement this irreversibility as follows. We
irst choose a critical value 𝑑𝑐 , taken to be 0.95 in this paper. If the converged vector field 𝒅0 in a loading step satisfies |𝒅0| ≥ 𝑑𝑐 ,
e impose the pointwise constraint 𝒅 = 𝒅0

|𝒅0|
for all future times, and minimize over 𝒅 that respect this constraint.

In addition to preventing the magnitude of 𝒅 from decreasing once it satisfies |𝒅| ≥ 𝑑𝑐 , the constraint also prevents the crack
normal from changing orientation. This is important in the setting considered in this paper. Specifically, if we did not prevent the
orientation of the crack from changing, we could conceive of a sequence of loading steps that would lead to the unphysical result
that a crack normal changes orientation even if the crack – defined by the magnitude of 𝒅 – is fixed.

We use 𝜖 = 0.015 in a nondimensionalized length scale for the phase-field regularization parameter introduced in (1.5). Given
21

his value of 𝜖, we use a mesh that is sufficiently refined as to resolve the interfaces.
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Fig. 4. The chosen configuration for the 𝒅 field for the frozen crack calculations. We use a circular configuration to test the effective energy in configurations
that are far from an ideal sharp crack.

9. Numerical calculations

We solve the model numerically for three settings: first, we look at the elastic response of frozen cracks in which 𝒅 is held fixed
to a given configuration, as a means of testing the efficacy of the model; second, we look at a configuration with cyclic shear loading
that leads to crack closure as well as crack branching; and, third, we look at fracture in a cavity under cyclic loading that leads to
crack closure and the growth of multiple cracks, motivated by recent experiments on similar settings.

All of the settings considered above use the large-deformation neo-Hookean model in 2D (Section 4.1). We choose material
parameters corresponding roughly to PMMA, which is a common material for experimental research (Sane and Knauss, 2001). We
use 𝜆 = 2.576GPa, 𝜇 = 1.104GPa, and 𝐺𝑐 = 285Nm−1 for the frozen cracks. For growing cracks, we set 𝜆 = 0 to avoid Poisson’s ratio
effects. All plots of energy density and stress are normalized by 𝜇.

9.1. Mechanical response of a frozen crack

Fig. 4 shows the specimen the chosen configuration for 𝒅. We use a circular crack to ensure that the model works even in
configurations that are far from a classical sharp crack. We compute the elastic response of the specimen for the fundamental
deformation modes from Fig. 2. The deformation modes are applied by imposing the expressions in Section 2.2 as affine boundary
conditions on the specimen. For instance, considering mode (a) and using that 𝒏 = 𝒆2 in this specimen, we define 𝑭 0 = 𝒆1 ⊗ 𝒆1 +
𝐹 0
22𝒆2 ⊗ 𝒆2 with 𝐹 0

22 > 1; and then minimize the elastic energy subject to 𝒚 = 𝑭 0𝒙 on the boundary of the specimen.
Figs. 5 and 6 show the elastic energy density, deformation, and the traction on the plane with normal 𝒆2 for the fundamental

deformation modes. Specifically, Fig. 5 shows modes (a) and (b) for which our idealized crack should have no elastic response. We
see that the elastic energy in the crack is much smaller than the intact material; the deformations in the crack are much larger than
in the intact material; and there are no shear or tensile normal tractions in the crack.

Fig. 6 plots the same quantities for modes (c), (d), (e). For modes (c) and (e), we notice that the elastic energy density,
deformation, and traction are uniform to the precision of the numerical approximations; the specimen behaves as expected for
a crack that is closing, and the traction across the crack faces are indeed compressive. For mode (d), on the other hand, we find
that the specimen has the clear signature of the crack in the elastic energy density, the deformation, and the traction. This can be
understood as arising due to an interplay between the imposed affine boundary conditions and the fact that the crack faces pull
apart due to lateral shrinkage driven by the load – i.e., a Poisson’s ratio effect – because the crack faces cannot support tension.
To show this, we use affine boundary conditions that are set up to give the normal stress in the vertical direction to be 0, and find
that the deformation and elastic energy density are indeed uniform in this setting (Fig. 7); i.e., when allowed to relax the stress, the
specimen behaves like an idealized sharp crack.
22
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Fig. 5. Left column: elastic energy density (overlaid on a mesh that shows the deformation); right column: traction on the plane with normal 𝒆2 for the
deformation modes that should have zero effective crack energy.

9.2. Crack growth under cyclic shear loading with crack face contact

We now consider an example in which cracks change direction, close, and branch due to a cyclic shear loading. We use a specimen
as in Fig. 8(a) that contains an initial crack. Our boundary conditions are as follows: on the bottom face, we fix the displacement
to zero; on the left and right faces, we fix the traction to zero; and on the top face, we fix the vertical displacement to zero and the
horizontal displacement to cause shearing.

First, we shear the specimen to the right, and that causes the initial crack to kink, i.e., change direction, and grow towards the
bottom-right (Figs. 8(bc)). This is consistent with the crack normal being aligned with the direction of maximum tension. We notice
2 stress concentrations: one is from the crack tip, and the other is at the point that the crack kinks. The stress concentration at the
kink can be understood as, roughly, due to the re-entrant corner.

Next, we reverse the shear on the specimen to the left, and that causes a branch crack to nucleate at the kink – driven by the
high stresses there – and grow towards the right (Figs. 8(de)). The direction of maximum tension would suggest that the crack grow
towards the top-right, but we impose constraints – requiring that both components of 𝒅 are non-negative – to drive the crack to
grow horizontally after branching. We do this to set up a situation without reentrant-corner-like geometries, enabling us to better
understand the stresses at the branch point.

We highlight that the crack that grew under the shearing to the right now closes and the crack faces contact. From Fig. 8(e), we
see that the elastic energy shows only a very small signature of the presence of the closed crack, suggesting that the model works
well in capturing the response of closed cracks.
23
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Fig. 6. Left column: elastic energy density (overlaid on a mesh that shows the deformation); right column: traction on the plane with normal 𝒆2 for the
deformation modes that should have nonzero effective crack energy.

We also highlight that are higher stresses near the branch point, which would not occur in an idealized Y-configuration crack
pattern with a straight upper crack branch. These stresses occur because 𝒅 is a smooth field and it rotates as it transitions between
crack branches. That is, the second argument of the effective crack energy density 𝑊d(∇𝒚,𝒏) takes a range of values, and hence the
response deviates from the idealized sharp crack response.
24
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Fig. 7. Mode (d), with the affine boundary conditions set up to effectively allow relaxation in the vertical direction. The elastic energy density and the deformation
are both essentially uniform.

9.3. Cracks in a cavity under cyclic loading

We consider the growth of fracture patterns in a cavity that is subject to a remote load. While our work is motivated by recent
carefully controlled experiments that show a range of interesting behavior (Mijailovic et al., 2021; Milner and Hutchens, 2021;
Raayai-Ardakani et al., 2019; Kim et al., 2020), these experiments have additional physics such as inertia and cavitation that is not
considered here.

We consider a square specimen with a circular cavity as in Fig. 9(a). We begin with 8 initial short pre-cracks. We apply the
remote loading by imposing affine boundary conditions, i.e., imposing 𝒚 = 𝑭 0𝒙 on the outer boundary, where 𝑭 0 is proportional to
the identity. The surface of the cavity is traction free.

Fig. 9(b) shows the elastic energy density of the specimen initially under compression as a baseline. That is, the elastic energy
density is what we would have in an intact uncracked specimen.

Figs. 9(c,d) show the crack configuration and elastic energy density, respectively, when the specimen is then loaded under
tension. We find that 4 of the 8 cracks grow while the others do not, and the elastic energy shows the expected regularized stress con-
centration at the crack tips. We highlight that the loading had to be imposed in small increments to capture the crack configuration
shown in the figure, because the cracks would grow rapidly and reach the boundary soon after the state shown in the figures.

Figs. 9(e,f) show the crack configuration and elastic energy density, respectively, when the specimen is subsequently loaded
under compression. The crack configuration is largely the same, though the cracks have become visually narrower; this is due to
our approach to healing, wherein we allow healing when 𝒅 has magnitude below a critical value (Section 8). An important highlight
is that the elastic energy density in Fig. 9(f) is identical to the uncracked case in Fig. 9(b), despite the completely different crack
configurations in these settings. The elastic response of the cracked configuration under compression is identical to the uncracked
configuration under compression because all the cracks have closed, suggesting that the model is working well in capturing the
desired response.

10. Discussion

In this paper, we have presented an effective energy for phase-field cracks that provides the correct crack response when the crack
is subject to complex loadings that cause contact across the crack faces. Our approach is valid in the setting of finite deformations,
which enables application to soft materials in complex configurations (e.g., to complement theoretical studies such as Mo et al.
(2022), Geubelle and Knauss (1994) and Knowles and Sternberg (1983)), as well as to stiff materials where strains are small but
fractured pieces can have large rotations or where compression driving crack closure is significant (e.g., Huang et al., 2022).

While the numerical results presented above are promising, there remain several important directions for future research:

• Quasiconvexity is a central property for well-posed problems in finite elasticity, e.g., Braides (1998), Antman (2005) and
Dal Maso et al. (2005), and it remains to check that 𝑊d is quasiconvex in the 𝑭 variable. While lack of convexity typically
leads to instabilities or microstructure, our numerical computations have not shown that behavior. In this context, we notice
that an alternative definition of 𝑊d could have been

𝑊d(𝑭 ,𝒏) = min 𝑊 (∇𝒚) d𝑉𝒙,
25
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Fig. 8. Crack configuration and elastic energy density under cyclic shear loading.

where: 𝑄𝒏 is the cube of volume one centered at the origin with edges parallel to the orthonormal basis {𝒕1, 𝒕2,𝒏}; 𝒚 is Sobolev
in the two half-cubes 𝑄±

𝒏 = {𝒙 ∈ 𝑄𝒏 ∶ ±𝒙 ⋅ 𝒏 > 0}, but can have a jump in the interface {𝒙 ∈ 𝑄𝒏 ∶ 𝒙 ⋅ 𝒏 = 0}; 𝒚 does not
interpenetrate. This definition renders a quasiconvex 𝑊d and, in addition, simulates the effective response of two blocks under
the affine deformation 𝑭 applied on the boundary (Fig. 10). However, explicitly carrying out the minimization is challenging.
26
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Fig. 9. Crack growth in a circular cavity under cyclic remote loading.

• The limiting sharp-interface model that appears as 𝜖 → 0, and the corresponding consequences on the crack face tractions,

needs to be clarified.
27
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Fig. 10. Obtaining the effective crack energy through the homogenized effective response of two blocks.

• The numerical studies on branched cracks show that the crack normal is not well defined at the branch point, which leads to
undesired responses at the branch point when the crack is subject to complex loads. While it is not immediately clear to us
as to how to eliminate this, possibly it is useful to borrow from damage theory in using a tensorial parameter (Lemaitre and
Chaboche, 1994) that can potentially represent a richer kinematics such as multiple normals at a spatial location.

• We have considered the setting of idealized frictionless crack faces. A natural extension is to consider friction, which is relevant
to a large class of materials. While relaxation of the energy is not applicable to this setting, the QR decomposition provides
an approach to transparently separate the relative slip of the crack faces from other deformation modes. Therefore, we expect
that the kinematics introduced in this paper will be useful in considering more realistic boundary conditions.
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ppendix A. Shortcomings of the energy splitting method

The simplest approach to model the energy density of the damaged volume is to set the damaged energy to 0. However, this
eads to unphysical behavior such as interpenetration of the crack faces and an incorrect mechanical response of a body with a
rack. The papers Miehe et al. (2010) and Amor et al. (2009) proposed different ways of decomposing the energy, and associating
nly certain terms of the energy to the damaged region. While the energy splitting method vastly improved the difficulties caused
y simply using zero energy for the crack, it does not consider the crack orientation in the energetic decomposition. Consequently,
nergy splitting leads to unphysical response in some settings; further, it is unclear how to extend it beyond the setting of linear
sotropic elasticity. We discuss below some simple examples where the splitting methods provide unexpected results. We emphasize
hat the incorrect stress field at crack tips can affect the crack growth behavior significantly, even if the stresses are largely correct
way from the crack tip.

In all examples, we consider a large specimen with a given far-field stress or strain, and a finite crack oriented with normal 𝒆2.
e use 𝝈𝑠𝑝𝑙𝑖𝑡 to denote the response of the cracked material predicted by the energy splitting model.
We define the intact energy and the corresponding stress by

𝑊𝑖𝑛𝑡𝑎𝑐𝑡(𝜺) =
1
2
𝜆(tr 𝜺)2 + 𝜇|𝜺|2 ⇒ 𝝈𝑖𝑛𝑡𝑎𝑐𝑡 = 𝜆 (tr 𝜺) 𝑰 + 2𝜇𝜺. (A.1)

A value 𝜇 > 0 is required for convexity of 𝑊 . For simplicity we consider 𝜆 > 0, and consequently the Poisson ratio 𝜈 is positive.
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A.1. Splitting based on the principal strain

Following Miehe et al. (2010), the compressive (𝜓−
0 ) and tensile (𝜓+

0 ) energies are defined by

𝜓±
0 ∶= 1

2
𝜆⟨𝜀1 + 𝜀2 + 𝜀3⟩2± + 𝜇⟨𝜀1⟩2± + ⟨𝜀2⟩

2
± + ⟨𝜀3⟩

2
±,

where 𝜀1, 𝜀2, 𝜀3 denote the principal strains, and the corresponding principal directions are 𝒏1,𝒏2,𝒏3. Also, ⟨𝑥⟩+ = max{0, 𝑥} and
⟨𝑥⟩− = min{0, 𝑥}. The effective energy of the crack is assumed to consist of only the compressive part 𝜓−

0 . The corresponding stress
is

𝝈𝑠𝑝𝑙𝑖𝑡 =
3
∑

𝑎=1

(

𝜆⟨𝜀1 + 𝜀2 + 𝜀3⟩− + 2𝜇⟨𝜀𝑎⟩−
)

𝒏𝑎 ⊗ 𝒏𝑎. (A.2)

We notice from this expression that 𝝈𝑠𝑝𝑙𝑖𝑡 is always non-tensile in every direction.

a. Uniaxial tension parallel to the crack. Consider the specimen subject to a far-field stress 𝜎0𝒆1 ⊗ 𝒆1 with 𝜎0 > 0, giving a far-field
strain of:

𝜺 =
𝜎0

𝜇(3𝜆 + 2𝜇)

⎛

⎜

⎜

⎝

𝜆 + 𝜇 0 0
0 −𝜆∕2 0
0 0 −𝜆∕2

⎞

⎟

⎟

⎠

. (A.3)

The corresponding stress response in the crack in this model is 𝝈𝑠𝑝𝑙𝑖𝑡 = − 𝜎0
3𝜆+2𝜇

(

𝒆2 ⊗ 𝒆2 + 𝒆3 ⊗ 𝒆3
)

.
We emphasize two aspects of this result. First, there is an unexpected (since 𝜈 > 0) compressive stress along the 𝒆2 direction.

Second, the stress along the 𝒆1 direction is zero, while the expectation is that for far-field stress parallel to crack, the material should
behave as an intact material and sustain the far-field stress as it is. The incorrect stress field can potentially cause spurious crack
growth: the effective zero stiffness for tension parallel to cracks can lead to spurious stress concentration around the tip as the intact
material ahead of the tip can sustain far-field stress in 𝒆1 direction but the cracked phase cannot. Further, this can have a significant
purious impact on the T-stress which is an important parameter for ductile crack growth (S. et al., 2021).

. Shear traction across the crack. Consider the specimen subject to a far-field strain given by

𝜺 = 𝜏
2𝜇

⎛

⎜

⎜

⎝

0 1 0
1 0 0
0 0 0

⎞

⎟

⎟

⎠

ith 𝜏 > 0. The corresponding stress response in the crack in this model is

𝝈𝑠𝑝𝑙𝑖𝑡 =
𝜏
2

⎛

⎜

⎜

⎝

−1 1 0
1 −1 0
0 0 0

⎞

⎟

⎟

⎠

(A.4)

which predicts a shear traction across the crack faces, which violates the classical crack face traction conditions.

A.2. The hydrostatic-deviatoric split

Amor et al. (2009) proposes a splitting that allows the crack to resist compressive hydrostatic stress, but not tensile hydrostatic
and deviatoric stresses. One starts by writing the isotropic linear elastic energy as

𝑊𝑖𝑛𝑡𝑎𝑐𝑡(𝜺) =
1
2
𝜅⟨tr 𝜺⟩2− + 1

2
𝜅⟨tr 𝜺⟩2+ + 𝜇|𝜺𝐷|2

where 𝜅 = 𝜆 + 2𝜇∕3 > 0 is the bulk modulus and 𝜺𝐷 ∶= 𝜺 − 1
3 (tr 𝜺) 𝑰 is the deviatoric component of the strain. The effective energy

f the crack is assumed to consist only of the term 1
2𝜅⟨tr 𝜺⟩

2
−, giving the stress response

𝝈𝑠𝑝𝑙𝑖𝑡 =
(

𝜅⟨tr 𝜺⟩−
)

𝑰 .

We notice from this expression that the crack response is always non-tensile hydrostatic, regardless of the applied loading.

a. Uniaxial tension parallel to the crack. Consider the specimen subject to a far-field stress 𝜎0𝒆1⊗𝒆1 with 𝜎0 > 0, and the corresponding
far-field strain is in (A.3).

In this model, we find 𝝈𝑠𝑝𝑙𝑖𝑡 = 𝟎. As described in Appendix A.1, the expectation is that material sustains the far-field tensile stress
parallel to crack faces as it is. Further, the result that 𝝈𝑠𝑝𝑙𝑖𝑡 = 𝟎 has similar implications: spurious stress concentrations at the crack
tip that affects the crack driving force and the T-stress.
29
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b. Uniaxial compression normal to the crack. Consider the specimen subject to a far-field stress −𝜎0𝒆2 ⊗ 𝒆2 with 𝜎0 > 0. We expect
the crack faces to contact and the response to be identical to the intact material.

The far-field strain corresponding to this stress is

𝜺 =
𝜎0

𝜇(3𝜆 + 2𝜇)

⎛

⎜

⎜

⎝

𝜆∕2 0 0
0 −(𝜆 + 𝜇) 0
0 0 𝜆∕2

⎞

⎟

⎟

⎠

,

hich should also be response of the crack. However, this model predicts the crack response 𝝈𝑠𝑝𝑙𝑖𝑡 = − 𝜎0
3 𝑰 . Similar results can be

obtained in the general case of multiaxial compressive loading.

Appendix B. Proofs

In this appendix, we provide the proofs of various statements in the main body of the work.

Proof of Proposition 2.1. This is actually a restatement of the well-known QR decomposition (Horn and Johnson, 1990, Th. 2.6.1
or Trefethen and Bau, 1997, Thms. 7.1 and 7.2), according to which given any 𝑭 ∈ R3×3

+ there exist unique 𝑹 ∈ 𝑆𝑂(3) and 𝑨
pper triangular (with respect to the basis {𝒕1, 𝒕2,𝒏}) with positive diagonal elements such that 𝑭 = 𝑹𝑨. This 𝑨 must be of the form

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 ) for some 𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 > 0 and 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 ∈ R. □

Proof of Lemma 2.1. We have, successively,

𝑭 = 𝑹𝑨, 𝑭 −𝑇 = 𝑹𝑨−𝑇 , 𝑭 −𝑇 𝒏 = 𝑹𝑨−𝑇 𝒏, |

|

|

𝑭 −𝑇 𝒏||
|

= |

|

|

𝑨−𝑇 𝒏||
|

.

Now, since

𝑨 = 𝐴𝒏𝒏𝒏⊗ 𝒏 + 𝐴𝒕1𝒕1 𝒕1 ⊗ 𝒕1 + 𝐴𝒕2𝒕2 𝒕2 ⊗ 𝒕2 + 𝐴𝒕1𝒏𝒕1 ⊗ 𝒏 + 𝐴𝒕2𝒏𝒕2 ⊗ 𝒏 + 𝐴𝒕1𝒕2 𝒕1 ⊗ 𝒕2,

we can easily calculate

𝑨𝑇 = 𝐴𝒏𝒏𝒏⊗ 𝒏 + 𝐴𝒕1𝒕1 𝒕1 ⊗ 𝒕1 + 𝐴𝒕2𝒕2 𝒕2 ⊗ 𝒕2 + 𝐴𝒕1𝒏𝒏⊗ 𝒕1 + 𝐴𝒕2𝒏𝒏⊗ 𝒕2 + 𝐴𝒕1𝒕2 𝒕2 ⊗ 𝒕1,

as well as

𝑨−𝑇 = 1
𝐴𝒏𝒏

𝒏⊗ 𝒏 + 1
𝐴𝒕1𝒕1

𝒕1 ⊗ 𝒕1 +
1

𝐴𝒕2𝒕2
𝒕2 ⊗ 𝒕2 +

(

−
𝐴𝒕1𝒏

𝐴𝒕1𝒕1𝐴𝒏𝒏
+

𝐴𝒕1𝒕2𝐴𝒕2𝒏

𝐴𝒕1𝒕1𝐴𝒕2𝒕2𝐴𝒏𝒏

)

𝒏⊗ 𝒕1

−
𝐴𝒕2𝒏

𝐴𝒕2𝒕2𝐴𝒏𝒏
𝒏⊗ 𝒕2 −

𝐴𝒕1𝒕2
𝐴𝒕1𝒕1𝐴𝒕2𝒕2

𝒕2 ⊗ 𝒕1,

so

𝑨−𝑇 𝒏 = 1
𝐴𝒏𝒏

𝒏 and |

|

|

𝑨−𝑇 𝒏||
|

= 1
𝐴𝒏𝒏

,

which concludes the proof. □

Proof of Proposition 2.2. We will only prove (a), the rest of the claims being analogous. Let (𝐴(𝑗)
𝒏𝒏, 𝐴

(𝑗)
𝒕1𝒏
, 𝐴(𝑗)

𝒕2𝒏
) be a sequence (indexed

y 𝑗 ∈ N) in (0,∞) × R × R satisfying

inf
𝐴𝒏𝒏>0

𝐴𝒕1𝒏 ,𝐴𝒕2𝒏∈R

𝑊
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 )
)

= lim
𝑗→∞

𝑊
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴
(𝑗)
𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴

(𝑗)
𝒕1𝒏
, 𝐴(𝑗)

𝒕2𝒏
, 𝐴𝒕1𝒕2 )

)

.

We have that

det𝑨𝒕1 ,𝒕2 ,𝒏(𝐴
(𝑗)
𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴

(𝑗)
𝒕1𝒏
, 𝐴(𝑗)

𝒕2𝒏
, 𝐴𝒕1𝒕2 ) = 𝐴𝒕1𝒕1𝐴𝒕2𝒕2𝐴

(𝑗)
𝒏𝒏

and
|

|

|

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴
(𝑗)
𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴

(𝑗)
𝒕1𝒏
, 𝐴(𝑗)

𝒕2𝒏
, 𝐴𝒕1𝒕2 )

|

|

|

=
√

𝐴2
𝒕1𝒕1

+ 𝐴2
𝒕1𝒕2

+ (𝐴(𝑗)
𝒕1𝒏

)2 + 𝐴2
𝒕2𝒕2

+ (𝐴(𝑗)
𝒕2𝒏

)2 + (𝐴(𝑗)
𝒏𝒏)2.

Condition (2.6) implies that there exist 𝑚,𝑀 > 0 such that

𝑚 ≤ 𝐴(𝑗)
𝒏𝒏 ≤𝑀, −𝑀 ≤ 𝐴(𝑗)

𝒕1𝒏
≤𝑀, −𝑀 ≤ 𝐴(𝑗)

𝒕2𝒏
≤𝑀, 𝑗 ∈ N.

Therefore, there exist 𝐴∗
𝒏𝒏, 𝐴

∗
𝒕1𝒏
, 𝐴∗

𝒕2𝒏
with

𝑚 ≤ 𝐴∗ ≤𝑀, −𝑀 ≤ 𝐴∗ ≤𝑀, −𝑀 ≤ 𝐴∗ ≤𝑀
30

𝒏𝒏 𝒕1𝒏 𝒕2𝒏
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such that, for a subsequence (not relabeled),

lim
𝑗→∞

(𝐴(𝑗)
𝒏𝒏, 𝐴

(𝑗)
𝒕1𝒏
, 𝐴(𝑗)

𝒕2𝒏
) = (𝐴∗

𝒏𝒏, 𝐴
∗
𝒕1𝒏
, 𝐴∗

𝒕2𝒏
).

s 𝑊 is continuous,

lim
𝑗→∞

𝑊
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴
(𝑗)
𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴

(𝑗)
𝒕1𝒏
, 𝐴(𝑗)

𝒕2𝒏
, 𝐴𝒕1𝒕2 )

)

= 𝑊
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴
∗
𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴

∗
𝒕1𝒏
, 𝐴∗

𝒕2𝒏
, 𝐴𝒕1𝒕2 )

)

and the proof is complete. □

Proof of Proposition 2.3. Following the notation of Definition 2.1, we define, additionally,

𝑨′ = 𝑨𝒕1 ,𝒕2 ,𝒏(𝐴
′
𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴

′
𝒕1𝒏
, 𝐴′

𝒕2𝒏
, 𝐴𝒕1𝒕2 ).

By frame-indifference, 𝑊 (𝑨′) = 𝑊 (𝑹𝑨′), and 𝑹𝑨′ = 𝑹𝑨𝑨−1𝑨′ = 𝑭𝑨−1𝑨′. We calculate

𝑨−1 = 𝑨𝒕1 ,𝒕2 ,𝒏

(

1
𝐴𝒏𝒏

, 1
𝐴𝒕1𝒕1

, 1
𝐴𝒕2𝒕2

,
−𝐴𝒕1𝒏

𝐴𝒕1𝒕1𝐴𝒏𝒏
+

𝐴𝒕1𝒕2𝐴𝒕2𝒏

𝐴𝒕1𝒕1𝐴𝒕2𝒕2𝐴𝒏𝒏
,−

𝐴𝒕2𝒏

𝐴𝒕2𝒕2𝐴𝒏𝒏
,−

𝐴𝒕1𝒕2
𝐴𝒕1𝒕1𝐴𝒕2𝒕2

)

.

and

𝑨−1𝑨′ =

𝑨𝒕1 ,𝒕2 ,𝒏

(

𝐴′
𝒏𝒏

𝐴𝒏𝒏
, 1, 1,

𝐴′
𝒕1𝒏

𝐴𝒕1𝒕1
−
𝐴𝒕1𝒕2𝐴

′
𝒕2𝒏

𝐴𝒕1𝒕1𝐴𝒕2𝒕2
−
𝐴𝒕1𝒏𝐴

′
𝒏𝒏

𝐴𝒕1𝒕1𝐴𝒏𝒏
+
𝐴𝒕1𝒕2𝐴𝒕2𝒏𝐴

′
𝒏𝒏

𝐴𝒕1𝒕1𝐴𝒕2𝒕2𝐴𝒏𝒏
,
𝐴′
𝒕2𝒏

𝐴𝒕2𝒕2
−
𝐴𝒕2𝒕3𝐴

′
𝒏𝒏

𝐴𝒕2𝒕2𝐴𝒏𝒏
, 0

)

.

erforming the changes

𝐴′′
𝒕1𝒏

∶=
𝐴′
𝒕1𝒏

𝐴𝒕1𝒕1
−
𝐴𝒕1𝒕2𝐴

′
𝒕2𝒏

𝐴𝒕1𝒕1𝐴𝒕2𝒕2
−
𝐴𝒕1𝒏𝐴

′
𝒏𝒏

𝐴𝒕1𝒕1𝐴𝒏𝒏
+
𝐴𝒕1𝒕2𝐴𝒕2𝒏𝐴

′
𝒏𝒏

𝐴𝒕1𝒕1𝐴𝒕2𝒕2𝐴𝒏𝒏
, 𝐴′′

𝒕1𝒏
∶=

𝐴′
𝒕2𝒏

𝐴𝒕2𝒕2
−
𝐴𝒕2𝒕3𝐴

′
𝒏𝒏

𝐴𝒕2𝒕2𝐴𝒏𝒏
,

𝐴′′
𝒏𝒏 ∶=

𝐴′
𝒏𝒏

𝐴𝒏𝒏
,

it is immediate to see that
{

𝑨𝒕1 ,𝒕2 ,𝒏

(

𝐴′
𝒏𝒏

𝐴𝒏𝒏
, 1, 1,

𝐴′
𝒕1𝒏

𝐴𝒕1𝒕1
−
𝐴𝒕1𝒕2𝐴

′
𝒕2𝒏

𝐴𝒕1𝒕1𝐴𝒕2𝒕2
+

(−𝐴𝒕1𝒏𝐴𝒕2𝒕2 + 𝐴𝒕1𝒕2𝐴𝒕2𝒏)𝐴
′
𝒏𝒏

𝐴𝒕1𝒕1𝐴𝒕2𝒕2𝐴𝒏𝒏
,
𝐴′
𝒕2𝒏

𝐴𝒕2𝒕2
−
𝐴𝒕2𝒕3𝐴

′
𝒏𝒏

𝐴𝒕2𝒕2𝐴𝒏𝒏
, 0

)

∶ 𝐴′
𝒏𝒏 > 0, 𝐴′

𝒕1𝒏
, 𝐴′

𝒕2𝒏
∈ R

}

=
{

𝑨𝒕1 ,𝒕2 ,𝒏

(

𝐴′′
𝒏𝒏, 1, 1, 𝐴

′′
𝒕1𝒏
, 𝐴′′

𝒕2𝒏
, 0
)

∶ 𝐴′′
𝒏𝒏 > 0, 𝐴′′

𝒕1𝒏
, 𝐴′′

𝒕2𝒏
∈ R

}

.

This shows that

min
𝐴′𝒏𝒏>0

𝐴′𝒕1𝒏
,𝐴′𝒕2𝒏

∈R

𝑊
(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴
′
𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴

′
𝒕1𝒏
, 𝐴′

𝒕2𝒏
, 𝐴𝒕1𝒕2 )

)

= min
𝐴′′𝒏𝒏>0

𝐴′′𝒕1𝒏
,𝐴′′𝒕2𝒏

∈R

𝑊
(

𝑭𝑨𝒕1 ,𝒕2 ,𝒏

(

𝐴′′
𝒏𝒏, 1, 1, 𝐴

′′
𝒕1𝒏
, 𝐴′′

𝒕2𝒏
, 0
))

and formula (2.8) holds. Analogously, one can show that

min
𝐴′
𝒕1𝒏

,𝐴′
𝒕2𝒏

∈R
𝑊

(

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴
′
𝒕1𝒏
, 𝐴′

𝒕2𝒏
, 𝐴𝒕1𝒕2 )

)

= min
𝐴′′
𝒕1𝒏

,𝐴′′
𝒕2𝒏

∈R
𝑊

(

𝑭𝑨𝒕1 ,𝒕2 ,𝒏

(

𝐴𝒏𝒏, 1, 1, 𝐴′′
𝒕1𝒏
, 𝐴′′

𝒕2𝒏
, 0
))

. □ □

Proof of Proposition 2.4. We will use Proposition 2.3 and trace the dependence of the quantities involved.
We start with (a). According to (2.2), it is clear that 𝐴𝒏𝒏 does not depend on 𝒕1, 𝒕2. Let us see that 𝐴∗

𝒏𝒏 does not depend either,
so let {𝒕′1, 𝒕

′
2,𝒏} be another orthonormal basis. We first notice that

𝒕1 ⊗ 𝒕1 + 𝒕2 ⊗ 𝒕2 = 𝒕′1 ⊗ 𝒕′1 + 𝒕′2 ⊗ 𝒕′2,

since both terms act as the identity in span{𝒕1, 𝒕2} = span{𝒕′1, 𝒕
′
2} and as zero in span{𝒏}. On the other hand, there exist an invertible

matrix
(

𝑎11 𝑎12
)

(B.1)
31
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such that
{

𝒕1 = 𝑎11𝒕′1 + 𝑎12𝒕
′
2

𝒕2 = 𝑎21𝒕′1 + 𝑎22𝒕
′
2.

ith this we find that for any 𝐴′′
𝒏𝒏 > 0 and 𝐴′′

𝒕1𝒏
, 𝐴′′

𝒕2𝒏
∈ R we have

𝐴′′
𝒏𝒏𝒏⊗ 𝒏 + 𝒕1 ⊗ 𝒕1 + 𝒕2 ⊗ 𝒕2 + 𝐴′′

𝒕1𝒏
𝒕1 ⊗ 𝒏 + 𝐴′′

𝒕2𝒏
𝒕1 ⊗ 𝒏

= 𝐴′′
𝒏𝒏𝒏⊗ 𝒏 + 𝒕′1 ⊗ 𝒕′1 + 𝒕′2 ⊗ 𝒕′2 +

(

𝑎11𝐴
′′
𝒕1𝒏

+ 𝑎21𝐴′′
𝒕2𝒏

)

𝒕1 ⊗ 𝒏 +
(

𝑎12𝐴
′′
𝒕1𝒏

+ 𝑎22𝐴′′
𝒕2𝒏

)

𝐴′′
𝒕2𝒏

𝒕1 ⊗ 𝒏.

hus, performing the changes
⎧

⎪

⎨

⎪

⎩

𝐴′′
𝒕′1𝒏

= 𝑎11𝐴′′
𝒕1𝒏

+ 𝑎21𝐴′′
𝒕2𝒏

𝐴′′
𝒕′2𝒏

= 𝑎12𝐴′′
𝒕1𝒏

+ 𝑎22𝐴′′
𝒕2𝒏
,

e have shown that

𝑨𝒕1 ,𝒕2 ,𝒏

(

𝐴′′
𝒏𝒏, 1, 1, 𝐴

′′
𝒕1𝒏
, 𝐴′′

𝒕2𝒏
, 0
)

= 𝑨𝒕′1 ,𝒕
′
2 ,𝒏

(

𝐴′′
𝒏𝒏, 1, 1, 𝐴

′′
𝒕′1𝒏
, 𝐴′′

𝒕′2𝒏
, 0
)

.

aving in mind that the matrix (B.1) is invertible, this shows that
{

𝑨𝒕1 ,𝒕2 ,𝒏

(

𝐴′′
𝒏𝒏, 1, 1, 𝐴

′′
𝒕1𝒏
, 𝐴′′

𝒕2𝒏
, 0
)

∶ 𝐴′′
𝒏𝒏 > 0, 𝐴′′

𝒕1𝒏
, 𝐴′′

𝒕2𝒏
∈ R

}

=
{

𝑨𝒕′1 ,𝒕
′
2 ,𝒏

(

𝐴′′
𝒏𝒏, 1, 1, 𝐴

′′
𝒕′1𝒏
, 𝐴′′

𝒕′2𝒏
, 0
)

∶ 𝐴′′
𝒏𝒏 > 0, 𝐴′′

𝒕′1𝒏
, 𝐴′′

𝒕′2𝒏
∈ R

}

and, analogously,
{

𝑨𝒕1 ,𝒕2 ,𝒏

(

𝐴′′
𝒏𝒏, 1, 1, 𝐴

′′
𝒕1𝒏
, 𝐴′′

𝒕2𝒏
, 0
)

∶ 𝐴′′
𝒕1𝒏
, 𝐴′′

𝒕2𝒏
∈ R

}

=
{

𝑨𝒕′1 ,𝒕
′
2 ,𝒏

(

𝐴′′
𝒏𝒏, 1, 1, 𝐴

′′
𝒕′1𝒏
, 𝐴′′

𝒕′2𝒏
, 0
)

∶ 𝐴′′
𝒕′1𝒏
, 𝐴′′

𝒕′2𝒏
∈ R

}

.

This shows that 𝐴∗
𝒏𝒏 and 𝑊d are the same for both basis, so proving (a).

Now we show (b). Changing 𝒏 with −𝒏 does not alter 𝐴𝒏𝒏, as can be shown from (2.2). In order to show that the rest
of the quantities remain equal under this change, we first notice that {−𝒕1,−𝒕2,−𝒏} is also an orthonormal basis and, for all
𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 > 0 and 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 ∈ R,

𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 ) = 𝑨−𝒕1 ,−𝒕2 ,−𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 ).

This formula, together with (2.8), show that 𝐴∗
𝒏𝒏 is the same for 𝒏 and −𝒏. In fact, with Proposition 2.4 it also implies the conclusion

of (b).
We now show (c), so let 𝑸 ∈ 𝑆𝑂(3). From (2.2) we see immediately that 𝐴𝒏𝒏 does not change when 𝑭 is replaced with 𝑸𝑭 ,

since |(𝑸𝑭 )−𝑇 𝒏| = |𝑸−𝑇𝑭 −𝑇 𝒏| = |𝑭 −𝑇 𝒏|. Now, in view of (2.8) and Proposition 2.4, the frame-indifference of 𝑊 readily implies
that 𝐴∗

𝒏𝒏 and the whole 𝑊d is the same for 𝑭 and 𝑸𝑭 .
In order to show (d), so let 𝑸 ∈ . When the pair (𝑭 ,𝒏) is replaced with (𝑭𝑸𝑇 ,𝑸𝒏), the last expression of (2.2) does not change,

since, |(𝑭𝑸𝑇 )−𝑇𝑸𝒏| = |𝑭 −𝑇𝑸−1𝑸𝒏| = |𝑭 −𝑇 𝒏|. This shows that 𝐴𝑸𝒏𝑸𝒏 = 𝐴𝒏𝒏. In order to show that the rest of the quantities
remain equal under this change, we first notice that {𝑸𝒕1,𝑸𝒕2,𝑸𝒏} is also an orthonormal basis and, for all 𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 > 0 and
𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 ∈ R,

𝑭𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 )

= 𝑭𝑸𝑇𝑨𝑸𝒕1 ,𝑸𝒕2 ,𝑸𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 )𝑸

and, hence, since 𝑸 is a symmetry for 𝑊 ,

𝑊
(

𝑭𝑨𝒕1 ,𝒕2 ,𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 )
)

= 𝑊
(

𝑭𝑸𝑇𝑨𝑸𝒕1 ,𝑸𝒕2 ,𝑸𝒏(𝐴𝒏𝒏, 𝐴𝒕1𝒕1 , 𝐴𝒕2𝒕2 , 𝐴𝒕1𝒏, 𝐴𝒕2𝒏, 𝐴𝒕1𝒕2 )
)

.

This shows that 𝐴∗
𝑸𝒏𝑸𝒏 = 𝐴∗

𝒏𝒏 and 𝑊d(𝑭𝑸𝑇 ,𝑸𝒏) = 𝑊d(𝑭 ,𝒏), which completes the proof of (d).
Finally, (e) is a particular case of (d) when  = 𝑆𝑂(3). □

Proof of Lemma 6.1. Taking 𝜺 as

𝜀11 = 0, 𝜀12 =
1
2
, 𝜀22 = 0

and using 𝗖𝜺 ∶ 𝜺 > 0, we find that 𝑐1212 > 0. Analogously, taking

𝜀11 = 0, 𝜀12 = −
𝑐1222

2
√

𝑐1212
, 𝜀22 =

√

𝑐1212,

we find that 𝑐 𝑐 − 𝑐2 > 0. □
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