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Abstract
We consider a surface with negative curvature in R

3, which is a cubic perturbation of the
saddle. For this surface, we prove a new restriction theorem, analogous to the theorem for
paraboloids proved by L. Guth in 2016. This specific perturbation has turned out to be of
fundamental importance also to the understanding of more general classes of one-variate
perturbations, and we hope that the present paper will further help to pave the way for the
study of general perturbations of the saddle by means of the polynomial partitioning method.
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1 Introduction

Let S ⊂ R
n be a smooth hypersurface. The Fourier restriction problem, introduced by E. M.

Stein in the seventies (for general submanifolds), asks for the range of exponents p̃ and q̃ for
which an a priori estimate of the form

( ∫
S
| f̂ |q̃ dσ

)1/q̃

≤ C‖ f ‖L p̃(Rn)

holds true for every Schwartz function f ∈ S(Rn), with a constant C independent of f .
Here, dσ denotes the surface measure on S.

The sharp range in dimension n = 2 for curves with non-vanishing curvature was deter-
mined throughwork by Fefferman et al. [13,38]. In higher dimension, the sharp L p̃−L2 result
for hypersurfaces with non-vanishing Gaussian curvature was obtained by Stein and Tomas
[27,34] (see also Strichartz [29]). Some more general classes of surfaces were treated by
Greenleaf [16]. Inwork by Ikromov,Kempe andMüller [18] and Ikromov andMüller [19,20],
the sharp range of Stein-Tomas type L p̃ − L2 restriction estimates has been determined for
a large class of smooth, finite-type hypersurfaces, including all analytic hypersurfaces.

The question about general L p̃ − Lq̃ restriction estimates is nevertheless still wide open.
Fourier restriction to hypersurfaces with non-negative principal curvatures has been studied
intensively by many authors. Major progress was due to J. Bourgain in the nineties [4–6]. At
the end of that decade the bilinear method was introduced [23–25,30–33,37]. A new impulse
to the problem has been given with the multilinear method [3,7]. The best results up to date
have been obtained with the polynomial partitioning method, developed by Guth [14,15] (see
also [17,36] for recent improvements).

For the case of hypersurfaces of non-vanishingGaussian curvature but principal curvatures
of different signs, besides Tomas-Stein type Fourier restriction estimates, until recently the
only case which had been studied successfully was the case of the hyperbolic paraboloid
(or “saddle”) in R

3: in 2015, independently Lee [22] and Vargas [35] established results
analogous to Tao’s theorem [30] on elliptic surfaces (such as the 2 -sphere), with the exception
of the end-point, by means of the bilinear method. Recently, Stovall [28] was able to include
also the end-point case. Moreover, Cho and Lee [12], and Kim [21], improved the range
by adapting ideas by Guth [14,15] which are based on the polynomial partitioning method.
Results on higher dimensional hyperbolic paraboloids have just been reported by Barron [1].

In our previous paper [9], we considered a one variable perturbation of the hyperbolic
paraboloid, and applied the bilinear method, obtaining results analogous to [22,35]. Further
results formore general classes of one-variate finite type, respectively flat, perturbations based
on the bilinear method were obtained in [10,11]. Bilinear estimates are also key elements in
the results obtained with the polynomial partitioning method for the non–negative curvature
case. With the base of our previous bilinear results, we explore in this article the application
of that method to our model surfaces. We obtain the analogous result to [14] for our class of
hyperbolic surfaces.
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A Fourier restriction theorem for a perturbed hyperbolic paraboloid... 1915

More precisely, we consider the family of functions

φγ (x, y) = xy + γ

3
y3 for − 1 ≤ γ ≤ 1,

defined on � := [0, 1] × [0, 1], and the corresponding surfaces

Sγ = {(x, y, φγ (x, y)) : (x, y) ∈ �}.
The associated adjoints to the corresponding Fourier restriction operators are the extension
operators given by

Eγ (ξ) :=
∫

�

f (x, y) ei[ξ1x+ξ2 y+ξ3φγ (x,y)] dx dy, ξ = (ξ1, ξ2, ξ3) ∈ R
3.

Ourmain result will be the following analogue of the results by Bassam Shayya for elliptic
surfaces with weighted norms [26] and by Jongchon Kim for the unperturbed hyperbolic
paraboloid [21]:

Theorem 1.1 For any p > 3.25 with p > 2q ′, there is a constant Cp,q which is independent
of γ ∈ [−1, 1] such that

‖Eγ f ‖L p(R3) ≤ Cp,q‖ f ‖Lq (�)

for all f ∈ Lq(�).

Remark 1.2 (i) Note that in this result and the correspondingFourier restriction estimatewe
can replace the domain� := [0, 1]×[0, 1]by the larger neighborhood [−1, 1]×[−1, 1]
of the origin, simply by dividing the latter into four sectors of angle π/2 and reducing
the corresponding estimates in each of these sectors to the estimate given in the theorem
by means of symmetry considerations.

ii) Our arguments in this paper easily extend to more general perturbations of xy of cubic
type in the sense of [10] in place of the perturbation γ

3 y
3, and the same reasoning

as in [10] then allows to prove Fourier restriction to surfaces given as the graph of
φ(x, y) := xy + h(y), where the function h is smooth and of finite type at the origin,
in the same range of p’s and q’s as in Theorem 1.1.

To simplify the understanding of this paper, we will closely follow the notation and
structure of the paper [14], which makes use of induction on scales arguments.

Denote by BR the cube BR := [−R, R]3, R ≥ 0. For technical reasons that will become
clear soon we shall not be able to induct on an L∞ → L3.25 estimate for Eγ as in [14]
(Theorem 2.2). Instead, we shall induct on the following statement:

Theorem 1.3 For any ε > 0, there is a constant Cε such that for any γ ∈ [−1, 1] and for
any R ≥ 1

‖Eγ f ‖L3.25(BR) ≤ CεR
ε‖ f ‖2/q

L2(�)
‖ f ‖1−2/q

L∞(�),

for all 3.25 ≥ q > 2.6 and all f ∈ L∞(�).

Applying this estimate to characteristic functions, we obtain the estimate

‖Eγ f ‖L3.25(BR) ≤ CεR
ε‖ f ‖Lq,1(�),

for all q > 2.6. Real interpolation with the trivial L1 → L∞ estimate for the extension
operator then gives

‖Eγ f ‖L p(BR) ≤ CεR
ε‖ f ‖Lq (�),
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1916 S. Buschenhenke et al.

for all p > 3.25, p > 2q ′. Finally, an ε-removal theorem (Theorem 5.3 in [21]) gives
Theorem 1.1.

2 Broad points

Definition 2.1 Fix K � 1 to be a large dyadic number. We introduce four different partitions
of the square � = [0, 1] × [0, 1]:

We divide � into K 2 disjoint squares (called caps) τ of sidelength K−1. For a cap τ, we
denote by fτ := f χτ . This basic decomposition into caps will play a fundamental role in
many places of our subsequent arguments, as in [14]. However, in contrast to [14], it will
play no role in the definition of α-broadness given below. For the latter notion, the next three
decompositions will be relevant:

We divide � into K 1/4 disjoint long horizontal strips L of dimensions 1 × K−1/4, we
divide � into K 1/2 disjoint long vertical strips L of dimensions K−1/2 × 1 and, finally, we
divide� into K 3/4 disjoint short vertical strips L of dimensions K−1/2×K−1/4, by looking
at all intersections of a long horizontal with a long vertical strip. For a strip L, we denote by
fL := f χL .

Let α ∈ (0, 1). Given the function f , γ ∈ [−1, 1] and K , we say that the point ξ ∈ R
3

is α-broad for Eγ f if

max
L

|Eγ fL(ξ)| ≤ α|Eγ f (ξ)|,
where the maxL is taken over all

(a) horizontal strips as above if |γ |K 1/2 ≥ 1, or
(b) horizontal and vertical strips as above if |γ |K 1/2 < 1.

We define BrαEγ f (ξ) to be |Eγ f (ξ)| if ξ is α-broad, and zero otherwise.

Note: In contrast to [14], we shall here consider the functions f to be defined on the square
�, which will have slight technical advantages, whereas Guth views them as functions on
the surface Sγ . Of course, we can as well identify our functions f with the corresponding
functions (x, y, φγ (x, y)) �→ f (x, y) on Sγ .Accordingly, one can identify our “caps” τ and
strips L with the corresponding subsets of the surface Sγ that are the graphs of φγ over these
sets. This explain why we still like to call the sets τ “caps” .

We will prove the following analogue to Theorem 2.4. in [14]:

Theorem 2.1 For any 0 < ε < 10−10, there are constants K = K (ε) � 1 and Cε such that
for any radius R ≥ 1 and for any |γ | ≤ 1

‖BrK−εEγ f ‖L3.25(BR) ≤ CεR
ε‖ f ‖12/13

L2(�)
‖ f ‖1/13L∞(�)

for all f ∈ L∞(�). Moreover K (ε) → ∞ as ε → 0.

Note that Theorem 1.3 follows from this theorem by arguments that are similar to those
in [14]. To show this, let us put p := 3.25.

We divide the domain of integration BR in (1.3) into four subsets:

A := {ξ ∈ BR : ξ is K−ε − broad for Eγ f },
B := {ξ ∈ BR : |Eγ fL(ξ)| > K−ε |Eγ f (ξ)| for some long horizontal strip L},
C := {ξ ∈ BR \ B : |Eγ fL(ξ)| > K−ε |Eγ f (ξ)| for some long vertical strip L}
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A Fourier restriction theorem for a perturbed hyperbolic paraboloid... 1917

D := {ξ ∈ BR \ (B ∪ C) : |Eγ fL(ξ)| > K−ε |Eγ f (ξ)| for some short vertical strip L}.
By the definition of broad points, BR = A ∪ B ∪ C ∪ D. Notice also that if |γ |K 1/2 ≥ 1,
then C = D = ∅ by construction.

If ξ ∈ A, then |Eγ f (ξ)| = BrK−εEγ f (ξ), so that the contribution of A can be controlled
using Theorem 2.1. Notice that

‖ f ‖12/13
L2(�)

‖ f ‖1/13L∞(�) ≤ ‖ f ‖2/q
L2(�)

‖ f ‖1−2/q
L∞(�),

since q > 2.6 > 13/6.
For the other parts, we induct on the size of R.
For ξ ∈ B we estimate

|Eγ f (ξ)| < K ε sup
L

|Eγ fL(ξ)| ≤ K ε
(∑

L

|Eγ fL(ξ)|p
)1/p

, (1)

where here the supremum and sum are taken over all long horizontal strips L.

If L = [0, 1]×[b, b+K−1/4] is any of these long horizontal strips, we scale and translate
y = b + K−1/4y′. Then

K 1/4φγ (x, y) = (x + γ K−1/4by′)y′ + γ

3K 1/2 y
′3 + K 1/4bx + b2γ y′ + constant.

By applying the linear change of coordinates x ′ = x + γ K−1/4by′, we obtain

K 1/4φγ (x, y) = φγ/K 1/2(x ′, y′) + K 1/4bx ′ + constant.

Then

|Eγ fL(ξ)| = K−1/4
∣∣Eγ /K 1/2 f L

(
ξ1 + bξ3, (ξ2 − bγ ξ1)K

−1/4, ξ3K
−1/4)∣∣, (2)

where we have defined f L by f L(x ′, y′) := fL(x, y), so that ‖ f L‖2 = K 1/8‖ fL‖2 and
‖ f L‖∞ ≤ ‖ f ‖∞. Note that we have y′ ∈ [0, 1] and x ′ ∈ [−1, 2], since |γ bK−1/4| ≤ 1, and
that the function Eγ /K 1/2 f L is supported in a box of dimensions 2R × 2R

K 1/4 × 2R
K 1/4 . What is

crucial here is that, compared to BR, this box is shorter by the factor 2K−1/4 ≤ 1/2 in the
ξ3-direction, for K sufficiently large.

A problem more of technical nature is that in ξ1-direction it is still of the same size as R.

However, as we shall show in Lemma 5.1, we can automatically pass from an estimate on a
box BR′ to a corresponding estimate on the whole “plate” PR′ := R

2 × [0, R′] containing
BR′ . Applying this in the present situation, with R′ := 2K−1/4R ≤ R/2, by our induction
hypothesis we may then assume that the following estimate holds true:

‖Eγ /K 1/2 f L‖L3.25(PR′ ) ≤ CεR
′ε‖ f L‖2/q

L2(�)
‖ f L‖1−2/q

L∞(�).

Thus, by (1) and (2), we see that

‖Eγ f ‖L p(B) ≤ K 1/2p−1/4+ε
( ∑

L

‖Eγ /K 1/2 f L‖p

L p
(
P2R/K1/4

))1/p

≤CCεR
εK 1/2p−1/4q ′+3ε/4‖ f ‖2/q2 ‖ f ‖1−2/q∞

≤ 1

10
CεR

ε‖ f ‖2/q2 ‖ f ‖1−2/q∞ ,

since p > 2q ′.
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1918 S. Buschenhenke et al.

For ξ ∈ C , i.e., in the case of long vertical strips, we need to be a bit more careful. The
natural change of coordinates is now x = a + K−1/2x ′, if the long vertical strip L is given
by L = [a, a + K−1/2] × [0, 1]. Then

K 1/2φγ (x, y) = x ′y + K 1/2 γ

3
y3 + aK 1/2y = φγ K 1/2(x ′, y) + aK 1/2y,

so to fit into our scheme, we need that |γ K 1/2| ≤ 1. This is the reason why we consider this
type of strips only when |γ K 1/2| ≤ 1. Then we find that

|Eγ fL(ξ)| = K−1/2
∣∣Eγ K 1/2 f L

(
ξ1K

−1/2, ξ2 + aξ3, ξ3K
−1/2)∣∣,

where f L is now defined by f L(x ′, y) := fL(x, y), and can argue in a similar way as in the
preceding case.

As for D, if L = [a, a + K−1/2] × [b, b+ K−1/4] is any of the short vertical strips, then
we scale and translate x = a + K−1/2x ′, y = b + K−1/4y′. Then

K 3/4φγ (x, y) = (x ′ + γ K 1/4by′)(y′ + K 1/4b) + γ

3
y′3 + K 1/2ay′ + constant.

By applying the linear change of coordinates x ′′ = x ′ + γ K 1/4by′, y′′ = y′ (note that, since
|γ |K 1/2 ≤ 1, we have that |γ |bK 1/4 ≤ 1), we obtain

K 3/4φγ (x, y) = φγ (x ′′, y′′) + K 1/4bx ′′ + K 1/2ay′′ + constant.

Then, if ξ ∈ E,

|Eγ fL(ξ)| = K−3/4
∣∣Eγ f L

(
K−1/2(ξ1 + bξ3), K

−1/4(ξ2 + aξ3 − bγ ξ1), K
−3/4ξ3

)∣∣,
where we have defined f L by f L(x ′′, y′′) := fL(x, y). From here on , we argue in a similar
way as before. ��

3 Reduction of Theorem 2.1 to a setup allowing for inductive
arguments

Following Section 3 in [14], we shall next devise a setup and formulate a more general
statement in Theorem 3.2 which will become amenable to inductive arguments. As in that
paper, we change and extend our previous notation slightly. We introduce a “multiplicity”
μ ≥ 1, and choose accordingly caps τ which now are allowed to be squares of possibly
larger side length rτ ∈ [K−1, μ1/2K−1] than before. It can then happen that such a cap τ

is no longer contained in �; in that case, we truncate it by replacing it with its intersection
with �.

We assume that we are given a family of such caps τ covering � = [0, 1] × [0, 1] such
that their centers are K−1- separated. Hence, at any point there will be at most μ of these
caps which overlap at that point. Notice also that there are at most K 2 caps τ in the family.
We also assume that we have a decomposition

f =
∑
τ

fτ , (3)

where supp fτ ⊂ τ.
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A Fourier restriction theorem for a perturbed hyperbolic paraboloid... 1919

Given the family of caps, we define recursively a fixed family of ragged long horizontal
strips S�, (� = 1, 2, . . . , [μ−1/2K 1/4]), of “widths" ∼ μ1/2K−1/4, in the following way:

F1 := {τ : τ 0 ∩ ([0, 1] × [0, μ1/2K−1/4]) �= ∅} and S1 :=
⋃

τ∈F1

τ,

F2 := {τ /∈ F1 : τ 0 ∩ ([0, 1] × [μ1/2K−1/4, 2μ1/2K−1/4]) �= ∅} and S2 :=
⋃

τ∈F2

τ,

.

.

.

F� := {τ /∈ ∪�−1
j=1F j : τ 0 ∩ ([0, 1] × [(� − 1)μ1/2K−1/4, �μ1/2K−1/4]) �= ∅} and S� :=

⋃
τ∈F�

τ,

.

.

.

Here, τ 0 denotes the open interior of τ.Note that the familiesF� are pairwise disjoint. Define
fS�

:= ∑
τ∈F�

fτ , so that f = ∑
� fS�

.

When |γ |K 1/2 ≤ 1, we also define a family of pairwise in measure disjoint ragged long
vertical strips of “widths" ∼ μ1/2K−1/2 in an analogous way, and a family of pairwise
in measure disjoint ragged short vertical strips of dimensions ∼ μ1/2K−1/2 × μ1/2K−1/4

given by all intersections of a long horizontal and a long vertical strip, and add them to our
set of ragged strips by denoting them by S�, � = [μ−1/2K 1/4] + 1, . . . , and put as before
fS�

:= ∑
τ∈F�

fτ .
Given a family of caps τ as above, and given the corresponding ragged strips S� and

functions fτ and fS�
as before, we say that a point ξ ∈ R

3 is α-broad for Eγ f and the given
family of caps, if

max
S�

|Eγ fS�
(ξ)| ≤ α|Eγ f (ξ)|,

where the maximum is taken over the set of all ragged strips S� as defined above (recall that
this set depends on the size of |γ |K 1/2).

We also define BrαEγ f (ξ) := |Eγ f (ξ)| if ξ is α-broad, and zero otherwise.

Remark 3.1 Note that when μ = 1, then ragged strips are indeed strips in the sense of
Definitions 2.1, and our present definition of broadness of points coincides in this case with
the one given before.

The key result will be the following analogue to Theorem 3.1 in [14]:

Theorem 3.2 For any 0 < ε < 10−10, there are constants K = K (ε) and Cε, independent
of γ ∈ [−1, 1], such that for any family of caps τ with multiplicity at most μ covering �

as above and the associated family of ragged strips S� and associated functions fτ and fS�

as defined above which decompose f , for any length R ≥ 1, any α ≥ K−ε and for any
γ ∈ [−1, 1], the following holds true:

If for every ω ∈ �, and every cap τ as above,∮
B(ω,R−1/2)

| fτ |2 ≤ 1, (4)

then,
∫
BR

(BrαEγ f )3.25 ≤ CεR
ε

( ∑
τ

∫
| fτ |2

)3/2+ε

Rδtrans log(K εαμ), (5)
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1920 S. Buschenhenke et al.

where δtrans := ε6. Moreover K (ε) → ∞ as ε → 0.

Here, in R
n, by B(ω, r) we denote the Euclidean ball of radius r > 0 and center ω, and by∮

A f := 1
|A|

∫
A f we denote the mean value f over the measurable set A of volume |A| > 0.

We can easily recover Theorem 2.1 by applying Theorem 3.2 with μ = 1, ε < 10−10 and
α = K−ε, in the same way as Guth shows how Theorem 2.4 follows from Theorem 3.1 in
[14]. Keep here Remark 3.1 in mind, and note that for these choices of μ, ε and α, we have
δtrans log(2K εαμ) ≤ 10δtrans ≤ ε.

4 Proof of Theorem 3.2

Recall that we had put δtrans := ε6, so that, if we define δdeg := ε4 and δ := ε2, then

δtrans � δdeg � δ � ε < 10−10.

We also set, for given R ≥ 1,

K = K (ε) := eε−10
and D = D(ε) := Rδdeg = Rε4 .

Remark 4.1 a) It is enough to consider the case where αμ ≤ 10−5, because in the other
case, the exponent δtrans log(K εαμ) is very large and the estimate (5) trivially holds true.
Henceforth, we shall therefore always assume that αμ ≤ 10−5.

b) It is then also enough to consider the case where R ≥ 1000 ee
ε−12

.

To justify the last claim, notice first that our assumption (4) implies that ‖ fτ‖2 ≤ 1. Since
there are at most K (ε)2 caps τ , we have

∑
τ ‖ fτ‖2 ≤ K (ε)2. Therefore, we trivially even

obtain that when R ≤ 1000 ee
ε−12

, then∫
BR

|Eγ f |3.25 ≤ R3‖ f ‖3.251 ≤ R3(
∑
τ

‖ fτ‖1)3.25 ≤ R3(
∑
τ

‖ fτ‖2)3.25

≤ R3K (ε)2(1/4−2ε)(
∑
τ

‖ fτ‖2)3+2ε

≤ R3K (ε)1/2−4εK (ε)2(3/2+ε)(
∑
τ

‖ fτ‖22)3/2+ε

≤ C1(ε)(
∑
τ

‖ fτ‖22)3/2+ε,

with C1(ε) := (1000 ee
ε−12

)3K (ε)7/2−2ε, hence (5).
As usual, we will work with wave packet decompositions of the functions f defined on

Sγ . Following [14], we decompose � into squares (“caps”) θ of side length R−1/2. By ωθ

we shall denote the center of θ, and by ν(θ) the “outer” unit normal to Sγ at the point
(ωθ , φγ (ωθ )) ∈ Sγ , which points into the direction of (−∇φγ (ωθ ),−1). T(θ) will denote a
set of R1/2-separated tubes T of radius R1/2+δ and length R, which are all parallel to ν(θ)

and for which the corresponding thinner tubes of radius R1/2 with the same axes cover BR .

We will write ν(T ) := ν(θ) when T ∈ T(θ).

Note that for each θ, every point ξ ∈ BR lies in O(R2δ) tubes T ∈ T(θ). We put
T := ⋃

θ T(θ).Arguing in the sameway as in [14], Proposition 2.6, we arrive at the following
approximate wave packet decomposition:

123



A Fourier restriction theorem for a perturbed hyperbolic paraboloid... 1921

Proposition 4.2 Assume that R is sufficiently large (depending on δ). Then, for any γ ∈
[−1, 1], given f ∈ L2(�), we may associate to each tube T ∈ T a function fT such that
the following hold true:

a) If T ∈ T(θ), then supp fT ⊂ 3θ.

b) If ξ ∈ BR \ T , then |Eγ fT (ξ)| ≤ R−1000‖ f ‖2.
c) For any x ∈ BR, we have |Eγ f (x) − ∑

T∈T Eγ fT (x)| ≤ R−1000‖ f ‖2.
d) (Essential orthogonality) If T1, T2 ∈ T(θ) are disjoint, then∣∣ ∫ fT1 fT2

∣∣ ≤ R−1000
∫
3θ | f |2.

e)
∑

T∈T(θ)

∫
�

| fT |2 ≤ C
∫
3θ | f |2.

Remark 4.3 Note that since |γ | ≤ 1, in this proposition we have bounds that are uniform in
γ. Moreover, note that the same argument as in Remark 4.1 b) shows that, in order to prove
Theorem 3.2 it is enough to consider the case where R is sufficiently large (depending on δ,

i.e., depending on ε).

We next recall the version of the polynomial ham sandwich theorem with non-singular
polynomials from [14]. If P is a real polynomial on R

n, we denote by Z(P) := {ξ ∈ R
n :

P(ξ) = 0} its null variety. P is said to be non-singular if ∇P(ξ) �= 0 for every point
ξ ∈ Z(P).

Then, by Corollary 1.7 in [14] there is a non-zero polynomial P of degree at most D which
is a product of non-singular polynomials such that the set R

3 \ Z(P) is a disjoint union of
∼ D3 cells Oi such that, for every i,∫

Oi∩BR

(BrαEγ f )3.25 ∼ D−3
∫
BR

(BrαEγ f )3.25. (6)

We next define W as the R1/2+δ neighborhood of Z(P) and put O ′
i := (Oi ∩ BR) \ W .

Moreover, note that if we apply Proposition 4.2 to fτ in place of f (what we shall usually
do), then by property (a) in Proposition 4.2, for every tube T ∈ T the function fτ,T is
supported in an O(R−1/2) neighborhood of τ. Following Guth, we define

Ti := {T ∈ T : T ∩ O ′
i �= ∅}, fτ,i :=

∑
T∈Ti

fτ,T , fS�,i :=
∑
τ∈F�

fτ,i and fi :=
∑
τ

fτ,i .

Then we can use the following analogue to Lemma 3.2 in [14]:

Lemma 4.4 Each tube T ∈ T lies in at most D + 1 of the sets Ti .

We cover BR with ∼ R3δ balls Bj of radius R1−δ. Recall Definitions 3.3 and 3.4 from [14]:

Definition 4.1 a) We define T j,tang as the set of all tubes T ∈ T that satisfy the following
conditions:

T ∩ W ∩ Bj �= ∅,

and if ξ ∈ Z(P) is any nonsingular point (i.e., ∇P(ξ) �= 0) lying in 2Bj ∩ 10T , then

angle(ν(T ), Tξ Z(P)) ≤ R−1/2+2δ.

Here, Tξ Z(P) denotes the tangent space to Z(P) at ξ, and we recall that ν(T ) denotes the
unit vector in direction of T . Accordingly, we define

fτ, j,tang :=
∑

T∈T j,tang

fτ,T and f j,tang :=
∑
τ

fτ, j,tang.
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b) We define T j,trans as the set of all tubes T ∈ T that satisfy the following conditions:

T ∩ W ∩ Bj �= ∅,

and there exists a nonsingular point ζ ∈ Z(P) lying in 2Bj ∩ 10T , so that

angle(ν(T ), Tζ Z(P)) > R−1/2+2δ.

Accordingly, we define

fτ, j,trans :=
∑

T∈T j,trans

fτ,T and f j,trans :=
∑
τ

fτ, j,trans .

We also recall Lemmas 3.5 and 3.6 in [14]:

Lemma 4.5 Each tube T ∈ T belongs to at most Poly(D) = RO(δdeg) different sets T j,trans .

Lemma 4.6 For each j, the number of different θ so that T j,tang ∩ T(θ) �= ∅ is at most
R1/2+O(δ).

Note that the previous lemma makes use of the fact that the Gaussian curvature does not
vanish on the surface Sγ so that the Gauß map is a diffeomorphism onto its image.

To motivate the next lemma, suppose we have a point ξ contained in a cell O ′
i . Then it is

not hard to see that in the wave packet decomposition of Eγ f (ξ) essentially only those tubes
T should matter which intersect the cell O ′

i , that is, T ∈ Ti . It is thus natural to expect that
we may replace Eγ f (ξ) by Eγ fi (ξ) with only a small error. An analogous statement holds
true even for the corresponding broad parts, as the following analogue to Lemma 3.7 in [14]
shows:

Lemma 4.7 If ξ ∈ O ′
i . Then, given our assumptions on R from Remarks 4.1, we have

BrαEγ f (ξ) ≤ Br2αEγ fi (ξ) + R−900
∑
τ

‖ fτ‖2.

Proof Let ξ ∈ O ′
i . By Proposition 4.2 c), we have

Eγ fτ (ξ) =
∑
T∈T

Eγ fτ,T (ξ) + O(R−1000‖ fτ‖2).

If ξ ∈ T , then, T ∩ O ′
i �= ∅, i.e., T ∈ Ti . If ξ /∈ T , then Proposition 4.2 b) shows that

|Eγ fτ,T (ξ)| ≤ R−1000‖ fτ‖2. The contribution of these T ’s is thus negligible.
Using the short hand notation “neglig” for terms which are much smaller than

R−940 ∑
τ ‖ fτ‖2 (and “negligτ ” for terms which are much smaller than R−950‖ fτ‖2), we

thus have

Eγ fτ (ξ) = Eγ fτ,i (ξ) + negligτ , (7)

and summing in τ,

Eγ f (ξ) = Eγ fi (ξ) + neglig. (8)

We can assume that ξ is α-broad for Eγ f and that

|Eγ f (ξ)| ≥ R−900
∑
τ

‖ fτ‖2. (9)
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Hence,

|Eγ fi (ξ)| ≥ |Eγ f (ξ)| − neglig ≥ 1

2
R−900

∑
τ

‖ fτ‖2. (10)

Now assume that S� is any of the ragged strips used in the definition of α-broadness. Then
we have accordingly

Eγ fS�
(ξ) =

∑
τ∈F�

Eγ fτ (ξ) =
∑
τ∈F�

Eγ fτ,i (ξ) + neglig = Eγ fS�,i (ξ) + neglig. (11)

Since ξ is α-broad for Eγ f , (11) shows that

|Eγ fS�,i (ξ)| ≤ |Eγ fS�
(ξ)| + neglig ≤ α|Eγ f (ξ)| + neglig.

Notice also that by Remarks 4.1, 10−5 ≥ α � K−ε � K−100 � R−1. In combination with
(8), and (10), we then obtain that

|Eγ fS�,i (ξ)| ≤ α|Eγ fi (ξ)| + neglig ≤ 2α|Eγ fi (ξ)| (12)

for every ragged strip S�.This estimate shows that ξ is 2α-broad forEγ fi , and thus the claimed
estimate in the lemma follows from (8) and the assumptions that we made subsequently. ��

Our definition of broadness of points was chosen differently from Guth’s, since we shall
also need a different notion of “non-adjacent” caps. This will be related to the validity of
certain bilinear Fourier extension estimates which will be needed in the proof and which
will be established later. In order to prepare those, let us review some notions and results
concerning such bilinear estimates.

4.1 Transversality for bilinear estimates

We shall be brief here and refer for more details to the corresponding literature dealing with
bilinear estimates, for instance [22,23,35], or [2].

Following in particular and more specifically our discussions in [8,9], we first recall
that according to Theorem 1.1 in [22], given two open subsets U1,U2 ⊂ [0, 1] × [0, 1], the
proper type of transversality for bilinear estimates is achieved if the modulus of the following
quantity

�
γ
z (z1, z2, z

′
1, z

′
2) := 〈

(Hφγ )−1(z)(∇φγ (z2) − ∇φγ (z1)),∇φγ (z′2) − ∇φγ (z′1)
〉

(13)

is bounded from below for any zi = (xi , yi ), z′i = (x ′
i , y

′
i ) ∈ Ui , i = 1, 2, and z = (x, y) ∈

U1∪U2, Hφγ denoting the Hessian of φ. If such an inequality holds, thenwe do have bilinear
estimates with constants C that depend only on lower bounds of (the modulus of) in (13),
and on upper bounds for the derivatives of φγ . Note that those upper bounds are independent
of γ ∈ [−1, 1]; we will be more precise about this later. If U1 and U2 are sufficiently small
(with sizes depending on upper bounds of the first and second order derivatives of φγ and a
lower bound for the determinant of Hφγ ) this condition reduces to the estimate

|�γ
z (z1, z2)| ≥ c > 0, (14)

for zi = (xi , yi ) ∈ Ui , i = 1, 2, z = (x, y) ∈ U1 ∪U2, where

�
γ
z (z1, z2) := 〈

(Hφγ )−1(z)(∇φγ (z2) − ∇φγ (z1)),∇φγ (z2) − ∇φγ (z1)
〉
. (15)

123



1924 S. Buschenhenke et al.

The bounds in the corresponding bilinear estimates will then depend on the lower bound c
in (14). In contrast to [8,9], where we had to devise quite specific “admissible pairs” of sets
U1,U2 for our bilinear estimates, we shall here only have to consider caps τ1, τ2, and the
required bilinear estimateswill be a of somewhat different nature.Nevertheless, the geometric
transversality conditions that we need here will be the same.

It is easy to check that we explicitly have

�
γ
z (z1, z2) = 2(y2 − y1)[x2 − x1 + γ (y1 + y2 − y)(y2 − y1)]

=: 2(y2 − y1) t
γ
z (z1, z2). (16)

Since z = (x, y) ∈ U1 ∪ U2, it will be particularly important to look at the expression
(16) when z = z1 ∈ U1, and z = z2 ∈ U2. As above, if U1 and U2 are sufficiently small, we
can actually reduce to this case. We then see that for our perturbed saddle, still the difference
y2 − y1 in the y-coordinates plays an important role as for the unperturbed saddle, but in
place of the difference x2 − x1 in the x-coordinates now the quantities

tγz1(z1, z2) := x2 − x1 + γ y2(y2 − y1) (17)

tγz2(z1, z2) := x2 − x1 + γ y1(y2 − y1) (18)

become relevant. Observe also that

tγz (z1, z2) = −tγz (z2, z1). (19)

This definition of transversality motivates the following

Definition 4.2 a) We say that two caps τ1, τ2 are strongly separated if

min{|yc2 − yc1|,max{|tγzc1(z
c
1, z

c
2)|, |tγzc2(z

c
1, z

c
2)|}} ≥ 10μ1/2K−1,

where zc1 = (xc1, y
c
1) denotes the center of τ1 and zc2 = (xc2, y

c
2) the center of τ2.

b) Following from here again [14], we define

Bil(Eγ f j,tang) :=
∑

τ1,τ2 strongly separated

|Eγ fτ1, j,tang|1/2|Eγ fτ2, j,tang|1/2.

Remark 4.8 If the caps τ1 and τ2 are strongly separated, so that, say, |yc2 − yc1| ≥ 10μ1/2K−1

and |tγzc2(z
c
1, z

c
2)|} ≥ 10μ1/2K−1, then by (16) we have

|�γ
z (z1, z2, z

′
1, z

′
2)| ≥ 4μK−2 for all z1, z

′
1 ∈ τ1, z, z2, z

′
2 ∈ τ2. (20)

Indeed, one computes that

�
γ
z (z1, z2, z

′
1, z

′
2) = −2γ y(y2 − y1)(y

′
2 − y′

1)

+(y′
2 − y′

1)
(
x2 − x1 + γ (y22 − y21 )

)
+(y2 − y1)

(
x ′
2 − x ′

1 + γ ((y′
2)

2 − (y′
1)

2)
)

= (y′
2 − y′

1)t
γ
z (z1, z2) + (y2 − y1)t

γ
z (z′1, z′2),

with tγz (z1, z2) defined in (16).
Now, by (18), tγzc2

(zc1, z
c
2) = xc2 − xc1 + γ (yc2 + yc1 − yc2)(y

c
2 − yc1), where |tγzc2(z

c
1, z

c
2)| ≥

10μ1/2K−1. Since the caps τ1, τ2 have side lengths ≤ μ1/2K−1, it is easily seen that
|tγz2(z1, z2) − tγzc2

(zc1, z
c
2)| ≤ 8μ1/2K−1, so that tγz (z1, z2) and tγzc2

(zc1, z
c
2) have the same
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sign and |tγz (z1, z2)| ≥ 2μ1/2K−1, and analogously we find that tγz (z′1, z′2) and tγzc2
(zc1, z

c
2)

have the same sign, and that |tγz (z′1, z′2)| ≥ 2μ1/2K−1. In a similar way, we see that (y′
2− y′

1)

and (y2−y1) have the same sign as (yc2−yc1), and that min{|y′
2−y′

1|, |y2−y1|} ≥ 2μ1/2K−1,

since |yc2 − yc1| ≥ 10μ1/2K−1. Therefore, |�γ
z (z1, z2, z′1, z′2)| ≥ 2(2μ1/2K−1)2.

For any subset I of the family of caps τ, we define

f I , j,trans :=
∑
τ∈I

fτ, j,trans .

The remaining part of this subsection will be devoted to the proof of the following crucial
analogue to the key Lemma 3.8 in [14]:

Lemma 4.9 If ξ ∈ Bj ∩ W and αμ ≤ 10−5, then

BrαEγ f (ξ) ≤ 2

( ∑
I

Br60αEγ f I , j,trans(ξ) + K 100Bil(Eγ f j,tang)(ξ) + R−900
∑
τ

‖ fτ ‖2
)

, (21)

where the first sum is over all possible subsets I of the given family of caps τ.

Remark 4.10 The splitting into a “transversal” and “tangential” part here is as such not sur-
prising. The crucial point is the presence of the bilinear term. In short, and oversimplified, a
given family of caps τ will either contain two strongly separated caps, which gives rise to the
bilinear term, or otherwise we will see by the Geometric Lemma 4.11 that the family cannot
contain too many caps, and their contributions can be “bootstrapped” by means of Lemma
4.5. For the last point, broadness will be of utmost importance (compare (25)).

Proof Let ξ ∈ Bj ∩ W . We may assume that ξ is α-broad for Eγ f and that |Eγ f (ξ)| ≥
R−900 ∑

τ ‖ f ‖2. Let
I := {τ : |Eγ fτ, j,tang(ξ)| ≤ K−100|Eγ f (ξ)|}. (22)

We consider two possible cases:

Case 1: I c contains two strongly separated caps τ1 and τ2. Then trivially

|Eγ f (ξ)| ≤ K 100|Eγ fτ1, j,tang(ξ)|1/2|Eγ fτ2, j,tang(ξ)|1/2 ≤ K 100Bil(Eγ f j,tan)(ξ), (23)

hence (21).

Case 2: I c does not contain two strongly separated caps.
In this case, we shall make use of the following lemma whose proof will be postponed to

Subsection 4.3. Recall the fixed family {S�}� of of ragged strips that was associated to our
given family of caps τ (covering �) in Section 3. ��
Lemma 4.11 (The Geometric Lemma) Assume that K ≥ 20, and let I c be any subfamily of
the given family of caps which does not contain two strongly separated caps.

a) If |γ |K 1/2 > 1, then all of the caps of I c belong to the union of at most 40 of the
families Fm associated to long horizontal ragged strips Sm of width μ1/2K−1/4.

b) If |γ |K 1/2 ≤ 1, then either all of the caps of I c belong to the union of at most 3 of
familiesFm associated to long horizontal ragged strips Sm of widthμ1/2K−1/4, or all belong
to the union of at most 40 of the families Fm associated to long vertical ragged strips Sm of
width μ1/2K−1/2.
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Remark 4.12 Note that the two cases in a) and b) basically match with the corresponding
distinction of cases in our definition of α-broad points. For our subsequent argument this
distinction will, however, not be relevant.

Using the Geometric Lemma we finish the proof of Lemma 4.9 as follows. We denote by
{Sm}m∈M the subset of at most 40 long ragged strips given by the Geometric Lemma. By

J :=
⋃

m∈M
Fm

we denote the corresponding subset of caps τ. Then I c ⊂ J , i.e., J c ⊂ I . We write

f =
∑
m∈M

∑
τ∈Fm

fτ +
∑
τ∈J c

fτ . (24)

Hence,

|Eγ f (ξ)| ≤
∑
m∈M

|Eγ fSm (ξ)| + |
∑
τ∈J c

Eγ fτ (ξ)|.

Since ξ is α-broad,

∑
m∈M

|Eγ fSm (ξ)| ≤
∑
m∈M

α|Eγ f (ξ)| ≤ 40α|Eγ f (ξ)| ≤ 1

10
|Eγ f (ξ)|, (25)

where the last inequality holds because we are assuming that α ≤ 10−5 (compare Remark
4.1 a)). Thus,

|Eγ f (ξ)| ≤ 1

10
|Eγ f (ξ)| + |

∑
τ∈J c

Eγ fτ (ξ)|,

and therefore

|Eγ f (ξ)| ≤ 10

9
|
∑
τ∈J c

Eγ fτ (ξ)|.

Since ξ ∈ Bj ∩ W , by Proposition 4.2,

Eγ fτ (ξ) = Eγ fτ, j,trans(ξ) + Eγ fτ, j,tang(ξ) + O(R−1000)‖ fτ‖2. (26)

Moreover, since J c ⊂ I , and since there are at most K 2 caps τ,

∑
τ∈J c

|Eγ fτ, j,tang(ξ)| ≤
∑
τ∈I

|Eγ fτ, j,tang(ξ)| ≤ K−100
∑
τ∈I

|Eγ f (ξ)| ≤ K−98|Eγ f (ξ)|, (27)

where the second inequality is a consequence of the definition of I . Thus,

9

10
|Eγ f (ξ)| ≤ |

∑
τ∈J c

Eγ fτ, j,trans(ξ)| + K−98|Eγ f (ξ)| +
∑
τ

R−1000‖ fτ‖2

= |Eγ f J c, j,trans(ξ)| + K−98|Eγ f (ξ)| +
∑
τ

R−1000‖ fτ‖2,

and hence, since |Eγ f (ξ)| ≥ R−900 ∑ ‖ fτ‖2,

|Eγ f (ξ)| ≤ 11

9
|Eγ f J c, j,trans(ξ)|. (28)
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Fig. 1 Intersection of long
horizontal and long vertical strips
(color figure online)

F ,

M

{Fr}r∈R J

It will then finally suffice to show that ξ is 60α-broad for Eγ g, where g := f J c, j,trans . To
this end let us set gτ := fτ, j,trans, if τ ∈ J c, and zero otherwise, so that

g =
∑

gτ .

Observe first that by (26)

|Eγ fτ, j,trans(ξ)| ≤ |Eγ fτ (ξ)| + |Eγ fτ, j,tang(ξ)| + neglig,

so that if τ ∈ J c ⊂ I , then by the definition of I ,

|Eγ fτ, j,trans(ξ)| ≤ |Eγ fτ (ξ)| + K−100|Eγ f (ξ)| + neglig. (29)

We have to show that

|Eγ gS�
(ξ)| ≤ 60α|Eγ g(ξ)| (30)

for all ragged strips S�. But, gS�
= ∑

τ∈F�∩J c fτ, j,trans, and therefore the following two
cases can arise:

(i) If � ∈ M, then F� ∩ J c = ∅.
(ii) If � /∈ M, then by our construction of the set J there is a collection {Fr }r∈R of at

most 40 families (possibly empty) associated to short vertical ragged strips so that
F� ∩ J = ∪RFr (cf. Fig. 1).

In case (i), (30) is trivial. In case (ii), observe first that by summing (26) over all τ ∈ F�∩J c

we obtain

|Eγ gS�
(ξ)| ≤ |

∑
τ∈F�∩J c

Eγ fτ (ξ)| +
∑

τ∈F�∩J c
|Eγ fτ, j,tang(ξ)| + neglig.

By (27), the second term can again be estimated by∑
τ∈F�∩J c

|Eγ fτ, j,tang(ξ)| ≤ K−98|Eγ f (ξ)|.

We write ∑
τ∈F�∩J c

Eγ fτ (ξ) = Eγ fS�
(ξ) −

∑
r∈R

Eγ fSr (ξ).
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Since ξ is α-broad for Eγ f , both terms are estimated using again broadness:

|
∑

τ∈F�∩J c
Eγ fτ (ξ)| ≤ 41α|Eγ f (ξ)|.

Since α ≥ K−ε � 10K−98, in combination with (28) we conclude that

|Eγ gS�
(ξ)| ≤ 41α|Eγ f (ξ)| + K−98|Eγ f (ξ)| + neglig ≤ (41 + 1/2)α|Eγ f (ξ)|

≤ 60α|Eγ f J c, j,trans(ξ)| = 60α|Eγ g(ξ)|.
This completes the proof of Lemma 4.9. ��
The contribution by the bilinear term in (21) will be controlled by means of the following

analogue to Proposition 3.9 in [14]:

Proposition 4.13 We have
∫
Bj∩W

Bil(Eγ f j,tang)
3.25 ≤ CεR

O(δ)+ε/2
( ∑

τ

∫
| fτ |2

)3/2+ε

.

With Proposition 4.13 at hand, the rest of the proof of Theorem 3.2, which we shall detail
in the next subsection, will be a literal copy of the arguments in pages 396-398 of [14].

The proof of this proposition can easily be reduced to the following analogue to Lemma
3.10 in [14]. We shall give some details below. It is in this lemma where we shall need the full
thrust of the strong separation condition between caps τ1 and τ2. Suppose we have covered
Bj ∩W with a minimal number of cubes Q of side length R1/2, and denote by T j,tang,Q the
set of all tubes T in T j,tang such that 10T intersects Q.

Lemma 4.14 Fix j, i.e., a ball B j . If τ1, τ2 are strongly separated caps, then for any of the
cubes Q we have∫

Q
|Eγ fτ1, j,tang|2|Eγ fτ2, j,tang|2

≤ RO(δ)R−1/2

⎛
⎝ ∑

T1∈T j,tang,Q

‖ fτ1,T1‖22
⎞
⎠

⎛
⎝ ∑

T2∈T j,tang,Q

‖ fτ2,T2‖22
⎞
⎠ + neglig.

Indeed, the main ingredient in Guth’s argument that needs to be checked here is the
following geometric property (compare p. 402 in [14]):

Lemma 4.15 If τ1 and τ2 are two strongly separated caps, then, for any two points z1 =
(x1, y1) ∈ τ1 and z2 = (x2, y2) ∈ τ2 the angle between the normals to Sγ at the correspond-
ing points on Sγ is � K−1.

Proof By Nγ (x, y) we denote the following normal to our surface Sγ at (x, y, φγ (x, y)) ∈
Sγ :

Nγ (x, y) :=
(

t∇φγ (x, y)
−1

)
. (31)

Note that these normal vectors are of size |Nγ (x, y)| ∼ 1. Since ∇φγ (x, y) = (y, x +γ y2),
we see that

|∇φγ (x2, y2) − ∇φγ (x1, y1)| ≥ |y2 − y1| � 10K−1 (32)

since τ1 and τ2 are strongly separated. This implies the claim about the angle. ��
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With this at hand, we can follow Guth to deduce from Lemma 4.14 the following L4

estimate

‖Bil(Eγ f j,tang)‖L4(Bj∩W ) ≤ RO(δ)R−1/8(
∑
τ

‖ fτ, j,tan‖22)1/2 + neglig, (33)

which corresponds to inequality (43) in [14]. Indeed, we can use the standard estimate

‖Eγ f ‖L2(BR) � R1/2‖ f ‖2
to deduce that

‖Bil(Eγ f j,tang)‖L2(Bj∩W ) ≤ R1/2(
∑
τ

‖ fτ, j,tan‖22)1/2.

From this and (33), by Hölder’s inequality we get for 2 ≤ p ≤ 4,
∫
Bj∩W

Bil(Eγ f j,tang)
p � RO(δ)R

5
2− 3

4 p
( ∑

τ

‖ fτ, j,tang‖22
)p/2

+ neglig.

Lemma 4.6 tells us that T j,tang contains tubes in only RO(δ)R1/2 directions. Hence, each
function fτ, j,tang is supported on at most RO(δ)R1/2 caps θ. By Proposition 4.2,∮

θ

| fτ, j,tang|2 �
∮
10θ

| fτ |2 � 1.

Adding the contribution of RO(δ)R1/2 caps θ, we get
∫ | fτ, j,tang|2 ≤ CRO(δ)R−1/2. Since

there are K 2 � RO(δ) caps τ, this implies that
∑

τ ‖ fτ, j,tang‖22 ≤ CRO(δ)R−1/2. Hence,
we get, for p > 3, ε < 2(p − 3),

∫
Bj∩W

Bil(Eγ f j,tang)
p � RO(δ)R

5
2− 3

4 p− 1
2 (

p
2 − 3

2−ε)

( ∑
τ

‖ fτ, j,tang‖22
)3/2+ε

.

This finishes the proof of Proposition 4.13, for p = 3.25 = 13
4 .

Proof of Lemma 4.14. Let τ1 and τ2 be two strongly separated caps, and assume without loss
of generality that min{|yc2 − yc1|, |tγzc2(z

c
1, z

c
2)|} ≥ 10μ1/2K−1, where zc1 = (xc1, y

c
1) denotes

the center of τ1 and zc2 = (xc2, y
c
2) the center of τ2.

Following in a first step a standard argument as in [14] based on Plancherel’s theorem,
and making use of Proposition 4.2 we see that∫

Q
|Eγ fτ1, j,tang|2|Eγ fτ2, j,tang|2

≤
∑

T1,T ′
1,T2,T

′
2∈T j,tang,Q

∫
Eγ fτ1,T1Eγ fτ2,T2Eγ fτ ′

1,T
′
1
Eγ fτ ′

2,T
′
2
+ neglig

=
∑

T1,T ′
1,T2,T

′
2∈T j,tang,Q

( fτ1,T1 dσγ ∗ fτ2,T2 dσγ )( fτ ′
1,T

′
1
dσγ ∗ fτ ′

2,T
′
2
dσγ ) + neglig.

(34)

Here σγ denotes the surface carried measure on Sγ chosen so that Eγ f = ̂̃f dσγ , if we set
f̃ (z, φγ (z)) := f (z).
For each tube T , we denote by θ(T ) the cap θ so that T ∈ T(θ), and let ω(T ) be the

center of θ(T ). By ω̃(T ) := (ω(T ), φγ (ω(T )) we denote the corresponding point on Sγ .
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A given term in the first sum is not negligible only if there are four points z1, z′1 ∈ τ1,

z2, z′2 ∈ τ2 that satisfy

(z1, φγ (z1)) + (z2, φγ (z2)) = (z′1, φγ (z′1)) + (z′2, φγ (z′2)) (35)

and

(zi , φγ (zi )) = ω̃(Ti ) + O(R−1/2+δ), (z′i , φγ (z′i )) = ω̃(T ′
i ) + O(R−1/2+δ), i = 1, 2.

(36)

Let us denote by Si the piece of the surface Sγ corresponding to τi , i = 1, 2 (which are
“genuine” caps). Since the caps τ1 and τ2 are strongly separated, by Lemma 4.15 these two
subsurfaces are transversal, so that we can locally define the intersection curve

�z1,z′2 := [S1 + (z′2, φ(z′2))] ∩ [S2 + (z1, φ(z1))].
Note that by (35)

(z1, φγ (z1)) + (z2, φγ (z2)) = (z′1, φγ (z′1)) + (z′2, φγ (z′2)) ∈ �z1,z′2 .

Set ψ(z) := φγ (z − z1) + φγ (z1) − φγ (z − z′2) − φγ (z′2). Then, the orthogonal projection
of the curve �z1,z′2 on the z - plane is the curve given by {z : ψ(z) = 0} (just consider
z := z1 + z2 = z′1 + z′2 for z when (35) is satisfied).

We introduce a parametrization by arc length z(t), t ∈ J , of this curve, where t is from
an open interval J . Notice that this curve z(t) depends on the choices of the points z1 and
z′2. By

z′1(t) := z(t) − z′2 and z2(t) := z(t) − z1

we denote the corresponding curves on S1 and S2, respectively. We may assume that 0 ∈ J
and z′1(0) = z′1, z2(0) = z2. Then, for z1, z′2 fixed, the pairs (z′1(t), z2(t)), t ∈ J , locally
provide all solutions (z′1, z2) to (35).

Note that ψ(z(t)) ≡ 0 implies that

〈∇φγ (z2(t)) − ∇φγ (z′1(t)),
dz

dt
(t)〉 = 0 for every t ∈ J . (37)

Note also that (z′1, z2) := (z1, z′2) is a solution of (35), so that we may assume that there is
some t2 ∈ J such that z′2 = z2(t2). Recall also that z2(0) = z2.

Recall the normal Nγ (x, y) to the surface Sγ at the point (x, y, φγ (x, y)) ∈ Sγ from (31),
and note that the angle between the tube Ti and Nγ (zi ), i = 1, 2, is bounded by R−1/2.

Since T1, T2, T ′
1, T

′
2 lie in T j,tang,Q, we then obviously have

R−1/2+2δ ≥ | det(Nγ (z1), Nγ (z2), Nγ (z′2))| = | det(Nγ (z1), Nγ (z2), Nγ (z′2) − Nγ (z2))|
=

∣∣∣
∫ t2

0
det(N (z1), N (z2),

dNγ (z2(t))

dt
) dt

∣∣∣. (38)

For a given t,

det
(
Nγ (z1), Nγ (z2),

dNγ (z2(t))

dt

)
= det

(
t∇φγ (z1) t∇φγ (z2) Hφγ (z2(t)) · t ( dzdt (t))−1 −1 0

)

= det

(
t∇φγ (z1) − t∇φγ (z2), Hφγ (z2(t)) · t (

dz

dt
(t))

)

= det Hφγ (z2(t)) det

(
Hφγ (z2(t))

−1 · ( t∇φγ (z1) − t∇φγ (z2)
)
, t (

dz

dt
(t))

)
.
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Since | dzdt (t))| = 1 and det Hφγ (z(t)) = 1, in combination with (37) we thus see that

∣∣∣ det (Nγ (z1), Nγ (z2),
dNγ (z2(t))

dt

)∣∣∣
=

∣∣〈Hφγ (z2(t))−1
(
t∇φ(z1) − t∇φ(z2)

)
,∇φγ (z2(t)) − ∇φγ (z′1(t))〉

∣∣
|∇φγ (z2(t)) − ∇φγ (z′1(t))|

=
∣∣�γ

z2(t)
(z1, z2, z′1(t), z2(t))

∣∣
|∇φγ (z2(t)) − ∇φγ (z′1(t))|

.

Note that here |∇φγ (z2(t))−∇φγ (z′1(t))| ≤ 4.Moreover, by our assumptions andRemark
4.8, we have |�γ

z2(t)
(z1, z2, z′1(t), z2(t))| ≥ 4μK−2.

Therefore ∣∣∣ det (Nγ (z1), Nγ (z2),
dNγ (z2(t))

dt

)∣∣∣ ≥ μK−2,

and since the integrand in (38) has constant sign, we see that

R−1/2+2δ ≥ ∣∣ ∫ t2

0
μK−2 dt

∣∣.
Hence, |t2| ≤ K 2R−1/2+2δ and, since the curve t �→ z2(t) is parametrized by arc length,
we find that |z2 − z′2| � K 2R−1/2+2δ. Since z1 − z′1 = z′2 − z2 by (35), we also get
|z1 − z′1| � K 2R−1/2+2δ.

In a similar way, we see that |z1 − z′1| ≤ K 2R−1/2+2δ.

Hence, given T1 and T2, there are at most RO(δ) possible tubes T ′
1, T

′
2 which give a

non-negligible contribution to (34), and by Schur’s lemma this implies that
∫
Q

|Eγ fτ1, j,tang|2|Eγ fτ2, j,tang|2 ≤ RO(δ)
∑

T1,T2∈T j,tang,Q

∫
| fτ1,T1 dσγ ∗ fτ2,T2 dσγ |2 + neglig.

Finally, note that Lemma 4.15 implies that T1 ∩ T2 is contained in a cube of side length
K R1/2+δ. Hence, the same reasoning used to prove inequality (38) in [14] leads to∫

| fτ1,T1 dσγ ∗ fτ2,T2 dσγ |2 ≤ R−1/2‖ fτ1,T1‖22 ‖ fτ2,T2‖22,
and combining these two estimates we complete the proof of Lemma 4.14. ��

4.2 Completing the proof of Theorem 3.2

Following [14], pp. 396–398, we use induction on the size of R, the radius of BR . Moreover,
for given R, we also induct on the size of

∑
τ

∫ | fτ |2. Here we understand that a positive
quantity is of size 2k, k ∈ Z, if it lies in the interval (2k−1, 2k].
Bases of induction. a) We recall from Remark 4.1 b) that for 1 ≤ R ≤ 1000 ee

ε−12

∫
BR

|Eγ f |3.25 ≤ C4(ε)(
∑
τ

‖ fτ‖22)3/2+ε,

so that the estimate in Theorem 3.2 holds true for this range of R’s.
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b) Also, if
∑

τ

∫ | fτ |2 ≤ R−1000, then the estimate in Theorem 3.2 holds trivially, since
∫
BR

|Eγ f |3.25 ≤ R3‖ f ‖3.251 ≤ R3‖ f ‖3.252 ≤ R−100‖ f ‖3+2ε
2

≤ K (ε)2R−100( ∑
τ

∫
| fτ |2

)3/2+ε
.

In the induction procedure, it will thus suffice to show that in each step we can reduce to
situations where either R, or

∑
τ

∫ | fτ |2, becomes smaller by a factor ≤ 1/2, until we go
below one of the thresholds described in a), or b).

We shall show that inequality (5) of Theorem 3.2 will then hold with the constant Cε :=
max{K (ε)2,C4(ε)}.
Induction hypotheses. Assume that Theorem 3.2 holds for all radii ≤ R/2, or, given R, for
all functions g in place of f such that

∑
τ

∫ |gτ |2 ≤ 1
2

∑
τ

∫ | fτ |2 and every μ ≥ 1.
Write ∫

BR

(BrαEγ f )3.25 =
∑
i

∫
BR∩O ′

i

(BrαEγ f )3.25 +
∫
BR∩W

(BrαEγ f )3.25. (39)

Case 1. Assume that the first term (cellular term) dominates (39). In this case, by (6)
there will be ∼ D3 cells O ′

i , and for each of them
∫
BR∩O ′

i

BrαEγ f 3.25 ∼ D−3
∫
BR

BrαEγ f 3.25.

In combination with Lemma 4.7, then, for every i,∫
BR

(BrαEγ f )3.25 ∼ D3
∫
BR∩O ′

i

(BrαEγ f )3.25

� D3
∫
BR∩O ′

i

(Br2αEγ fi )
3.25 + R−900(

∑
τ

‖ fτ‖2)3.25. (40)

If the second term in (40) dominates, then, since α ≥ K ε, Rδtrans log(K εαμ) ≥ Rδtrans ≥ 1,
and that finishes the proof.

If the first term in (40) dominates, we use Lemma 4.4 and the following immediate
analogue to Lemma 2.7 in [14]:

Lemma 4.16 Consider some subsets Ti ⊂ T indexed by i ∈ I. If each tube T belongs to at
most κ of the subsets {Ti }i∈I , then, for every θ,

∑
i∈I

∫
3θ

| fτ,i |2 ≤ κ

∫
10θ

| fτ |2,

and
∑
i∈I

∫
| fτ,i |2 ≤ κ

∫
| fτ |2.

Applying this lemma in combination with Lemma 4.4, we see that for each τ,

∑
i

∫
| fτ,i |2 ≤ (D + 1)

∫
| fτ |2,
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and therefore
∑
i

∑
τ

∫
| fτ,i |2 ≤ (D + 1)

∑
τ

∫
| fτ |2.

Now, recall that there are ∼ D3 indices i . Thus we can choose and fix an index i0 such that
∑
τ

∫
| fτ,i0 |2 � D D−3

∑
τ

∫
| fτ |2 = D−2

∑
τ

∫
| fτ |2 � 1

2

∑
τ

∫
| fτ |2. (41)

We finish this case by applying the induction hypothesis (on the size of
∑

τ

∫ |gτ |2) to the
function fi0 := ∑

τ fτ,i0 . Note that the support of fτ,i0 is a tiny neighborhood of τ. For this
reason we need μ in the statement of Theorem 3.2, so that here we can apply the induction
hypothesis with 2μ in place of μ.

To this end, note also that∮
B(ω,R−1/2)

| fτ,i0 |2 ≤ C
∮
B(ω,10R−1/2)

| fτ |2 ≤ C,

where the first inequality is a consequence of the following immediate analogue to Lemma
2.8 in [14]:

Lemma 4.17 If Ti ⊂ T, then for any cap θ, and any τ,∫
3θ

| fτ,i |2 ≤
∫
10θ

| fτ |2.

We then apply our induction hypothesis to 1√
2C

fi0 = 1√
2C

∑
τ fτ,i0 . Since we assume that

the first term in (40) dominates, this yields∫
BR

(BrαEγ f )3.25 � D3
∫
BR∩O ′

i0

(Br2αEγ fi0)
3.25

≤ (2C)1/8−εD3CεR
ε

( ∑
τ

∫
| fτ,i0 |2

)3/2+ε

Rδtrans log(K ε2α2μ),

and thus by (41)
∫
BR

(BrαEγ f )3.25 ≤ C1D
3CεR

ε

(
D−2

∑
τ

∫
| fτ |2

)3/2+ε

Rδtrans log(K εαμ)Rcδtrans

= C1CεR
ε

( ∑
τ

∫
| fτ |2

)3/2+ε

Rδtrans log(K εαμ)D−2εRcδtrans

≤ CεR
ε

( ∑
τ

∫
| fτ |2

)3/2+ε

Rδtrans log(K εαμ),

closing the induction.

Case 2. Assume that the second term (wall term) dominates (39). In this case we apply
Lemma 4.9 to obtain
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∫
BR

(BrαEγ f )3.25 ≤ Cε

∑
j

∫
Bj∩W

∑
I

(Br60αEγ f I , j,trans)
3.25

+CK 325
∑
j

∫
Bj∩W

Bil(Eγ f j,tang)
3.25 + C

(
R−900

∑
τ

‖ fτ‖2
)3.25

(42)

(note that the number of all possible subsets I of the given family of caps is only a constant
depending on ε).

Again, if the third term of this last sum dominates, the proof is easily finished.
If the second term dominates, then by Proposition 4.13, since K � R,∫

BR

(BrαEγ f )3.25 � CεK
325

∑
j

∫
Bj∩W

Bil(Eγ f j,tang)
3.25

≤ CεK
325RO(δ)+ε/2

( ∑
τ

∫
| fτ |2

)3/2+ε

≤ CRε

( ∑
τ

∫
| fτ |2

)3/2+ε

.

This finishes the proof in this case.
Finally, assume that the first term in (42) dominates. Then, since the ball Bj has radius

R1−δ < R
2 , we shall induct on the size of R. Note also that fτ, j,trans,I is supported in a tiny

neighborhood of τ, so we shall again apply the induction hypothesis with 2μ in place of μ.

By Lemma 4.17,∮
B(ω,R−1/2)

| f I , j,trans,τ |2 ≤
∮
B(ω,R−1/2)

| fτ |2 ≤ C,

which implies the same kind of control over larger balls of radius (R1−δ)−1/2. Thus,
1
C fI , j,trans satisfies the induction hypothesis of Theorem 3.2, and therefore

∫
Bj∩W

(Br60αEγ f I , j,trans)
3.25 ≤ CεR

ε(1−δ)

( ∑
τ∈I

∫
| fτ, j,trans |2

)3/2+ε

Rδtrans (1−δ) log(60K εαμ).

By Lemma 4.5,

∑
j

∫
| fτ, j,trans |2 ≤ Poly(D)

∫
| fτ |2.

Moreover,

∑
I , j

( ∑
τ∈I

∫
| fτ, j,trans |2

)3/2+ε

≤
∑
I

( ∑
j

∑
τ∈I

∫
| fτ, j,trans |2

)3/2+ε

.

Since there are at most Mε families I , combining these estimates we see that

∑
I , j

( ∑
τ∈I

∫
| fτ, j,trans |2

)3/2+ε

≤ MεPoly(D)

( ∑
τ

∫
| fτ |2

)3/2+ε

,
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and thus finally
∫
BR

(BrαEγ f )3.25 ≤ MεCεPoly(D)Rε(1−δ)

( ∑
τ

∫
| fτ |2

)3/2+ε

Rδtrans (1−δ) log(60K εαμ)

≤ (MεPoly(D)R−δε+cδtrans )CεR
ε

( ∑
τ

∫
| fτ |2

)3/2+ε

Rδtrans log(K εαμ).

By our choices of δ and δtrans, since we assume that R is sufficiently large, we find that the
first factor in parentheses is bounded by 1, and thus

∫
BR

(BrαEγ f )3.25 ≤ CεR
ε

( ∑
τ

∫
| fτ |2

)3/2+ε

Rδtrans log(K εαμ).

This closes the induction and thus completes the proof of Theorem 3.2.

4.3 Proof of the Geometric Lemma

In this subsection we prove Lemma 4.11. Assume that we are given a family of caps {τk}
such that for any k,m with k �= m we have

min{|ycm − yck |,max{|tγzcm (zcm, zck)|, |tγzck (z
c
m, zck)|}} ≤ 10μ1/2K−1, (43)

where we denote by zck = (xck , y
c
k ) the center of the cap τk .

Case 1. For all k,m we have |ycm − yck | ≤ 10μ1/2K−1. Then, all caps are contained in a
horizontal strip of width 10μ1/2K−1 ≤ μ1/2K−1/4, since K ≥ 30.
Case 2. There are two caps, say τ1, τ2, such that |yc1 − yc2| > 10μ1/2K−1. We may assume
that yc2 − yc1 = max j �=k |ycj − yck |. Then, for all k,

yc1 ≤ yck ≤ yc2 .

Since τ1 and τ2 are not strongly separated, |tγzc1(z
c
1, z

c
2)| ≤ 10μ1/2K−1 and |tγzc2(z

c
1, z

c
2)| ≤

10μ1/2K−1. Therefore, by (18),

|γ | |yc2 − yc1|2 = |tγzc1(z
c
1, z

c
2) − tγzc2

(zc1, z
c
2)| ≤ 20μ1/2K−1,

and since |yck − yc1| ≤ |yc2 − yc1 |, we see that for all k
|yck − yc1| ≤ (20μ1/2|γ |−1K−1)

1
2 . (44)

In combination with (18), this also implies that

|xck − xc1| ≤ |tγzc1(z
c
1, z

c
k)| + |γ ||yck | |yck − yc1|

≤ 10μ1/2K−1 + |γ |(20μ1/2|γ |−1K−1)
1
2

≤ 15μ1/2K−1/2, (45)

since |γ | ≤ 1, μ ≥ 1 and K ≥ 1.
When |γ |K 1/2 > 1, we conclude from (44) that |yck − yc1| ≤ (20μ1/2K−1/2)1/2 for all k.

Hence, all the caps are contained in a horizontal strip of width 10μ1/2K−1/4. Decomposing
these further into horizontal strips of width 0.5μ1/2K−1/4, each of which is contained in
one of the ragged strips S� that have been fixed in Section 3, and distributing the caps τk
of our family over these ragged strips, we arrive at at most 40 horizontal ragged strips of
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width μ1/2K−1/4 which contain all the caps considered in Case 2. Note that by our passage
to ragged strips the width does not increase by more than 2μ1/2K−1 ≤ 0.5μ1/2K−1/4, since
K ≥ 20.

When |γ |K 1/2 ≤ 1, we conclude from (45) that all the caps are contained in a vertical
strip of width 20μ1/2K−1/2, and arguing as before we can conclude the proof of Lemma
4.11 also in this case. ��

5 Passing from extension estimates on cubes to estimates on plates: an
orthogonality lemma

We will here finally discuss an auxilary lemma that we needed in Section 2.
Let � ⊂ R

n be an open bounded set and φ : � → R any phase function such that
|∇φ(x)| � 1 for all x ∈ �. Assume further that ρ ∈ C∞(�), and consider the Fourier
extension operator

E f (ξ) :=
∫

�

f (x) e−i[ξ ′·x+ξn+1φ(x)]ρ(x) dx,

where ξ = (ξ ′, ξn+1) ∈ R
n × R (for convenience, we have chosen here a different sign in

the phase than in the definition of Eγ f ).

Lemma 5.1 Let 2 ≤ q ≤ p. Assume that for every ε > 0 there exists a constant Cε such that
for every R ≥ 1

‖E f ‖L p([0,R]n+1) ≤ CεR
ε‖ f ‖2/q

L2(�)
‖ f ‖1−2/q

L∞(�) (46)

for all f ∈ Lq(�). Then for every ε > 0 there exists a constant C ′
ε such that for all R ≥ 1

‖E f ‖L p(Rn×[0,R]) ≤ C ′
εR

ε‖ f ‖2/q
L2(�)

‖ f ‖1−2/q
L∞(�) (47)

for all f ∈ Lq(�).

Proof First observe that (46) holds for any translate of [0, R]n+1 in place of [0, R]n+1 as
well, in particular on any cube Qy := R(y, 0) + [0, R]n+1, y ∈ Z

n .
In order to pass to a corresponding estimate on the plate R

n ×[0, R]), which decomposes
into the cubes Qy, it will suffice to perform an adapted frequency decomposition of f (a full
wave packet decomposition is needed here):

Let fy := f ∗ χ̌y , where χy(η) := χ(η/R − y), y ∈ Z
n, and χ is a suitable compactly

supported bump function chosen so that the χy, y ∈ Z
n, form a partition of unity on R

n .

Then f = ∑
y fy .

In order to prove (47), wemay and shall assume that 0 ≤ ξn+1 ≤ R. Under this restriction,
we will see that E fy is essentially supported in Qy . Indeed, note that by Fourier inversion

E fy(ξ) = cn

∫∫
f̂ (η)χ(η/R − y)e−i[(ξ ′−η)·x+ξn+1φ(x)]ρ(x)dxdη.

The gradient in x of the full phase is given by ξ ′ − η + ξn+1∇φ(x) = ξ ′ − Ry + O(R).
Hence, by a standard integration by parts argument in x, we see that for any N ∈ N

|E fy(ξ)| �N Rn
∣∣ξ ′ − Ry

∣∣−N‖ fy‖1, if
∣∣ξ ′ − Ry

∣∣ � R. (48)
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It is thus natural to split (and estimate, using Minkowski’s inequality)

‖E f ‖L p(Rn×[0,R]) =
(∑

y

‖
∑
z

E fy+z‖p
L p(Qy)

)1/p

≤
∑
z

(∑
y

‖E fy‖p
L p(Qy−z)

)1/p

into two parts: First we use (46) and p ≥ q to estimate

∑
|z|�1

(∑
y

‖E fy‖p
L p(Qy−z)

)1/p

�CεR
ε

(∑
y

‖ fy‖2p/qL2(�)
‖ fy‖p(1−2/q)

L∞(�)

)1/p

≤CεR
ε

(∑
y

‖ fy‖2L2(�)

)1/q

‖ f ‖1−2/q
L∞(�)

�CεR
ε‖ f ‖2/q

L2(�)
‖ f ‖1−2/q

L∞(�),

where have used Plancherel’s theorem. The remainder can be estimated using (48):

∑
|z|�1

(∑
y

‖E fy‖p
L p(Qy−z)

)1/p

� Rn+(n+1)/p
∑
|z|�1

(R|z|)−N

(∑
y

‖ fy‖p
1

)1/p

� R−N ′
(∑

y

‖ fy‖p
1

)1/p

,

which finishes the proof because ‖ fy‖1 ≤ ‖ fy‖2/q2 ‖ fy‖1−2/q∞ , so that from here we can
proceed as before. ��
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